Sample records for multiplexed microbial identification

  1. Colloid-based multiplexed method for screening plant biomass-degrading glycoside hydrolase activities in microbial communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reindl, W.; Deng, K.; Gladden, J.M.

    2011-05-01

    The enzymatic hydrolysis of long-chain polysaccharides is a crucial step in the conversion of biomass to lignocellulosic biofuels. The identification and characterization of optimal glycoside hydrolases is dependent on enzyme activity assays, however existing methods are limited in terms of compatibility with a broad range of reaction conditions, sample complexity, and especially multiplexity. The method we present is a multiplexed approach based on Nanostructure-Initiator Mass Spectrometry (NIMS) that allowed studying several glycolytic activities in parallel under diverse assay conditions. Although the substrate analogs carried a highly hydrophobic perfluorinated tag, assays could be performed in aqueous solutions due colloid formation ofmore » the substrate molecules. We first validated our method by analyzing known {beta}-glucosidase and {beta}-xylosidase activities in single and parallel assay setups, followed by the identification and characterization of yet unknown glycoside hydrolase activities in microbial communities.« less

  2. Effective characterization of Salmonella Enteritidis by most probable number (MPN) followed by multiplex polymerase chain reaction (PCR) methods.

    PubMed

    Zappelini, Lincohn; Martone-Rocha, Solange; Dropa, Milena; Matté, Maria Helena; Tiba, Monique Ribeiro; Breternitz, Bruna Suellen; Razzolini, Maria Tereza Pepe

    2017-02-01

    Nontyphoidal Salmonella (NTS) is a relevant pathogen involved in gastroenteritis outbreaks worldwide. In this study, we determined the capacity to combine the most probable number (MPN) and multiplex polymerase chain reaction (PCR) methods to characterize the most important Salmonella serotypes in raw sewage. A total of 499 isolates were recovered from 27 raw sewage samples and screened using two previously described multiplex PCR methods. From those, 123 isolates were selected based on PCR banding pattern-identical or similar to Salmonella Enteritidis and Salmonella Typhimurium-and submitted to conventional serotyping. Results showed that both PCR assays correctly serotyped Salmonella Enteritidis, however, they presented ambiguous results for Salmonella Typhimurium identification. These data highlight that MPN and multiplex PCR can be useful methods to describe microbial quality in raw sewage and suggest two new PCR patterns for Salmonella Enteritidis identification.

  3. Multiplex polymerase chain reaction detection of black-pigmented bacteria in infections of endodontic origin.

    PubMed

    Seol, Jung-Hwan; Cho, Byung-Hoon; Chung, Chong-Pyoung; Bae, Kwang-Shik

    2006-02-01

    The purpose of this study was to detect the presence of Porphyromonas endodontalis, P. gingivalis, Prevotella intermedia, P. nigrescens, and P. tannerae from clinical samples using multiplex polymerase chain reactions (PCR). Two different multiplex PCR protocols were used (one for the two Porphyromonas species and the other for the three Prevotella species), each one using a primer pair specific for each target species. The results were compared to those of the conventional culture procedures. Microbial samples were taken aseptically from 40 infected root canals and abscesses from patients. Samples were cultured in an anaerobic condition for conventional identification using a Rapid ID 32 A kit. Multiplex PCR was processed using the DNA extracted from each sample. At least one of the five species of black-pigmented bacteria (BPB) were detected in 65% (26 of 40) of the samples using multiplex PCR, and in 15% (6 of 40) using the conventional culture procedures. Multiplex PCR was more rapid, sensitive, specific, and effective in detecting BPB than the conventional culture procedures.

  4. Massively multiplexed microbial identification using resequencing DNA microarrays for outbreak investigation

    NASA Astrophysics Data System (ADS)

    Leski, T. A.; Ansumana, R.; Jimmy, D. H.; Bangura, U.; Malanoski, A. P.; Lin, B.; Stenger, D. A.

    2011-06-01

    Multiplexed microbial diagnostic assays are a promising method for detection and identification of pathogens causing syndromes characterized by nonspecific symptoms in which traditional differential diagnosis is difficult. Also such assays can play an important role in outbreak investigations and environmental screening for intentional or accidental release of biothreat agents, which requires simultaneous testing for hundreds of potential pathogens. The resequencing pathogen microarray (RPM) is an emerging technological platform, relying on a combination of massively multiplex PCR and high-density DNA microarrays for rapid detection and high-resolution identification of hundreds of infectious agents simultaneously. The RPM diagnostic system was deployed in Sierra Leone, West Africa in collaboration with Njala University and Mercy Hospital Research Laboratory located in Bo. We used the RPM-Flu microarray designed for broad-range detection of human respiratory pathogens, to investigate a suspected outbreak of avian influenza in a number of poultry farms in which significant mortality of chickens was observed. The microarray results were additionally confirmed by influenza specific real-time PCR. The results of the study excluded the possibility that the outbreak was caused by influenza, but implicated Klebsiella pneumoniae as a possible pathogen. The outcome of this feasibility study confirms that application of broad-spectrum detection platforms for outbreak investigation in low-resource locations is possible and allows for rapid discovery of the responsible agents, even in cases when different agents are suspected. This strategy enables quick and cost effective detection of low probability events such as outbreak of a rare disease or intentional release of a biothreat agent.

  5. Multiplex PCR for simultaneous identification of E. coli O157:H7, Salmonella spp. and L. monocytogenes in food.

    PubMed

    Nguyen, Thuy Trang; Van Giau, Vo; Vo, Tuong Kha

    2016-12-01

    The rapid detection of pathogens in food is becoming increasingly critical for ensuring the safety of consumers, since the majority of food-borne illnesses and deaths are caused by pathogenic bacteria. Hence, rapid, sensitive, inexpensive and convenient approaches to detect food-borne pathogenic bacteria is essential in controlling food safety. In this study, a multiplex PCR assay for the rapid and simultaneous detection of Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes was established. The invA, stx and hlyA genes specifically amplified DNA fragments of 284, 404 and 510 bp from Salmonella spp., L. monocytogenes and E. coli O157:H7, respectively. The 16S rRNA gene was targeted as an internal control gene in the presence of bacterial DNA. The specificity and sensitivity of the multiplex PCR were performed by testing different strains. The multiplex PCR assay was able to specifically simultaneously detect ten colony-forming unit/mL of each pathogen in artificially inoculated samples after enrichment for 12 h. The whole process took less than 24 h to complete, indicating that the assay is suitable for reliable and rapid identification of these three food-borne pathogens, which could be suitable in microbial epidemiology investigation.

  6. Design and Construction of a Single-Tube, LATE-PCR, Multiplex Endpoint Assay with Lights-On/Lights-Off Probes for the Detection of Pathogens Associated with Sepsis

    PubMed Central

    Carver-Brown, Rachel K.; Reis, Arthur H.; Rice, Lisa M.; Czajka, John W.; Wangh, Lawrence J.

    2012-01-01

    Aims. The goal of this study was to construct a single tube molecular diagnostic multiplex assay for the detection of microbial pathogens commonly associated with septicemia, using LATE-PCR and Lights-On/Lights-Off probe technology. Methods and Results. The assay described here identified pathogens associated with sepsis by amplification and analysis of the 16S ribosomal DNA gene sequence for bacteria and specific gene sequences for fungi. A sequence from an unidentified gene in Lactococcus lactis subsp. cremoris served as a positive control for assay function. LATE-PCR was used to generate single-stranded amplicons that were then analyzed at endpoint over a wide temperature range in a specific fluorescent color. Each bacterial target was identified by its pattern of hybridization to Lights-On/Lights-Off probes derived from molecular beacons. Complex mixtures of targets were also detected. Conclusions. All microbial targets were identified in samples containing low starting copy numbers of pathogen genomic DNA, both as individual targets and in complex mixtures. Significance and Impact of the Study. This assay uses new technology to achieve an advance in the field of molecular diagnostics: a single-tube multiplex assay for identification of pathogens commonly associated with sepsis. PMID:23326668

  7. Multiplex Molecular Panels for Diagnosis of Gastrointestinal Infection: Performance, Result Interpretation, and Cost-Effectiveness.

    PubMed

    Binnicker, Matthew J

    2015-12-01

    Gastrointestinal disease is a major cause of morbidity and mortality worldwide, especially among young children and immunocompromised patients. Diarrhea may result from infection with a variety of microbial pathogens, including bacteria, viruses, or parasites. Historically, the diagnosis of infectious diarrhea has been made using microscopy, antigen tests, culture, and real-time PCR. A combination of these traditional tests is often required due to the inability to distinguish between infectious etiologies based on the clinical presentation alone. Recently, several multiplex molecular assays have been developed for the detection of gastrointestinal pathogens directly from clinical stool samples. These panels allow for the detection and identification of up to 20 pathogens in as little as 1 h. This review will focus on the multiplex molecular panels that have received clearance from the FDA for the diagnosis of diarrheal disease and will highlight issues related to test performance, result interpretation, and cost-effectiveness of these new molecular diagnostic tools.

  8. Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platform (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Tremblay, Julien

    2018-01-22

    Julien Tremblay from DOE JGI presents "Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platorm" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  9. Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platform (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremblay, Julien

    2012-06-01

    Julien Tremblay from DOE JGI presents "Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platorm" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  10. Multiplex real-time PCR assays for the identification of the potato cyst and tobacco cyst nematodes

    USDA-ARS?s Scientific Manuscript database

    TaqMan primer-probe sets were developed for the detection and identification of potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis using two-tube, multiplex real-time PCR. One tube contained a primer-probe set specific for G. pallida (pale cyst nematode) multiplexed with another prim...

  11. Analysis of sensitivity and rapid hybridization of a multiplexed Microbial Detection Microarray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thissen, James B.; McLoughlin, Kevin; Gardner, Shea

    Microarrays have proven to be useful in rapid detection of many viruses and bacteria. Pathogen detection microarrays have been used to diagnose viral and bacterial infections in clinical samples and to evaluate the safety of biological drug materials. A multiplexed version of the Lawrence Livermore Microbial Detection Array (LLMDA) was developed and evaluated with minimum detectable concentrations for pure unamplified DNA viruses, along with mixtures of viral and bacterial DNA subjected to different whole genome amplification protocols. In addition the performance of the array was tested when hybridization time was reduced from 17 h to 1 h. The LLMDA wasmore » able to detect unamplified vaccinia virus DNA at a concentration of 14 fM, or 100,000 genome copies in 12 μL of sample. With amplification, positive identification was made with only 100 genome copies of input material. When tested against human stool samples from patients with acute gastroenteritis, the microarray detected common gastroenteritis viral and bacterial infections such as rotavirus and E. coli. Accurate detection was found but with a 4-fold drop in sensitivity for a 1 h compared to a 17 h hybridization. The array detected 2 ng (equivalent concentration of 15.6 fM) of labeled DNA from a virus with 1 h hybridization without any amplification, and was able to identify the components of a mixture of viruses and bacteria at species and in some cases strain level resolution. Sensitivity improved by three orders of magnitude with random whole genome amplification prior to hybridization; for instance, the array detected a DNA virus with only 20 fg or 100 genome copies as input. This multiplexed microarray is an efficient tool to analyze clinical and environmental samples for the presence of multiple viral and bacterial pathogens rapidly.« less

  12. Analysis of sensitivity and rapid hybridization of a multiplexed Microbial Detection Microarray

    DOE PAGES

    Thissen, James B.; McLoughlin, Kevin; Gardner, Shea; ...

    2014-06-01

    Microarrays have proven to be useful in rapid detection of many viruses and bacteria. Pathogen detection microarrays have been used to diagnose viral and bacterial infections in clinical samples and to evaluate the safety of biological drug materials. A multiplexed version of the Lawrence Livermore Microbial Detection Array (LLMDA) was developed and evaluated with minimum detectable concentrations for pure unamplified DNA viruses, along with mixtures of viral and bacterial DNA subjected to different whole genome amplification protocols. In addition the performance of the array was tested when hybridization time was reduced from 17 h to 1 h. The LLMDA wasmore » able to detect unamplified vaccinia virus DNA at a concentration of 14 fM, or 100,000 genome copies in 12 μL of sample. With amplification, positive identification was made with only 100 genome copies of input material. When tested against human stool samples from patients with acute gastroenteritis, the microarray detected common gastroenteritis viral and bacterial infections such as rotavirus and E. coli. Accurate detection was found but with a 4-fold drop in sensitivity for a 1 h compared to a 17 h hybridization. The array detected 2 ng (equivalent concentration of 15.6 fM) of labeled DNA from a virus with 1 h hybridization without any amplification, and was able to identify the components of a mixture of viruses and bacteria at species and in some cases strain level resolution. Sensitivity improved by three orders of magnitude with random whole genome amplification prior to hybridization; for instance, the array detected a DNA virus with only 20 fg or 100 genome copies as input. This multiplexed microarray is an efficient tool to analyze clinical and environmental samples for the presence of multiple viral and bacterial pathogens rapidly.« less

  13. Molecular methods for pathogen and microbial community detection and characterization: current and potential application in diagnostic microbiology.

    PubMed

    Sibley, Christopher D; Peirano, Gisele; Church, Deirdre L

    2012-04-01

    Clinical microbiology laboratories worldwide have historically relied on phenotypic methods (i.e., culture and biochemical tests) for detection, identification and characterization of virulence traits (e.g., antibiotic resistance genes, toxins) of human pathogens. However, limitations to implementation of molecular methods for human infectious diseases testing are being rapidly overcome allowing for the clinical evaluation and implementation of diverse technologies with expanding diagnostic capabilities. The advantages and limitation of molecular techniques including real-time polymerase chain reaction, partial or whole genome sequencing, molecular typing, microarrays, broad-range PCR and multiplexing will be discussed. Finally, terminal restriction fragment length polymorphism (T-RFLP) and deep sequencing are introduced as technologies at the clinical interface with the potential to dramatically enhance our ability to diagnose infectious diseases and better define the epidemiology and microbial ecology of a wide range of complex infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Comparative evaluation of uniplex, nested, semi-nested, multiplex and nested multiplex PCR methods in the identification of microbial etiology of clinically suspected infectious endophthalmitis.

    PubMed

    Bharathi, Madasamy Jayahar; Murugan, Nandagopal; Rameshkumar, Gunasekaran; Ramakrishnan, Rengappa; Venugopal Reddy, Yerahaia Chinna; Shivkumar, Chandrasekar; Ramesh, Srinivasan

    2013-05-01

    This study is aimed to determine the utility of various polymerase chain reaction (PCR) methods in vitreous fluids (VFs) for detecting the infectious genomes in the diagnosis of infectious endophthalmitis in terms of sensitivity and specificity. This prospective and consecutive analysis included a total of 66 VFs that were submitted for the microbiological evaluation, which were obtained from 66 clinically diagnosed endophthalmitis patients presented between November 2010 and October 2011 at the tertiary eye care referral centre in South India. Part of the collected VFs were subjected to cultures and smears, and the remaining parts were utilized for five PCR methods: uniplex, nested, semi-nested, multiplex and nested multiplex after extracting DNA, using universal eubacterial and Propionibacterium acnes species-specific primer sets targeting 16S rRNA gene in all bacteria and P. acnes, and panfungal primers, targeting 28S rRNA gene in all fungi. Of the 66 VFs, five (7.5%) showed positive results in smears, 16 (24%) in cultures and 43 (65%) showed positive results in PCRs. Among the 43 positively amplified VFs, 10 (15%) were positive for P. acnes genome, one for panfungal genome and 42 (62%) for eubacterial genome (including 10 P. acnes positives). Among 42 eubacterial-positive VFs, 36 were positive by both uniplex (first round) and multiplex (first round) PCRs, while nested (second round) and nested multiplex (second round) PCRs produced positive results in 42 and 41 VFs, respectively. Of the 43 PCR-positive specimens, 16 (37%) had positive growth (15 bacterial and one fungal) in culture. Of 50 culture-negative specimens, 27 (54%) were showed positive amplification, of which 10 were amplified for both P. acnes and eubacterial genomes and the remaining 17 were for eubacterial genome alone. Nested PCRs are superior than uniplex and multiplex PCR. PCRs proved to be a powerful tool in the diagnosis of endophthalmitis, especially for detecting uncultured microbes.

  15. Resident lactic acid bacteria in raw milk Canestrato Pugliese cheese.

    PubMed

    Aquilanti, L; Dell'Aquila, L; Zannini, E; Zocchetti, A; Clementi, F

    2006-08-01

    Investigation of the autochthonous lactic acid bacteria (LAB) population of the raw milk protected designation of origin Canestrato Pugliese cheese using phenotypic and genotypic methodologies. Thirty phenotypic assays and three molecular techniques (restriction fragment length polymorphism, partial sequencing of the 16S rRNA gene and recA multiplex PCR assay) were applied to the identification of 304 isolates from raw milk Canestrato Pugliese cheese. As a result, 168 of 207 isolates identified were ascribed to genus Enterococcus, 25 to Lactobacillus, 13 to Lactococcus and one to Leuconostoc. More in details among the lactobacilli, the species Lactobacillus brevis and Lactobacillus plantarum were predominant, including 13 and 10 isolates respectively, whereas among the lactococci, Lactococcus lactis subsp.cremoris [corrected] was the species more frequently detected (seven isolates). Except for the enterococci, phenotypic tests were not reliable enough for the identification of the isolates, if not combined to the genotype-based molecular techniques. The polyphasic approach utilized allowed 10 different LAB species to be detected; thus suggesting the appreciable LAB diversity of the autochthonous microbial population of the Canestrato Pugliese cheese. A comprehensive study of the resident raw milk Canestrato Pugliese cheese microbial population has been undertaken.

  16. Laboratory Tests of Multiplex Detection of PCR Amplicons Using the Luminex 100 Flow Analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkateswaran, K.S.; Nasarabadi, S.; Langlois, R.G.

    2000-05-05

    Lawrence Livermore National Laboratory (LLNL) demonstrated the power of flow cytometry in detecting the biological agents simulants at JFT III. LLNL pioneered in the development of advanced nucleic acid analyzer (ANM) for portable real time identification. Recent advances in flow cytometry provide a means for multiplexed nucleic acid detection and immunoassay of pathogenic microorganisms. We are presently developing multiplexed immunoassays for the simultaneous detection of different simulants. Our goal is to build an integrated instrument for both nucleic acid analysis and immuno detection. In this study we evaluated the Luminex LX 100 for concurrent identification of more than one PCRmore » amplified product. ANAA has real-time Taqman fluorescent detection capability for rapid identification of field samples. However, its multiplexing ability is limited by the combination of available fluorescent labels. Hence integration of ANAA with flow cytometry can give the rapidity of ANAA amplification and the multiplex capability of flow cytometry. Multiplexed flow cytometric analysis is made possible using a set of fluorescent latex microsphere that are individually identified by their red and infrared fluorescence. A green fluorochrome is used as the assay signal. Methods were developed for the identification of specific nucleic acid sequences from Bacillus globigii (Bg), Bacillus thuringensis (Bt) and Erwinia herbicola (Eh). Detection sensitivity using different reporter fluorochromes was tested with the LX 100, and also different assay formats were evaluated for their suitability for rapid testing. A blind laboratory trial was carried out December 22-27, 1999 to evaluate bead assays for multiplex identification of Bg and Bt PCR products. This report summarizes the assay development, fluorochrome comparisons, and the results of the blind trial conducted at LLNL for the laboratory evaluation of the LX 100 flow analyzer.« less

  17. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, R P; Langlois, R G; Nasarabadi, S

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flowmore » cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.« less

  18. Rapid and accurate identification of Mycobacterium tuberculosis complex and common non-tuberculous mycobacteria by multiplex real-time PCR targeting different housekeeping genes.

    PubMed

    Nasr Esfahani, Bahram; Rezaei Yazdi, Hadi; Moghim, Sharareh; Ghasemian Safaei, Hajieh; Zarkesh Esfahani, Hamid

    2012-11-01

    Rapid and accurate identification of mycobacteria isolates from primary culture is important due to timely and appropriate antibiotic therapy. Conventional methods for identification of Mycobacterium species based on biochemical tests needs several weeks and may remain inconclusive. In this study, a novel multiplex real-time PCR was developed for rapid identification of Mycobacterium genus, Mycobacterium tuberculosis complex (MTC) and the most common non-tuberculosis mycobacteria species including M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and the M. gordonae in three reaction tubes but under same PCR condition. Genetic targets for primer designing included the 16S rDNA gene, the dnaJ gene, the gyrB gene and internal transcribed spacer (ITS). Multiplex real-time PCR was setup with reference Mycobacterium strains and was subsequently tested with 66 clinical isolates. Results of multiplex real-time PCR were analyzed with melting curves and melting temperature (T (m)) of Mycobacterium genus, MTC, and each of non-tuberculosis Mycobacterium species were determined. Multiplex real-time PCR results were compared with amplification and sequencing of 16S-23S rDNA ITS for identification of Mycobacterium species. Sensitivity and specificity of designed primers were each 100 % for MTC, M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and M. gordonae. Sensitivity and specificity of designed primer for genus Mycobacterium was 96 and 100 %, respectively. According to the obtained results, we conclude that this multiplex real-time PCR with melting curve analysis and these novel primers can be used for rapid and accurate identification of genus Mycobacterium, MTC, and the most common non-tuberculosis Mycobacterium species.

  19. DNAemia detection by multiplex PCR and biomarkers for infection in systemic inflammatory response syndrome patients.

    PubMed

    Fitting, Catherine; Parlato, Marianna; Adib-Conquy, Minou; Memain, Nathalie; Philippart, François; Misset, Benoît; Monchi, Mehran; Cavaillon, Jean-Marc; Adrie, Christophe

    2012-01-01

    Fast and reliable assays to precisely define the nature of the infectious agents causing sepsis are eagerly anticipated. New molecular biology techniques are now available to define the presence of bacterial or fungal DNA within the bloodstream of sepsis patients. We have used a new technique (VYOO®) that allows the enrichment of microbial DNA before a multiplex polymerase chain reaction (PCR) for pathogen detection provided by SIRS-Lab (Jena, Germany). We analyzed 72 sepsis patients and 14 non-infectious systemic inflammatory response syndrome (SIRS) patients. Among the sepsis patients, 20 had a positive blood culture and 35 had a positive microbiology in other biological samples. Of these, 51.4% were positive using the VYOO® test. Among the sepsis patients with a negative microbiology and the non-infectious SIRS, 29.4% and 14.2% were positive with the VYOO® test, respectively. The concordance in bacterial identification between microbiology and the VYOO® test was 46.2%. This study demonstrates that these new technologies offer great hopes, but improvements are still needed.

  20. 21 CFR 862.2570 - Instrumentation for clinical multiplex test systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Instrumentation for clinical multiplex test... Laboratory Instruments § 862.2570 Instrumentation for clinical multiplex test systems. (a) Identification. Instrumentation for clinical multiplex test systems is a device intended to measure and sort multiple signals...

  1. 21 CFR 862.2570 - Instrumentation for clinical multiplex test systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Instrumentation for clinical multiplex test... Laboratory Instruments § 862.2570 Instrumentation for clinical multiplex test systems. (a) Identification. Instrumentation for clinical multiplex test systems is a device intended to measure and sort multiple signals...

  2. 21 CFR 862.2570 - Instrumentation for clinical multiplex test systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Instrumentation for clinical multiplex test... Laboratory Instruments § 862.2570 Instrumentation for clinical multiplex test systems. (a) Identification. Instrumentation for clinical multiplex test systems is a device intended to measure and sort multiple signals...

  3. 21 CFR 862.2570 - Instrumentation for clinical multiplex test systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Instrumentation for clinical multiplex test... Laboratory Instruments § 862.2570 Instrumentation for clinical multiplex test systems. (a) Identification. Instrumentation for clinical multiplex test systems is a device intended to measure and sort multiple signals...

  4. Multiplex real-time PCR for identification of canine parvovirus antigenic types.

    PubMed

    Kaur, Gurpreet; Chandra, Mudit; Dwivedi, P N; Narang, Deepti

    2016-07-01

    Canine parvovirus (CPV) is an important disease causing gastroenteritis and/or haemorrhagic gastroenteritis in dogs. There are four antigenic types of CPV reported worldwide viz. CPV 2, CPV 2a, CPV 2b and CPV 2c. The diagnosis of CPV with the identification of the antigen type responsible remains problematic. In the present study, identification as well as antigenic typing of CPV was done using a de novo multiplex real time PCR to combat the problem of antigenic type identification. From the study it could be concluded that the here developed multiplex real time PCR assay could be used for rapid detection of CPV as well as typing of its three antigenic types. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Optimized MOL-PCR for Characterization of Microbial Pathogens.

    PubMed

    Wuyts, Véronique; Roosens, Nancy H C; Bertrand, Sophie; Marchal, Kathleen; De Keersmaecker, Sigrid C J

    2016-01-06

    Characterization of microbial pathogens is necessary for surveillance, outbreak detection, and tracing of outbreak sources. This unit describes a multiplex oligonucleotide ligation-PCR (MOL-PCR) optimized for characterization of microbial pathogens. With MOL-PCR, different types of markers, like unique sequences, single-nucleotide polymorphisms (SNPs) and indels, can be simultaneously analyzed in one assay. This assay consists of a multiplex ligation for detection of the markers, a singleplex PCR for signal amplification, and hybridization to MagPlex-TAG beads for readout on a Luminex platform after fluorescent staining. The current protocol describes the MOL-PCR, as well as methods for DNA isolation, probe design, and data interpretation and it is based on an optimized MOL-PCR assay for subtyping of Salmonella Typhimurium. Copyright © 2016 John Wiley & Sons, Inc.

  6. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA.

    PubMed

    Song, Y; Kato, N; Liu, C; Matsumiya, Y; Kato, H; Watanabe, K

    2000-06-15

    Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.

  7. Multiplex PCR identification of Taenia spp. in rodents and carnivores.

    PubMed

    Al-Sabi, Mohammad N S; Kapel, Christian M O

    2011-11-01

    The genus Taenia includes several species of veterinary and public health importance, but diagnosis of the etiological agent in definitive and intermediate hosts often relies on labor intensive and few specific morphometric criteria, especially in immature worms and underdeveloped metacestodes. In the present study, a multiplex PCR, based on five primers targeting the 18S rDNA and ITS2 sequences, produced a species-specific banding patterns for a range of Taenia spp. Species typing by the multiplex PCR was compared to morphological identification and sequencing of cox1 and/or 12S rDNA genes. As compared to sequencing, the multiplex PCR identified 31 of 32 Taenia metacestodes from rodents, whereas only 14 cysts were specifically identified by morphology. Likewise, the multiplex PCR identified 108 of 130 adult worms, while only 57 were identified to species by morphology. The tested multiplex PCR system may potentially be used for studies of Taenia spp. transmitted between rodents and carnivores.

  8. EFFECT OF DIFFERENT REGIONS OF AMPLIFIED 16S RDNA ON A PERFORMANCE OF A MULTIPLEXED, BEAD-BASED METHOD FOR ANALYSIS OF DNA SEQUENCES IN ENVIRONMENTAL SAMPLES.

    EPA Science Inventory

    Using a bead-based method for multiplexed analysis of community DNA, the dynamics of aquatic microbial communities can be assessed. Capture probes, specific for a genus or species of bacteria, are attached to the surface of uniquely labeled, microscopic polystyrene beads. Primers...

  9. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA.

    PubMed

    Kwon, Hyuk-Sang; Yang, Eun-Hee; Yeon, Seung-Woo; Kang, Byoung-Hwa; Kim, Tae-Yong

    2004-10-15

    This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of seven probiotic Lactobacillus species such as Lactobacillus acidophilus, Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus reuteri and Lactobacillus rhamnosus. The primer set, comprising of seven specific and two conserved primers, was derived from the integrated sequences of 16S and 23S rRNA genes and their rRNA intergenic spacer region of each species. It was able to identify the seven target species with 93.6% accuracy, which exceeds that of the general biochemical methods. The phylogenetic analyses, using 16S rDNA sequences of the probiotic isolates, also provided further support that the results from the multiplex PCR assay were trustworthy. Taken together, we suggest that the multiplex primer set is an efficient tool for simple, rapid and reliable identification of seven Lactobacillus species.

  10. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral... simultaneously detect and identify multiple viral nucleic acids extracted from human respiratory specimens or...

  11. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral... simultaneously detect and identify multiple viral nucleic acids extracted from human respiratory specimens or...

  12. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral... simultaneously detect and identify multiple viral nucleic acids extracted from human respiratory specimens or...

  13. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral... simultaneously detect and identify multiple viral nucleic acids extracted from human respiratory specimens or...

  14. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral... simultaneously detect and identify multiple viral nucleic acids extracted from human respiratory specimens or...

  15. High resolution melting analysis (HRM) as a new tool for the identification of species belonging to the Lactobacillus casei group and comparison with species-specific PCRs and multiplex PCR.

    PubMed

    Iacumin, Lucilla; Ginaldi, Federica; Manzano, Marisa; Anastasi, Veronica; Reale, Anna; Zotta, Teresa; Rossi, Franca; Coppola, Raffaele; Comi, Giuseppe

    2015-04-01

    The correct identification and characterisation of bacteria is essential for several reasons: the classification of lactic acid bacteria (LAB) has changed significantly over the years, and it is important to distinguish and define them correctly, according to the current nomenclature, avoiding problems in the interpretation of literature, as well as mislabelling when probiotic are used in food products. In this study, species-specific PCR and HRM (high-resolution melting) analysis were developed to identify strains belonging to the Lactobacillus casei group and to classify them into L. casei, Lactobacillus paracasei and Lactobacillus rhamnosus. HRM analysis confirmed to be a potent, simple, fast and economic tool for microbial identification. In particular, 201 strains, collected from International collections and attributed to the L. casei group, were examined using these techniques and the results were compared with consolidated molecular methods, already published. Seven of the tested strains don't belong to the L. casei group. Among the remaining 194 strains, 6 showed inconsistent results, leaving identification undetermined. All the applied techniques were congruent for the identification of the vast majority of the tested strains (188). Notably, for 46 of the strains, the identification differed from the previous attribution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Development of a new pentaplex real-time PCR assay for the identification of poly-microbial specimens containing Staphylococcus aureus and other staphylococci, with simultaneous detection of staphylococcal virulence and methicillin resistance markers.

    PubMed

    Okolie, Charles E; Wooldridge, Karl G; Turner, David P; Cockayne, Alan; James, Richard

    2015-06-01

    Staphylococcus aureus strains harbouring genes encoding virulence and antibiotic resistance are of public health importance. In clinical samples, pathogenic S. aureus is often mixed with putatively less pathogenic coagulase-negative staphylococci (CoNS), both of which can harbour mecA, the gene encoding staphylococcal methicillin-resistance. There have been previous attempts at distinguishing MRSA from MRCoNS, most of which were based on the detection of one of the pathognomonic markers of S. aureus, such as coa, nuc or spa. That approach might suffice for discrete colonies and mono-microbial samples; it is inadequate for identification of clinical specimens containing mixtures of S. aureus and CoNS. In the present study, a real-time pentaplex PCR assay has been developed which simultaneously detects markers for bacteria (16S rRNA), coagulase-negative staphylococcus (cns), S. aureus (spa), Panton-Valentine leukocidin (pvl) and methicillin resistance (mecA). Staphylococcal and non-staphylococcal bacterial strains (n = 283) were used to validate the new assay. The applicability of this test to clinical samples was evaluated using spiked blood cultures (n = 43) containing S. aureus and CoNS in mono-microbial and poly-microbial models, which showed that the 5 markers were all detected as expected. Cycling completes within 1 h, delivering 100% specificity, NPV and PPV with a detection limit of 1.0 × 10(1) to 3.0 × 10(1) colony forming units (CFU)/ml, suggesting direct applicability in routine diagnostic microbiology. This is the most multiplexed real-time PCR-based PVL-MRSA assay and the first detection of a unique marker for CoNS without recourse to the conventional elimination approach. There was no evidence that this new assay produced invalid/indeterminate test results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Application of multiplex PCR approaches for shark molecular identification: feasibility and applications for fisheries management and conservation in the Eastern Tropical Pacific.

    PubMed

    Caballero, S; Cardeñosa, D; Soler, G; Hyde, J

    2012-03-01

    Here we describe the application of new and existing multiplex PCR methodologies for shark species molecular identification. Four multiplex systems (group ID, thresher sharks, hammerhead sharks and miscellaneous shark) were employed with primers previously described and some designed in this study, which allow for species identification after running PCR products through an agarose gel. This system was implemented for samples (bodies and fins) collected from unidentified sharks landed in the port of Buenaventura and from confiscated tissues obtained from illegal fishing around the Malpelo Island Marine Protected Area, Pacific Coast of Colombia. This method has allowed reliable identification, to date, of 407 samples to the genus and/or species levels, most of them (380) identified as the pelagic thresher shark (Alopias pelagicus). Another seven samples were identified as scalloped hammerhead sharks (Sphyrna lewini). This is an easy-to-implement and reliable identification method that could even be used locally to monitor shark captures in the main fishing ports of developed and developing countries. © 2011 Blackwell Publishing Ltd.

  18. A multiplex nested PCR for the detection and identification of Candida species in blood samples of critically ill paediatric patients

    PubMed Central

    2014-01-01

    Background Nosocomial candidaemia is associated with high mortality rates in critically ill paediatric patients; thus, the early detection and identification of the infectious agent is crucial for successful medical intervention. The PCR-based techniques have significantly increased the detection of Candida species in bloodstream infections. In this study, a multiplex nested PCR approach was developed for candidaemia detection in neonatal and paediatric intensive care patients. Methods DNA samples from the blood of 54 neonates and children hospitalised in intensive care units with suspected candidaemia were evaluated by multiplex nested PCR with specific primers designed to identify seven Candida species, and the results were compared with those obtained from blood cultures. Results The multiplex nested PCR had a detection limit of four Candida genomes/mL of blood for all Candida species. Blood cultures were positive in 14.8% of patients, whereas the multiplex nested PCR was positive in 24.0% of patients, including all culture-positive patients. The results obtained with the molecular technique were available within 24 hours, and the assay was able to identify Candida species with 100% of concordance with blood cultures. Additionally, the multiplex nested PCR detected dual candidaemia in three patients. Conclusions Our proposed PCR method may represent an effective tool for the detection and identification of Candida species in the context of candidaemia diagnosis in children, showing highly sensitive detection and the ability to identify the major species involved in this infection. PMID:25047415

  19. A multiplex nested PCR for the detection and identification of Candida species in blood samples of critically ill paediatric patients.

    PubMed

    Taira, Cleison Ledesma; Okay, Thelma Suely; Delgado, Artur Figueiredo; Ceccon, Maria Esther Jurfest Rivero; de Almeida, Margarete Teresa Gottardo; Del Negro, Gilda Maria Barbaro

    2014-07-21

    Nosocomial candidaemia is associated with high mortality rates in critically ill paediatric patients; thus, the early detection and identification of the infectious agent is crucial for successful medical intervention. The PCR-based techniques have significantly increased the detection of Candida species in bloodstream infections. In this study, a multiplex nested PCR approach was developed for candidaemia detection in neonatal and paediatric intensive care patients. DNA samples from the blood of 54 neonates and children hospitalised in intensive care units with suspected candidaemia were evaluated by multiplex nested PCR with specific primers designed to identify seven Candida species, and the results were compared with those obtained from blood cultures. The multiplex nested PCR had a detection limit of four Candida genomes/mL of blood for all Candida species. Blood cultures were positive in 14.8% of patients, whereas the multiplex nested PCR was positive in 24.0% of patients, including all culture-positive patients. The results obtained with the molecular technique were available within 24 hours, and the assay was able to identify Candida species with 100% of concordance with blood cultures. Additionally, the multiplex nested PCR detected dual candidaemia in three patients. Our proposed PCR method may represent an effective tool for the detection and identification of Candida species in the context of candidaemia diagnosis in children, showing highly sensitive detection and the ability to identify the major species involved in this infection.

  20. Clinical utility of an optimised multiplex real-time PCR assay for the identification of pathogens causing sepsis in Vietnamese patients.

    PubMed

    Tat Trung, Ngo; Van Tong, Hoang; Lien, Tran Thi; Van Son, Trinh; Thanh Huyen, Tran Thi; Quyen, Dao Thanh; Hoan, Phan Quoc; Meyer, Christian G; Song, Le Huu

    2018-02-01

    For the identification of bacterial pathogens, blood culture is still the gold standard diagnostic method. However, several disadvantages apply to blood cultures, such as time and rather large volumes of blood sample required. We have previously established an optimised multiplex real-time PCR method in order to diagnose bloodstream infections. In the present study, we evaluated the diagnostic performance of this optimised multiplex RT-PCR in blood samples collected from 110 septicaemia patients enrolled at the 108 Military Central Hospital, Hanoi, Vietnam. Positive results were obtained by blood culture, the Light Cylcler-based SeptiFast ® assay and our multiplex RT-PCR in 35 (32%), 31 (28%), and 31 (28%) samples, respectively. Combined use of the three methods confirmed 50 (45.5%) positive cases of bloodstream infection, a rate significantly higher compared to the exclusive use of one of the three methods (P=0.052, 0.012 and 0.012, respectively). The sensitivity, specificity and area under the curve (AUC) of our assay were higher compared to that of the SeptiFast ® assay (77.4%, 86.1% and 0.8 vs. 67.7%, 82.3% and 0.73, respectively). Combined use of blood culture and multiplex RT-PCR assay showed a superior diagnostic performance, as the sensitivity, specificity, and AUC reached 83.3%, 100%, and 0.95, respectively. The concordance between blood culture and the multiplex RT-PCR assay was highest for Klebsiella pneumonia (100%), followed by Streptococcus spp. (77.8%), Escherichia coli (66.7%), Staphylococcus spp. (50%) and Salmonella spp. (50%). In addition, the use of the newly established multiplex RT-PCR assay increased the spectrum of identifiable agents (Acintobacter baumannii, 1/32; Proteus mirabilis, 1/32). The combination of culture and the multiplex RT-PCR assay provided an excellent diagnostic accomplishment and significantly supported the identification of causative pathogens in clinical samples obtained from septic patients. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Identification of fecal contamination sources in water using host-associated markers.

    PubMed

    Krentz, Corinne A; Prystajecky, Natalie; Isaac-Renton, Judith

    2013-03-01

    In British Columbia, Canada, drinking water is tested for total coliforms and Escherichia coli, but there is currently no routine follow-up testing to investigate fecal contamination sources in samples that test positive for indicator bacteria. Reliable microbial source tracking (MST) tools to rapidly test water samples for multiple fecal contamination markers simultaneously are currently lacking. The objectives of this study were (i) to develop a qualitative MST tool to identify fecal contamination from different host groups, and (ii) to evaluate the MST tool using water samples with evidence of fecal contamination. Singleplex and multiplex polymerase chain reaction (PCR) were used to test (i) water from polluted sites and (ii) raw and drinking water samples for presence of bacterial genetic markers associated with feces from humans, cattle, seagulls, pigs, chickens, and geese. The multiplex MST assay correctly identified suspected contamination sources in contaminated waterways, demonstrating that this test may have utility for heavily contaminated sites. Most raw and drinking water samples analyzed using singleplex PCR contained at least one host-associated marker. Singleplex PCR was capable of detecting host-associated markers in small sample volumes and is therefore a promising tool to further analyze water samples submitted for routine testing and provide information useful for water quality management.

  2. Improvement for identification of heterophile antibody interference and AFP hook effect in immunoassays with multiplex suspension bead array system.

    PubMed

    Wang, Yajie; Yu, Jinsheng; Ren, Yuan; Liu, Li; Li, Haowen; Guo, Anchen; Shi, Congning; Fang, Fang; Juehne, Twyla; Yao, Jianer; Yang, Enhuan; Zhou, Xuelei; Kang, Xixiong

    2013-11-15

    A variety of immunoassays including multiplex suspension bead array have been developed for tumor marker detections; however, these assays could be compromised in their sensitivity and specificity by well-known heterophile antibody interference and hook effect. Using Luminex® multiplex suspension bead arrays, we modified protocols with two newly-developed solutions that can identify heterophile antibody interference and AFP hook effect. Effectiveness of the two solutions was assessed in serum samples from patients. Concentrations of 9 tumor markers in heterophile antibody positive samples assayed with Solution A, containing murine monoclonal antibodies and mouse serum, were significantly reduced when compared with those false high signals assayed without Solution A (all p<0.01). With incorporation of Solution H (fluorescent beads linked with AFP antigen), a new strategy for identification of AFP hook effect was established, and with this strategy AFP hook effect was identified effectively in serum samples with very high levels of AFP. Two proprietary solutions improve the identification of heterophile antibody interference and AFP hook effect. With these solutions, multiplex suspension bead arrays provide more reliable testing results in tumor marker detection where complex clinical serum samples are used. © 2013.

  3. Genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families with respiratory chain complex I deficiency allows rapid identification of a novel nonsense mutation (IVS1nt -1) in the NDUFS4 gene in Leigh syndrome.

    PubMed

    Bénit, Paule; Steffann, Julie; Lebon, Sophie; Chretien, Dominique; Kadhom, Noman; de Lonlay, Pascale; Goldenberg, Alice; Dumez, Yves; Dommergues, Marc; Rustin, Pierre; Munnich, Arnold; Rötig, Agnès

    2003-05-01

    Complex I deficiency, the most common cause of mitochondrial disorders, accounts for a variety of clinical symptoms and its genetic heterogeneity makes identification of the disease genes particularly tedious. Indeed, most of the 43 complex I subunits are encoded by nuclear genes, only seven of them being mitochondrially encoded. In order to offer urgent prenatal diagnosis, we have studied an inbred/multiplex family with complex I deficiency by using microsatellite DNA markers flanking the putative disease loci. Microsatellite DNA markers have allowed us to exclude the NDUFS7, NDUFS8, NDUFV1 and NDUFS1 genes and to find homozygosity at the NDUFS4 locus. Direct sequencing has led to identification of a homozygous splice acceptor site mutation in intron 1 of the NDUFS4 gene (IVS1nt -1, G-->A); this was not found in chorion villi of the ongoing pregnancy. We suggest that genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families helps to identify the disease-causing mutation. More generally, we suggest giving consideration to a more systematic microsatellite analysis of putative disease loci for identification of disease genes in inbred/multiplex families affected with genetically heterogeneous conditions.

  4. Simple and fast multiplex PCR method for detection of species origin in meat products.

    PubMed

    Izadpanah, Mehrnaz; Mohebali, Nazanin; Elyasi Gorji, Zahra; Farzaneh, Parvaneh; Vakhshiteh, Faezeh; Shahzadeh Fazeli, Seyed Abolhassan

    2018-02-01

    Identification of animal species is one of the major concerns in food regulatory control and quality assurance system. Different approaches have been used for species identification in animal origin of feedstuff. This study aimed to develop a multiplex PCR approach to detect the origin of meat and meat products. Specific primers were designed based on the conserved region of mitochondrial Cytochrome C Oxidase subunit I ( COX1 ) gene. This method could successfully distinguish the origin of the pig, camel, sheep, donkey, goat, cow, and chicken in one single reaction. Since PCR products derived from each species represent unique molecular weight, the amplified products could be identified by electrophoresis and analyzed based on their size. Due to the synchronized amplification of segments within a single PCR reaction, multiplex PCR is considered to be a simple, fast, and inexpensive technique that can be applied for identification of meat products in food industries. Nowadays, this technique has been considered as a practical method to identify the species origin, which could further applied for animal feedstuffs identification.

  5. A rapid multiplex PCR assay for presumptive species identification of rhinoceros horns and its implementation in Vietnam

    PubMed Central

    Frankham, Greta J.; McEwing, Ross; The, Dang Tat; Hogg, Carolyn J.; Lo, Nathan; Johnson, Rebecca N.

    2018-01-01

    Rhinoceros (rhinos) have suffered a dramatic increase in poaching over the past decade due to the growing demand for rhino horn products in Asia. One way to reverse this trend is to enhance enforcement and intelligence gathering tools used for species identification of horns, in particular making them fast, inexpensive and accurate. Traditionally, species identification tests are based on DNA sequence data, which, depending on laboratory resources, can be either time or cost prohibitive. This study presents a rapid rhino species identification test, utilizing species-specific primers within the cytochrome b gene multiplexed in a single reaction, with a presumptive species identification based on the length of the resultant amplicon. This multiplex PCR assay can provide a presumptive species identification result in less than 24 hours. Sequence-based definitive testing can be conducted if/when required (e.g. court purposes). This work also presents an actual casework scenario in which the presumptive test was successfully utlitised, in concert with sequence-based definitive testing. The test was carried out on seized suspected rhino horns tested at the Institute of Ecology and Biological Resources, the CITES mandated laboratory in Vietnam, a country that is known to be a major source of demand for rhino horns. This test represents the basis for which future ‘rapid species identification tests’ can be trialed. PMID:29902212

  6. A simplified multiplex PCR assay for fast and easy discrimination of globally distributed staphylococcal cassette chromosome mec types in meticillin-resistant Staphylococcus aureus.

    PubMed

    Ghaznavi-Rad, Ehsanollah; Nor Shamsudin, Mariana; Sekawi, Zamberi; van Belkum, Alex; Neela, Vasanthakumari

    2010-10-01

    A multiplex PCR assay was developed for the identification of major types and subtypes of staphylococcal cassette chromosome mec (SCCmec) in meticillin-resistant Staphylococcus aureus (MRSA) strains. The method uses a novel 9 valent multiplex PCR plus two primer pairs for S. aureus identification and detection of meticillin resistance. All 389 clinical MRSA isolates from Malaysia and 18 European isolates from the Harmony collection harbouring different SCCmec types that we tested were correctly characterized by our PCR assay. SCCmec type III and V were by far the most common types among both hospital- and community-acquired Malaysian MRSA isolates, with an apparent emergence of MRSA harbouring the IVh type.

  7. Multiplex Real-Time PCR Method for Simultaneous Identification and Toxigenic Type Characterization of Clostridium difficile From Stool Samples

    PubMed Central

    Alam, Mohammad J.; Tisdel, Naradah L.; Shah, Dhara N.; Yapar, Mehmet; Lasco, Todd M.; Garey, Kevin W.

    2015-01-01

    Background The aim of this study was to develop and validate a multiplex real-time PCR assay for simultaneous identification and toxigenic type characterization of Clostridium difficile. Methods The multiplex real-time PCR assay targeted and simultaneously detected triose phosphate isomerase (tpi) and binary toxin (cdtA) genes, and toxin A (tcdA) and B (tcdB) genes in the first and sec tubes, respectively. The results of multiplex real-time PCR were compared to those of the BD GeneOhm Cdiff assay, targeting the tcdB gene alone. The toxigenic culture was used as the reference, where toxin genes were detected by multiplex real-time PCR. Results A total of 351 stool samples from consecutive patients were included in the study. Fifty-five stool samples (15.6%) were determined to be positive for the presence of C. difficile by using multiplex real-time PCR. Of these, 48 (87.2%) were toxigenic (46 tcdA and tcdB-positive, two positive for only tcdB) and 11 (22.9%) were cdtA-positive. The sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the multiplex real-time PCR compared with the toxigenic culture were 95.6%, 98.6%, 91.6%, and 99.3%, respectively. The analytical sensitivity of the multiplex real-time PCR assay was determined to be 103colonyforming unit (CFU)/g spiked stool sample and 0.0625 pg genomic DNA from culture. Analytical specificity determined by using 15 enteric and non-clostridial reference strains was 100%. Conclusions The multiplex real-time PCR assay accurately detected C. difficile isolates from diarrheal stool samples and characterized its toxin genes in a single PCR run. PMID:25932438

  8. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species

    PubMed Central

    Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun

    2017-01-01

    ABSTRACT The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis (M. tuberculosis) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680, and (iv) simultaneously detect five clinically important NTM (M. avium, M. intracellulare, M. abscessus, M. massiliense, and M. kansasii) by targeting IS1311, DT1, mass_3210, and mkan_rs12360. An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 103 and 104 CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis, M. tuberculosis Beijing genotype, and major NTM species. PMID:28659320

  9. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species.

    PubMed

    Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun; Koh, Won-Jung; Shin, Sung Jae

    2017-09-01

    The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis ( M. tuberculosis ) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680 , and (iv) simultaneously detect five clinically important NTM ( M. avium , M. intracellulare , M. abscessus , M. massiliense , and M. kansasii ) by targeting IS 1311 , DT1, mass_3210 , and mkan_rs12360 An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 10 3 and 10 4 CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis , M. tuberculosis Beijing genotype, and major NTM species. Copyright © 2017 American Society for Microbiology.

  10. Rapid Identification of Mycobacteria and Drug-Resistant Mycobacterium tuberculosis by Use of a Single Multiplex PCR and DNA Sequencing

    PubMed Central

    Pérez-Osorio, Ailyn C.; Boyle, David S.; Ingham, Zachary K.; Ostash, Alla; Gautom, Romesh K.; Colombel, Craig; Houze, Yolanda

    2012-01-01

    Tuberculosis (TB) remains a significant global health problem for which rapid diagnosis is critical to both treatment and control. This report describes a multiplex PCR method, the Mycobacterial IDentification and Drug Resistance Screen (MID-DRS) assay, which allows identification of members of the Mycobacterium tuberculosis complex (MTBC) and the simultaneous amplification of targets for sequencing-based drug resistance screening of rifampin-resistant (rifampinr), isoniazidr, and pyrazinamider TB. Additionally, the same multiplex reaction amplifies a specific 16S rRNA gene target for rapid identification of M. avium complex (MAC) and a region of the heat shock protein 65 gene (hsp65) for further DNA sequencing-based confirmation or identification of other mycobacterial species. Comparison of preliminary results generated with MID-DRS versus culture-based methods for a total of 188 bacterial isolates demonstrated MID-DRS sensitivity and specificity as 100% and 96.8% for MTBC identification; 100% and 98.3% for MAC identification; 97.4% and 98.7% for rifampinr TB identification; 60.6% and 100% for isoniazidr TB identification; and 75.0% and 98.1% for pyrazinamider TB identification. The performance of the MID-DRS was also tested on acid-fast-bacterium (AFB)-positive clinical specimens, resulting in sensitivity and specificity of 100% and 78.6% for detection of MTBC and 100% and 97.8% for detection of MAC. In conclusion, use of the MID-DRS reduces the time necessary for initial identification and drug resistance screening of TB specimens to as little as 2 days. Since all targets needed for completing the assay are included in a single PCR amplification step, assay costs, preparation time, and risks due to user errors are also reduced. PMID:22162548

  11. High-Throughput Block Optical DNA Sequence Identification.

    PubMed

    Sagar, Dodderi Manjunatha; Korshoj, Lee Erik; Hanson, Katrina Bethany; Chowdhury, Partha Pratim; Otoupal, Peter Britton; Chatterjee, Anushree; Nagpal, Prashant

    2018-01-01

    Optical techniques for molecular diagnostics or DNA sequencing generally rely on small molecule fluorescent labels, which utilize light with a wavelength of several hundred nanometers for detection. Developing a label-free optical DNA sequencing technique will require nanoscale focusing of light, a high-throughput and multiplexed identification method, and a data compression technique to rapidly identify sequences and analyze genomic heterogeneity for big datasets. Such a method should identify characteristic molecular vibrations using optical spectroscopy, especially in the "fingerprinting region" from ≈400-1400 cm -1 . Here, surface-enhanced Raman spectroscopy is used to demonstrate label-free identification of DNA nucleobases with multiplexed 3D plasmonic nanofocusing. While nanometer-scale mode volumes prevent identification of single nucleobases within a DNA sequence, the block optical technique can identify A, T, G, and C content in DNA k-mers. The content of each nucleotide in a DNA block can be a unique and high-throughput method for identifying sequences, genes, and other biomarkers as an alternative to single-letter sequencing. Additionally, coupling two complementary vibrational spectroscopy techniques (infrared and Raman) can improve block characterization. These results pave the way for developing a novel, high-throughput block optical sequencing method with lossy genomic data compression using k-mer identification from multiplexed optical data acquisition. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A SIMPLE MULTIPLEX POLYMERASE CHAIN REACTION ASSAY FOR THE IDENTIFICATION OF FOUR ENVIRONMENTALLY RELEVANT FUNGAL CONTAMINANTS

    EPA Science Inventory

    Historically, identification of filamentous fungal (mold) species has been based on morphological characteristics, both macroscopic and microscopic. These methods have proven to be time consuming and inaccurate, necessitating the development of identification protocols that are ...

  13. Pathogen Identification by Multiplex LightMix Real-Time PCR Assay in Patients with Meningitis and Culture-Negative Cerebrospinal Fluid Specimens

    PubMed Central

    Wagner, Karoline; Springer, Burkard; Pires, Valeria P.

    2017-01-01

    ABSTRACT Acute bacterial meningitis is a medical emergency, and delays in initiating effective antimicrobial therapy result in increased morbidity and mortality. Culture-based methods, thus far considered the “gold standard” for identifying bacterial microorganisms, require 24 to 48 h to provide a diagnosis. In addition, antimicrobial therapy is often started prior to clinical sample collection, thereby decreasing the probability of confirming the bacterial pathogen by culture-based methods. To enable a fast and accurate detection of the most important bacterial pathogens causing meningitis, namely, Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Streptococcus agalactiae, and Listeria monocytogenes, we evaluated a commercially available multiplex LightMix real-time PCR (RT-PCR) in 220 cerebrospinal fluid (CSF) specimens. The majority of CSF samples were collected by lumbar puncture, but we also included some CSF samples from patients with symptoms of meningitis from the neurology department that were recovered from shunts. CSF samples were analyzed by multiplex RT-PCR enabling a first diagnosis within a few hours after sample arrival at our institute. In contrast, bacterial identification took between 24 and 48 h by culture. Overall, a high agreement of bacterial identification between culture and multiplex RT-PCR was observed (99%). Moreover, multiplex RT-PCR enabled the detection of pathogens, S. pneumoniae (n = 2), S. agalactiae (n = 1), and N. meningitidis (n = 1), in four culture-negative samples. As a complement to classical bacteriological CSF culture, the LightMix RT-PCR assay proved to be valuable by improving the rapidity and accuracy of the diagnosis of bacterial meningitis. PMID:29237781

  14. Effective application of multiple locus variable number of tandem repeats analysis to tracing Staphylococcus aureus in food-processing environment.

    PubMed

    Rešková, Z; Koreňová, J; Kuchta, T

    2014-04-01

    A total of 256 isolates of Staphylococcus aureus were isolated from 98 samples (34 swabs and 64 food samples) obtained from small or medium meat- and cheese-processing plants in Slovakia. The strains were genotypically characterized by multiple locus variable number of tandem repeats analysis (MLVA), involving multiplex polymerase chain reaction (PCR) with subsequent separation of the amplified DNA fragments by an automated flow-through gel electrophoresis. With the panel of isolates, MLVA produced 31 profile types, which was a sufficient discrimination to facilitate the description of spatial and temporal aspects of contamination. Further data on MLVA discrimination were obtained by typing a subpanel of strains by multiple locus sequence typing (MLST). MLVA coupled to automated electrophoresis proved to be an effective, comparatively fast and inexpensive method for tracing S. aureus contamination of food-processing factories. Subspecies genotyping of microbial contaminants in food-processing factories may facilitate identification of spatial and temporal aspects of the contamination. This may help to properly manage the process hygiene. With S. aureus, multiple locus variable number of tandem repeats analysis (MLVA) proved to be an effective method for the purpose, being sufficiently discriminative, yet comparatively fast and inexpensive. The application of automated flow-through gel electrophoresis to separation of DNA fragments produced by multiplex PCR helped to improve the accuracy and speed of the method. © 2013 The Society for Applied Microbiology.

  15. [Do Multiplex PCR techniques displace classical cultures in microbiology?].

    PubMed

    Auckenthaler, Raymond; Risch, Martin

    2015-02-01

    Multiplex PCR technologies progressively find their way in clinical microbiology. This technique allows the simultaneous amplification of multiple DNA targets in a single test run for the identification of pathogens up to the species level. Various pathogens of infectious diseases can be detected by a symptom-oriented approach clearly and quickly with high reliability. Essentially multiplex PCR panels are available for clarification of gastrointestinal, respiratory, sexually transmitted infections and meningitis. Today's offer from industry, university hospitals and large private laboratories of Switzerland is tabulated and commented.

  16. Multiplex PCR Tests for Detection of Pathogens Associated with Gastroenteritis

    PubMed Central

    Zhang, Hongwei; Morrison, Scott; Tang, Yi-Wei

    2016-01-01

    Synopsis A wide range of enteric pathogens can cause infectious gastroenteritis. Conventional diagnostic algorithms including culture, biochemical identification, immunoassay and microscopic examination are time consuming and often lack sensitivity and specificity. Advances in molecular technology have as allowed its use as clinical diagnostic tools. Multiplex PCR based testing has made its way to gastroenterology diagnostic arena in recent years. In this article we present a review of recent laboratory developed multiplex PCR tests and current commercial multiplex gastrointestinal pathogen tests. We will focus on two FDA cleared commercial syndromic multiplex tests: Luminex xTAG GPP and Biofire FimArray GI test. These multiplex tests can detect and identify multiple enteric pathogens in one test and provide results within hours. Multiplex PCR tests have shown superior sensitivity to conventional methods for detection of most pathogens. The high negative predictive value of these multiplex tests has led to the suggestion that they be used as screening tools especially in outbreaks. Although the clinical utility and benefit of multiplex PCR test are to be further investigated, implementing these multiplex PCR tests in gastroenterology diagnostic algorithm has the potential to improve diagnosis of infectious gastroenteritis. PMID:26004652

  17. Molecular prey identification in Central European piscivores.

    PubMed

    Thalinger, Bettina; Oehm, Johannes; Mayr, Hannes; Obwexer, Armin; Zeisler, Christiane; Traugott, Michael

    2016-01-01

    Diet analysis is an important aspect when investigating the ecology of fish-eating animals and essential for assessing their functional role in food webs across aquatic and terrestrial ecosystems. The identification of fish remains in dietary samples, however, can be time-consuming and unsatisfying using conventional morphological analysis of prey remains. Here, we present a two-step multiplex PCR system, comprised of six assays, allowing for rapid, sensitive and specific detection of fish DNA in dietary samples. This approach encompasses 78 fish and lamprey species native to Central European freshwaters and enables the identification of 31 species, six genera, two families, two orders and two fish family clusters. All targeted taxa were successfully amplified from 25 template molecules, and each assay was specific when tested against a wide range of invertebrates and vertebrates inhabiting aquatic environments. The applicability of the multiplex PCR system was evaluated in a feeding trial, wherein it outperformed morphological prey analysis regarding species-specific prey identification in faeces of Eurasian otters. Additionally, a wide spectrum of fish species was detected in field-collected faecal samples and regurgitated pellets of Common Kingfishers and Great Cormorants, demonstrating the broad applicability of the approach. In conclusion, this multiplex PCR system provides an efficient, easy to use and cost-effective tool for assessing the trophic ecology of piscivores in Central Europe. Furthermore, the multiplex PCRs and the primers described therein will be applicable wherever DNA of the targeted fish species needs to be detected at high sensitivity and specificity. © 2015 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  18. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes

    PubMed Central

    Herbold, Craig W.; Pelikan, Claus; Kuzyk, Orest; Hausmann, Bela; Angel, Roey; Berry, David; Loy, Alexander

    2015-01-01

    High throughput sequencing of phylogenetic and functional gene amplicons provides tremendous insight into the structure and functional potential of complex microbial communities. Here, we introduce a highly adaptable and economical PCR approach to barcoding and pooling libraries of numerous target genes. In this approach, we replace gene- and sequencing platform-specific fusion primers with general, interchangeable barcoding primers, enabling nearly limitless customized barcode-primer combinations. Compared to barcoding with long fusion primers, our multiple-target gene approach is more economical because it overall requires lower number of primers and is based on short primers with generally lower synthesis and purification costs. To highlight our approach, we pooled over 900 different small-subunit rRNA and functional gene amplicon libraries obtained from various environmental or host-associated microbial community samples into a single, paired-end Illumina MiSeq run. Although the amplicon regions ranged in size from approximately 290 to 720 bp, we found no significant systematic sequencing bias related to amplicon length or gene target. Our results indicate that this flexible multiplexing approach produces large, diverse, and high quality sets of amplicon sequence data for modern studies in microbial ecology. PMID:26236305

  19. Rapid and reliable detection and identification of GM events using multiplex PCR coupled with oligonucleotide microarray.

    PubMed

    Xu, Xiaodan; Li, Yingcong; Zhao, Heng; Wen, Si-yuan; Wang, Sheng-qi; Huang, Jian; Huang, Kun-lun; Luo, Yun-bo

    2005-05-18

    To devise a rapid and reliable method for the detection and identification of genetically modified (GM) events, we developed a multiplex polymerase chain reaction (PCR) coupled with a DNA microarray system simultaneously aiming at many targets in a single reaction. The system included probes for screening gene, species reference gene, specific gene, construct-specific gene, event-specific gene, and internal and negative control genes. 18S rRNA was combined with species reference genes as internal controls to assess the efficiency of all reactions and to eliminate false negatives. Two sets of the multiplex PCR system were used to amplify four and five targets, respectively. Eight different structure genes could be detected and identified simultaneously for Roundup Ready soybean in a single microarray. The microarray specificity was validated by its ability to discriminate two GM maizes Bt176 and Bt11. The advantages of this method are its high specificity and greatly reduced false-positives and -negatives. The multiplex PCR coupled with microarray technology presented here is a rapid and reliable tool for the simultaneous detection of GM organism ingredients.

  20. Multiplex-PCR As a Rapid and Sensitive Method for Identification of Meat Species in Halal-Meat Products.

    PubMed

    Alikord, Mahsa; Keramat, Javad; Kadivar, Mahdi; Momtaz, Hassan; Eshtiaghi, Mohammad N; Homayouni-Rad, Aziz

    2017-01-01

    Species identification and authentication in meat products are important subjects for ensuring the health of consumers. The multiplex-PCR amplification and species- specific primer set were used for the identification of horse, donkey, pig and other ruminants in raw and processed meat products. Oligonucleotid primers were designed and patented for amplification of species-specific mitochondrial DNA sequences of each species and samples were prepared from binary meat mixtures. The results showed that meat species were accurately determined in all combinations by multiplex-PCR, and the sensitivity of this method was 0.001 ng, rendering this technique open to and suitable for use in industrial meat products. It is concluded that more fraud is seen in lower percentage industrial meat products than in higher percentage ones. There was also more fraud found in processed products than in raw ones. This rapid and useful test is recommended for quality control firms for applying more rigorous controls over industrial meat products, for the benefit of target consumers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Automated multiplex genome-scale engineering in yeast

    PubMed Central

    Si, Tong; Chao, Ran; Min, Yuhao; Wu, Yuying; Ren, Wen; Zhao, Huimin

    2017-01-01

    Genome-scale engineering is indispensable in understanding and engineering microorganisms, but the current tools are mainly limited to bacterial systems. Here we report an automated platform for multiplex genome-scale engineering in Saccharomyces cerevisiae, an important eukaryotic model and widely used microbial cell factory. Standardized genetic parts encoding overexpression and knockdown mutations of >90% yeast genes are created in a single step from a full-length cDNA library. With the aid of CRISPR-Cas, these genetic parts are iteratively integrated into the repetitive genomic sequences in a modular manner using robotic automation. This system allows functional mapping and multiplex optimization on a genome scale for diverse phenotypes including cellulase expression, isobutanol production, glycerol utilization and acetic acid tolerance, and may greatly accelerate future genome-scale engineering endeavours in yeast. PMID:28469255

  2. Cadmium Selenium Testing for Microbial Contaminants

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Cadmium selenium Quantum Dots (QDs) are metal nanoparticles that fluoresce in a variety of colors determined by their size. QDs are solid state structures made of semiconductors or metals that confine a countable, small number of electrons into a small space. The confinement of electrons is achieved by the placement of some insulating material(s) around a central, well conducted region. Coupling QDs with antibodies can be used to make spectrally multiplexed immunoassays that test for a number of microbial contaminants using a single test.

  3. Microbial Protein-Antigenome Determination (MAD) Technology: A Proteomics-Based Strategy for Rapid Identification of Microbial Targets of Host Humoral Immune Responses

    USDA-ARS?s Scientific Manuscript database

    Immunogenic, pathogen-specific proteins have excellent potential for development of novel management modalities. Here, we describe an innovative application of proteomics called Microbial protein-Antigenome Determination (MAD) Technology for rapid identification of native microbial proteins that el...

  4. Microbial Protein-Antigenome Determination (MAD) Technology: A Proteomics-Based Strategy for Rapid Identification of Microbial Targets of Host Humoral Immune Responses

    USDA-ARS?s Scientific Manuscript database

    Immunogenic, pathogen-specific proteins have excellent potential for development of novel management modalities. Here, we describe an innovative application of proteomics called Microbial protein-Antigenome Determination (MAD) Technology for rapid identification of native microbial proteins that eli...

  5. Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection.

    PubMed

    Song, Linan; Ahn, Soohyoun; Walt, David R

    2006-02-15

    We report a multiplexed high-density DNA array capable of rapid, sensitive, and reliable identification of potential biological warfare agents. An optical fiber bundle containing 6000 individual 3.1-mum-diameter fibers was chemically etched to yield microwells and used as the substrate for the array. Eighteen different 50-mer single-stranded DNA probes were covalently attached to 3.1-mum microspheres. Probe sequences were designed for Bacillus anthracis, Yersinia pestis, Francisella tularensis, Brucella melitensis, Clostridium botulinum, Vaccinia virus, and one biological warfare agent (BWA) simulant, Bacillus thuringiensis kurstaki. The microspheres were distributed into the microwells to form a randomized multiplexed high-density DNA array. A detection limit of 10 fM in a 50-microL sample volume was achieved within 30 min of hybridization for B. anthracis, Y. pestis, Vaccinia virus, and B. thuringiensis kurstaki. We used both specific responses of probes upon hybridization to complementary targets as well as response patterns of the multiplexed array to identify BWAs with high accuracy. We demonstrated the application of this multiplexed high-density DNA array for parallel identification of target BWAs in spiked sewage samples after PCR amplification. The array's miniaturized feature size, fabrication flexibility, reusability, and high reproducibility may enable this array platform to be integrated into a highly sensitive, specific, and reliable portable instrument for in situ BWA detection.

  6. Multiplexed Post-Experimental Monoisotopic Mass Refinement ( m PE-MMR) to Increase Sensitivity and Accuracy in Peptide Identifications from Tandem Mass Spectra of Cofragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madar, Inamul Hasan; Ko, Seung-Ik; Kim, Hokeun

    Mass spectrometry (MS)-based proteomics, which uses high-resolution hybrid mass spectrometers such as the quadrupole-orbitrap mass spectrometer, can yield tens of thousands of tandem mass (MS/MS) spectra of high resolution during a routine bottom-up experiment. Despite being a fundamental and key step in MS-based proteomics, the accurate determination and assignment of precursor monoisotopic masses to the MS/MS spectra remains difficult. The difficulties stem from imperfect isotopic envelopes of precursor ions, inaccurate charge states for precursor ions, and cofragmentation. We describe a composite method of utilizing MS data to assign accurate monoisotopic masses to MS/MS spectra, including those subject to cofragmentation. Themore » method, “multiplexed post-experiment monoisotopic mass refinement” (mPE-MMR), consists of the following: multiplexing of precursor masses to assign multiple monoisotopic masses of cofragmented peptides to the corresponding multiplexed MS/MS spectra, multiplexing of charge states to assign correct charges to the precursor ions of MS/ MS spectra with no charge information, and mass correction for inaccurate monoisotopic peak picking. When combined with MS-GF+, a database search algorithm based on fragment mass difference, mPE-MMR effectively increases both sensitivity and accuracy in peptide identification from complex high-throughput proteomics data compared to conventional methods.« less

  7. A multiplex PCR assay for determination of mating type in isolates of the honey bee fungal pathogen, Ascosphaera apis

    USDA-ARS?s Scientific Manuscript database

    In this study we developed a multiplex PCR for identification of mating type idiomorphs in the filamentous fungus, Ascosphaera apis, the causative agent of chalkbrood disease in the honey bee (Apis melliffera). A combination of gene-specific primers was designed to amplify Mat1-1 and Mat1-2 gene fra...

  8. Luminex and other multiplex high throughput technologies for the identification of, and host response to, environmental triggers of type 1 diabetes.

    PubMed

    Purohit, Sharad; Sharma, Ashok; She, Jin-Xiong

    2015-01-01

    Complex interactions between a series of environmental factors and genes result in progression to clinical type 1 diabetes in genetically susceptible individuals. Despite several decades of research in the area, these interactions remain poorly understood. Several studies have yielded associations of certain foods, infections, and immunizations with the onset and progression of diabetes autoimmunity, but most findings are still inconclusive. Environmental triggers are difficult to identify mainly due to (i) large number and complex nature of environmental exposures, including bacteria, viruses, dietary factors, and environmental pollutants, (ii) reliance on low throughput technology, (iii) less efforts in quantifying host response, (iv) long silent period between the exposure and clinical onset of T1D which may lead to loss of the exposure fingerprints, and (v) limited sample sets. Recent development in multiplex technologies has enabled systematic evaluation of different classes of molecules or macroparticles in a high throughput manner. However, the use of multiplex assays in type 1 diabetes research is limited to cytokine assays. In this review, we will discuss the potential use of multiplex high throughput technologies in identification of environmental triggers and host response in type 1 diabetes.

  9. Development and validation of a multiplex real-time PCR method to simultaneously detect 47 targets for the identification of genetically modified organisms.

    PubMed

    Cottenet, Geoffrey; Blancpain, Carine; Sonnard, Véronique; Chuah, Poh Fong

    2013-08-01

    Considering the increase of the total cultivated land area dedicated to genetically modified organisms (GMO), the consumers' perception toward GMO and the need to comply with various local GMO legislations, efficient and accurate analytical methods are needed for their detection and identification. Considered as the gold standard for GMO analysis, the real-time polymerase chain reaction (RTi-PCR) technology was optimised to produce a high-throughput GMO screening method. Based on simultaneous 24 multiplex RTi-PCR running on a ready-to-use 384-well plate, this new procedure allows the detection and identification of 47 targets on seven samples in duplicate. To comply with GMO analytical quality requirements, a negative and a positive control were analysed in parallel. In addition, an internal positive control was also included in each reaction well for the detection of potential PCR inhibition. Tested on non-GM materials, on different GM events and on proficiency test samples, the method offered high specificity and sensitivity with an absolute limit of detection between 1 and 16 copies depending on the target. Easy to use, fast and cost efficient, this multiplex approach fits the purpose of GMO testing laboratories.

  10. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) Based Microbial Identifications: Challenges and Scopes for Microbial Ecologists

    PubMed Central

    Rahi, Praveen; Prakash, Om; Shouche, Yogesh S.

    2016-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based biotyping is an emerging technique for high-throughput and rapid microbial identification. Due to its relatively higher accuracy, comprehensive database of clinically important microorganisms and low-cost compared to other microbial identification methods, MALDI-TOF MS has started replacing existing practices prevalent in clinical diagnosis. However, applicability of MALDI-TOF MS in the area of microbial ecology research is still limited mainly due to the lack of data on non-clinical microorganisms. Intense research activities on cultivation of microbial diversity by conventional as well as by innovative and high-throughput methods has substantially increased the number of microbial species known today. This important area of research is in urgent need of rapid and reliable method(s) for characterization and de-replication of microorganisms from various ecosystems. MALDI-TOF MS based characterization, in our opinion, appears to be the most suitable technique for such studies. Reliability of MALDI-TOF MS based identification method depends mainly on accuracy and width of reference databases, which need continuous expansion and improvement. In this review, we propose a common strategy to generate MALDI-TOF MS spectral database and advocated its sharing, and also discuss the role of MALDI-TOF MS based high-throughput microbial identification in microbial ecology studies. PMID:27625644

  11. Species Identification of Fox-, Mink-, Dog-, and Rabbit-Derived Ingredients by Multiplex PCR and Real-Time PCR Assay.

    PubMed

    Wu, Qingqing; Xiang, Shengnan; Wang, Wenjun; Zhao, Jinyan; Xia, Jinhua; Zhen, Yueran; Liu, Bang

    2018-05-01

    Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R 2  > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.

  12. Optofluidic wavelength division multiplexing for single-virus detection

    PubMed Central

    Ozcelik, Damla; Parks, Joshua W.; Wall, Thomas A.; Stott, Matthew A.; Cai, Hong; Parks, Joseph W.; Hawkins, Aaron R.; Schmidt, Holger

    2015-01-01

    Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context––the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine. PMID:26438840

  13. A multiplex real-time PCR assay for the identification and differentiation of Salmonella enterica serovar Typhimurium and monophasic serovar 4,[5],12:i:-.

    PubMed

    Prendergast, Deirdre M; Hand, Darren; Nί Ghallchóir, Eadaoin; McCabe, Evonne; Fanning, Seamus; Griffin, Margaret; Egan, John; Gutierrez, Montserrat

    2013-08-16

    Salmonella enterica subsp. enterica serovar 4,[5],12:i:- is considered to be a monophasic variant of Salmonella Typhimurium and is increasingly associated with human infections. The use of PCR for the unequivocal identification of strains identified by conventional serotyping as 4,[5],12:i:- has been recommended by the European Food Safety Authority (EFSA), in particular the conventional multiplex PCR developed by Tennant et al. (2010). An alternative protocol for the identification and differentiation of S. Typhimurium and S. Typhimurium-like strains, including its monophasic variants, based on a multiplex real-time PCR assay was developed in our laboratory. A panel of 206 Salmonella strains was used to validate our multiplex real-time PCR against the conventional multiplex PCR recommended by EFSA, i.e. 43 Salmonella strains of serovars other than Typhimurium and 163 routine isolates determined by slide agglutination serotyping to have an incomplete antigenic formula compatible with the S. Typhimurium formula 4,[5],12:i:1,2. Both methods correctly identified the 43 Salmonella strains as non S. Typhimurium. Among the 163 isolates of undetermined serovar by conventional serotyping, both PCR protocols identified 54 isolates as S. Typhimurium, 101 as monophasic S. Typhimurium and 8 as non-S. Typhimurium. Twenty isolates phenotypically lacking the phase-2 H antigen were positive for the fljB.1,2 gene. These strains have been recently described in the literature by other workers and have been referred to as "inconsistent" variants of S. Typhimurium. Antimicrobial resistance and phage typing were also performed on the S. Typhimurium isolates, including monophasic variants, and approximately half of the isolates identified as monophasic S. Typhimurium by our multiplex real-time PCR protocol were DT193 with the resistance pattern ASSuT. There was 100% concordance between the conventional PCR and the multiplex real-time PCR method developed in this study which proved that our protocol is equivalent to the one recommended by EFSA. In comparison to the conventional PCR, this new protocol is faster and is currently being applied routinely in our laboratory to all isolates that could potentially be S. Typhimurium. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Novel Multiplex Oligonucleotide-Conjugated Bead Suspension Array for Rapid Identification of Enterovirus 71 Subgenogroups▿ §

    PubMed Central

    Wu, Y.; Tan, E. L.; Yeo, A.; Chan, K. P.; Nishimura, H.; Cardosa, M. J.; Poh, C. L.; Quak, S. H.; Chow, Vincent T.

    2011-01-01

    A high-throughput multiplex bead suspension array was developed for the rapid subgenogrouping of EV71 strains, based on single nucleotide polymorphisms observed within the VP1 region with a high sensitivity as low as 1 PFU. Of 33 viral isolates and 55 clinical samples, all EV71 strains were successfully detected and correctly subgenogrouped. PMID:21084510

  15. A Vision for Investigating the Microbiology of Health and Disease.

    PubMed

    Lipkin, W Ian

    2015-07-15

    The fields of microbial surveillance, discovery, and pathogenesis are evolving rapidly with introduction of cultivation-independent molecular diagnostic assays and highly multiplexed serologic analyses, as well as the development of animal models and prospective birth cohorts that can provide insights into host and microbial determinants of health and disease. Here, past, present, and future perspectives on these fields are provided. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Millstone: software for multiplex microbial genome analysis and engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, Daniel B.; Kuznetsov, Gleb; Lajoie, Marc J.

    Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. Here, we describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.

  17. Millstone: software for multiplex microbial genome analysis and engineering.

    PubMed

    Goodman, Daniel B; Kuznetsov, Gleb; Lajoie, Marc J; Ahern, Brian W; Napolitano, Michael G; Chen, Kevin Y; Chen, Changping; Church, George M

    2017-05-25

    Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. We describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.

  18. Millstone: software for multiplex microbial genome analysis and engineering

    DOE PAGES

    Goodman, Daniel B.; Kuznetsov, Gleb; Lajoie, Marc J.; ...

    2017-05-25

    Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. Here, we describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.

  19. Rapid and Accurate Diagnosis of Acute Pyogenic Meningitis Due to Streptococcus Pneumoniae, Haemophilus influenzae Type b and Neisseria meningitidis Using A Multiplex PCR Assay.

    PubMed

    Seth, Rajeev; Murthy, Peela Sree Ramchandra; Sistla, Sujatha; Subramanian, Mahadevan; Tamilarasu, Kadhiravan

    2017-09-01

    Acute bacterial meningitis is one of the major causes of morbidity and mortality in children and geriatric population, especially in developing countries. Methods of identification are standard culture and other phenotypic tests in many resource poor settings. To use molecular methods for the improvement of aetiological diagnosis of acute pyogenic meningitis in patients. CSF samples of 125 patients were included for the study. Gram staining and culture were performed according to standard procedures. Antigen was detected using commercial latex agglutination test kit. Multiplex PCR was performed using previously published primers and protocols. Fischer's exact test was used for finding association between presence of the disease and clinical/biochemical parameters, considering two tailed p<0.05 as statistically significant. Sensitivity, specificity, positive and negative predictive values were calculated using Graphpad QuicCalc software. A total of 39 cases (31.2%) were confirmed to be of acute pyogenic meningitis based on biochemical methods. Only 10/39 was positive for the three organisms tested. Multiplex PCR was able to detect one additional isolate each of Streptococcus pneumoniae and Haemophilus influenzae type b. When compared with multiplex PCR as the gold standard, culture and latex agglutination tests had same sensitivity (80%), specificity (100%), PPV (100%) and NPV (97.8%), whereas Gram stain had poor sensitivity (40%) and good specificity (95.6%). Detection rates were higher in multiplex PCR for the two organisms Streptococcus pneumoniae and Haemophilus influenzae type b. Multiplex PCR was more sensitive than culture or antigen detection, and employing this assay can significantly increase the speed and accuracy of identification of the pathogen.

  20. Detection of pathogenic bacteria in shellfish using multiplex PCR followed by CovaLink NH microwell plate sandwich hybridization.

    PubMed

    Lee, Chi-Ying; Panicker, Gitika; Bej, Asim K

    2003-05-01

    Outbreak of diseases associated with consumption of raw shellfish especially oysters is a major concern to the seafood industry and public health agencies. A multiplex PCR amplification of targeted gene segments followed by DNA-DNA sandwich hybridization was optimized to detect the etiologic agents. First, a multiplex PCR amplification of hns, spvB, vvh, ctx and tl was developed enabling simultaneous detection of total Salmonella enterica serotype Typhimurium, Vibrio vulnificus, Vibrio cholerae and Vibrio parahaemolyticus from both pure cultures and seeded oysters. Amplicons were then subjected to a colorimetric CovaLink NH microwell plate sandwich hybridization using phosphorylated and biotinlylated oligonucleotide probes, the nucleotide sequences of which were located internal to the amplified DNA. The results from the hybridization with the multiplexed PCR amplified DNA exhibited a high signal/noise ratio ranging between 14.1 and 43.2 measured at 405 nm wavelength. The sensitivity of detection for each pathogen was 10(2) cells/g of oyster tissue homogenate. The results from this study showed that the combination of the multiplex PCR with a colorimetric microwell plate sandwich hybridization assay permits a specific, sensitive, and reproducible system for the detection of the microbial pathogens in shellfish, thereby improving the microbiological safety of shellfish to consumers.

  1. Charging YOYO-1 on Capillary Wall for Online DNA Intercalation and Integrating This Approach with Multiplex PCR and Bare Narrow Capillary–Hydrodynamic Chromatography for Online DNA Analysis

    PubMed Central

    2016-01-01

    Multiplex polymerase chain reaction (PCR) has been widely utilized for high-throughput pathogen identification. Often, a dye is used to intercalate the amplified DNA fragments, and identifications of the pathogens are carried out by DNA melting curve analysis or gel electrophoresis. Integrating DNA amplification and identification is a logic path toward maximizing the benefit of multiplex PCR. Although PCR and gel electrophoresis have been integrated, replenishing the gels after each run is tedious and time-consuming. In this technical note, we develop an approach to address this issue. We perform multiplex PCR inside a capillary, transfer the amplified fragments to a bare narrow capillary, and measure their lengths online using bare narrow capillary–hydrodynamic chromatography (BaNC-HDC), a new technique recently developed in our laboratory for free-solution DNA separation. To intercalate the DNA with YOYO-1 (a fluorescent dye) for BaNC-HDC, we flush the capillary column with a YOYO-1 solution; positively charged YOYO-1 is adsorbed (or charged) onto the negatively charged capillary wall. As DNA molecules are driven down the column for separation, they react with the YOYO-1 stored on the capillary wall and are online-intercalated with the dye. With a single YOYO-1 charging, the column can be used for more than 40 runs, although the fluorescence signal intensities of the DNA peaks decrease gradually. Although the dye-DNA intercalation occurs during the separation, it does not affect the retention times, separation efficiencies, or resolutions. PMID:25555111

  2. A fully sealed plastic chip for multiplex PCR and its application in bacteria identification.

    PubMed

    Xu, Youchun; Yan, He; Zhang, Yan; Jiang, Kewei; Lu, Ying; Ren, Yonghong; Wang, Hui; Wang, Shan; Xing, Wanli

    2015-07-07

    Multiplex PCR is an effective tool for simultaneous multiple target detection but is limited by the intrinsic interference and competition among primer pairs when it is performed in one reaction tube. Dividing a multiplex PCR into many single PCRs is a simple strategy to overcome this issue. Here, we constructed a plastic, easy-to-use, fully sealed multiplex PCR chip based on reversible centrifugation for the simultaneous detection of 63 target DNA sequences. The structure of the chip is quite simple, which contains sine-shaped infusing channels and a number of reaction chambers connecting to one side of these channels. Primer pairs for multiplex PCR were sequentially preloaded in the different reaction chambers, and the chip was enclosed with PCR-compatible adhesive tape. For usage, the PCR master mix containing a DNA template is pipetted into the infusing channels and centrifuged into the reaction chambers, leaving the infusing channels filled with air to avoid cross-contamination of the different chambers. Then, the chip is sealed and placed on a flat thermal cycler for PCR. Finally, amplification products can be detected in situ using a fluorescence scanner or recovered by reverse centrifugation for further analyses. Therefore, our chip possesses two functions: 1) it can be used for multi-target detection based on end-point in situ fluorescence detection; and 2) it can work as a sample preparation unit for analyses that need multiplex PCR such as hybridization and target sequencing. The performance of this chip was carefully examined and further illustrated in the identification of 8 pathogenic bacterial genomic DNA samples and 13 drug-resistance genes. Due to simplicity of its structure and operation, accuracy and generality, high-throughput capacity, and versatile functions (i.e., for in situ detection and sample preparation), our multiplex PCR chip has great potential in clinical diagnostics and nucleic acid-based point-of-care testing.

  3. Retrospective Species Identification of Microsporidian Spores in Diarrheic Fecal Samples from Human Immunodeficiency Virus/AIDS Patients by Multiplexed Fluorescence In Situ Hybridization▿

    PubMed Central

    Graczyk, Thaddeus K.; Johansson, Michael A.; Tamang, Leena; Visvesvara, Govinda S.; Moura, Laci S.; DaSilva, Alexandre J.; Girouard, Autumn S.; Matos, Olga

    2007-01-01

    In order to assess the applicability of multiplexed fluorescence in situ hybridization (FISH) assay for the clinical setting, we conducted retrospective analysis of 110 formalin-stored diarrheic stool samples from human immunodeficiency virus (HIV)/AIDS patients with intestinal microsporidiosis collected between 1992 and 2003. The multiplexed FISH assay identified microsporidian spores in 94 of 110 (85.5%) samples: 49 (52.1%) were positive for Enterocytozoon bieneusi, 43 (45.8%) were positive for Encephalitozoon intestinalis, 2 (2.1%) were positive for Encephalitozoon hellem, and 9 samples (9.6%) contained both E. bieneusi and E. intestinalis spores. Quantitative spore counts per ml of stool yielded concentration values from 3.5 × 103 to 4.4 × 105 for E. bieneusi (mean, 8.8 × 104/ml), 2.3 × 102 to 7.8 × 104 (mean, 1.5 × 104/ml) for E. intestinalis, and 1.8 × 102 to 3.6 × 102 for E. hellem (mean, 2.7 × 102/ml). Identification of microsporidian spores by multiplex FISH assay was more sensitive than both Chromotrope-2R and CalcoFluor White M2R stains; 85.5% versus 72.7 and 70.9%, respectively. The study demonstrated that microsporidian coinfection in HIV/AIDS patients with intestinal microsporidiosis is not uncommon and that formalin-stored fecal samples older than 10 years may not be suitable for retrospective analysis by techniques targeting rRNA. Multiplexed FISH assay is a reliable, quantitative fluorescence microscopy method for the simultaneous identification of E. bieneusi, E. intestinalis, and E. hellem, as well as Encephalitozoon cuniculi, spores in fecal samples and is a useful tool for assessing spore shedding intensity in intestinal microsporidiosis. The method can be used for epidemiological investigations and applied in clinical settings. PMID:17287331

  4. Molecular Identification of Adult and Juvenile Linyphiid and Theridiid Spiders in Alpine Glacier Foreland Communities

    PubMed Central

    Raso, Lorna; Sint, Daniela; Rief, Alexander; Kaufmann, Rüdiger; Traugott, Michael

    2014-01-01

    In glacier forelands spiders constitute a large proportion of the invertebrate community. Therefore, it is important to be able to determine the species that can be found in these areas. Linyphiid and theridiid spider identification is currently not possible in juvenile specimens using traditional morphological based methods, however, a large proportion of the population in these areas are usually juveniles. Molecular methods permit identification of species at different life stages, making juvenile identification possible. In this study we tested a molecular tool to identify the 10 most common species of Linyphiidae and Theridiidae found in three glacier foreland communities of the Austrian Alps. Two multiplex PCR systems were developed and over 90% of the 753 field-collected spiders were identified successfully. The species targeted were found to be common in all three valleys during the summer of 2010. A comparison between the molecular and morphological data showed that although there was a slight difference in the results, the overall outcome was the same independently of the identification method used. We believe the quick and reliable identification of the spiders via the multiplex PCR assays developed here will aid the study of these families in Alpine habitats. PMID:25050841

  5. A new methodology for rapid detection of Lactobacillus delbrueckii subsp. bulgaricus based on multiplex PCR.

    PubMed

    Nikolaou, Anastasios; Saxami, Georgia; Kourkoutas, Yiannis; Galanis, Alex

    2011-02-01

    In this study we present a novel multiplex PCR assay for rapid and efficient detection of Lactobacillus delbrueckii subsp. bulgaricus. The accuracy of our method was confirmed by the successful identification of L. delbrueckii subsp. bulgaricus in commercial yoghurts and food supplements and it may be readily applied to the food industry. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. A study of multiplex data bus techniques for the space shuttle

    NASA Technical Reports Server (NTRS)

    Kearney, R. J.; Kalange, M. A.

    1972-01-01

    A comprehensive technology base for the design of a multiplexed data bus subsystem is provided. Extensive analyses, both analytical and empirical, were performed. Subjects covered are classified under the following headings: requirements identification and analysis; transmission media studies; signal design and detection studies; synchronization, timing, and control studies; user-subsystem interface studies; operational reliability analyses; design of candidate data bus configurations; and evaluation of candidate data bus designs.

  7. A novel multiplex PCR for the simultaneous detection of Salmonella enterica and Shigella species.

    PubMed

    Radhika, M; Saugata, Majumder; Murali, H S; Batra, H V

    2014-01-01

    Salmonella enterica and Shigella species are commonly associated with food and water borne infections leading to gastrointestinal diseases. The present work was undertaken to develop a sensitive and reliable PCR based detection system for simultaneous detection of Salmonella enterica and Shigella at species level. For this the conserved regions of specific genes namely ipaH1, ipaH, wbgZ, wzy and invA were targeted for detection of Shigella genus, S. flexneri, S. sonnei, S. boydii and Salmonella enterica respectively along with an internal amplification control (IAC). The results showed that twenty Salmonella and eleven Shigella spp., were accurately identified by the assay without showing non-specificity against closely related other Enterobacteriaceae organisms and also against other pathogens. Further evaluation of multiplex PCR was undertaken on 50 natural samples of chicken, eggs and poultry litter and results compared with conventional culture isolation and identification procedure. The multiplex PCR identified the presence of Salmonella and Shigella strains with a short pre-enrichment step of 5 h in peptone water and the same samples were processed by conventional procedures for comparison. Therefore, this reported multiplex PCR can serve as an alternative to the tedious time-consuming procedure of culture and identification in food safety laboratories.

  8. Identification of spider-mite species and their endosymbionts using multiplex PCR.

    PubMed

    Zélé, Flore; Weill, Mylène; Magalhães, Sara

    2018-02-01

    Spider mites of the genus Tetranychidae are severe crop pests. In the Mediterranean a few species coexist, but they are difficult to identify based on morphological characters. Additionally, spider mites often harbour several species of endosymbiotic bacteria, which may affect the biology of their hosts. Here, we propose novel, cost-effective, multiplex diagnostic methods allowing a quick identification of spider-mite species as well as of the endosymbionts they carry. First, we developed, and successfully multiplexed in a single PCR, primers to identify Tetranychus urticae, T. evansi and T. ludeni, some of the most common tetranychids found in southwest Europe. Moreover, we demonstrated that this method allows detecting multiple species in a single pool, even at low frequencies (up to 1/100), and can be used on entire mites without DNA extraction. Second, we developed another set of primers to detect spider-mite endosymbionts, namely Wolbachia, Cardinium and Rickettsia in a multiplex PCR, along with a generalist spider-mite primer to control for potential failure of DNA amplification in each PCR. Overall, our method represents a simple, cost-effective and reliable method to identify spider-mite species and their symbionts in natural field populations, as well as to detect contaminations in laboratory rearings. This method may easily be extended to other species.

  9. Development of a heptaplex PCR assay for identification of Staphylococcus aureus and CoNS with simultaneous detection of virulence and antibiotic resistance genes.

    PubMed

    Okolie, Charles Emeka; Wooldridge, Karl G; Turner, David P J; Cockayne, Alan; James, Richard

    2015-08-05

    Staphylococcal toxicity and antibiotic resistance (STAAR) have been menacing public health. Although vancomycin-resistant Staphylococcus aureus (VRSA) is currently not as widespread as methicillin-resistant S. aureus (MRSA), genome evolution of MRSA into VRSA, including strains engineered within the same patient under anti-staphylococcal therapy, may build up to future public health concern. To further complicate diagnosis, infection control and anti-microbial chemotherapy, non-sterile sites such as the nares and the skin could contain both S. aureus and coagulase-negative staphylococci (CoNS), either of which could harbour mecA the gene driving staphylococcal methicillin-resistance and required for MRSA-VRSA evolution. A new heptaplex PCR assay has been developed which simultaneously detects seven markers for: i) eubacteria (16S rRNA), ii) Staphylococcus genus (tuf), iii) Staphylococcus aureus (spa), iv) CoNS (cns), v) Panton-Valentine leukocidin (pvl), vi) methicillin resistance (mecA), and vii) vancomycin resistance (vanA). Following successful validation using 255 reference bacterial strains, applicability to analyse clinical samples was evaluated by direct amplification in spiked blood cultures (n = 89) which returned 100 % specificity, negative and positive predictive values. The new assay has LoD of 1.0x10(3) CFU/mL for the 16S rRNA marker and 1.0x10(4) CFU/mL for six other markers and completes cycling in less than one hour. The speed, sensitivity (100 %), NPV (100 %) and PPV (100 %) suggest the new heptaplex PCR assay could be easily integrated into a routine diagnostic microbiology workflow. Detection of the cns marker allows for unique identification of CoNS in mono-microbial and in poly-microbial samples containing mixtures of CoNS and S. aureus without recourse to the conventional elimination approach which is ambiguous. In addition to the SA-CoNS differential diagnostic essence of the new assay, inclusion of vanA primers will allow microbiology laboratories to stay ahead of the emerging MRSA-VRSA evolution. To the best of our knowledge, the new heptaplex PCR assay is the most multiplexed among similar PCR-based assays for simultaneous detection of STAAR.

  10. A Multiplex Snapback Primer System for the Enrichment and Detection of JAK2 V617F and MPL W515L/K Mutations in Philadelphia-Negative Myeloproliferative Neoplasms

    PubMed Central

    Zhang, Yunqing; Zhang, Xinju; Xu, Xiao; Kang, Zhihua; Li, Shibao; Zhang, Chen; Su, Bing

    2014-01-01

    A multiplex snapback primer system was developed for the simultaneous detection of JAK2 V617F and MPL W515L/K mutations in Philadelphia chromosome- (Ph-) negative myeloproliferative neoplasms (MPNs). The multiplex system comprises two snapback versus limiting primer sets for JAK2 and MPL mutation enrichment and detection, respectively. Linear-After exponential (LATE) PCR strategy was employed for the primer design to maximize the amplification efficiency of the system. Low ionic strength buffer and rapid PCR protocol allowed for selective amplification of the mutant alleles. Amplification products were analyzed by melting curve analysis for mutation identification. The multiplex system archived 0.1% mutation load sensitivity and <5% coefficient of variation inter-/intra-assay reproducibility. 120 clinical samples were tested by the multiplex snapback primer assay, and verified with amplification refractory system (ARMS), quantitative PCR (qPCR) and Sanger sequencing method. The multiplex system, with a favored versatility, provided the molecular diagnosis of Ph-negative MPNs with a suitable implement and simplified the genetic test process. PMID:24729973

  11. A multiplex PCR method for the identification of commercially important salmon and trout species (Oncorhynchus and Salmo) in North America.

    PubMed

    Rasmussen Hellberg, Rosalee S; Morrissey, Michael T; Hanner, Robert H

    2010-09-01

    The purpose of this study was to develop a species-specific multiplex polymerase chain reaction (PCR) method that allows for the detection of salmon species substitution on the commercial market. Species-specific primers and TaqMan® probes were developed based on a comprehensive collection of mitochondrial 5' cytochrome c oxidase subunit I (COI) deoxyribonucleic acid (DNA) "barcode" sequences. Primers and probes were combined into multiplex assays and tested for specificity against 112 reference samples representing 25 species. Sensitivity and linearity tests were conducted using 10-fold serial dilutions of target DNA (single-species samples) and DNA admixtures containing the target species at levels of 10%, 1.0%, and 0.1% mixed with a secondary species. The specificity tests showed positive signals for the target DNA in both real-time and conventional PCR systems. Nonspecific amplification in both systems was minimal; however, false positives were detected at low levels (1.2% to 8.3%) in conventional PCR. Detection levels were similar for admixtures and single-species samples based on a 30 PCR cycle cut-off, with limits of 0.25 to 2.5 ng (1% to 10%) in conventional PCR and 0.05 to 5.0 ng (0.1% to 10%) in real-time PCR. A small-scale test with food samples showed promising results, with species identification possible even in heavily processed food items. Overall, this study presents a rapid, specific, and sensitive method for salmon species identification that can be applied to mixed-species and heavily processed samples in either conventional or real-time PCR formats. This study provides a newly developed method for salmon and trout species identification that will assist both industry and regulatory agencies in the detection and prevention of species substitution. This multiplex PCR method allows for rapid, high-throughput species identification even in heavily processed and mixed-species samples. An inter-laboratory study is currently being carried out to assess the ability of this method to identify species in a variety of commercial salmon and trout products.

  12. Multiplex Amplification Coupled with COLD-PCR and High Resolution Melting Enables Identification of Low-Abundance Mutations in Cancer Samples with Low DNA Content

    PubMed Central

    Milbury, Coren A.; Chen, Clark C.; Mamon, Harvey; Liu, Pingfang; Santagata, Sandro; Makrigiorgos, G. Mike

    2011-01-01

    Thorough screening of cancer-specific biomarkers, such as DNA mutations, can require large amounts of genomic material; however, the amount of genomic material obtained from some specimens (such as biopsies, fine-needle aspirations, circulating-DNA or tumor cells, and histological slides) may limit the analyses that can be performed. Furthermore, mutant alleles may be at low-abundance relative to wild-type DNA, reducing detection ability. We present a multiplex-PCR approach tailored to amplify targets of interest from small amounts of precious specimens, for extensive downstream detection of low-abundance alleles. Using 3 ng of DNA (1000 genome-equivalents), we amplified the 1 coding exons (2-11) of TP53 via multiplex-PCR. Following multiplex-PCR, we performed COLD-PCR (co-amplification of major and minor alleles at lower denaturation temperature) to enrich low-abundance variants and high resolution melting (HRM) to screen for aberrant melting profiles. Mutation-positive samples were sequenced. Evaluation of mutation-containing dilutions revealed improved sensitivities after COLD-PCR over conventional-PCR. COLD-PCR improved HRM sensitivity by approximately threefold to sixfold. Similarly, COLD-PCR improved mutation identification in sequence-chromatograms over conventional PCR. In clinical specimens, eight mutations were detected via conventional-PCR-HRM, whereas 12 were detected by COLD-PCR-HRM, yielding a 33% improvement in mutation detection. In summary, we demonstrate an efficient approach to increase screening capabilities from limited DNA material via multiplex-PCR and improve mutation detection sensitivity via COLD-PCR amplification. PMID:21354058

  13. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP).

    PubMed

    Ma, Hongyan; Delafield, Daniel G; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion. Graphical Abstract ᅟ.

  14. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)

    NASA Astrophysics Data System (ADS)

    Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.

  15. A multiplex PCR-based method for the detection and early identification of wood rotting fungi in standing trees.

    PubMed

    Guglielmo, F; Bergemann, S E; Gonthier, P; Nicolotti, G; Garbelotto, M

    2007-11-01

    The goal of this research was the development of a PCR-based assay to identify important decay fungi from wood of hardwood tree species in northern temperate regions. Eleven taxon-specific primers were designed for PCR amplification of either nuclear or mitochondrial ribosomal DNA regions of Armillaria spp., Ganoderma spp., Hericium spp., Hypoxylon thouarsianum var. thouarsianum, Inonotus/Phellinus-group, Laetiporus spp., Perenniporia fraxinea, Pleurotus spp., Schizophyllum spp., Stereum spp. and Trametes spp. Multiplex PCR reactions were developed and optimized to detect fungal DNA and identify each taxon with a sensitivity of at least 1 pg of target DNA in the template. This assay correctly identified the agents of decay in 82% of tested wood samples. The development and optimization of multiplex PCRs allowed for reliable identification of wood rotting fungi directly from wood. Early detection of wood decay fungi is crucial for assessment of tree stability in urban landscapes. Furthermore, this method may prove useful for prediction of the severity and the evolution of decay in standing trees.

  16. PanFunPro: Bacterial Pan-Genome Analysis Based on the Functional Profiles (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukjancenko, Oksana

    2012-06-01

    Julien Tremblay from DOE JGI presents "Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platorm" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  17. PanFunPro: Bacterial Pan-Genome Analysis Based on the Functional Profiles (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Lukjancenko, Oksana

    2018-01-10

    Julien Tremblay from DOE JGI presents "Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platorm" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  18. Rapid Detection of the Chlamydiaceae and Other Families in the Order Chlamydiales: Three PCR Tests

    PubMed Central

    Everett, Karin D. E.; Hornung, Linda J.; Andersen, Arthur A.

    1999-01-01

    Few identification methods will rapidly or specifically detect all bacteria in the order Chlamydiales, family Chlamydiaceae. In this study, three PCR tests based on sequence data from over 48 chlamydial strains were developed for identification of these bacteria. Two tests exclusively recognized the Chlamydiaceae: a multiplex test targeting the ompA gene and the rRNA intergenic spacer and a TaqMan test targeting the 23S ribosomal DNA. The multiplex test was able to detect as few as 200 inclusion-forming units (IFU), while the TaqMan test could detect 2 IFU. The amplicons produced in these tests ranged from 132 to 320 bp in length. The third test, targeting the 23S rRNA gene, produced a 600-bp amplicon from strains belonging to several families in the order Chlamydiales. Direct sequence analysis of this amplicon has facilitated the identification of new chlamydial strains. These three tests permit ready identification of chlamydiae for diagnostic and epidemiologic study. The specificity of these tests indicates that they might also be used to identify chlamydiae without culture or isolation. PMID:9986815

  19. Evaluation of Multiplex Type-Specific Real-Time PCR Assays Using the LightCycler and Joint Biological Agent Identification and Diagnostic System Platforms for Detection and Quantitation of Adult Human Respiratory Adenoviruses

    DTIC Science & Technology

    2010-04-01

    53592), Escherichia coli, Klebsiella pneu- moniae (ATCC 13883), Pseudomonas aeruginosa (ATCC 97), Mycoplasma pneu- moniae, and Legionella pneumophila... Legionella pneumophila. Additionally, when we tested all samples with the multiplex assays, we did not see any cross- reactivity (data not shown...Chlamydophila pneumoniae Escherichia coli Klebsiella pneumoniae Pseudomonas aeruginosa Mycoplasma pneumoniae Legionella pneumophila VOL. 48, 2010

  20. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Li, Qingbo; Lu, Xiandan

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  1. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.; Li, Qingbo; Lu, Xiandan

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  2. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Li, Q.; Lu, X.

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  3. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.; Li, Q.; Lu, X.

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  4. Identification of high-risk Listeria monocytogenes serotypes in lineage I (serotype 1/2a, 1/2c, 3a and 3c) using multiplex PCR

    USDA-ARS?s Scientific Manuscript database

    Aims: Using molecular subtyping techniques, Listeria monocytogenes is divided into three major phylogenetic lineages, and a multiplex PCR method can differentiate five L. monocytogenes subgroups: 1/2a-3a, 1/2c-3c, 1/2b-3b-7, 4b-4d-4e, and 4a-4c. In the current study, we conducted genome comparison...

  5. Rapid identification of HPV 16 and 18 by multiplex nested PCR-immunochromatographic test.

    PubMed

    Kuo, Yung-Bin; Li, Yi-Shuan; Chan, Err-Cheng

    2015-02-01

    Human papillomavirus (HPV) types 16 and 18 are known to be high-risk viruses that cause cervical cancer. An HPV rapid testing kit that could help physicians to make early and more informed decisions regarding patient care is needed urgently but not yet available. This study aimed to develop a multiplex nested polymerase chain reaction-immunochromatographic test (PCR-ICT) for the rapid identification of HPV 16 and 18. A multiplex nested PCR was constructed to amplify the HPV 16 and 18 genotype-specific L1 gene fragments and followed by ICT which coated with antibodies to identify rapidly the different PCR products. The type-specific gene regions of high-risk HPV 16 and 18 could be amplified successfully by multiplex nested PCR at molecular sizes of approximately 99 and 101bp, respectively. The capture antibodies raised specifically against the moleculars labeled on the PCR products could be detected simultaneously both HPV 16 and 18 in one strip. Under optimal conditions, this PCR-ICT assay had the capability to detect HPV in a sample with as low as 100 copies of HPV viral DNA. The PCR-ICT system has the advantage of direct and simultaneous detection of two high-risk HPV 16 and 18 DNA targets in one sample, which suggested a significant potential of this assay for clinical application. Copyright © 2014. Published by Elsevier B.V.

  6. New multiplex PCR methods for rapid screening of genetically modified organisms in foods

    PubMed Central

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products. PMID:26257724

  7. New multiplex PCR methods for rapid screening of genetically modified organisms in foods.

    PubMed

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products.

  8. Antimicrobial Materials for Advanced Microbial Control in Spacecraft Water Systems

    NASA Technical Reports Server (NTRS)

    Birmele, Michele; Caro, Janicce; Newsham, Gerard; Roberts, Michael; Morford, Megan; Wheeler, Ray

    2012-01-01

    Microbial detection, identification, and control are essential for the maintenance and preservation of spacecraft water systems. Requirements set by NASA put limitations on the energy, mass, materials, noise, cost, and crew time that can be devoted to microbial control. Efforts are being made to attain real-time detection and identification of microbial contamination in microgravity environments. Research for evaluating technologies for capability enhancement on-orbit is currently focused on the use of adenosine triphosphate (ATP) analysis for detection purposes and polymerase chain reaction (peR) for microbial identification. Additional research is being conducted on how to control for microbial contamination on a continual basis. Existing microbial control methods in spacecraft utilize iodine or ionic silver biocides, physical disinfection, and point-of-use sterilization filters. Although these methods are effective, they require re-dosing due to loss of efficacy, have low human toxicity thresholds, produce poor taste, and consume valuable mass and crew time. Thus, alternative methods for microbial control are needed. This project also explores ultraviolet light-emitting diodes (UV-LEDs), surface passivation methods for maintaining residual biocide levels, and several antimicrobial materials aimed at improving current microbial control techniques, as well as addressing other materials presently under analysis and future directions to be pursued.

  9. Development of Species-Specific Primers for Agronomical Thrips and Multiplex Assay for Quarantine Identification of Western Flower Thrips.

    PubMed

    Yeh, W B; Tseng, M J; Chang, N T; Wu, S Y; Tsai, Y S

    2014-10-01

    While morphological identification of thrips species has been difficult because of their minute size and a lack of easily recognizable characteristics, molecular identification based on the development of specific molecular markers can be easily and reliably carried out. Among the known molecular markers, the nuclear internal transcribed spacer (ITS) exhibits distinguishable variations among thrips species. In this study, sequences of ITS2 region of 10 agriculturally important thrips were established to design species-specific primers for polymerase chain reaction (PCR). ITS2 sequence variations within these species were far less than those among species, indicating the suitability of this marker for species-specific primers design. These primers, though with one or two sporadically variable positions, showed a good efficacy within species. The specificity of these primers, examined on thrips species belonging to 15 genera, proved satisfactory. Furthermore, a multiplex PCR was used successfully for identifying Frankliniella occidentalis (Pergande), an insect pest monitored for quarantine purpose, and three additional thrips also commonly found in imported agricultural products and field samples, i.e., Thrips tabaci Lindeman, Thrips hawaiiensis (Morgan), and Frankliniella intonsa (Trybom). This study has demonstrated that specific primers and multiplex PCR based on ITS2 are reliable, convenient, and diagnostic tool to discriminate thrips species of quarantine and agricultural importance. © 2014 Entomological Society of America.

  10. Multiplexed chemostat system for quantification of biodiversity and ecosystem functioning in anaerobic digestion

    PubMed Central

    Plouchart, Diane; Guizard, Guillaume; Latrille, Eric

    2018-01-01

    Continuous cultures in chemostats have proven their value in microbiology, microbial ecology, systems biology and bioprocess engineering, among others. In these systems, microbial growth and ecosystem performance can be quantified under stable and defined environmental conditions. This is essential when linking microbial diversity to ecosystem function. Here, a new system to test this link in anaerobic, methanogenic microbial communities is introduced. Rigorously replicated experiments or a suitable experimental design typically require operating several chemostats in parallel. However, this is labor intensive, especially when measuring biogas production. Commercial solutions for multiplying reactors performing continuous anaerobic digestion exist but are expensive and use comparably large reactor volumes, requiring the preparation of substantial amounts of media. Here, a flexible system of Lab-scale Automated and Multiplexed Anaerobic Chemostat system (LAMACs) with a working volume of 200 mL is introduced. Sterile feeding, biomass wasting and pressure monitoring are automated. One module containing six reactors fits the typical dimensions of a lab bench. Thanks to automation, time required for reactor operation and maintenance are reduced compared to traditional lab-scale systems. Several modules can be used together, and so far the parallel operation of 30 reactors was demonstrated. The chemostats are autoclavable. Parameters like reactor volume, flow rates and operating temperature can be freely set. The robustness of the system was tested in a two-month long experiment in which three inocula in four replicates, i.e., twelve continuous digesters were monitored. Statistically significant differences in the biogas production between inocula were observed. In anaerobic digestion, biogas production and consequently pressure development in a closed environment is a proxy for ecosystem performance. The precision of the pressure measurement is thus crucial. The measured maximum and minimum rates of gas production could be determined at the same precision. The LAMACs is a tool that enables us to put in practice the often-demanded need for replication and rigorous testing in microbial ecology as well as bioprocess engineering. PMID:29518106

  11. Identification of Malassezia species from pityriasis versicolor lesions with a new multiplex PCR method.

    PubMed

    Vuran, Emre; Karaarslan, Aydın; Karasartova, Djursun; Turegun, Buse; Sahin, Fikret

    2014-02-01

    Despite the fact that a range of molecular methods have been developed as tools for the diagnosis of Malassezia species, there are several drawbacks associated with them, such as inefficiency of differentiating all the species, high cost, and questionable reproducibility. In addition, most of the molecular methods require cultivation to enhance sensitivity. Therefore, alternative methods eliminating cultivation and capable of identifying species with high accuracy and reliability are needed. Herein, a multiplex polymerase chain reaction (PCR)-based method was especially developed for the detection of eleven Malassezia species. The multiplex PCR was standardized by incorporating a consensus forward primer, along with Malassezia species-specific reverse primers considering the sizes of the PCR products. In the method, the multiplex-PCR primer content is divided into three parts to circumvent the problem of increased nonspecific background resulting from the use of a large number of primers. DNA extraction protocol described by Harju and colleagues was modified using liquid nitrogen instead of -80 °C to break down the yeast membrane. By a modified extraction procedure followed by multiplex PCR and electrophoresis, the method enables identification and differentiation of Malassezia species from both of the samples obtained directly from skin and yeast colonies grown in culture. Fifty-five patients who were confirmed with pityriasis versicolor were enrolled in the study. Multiplex PCR detected and differentiated all 55 samples obtained directly from the patients' skin. However, 50 out of 55 samples yielded Malassezia colony in the culture. In addition, eight of 50 colonies were misdiagnosed or not completely differentiated by conventional methods based on the sequence analysis of eight colonies. The method is capable of identifying species with high accuracy and reliability. In addition, it is simple, quick, and cost-effective. More importantly, the method works efficiently for the diagnosis of Malassezia species obtained directly from patient samples.

  12. Nonculture molecular techniques for diagnosis of bacterial disease in animals: a diagnostic laboratory perspective.

    PubMed

    Cai, H Y; Caswell, J L; Prescott, J F

    2014-03-01

    The past decade has seen remarkable technical advances in infectious disease diagnosis, and the pace of innovation is likely to continue. Many of these techniques are well suited to pathogen identification directly from pathologic or clinical samples, which is the focus of this review. Polymerase chain reaction (PCR) and gene sequencing are now routinely performed on frozen or fixed tissues for diagnosis of bacterial infections of animals. These assays are most useful for pathogens that are difficult to culture or identify phenotypically, when propagation poses a biosafety hazard, or when suitable fresh tissue is not available. Multiplex PCR assays, DNA microarrays, in situ hybridization, massive parallel DNA sequencing, microbiome profiling, molecular typing of pathogens, identification of antimicrobial resistance genes, and mass spectrometry are additional emerging technologies for the diagnosis of bacterial infections from pathologic and clinical samples in animals. These technical advances come, however, with 2 caveats. First, in the age of molecular diagnosis, quality control has become more important than ever to identify and control for the presence of inhibitors, cross-contamination, inadequate templates from diagnostic specimens, and other causes of erroneous microbial identifications. Second, the attraction of these technologic advances can obscure the reality that medical diagnoses cannot be made on the basis of molecular testing alone but instead through integrated consideration of clinical, pathologic, and laboratory findings. Proper validation of the method is required. It is critical that veterinary diagnosticians understand not only the value but also the limitations of these technical advances for routine diagnosis of infectious disease.

  13. Evaluation of a multiplex PCR to identify and serotype Actinobacillus pleuropneumoniae serovars 1, 5, 7, 12 and 15.

    PubMed

    Turni, C; Singh, R; Schembri, M A; Blackall, P J

    2014-10-01

    The aim of this study was to validate a multiplex PCR for the species identification and serotyping of Actinobacillus pleuropneumoniae serovars 1, 5, 7, 12 and 15. All 15 reference strains and 411 field isolates (394 from Australia, 11 from Indonesia, five from Mexico and one from New Zealand) of A. pleuropneumoniae were tested with the multiplex PCR. The specificity of this multiplex PCR was validated on 26 non-A. pleuropneumoniae species. The multiplex PCR gave the expected results with all 15 serovar reference strains and agreed with conventional serotyping for all field isolates from serovars 1 (n = 46), 5 (n = 81), 7 (n = 80), 12 (n = 16) and serovar 15 (n = 117). In addition, a species-specific product was amplified in the multiplex PCR with all 411 A. pleuropneumoniae field isolates. Of 25 nontypeable field isolates only two did not yield a serovar-specific band in the multiplex PCR. This multiplex PCR for serovars 1, 5, 7, 12 and 15 is species specific and capable of serotyping isolates from diverse locations. Significance and impact of the study: A multiplex PCR that can recognize serovars 1, 5, 7, 12 and 15 of A. pleuropneumoniae was developed and validated. This novel diagnostic tool will enable frontline laboratories to provide key information (the serovar) to guide targeted prevention and control programmes for porcine pleuropneumonia, a serious economic disease of pigs. The previous technology, traditional serotyping, is typically provided by specialized reference laboratories, limiting the capacity to respond to this key disease. © 2014 The Society for Applied Microbiology.

  14. The Effects of Family, Dentition and Dental Caries on the Salivary Microbiome

    PubMed Central

    Foxman, Betsy; Luo, Ting; Srinivasan, Usha; Ramadugu, Kirtana; Wen, Ai; Goldberg, Deborah; Shedden, Kerby; Crout, Richard; McNeil, Daniel W.; Weyant, Robert; Marazita, Mary L.

    2016-01-01

    Background Family members share genes, environment and microbial communities. If there is a strong effect of family on the salivary microbiota, controlling for family will enhance identification of microbial communities associated with cariogenesis. The current study was designed to assess the similarity of the salivary microbiome among families and the association between the salivary microbiome and dental decay taking age into account. Methods We selected families (n= 49) participating in the cohort study of oral health conducted by the Center for Oral Health Research in Appalachia (COHRA). All families where at least two children and at least one parent gave a saliva sample (n=173) were included. Saliva samples were collected at least one hour after eating or drinking. Following DNA extraction, the V6 region of the 16s rRNA gene was sequenced. Paired ends were joined using FLASH, sequences were de-multiplexed and filtered using QIIME 1.9.0, and taxonomy was assigned using the RDP Classifier and sequences aligned with the CORE database using PyNAST. Results The salivary microbiome changed with age and was more similar within families than between families. There was no difference in the diversity of the salivary microbiome by dental decay. After taking into account age and family, signals of dental decay were weak in the saliva, whether examined at the phyla, genus or operational taxonomic level. Conclusions The salivary microbiome does not appear to be a good indicator of dental caries. PMID:27157862

  15. Multiplex PCR for Differential Identification of Broad Tapeworms (Cestoda: Diphyllobothrium) Infecting Humans▿

    PubMed Central

    Wicht, Barbara; Yanagida, Tetsuya; Scholz, Tomáš; Ito, Akira; Jiménez, Juan A.; Brabec, Jan

    2010-01-01

    The specific identification of broad tapeworms (genus Diphyllobothrium) infecting humans is very difficult to perform by morphological observation. Molecular analysis by PCR and sequencing represents the only reliable tool to date to identify these parasites to the species level. Due to the recent spread of human diphyllobothriosis in several countries, a correct diagnosis has become crucial to better understand the distribution and the life cycle of human-infecting species as well as to prevent the introduction of parasites to disease-free water systems. Nevertheless, PCR and sequencing, although highly precise, are too complicated, long, and expensive to be employed in medical laboratories for routine diagnostics. In the present study we optimized a cheap and rapid molecular test for the differential identification of the most common Diphyllobothrium species infecting humans (D. latum, D. dendriticum, D. nihonkaiense, and D. pacificum), based on a multiplex PCR with the cytochrome c oxidase subunit 1 gene of mitochondrial DNA. PMID:20592146

  16. Simultaneous Identification of Four "Legal High" Plant Species in a Multiplex PCR High-Resolution Melt Assay.

    PubMed

    Elkins, Kelly M; Perez, Anjelica C U; Quinn, Alicia A

    2017-05-01

    The international prevalence of "legal high" drugs necessitates the development of a method for their detection and identification. Herein, we describe the development and validation of a tetraplex multiplex real-time polymerase chain reaction (PCR) assay used to simultaneously identify morning glory, jimson weed, Hawaiian woodrose, and marijuana detected by high-resolution melt using LCGreen Plus ® . The PCR assay was evaluated based on the following: (i) specificity and selectivity-primers were tested on DNA extracted from 30 species and simulated forensic samples, (ii) sensitivity-serial dilutions of the target DNA were prepared, and (iii) reproducibility and reliability-sample replicates were tested and remelted on different days. The assay is ideal for cases in which inexpensive assays are needed to quickly detect and identify trace biological material present on drug paraphernalia that is too compromised for botanical microscopic identification and for which analysts are unfamiliar with the morphology of the emerging "legal high" species. © 2016 American Academy of Forensic Sciences.

  17. Development and validation of a multiplex PCR for detection of Scedosporium spp. in respiratory tract specimens from patients with cystic fibrosis.

    PubMed

    Harun, Azian; Blyth, Christopher C; Gilgado, Felix; Middleton, Peter; Chen, Sharon C-A; Meyer, Wieland

    2011-04-01

    The emergence of Scedosporium infections in diverse groups of individuals, which are often treatment refractory, warrants timely and accurate laboratory diagnosis. Species- or group-specific primers based on internal transcribed spacer (ITS) sequence polymorphisms were designed for Scedosporium aurantiacum, Scedosporium dehoogii, Scedosporium prolificans, Pseudallescheria boydii species complex (former clade 5)/Pseudallescheria apiosperma (formerly classified as S. apiospermum sensu lato) and Pseudallescheria minutispora. Primers for S. aurantiacum, S. prolificans, and P. boydii species complex/P. apiosperma were incorporated into a multiplex PCR assay for the detection and identification of the three major clinically important Scedosporium species and validated using sputum specimens collected from patients seen at a major Australian cystic fibrosis clinic. The multiplex PCR assay showed 100% specificity in identifying the three major clinically relevant Scedosporium species from pure culture. When evaluated using DNA extracts from sputa, sensitivity and specificity of the multiplex PCR assay were 62.1% and 97.2%, respectively. This highly species-specific multiplex PCR assay offers a rapid and simple method of detection of the most clinically important Scedosporium species in respiratory tract specimens.

  18. Multiplex PCR Targeting tpi (Triose Phosphate Isomerase), tcdA (Toxin A), and tcdB (Toxin B) Genes for Toxigenic Culture of Clostridium difficile

    PubMed Central

    Lemee, Ludovic; Dhalluin, Anne; Testelin, Sabrina; Mattrat, Marie-Andre; Maillard, Karine; Lemeland, Jean-François; Pons, Jean-Louis

    2004-01-01

    A multiplex PCR toxigenic culture approach was designed for simultaneous identification and toxigenic type characterization of Clostridium difficile isolates. Three pairs of primers were designed for the amplification of (i) a species-specific internal fragment of the tpi (triose phosphate isomerase) gene, (ii) an internal fragment of the tcdB (toxin B) gene, and (iii) an internal fragment of the tcdA (toxin A) gene allowing distinction between toxin A-positive, toxin B-positive (A+B+) strains and toxin A-negative, toxin B-positive (A−B+) variant strains. The reliability of the multiplex PCR was established by using a panel of 72 C. difficile strains including A+B+, A−B−, and A−B+ toxigenic types and 11 other Clostridium species type strains. The multiplex PCR assay was then included in a toxigenic culture approach for the detection, identification, and toxigenic type characterization of C. difficile in 1,343 consecutive human and animal stool samples. Overall, 111 (15.4%) of 721 human samples were positive for C. difficile; 67 (60.4%) of these samples contained A+B+ toxigenic isolates, and none of them contained A−B+ variant strains. Fifty (8%) of 622 animal samples contained C. difficile strains, which were toxigenic in 27 (54%) cases, including 1 A−B+ variant isolate. Eighty of the 721 human stool samples (37 positive and 43 negative for C. difficile culture) were comparatively tested by Premier Toxins A&B (Meridian Bioscience) and Triage C. difficile Panel (Biosite) immunoassays, the results of which were found concordant with toxigenic culture for 82.5 and 92.5% of the samples, respectively. The multiplex PCR toxigenic culture scheme described here allows combined diagnosis and toxigenic type characterization for human and animal C. difficile intestinal infections. PMID:15583303

  19. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  20. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  1. Direct multiplex PCR (dmPCR) for the identification of six Phlebotomine sand fly species (Diptera: Psychodidae), including major Leishmania vectors of the Mediterranean

    USDA-ARS?s Scientific Manuscript database

    Sand flies (Diptera: Psychodidae, subfamily Phlebotominae) are haematophagous insects that are known to transmit several anthroponotic and zoonotic diseases. Reliable identification of sand flies at species level is crucial for their surveillance, the detection and spread of their pathogens and the ...

  2. Single tube multiplex real-time PCR for the rapid detection of herpesvirus infections of the central nervous system.

    PubMed

    Sankuntaw, Nipaporn; Sukprasert, Saovaluk; Engchanil, Chulapan; Kaewkes, Wanlop; Chantratita, Wasun; Pairoj, Vantanit; Lulitanond, Viraphong

    2011-01-01

    Human herpesvirus infection of immunocompromised hosts may lead to central nervous system (CNS) infection and diseases. In this study, a single tube multiplex real-time PCR was developed for the detection of five herpesviruses (HSV-1, HSV-2, VZV, EBV and CMV) in clinical cerebrospinal fluid (CSF) specimens. Two primer pairs specific for the herpesvirus polymerase gene and five hybridization probe pairs for the specific identification of the herpesvirus types were used in a LightCycler multiplex real-time PCR. A singleplex real-time PCR was first optimized and then applied to the multiplex real-time PCR. The singleplex and multiplex real-time PCRs showed no cross-reactivity. The sensitivity of the singleplex real-time PCR was 1 copy per reaction for each herpesvirus, while that of the multiplex real-time PCR was 1 copy per reaction for HSV-1 and VZV and 10 copies per reaction for HSV-2, EBV and CMV. Intra and inter-assay variations of the single tube multiplex assay were in the range of 0.02%-3.67% and 0.79%-4.35%, respectively. The assay was evaluated by testing 62 clinical CSF samples and was found to have equivalent sensitivity, specificity and agreement as the routine real-time PCR, but reducing time, cost and amount of used sample. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Establishment of a multiplex real-time RT-PCR assay for rapid identification of H6 subtype avian influenza viruses.

    PubMed

    Yang, Fan; Wu, Haibo; Liu, Fumin; Lu, Xiangyun; Peng, Xiuming; Wu, Nanping

    2018-06-01

    The H6 subtype avian influenza viruses (AIVs) possess the capacity for zoonotic transmission from avian species to humans. Establishment of a specific, rapid and sensitive method to screen H6 AIVs is necessary. Based on the conserved domain of the matrix and H6 AIV hemagglutinin genes, two TaqMan minor-groove-binder probes and multiplex real-time RT-PCR primers were designed in this study. The multiplex real-time RT-PCR assay developed in this study had high specificity and repeatability and a detection limit of 30 copies per reaction. This rapid diagnostic method will be useful for clinical detection and surveillance of H6 AIVs in China.

  4. Clinical relevance of molecular identification of microorganisms and detection of antimicrobial resistance genes in bloodstream infections of paediatric cancer patients.

    PubMed

    Carlesse, Fabianne; Cappellano, Paola; Quiles, Milene Gonçalves; Menezes, Liana Carballo; Petrilli, Antonio Sérgio; Pignatari, Antonio Carlos

    2016-09-01

    Bloodstream infections (BSIs) are the major cause of mortality in cancer patients. Molecular techniques are used for rapid diagnosis of BSI, allowing early therapy and improving survival. We aimed to establish whether real-time quantitative polymerase chain reaction (qPCR) could improve early diagnosis and therapy in paediatric cancer patients, and describe the predominant pathogens of BSI and their antimicrobial susceptibility. Blood samples were processed by the BACTEC system and microbial identification and susceptibility tests were performed by the Phoenix system. All samples were screened by multiplex 16 s rDNA qPCR. Seventeen species were evaluated using sex-specific TaqMan probes and resistance genes blaSHV, blaTEM, blaCTX, blaKPC, blaIMP, blaSPM, blaVIM, vanA, vanB and mecA were screened by SYBR Green reactions. Therapeutic efficacy was evaluated at the time of positive blood culture and at final phenotypic identification and antimicrobial susceptibility results. We analyzed 69 episodes of BSI from 64 patients. Gram-positive bacteria were identified in 61 % of the samples, Gram-negative bacteria in 32 % and fungi in 7 %. There was 78.2 % of agreement between the phenotypic and molecular methods in final species identification. The mecA gene was detected in 81.4 % of Staphylococcus spp., and 91.6 % were concordant with the phenotypic method. Detection of vanA gene was 100 % concordant. The concordance for Gram-negative susceptibilities was 71.4 % for Enterobacteriaceae and 50 % for Pseudomonas aeruginosa. Therapy was more frequently inadequate in patients who died, and the molecular test was concordant with the phenotypic susceptibility test in 50 %. qPCR has potential indication for early identification of pathogens and antimicrobial resistance genes from BSI in paediatric cancer patients and may improve antimicrobial therapy.

  5. Development of a Multiplexed Bead-Based Suspension Array for the Detection and Discrimination of Pospiviroid Plant Pathogens

    PubMed Central

    van Brunschot, Sharon L.; Bergervoet, Jan H. W.; Pagendam, Daniel E.; de Weerdt, Marjanne; Geering, Andrew D. W.; Drenth, André; van der Vlugt, René A. A.

    2014-01-01

    Efficient and reliable diagnostic tools for the routine indexing and certification of clean propagating material are essential for the management of pospiviroid diseases in horticultural crops. This study describes the development of a true multiplexed diagnostic method for the detection and identification of all nine currently recognized pospiviroid species in one assay using Luminex bead-based suspension array technology. In addition, a new data-driven, statistical method is presented for establishing thresholds for positivity for individual assays within multiplexed arrays. When applied to the multiplexed array data generated in this study, the new method was shown to have better control of false positives and false negative results than two other commonly used approaches for setting thresholds. The 11-plex Luminex MagPlex-TAG pospiviroid array described here has a unique hierarchical assay design, incorporating a near-universal assay in addition to nine species-specific assays, and a co-amplified plant internal control assay for quality assurance purposes. All assays of the multiplexed array were shown to be 100% specific, sensitive and reproducible. The multiplexed array described herein is robust, easy to use, displays unambiguous results and has strong potential for use in routine pospiviroid indexing to improve disease management strategies. PMID:24404188

  6. Fundamental CRISPR-Cas9 tools and current applications in microbial systems.

    PubMed

    Tian, Pingfang; Wang, Jia; Shen, Xiaolin; Rey, Justin Forrest; Yuan, Qipeng; Yan, Yajun

    2017-09-01

    Derived from the bacterial adaptive immune system, CRISPR technology has revolutionized conventional genetic engineering methods and unprecedentedly facilitated strain engineering. In this review, we outline the fundamental CRISPR tools that have been employed for strain optimization. These tools include CRISPR editing, CRISPR interference, CRISPR activation and protein imaging. To further characterize the CRISPR technology, we present current applications of these tools in microbial systems, including model- and non-model industrial microorganisms. Specially, we point out the major challenges of the CRISPR tools when utilized for multiplex genome editing and sophisticated expression regulation. To address these challenges, we came up with strategies that place emphasis on the amelioration of DNA repair efficiency through CRISPR-Cas9-assisted recombineering. Lastly, multiple promising research directions were proposed, mainly focusing on CRISPR-based construction of microbial ecosystems toward high production of desired chemicals.

  7. Development of melting temperature-based SYBR Green I polymerase chain reaction methods for multiplex genetically modified organism detection.

    PubMed

    Hernández, Marta; Rodríguez-Lázaro, David; Esteve, Teresa; Prat, Salomé; Pla, Maria

    2003-12-15

    Commercialization of several genetically modified crops has been approved worldwide to date. Uniplex polymerase chain reaction (PCR)-based methods to identify these different insertion events have been developed, but their use in the analysis of all commercially available genetically modified organisms (GMOs) is becoming progressively insufficient. These methods require a large number of assays to detect all possible GMOs present in the sample and thereby the development of multiplex PCR systems using combined probes and primers targeted to sequences specific to various GMOs is needed for detection of this increasing number of GMOs. Here we report on the development of a multiplex real-time PCR suitable for multiple GMO identification, based on the intercalating dye SYBR Green I and the analysis of the melting curves of the amplified products. Using this method, different amplification products specific for Maximizer 176, Bt11, MON810, and GA21 maize and for GTS 40-3-2 soybean were obtained and identified by their specific Tm. We have combined amplification of these products in a number of multiplex reactions and show the suitability of the methods for identification of GMOs with a sensitivity of 0.1% in duplex reactions. The described methods offer an economic and simple alternative to real-time PCR systems based on sequence-specific probes (i.e., TaqMan chemistry). These methods can be used as selection tests and further optimized for uniplex GMO quantification.

  8. [Multiplex PCR strategy for the simultaneous identification of Staphylococcus aureus and detection of staphylococcal enterotoxins in isolates from food poisoning outbreaks].

    PubMed

    Brizzio, Aníbal A; Tedeschi, Fabián A; Zalazar, Fabián E

    2013-01-01

    Staphylococcal food poisoning is the most frequent type of food poisoning around the world. Staphylococcus aureus enterotoxins cause significant loss of water in the intestinal lumen, followed by vomiting and diarrhea. To report a fast, reliable and inexpensive strategy based on multiplex PCR for the simultaneous identification of S. aureus and detection of five classical S. aureus enterotoxin genes ( sea, seb, sec, sed, see ) in Staphylococcus spp. strains isolated from food poisoning outbreaks. We analyzed isolates from 12 food poisoning outbreaks occurred in Santa Fe province (Argentina). Isolation and phenotypic characterization were carried out by standard procedures. Genotypic analysis was performed by multiplex PCR, using primers for nuc , sea-see and 16S rRNA genes simultaneously. Of all the strains tested, 58% were found to carry toxigenic genes. Sea and seb toxins were found at the same percentage (29%) while sec, sed and see genes were found in a lower and identical proportion (14%). We did not find more than one different type of S. aureus enterotoxin in the isolates analyzed. The multiplex PCR strategy designed in this work has enabled us to identify strains of S. aureus and detect -at the same time- their enterotoxigenic ability. At present, our efforts are devoted to the detection of genes encoding enterotoxins other than the classical ones, in order to know their impact on staphylococcal food poisoning, as well as to investigate their relevance to our country's public health.

  9. Detection and Identification of Probiotic Lactobacillus plantarum Strains by Multiplex PCR Using RAPD-Derived Primers

    PubMed Central

    Galanis, Alex; Kourkoutas, Yiannis; Tassou, Chrysoula C.; Chorianopoulos, Nikos

    2015-01-01

    Lactobacillus plantarum 2035 and Lactobacillus plantarum ACA-DC 2640 are two lactic acid bacteria (LAB) strains that have been isolated from Feta cheese. Both display significant potential for the production of novel probiotic food products. The aim of the present study was the development of an accurate and efficient method for the molecular detection and identification of the above strains in a single reaction. A multiplex PCR assay was designed for each strain, based on specific primers derived from Random Amplified Polymorphic DNA (RAPD) Sequenced Characterized Amplified Region (SCAR) analysis. The specificity of the assay was tested with a total of 23 different LAB strains, for L. plantarum 2035 and L. plantarum ACA-DC 2640. The multiplex PCR assay was also successfully applied for the detection of the above cultures in yogurt samples prepared in our lab. The proposed methodology may be applied for monitoring the presence of these strains in food products, thus evaluating their probiotic character. Moreover, our strategy may be adapted for other novel LAB strains with probiotic potential, thus providing a powerful tool for molecular discrimination that could be invaluable to the food industry. PMID:26506345

  10. Detection and Identification of Probiotic Lactobacillus plantarum Strains by Multiplex PCR Using RAPD-Derived Primers.

    PubMed

    Galanis, Alex; Kourkoutas, Yiannis; Tassou, Chrysoula C; Chorianopoulos, Nikos

    2015-10-22

    Lactobacillus plantarum 2035 and Lactobacillus plantarum ACA-DC 2640 are two lactic acid bacteria (LAB) strains that have been isolated from Feta cheese. Both display significant potential for the production of novel probiotic food products. The aim of the present study was the development of an accurate and efficient method for the molecular detection and identification of the above strains in a single reaction. A multiplex PCR assay was designed for each strain, based on specific primers derived from Random Amplified Polymorphic DNA (RAPD) Sequenced Characterized Amplified Region (SCAR) analysis. The specificity of the assay was tested with a total of 23 different LAB strains, for L. plantarum 2035 and L. plantarum ACA-DC 2640. The multiplex PCR assay was also successfully applied for the detection of the above cultures in yogurt samples prepared in our lab. The proposed methodology may be applied for monitoring the presence of these strains in food products, thus evaluating their probiotic character. Moreover, our strategy may be adapted for other novel LAB strains with probiotic potential, thus providing a powerful tool for molecular discrimination that could be invaluable to the food industry.

  11. Examples of kinship analysis where Profiler Plus™ was not discriminatory enough for the identification of victims using DNA identification.

    PubMed

    Hartman, D; Benton, L; Morenos, L; Beyer, J; Spiden, M; Stock, A

    2011-02-25

    The identification of the victims of the 2009 Victorian bushfires disaster, as in other mass disasters, relied on a number of scientific disciplines - including DNA analysis. As part of the DVI response, DNA analysis was performed to assist in the identification of victims through kinship (familial matching to relatives) or direct (self source of sample) matching of DNA profiles. The majority of the DNA identifications made (82%) were achieved through kinship matching of familial reference samples to post mortem (PM) samples obtained from the victims. Although each location affected by the bushfires could be treated as a mini-disaster (having a small closed-set of victims), with many such sites spread over vast areas, DNA analysis requires that the short tandem repeat (STR) system used be able to afford enough discrimination between all the DVI cases to assign a match. This publication highlights that although a 9-loci multiplex was sufficient for a DVI of this nature, there were instances that brought to light the short comings of using a 9-loci multiplex for kinship matching--particularly where multiple family members are victims. Moreso it serves to reinforce the recommendation that a minimum of 12 autosomal STR markers (plus Amelogenin) be used for DNA identification of victims which relies heavily on kinship matching. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Blind identification of the number of sub-carriers for orthogonal frequency division multiplexing-based elastic optical networking

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Xu, Hengying; Bai, Chenglin

    2018-03-01

    In orthogonal frequency division multiplexing (OFDM)-based elastic optical networking (EON), it is imperative to identify unknown parameters of OFDM-based EON signals quickly, intelligently and robustly. Because the number of sub-carriers determines the size of the sub-carriers spacing and then affects the symbol period of the OFDM and the anti-dispersion capability of the system, the identification of the number of sub-carriers has a profound effect on the identification of other key parameters of the system. In this paper, we proposed a method of number identification for sub-carriers of OFDM-based EON signals with help of high-order cyclic cumulant. The specific fourth-order cyclic cumulant exists only at the location of its sub-carriers frequencies. So the identification of the number of sub-carriers can be implemented by detecting the cyclic-frequencies. The proposed scheme in our study can be divided into three sub-stages, i.e. estimating the spectral range, calculating the high-order cyclic cumulant and identifying the number of sub-carriers. When the optical signal-to-noise ratios (OSNR) varied from 16dB to 22dB, the number of sub-carriers (64-512) was successfully identified in the experiment, and from the statistical point of view, the average identification absolute accuracy (IAAs) exceeded 94%.

  13. Pre-capture multiplexing improves efficiency and cost-effectiveness of targeted genomic enrichment.

    PubMed

    Shearer, A Eliot; Hildebrand, Michael S; Ravi, Harini; Joshi, Swati; Guiffre, Angelica C; Novak, Barbara; Happe, Scott; LeProust, Emily M; Smith, Richard J H

    2012-11-14

    Targeted genomic enrichment (TGE) is a widely used method for isolating and enriching specific genomic regions prior to massively parallel sequencing. To make effective use of sequencer output, barcoding and sample pooling (multiplexing) after TGE and prior to sequencing (post-capture multiplexing) has become routine. While previous reports have indicated that multiplexing prior to capture (pre-capture multiplexing) is feasible, no thorough examination of the effect of this method has been completed on a large number of samples. Here we compare standard post-capture TGE to two levels of pre-capture multiplexing: 12 or 16 samples per pool. We evaluated these methods using standard TGE metrics and determined the ability to identify several classes of genetic mutations in three sets of 96 samples, including 48 controls. Our overall goal was to maximize cost reduction and minimize experimental time while maintaining a high percentage of reads on target and a high depth of coverage at thresholds required for variant detection. We adapted the standard post-capture TGE method for pre-capture TGE with several protocol modifications, including redesign of blocking oligonucleotides and optimization of enzymatic and amplification steps. Pre-capture multiplexing reduced costs for TGE by at least 38% and significantly reduced hands-on time during the TGE protocol. We found that pre-capture multiplexing reduced capture efficiency by 23 or 31% for pre-capture pools of 12 and 16, respectively. However efficiency losses at this step can be compensated by reducing the number of simultaneously sequenced samples. Pre-capture multiplexing and post-capture TGE performed similarly with respect to variant detection of positive control mutations. In addition, we detected no instances of sample switching due to aberrant barcode identification. Pre-capture multiplexing improves efficiency of TGE experiments with respect to hands-on time and reagent use compared to standard post-capture TGE. A decrease in capture efficiency is observed when using pre-capture multiplexing; however, it does not negatively impact variant detection and can be accommodated by the experimental design.

  14. Variation in Microbial Identification System Accuracy for Yeast Identification Depending on Commercial Source of Sabouraud Dextrose Agar

    PubMed Central

    Kellogg, James A.; Bankert, David A.; Chaturvedi, Vishnu

    1999-01-01

    The accuracy of the Microbial Identification System (MIS; MIDI, Inc.) for identification of yeasts to the species level was compared by using 438 isolates grown on prepoured BBL Sabouraud dextrose agar (SDA) and prepoured Remel SDA. Correct identification was observed for 326 (74%) of the yeasts cultured on BBL SDA versus only 214 (49%) of yeasts grown on Remel SDA (P < 0.001). The commercial source of the SDA used in the MIS procedure significantly influences the system’s accuracy. PMID:10325387

  15. Homogeneous versus heterogeneous probes for microbial ecological microarrays.

    PubMed

    Bae, Jin-Woo; Park, Yong-Ha

    2006-07-01

    Microbial ecological microarrays have been developed for investigating the composition and functions of microorganism communities in environmental niches. These arrays include microbial identification microarrays, which use oligonucleotides, gene fragments or microbial genomes as probes. In this article, the advantages and disadvantages of each type of probe are reviewed. Oligonucleotide probes are currently useful for probing uncultivated bacteria that are not amenable to gene fragment probing, whereas the functional gene fragments amplified randomly from microbial genomes require phylogenetic and hierarchical categorization before use as microbial identification probes, despite their high resolution for both specificity and sensitivity. Until more bacteria are sequenced and gene fragment probes are thoroughly validated, heterogeneous bacterial genome probes will provide a simple, sensitive and quantitative tool for exploring the ecosystem structure.

  16. Multiplex Real-Time PCR Assay for Rapid Detection of Methicillin-Resistant Staphylococci Directly from Positive Blood Cultures

    PubMed Central

    Wang, Hye-young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 103 CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene. PMID:24648566

  17. Simple Identification of Human Taenia Species by Multiplex Loop-Mediated Isothermal Amplification in Combination with Dot Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Nkouawa, Agathe; Sako, Yasuhito; Okamoto, Munehiro; Ito, Akira

    2016-01-01

    For differential detection of Taenia solium, Taenia saginata, and Taenia asiatica, loop-mediated isothermal amplification (LAMP) assay targeting the cytochrome c oxidase subunit 1 gene has been recently developed and shown to be sensitive, specific, and effective. However, to achieve differential identification, one specimen requires three reaction mixtures containing a primer set of each Taenia species separately, which is complex and time consuming and increases the risk of cross-contamination. In this study, we developed a simple differential identification of human Taenia species using multiplex LAMP (mLAMP) in combination with dot enzyme-linked immunosorbent assay (dot-ELISA). Forward inner primers of T. solium, T. saginata, and T. asiatica labeled with fluorescein isothiocyanate (FITC), digoxigenin (DIG), and tetramethylrhodamine (TAMRA), respectively, and biotin-labeled backward inner primers were used in mLAMP. The mLAMP assay succeeded in specific amplification of each respective target gene in a single tube. Furthermore, the mLAMP product from each species was easily distinguished by dot-ELISA with an antibody specific for FITC, DIG, or TAMRA. The mLAMP assay in combination with dot-ELISA will make identification of human Taenia species simpler, easier, and more practical. PMID:27044566

  18. Direct Multiplex PCR (dmPCR) for the Identification of Six Phlebotomine Sand Fly Species (Diptera: Psychodidae), Including Major Leishmania Vectors of the Mediterranean.

    PubMed

    Giantsis, Ioannis A; Chaskopoulou, Alexandra; Claude Bon, Marie

    2017-02-01

    Sand flies (Diptera: Psychodidae, subfamily Phlebotominae) are hematophagous insects that are known to transmit several anthroponotic and zoonotic diseases. Reliable identification of sand flies at species level is crucial for their surveillance, the detection and spread of their pathogens, and the implementation of targeted pest control strategies. Here, we designed a novel, time-saving, cost-effective and easy-to-apply molecular methodology, which avoids sequencing, for the identification of the following six Eastern Mediterranean sand fly species: Phebotomus perfiliewi Parrot, Phebotomus simici Theodor, Phebotomus tobbi Adler and Theodor, Phebotomus papatasi Scopoli, Sergentomyia dentata Sinton, and Sergentomyia minuta Theodor. This methodology, which is a multiplex PCR assay using one common and six diagnostic primers, is based on species-specific single-nucleotide polymorphisms of the nuclear 18S rRNA gene. Amplification products were easily and reliably separated in agarose gel yielding one single clear band of diagnostic size for each species. Further, we verified its successful application on tissue samples that were immersed directly to the PCR mix, skipping DNA extraction. The direct multiplex PCR can be completed in < 3 h, including all operating procedures, and costing no more than a simple PCR. The applicability of this methodology in the detection of hybrids is an additional considerable benefit. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. A collaborative exercise on DNA methylation based body fluid typing.

    PubMed

    Jung, Sang-Eun; Cho, Sohee; Antunes, Joana; Gomes, Iva; Uchimoto, Mari L; Oh, Yu Na; Di Giacomo, Lisa; Schneider, Peter M; Park, Min Sun; van der Meer, Dieudonne; Williams, Graham; McCord, Bruce; Ahn, Hee-Jung; Choi, Dong Ho; Lee, Yang Han; Lee, Soong Deok; Lee, Hwan Young

    2016-10-01

    A collaborative exercise on DNA methylation based body fluid identification was conducted by seven laboratories. For this project, a multiplex methylation SNaPshot reaction composed of seven CpG markers was used for the identification of four body fluids, including blood, saliva, semen, and vaginal fluid. A total of 30 specimens were prepared and distributed to participating laboratories after thorough testing. The required experiments included four increasingly complex tasks: (1) CE of a purified single-base extension reaction product, (2) multiplex PCR and multiplex single-base extension reaction of bisulfite-modified DNA, (3) bisulfite conversion of genomic DNA, and (4) extraction of genomic DNA from body fluid samples. In tasks 2, 3 and 4, one or more mixtures were analyzed, and specimens containing both known and unknown body fluid sources were used. Six of the laboratories generated consistent body fluid typing results for specimens of bisulfite-converted DNA and genomic DNA. One laboratory failed to set up appropriate conditions for capillary analysis of reference single-base extension products. In general, variation in the values obtained for DNA methylation analysis between laboratories increased with the complexity of the required experiments. However, all laboratories concurred on the interpretation of the DNA methylation profiles produced. Although the establishment of interpretational guidelines on DNA methylation based body fluid identification has yet to be performed, this study supports the addition of DNA methylation profiling to forensic body fluid typing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Development and first evaluation of a novel multiplex real-time PCR on whole blood samples for rapid pathogen identification in critically ill patients with sepsis.

    PubMed

    van de Groep, Kirsten; Bos, Martine P; Savelkoul, Paul H M; Rubenjan, Anna; Gazenbeek, Christel; Melchers, Willem J G; van der Poll, Tom; Juffermans, Nicole P; Ong, David S Y; Bonten, Marc J M; Cremer, Olaf L

    2018-04-26

    Molecular tests may enable early adjustment of antimicrobial therapy and be complementary to blood culture (BC) which has imperfect sensitivity in critically ill patients. We evaluated a novel multiplex real-time PCR assay to diagnose bloodstream pathogens directly in whole blood samples (BSI-PCR). BSI-PCR included 11 species- and four genus-specific PCRs, a molecular Gram-stain PCR, and two antibiotic resistance markers. We collected 5 mL blood from critically ill patients simultaneously with clinically indicated BC. Microbial DNA was isolated using the Polaris method followed by automated DNA extraction. Sensitivity and specificity were calculated using BC as reference. BSI-PCR was evaluated in 347 BC-positive samples (representing up to 50 instances of each pathogen covered by the test) and 200 BC-negative samples. Bacterial species-specific PCR sensitivities ranged from 65 to 100%. Sensitivity was 26% for the Gram-positive PCR, 32% for the Gram-negative PCR, and ranged 0 to 7% for yeast PCRs. Yeast detection was improved to 40% in a smaller set-up. There was no overall association between BSI-PCR sensitivity and time-to-positivity of BC (which was highly variable), yet Ct-values were lower for true-positive versus false-positive PCR results. False-positive results were observed in 84 (4%) of the 2200 species-specific PCRs in 200 culture-negative samples, and ranged from 0 to 6% for generic PCRs. Sensitivity of BSI-PCR was promising for individual bacterial pathogens, but still insufficient for yeasts and generic PCRs. Further development of BSI-PCR will focus on improving sensitivity by increasing input volumes and on subsequent implementation as a bedside test.

  1. Retrospective analysis of multiplex polymerase chain reaction-based molecular diagnostics (SES) in 70 patients with suspected central nervous system infections: A single-center study

    PubMed Central

    Ramalingam, Rama Krishnan Tiruppur Chinnappan; Chakraborty, Dipanjan

    2016-01-01

    Background: Central nervous system (CNS) infections present a grave health care challenge due to high morbidity and mortality. Clinical findings and conventional laboratory assessments are not sufficiently distinct for specific etiologic diagnosis. Identification of pathogens is a key to appropriate therapy. Aim: In this retrospective observational study, we evaluated the efficacy and clinical utility of syndrome evaluation system (SES) for diagnosing clinically suspected CNS infections. Materials and Methods: This retrospective analysis included inpatients in our tertiary level neurointensive care unit (NICU) and ward from February 2010 to December 2013. Cerebrospinal fluid (CSF) samples of 70 patients, clinically suspected of having CNS infections, were subjected to routine laboratory tests, culture, imaging, and SES. We analyzed the efficacy of SES in the diagnosis of CNS infections and its utility in therapeutic decision-making. Results: SES had a clinical sensitivity of 57.4% and clinical specificity of 95.6%. Streptococcus pneumoniae and Pseudomonas aeruginosa were the top two bacterial pathogens, whereas Herpes simplex virus (HSV) was the most common viral pathogen. Polymicrobial infections were detected in 32.14% of SES-positive cases. SES elicited a change in the management in 30% of the patients from initial empiric therapy. At discharge, 51 patients recovered fully while 11 patients had partial recovery. Three-month follow-up showed only six patients to have neurological deficits. Conclusion: In a tertiary care center, etiological microbial diagnosis is central to appropriate therapy and outcomes. Sensitive and accurate multiplex molecular diagnostics play a critical role in not only identifying the causative pathogen but also in helping clinicians to institute appropriate therapy, reduce overuse of antimicrobials, and ensure superior clinical outcomes. PMID:27994358

  2. Retrospective analysis of multiplex polymerase chain reaction-based molecular diagnostics (SES) in 70 patients with suspected central nervous system infections: A single-center study.

    PubMed

    Ramalingam, Rama Krishnan Tiruppur Chinnappan; Chakraborty, Dipanjan

    2016-01-01

    Central nervous system (CNS) infections present a grave health care challenge due to high morbidity and mortality. Clinical findings and conventional laboratory assessments are not sufficiently distinct for specific etiologic diagnosis. Identification of pathogens is a key to appropriate therapy. In this retrospective observational study, we evaluated the efficacy and clinical utility of syndrome evaluation system (SES) for diagnosing clinically suspected CNS infections. This retrospective analysis included inpatients in our tertiary level neurointensive care unit (NICU) and ward from February 2010 to December 2013. Cerebrospinal fluid (CSF) samples of 70 patients, clinically suspected of having CNS infections, were subjected to routine laboratory tests, culture, imaging, and SES. We analyzed the efficacy of SES in the diagnosis of CNS infections and its utility in therapeutic decision-making. SES had a clinical sensitivity of 57.4% and clinical specificity of 95.6%. Streptococcus pneumoniae and Pseudomonas aeruginosa were the top two bacterial pathogens, whereas Herpes simplex virus (HSV) was the most common viral pathogen. Polymicrobial infections were detected in 32.14% of SES-positive cases. SES elicited a change in the management in 30% of the patients from initial empiric therapy. At discharge, 51 patients recovered fully while 11 patients had partial recovery. Three-month follow-up showed only six patients to have neurological deficits. In a tertiary care center, etiological microbial diagnosis is central to appropriate therapy and outcomes. Sensitive and accurate multiplex molecular diagnostics play a critical role in not only identifying the causative pathogen but also in helping clinicians to institute appropriate therapy, reduce overuse of antimicrobials, and ensure superior clinical outcomes.

  3. MiniX-STR multiplex system population study in Japan and application to degraded DNA analysis.

    PubMed

    Asamura, H; Sakai, H; Kobayashi, K; Ota, M; Fukushima, H

    2006-05-01

    We sought to evaluate a more effective system for analyzing X-chromosomal short tandem repeats (X-STRs) in highly degraded DNA. To generate smaller amplicon lengths, we designed new polymerase chain reaction (PCR) primers for DXS7423, DXS6789, DXS101, GATA31E08, DXS8378, DXS7133, DXS7424, and GATA165B12 at X-linked short tandem repeat (STR) loci, devising two miniX-multiplex PCR systems. Among 333 Japanese individuals, these X-linked loci were detected in amplification products ranging in length from 76 to 169 bp, and statistical analyses of the eight loci indicated a high usefulness for the Japanese forensic practice. Results of tests on highly degraded DNA indicated the miniX-STR multiplex strategies to be an effective system for analyzing degraded DNA. We conclude that analysis by the current miniX-STR multiplex systems offers high effectiveness for personal identification from degraded DNA samples.

  4. Mapping Multiplex Hubs in Human Functional Brain Networks

    PubMed Central

    De Domenico, Manlio; Sasai, Shuntaro; Arenas, Alex

    2016-01-01

    Typical brain networks consist of many peripheral regions and a few highly central ones, i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches. PMID:27471443

  5. Multiplex PCR-based identification of Streptococcus canis, Streptococcus zooepidemicus and Streptococcus dysgalactiae subspecies from dogs.

    PubMed

    Moriconi, M; Acke, E; Petrelli, D; Preziuso, S

    2017-02-01

    Streptococcus canis (S. canis), Streptococcus equi subspecies zooepidemicus (S. zooepidemicus) and Streptococcus dysgalactiae subspecies (S. dysgalactiae subspecies) are β-haemolytic Gram positive bacteria infecting animals and humans. S. canis and S. zooepidemicus are considered as two of the major zoonotic species of Streptococcus, while more research is needed on S. dysgalactiae subspecies bacteria. In this work, a multiplex-PCR protocol was tested on strains and clinical samples to detect S. canis, S. dysgalactiae subspecies and S. equi subspecies bacteria in dogs. All strains were correctly identified as S. canis, S. equi subspecies or S. dysgalactiae subspecies by the multiplex-PCR. The main Streptococcus species isolated from symptomatic dogs were confirmed S. canis. The multiplex-PCR protocol described is a rapid, accurate and efficient method for identifying S. canis, S. equi subspecies and S. dysgalactiae subspecies in dogs and could be used for diagnostic purposes and for epidemiological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Modular spectral imaging system for discrimination of pigments in cells and microbial communities.

    PubMed

    Polerecky, Lubos; Bissett, Andrew; Al-Najjar, Mohammad; Faerber, Paul; Osmers, Harald; Suci, Peter A; Stoodley, Paul; de Beer, Dirk

    2009-02-01

    Here we describe a spectral imaging system for minimally invasive identification, localization, and relative quantification of pigments in cells and microbial communities. The modularity of the system allows pigment detection on spatial scales ranging from the single-cell level to regions whose areas are several tens of square centimeters. For pigment identification in vivo absorption and/or autofluorescence spectra are used as the analytical signals. Along with the hardware, which is easy to transport and simple to assemble and allows rapid measurement, we describe newly developed software that allows highly sensitive and pigment-specific analyses of the hyperspectral data. We also propose and describe a number of applications of the system for microbial ecology, including identification of pigments in living cells and high-spatial-resolution imaging of pigments and the associated phototrophic groups in complex microbial communities, such as photosynthetic endolithic biofilms, microbial mats, and intertidal sediments. This system provides new possibilities for studying the role of spatial organization of microorganisms in the ecological functioning of complex benthic microbial communities or for noninvasively monitoring changes in the spatial organization and/or composition of a microbial community in response to changing environmental factors.

  7. Modular Spectral Imaging System for Discrimination of Pigments in Cells and Microbial Communities▿ †

    PubMed Central

    Polerecky, Lubos; Bissett, Andrew; Al-Najjar, Mohammad; Faerber, Paul; Osmers, Harald; Suci, Peter A.; Stoodley, Paul; de Beer, Dirk

    2009-01-01

    Here we describe a spectral imaging system for minimally invasive identification, localization, and relative quantification of pigments in cells and microbial communities. The modularity of the system allows pigment detection on spatial scales ranging from the single-cell level to regions whose areas are several tens of square centimeters. For pigment identification in vivo absorption and/or autofluorescence spectra are used as the analytical signals. Along with the hardware, which is easy to transport and simple to assemble and allows rapid measurement, we describe newly developed software that allows highly sensitive and pigment-specific analyses of the hyperspectral data. We also propose and describe a number of applications of the system for microbial ecology, including identification of pigments in living cells and high-spatial-resolution imaging of pigments and the associated phototrophic groups in complex microbial communities, such as photosynthetic endolithic biofilms, microbial mats, and intertidal sediments. This system provides new possibilities for studying the role of spatial organization of microorganisms in the ecological functioning of complex benthic microbial communities or for noninvasively monitoring changes in the spatial organization and/or composition of a microbial community in response to changing environmental factors. PMID:19074609

  8. Simultaneous detection of four garlic viruses by multiplex reverse transcription PCR and their distribution in Indian garlic accessions.

    PubMed

    Majumder, S; Baranwal, V K

    2014-06-01

    Indian garlic is infected with Onion yellow dwarf virus (OYDV), Shallot latent virus (SLV), Garlic common latent virus (GarCLV) and allexiviruses. Identity and distribution of garlic viruses in various garlic accessions from different geographical regions of India were investigated. OYDV and allexiviruses were observed in all the garlic accessions, while SLV and GarCLV were observed only in a few accessions. A multiplex reverse transcription (RT)-PCR method was developed for the simultaneous detection and identification of OYDV, SLV, GarCLV and Allexivirus infecting garlic accessions in India. This multiplex protocol standardized in this study will be useful in indexing of garlic viruses and production of virus free seed material. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Colour-barcoded magnetic microparticles for multiplexed bioassays.

    PubMed

    Lee, Howon; Kim, Junhoi; Kim, Hyoki; Kim, Jiyun; Kwon, Sunghoon

    2010-09-01

    Encoded particles have a demonstrated value for multiplexed high-throughput bioassays such as drug discovery and clinical diagnostics. In diverse samples, the ability to use a large number of distinct identification codes on assay particles is important to increase throughput. Proper handling schemes are also needed to readout these codes on free-floating probe microparticles. Here we create vivid, free-floating structural coloured particles with multi-axis rotational control using a colour-tunable magnetic material and a new printing method. Our colour-barcoded magnetic microparticles offer a coding capacity easily into the billions with distinct magnetic handling capabilities including active positioning for code readouts and active stirring for improved reaction kinetics in microscale environments. A DNA hybridization assay is done using the colour-barcoded magnetic microparticles to demonstrate multiplexing capabilities.

  10. Development and Validation of a Multiplex PCR for Detection of Scedosporium spp. in Respiratory Tract Specimens from Patients with Cystic Fibrosis▿

    PubMed Central

    Harun, Azian; Blyth, Christopher C.; Gilgado, Felix; Middleton, Peter; Chen, Sharon C.-A.; Meyer, Wieland

    2011-01-01

    The emergence of Scedosporium infections in diverse groups of individuals, which are often treatment refractory, warrants timely and accurate laboratory diagnosis. Species- or group-specific primers based on internal transcribed spacer (ITS) sequence polymorphisms were designed for Scedosporium aurantiacum, Scedosporium dehoogii, Scedosporium prolificans, Pseudallescheria boydii species complex (former clade 5)/Pseudallescheria apiosperma (formerly classified as S. apiospermum sensu lato) and Pseudallescheria minutispora. Primers for S. aurantiacum, S. prolificans, and P. boydii species complex/P. apiosperma were incorporated into a multiplex PCR assay for the detection and identification of the three major clinically important Scedosporium species and validated using sputum specimens collected from patients seen at a major Australian cystic fibrosis clinic. The multiplex PCR assay showed 100% specificity in identifying the three major clinically relevant Scedosporium species from pure culture. When evaluated using DNA extracts from sputa, sensitivity and specificity of the multiplex PCR assay were 62.1% and 97.2%, respectively. This highly species-specific multiplex PCR assay offers a rapid and simple method of detection of the most clinically important Scedosporium species in respiratory tract specimens. PMID:21325557

  11. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags

    PubMed Central

    Wee, Eugene J.H.; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research. PMID:27446486

  12. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags.

    PubMed

    Wee, Eugene J H; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research.

  13. Diversity of Salmonella isolates from central Florida surface waters.

    PubMed

    McEgan, Rachel; Chandler, Jeffrey C; Goodridge, Lawrence D; Danyluk, Michelle D

    2014-11-01

    Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608-3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:-. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella serotype. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Diversity of Salmonella Isolates from Central Florida Surface Waters

    PubMed Central

    McEgan, Rachel; Chandler, Jeffrey C.; Goodridge, Lawrence D.

    2014-01-01

    Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608–3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:−. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella serotype. PMID:25172861

  15. Matched spectral filter based on reflection holograms for analyte identification.

    PubMed

    Cao, Liangcai; Gu, Claire

    2009-12-20

    A matched spectral filter set that provides automatic preliminary analyte identification is proposed and analyzed. Each matched spectral filter in the set containing the multiple spectral peaks corresponding to the Raman spectrum of a substance is capable of collecting the specified spectrum into the detector simultaneously. The filter set is implemented by multiplexed volume holographic reflection gratings. The fabrication of a matched spectral filter in an Fe:LiNbO(3) crystal is demonstrated to match the Raman spectrum of the sample Rhodamine 6G (R6G). An interference alignment method is proposed and used in the fabrication to ensure that the multiplexed gratings are in the same direction at a high angular accuracy of 0.0025 degrees . Diffused recording beams are used to control the bandwidth of the spectral peaks. The reflection spectrum of the filter is characterized using a modified Raman spectrometer. The result of the filter's reflection spectrum matches that of the sample R6G. A library of such matched spectral filters will facilitate a fast detection with a higher sensitivity and provide a capability for preliminary molecule identification.

  16. A BOX-SCAR fragment for the identification of Actinobacillus pleuropneumoniae.

    PubMed

    Rossi, Ciro C; Pereira, Monalessa F; Langford, Paul R; Bazzolli, Denise M S

    2014-03-01

    Bacterial respiratory diseases are responsible for considerable mortality, morbidity and economic losses in the swine industry. Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is one of the most important disease agents, but its identification and surveillance can be impaired by the existence of many other related bacteria in normal swine microbiota. In this work, we have evaluated a BOX-A1R-based repetitive extragenic palindromic-PCR (BOX-PCR) sequence characterised amplified region (SCAR) marker for the specific identification of A. pleuropneumoniae and its use in a multiplex PCR to detect additionally Haemophilus parasuis and Pasteurella multocida, two other major respiratory pathogens of pigs that are members of the family Pasteurellaceae. PCRs based on the BOX-SCAR fragment developed were rapid, sensitive and differentiated A. pleuropneumoniae from all swine-related members of the Pasteurellaceae family tested. Single and multiplex BOX-SCAR fragment-based PCRs can be used to identify A. pleuropneumoniae from other bacterial swine pathogens and will be useful in surveillance and epidemiological studies. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Discrimination between E. granulosus sensu stricto, E. multilocularis and E. shiquicus Using a Multiplex PCR Assay

    PubMed Central

    Li, Li; Yan, Hong-Bin; Blair, David; Lei, Meng-Tong; Cai, Jin-Zhong; Fan, Yan-Lei; Li, Jian-Qiu; Fu, Bao-Quan; Yang, Yu-Rong; McManus, Donald P.; Jia, Wan-Zhong

    2015-01-01

    Background Infections of Echinococcus granulosus sensu stricto (s.s), E. multilocularis and E. shiquicus are commonly found co-endemic on the Qinghai-Tibet plateau, China, and an efficient tool is needed to facilitate the detection of infected hosts and for species identification. Methodology/Principal Findings A single-tube multiplex PCR assay was established to differentiate the Echinococcus species responsible for infections in intermediate and definitive hosts. Primers specific for E. granulosus, E. multilocularis and E. shiquicus were designed based on sequences of the mitochondrial NADH dehydrogenase subunit 1 (nad1), NADH dehydrogenase subunit 5 (nad5) and cytochrome c oxidase subunit 1 (cox1) genes, respectively. This multiplex PCR accurately detected Echinococcus DNA without generating nonspecific reaction products. PCR products were of the expected sizes of 219 (nad1), 584 (nad5) and 471 (cox1) bp. Furthermore, the multiplex PCR enabled diagnosis of multiple infections using DNA of protoscoleces and copro-DNA extracted from fecal samples of canine hosts. Specificity of the multiplex PCR was 100% when evaluated using DNA isolated from other cestodes. Sensitivity thresholds were determined for DNA from protoscoleces and from worm eggs, and were calculated as 20 pg of DNA for E. granulosus and E. shiquicus, 10 pg of DNA for E. multilocularis, 2 eggs for E. granulosus, and 1 egg for E. multilocularis. Positive results with copro-DNA could be obtained at day 17 and day 26 after experimental infection of dogs with larval E. multilocularis and E. granulosus, respectively. Conclusions/Significance The multiplex PCR developed in this study is an efficient tool for discriminating E. granulosus, E. multilocularis and E. shiquicus from each other and from other taeniid cestodes. It can be used for the detection of canids infected with E. granulosus s.s. and E. multilocularis using feces collected from these definitive hosts. It can also be used for the identification of the Echinococcus metacestode larva in intermediate hosts, a stage that often cannot be identified to species on visual inspection. PMID:26393793

  18. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis

    PubMed Central

    Singhal, Neelja; Kumar, Manish; Kanaujia, Pawan K.; Virdi, Jugsharan S.

    2015-01-01

    Currently microorganisms are best identified using 16S rRNA and 18S rRNA gene sequencing. However, in recent years matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a potential tool for microbial identification and diagnosis. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. The technology has been readily imbibed by microbiologists who have reported usage of MALDI-TOF MS for a number of purposes like, microbial identification and strain typing, epidemiological studies, detection of biological warfare agents, detection of water- and food-borne pathogens, detection of antibiotic resistance and detection of blood and urinary tract pathogens etc. The limitation of the technology is that identification of new isolates is possible only if the spectral database contains peptide mass fingerprints of the type strains of specific genera/species/subspecies/strains. This review provides an overview of the status and recent applications of mass spectrometry for microbial identification. It also explores the usefulness of this exciting new technology for diagnosis of diseases caused by bacteria, viruses, and fungi. PMID:26300860

  19. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis.

    PubMed

    Singhal, Neelja; Kumar, Manish; Kanaujia, Pawan K; Virdi, Jugsharan S

    2015-01-01

    Currently microorganisms are best identified using 16S rRNA and 18S rRNA gene sequencing. However, in recent years matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a potential tool for microbial identification and diagnosis. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. The technology has been readily imbibed by microbiologists who have reported usage of MALDI-TOF MS for a number of purposes like, microbial identification and strain typing, epidemiological studies, detection of biological warfare agents, detection of water- and food-borne pathogens, detection of antibiotic resistance and detection of blood and urinary tract pathogens etc. The limitation of the technology is that identification of new isolates is possible only if the spectral database contains peptide mass fingerprints of the type strains of specific genera/species/subspecies/strains. This review provides an overview of the status and recent applications of mass spectrometry for microbial identification. It also explores the usefulness of this exciting new technology for diagnosis of diseases caused by bacteria, viruses, and fungi.

  20. DNA Differential Diagnosis of Taeniasis and Cysticercosis by Multiplex PCR

    PubMed Central

    Yamasaki, Hiroshi; Allan, James C.; Sato, Marcello Otake; Nakao, Minoru; Sako, Yasuhito; Nakaya, Kazuhiro; Qiu, Dongchuan; Mamuti, Wulamu; Craig, Philip S.; Ito, Akira

    2004-01-01

    Multiplex PCR was established for differential diagnosis of taeniasis and cysticercosis, including their causative agents. For identification of the parasites, multiplex PCR with cytochrome c oxidase subunit 1 gene yielded evident differential products unique for Taenia saginata and Taenia asiatica and for American/African and Asian genotypes of Taenia solium with molecular sizes of 827, 269, 720, and 984 bp, respectively. In the PCR-based detection of tapeworm carriers using fecal samples, the diagnostic markers were detected from 7 of 14 and 4 of 9 T. solium carriers from Guatemala and Indonesia, respectively. Test sensitivity may have been reduced by the length of time (up to 12 years) that samples were stored and/or small sample volumes (ca. 30 to 50 mg). However, the diagnostic markers were detected by nested PCR in five worm carriers from Guatemalan cases that were found to be negative by multiplex PCR. It was noteworthy that a 720 bp-diagnostic marker was detected from a T. solium carrier who was egg-free, implying that it is possible to detect worm carriers and treat before mature gravid proglottids are discharged. In contrast to T. solium carriers, 827-bp markers were detected by multiplex PCR in all T. saginata carriers. The application of the multiplex PCR would be useful not only for surveillance of taeniasis and cysticercosis control but also for the molecular epidemiological survey of these cestode infections. PMID:14766815

  1. Multiplex polymerase chain reaction-capillary gel electrophoresis: a promising tool for GMO screening--assay for simultaneous detection of five genetically modified cotton events and species.

    PubMed

    Nadal, Anna; Esteve, Teresa; Pla, Maria

    2009-01-01

    A multiplex polymerase chain reaction assay coupled to capillary gel electrophoresis for amplicon identification by size and color (multiplex PCR-CGE-SC) was developed for simultaneous detection of cotton species and 5 events of genetically modified (GM) cotton. Validated real-time-PCR reactions targeting Bollgard, Bollgard II, Roundup Ready, 3006-210-23, and 281-24-236 junction sequences, and the cotton reference gene acp1 were adapted to detect more than half of the European Union-approved individual or stacked GM cotton events in one reaction. The assay was fully specific (<1.7% of false classification rate), with limit of detection values of 0.1% for each event, which were also achieved with simulated mixtures at different relative percentages of targets. The assay was further combined with a second multiplex PCR-CGE-SC assay to allow simultaneous detection of 6 cotton and 5 maize targets (two endogenous genes and 9 GM events) in two multiplex PCRs and a single CGE, making the approach more economic. Besides allowing simultaneous detection of many targets with adequate specificity and sensitivity, the multiplex PCR-CGE-SC approach has high throughput and automation capabilities, while keeping a very simple protocol, e.g., amplification and labeling in one step. Thus, it is an easy and inexpensive tool for initial screening, to be complemented with quantitative assays if necessary.

  2. Ultrasensitive multiplex optical quantification of bacteria in large samples of biofluids

    PubMed Central

    Pazos-Perez, Nicolas; Pazos, Elena; Catala, Carme; Mir-Simon, Bernat; Gómez-de Pedro, Sara; Sagales, Juan; Villanueva, Carlos; Vila, Jordi; Soriano, Alex; García de Abajo, F. Javier; Alvarez-Puebla, Ramon A.

    2016-01-01

    Efficient treatments in bacterial infections require the fast and accurate recognition of pathogens, with concentrations as low as one per milliliter in the case of septicemia. Detecting and quantifying bacteria in such low concentrations is challenging and typically demands cultures of large samples of blood (~1 milliliter) extending over 24–72 hours. This delay seriously compromises the health of patients. Here we demonstrate a fast microorganism optical detection system for the exhaustive identification and quantification of pathogens in volumes of biofluids with clinical relevance (~1 milliliter) in minutes. We drive each type of bacteria to accumulate antibody functionalized SERS-labelled silver nanoparticles. Particle aggregation on the bacteria membranes renders dense arrays of inter-particle gaps in which the Raman signal is exponentially amplified by several orders of magnitude relative to the dispersed particles. This enables a multiplex identification of the microorganisms through the molecule-specific spectral fingerprints. PMID:27364357

  3. Development of a novel hexa-plex PCR method for identification and serotyping of Salmonella species.

    PubMed

    Li, Ruichao; Wang, Yang; Shen, Jianzhong; Wu, Congming

    2014-01-01

    Salmonella is one of the most important foodborne pathogens, which causes a huge economic burden worldwide. To detect Salmonella rapidly is very meaningful in preventing salmonellosis and decreasing economic losses. Currently, isolation of Salmonella is confirmed by biochemical and serobased serotyping methods, which are time consuming, labor intensive, and complicated. To solve this problem, a hexa-plex polymerase chain reaction (PCR) method was developed using comparative genomics analysis and multiplex PCR technology to detect Salmonella and Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Agona, Salmonella Choleraesuis, and Salmonella Pullorum simultaneously. The accuracy of this method was tested by a collection of 142 Salmonella. Furthermore, the strategy described in this article to mine serovar-specific fragments for Salmonella could be used to find specific fragments for other Salmonella serotypes and bacteria. The combination of this strategy and multiplex PCR is promising in the rapid identification of foodborne pathogens.

  4. Modified multiplex PCR for identification of Bacillus Calmette-Guérin substrain Tokyo among clinical isolates.

    PubMed

    Seki, Masaaki; Sato, Akimasa; Honda, Ikuro; Yamazaki, Toshio; Yano, Ikuya; Koyama, Akira; Toida, Ichiro

    2005-05-02

    When an adverse reaction occurs and a mycobacterial species is isolated from a person vaccinated with Bacillus Calmette-Guérin (BCG) or a patient receiving BCG immunotherapy, it is essential to identify whether the isolate is BCG or another mycobacterial species. However, differentiation of BCG from other members of Mycobacterium tuberculosis complex has been very difficult. Using several specific primer-pairs, Bedwell et al. [Bedwell J, Kairo SK, Behr MA, Bygraves JA. Identification of substrains of BCG vaccine using multiplex PCR. Vaccine 2001; 19: 2146-51] recently reported that they could distinguish BCG substrains. We modified their method to improve differentiation of Tokyo 172 from other members of the M. tuberculosis complex, and examined whether this modified method could be applied to clinical isolates. Our method clearly identified BCG substrain (BCG Tokyo 172) among clinical isolates and easily distinguished between M. tuberculosis and wild-type Mycobacterium bovis.

  5. Performance of Kiestra Total Laboratory Automation Combined with MS in Clinical Microbiology Practice

    PubMed Central

    Hodiamont, Caspar J.; de Jong, Menno D.; Overmeijer, Hendri P. J.; van den Boogaard, Mandy; Visser, Caroline E.

    2014-01-01

    Background Microbiological laboratories seek technologically innovative solutions to cope with large numbers of samples and limited personnel and financial resources. One platform that has recently become available is the Kiestra Total Laboratory Automation (TLA) system (BD Kiestra B.V., the Netherlands). This fully automated sample processing system, equipped with digital imaging technology, allows superior detection of microbial growth. Combining this approach with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) (Bruker Daltonik, Germany) is expected to enable more rapid identification of pathogens. Methods Early growth detection by digital imaging using Kiestra TLA combined with MS was compared to conventional methods (CM) of detection. Accuracy and time taken for microbial identification were evaluated for the two methods in 219 clinical blood culture isolates. The possible clinical impact of earlier microbial identification was assessed according to antibiotic treatment prescription. Results Pathogen identification using Kiestra TLA combined with MS resulted in a 30.6 hr time gain per isolate compared to CM. Pathogens were successfully identified in 98.4% (249/253) of all tested isolates. Early microbial identification without susceptibility testing led to an adjustment of antibiotic regimen in 12% (24/200) of patients. Conclusions The requisite 24 hr incubation time for microbial pathogens to reach sufficient growth for susceptibility testing and identification would be shortened by the implementation of Kiestra TLA in combination with MS, compared to the use of CM. Not only can this method optimize workflow and reduce costs, but it can allow potentially life-saving switches in antibiotic regimen to be initiated sooner. PMID:24624346

  6. Molecular identification of common Salmonella serovars using multiplex DNA sensor-based suspension array.

    PubMed

    Aydin, Muhsin; Carter-Conger, Jacqueline; Gao, Ning; Gilmore, David F; Ricke, Steven C; Ahn, Soohyoun

    2018-04-01

    Salmonella is one of major foodborne pathogens and the leading cause of foodborne illness-related hospitalizations and deaths. It is critical to develop a sensitive and rapid detection assay that can identify Salmonella to ensure food safety. In this study, a DNA sensor-based suspension array system of high multiplexing ability was developed to identify eight Salmonella serovars commonly associated with foodborne outbreaks to the serotype level. Each DNA sensor was prepared by activating pre-encoded microspheres with oligonucleotide probes that are targeting virulence genes and serovar-specific regions. The mixture of 12 different types of DNA sensors were loaded into a 96-well microplate and used as a 12-plex DNA sensor array platform. DNA isolated from Salmonella was amplified by multiplex polymerase chain reaction (mPCR), and the presence of Salmonella was determined by reading fluorescent signals from hybridization between probes on DNA sensors and fluorescently labeled target DNA using the Bio-Plex® system. The developed multiplex array was able to detect synthetic DNA at the concentration as low as 100 fM and various Salmonella serovars as low as 100 CFU/mL within 1 h post-PCR. Sensitivity of this assay was further improved to 1 CFU/mL with 6-h enrichment. The array system also correctly and specifically identified serotype of tested Salmonella strains without any cross-reactivity with other common foodborne pathogens. Our results indicate the developed DNA sensor suspension array can be a rapid and reliable high-throughput method for simultaneous detection and molecular identification of common Salmonella serotypes.

  7. Rapid Multiplex Assay for Serotyping Pneumococci with Monoclonal and Polyclonal Antibodies

    PubMed Central

    Yu, Jigui; Lin, Jisheng; Benjamin, William H.; Waites, Ken B.; Lee, Che-hung; Nahm, Moon H.

    2005-01-01

    We have developed and characterized a rapid semiautomated pneumococcal serotyping system incorporating a pneumococcal lysate preparation protocol and a multiplex serotyping assay. The lysate preparation incorporates a bile solubility test to confirm pneumococcal identification that also enhances assay specificity. The multiplex serotyping assay consists of 24 assays specific for 36 serotypes: serotypes 1, 2, 3, 4, 5, 6A, 6B, 7A/7F, 8, 9L/9N, 9V, 10A/10B/39/(33C), 11A/11D/11F, 12A/12B/12F, 14, 15B/(15C), 17F, 18C, 19A, 19F, 20, 22A/22F, 23F, and 33A/33F. The multiplex assay requires a flow cytometer, two sets of latex particles coated with pneumococcal polysaccharides, and serotype-specific antibodies. Fourteen newly developed monoclonal antibodies specific for common serotypes and a pool of polyclonal rabbit sera for some of the less-common serotypes are used. The two monoclonal antibodies specific for serotypes 18C and 23F recognize serotype-specific epitopes that have not been previously described. These monoclonal antibodies make the identification of the 14 common serotypes invariant. The specificity of the serotyping assay is fully characterized with pneumococci of all known (i.e., 90) serotypes. The assay is sensitive enough to use bacterial lysates diluted 20 fold. Our serotyping system can identify not only all the serotypes in pneumococcal vaccines but also most (>90%) of clinical isolates. This system should be very useful in serotyping clinical isolates for evaluating pneumococcal vaccine efficacy. PMID:15634965

  8. Pyrosequencing for Microbial Identification and Characterization

    PubMed Central

    Cummings, Patrick J.; Ahmed, Ray; Durocher, Jeffrey A.; Jessen, Adam; Vardi, Tamar; Obom, Kristina M.

    2013-01-01

    Pyrosequencing is a versatile technique that facilitates microbial genome sequencing that can be used to identify bacterial species, discriminate bacterial strains and detect genetic mutations that confer resistance to anti-microbial agents. The advantages of pyrosequencing for microbiology applications include rapid and reliable high-throughput screening and accurate identification of microbes and microbial genome mutations. Pyrosequencing involves sequencing of DNA by synthesizing the complementary strand a single base at a time, while determining the specific nucleotide being incorporated during the synthesis reaction. The reaction occurs on immobilized single stranded template DNA where the four deoxyribonucleotides (dNTP) are added sequentially and the unincorporated dNTPs are enzymatically degraded before addition of the next dNTP to the synthesis reaction. Detection of the specific base incorporated into the template is monitored by generation of chemiluminescent signals. The order of dNTPs that produce the chemiluminescent signals determines the DNA sequence of the template. The real-time sequencing capability of pyrosequencing technology enables rapid microbial identification in a single assay. In addition, the pyrosequencing instrument, can analyze the full genetic diversity of anti-microbial drug resistance, including typing of SNPs, point mutations, insertions, and deletions, as well as quantification of multiple gene copies that may occur in some anti-microbial resistance patterns. PMID:23995536

  9. Pyrosequencing for microbial identification and characterization.

    PubMed

    Cummings, Patrick J; Ahmed, Ray; Durocher, Jeffrey A; Jessen, Adam; Vardi, Tamar; Obom, Kristina M

    2013-08-22

    Pyrosequencing is a versatile technique that facilitates microbial genome sequencing that can be used to identify bacterial species, discriminate bacterial strains and detect genetic mutations that confer resistance to anti-microbial agents. The advantages of pyrosequencing for microbiology applications include rapid and reliable high-throughput screening and accurate identification of microbes and microbial genome mutations. Pyrosequencing involves sequencing of DNA by synthesizing the complementary strand a single base at a time, while determining the specific nucleotide being incorporated during the synthesis reaction. The reaction occurs on immobilized single stranded template DNA where the four deoxyribonucleotides (dNTP) are added sequentially and the unincorporated dNTPs are enzymatically degraded before addition of the next dNTP to the synthesis reaction. Detection of the specific base incorporated into the template is monitored by generation of chemiluminescent signals. The order of dNTPs that produce the chemiluminescent signals determines the DNA sequence of the template. The real-time sequencing capability of pyrosequencing technology enables rapid microbial identification in a single assay. In addition, the pyrosequencing instrument, can analyze the full genetic diversity of anti-microbial drug resistance, including typing of SNPs, point mutations, insertions, and deletions, as well as quantification of multiple gene copies that may occur in some anti-microbial resistance patterns.

  10. Microbial Diversity Aboard Spacecraft: Evaluation of the International Space Station

    NASA Technical Reports Server (NTRS)

    Castro, Victoria A.; Thrasher, Adrianna N.; Healy, Mimi; Ott, C. Mark; Pierson, Duane L.

    2003-01-01

    An evaluation of the microbial flora from air, water, and surface samples provided a baseline of microbial diversity onboard the International Space Station (ISS) to gain insight into bacterial and fungal contamination during the initial stages of construction and habitation. Using 16S genetic sequencing and rep-PeR, 63 bacterial strains were isolated for identification and fingerprinted for microbial tracking. The use of these molecular tools allowed for the identification of bacteria not previously identified using automated biochemical analysis and provided a clear indication of the source of several ISS contaminants. Fungal and bacterial data acquired during monitoring do not suggest there is a current microbial hazard to the spacecraft, nor does any trend indicate a potential health risk. Previous spacecraft environmental analysis indicated that microbial contamination will increase with time and require continued surveillance.

  11. Development of an ELISA microarray assay for the sensitive and simultaneous detection of ten biodefense toxins.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenko, Kathryn; Zhang, Yanfeng; Kostenko, Yulia

    Plant and microbial toxins are considered bioterrorism threat agents because of their extreme toxicity and/or ease of availability. Additionally, some of these toxins are increasingly responsible for accidental food poisonings. The current study utilized an ELISA-based protein antibody microarray for the multiplexed detection of ten biothreat toxins, botulinum neurotoxins (BoNT) A, B, C, D, E, F, ricin, shiga toxins 1 and 2 (Stx), and staphylococcus enterotoxin B (SEB), in buffer and complex biological matrices. The multiplexed assay displayed a sensitivity of 1.3 pg/mL (BoNT/A, BoNT/B, SEB, Stx-1 and Stx-2), 3.3 pg/mL (BoNT/C, BoNT/E, BoNT/F) and 8.2 pg/mL (BoNT/D, ricin). Allmore » assays demonstrated high accuracy (75-120 percent recovery) and reproducibility (most coefficients of variation < 20%). Quantification curves for the ten toxins were also evaluated in clinical samples (serum, plasma, nasal fluid, saliva, stool, and urine) and environmental samples (apple juice, milk and baby food) with overall minimal matrix effects. The multiplex assays were highly specific, with little crossreactivity observed between the selected toxin antibodies. The results demonstrate a multiplex microarray that improves current immunoassay sensitivity for biological warfare agents in buffer, clinical, and environmental samples.« less

  12. Targeted sequencing of clade-specific markers from skin microbiomes for forensic human identification.

    PubMed

    Schmedes, Sarah E; Woerner, August E; Novroski, Nicole M M; Wendt, Frank R; King, Jonathan L; Stephens, Kathryn M; Budowle, Bruce

    2018-01-01

    The human skin microbiome is comprised of diverse communities of bacterial, eukaryotic, and viral taxa and contributes millions of additional genes to the repertoire of human genes, affecting human metabolism and immune response. Numerous genetic and environmental factors influence the microbiome composition and as such contribute to individual-specific microbial signatures which may be exploited for forensic applications. Previous studies have demonstrated the potential to associate skin microbial profiles collected from touched items to their individual owner, mainly using unsupervised methods from samples collected over short time intervals. Those studies utilize either targeted 16S rRNA or shotgun metagenomic sequencing to characterize skin microbiomes; however, these approaches have limited species and strain resolution and susceptibility to stochastic effects, respectively. Clade-specific markers from the skin microbiome, using supervised learning, can predict individual identity using skin microbiomes from their respective donors with high accuracy. In this study the hidSkinPlex is presented, a novel targeted sequencing method using skin microbiome markers developed for human identification. The hidSkinPlex (comprised of 286 bacterial (and phage) family-, genus-, species-, and subspecies-level markers), initially was evaluated on three bacterial control samples represented in the panel (i.e., Propionibacterium acnes, Propionibacterium granulosum, and Rothia dentocariosa) to assess the performance of the multiplex. The hidSkinPlex was further evaluated for prediction purposes. The hidSkinPlex markers were used to attribute skin microbiomes collected from eight individuals from three body sites (i.e., foot (Fb), hand (Hp) and manubrium (Mb)) to their host donor. Supervised learning, specifically regularized multinomial logistic regression and 1-nearest-neighbor classification were used to classify skin microbiomes to their hosts with up to 92% (Fb), 96% (Mb), and 100% (Hp) accuracy. All samples (n=72) regardless of body site origin were correctly classified with up to 94% accuracy, and body site origin could be predicted with up to 86% accuracy. Finally, human short tandem repeat and single-nucleotide polymorphism profiles were generated from skin swab extracts from a single subject to highlight the potential to use microbiome profiling in conjunction with low-biomass samples. The hidSkinPlex is a novel targeted enrichment approach to profile skin microbiomes for human forensic identification purposes and provides a method to further characterize the utility of skin microflora for human identification in future studies, such as the stability and diversity of the personal skin microbiome. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Multiplex hydrolysis probe real-time PCR for simultaneous detection of hepatitis A virus and hepatitis E virus.

    PubMed

    Qiu, Feng; Cao, Jingyuan; Su, Qiudong; Yi, Yao; Bi, Shengli

    2014-05-30

    Detection of hepatitis viral infections has traditionally relied on the circulating antibody test using the enzyme-linked immunosorbent assay. However, multiplex real-time PCR has been increasingly used for a variety of viral nucleic acid detections and has proven to be superior to traditional methods. Hepatitis A virus (HAV) and hepatitis E virus (HEV) are the major causes of acute hepatitis worldwide; both HAV and HEV infection are a main public health problem. In the present study, a one-step multiplex reverse transcriptase quantitative polymerase chain reaction assay using hydrolysis probes was developed for simultaneously detecting HAV and HEV. This novel detection system proved specific to the target viruses, to be highly sensitive and to be applicable to clinical sera samples, making it useful for rapid, accurate and feasible identification of HAV and HEV.

  14. Pyrosequencing of Bacterial Symbionts within Axinella corrugata Sponges: Diversity and Seasonal Variability

    PubMed Central

    White, James R.; Patel, Jignasa; Ottesen, Andrea; Arce, Gabriela; Blackwelder, Patricia; Lopez, Jose V.

    2012-01-01

    Background Marine sponge species are of significant interest to many scientific fields including marine ecology, conservation biology, genetics, host-microbe symbiosis and pharmacology. One of the most intriguing aspects of the sponge “holobiont” system is the unique physiology, interaction with microbes from the marine environment and the development of a complex commensal microbial community. However, intraspecific variability and temporal stability of sponge-associated bacterial symbionts remain relatively unknown. Methodology/Principal Findings We have characterized the bacterial symbiont community biodiversity of seven different individuals of the Caribbean reef sponge Axinella corrugata, from two different Florida reef locations during variable seasons using multiplex 454 pyrosequencing of 16 S rRNA amplicons. Over 265,512 high-quality 16 S rRNA sequences were generated and analyzed. Utilizing versatile bioinformatics methods and analytical software such as the QIIME and CloVR packages, we have identified 9,444 distinct bacterial operational taxonomic units (OTUs). Approximately 65,550 rRNA sequences (24%) could not be matched to bacteria at the class level, and may therefore represent novel taxa. Differentially abundant classes between seasonal Axinella communities included Gammaproteobacteria, Flavobacteria, Alphaproteobacteria, Cyanobacteria, Acidobacter and Nitrospira. Comparisons with a proximal outgroup sponge species (Amphimedon compressa), and the growing sponge symbiont literature, indicate that this study has identified approximately 330 A. corrugata-specific symbiotic OTUs, many of which are related to the sulfur-oxidizing Ectothiorhodospiraceae. This family appeared exclusively within A. corrugata, comprising >34.5% of all sequenced amplicons. Other A. corrugata symbionts such as Deltaproteobacteria, Bdellovibrio, and Thiocystis among many others are described. Conclusions/Significance Slight shifts in several bacterial taxa were observed between communities sampled during spring and fall seasons. New 16 S rDNA sequences and concomitant identifications greatly expand the microbial community profile for this model reef sponge, and will likely be useful as a baseline for any future comparisons regarding sponge microbial community dynamics. PMID:22701613

  15. Multiplex polymerase chain reaction for identification of Escherichia coli, Escherichia albertii and Escherichia fergusonii.

    PubMed

    Lindsey, Rebecca L; Garcia-Toledo, L; Fasulo, D; Gladney, L M; Strockbine, N

    2017-09-01

    Escherichia coli, Escherichia albertii, and Escherichia fergusonii are closely related bacteria that can cause illness in humans, such as bacteremia, urinary tract infections and diarrhea. Current identification strategies for these three species vary in complexity and typically rely on the use of multiple phenotypic and genetic tests. To facilitate their rapid identification, we developed a multiplex PCR assay targeting conserved, species-specific genes. We used the Daydreamer™ (Pattern Genomics, USA) software platform to concurrently analyze whole genome sequence assemblies (WGS) from 150 Enterobacteriaceae genomes (107 E. coli, 5 Shigella spp., 21 E. albertii, 12 E. fergusonii and 5 other species) and design primers for the following species-specific regions: a 212bp region of the cyclic di-GMP regulator gene (cdgR, AW869_22935 from genome K-12 MG1655, CP014225) for E. coli/Shigella; a 393bp region of the DNA-binding transcriptional activator of cysteine biosynthesis gene (EAKF1_ch4033 from genome KF1, CP007025) for E. albertii; and a 575bp region of the palmitoleoyl-acyl carrier protein (ACP)-dependent acyltransferase (EFER_0790 from genome ATCC 35469, CU928158) for E. fergusonii. We incorporated the species-specific primers into a conventional multiplex PCR assay and assessed its performance with a collection of 97 Enterobacteriaceae strains. The assay was 100% sensitive and specific for detecting the expected species and offers a quick and accurate strategy for identifying E. coli, E. albertii, and E. fergusonii in either a single reaction or by in silico PCR with sequence assemblies. Published by Elsevier B.V.

  16. Multiplex PCR Assay for Identification of Six Different Staphylococcus spp. and Simultaneous Detection of Methicillin and Mupirocin Resistance

    PubMed Central

    Campos-Peña, E.; Martín-Nuñez, E.; Pulido-Reyes, G.; Martín-Padrón, J.; Caro-Carrillo, E.; Donate-Correa, J.; Lorenzo-Castrillejo, I.; Alcoba-Flórez, J.; Machín, F.

    2014-01-01

    We describe a new, efficient, sensitive, and fast single-tube multiple-PCR protocol for the identification of the most clinically significant Staphylococcus spp. and the simultaneous detection of the methicillin and mupirocin resistance loci. The protocol identifies at the species level isolates belonging to S. aureus, S. epidermidis, S. haemolyticus, S. hominis, S. lugdunensis, and S. saprophyticus. PMID:24829244

  17. Multiplex PCR for four Sclerotinia species

    USDA-ARS?s Scientific Manuscript database

    Sclerotinia homeocarpa, S. minor, S. sclerotiorum, and S. trifoliorum are common species within the genus Sclerotinia, where the morphological identification is challenging, especially when one crop hosts multiple species. The objective of this study was to design species specific primers compatibl...

  18. Randomized controlled clinical trial evaluating multiplex polymerase chain reaction for pathogen identification and therapy adaptation in critical care patients with pulmonary or abdominal sepsis.

    PubMed

    Tafelski, Sascha; Nachtigall, Irit; Adam, Thomas; Bereswill, Stefan; Faust, Jana; Tamarkin, Andrey; Trefzer, Tanja; Deja, Maria; Idelevich, Evgeny A; Wernecke, Klaus-Dieter; Becker, Karsten; Spies, Claudia

    2015-06-01

    To determine whether a multiplex polymerase chain reaction (PCR)-based test could reduce the time required for initial pathogen identification in patients in an intensive care unit (ICU) setting. This double-blind, parallel-group randomized controlled trial** enrolled adults with suspected pulmonary or abdominal sepsis caused by an unknown pathogen. Both the intervention and control groups underwent the standard blood culture (BC) testing, but additional pathogen identification, based on the results of a LightCycler® SeptiFast PCR test, were provided in the intervention group. The study enrolled 37 patients in the control group and 41 in the intervention group. Baseline clinical and demographic characteristics were similar in both groups. The PCR-based test identified a pathogen in 10 out of 41 (24.4%) patients in the intervention group, with a mean duration from sampling to providing the information to the ICU of 15.9 h. In the control group, BC results were available after a significantly longer period (38.1 h). The LightCycler® SeptiFast PCR test demonstrated a significant reduction in the time required for initial pathogen identification, compared with standard BC. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  19. Identification of species by multiplex analysis of variable-length sequences

    PubMed Central

    Pereira, Filipe; Carneiro, João; Matthiesen, Rune; van Asch, Barbara; Pinto, Nádia; Gusmão, Leonor; Amorim, António

    2010-01-01

    The quest for a universal and efficient method of identifying species has been a longstanding challenge in biology. Here, we show that accurate identification of species in all domains of life can be accomplished by multiplex analysis of variable-length sequences containing multiple insertion/deletion variants. The new method, called SPInDel, is able to discriminate 93.3% of eukaryotic species from 18 taxonomic groups. We also demonstrate that the identification of prokaryotic and viral species with numeric profiles of fragment lengths is generally straightforward. A computational platform is presented to facilitate the planning of projects and includes a large data set with nearly 1800 numeric profiles for species in all domains of life (1556 for eukaryotes, 105 for prokaryotes and 130 for viruses). Finally, a SPInDel profiling kit for discrimination of 10 mammalian species was successfully validated on highly processed food products with species mixtures and proved to be easily adaptable to multiple screening procedures routinely used in molecular biology laboratories. These results suggest that SPInDel is a reliable and cost-effective method for broad-spectrum species identification that is appropriate for use in suboptimal samples and is amenable to different high-throughput genotyping platforms without the need for DNA sequencing. PMID:20923781

  20. Simple Identification of Human Taenia Species by Multiplex Loop-Mediated Isothermal Amplification in Combination with Dot Enzyme-Linked Immunosorbent Assay.

    PubMed

    Nkouawa, Agathe; Sako, Yasuhito; Okamoto, Munehiro; Ito, Akira

    2016-06-01

    For differential detection of Taenia solium, Taenia saginata, and Taenia asiatica, loop-mediated isothermal amplification (LAMP) assay targeting the cytochrome c oxidase subunit 1 gene has been recently developed and shown to be sensitive, specific, and effective. However, to achieve differential identification, one specimen requires three reaction mixtures containing a primer set of each Taenia species separately, which is complex and time consuming and increases the risk of cross-contamination. In this study, we developed a simple differential identification of human Taenia species using multiplex LAMP (mLAMP) in combination with dot enzyme-linked immunosorbent assay (dot-ELISA). Forward inner primers of T. solium, T. saginata, and T. asiatica labeled with fluorescein isothiocyanate (FITC), digoxigenin (DIG), and tetramethylrhodamine (TAMRA), respectively, and biotin-labeled backward inner primers were used in mLAMP. The mLAMP assay succeeded in specific amplification of each respective target gene in a single tube. Furthermore, the mLAMP product from each species was easily distinguished by dot-ELISA with an antibody specific for FITC, DIG, or TAMRA. The mLAMP assay in combination with dot-ELISA will make identification of human Taenia species simpler, easier, and more practical. © The American Society of Tropical Medicine and Hygiene.

  1. A multiplex PCR for detection of six viruses in ducks.

    PubMed

    Wang, Yongjuan; Zhu, Shanyuan; Hong, Weiming; Wang, Anping; Zuo, Weiyong

    2017-10-01

    In this study, six pairs of specific primers that can amplify DNA fragments of different sizes were designed and synthesized according to viral protein gene sequences published in GenBank. Then, a multiplex PCR method was established for rapid detection of duck hepatitis virus 1, duck plague virus, duck Tembusu virus, muscovy duck parvovirus, muscovy duck reovirus, and duck H9N2 avian influenza virus, and achieve simple and rapid detection of viral diseases in ducks. Single PCR was used to confirm primer specificity, and PCR conditions were optimized to construct a multiplex PCR system. Specificity and sensitivity assays were also developed. The multiplex PCR was used to detect duck embryos infected with mixed viruses and those with clinically suspected diseases to verify the feasibility of the multiplex PCR. Results show that the primers can specifically amplify target fragments, without any cross-amplification with other viruses. The multiplex PCR system can amplify six DNA fragments from the pooled viral genomes and specifically detect nucleic acids of the six duck susceptible viruses when the template amount is 10 2 copies/μl. In addition, the system can be used to detect viral nucleic acids in duck embryos infected with the six common viruses. The detection results for clinical samples are consistent with those detected by single PCR. Therefore, the established multiplex PCR method can perform specific, sensitive, and high-throughput detection of six duck-infecting viruses and can be applied to clinical identification and diagnosis of viral infection in ducks. Copyright © 2017. Published by Elsevier B.V.

  2. Evaluation of the Light-Cycler® SeptiFast Test in Newborns With Suspicion of Nosocomial Sepsis

    PubMed Central

    Ortiz Ibarra, Javier; Trevino Valdez, Pablo; Valenzuela Mendez, Ema; Limon Rojas, Ana; Lara Flores, Gabriel; Ceballos Bocanegra, Adrian; Morales Mendez, Iyari; Fernandez Carrocera, Luis; Covian Molina, Emilia; Reyna Figueroa, Jesus

    2015-01-01

    Background: Nosocomial sepsis (NS) in newborns (NBs) is associated with high mortality rates and low microbial recovery rates. To overcome the latter problem, new techniques in molecular biology are being used. Objectives: To evaluate the diagnostic efficacy of SeptiFast test for the diagnosis of nosocomial sepsis in the newborn. Materials and Methods: 86 blood specimens of NBs with suspected NS (NOSEP-1 Test > 8 points) were analyzed using Light Cycler SeptiFast (LC-SF) a real-time multiplex PCR instrument. The results were analyzed with the Roche SeptiFast Identification Software. Another blood sample was collected to carry out a blood culture (BC). Results: Sensitivity (Sn) and specificity (Sp) of 0.69 and 0.65 respectively, compared with blood culture (BC) were obtained for LC-SF. Kappa index concordance between LC-SF and BC was 0.21. Thirteen (15.11%) samples were BC positive and 34 (31.39%) were positive with LC-SF tests. Conclusions: Compared with BC, LC-SF allows the detection of a greater number of pathogenic species in a small blood sample (1 mL) with a shorter response time. PMID:26199693

  3. Development and in-use evaluation of a novel Luminex MicroPlex microsphere-based (TRIOL) assay for simultaneous identification of Mycobacterium tuberculosis and detection of first-line and second-line anti-tuberculous drug resistance in China.

    PubMed

    Yin, Feifei; Chan, Jasper Fuk-Woo; Zhu, Qixuan; Fu, Ruijia; Chen, Jonathan Hon-Kwan; Choi, Garnet Kwan-Yue; Tee, Kah-Meng; Li, Lihua; Qian, Shiuyun; Yam, Wing-Cheong; Lu, Gang; Yuen, Kwok-Yung

    2017-04-01

    Rapid and accurate diagnostic assays with simultaneous microbial identification and drug resistance detection are essential for optimising treatment and control of tuberculosis. We developed a novel multiplex (TRIOL, Tuberculosis-Rifampicin-Isoniazid-Ofloxacin-Luminex) assay using the Luminex xMAP system that simultaneously identifies Mycobacterium tuberculosis and detects resistance to first-line and second-line anti-tuberculous drugs, and compared its performance with that by PCR sequencing, using phenotypic drug susceptibility testing as the gold standard. Identification of M. tuberculosis by the TRIOL assay was highly sensitive (100%) and specific (100%). The overall drug-specific specificities were excellent (100%). The overall sensitivity of the TRIOL assay was lower than that of the PCR-sequencing assays (72.4% vs 82.8%) because of a lower sensitivity of detecting rifampicin resistance (71.4% vs 92.9%). The sensitivity of detecting isoniazid and ofloxacin resistance was as good as the PCR-sequencing assays. Importantly, the TRIOL assay did not miss any mutations that were included in the assay. All of the resistant isolates that were missed had uncommon mutations or unknown resistance mechanisms that were not included in the assay. The TRIOL assay has higher throughput, lower cost and is less labour intensive than the PCR-sequencing assays. The TRIOL assay is advantageous in having the capability to detect resistance to multiple drugs and an open-architecture system that allows addition of more specific primers to detect uncommon mutations. Inclusion of additional primers for the identification of non-tuberculous mycobacteria, spoligotyping and improvement of rifampicin resistance detection would enhance the use of the TRIOL assay in future clinical and epidemiological studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Methods for detection of GMOs in food and feed.

    PubMed

    Marmiroli, Nelson; Maestri, Elena; Gullì, Mariolina; Malcevschi, Alessio; Peano, Clelia; Bordoni, Roberta; De Bellis, Gianluca

    2008-10-01

    This paper reviews aspects relevant to detection and quantification of genetically modified (GM) material within the feed/food chain. The GM crop regulatory framework at the international level is evaluated with reference to traceability and labelling. Current analytical methods for the detection, identification, and quantification of transgenic DNA in food and feed are reviewed. These methods include quantitative real-time PCR, multiplex PCR, and multiplex real-time PCR. Particular attention is paid to methods able to identify multiple GM events in a single reaction and to the development of microdevices and microsensors, though they have not been fully validated for application.

  5. Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus haemolyticus: methicillin-resistant isolates are detected directly in blood cultures by multiplex PCR.

    PubMed

    Pereira, Eliezer M; Schuenck, Ricardo P; Malvar, Karoline L; Iorio, Natalia L P; Matos, Pricilla D M; Olendzki, André N; Oelemann, Walter M R; dos Santos, Kátia R N

    2010-03-31

    In this study, we standardized and evaluated a multiplex-PCR methodology using specific primers to identify Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus haemolyticus and their methicillin-resistance directly from blood cultures. Staphylococci clinical isolates (149) and control strains (16) previously identified by conventional methods were used to establish the multiplex PCR protocol. Subsequently, this methodology was evaluated using a fast and cheap DNA extraction protocol from 25 staphylococci positive blood cultures. A wash step of the pellet with 0.1% bovine serum albumin (BSA) solution was performed to reduce PCR inhibitors. Amplicons of 154bp (mecA gene), 271bp (S. haemolyticus mvaA gene) and 108 and 124bp (S. aureus and S. epidermidis species-specific fragments, respectively) were observed. Reliable results were obtained for 100% of the evaluated strains, suggesting that this new multiplex-PCR combined with an appropriate DNA-extraction method could be useful in the laboratory for fast and accurate identification of three staphylococci species and simultaneously their methicillin resistance directly in blood cultures.

  6. A valveless rotary microfluidic device for multiplex point mutation identification based on ligation-rolling circle amplification.

    PubMed

    Heo, Hyun Young; Chung, Soyi; Kim, Yong Tae; Kim, Do Hyun; Seo, Tae Seok

    2016-04-15

    Genetic variations such as single nucleotide polymorphism (SNP) and point mutations are important biomarkers to monitor disease prognosis and diagnosis. In this study, we developed a novel rotary microfluidic device which can perform multiplex SNP typing on the mutation sites of TP53 genes. The microdevice consists of three glass layers: a channel wafer, a Ti/Pt electrode-patterned resistance temperature detector (RTD) wafer, and a rotary plate in which twelve reaction chambers were fabricated. A series of sample injection, ligation-rolling circle amplification (L-RCA) reaction, and fluorescence detection of the resultant amplicons could be executed by rotating the top rotary plate, identifying five mutation points related with cancer prognosis. The use of the rotary plate eliminates the necessity of microvalves and micropumps to control the microfluidic flow in the channel, simplifying the chip design and chip operation for multiplex SNP detection. The proposed microdevice provides an advanced genetic analysis platform in terms of multiplexity, simplicity, and portability in the fields of biomedical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Multiplex real-time PCR assay for detection of pathogenic Vibrio parahaemolyticus strains.

    PubMed

    He, Peiyan; Chen, Zhongwen; Luo, Jianyong; Wang, Henghui; Yan, Yong; Chen, Lixia; Gao, Wenjie

    2014-01-01

    Foodborne disease caused by pathogenic Vibrio parahaemolyticus has become a serious public health problem in many countries. Rapid diagnosis and the identification of pathogenic V. parahaemolyticus are very important in the context of public health. In this study, an EvaGreen-based multiplex real-time PCR assay was established for the detection of pathogenic V. parahaemolyticus. This assay targeted three genetic markers of V. parahaemolyticus (species-specific gene toxR and virulence genes tdh and trh). The assay could unambiguously identify pathogenic V. parahaemolyticus with a minimum detection limit of 1.4 pg genomic DNA per reaction (concentration giving a positive multiplex real-time PCR result in 95% of samples). The specificity of the assay was evaluated using 72 strains of V. parahaemolyticus and other bacteria. A validation of the assay with clinical samples confirmed its sensitivity and specificity. Our data suggest the newly established multiplex real-time PCR assay is practical, cost-effective, specific, sensitive and capable of high-throughput detection of pathogenic V. parahaemolyticus. Copyright © 2014. Published by Elsevier Ltd.

  8. Identification of Streptococcus pneumoniae lytA, plyA and psaA genes in pleural fluid by multiplex real-time PCR.

    PubMed

    Sanz, Juan Carlos; Ríos, Esther; Rodríguez-Avial, Iciar; Ramos, Belén; Marín, Mercedes; Cercenado, Emilia

    2017-08-14

    The aim was to evaluate the utility of a multiplex real-time PCR to detect Streptococcus pneumoniae lytA, plyA and psaA genes in pleural fluid (PF). A collection of 81 PF samples was used. Sixty were considered positive for S. pneumoniae according to previous results (54 by an in-house lytA gene PCR and eight by universal rRNA PCR). The sensitivity for detection of the lytA, plyA and psaA genes by multiplex PCR was 100% (60/60), 98.3% (59/60) and 91.7% (55/60), respectively. The detection of all three genes was negative in 21 samples formerly confirmed as negative for S. pneumoniae (100% specificity) by the other procedures (9 by in-house lytA PCR and 12 by rRNA PCR). The use of this multiplex PCR may be a useful option to identify S. pneumoniae directly in PF samples. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  9. Multiplex PCR for the detection and differentiation of Vibrio parahaemolyticus strains using the groEL, tdh and trh genes.

    PubMed

    Hossain, Muhammad Tofazzal; Kim, Young-Ok; Kong, In-Soo

    2013-01-01

    Vibrio parahaemolyticus is a significant cause of human gastrointestinal disorders worldwide, transmitted primarily by ingestion of raw or undercooked contaminated seafood. In this study, a multiplex PCR assay for the detection and differentiation of V. parahaemolyticus strains was developed using primer sets for a species-specific marker, groEL, and two virulence markers, tdh and trh. Multiplex PCR conditions were standardised, and extracted genomic DNA of 70 V. parahaemolyticus strains was used for identification. The sensitivity and efficacy of this method were validated using artificially inoculated shellfish and seawater. The expected sizes of amplicons were 510 bp, 382 bp, and 171 bp for groEL, tdh and trh, respectively. PCR products were sufficiently different in size, and the detection limits of the multiplex PCR for groEL, tdh and trh were each 200 pg DNA. Specific detection and differentiation of virulent from non-virulent strains in shellfish homogenates and seawater was also possible after artificial inoculation with various V. parahaemolyticus strains. This newly developed multiplex PCR is a rapid assay for detection and differentiation of pathogenic V. parahaemolyticus strains, and could be used to prevent disease outbreaks and protect public health by helping the seafood industry maintain a safe shellfish supply. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. New primers for the detection Leishmania species by multiplex polymerase chain reaction.

    PubMed

    Conter, Carolina Cella; Lonardoni, Maria Valdrinez Campana; Aristides, Sandra Mara Alessi; Cardoso, Rosilene Fressatti; Silveira, Thaís Gomes Verzignassi

    2018-02-01

    Leishmaniasis is caused by protozoa of the Leishmania genus, which is divided into subgenus Viannia and Leishmania. In humans, the course of infection largely depends on the host-parasite relationship and primarily of the infective species. The objective of the present study was to design specific primers to the identification of Leishmania species using multiplex PCR. Four primers were designed, based on the GenBank sequences of the kDNA minicircle, amplifying 127 bp for subgenus Viannia, 100 bp for L. amazonensis, and 60 bp for Leishmania donovani complex and L. major. None of the primers amplified Trypanosoma cruzi or L. mexicana. The limit of detection of multiplex PCR was 2 × 10 -5 parasites for L. braziliensis, 2 x 10 -3 parasites for L. amazonensis, and 1.4 × 10 -3 parasites for L. infantum. The high sensitivity of multiplex PCR was confirmed by the detection of parasites in different biological samples, including lesion scrapings, spleen imprinting of a hamster, sandflies, and blood. The multiplex PCR that was developed herein presented good performance with regard to detecting and identifying the parasite in different biological samples and may thus be useful for diagnosis, decision making with regard to the proper therapeutic approach, and determining the geographic distribution of Leishmania species.

  11. High-throughput identification of the microbial biodiversity of cocoa bean fermentation by MALDI-TOF MS.

    PubMed

    Miescher Schwenninger, S; Freimüller Leischtfeld, S; Gantenbein-Demarchi, C

    2016-11-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a powerful biotyping tool increasingly used for high-throughput identification of clinical microbial isolates, however, in food fermentation research this approach is still not well established. This study examines the microbial biodiversity of cocoa bean fermentation based on the isolation of micro-organisms in cocoa-producing regions, followed by MALDI-TOF MS in Switzerland. A preceding 6-week storage test to mimic lengthy transport of microbial samples from cocoa-producing regions to Switzerland was performed with strains of Lactobacillus plantarum, Acetobacter pasteurianus and Saccharomyces cerevisiae. Weekly MALDI-TOF MS analysis was able to successfully identify microbiota to the species level after storing live cultures on slant agar at mild temperatures (7°C) and/or in 75% aqueous ethanol at differing temperatures (-20, 7 and 30°C). The efficacy of this method was confirmed by on-site recording of the microbial biodiversity in cocoa bean fermentation in Bolivia and Brazil, with a total of 1126 randomly selected isolates. MALDI-TOF MS analyses revealed known dominant cocoa bean fermentation species with Lact. plantarum and Lactobacillus fermentum in the lactic acid bacteria taxon, Hanseniaspora opuntiae and S. cerevisiae in the yeast taxon, and Acet. pasteurianus, Acetobacter fabarum, Acetobacter ghanensis and Acetobacter senegalensis in the acetic acid bacteria taxon. Microbial identification with MALDI-TOF MS has increased the number of samples that can be analysed in a given time, a prerequisite for high-throughput methods. This method is already widely used for the identification of clinical microbial isolates, whereas in food fermentation research, including cocoa bean fermentation, microbiota is mostly identified by time-consuming, biochemical-based phenotyping and molecular approaches. This study presents the use of MALDI-TOF MS for characterizing the microbial biodiversity of cocoa bean fermentation. The feasibility of MALDI-TOF MS identification of cocoa-specific microbiota has been shown with samples collected during on-site studies in two countries of origin, Bolivia and Brazil. © 2016 The Society for Applied Microbiology.

  12. Optical delay encoding for fast timing and detector signal multiplexing in PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Alexander M.; Levin, Craig S., E-mail: cslevin@stanford.edu; Molecular Imaging Program at Stanford

    2015-08-15

    Purpose: The large number of detector channels in modern positron emission tomography (PET) scanners poses a challenge in terms of readout electronics complexity. Multiplexing schemes are typically implemented to reduce the number of physical readout channels, but often result in performance degradation. Novel methods of multiplexing in PET must be developed to avoid this data degradation. The preservation of fast timing information is especially important for time-of-flight PET. Methods: A new multiplexing scheme based on encoding detector interaction events with a series of extremely fast overlapping optical pulses with precise delays is demonstrated in this work. Encoding events in thismore » way potentially allows many detector channels to be simultaneously encoded onto a single optical fiber that is then read out by a single digitizer. A two channel silicon photomultiplier-based prototype utilizing this optical delay encoding technique along with dual threshold time-over-threshold is demonstrated. Results: The optical encoding and multiplexing prototype achieves a coincidence time resolution of 160 ps full width at half maximum (FWHM) and an energy resolution of 13.1% FWHM at 511 keV with 3 × 3 × 5 mm{sup 3} LYSO crystals. All interaction information for both detectors, including timing, energy, and channel identification, is encoded onto a single optical fiber with little degradation. Conclusions: Optical delay encoding and multiplexing technology could lead to time-of-flight PET scanners with fewer readout channels and simplified data acquisition systems.« less

  13. An experimental study for rapid detection and quantification of endodontic microbiota following photo-activated disinfection via new multiplex real-time PCR assay.

    PubMed

    Pourhajibagher, Maryam; Raoofian, Reza; Ghorbanzadeh, Roghayeh; Bahador, Abbas

    2018-03-01

    The infected root canal system harbors one of the highest accumulations of polymicrobial infections. Since the eradication of endopathogenic microbiota is a major goal in endodontic infection therapy, photo-activated disinfection (PAD) can be used as an alternative therapeutic method in endodontic treatment. Compared to cultivation-based approaches, molecular techniques are more reliable for identifying microbial agents associated with endodontic infections. The purpose of this study was to evaluate the ability of designed multiplex real-time PCR protocol for the rapid detection and quantification of six common microorganisms involved in endodontic infection before and after the PAD. Samples were taken from the root canals of 50 patients with primary and secondary/persistent endodontic infections using sterile paper points. PAD with toluidine blue O (TBO) plus diode laser was performed on root canals. Resampling was then performed, and the samples were transferred to transport medium. Then, six target microorganisms were detected using multiplex real-time PCR before and after the PAD. Veillonella parvula was found using multiplex real-time PCR to have the highest frequency among samples collected before the PAD (29.4%), followed by Porphyromonas gingivalis (23.1%), Aggregatibacter actinomycetemcomitans (13.6%), Actinomyces naeslundii (13.0%), Enterococcus faecalis (11.5%), and Lactobacillus rhamnosus (9.4%). After TBO-mediated PAD, P. gingivalis strains, the most resistance microorganisms, were recovered in 41.7% of the samples using molecular approach (P > 0.05). As the results shown, multiplex real-time PCR as an accurate detection approach with high-throughput and TBO-mediated PAD as an efficient antimicrobial strategy due to the significant reduction of the endopathogenic count can be used for detection and treatment of microbiota involved in infected root canals, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Development of multiplex PCR assay for authentication of Cornu Cervi Pantotrichum in traditional Chinese medicine based on cytochrome b and C oxidase subunit 1 genes.

    PubMed

    Gao, Lijun; Xia, Wei; Ai, Jinxia; Li, Mingcheng; Yuan, Guanxin; Niu, Jiamu; Fu, Guilian; Zhang, Lihua

    2016-07-01

    This study describes a method for discriminating the true Cervus antlers from its counterfeits using multiplex PCR. Bioinformatics were carried out to design the specific alleles primers for mitochondrial (mt) cytochrome b (Cyt b) and cytochrome C oxidase subunit 1 (Cox 1) genes. The mt DNA and genomic DNA were extracted from Cervi Cornu Pantotrichum through the modified alkaline and the salt-extracting method in addition to its counterfeits, respectively. Sufficient DNA templates were extracted from all samples used in two methods, and joint fragments of 354 bp and 543 bp that were specifically amplified from both of true Cervus antlers served as a standard control. The data revealed that the multiplex PCR-based assays using two primer sets can be used for forensic and quantitative identification of original Cervus deer products from counterfeit antlers in a single step.

  15. Multiplex Hydrolysis Probe Real-Time PCR for Simultaneous Detection of Hepatitis A Virus and Hepatitis E Virus

    PubMed Central

    Qiu, Feng; Cao, Jingyuan; Su, Qiudong; Yi, Yao; Bi, Shengli

    2014-01-01

    Detection of hepatitis viral infections has traditionally relied on the circulating antibody test using the enzyme-linked immunosorbent assay. However, multiplex real-time PCR has been increasingly used for a variety of viral nucleic acid detections and has proven to be superior to traditional methods. Hepatitis A virus (HAV) and hepatitis E virus (HEV) are the major causes of acute hepatitis worldwide; both HAV and HEV infection are a main public health problem. In the present study, a one-step multiplex reverse transcriptase quantitative polymerase chain reaction assay using hydrolysis probes was developed for simultaneously detecting HAV and HEV. This novel detection system proved specific to the target viruses, to be highly sensitive and to be applicable to clinical sera samples, making it useful for rapid, accurate and feasible identification of HAV and HEV. PMID:24886818

  16. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers.

    PubMed

    Zhou, Lei; Wang, Rui; Yao, Chi; Li, Xiaomin; Wang, Chengli; Zhang, Xiaoyan; Xu, Congjian; Zeng, Aijun; Zhao, Dongyuan; Zhang, Fan

    2015-04-24

    The identification of potential diagnostic markers and target molecules among the plethora of tumour oncoproteins for cancer diagnosis requires facile technology that is capable of quantitatively analysing multiple biomarkers in tumour cells and tissues. Diagnostic and prognostic classifications of human tumours are currently based on the western blotting and single-colour immunohistochemical methods that are not suitable for multiplexed detection. Herein, we report a general and novel method to prepare single-band upconversion nanoparticles with different colours. The expression levels of three biomarkers in breast cancer cells were determined using single-band upconversion nanoparticles, western blotting and immunohistochemical technologies with excellent correlation. Significantly, the application of antibody-conjugated single-band upconversion nanoparticle molecular profiling technology can achieve the multiplexed simultaneous in situ biodetection of biomarkers in breast cancer cells and tissue specimens and produce more accurate results for the simultaneous quantification of proteins present at low levels compared with classical immunohistochemical technology.

  17. Pigment phenotype and biogeographical ancestry from ancient skeletal remains: inferences from multiplexed autosomal SNP analysis.

    PubMed

    Bouakaze, Caroline; Keyser, Christine; Crubézy, Eric; Montagnon, Daniel; Ludes, Bertrand

    2009-07-01

    In the present study, a multiplexed genotyping assay for ten single nucleotide polymorphisms (SNPs) located within six pigmentation candidate genes was developed on modern biological samples and applied to DNA retrieved from 25 archeological human remains from southern central Siberia dating from the Bronze and Iron Ages. SNP genotyping was successful for the majority of ancient samples and revealed that most probably had typical European pigment features, i.e., blue or green eye color, light hair color and skin type, and were likely of European individual ancestry. To our knowledge, this study reports for the first time the multiplexed typing of autosomal SNPs on aged and degraded DNA. By providing valuable information on pigment traits of an individual and allowing individual biogeographical ancestry estimation, autosomal SNP typing can improve ancient DNA studies and aid human identification in some forensic casework situations when used to complement conventional molecular markers.

  18. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria.

    PubMed

    Choi, Goro; Jung, Jae Hwan; Park, Byung Hyun; Oh, Seung Jun; Seo, Ji Hyun; Choi, Jong Seob; Kim, Do Hyun; Seo, Tae Seok

    2016-06-21

    In this study, we developed a centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria contaminated milk samples. The microdevice was designed to contain identical triplicate functional units and each unit has four reaction chambers, thereby making it possible to perform twelve direct-RPA reactions simultaneously. The integrated microdevice consisted of two layers: RPA reagents were injected in the top layer, while spiked milk samples with food poisoning bacteria were loaded into sample reservoirs in the bottom layer. For multiplex bacterial detection, the target gene-specific primers and probes were dried in each reaction chamber. The introduced samples and reagents could be equally aliquoted and dispensed into each reaction chamber by centrifugal force, and then the multiplex direct-RPA reaction was executed. The target genes of bacteria spiked in milk could be amplified at 39 °C without a DNA extraction step by using the direct-RPA cocktails, which were a combination of a direct PCR buffer and RPA enzymes. As the target gene amplification proceeded, the increased fluorescence signals coming from the reaction chambers were recorded in real-time at an interval of 2 min. The entire process, including the sample distribution, the direct-RPA reaction, and the real-time analysis, was accomplished with a custom-made portable genetic analyzer and a miniaturized optical detector. Monoplex, duplex, and triplex food poisoning bacteria (Salmonella enterica, Escherichia coli O157:H7, and Vibrio parahaemolyticus) detection was successfully performed with a detection sensitivity of 4 cells per 3.2 μL of milk samples within 30 min. By implementing the direct-PRA on the miniaturized centrifugal microsystem, the on-site food poisoning bacteria analysis would be feasible with high speed, sensitivity, and multiplicity.

  19. Multiplex PCR for diagnosis of Theileria uilenbergi, Theileria luwenshuni, and Theileria ovis in small ruminants.

    PubMed

    Zhang, Xiao; Liu, Zhijie; Yang, Jifei; Chen, Ze; Guan, Guiquan; Ren, Qiaoyun; Liu, Aihong; Luo, Jianxun; Yin, Hong; Li, Youquan

    2014-02-01

    Infections with Theileria sp. may cause significant economic losses to the sheep industry. Species identification based on microscopic examination is difficult, and more suitable methods are required for the rapid detection and identification of Theileria sp, in clinical specimens. In this study, a multiplex polymerase chain reaction (mPCR) assay was developed to simultaneously identify three individual Theileria species in small ruminants. Three pairs of specific, sensitive primers were designed on the basis of the 5.8S ribosomal RNA gene (Theileria luwenshuni and Theileria ovis) and the 18S ribosomal RNA gene (Theileria uilenbergi) to generate target products of 303, 884, and 530 bp, respectively. Standard DNA for each of the three species was extracted from blood recovered from infected sheep, and a preliminary study was conducted on 56 sheep to verify the reliability of the system. Optimal PCR conditions, including primer concentration, annealing time, and the number of amplification cycles, were established. The assay sensitivity under these conditions was 10(-3) % parasitemia, and its specificity was 100 %. The results of the study suggest that mPCR represents a simple, efficient test method as a practical alternative for the rapid detection and identification of Theileria species in small ruminants.

  20. Rapid genetic typing of diarrheagenic Escherichia coli using a two-tube modified molecular beacon based multiplex real-time PCR assay and its clinical application

    PubMed Central

    2014-01-01

    Background Diarrheagenic Escherichia coli (DEC), including Enterotoxigenic E.coli (ETEC), Enteroaggregative E.coli (EAEC), Enteropathogenic E.coli (EPEC), Enterohemolysin E.coli (EHEC) and Enteroinvasive E.coli (EIEC) causes diarrhea or hemolytic uremic syndromes among infants and travelers around the world. A rapid, reliable and repeatable method is urgent for identifying DEC so as to provide the reference for responding to diarrheal disease outbreak and the treatment of the diarrheal patients associated with DEC. Methods In this study, specific primers and modified molecular beacon probes of nine specific virulence genes, whose 5′end were added with homo tail sequence, were designed; and a two-tube modified molecular beacon based multiplex real–time PCR (rtPCR) assay for the identification of five Escherichia coli pathotypes, including ETEC, EAEC, EPEC, EHEC and EIEC was developed and optimized. Totally 102 bacterial strains, including 52 reference bacterial strains and 50 clinical strains were detected to confirm whether the target genes selected were specific. Then detection limits of the assay were tested. Lastly, the assay was applied to the detection of 11860 clinical samples to evaluate the specificity and sensitivity of the developed assay compared with the conventional PCR. Results The target genes were 100% specific as assessed on 102 bacterial strains since no cross-reactions were observed. The detection limits ranged from 88 CFU/mL (EHEC) to 880 CFU/mL (EPEC). Compared with the conventional PCR, the specificity and sensitivity of the multiplex rtPCR was 100% and over 99%, respectively. The coefficient of variation (CV) for each target gene ranged from 0.45% to 1.53%. 171 positive clinical samples were mostly identified as ETEC (n = 111, 64.9%) and EPEC (n = 38, 22.2%), which were the dominating pathotypes of DEC strains. Conclusion The developed multiplex rtPCR assay for the identification of DEC was high sensitive and specific and could be applied to the rapid identification of DEC in clinical and public health laboratories. PMID:25023669

  1. Identification of Stenotrophomonas maltophilia strains isolated from environmental and clinical samples: a rapid and efficient procedure.

    PubMed

    Pinot, C; Deredjian, A; Nazaret, S; Brothier, E; Cournoyer, B; Segonds, C; Favre-Bonté, S

    2011-11-01

    Aim of the study is to identify accurately Stenotrophomonas maltophilia isolates recovered from environmental and clinical samples. Recovery of Sten. maltophilia-like isolates from soil samples using the vancomycin, imipenem, amphotericin B (VIA) selective agar medium enabled distinction of various morphotype colonies. A set of soil and clinical isolates was tested for species identification using different methods. 16S rDNA analyses showed the dark green with a blue halo morphotype to be typical Sten. maltophilia strains. The API-20NE, Vitek-2 and Biolog phenotypic analyses typically used for the identification of clinical isolates did not perform well on these soil isolates. The species-specific PCR screening targeting Sten. maltophilia 23S rDNA and the multiplex smeD/ggpS PCR, differentiating Sten. maltophilia from Stenotrophomonas rhizophila, were tested for improvement of these identification schemes. The latter multiplex PCR identified all isolates tested in this study, whatever be their origin. Isolation on VIA medium and confirmation of Sten. maltophilia species membership by smeD PCR is proposed to identify environmental and clinical isolates of Sten. maltophilia. The proposed approach enables isolation and identification of Sten. maltophilia from different environments in an easy and rapid way. This approach will be useful to accurately manage studies on the abundance and distribution of Sten. maltophilia in hospital and nonhospital environments. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  2. Evaluation of the Microbial Identification System for identification of clinically isolated yeasts.

    PubMed Central

    Crist, A E; Johnson, L M; Burke, P J

    1996-01-01

    The Microbial Identification System (MIS; Microbial ID, Inc., Newark, Del.) was evaluated for the identification of 550 clinically isolated yeasts. The organisms evaluated were fresh clinical isolates identified by methods routinely used in our laboratory (API 20C and conventional methods) and included Candida albicans (n = 294), C. glabrata (n = 145), C. tropicalis (n = 58), C. parapsilosis (n = 33), and other yeasts (n = 20). In preparation for fatty acid analysis, yeasts were inoculated onto Sabouraud dextrose agar and incubated at 28 degrees C for 24 h. Yeasts were harvested, saponified, derivatized, and extracted, and fatty acid analysis was performed according to the manufacturer's instructions. Fatty acid profiles were analyzed, and computer identifications were made with the Yeast Clinical Library (database version 3.8). Of the 550 isolates tested, 374 (68.0%) were correctly identified to the species level, with 87 (15.8%) being incorrectly identified and 89 (16.2%) giving no identification. Repeat testing of isolates giving no identification resulted in an additional 18 isolates being correctly identified. This gave the MIS an overall identification rate of 71.3%. The most frequently misidentified yeast was C. glabrata, which was identified as Saccharomyces cerevisiae 32.4% of the time. On the basis of these results, the MIS, with its current database, does not appear suitable for the routine identification of clinically important yeasts. PMID:8880489

  3. Molecular allergy diagnostics using multiplex assays: methodological and practical considerations for use in research and clinical routine: Part 21 of the Series Molecular Allergology.

    PubMed

    Jakob, Thilo; Forstenlechner, Peter; Matricardi, Paolo; Kleine-Tebbe, Jörg

    The availability of single allergens and their use in microarray technology enables the simultaneous determination of specific IgE (sIgE) to a multitude of different allergens (> 100) in a multiplex procedure requiring only minute amounts of serum. This allows extensive individual sensitization profiles to be determined from a single analysis. Combined with a patient's medical history, these profiles simplify identification of cross-reactivity; permit a more accurate estimation of the risk of severe reactions; and enable the indication for specific immunotherapy to be more precisely established, particularly in cases of polysensitization. Strictly speaking, a multiplex assay is not a single test, but instead more than 100 simultaneous tests. This places considerable demands on the production, quality assurance, and interpretation of data. The following chapter describes the multiplex test systems currently available and discusses their characteristics. Performance data are presented and the sIgE values obtained from multiplex and singleplex assays are compared. Finally, the advantages and limitations of molecular allergy diagnostics using multiplex assays in clinical routine are discussed, and innovative possibilities for clinical research are described. The multiplex diagnostic tests available for clinical routine have now become well established. The interpretation of test results is demanding, particularly since all individual results need to be checked for their plausibility and clinical relevance on the basis of previous history (patient history, clinical symptoms, challenge test results). There is still room for improvement in certain areas, for example with respect to the overall test sensitivity of the method, as well as the availability and quality of particular allergens. The current test systems are just the beginning of a continuous development that will influence and most likely change clinical allergology in the coming years.

  4. Rapid detection of coliforms in drinking water of Arak city using multiplex PCR method in comparison with the standard method of culture (Most Probably Number)

    PubMed Central

    Fatemeh, Dehghan; Reza, Zolfaghari Mohammad; Mohammad, Arjomandzadegan; Salomeh, Kalantari; Reza, Ahmari Gholam; Hossein, Sarmadian; Maryam, Sadrnia; Azam, Ahmadi; Mana, Shojapoor; Negin, Najarian; Reza, Kasravi Alii; Saeed, Falahat

    2014-01-01

    Objective To analyse molecular detection of coliforms and shorten the time of PCR. Methods Rapid detection of coliforms by amplification of lacZ and uidA genes in a multiplex PCR reaction was designed and performed in comparison with most probably number (MPN) method for 16 artificial and 101 field samples. The molecular method was also conducted on isolated coliforms from positive MPN samples; standard sample for verification of microbial method certificated reference material; isolated strains from certificated reference material and standard bacteria. The PCR and electrophoresis parameters were changed for reducing the operation time. Results Results of PCR for lacZ and uidA genes were similar in all of standard, operational and artificial samples and showed the 876 bp and 147 bp bands of lacZ and uidA genes by multiplex PCR. PCR results were confirmed by MPN culture method by sensitivity 86% (95% CI: 0.71-0.93). Also the total execution time, with a successful change of factors, was reduced to less than two and a half hour. Conclusions Multiplex PCR method with shortened operation time was used for the simultaneous detection of total coliforms and Escherichia coli in distribution system of Arak city. It's recommended to be used at least as an initial screening test, and then the positive samples could be randomly tested by MPN. PMID:25182727

  5. n/a

    NASA Image and Video Library

    2003-06-10

    Cadmium selenium Quantum Dots (QDs) are metal nanoparticles that fluoresce in a variety of colors determined by their size. QDs are solid state structures made of semiconductors or metals that confine a countable, small number of electrons into a small space. The confinement of electrons is achieved by the placement of some insulating material(s) around a central, well conducted region. Coupling QDs with antibodies can be used to make spectrally multiplexed immunoassays that test for a number of microbial contaminants using a single test.

  6. Development of a multiplex RT-PCR assay for the identification of recombination types at different genomic regions of vaccine-derived polioviruses.

    PubMed

    Dimitriou, T G; Kyriakopoulou, Z; Tsakogiannis, D; Fikatas, A; Gartzonika, C; Levidiotou-Stefanou, S; Markoulatos, P

    2016-08-01

    Polioviruses (PVs) are the causal agents of acute paralytic poliomyelitis. Since the 1960s, poliomyelitis has been effectively controlled by the use of two vaccines containing all three serotypes of PVs, the inactivated poliovirus vaccine and the live attenuated oral poliovirus vaccine (OPV). Despite the success of OPV in polio eradication programme, a significant disadvantage was revealed: the emergence of vaccine-associated paralytic poliomyelitis (VAPP). VAPP is the result of accumulated mutations and putative recombination events located at the genome of attenuated vaccine Sabin strains. In the present study, ten Sabin isolates derived from OPV vaccinees and environmental samples were studied in order to identify recombination types located from VP1 to 3D genomic regions of virus genome. The experimental procedure that was followed was virus RNA extraction, reverse transcription to convert the virus genome into cDNA, PCR and multiplex-PCR using specific designed primers able to localize and identify each recombination following agarose gel electrophoresis. This multiplex RT-PCR assay allows for the immediate detection and identification of multiple recombination types located at the viral genome of OPV derivatives. After the eradication of wild PVs, the remaining sources of poliovirus infection worldwide would be the OPV derivatives. As a consequence, the immediate detection and molecular characterization of recombinant derivatives are important to avoid epidemics due to the circulation of neurovirulent viral strains.

  7. Rapid and simple method by combining FTA™ card DNA extraction with two set multiplex PCR for simultaneous detection of non-O157 Shiga toxin-producing Escherichia coli strains and virulence genes in food samples.

    PubMed

    Kim, S A; Park, S H; Lee, S I; Ricke, S C

    2017-12-01

    The aim of this research was to optimize two multiplex polymerase chain reaction (PCR) assays that could simultaneously detect six non-O157 Shiga toxin-producing Escherichia coli (STEC) as well as the three virulence genes. We also investigated the potential of combining the FTA™ card-based DNA extraction with the multiplex PCR assays. Two multiplex PCR assays were optimized using six primer pairs for each non-O157 STEC serogroup and three primer pairs for virulence genes respectively. Each STEC strain specific primer pair only amplified 155, 238, 321, 438, 587 and 750 bp product for O26, O45, O103, O111, O121 and O145 respectively. Three virulence genes were successfully multiplexed: 375 bp for eae, 655 bp for stx1 and 477 bp for stx2. When two multiplex PCR assays were validated with ground beef samples, distinctive bands were also successfully produced. Since the two multiplex PCR examined here can be conducted under the same PCR conditions, the six non-O157 STEC and their virulence genes could be concurrently detected with one run on the thermocycler. In addition, all bands clearly appeared to be amplified by FTA card DNA extraction in the multiplex PCR assay from the ground beef sample, suggesting that an FTA card could be a viable sampling approach for rapid and simple DNA extraction to reduce time and labour and therefore may have practical use for the food industry. Two multiplex polymerase chain reaction (PCR) assays were optimized for discrimination of six non-O157 Shiga toxin-producing Escherichia coli (STEC) and identification of their major virulence genes within a single reaction, simultaneously. This study also determined the successful ability of the FTA™ card as an alternative to commercial DNA extraction method for conducting multiplex STEC PCR assays. The FTA™ card combined with multiplex PCR holds promise for the food industry by offering a simple and rapid DNA sample method for reducing time, cost and labour for detection of STEC in food and environmental samples. © 2017 The Society for Applied Microbiology.

  8. A multiplexed microsatellite fingerprinting set for hazelnut cultivar identification

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to develop a robust and cost-effective fingerprinting set for hazelnuts using microsatellite (SSR) markers. Twenty SSRs containing repeat motifs of = three nucleotides distributed throughout the hazelnut genome were screened on eight genetically diverse cultivars to a...

  9. A Y-chromosome STR marker should be added to commercial multiplex STR kits.

    PubMed

    Oz, Carla; Zaken, Neomi; Amiel, Merav; Zamir, Ashira

    2008-07-01

    Autosomal short tandem repeat (STR) analysis has become highly relevant in the identification of victims from mass disasters and terrorist attacks. In such events, gender misidentification can be of grave consequences, yet the list reporting amelogenin amplification failure using STR multiplex kits continues to grow. Presented here are three such examples. In the first case, we present two male suspects who demonstrated amelogenin Y-deficient results using two commercial kit procedures. The presence of their Y chromosomes was proven by obtaining a Y-haplotype. The second case demonstrated a profile from a third male suspect where only the Y homolog of the XY pair was amplified. In events such as mass disasters or terrorist attacks, timely and reliable high throughput DNA typing results are essential. As the number of reported cases of amplification failure at the amelogenin gene continues to grow, we suggest that the incorporation of a better gender identification tool in commercial kits is crucial.

  10. Ultra-fast DNA-based multiplex convection PCR method for meat species identification with possible on-site applications.

    PubMed

    Song, Kyung-Young; Hwang, Hyun Jin; Kim, Jeong Hee

    2017-08-15

    The aim of this study was to develop an ultra-fast molecular detection method for meat identification using convection Palm polymerase chain reaction (PCR). The mitochondrial cytochrome b (Cyt b) gene was used as a target gene. Amplicon size was designed to be different for beef, lamb, and pork. When these primer sets were used, each species-specific set specifically detected the target meat species in singleplex and multiplex modes in a 24min PCR run. The detection limit was 1pg of DNA for each meat species. The convection PCR method could detect as low as 1% of meat adulteration. The stability of the assay was confirmed using thermal processed meats. We also showed that direct PCR can be successfully performed with mixed meats and food samples. These results suggest that the developed assay may be useful in the authentication of meats and meat products in laboratory and rapid on-site applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Further interest of miniexon multiplex PCR for a rapid typing of Trypanosoma cruzi DTU groups.

    PubMed

    Aliaga, Claudia; Brenière, Simone Frédérique; Barnabé, Christian

    2011-07-01

    In order to validate a rapid typing of Trypanosoma cruzi DTUs, the miniexon multiplex PCR was tested for the first time, on a large and diversified sample of 70 strains belonging to all current DTUs (TcI to TcVI). Three DTU groups have been distinguished by specific PCR molecular weight, TcI (200bp), TcII, V, VI (250bp) and TcIII and IV (150bp) with no incorrect grouping. These groups are epidemiologically and genetically relevant; moreover the method is easy and cheap and allows direct identification of parasites from triatomine faeces. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Multiplex Identification of Microbes ▿ †

    PubMed Central

    Hyman, Richard W.; St.Onge, Robert P.; Allen, Edward A.; Miranda, Molly; Aparicio, Ana Maria; Fukushima, Marilyn; Davis, Ronald W.

    2010-01-01

    We have adapted molecular inversion probe technology to identify microbes in a highly multiplexed procedure. This procedure does not require growth of the microbes. Rather, the technology employs DNA homology twice: once for the molecular probe to hybridize to its homologous DNA and again for the 20-mer oligonucleotide barcode on the molecular probe to hybridize to a commercially available molecular barcode array. As proof of concept, we have designed, tested, and employed 192 molecular probes for 40 microbes. While these particular molecular probes are aimed at our interest in the microbes in the human vagina, this molecular probe method could be employed to identify the microbes in any ecological niche. PMID:20418427

  13. Design, development and evaluation of a resistor-based multiplexing circuit for a 20×20 SiPM array

    NASA Astrophysics Data System (ADS)

    Wang, Zhonghai; Sun, Xishan; Lou, Kai; Meier, Joseph; Zhou, Rong; Yang, Chaowen; Zhu, Xiaorong; Shao, Yiping

    2016-04-01

    One technical challenge in developing a large-size scintillator detector with multiple Silicon Photomultiplier (SiPM) arrays is to read out a large number of detector output channels. To achieve this, different signal multiplexing circuits have been studied and applied with different performances and cost-effective tradeoffs. Resistor-based multiplexing circuits exhibit simplicity and signal integrity, but also present the disadvantage of timing shift among different channels. In this study, a resistor-based multiplexing circuit for a large-sized SiPM array readout was developed and evaluated by simulation and experimental studies. Similarly to a multiplexing circuit used for multi-anode PMT, grounding and branching resistors were connected to each SiPM output channel. The grounding resistor was used to simultaneously reduce the signal crosstalk among different channels and to improve timing performance. Both grounding and branching resistor values were optimized to maintain a balanced performance of the event energy, timing, and positioning. A multiplexing circuit was implemented on a compact PCB and applied for a flat-panel detector which consisted of a 32×32 LYSO scintillator crystals optically coupled to 5×5 SiPM arrays for a total 20×20 output channels. Test results showed excellent crystal identification for all 1024 LYSO crystals (each with 2×2×30 mm3 size) with 22Na flood-source irradiation. The measured peak-to-valley ratio from typical crystal map profile is around 3:1 to 6.6:1, an average single crystal energy resolution of about 17.3%, and an average single crystal timing resolution of about 2 ns. Timing shift among different crystals, as reported in some other resistor-based multiplexing circuit designs, was not observed. In summary, we have designed and implemented a practical resistor-based multiplexing circuit that can be readily applied for reading out a large SiPM array with good detector performance.

  14. Optical security system for the protection of personal identification information.

    PubMed

    Doh, Yang-Hoi; Yoon, Jong-Soo; Choi, Kyung-Hyun; Alam, Mohammad S

    2005-02-10

    A new optical security system for the protection of personal identification information is proposed. First, authentication of the encrypted personal information is carried out by primary recognition of a personal identification number (PIN) with the proposed multiplexed minimum average correlation energy phase-encrypted (MMACE_p) filter. The MMACE_p filter, synthesized with phase-encrypted training images, can increase the discrimination capability and prevent the leak of personal identification information. After the PIN is recognized, speedy authentication of personal information can be achieved through one-to-one optical correlation by means of the optical wavelet filter. The possibility of information counterfeiting can be significantly decreased with the double-identification process. Simulation results demonstrate the effectiveness of the proposed technique.

  15. Influence of geogenic factors on microbial communities in metallogenic Australian soils

    PubMed Central

    Reith, Frank; Brugger, Joel; Zammit, Carla M; Gregg, Adrienne L; Goldfarb, Katherine C; Andersen, Gary L; DeSantis, Todd Z; Piceno, Yvette M; Brodie, Eoin L; Lu, Zhenmei; He, Zhili; Zhou, Jizhong; Wakelin, Steven A

    2012-01-01

    Links between microbial community assemblages and geogenic factors were assessed in 187 soil samples collected from four metal-rich provinces across Australia. Field-fresh soils and soils incubated with soluble Au(III) complexes were analysed using three-domain multiplex-terminal restriction fragment length polymorphism, and phylogenetic (PhyloChip) and functional (GeoChip) microarrays. Geogenic factors of soils were determined using lithological-, geomorphological- and soil-mapping combined with analyses of 51 geochemical parameters. Microbial communities differed significantly between landforms, soil horizons, lithologies and also with the occurrence of underlying Au deposits. The strongest responses to these factors, and to amendment with soluble Au(III) complexes, was observed in bacterial communities. PhyloChip analyses revealed a greater abundance and diversity of Alphaproteobacteria (especially Sphingomonas spp.), and Firmicutes (Bacillus spp.) in Au-containing and Au(III)-amended soils. Analyses of potential function (GeoChip) revealed higher abundances of metal-resistance genes in metal-rich soils. For example, genes that hybridised with metal-resistance genes copA, chrA and czcA of a prevalent aurophillic bacterium, Cupriavidus metallidurans CH34, occurred only in auriferous soils. These data help establish key links between geogenic factors and the phylogeny and function within soil microbial communities. In particular, the landform, which is a crucial factor in determining soil geochemistry, strongly affected microbial community structures. PMID:22673626

  16. Influence of geogenic factors on microbial communities in metallogenic Australian soils.

    PubMed

    Reith, Frank; Brugger, Joel; Zammit, Carla M; Gregg, Adrienne L; Goldfarb, Katherine C; Andersen, Gary L; DeSantis, Todd Z; Piceno, Yvette M; Brodie, Eoin L; Lu, Zhenmei; He, Zhili; Zhou, Jizhong; Wakelin, Steven A

    2012-11-01

    Links between microbial community assemblages and geogenic factors were assessed in 187 soil samples collected from four metal-rich provinces across Australia. Field-fresh soils and soils incubated with soluble Au(III) complexes were analysed using three-domain multiplex-terminal restriction fragment length polymorphism, and phylogenetic (PhyloChip) and functional (GeoChip) microarrays. Geogenic factors of soils were determined using lithological-, geomorphological- and soil-mapping combined with analyses of 51 geochemical parameters. Microbial communities differed significantly between landforms, soil horizons, lithologies and also with the occurrence of underlying Au deposits. The strongest responses to these factors, and to amendment with soluble Au(III) complexes, was observed in bacterial communities. PhyloChip analyses revealed a greater abundance and diversity of Alphaproteobacteria (especially Sphingomonas spp.), and Firmicutes (Bacillus spp.) in Au-containing and Au(III)-amended soils. Analyses of potential function (GeoChip) revealed higher abundances of metal-resistance genes in metal-rich soils. For example, genes that hybridised with metal-resistance genes copA, chrA and czcA of a prevalent aurophillic bacterium, Cupriavidus metallidurans CH34, occurred only in auriferous soils. These data help establish key links between geogenic factors and the phylogeny and function within soil microbial communities. In particular, the landform, which is a crucial factor in determining soil geochemistry, strongly affected microbial community structures.

  17. Multiplex pyrosequencing of InDel markers for forensic DNA analysis.

    PubMed

    Bus, Magdalena M; Karas, Ognjen; Allen, Marie

    2016-12-01

    The capillary electrophoresis (CE) technology is commonly used for fragment length separation of markers in forensic DNA analysis. In this study, pyrosequencing technology was used as an alternative and rapid tool for the analysis of biallelic InDel (insertion/deletion) markers for individual identification. The DNA typing is based on a subset of the InDel markers that are included in the Investigator ® DIPplex Kit, which are sequenced in a multiplex pyrosequencing analysis. To facilitate the analysis of degraded DNA, the polymerase chain reaction (PCR) fragments were kept short in the primer design. Samples from individuals of Swedish origin were genotyped using the pyrosequencing strategy and analysis of the Investigator ® DIPplex markers with CE. A comparison between the pyrosequencing and CE data revealed concordant results demonstrating a robust and correct genotyping by pyrosequencing. Using optimal marker combination and a directed dispensation strategy, five markers could be multiplexed and analyzed simultaneously. In this proof-of-principle study, we demonstrate that multiplex InDel pyrosequencing analysis is possible. However, further studies on degraded samples, lower DNA quantities, and mixtures will be required to fully optimize InDel analysis by pyrosequencing for forensic applications. Overall, although CE analysis is implemented in most forensic laboratories, multiplex InDel pyrosequencing offers a cost-effective alternative for some applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Methicillin-Resistant Staphylococcus aureus from Brazilian Dairy Farms and Identification of Novel Sequence Types.

    PubMed

    Oliveira, C J B; Tiao, N; de Sousa, F G C; de Moura, J F P; Santos Filho, L; Gebreyes, W A

    2016-03-01

    The aim of this study was to investigate the phenotypic and genotypic diversity and anti-microbial resistance among staphylococci of dairy herds that originated from Paraiba State, north-eastern Brazil, a region where such studies are rare. Milk samples (n = 552) were collected from 15 dairy farms. Isolates were evaluated for anti-microbial susceptibility by Kirby-Bauer disc diffusion method. Confirmation of methicillin-resistant Staphylococcus aureus (MRSA) was performed using multiplex PCR targeting mecA and nuc genes in addition to phenotypic assay based on PBP-2a latex agglutination. Clonal relatedness of isolates was determined by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) genotyping. Staphylococci were detected in 269 (49%) of the samples. Among these, 65 (24%) were S. aureus. The remaining 204 isolates were either coagulase-negative staphylococci (n = 188; 70%) or coagulase positive other than S. aureus (n = 16; 6%). Staphylococci were cultured in seven (35%) of the 20 hand swab samples, from which five isolates were S. aureus. The isolates were most commonly resistant against penicillin (43%), ampicillin (38%) and oxacillin (27%). The gene mecA was detected in 21 S. aureus from milk and in one isolate from a milker's hand. None of the isolates were resistant to vancomycin. PFGE findings showed high clonal diversity among the isolates. Based on MLST, we identified a total of 11 different sequence types (STs 1, 5, 6, 83, 97, 126, 1583, 1622, 1623, 1624 and 1625) with four novel STs (ST1622-ST1625). The findings show that MRSA is prevalent in milk from semi-extensive dairy cows in north-eastern Brazil, and further investigation on its extent in various types of milk production systems and the farm-to-table continuum is warranted. © 2015 Blackwell Verlag GmbH.

  19. Microbial Diagnostic Microarrays for the Detection and Typing of Food- and Water-Borne (Bacterial) Pathogens

    PubMed Central

    Kostić, Tanja; Sessitsch, Angela

    2011-01-01

    Reliable and sensitive pathogen detection in clinical and environmental (including food and water) samples is of greatest importance for public health. Standard microbiological methods have several limitations and improved alternatives are needed. Most important requirements for reliable analysis include: (i) specificity; (ii) sensitivity; (iii) multiplexing potential; (iv) robustness; (v) speed; (vi) automation potential; and (vii) low cost. Microarray technology can, through its very nature, fulfill many of these requirements directly and the remaining challenges have been tackled. In this review, we attempt to compare performance characteristics of the microbial diagnostic microarrays developed for the detection and typing of food and water pathogens, and discuss limitations, points still to be addressed and issues specific for the analysis of food, water and environmental samples. PMID:27605332

  20. Streamlining genomes: toward the generation of simplified and stabilized microbial systems.

    PubMed

    Leprince, Audrey; van Passel, Mark W J; dos Santos, Vitor A P Martins

    2012-10-01

    At the junction between systems and synthetic biology, genome streamlining provides a solid foundation both for increased understanding of cellular circuitry, and for the tailoring of microbial chassis towards innovative biotechnological applications. Iterative genomic deletions (targeted and random) helps to generate simplified, stabilized and predictable genomes, whereas multiplexing genome engineering reveals a broad functional genetic diversity. The decrease in oligo and gene synthesis costs promises effective combinatorial tools for the generation of chassis based on streamlined and tractable genomes. Here we review recent progresses in streamlining genomes through recombineering techniques aiming to generate insights into cellular mechanisms and responses towards the design and assembly of streamlined genome chassis together with new cellular modules in diverse biotechnological applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. One-step multiplex RT-qPCR detects three citrus viroids from different genera in a wide range of hosts.

    PubMed

    Osman, Fatima; Dang, Tyler; Bodaghi, Sohrab; Vidalakis, Georgios

    2017-07-01

    A one-step multiplex reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) based on species-specific minor groove binding (MGB) probes, was developed for the simultaneous detection, identification, and quantification of three citrus viroids belonging to different genera. Citrus exocortis viroid (Pospiviroid), Hop stunt viroid (Hostuviroid), and Citrus bark cracking viroid (Cocadviroid) cause a variety of maladies in agriculturally significant crops. Therefore, reliable assays for their detection are essential tools for various government and industry organizations implementing disease management programs. Singleplex qPCR primers and MGB probes were designed individually for the detection of the three targeted viroids, and subsequently combined in a one-step multiplex RT-qPCR reaction. A wide host range of woody plants, including citrus, grapevines, apricots, plums and herbaceous plants such as tomato, cucumber, eggplant and chrysanthemum different world regions were used to validate the assay. Single, double and triple viroid infections were identified in the tested samples. The developed multiplex RT-qPCR assay was compared with a previously reported SYBR Green I RT-qPCR for the universal detection of citrus viroids. Both assays accurately identified all citrus viroid infected samples. The multiplex assay complemented the SYBR Green I universal detection assay by differentiating among citrus viroid species in the positive samples. The developed multiplex RT-qPCR assay has the potential to simultaneously detect each targeted viroid and could be used in high throughput screenings for citrus viroids in field surveys, germplasm banks, nurseries and other viroid disease management programs. Copyright © 2017. Published by Elsevier B.V.

  2. Development of Multiplex Reverse Transcription-Polymerase Chain Reaction for Simultaneous Detection of Influenza A, B and Adenoviruses

    PubMed Central

    Nakhaie, Mohsen; Soleimanjahi, Hoorieh; Mollaie, Hamid Reza; Arabzadeh, Seyed Mohamad Ali

    2018-01-01

    Background and objective: Millions of people in developing countries lose their lives due to acute respiratory infections, such as Influenza A & B and Adeno viruses. Given the importance of rapid identification of the virus, in this study the researchers attempted to design a method that enables detection of influenza A, B, and adenoviruses, quickly and simultaneously. The Multiplex RT PCR method was the preferred method for the detection of influenza A, B, and adenoviruses in clinical specimens because it is rapid, sensitive, specific, and more cost-effective than alternative methods Methods: After collecting samples from patients with respiratory disease, virus genome was extracted, then Monoplex PCR was used on positive samples and Multiplex RT-PCR on clinical specimens. Finally, by comparing the bands of these samples, the type of virus in the clinical samples was determined. Results: Performing Multiplex RT-PCR on 50 samples of respiratory tract led to following results; flu A: 12.5%, fluB: 50%, adeno: 27.5%, negative: 7.5%, and 2.5% contamination. Conclusion: Reverse transcription-multiplex Polymerase Chain Reaction (PCR) technique, a rapid diagnostic tool, has potential for high-throughput testing. This method has a significant advantage, which provides simultaneous amplification of numerous viruses in a single reaction. This study concentrates on multiplex molecular technologies and their clinical application for the detection and quantification of respiratory pathogens. The improvement in diagnostic testing for viral respiratory pathogens effects patient management, and leads to more cost-effective delivery of care. It limits unnecessary antibiotic use and improves clinical management by use of suitable treatment. PMID:29731796

  3. Direct PCR - A rapid method for multiplexed detection of different serotypes of Salmonella in enriched pork meat samples.

    PubMed

    Chin, Wai Hoe; Sun, Yi; Høgberg, Jonas; Quyen, Than Linh; Engelsmann, Pia; Wolff, Anders; Bang, Dang Duong

    2017-04-01

    Salmonellosis, an infectious disease caused by Salmonella spp., is one of the most common foodborne diseases. Isolation and identification of Salmonella by conventional bacterial culture method is time consuming. In response to the demand for rapid on line or at site detection of pathogens, in this study, we developed a multiplex Direct PCR method for rapid detection of different Salmonella serotypes directly from pork meat samples without any DNA purification steps. An inhibitor-resistant Phusion Pfu DNA polymerase was used to overcome PCR inhibition. Four pairs of primers including a pair of newly designed primers targeting Salmonella spp. at subtype level were incorporated in the multiplex Direct PCR. To maximize the efficiency of the Direct PCR, the ratio between sample and dilution buffer was optimized. The sensitivity and specificity of the multiplex Direct PCR were tested using naturally contaminated pork meat samples for detecting and subtyping of Salmonella spp. Conventional bacterial culture methods were used as reference to evaluate the performance of the multiplex Direct PCR. Relative accuracy, sensitivity and specificity of 98.8%; 97.6% and 100%, respectively, were achieved by the method. Application of the multiplex Direct PCR to detect Salmonella in pork meat at slaughter reduces the time of detection from 5 to 6 days by conventional bacterial culture and serotyping methods to 14 h (including 12 h enrichment time). Furthermore, the method poses a possibility of miniaturization and integration into a point-of-need Lab-on-a-chip system for rapid online pathogen detection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Serotype and mating type characterization of Cryptococcus neoformans by multiplex PCR.

    PubMed

    Carvalho, Vívian Gonçalves; Terceti, Mateus Souza; Dias, Amanda Latercia Tranches; Paula, Claudete Rodrigues; Lyon, Juliana Pereira; de Siqueira, Antônio Martins; Franco, Marília Caixeta

    2007-01-01

    Cryptococcus neoformans is an encapsulated yeast, etiological agent of cryptococcosis. The species is commonly associated with pigeon droppings and plant materials. The aim of the present work was to verify the presence of the yeast in pigeon droppings, and to identify the isolates obtained in serotypes and mating types (MAT). Ten samples of pigeon droppings were collected in the rural area of the city of Alfenas, Brazil. Samples were inoculated in agar Niger medium for fungal isolation and 22 isolates with characteristics of C. neoformans were obtained. The serotypes and MAT were determined by multiplex PCR using specific primers. Serotypes were also determined by using the Kit Crypto Check. Among the 22 samples evaluated, eight were identified as C. neoformans by classic identification tests. These samples were characterized as serotype A by the Kit Crypto check and as serotype A MAT alpha by the multiplex PCR. The present study reinforces the evidence that pigeon droppings are a reservoir for C. neoformans and confirms the prevalence of C. neoformans var. grubii (A alpha) among environmental isolates. It also demonstrates that multiplex PCR is an acceptable alternative for serotype analysis because it reduces the costs for each reaction and analyses serotype and MAT simultaneously.

  5. A Multiplex PCR for Simultaneous Detection of Three Zoonotic Parasites Ancylostoma ceylanicum, A. caninum, and Giardia lamblia Assemblage A

    PubMed Central

    Hu, Wei; Wu, Sheng; Yu, Xingang; Abullahi, Auwalu Yusuf; Song, Meiran; Tan, Liping; Wang, Zhen; Jiang, Biao; Li, Guoqing

    2015-01-01

    Ancylostoma ceylanicum, A. caninum, and Giardia lamblia assemblage A are common intestinal parasites of dogs and cats; they can also infect humans, causing parasitic zoonoses. In this study, a multiplex PCR method was developed for simultaneous identification and detection of those three zoonotic parasites. Three pairs of specific primers were designed based on ITS sequence of A. ceylanicum and A. caninum and TPI gene of G. lamblia available in the GenBank. The multiplex PCR reaction system was established by optimizing the reaction condition, and a series of tests on the sensitivity, specificity, and clinical application were also conducted. Results showed that three target fragments were amplified specifically; the detection limit was 10 eggs for both A. ceylanicum and A. caninum, 72 pg DNA for G. lamblia. Of 112 clinical fecal samples, 34.8% and 17.8% samples were positive for A. caninum and A. ceylanicum, respectively, while only 2.7% samples were positive for G. lamblia assemblage A. It is concluded that the established multiplex PCR assay is a convenient, rapid, cost-effective, and high-efficiency method for molecular detection and epidemiological investigation of three zoonotic parasites. PMID:26447336

  6. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology.

    PubMed

    von Bergen, Martin; Jehmlich, Nico; Taubert, Martin; Vogt, Carsten; Bastida, Felipe; Herbst, Florian-Alexander; Schmidt, Frank; Richnow, Hans-Hermann; Seifert, Jana

    2013-10-01

    The recent development of metaproteomics has enabled the direct identification and quantification of expressed proteins from microbial communities in situ, without the need for microbial enrichment. This became possible by (1) significant increases in quality and quantity of metagenome data and by improvements of (2) accuracy and (3) sensitivity of modern mass spectrometers (MS). The identification of physiologically relevant enzymes can help to understand the role of specific species within a community or an ecological niche. Beside identification, relative and absolute quantitation is also crucial. We will review label-free and label-based methods of quantitation in MS-based proteome analysis and the contribution of quantitative proteome data to microbial ecology. Additionally, approaches of protein-based stable isotope probing (protein-SIP) for deciphering community structures are reviewed. Information on the species-specific metabolic activity can be obtained when substrates or nutrients are labeled with stable isotopes in a protein-SIP approach. The stable isotopes ((13)C, (15)N, (36)S) are incorporated into proteins and the rate of incorporation can be used for assessing the metabolic activity of the corresponding species. We will focus on the relevance of the metabolic and phylogenetic information retrieved with protein-SIP studies and for detecting and quantifying the carbon flux within microbial consortia. Furthermore, the combination of protein-SIP with established tools in microbial ecology such as other stable isotope probing techniques are discussed.

  7. Strain/species identification in metagenomes using genome-specific markers

    PubMed Central

    Tu, Qichao; He, Zhili; Zhou, Jizhong

    2014-01-01

    Shotgun metagenome sequencing has become a fast, cheap and high-throughput technology for characterizing microbial communities in complex environments and human body sites. However, accurate identification of microorganisms at the strain/species level remains extremely challenging. We present a novel k-mer-based approach, termed GSMer, that identifies genome-specific markers (GSMs) from currently sequenced microbial genomes, which were then used for strain/species-level identification in metagenomes. Using 5390 sequenced microbial genomes, 8 770 321 50-mer strain-specific and 11 736 360 species-specific GSMs were identified for 4088 strains and 2005 species (4933 strains), respectively. The GSMs were first evaluated against mock community metagenomes, recently sequenced genomes and real metagenomes from different body sites, suggesting that the identified GSMs were specific to their targeting genomes. Sensitivity evaluation against synthetic metagenomes with different coverage suggested that 50 GSMs per strain were sufficient to identify most microbial strains with ≥0.25× coverage, and 10% of selected GSMs in a database should be detected for confident positive callings. Application of GSMs identified 45 and 74 microbial strains/species significantly associated with type 2 diabetes patients and obese/lean individuals from corresponding gastrointestinal tract metagenomes, respectively. Our result agreed with previous studies but provided strain-level information. The approach can be directly applied to identify microbial strains/species from raw metagenomes, without the effort of complex data pre-processing. PMID:24523352

  8. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    PubMed

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for the final evaluation. After the second evaluation, the final amplification curves and melting curves have been achieved.

  9. Evaluation of Several Biochemical and Molecular Techniques for Identification of Streptococcus pneumoniae and Streptococcus pseudopneumoniae and Their Detection in Respiratory Samples

    PubMed Central

    Schelfaut, Jacqueline J. G.; Bernards, Alexandra T.; Claas, Eric C. J.

    2012-01-01

    The identification and detection of mitis group streptococci, which contain Streptococcus pneumoniae, have been hampered by the lack of sensitive and specific assays. In this study, we evaluated several biochemical and molecular assays for the identification of S. pneumoniae and Streptococcus pseudopneumoniae and their distinction from other mitis group streptococci using a collection of 54 isolates obtained by the routine culturing of 53 respiratory specimens from patients with community-acquired pneumonia. The combined results of the biochemical and molecular assays indicated the presence of 23 S. pneumoniae, 2 S. pseudopneumoniae, and 29 other mitis group streptococcal isolates. The tube bile solubility test that is considered gold standard for the identification of S. pneumoniae showed concordant results with optochin susceptibility testing (CO2 atmosphere) and a real-time multiplex PCR assay targeting the Spn9802 fragment and the autolysin gene. Optochin susceptibility testing upon incubation in an O2 atmosphere, bile solubility testing by oxgall disk, matrix-assisted laser desorption ionization–time of flight mass spectrometry, and sequence analysis of the tuf and rpoB genes resulted in several false-positive, false-negative, or inconclusive results. The S. pseudopneumoniae isolates could be identified only by molecular assays, and the multiplex real-time PCR assay was concluded to be most convenient for the identification of S. pneumoniae and S. pseudopneumoniae isolates. Using this method, S. pneumoniae and S. pseudopneumoniae DNA could be detected in the respiratory samples from which they were isolated and in an additional 11 samples from which only other streptococci were isolated. PMID:22278834

  10. Functional characterization of Gram-negative bacteria from different genera as multiplex cadmium biosensors.

    PubMed

    Bereza-Malcolm, Lara; Aracic, Sanja; Kannan, Ruban; Mann, Gülay; Franks, Ashley E

    2017-08-15

    Widespread presence of cadmium in soil and water systems is a consequence of industrial and agricultural processes. Subsequent accumulation of cadmium in food and drinking water can result in accidental consumption of dangerous concentrations. As such, cadmium environmental contamination poses a significant threat to human health. Development of microbial biosensors, as a novel alternative method for in situ cadmium detection, may reduce human exposure by complementing traditional analytical methods. In this study, a multiplex cadmium biosensing construct was assembled by cloning a single-output cadmium biosensor element, cadRgfp, and a constitutively expressed mrfp1 onto a broad-host range vector. Incorporation of the duplex fluorescent output [green and red fluorescence proteins] allowed measurement of biosensor functionality and viability. The biosensor construct was tested in several Gram-negative bacteria including Pseudomonas, Shewanella and Enterobacter. The multiplex cadmium biosensors were responsive to cadmium concentrations ranging from 0.01 to 10µgml -1 , as well as several other heavy metals, including arsenic, mercury and lead at similar concentrations. The biosensors were also responsive within 20-40min following exposure to 3µgml -1 cadmium. This study highlights the importance of testing biosensor constructs, developed using synthetic biology principles, in different bacterial genera. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. [Monitoring AIDS patients for the development of cytomegalovirus (CMV) disease using multiplex PCR].

    PubMed

    Terra, A P; Silva-Vergara, M L; Gomes, R A; Pereira, C L; Simpson, A J; Caballero, O L

    2000-01-01

    The human cytomegalovirus is an important pathogen in patients infected with the human immunodeficiency virus (HIV). The CMV viral load seems to be predictor of the development of the CMV disease in these patients. We used a multiplex PCR protocol that also provides quantitative information in those samples from which a single band is amplified and contains fewer viral genomes than those from which both targets are amplified. Monthly blood samples were collected from 270 AIDS patients. From twenty patients, two CMV targets were amplified three or more consecutive times and these patients developed CMV related disease during the study. In contrast, patients who did not result positive for both viral targets, for three or more consecutive times, or who had alternating positive and negative samples during the follow up did not present CMV related disease. The results suggest that the PCR multiplex can be used for the identification of HIV positive patients with higher risk of development of CMV disease.

  12. Sensitive Molecular Diagnostics for Cutaneous Leishmaniasis.

    PubMed

    Sagi, Orli; Berkowitz, Anat; Codish, Shlomi; Novack, Victor; Rashti, Aviv; Akad, Fouad; Shemer-Avni, Yonat

    2017-01-01

    Rapid diagnosis of cutaneous leishmaniasis (CL) and identification of Leishmania species is highly important for the disease management. In Israel, CL is caused mainly by Leishmania major and Leishmania tropica species. We established an easy to handle point of care lesion-swabbing, combined with a highly sensitive multiplex real time PCR (multiplex qPCR) for accurate and rapid diagnosis of Leishmania species. Using three probes: one general for: Leishmania species, and two specific for L major , and L tropica , we screened 1783 clinical samples collected during two years. Leishmania species was found in 1086 individuals, 1008 L major , and 70 L tropica . Eight samples positive for Leishmania species only, were further tested using a second set of multiplex qPCR developed, and were found positive for Leishmania braziliensis and Leishmania infantum/donovani (2 and 6 samples, concomitantly). Taken together, the test enabled diagnostics and better treatment of Leishmania infections from the Old World (1078 samples) and the New World (8 samples), and the subtyping of the dominant strains in the region, as well as in returning travelers'.

  13. Comparison between culture and a multiplex quantitative real-time polymerase chain reaction assay detecting Ureaplasma urealyticum and U. parvum.

    PubMed

    Frølund, Maria; Björnelius, Eva; Lidbrink, Peter; Ahrens, Peter; Jensen, Jørgen Skov

    2014-01-01

    A novel multiplex quantitative real-time polymerase chain reaction (qPCR) for simultaneous detection of U. urealyticum and U. parvum was developed and compared with quantitative culture in Shepard's 10 C medium for ureaplasmas in urethral swabs from 129 men and 66 women, and cervical swabs from 61 women. Using culture as the gold standard, the sensitivity of the qPCR was 96% and 95% for female urethral and cervical swabs, respectively. In male urethral swabs the sensitivity was 89%. The corresponding specificities were 100%, 87% and 99%. The qPCR showed a linear increasing DNA copy number with increasing colour-changing units. Although slightly less sensitive than culture, this multiplex qPCR assay detecting U. urealyticum and U. parvum constitutes a simple and fast alternative to the traditional methods for identification of ureaplasmas and allows simultaneous species differentiation and quantitation in clinical samples. Furthermore, specimens overgrown by other bacteria using the culture method can be evaluated in the qPCR.

  14. Genetic analysis of eight population groups living in Taiwan using a 13 X-chromosomal STR loci multiplex system.

    PubMed

    Hwa, Hsiao-Lin; Lee, James Chun-I; Chang, Yih-Yuan; Yin, Hsiang-Yi; Chen, Ya-Hui; Tseng, Li-Hui; Su, Yi-Ning; Ko, Tsang-Ming

    2011-01-01

    A 13 X-chromosomal short tandem repeat (STR) multiplex system (DXS6807, DXS8378, DSX9902, DXS7132, DXS9898, DXS6809, DXS6789, DXS7424, DXS101, GATA172D05, HPRTB, DXS8377, and DXS7423) was tested on 1,037 DNA samples from eight population groups currently living in Taiwan. Different distributions of the allelic frequencies in different populations were presented. DXS8377 and DXS101 were the two most polymorphic loci in these eight populations, whereas DXS7423 was the least informative marker in most of the populations studied. The genetic distances between the populations and the constructed phylogenetic tree revealed a long genetic distance between Asian and Caucasian populations as well as isolation of the Tao population. The phylogenetic tree grouped populations into clusters compatible with their ethnogeographic relationships. This 13 X-chromosomal short tandem repeat multiplex system offers a considerable number of polymorphic patterns in different populations. This system can be useful in forensic identification casework and ethnogeographic research.

  15. Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection.

    PubMed

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2007-06-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive, and multiplex format, an alternative surface-enhanced Raman scattering based probe was designed and fabricated to covalently attach both DNA probing sequence and nonfluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the nonfluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA to its complementary targets was successfully accomplished with a long-term goal to use nonfluorescent RTags in a Raman-based DNA microarray platform.

  16. Surface-Enhanced Raman Scattering Based Nonfluorescent Probe for Multiplex DNA Detection

    PubMed Central

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2008-01-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive and multiplex format, an alternative surface enhanced Raman scattering (SERS) based probe was designed and fabricated to covalently attach both DNA probing sequence and non-fluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the non-fluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA (ssDNA) to its complementary targets was successfully accomplished with a long-term goal to use non-fluorescent RTags in a Raman-based DNA microarray platform. PMID:17465531

  17. Fuzzy-logic based strategy for validation of multiplex methods: example with qualitative GMO assays.

    PubMed

    Bellocchi, Gianni; Bertholet, Vincent; Hamels, Sandrine; Moens, W; Remacle, José; Van den Eede, Guy

    2010-02-01

    This paper illustrates the advantages that a fuzzy-based aggregation method could bring into the validation of a multiplex method for GMO detection (DualChip GMO kit, Eppendorf). Guidelines for validation of chemical, bio-chemical, pharmaceutical and genetic methods have been developed and ad hoc validation statistics are available and routinely used, for in-house and inter-laboratory testing, and decision-making. Fuzzy logic allows summarising the information obtained by independent validation statistics into one synthetic indicator of overall method performance. The microarray technology, introduced for simultaneous identification of multiple GMOs, poses specific validation issues (patterns of performance for a variety of GMOs at different concentrations). A fuzzy-based indicator for overall evaluation is illustrated in this paper, and applied to validation data for different genetically modified elements. Remarks were drawn on the analytical results. The fuzzy-logic based rules were shown to be applicable to improve interpretation of results and facilitate overall evaluation of the multiplex method.

  18. Acute diarrhoea due to a Shiga toxin 2e-producing Escherichia coli O8 : H19.

    PubMed

    Saupe, Angela; Edel, Birgit; Pfister, Wolfgang; Löffler, Bettina; Ehricht, Ralf; Rödel, Jürgen

    2017-06-01

    Introduction. Identification of non-O157 Shiga-toxin-producing Escherichia coli (STEC) infections may be underestimated in microbiological diagnosis. Case presentation. A 58-year-old woman developed diarrhoea with watery and subsequently mucous stool. Initial multiplex PCR testing revealed a positive result for stx 2 . Culture isolation of a STEC was successful only after repeated inoculation of chromogenic E. coli media. Molecular characterization was performed and identified the isolate as stx 2e -positive STEC of serotype O8 : H19. The strain harboured lpfA , but not eae . Conclusion. This case highlights the usefulness of initial multiplex PCR for diagnosis of non-O157 STEC infection.

  19. Novel Multiplex Real-Time PCR Diagnostic Assay for Identification and Differentiation of Mycobacterium tuberculosis, Mycobacterium canettii, and Mycobacterium tuberculosis Complex Strains▿†

    PubMed Central

    Reddington, Kate; O'Grady, Justin; Dorai-Raj, Siobhan; Maher, Majella; van Soolingen, Dick; Barry, Thomas

    2011-01-01

    Tuberculosis (TB) in humans is caused by members of the Mycobacterium tuberculosis complex (MTC). Rapid detection of the MTC is necessary for the timely initiation of antibiotic treatment, while differentiation between members of the complex may be important to guide the appropriate antibiotic treatment and provide epidemiological information. In this study, a multiplex real-time PCR diagnostics assay using novel molecular targets was designed to identify the MTC while simultaneously differentiating between M. tuberculosis and M. canettii. The lepA gene was targeted for the detection of members of the MTC, the wbbl1 gene was used for the differentiation of M. tuberculosis and M. canettii from the remainder of the complex, and a unique region of the M. canettii genome, a possible novel region of difference (RD), was targeted for the specific identification of M. canettii. The multiplex real-time PCR assay was tested using 125 bacterial strains (64 MTC isolates, 44 nontuberculosis mycobacteria [NTM], and 17 other bacteria). The assay was determined to be 100% specific for the mycobacteria tested. Limits of detection of 2.2, 2.17, and 0.73 cell equivalents were determined for M. tuberculosis/M. canettii, the MTC, and M. canettii, respectively, using probit regression analysis. Further validation of this diagnostics assay, using clinical samples, should demonstrate its potential for the rapid, accurate, and sensitive diagnosis of TB caused by M. tuberculosis, M. canettii, and the other members of the MTC. PMID:21123525

  20. Development and evaluation of hexaplex PCR for rapid detection of methicillin, cadmium/zinc and antiseptic-resistant staphylococci, with simultaneous identification of PVL-positive and -negative Staphylococcus aureus and coagulase negative staphylococci.

    PubMed

    Panda, Sasmita; Kar, Sarita; Choudhury, Ranginee; Sharma, Savitri; Singh, Durg V

    2014-03-01

    We developed a multiplex PCR to detect the presence of methicillin- (mecA), cadmium/zinc-(czrC) and antiseptic-resistant (qacA/B) staphylococci and to identify Panton-Valentine leukocidin (PVL)-positive and -negative Staphylococcus aureus and coagulase-negative staphylococci (CoNS) from infected and healthy eyes. The assay was validated on 177 staphylococci comprising of 55 each of S. aureus and CoNS isolated from infected eyes and five S. aureus and 62 CoNS isolated from healthy eyes and nine direct ocular samples. Nine direct ocular samples for in situ testing consisted of corneal scrapings (4), conjunctiva swabs (2) and others (3). Multiplex PCR result was correlated with genotype data obtained with single PCR and dot-blot assay. The control strains that were positive in multiplex PCR for 16S rRNA, nuc, mecA, pvl, czrC and qacA/B genes were also positive in the dot-blot assay. The specificity of amplified genes obtained with reference strains was further confirmed by DNA sequencing. The single step-hexaplex PCR method can be used for rapid detection of mecA, nuc, pvl, czrC and qacA/B genes in staphylococci with simultaneous identification of PVL-positive and -negative S. aureus and CoNS from a variety of ocular samples. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Microbial community controls on decomposition and soil carbon storage

    NASA Astrophysics Data System (ADS)

    Frey, S. D.

    2016-12-01

    Soil is one of the most diverse habitats on Earth and one of the least characterized in terms of the identification and ecological roles of soil organisms. Soils also contain the largest repository of organic C in the terrestrial biosphere and the activities of heterotrophic soil organisms are responsible for one of the largest annual fluxes of CO2 to the atmosphere. A fundamental controversy in ecosystem ecology is the degree to which identification of microbial taxa informs our ability to understand and model ecosystem-scale processes, such as soil carbon storage and fluxes. We have evidence that microbial identity does matter, particularly in a global change context where soil microorganisms experience selective pressures to adapt to changing environments. In particular, our work at the Harvard Forest Long-term Ecological Research (LTER) site demonstrates that the microbial community is fundamentally altered by global change stressors (climate warming, nitrogen deposition, biotic invasion) and that microbial taxa exposed to long-term environmental change exhibit an altered capacity to decompose organic matter. This talk will discuss the relative importance of changes in microbial community structure versus microbial physiology for soil organic matter degradation and stabilization.

  2. Predominant Microbial Assemblages and Enzyme Activities during Record Drought and Heat in Agricultural Soils

    USDA-ARS?s Scientific Manuscript database

    Identification of microbial assemblages predominant under natural extreme climatic events will aid in our understanding of the resilience and resistance of microbial communities to climate change. From November 2010 to August 2011, the Southern High Plains (SHP) of Texas, U.S., received only 39.6 mm...

  3. A novel RT-multiplex PCR for enteroviruses, hepatitis A and E viruses and influenza A virus among infants and children with diarrhea in Vietnam.

    PubMed

    Phan, T G; Nguyen, T A; Yan, H; Okitsu, S; Ushijima, H

    2005-06-01

    A novel reverse transcription-multiplex polymerase chain reaction (RT-multiplex PCR) assay that can detect enteroviruses, hepatitis A and E viruses and influenza A virus from various hosts (avian species, human, swine and horse) was developed. The identification of that group of viruses was performed with the mixture of four pairs of published specific primers (F1 and R1, P3 and P4, 2s and 2as, MMU42 and MMU43) for amplifying viral genomes and specifically generated four different amplicon sizes of 440, 267, 146 and 219 bp for enteroviruses, hepatitis A and E viruses and influenza A virus, respectively. A total of 276 fecal specimens (previously screened for rotavirus, adenovirus, norovirus, sapovirus and astrovirus-negative) from infants and children admitted into hospital with acute gastroenteritis in Ho Chi Minh city, Vietnam during October 2002 and September 2003 were collected and further tested for the presence of those viruses by RT-multiplex PCR. Enteroviruses were identified in 27 specimens and this represented 9.8%. No hepatitis A and E viruses and influenza A virus was found among these subjects. The sensitivity and specificity of RT-multiplex PCR were also assessed and demonstrated the strong validation against RT-monoplex PCR. Taken together, the findings clearly indicated that this novel RT-multiplex PCR is a simple and potential assay for rapid, sensitive, specific and cost-effective laboratory diagnosis to investigate molecular epidemiology of acute gastroenteritis caused by enteroviruses, hepatitis A and E viruses and influenza A virus. This report is the first, to our knowledge, detecting these kinds of viruses in diarrheal feces from infants and children in Vietnam.

  4. A multiplex PCR method for detection of Aspergillus spp. and Mycobacterium tuberculosis in BAL specimens.

    PubMed

    Amini, F; Kachuei, R; Noorbakhsh, F; Imani Fooladi, A A

    2015-06-01

    The aim of this study was the detection of Aspergillus species and Mycobacterium tuberculosis together in bronchoalveolar lavage (BAL) using of multiplex PCR. In this study, from September 2012 until June 2013, 100 bronchoalveolar lavage (BAL) specimens were collected from patients suspected of tuberculosis (TB). After the direct and culture test, multiplex PCR were utilized in order to diagnose Aspergillus species and M. tuberculosis. Phenol-chloroform manual method was used in order to extract DNA from these microorganisms. Aspergillus specific primers, M. tuberculosis designed primers and beta actin primers were used for multiplex PCR. In this study, by multiplex PCR method, Aspergillus species were identified in 12 samples (12%), positive samples in direct and culture test were respectively 11% and 10%. Sensitivity and specificity of this method in comparison to direct test were respectively 100% and 98.8%, also sensitivity and specificity of this method in comparison to culture test were respectively 100% and 97.7%. In this assay, M. tuberculosis was identified in 8 samples (8%). Mycobacterium-positive samples in molecular method, direct and culture test were respectively 6%, 5% and 7%. Sensitivity and specificity of PCR method in comparison to direct test were 80% and 97.8% also sensitivity and specificity of this method in comparison to culture test was 71.4% and 98.9%. In the present study, multiplex PCR method had higher sensitivity than direct and culture test in order to identify and detect Aspergillus, also this method had lower sensitivity for identification of M. tuberculosis, suggesting that the method of DNA extraction was not suitable. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Identification of Highly Pathogenic Microorganisms by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: Results of an Interlaboratory Ring Trial

    PubMed Central

    Lasch, Peter; Wahab, Tara; Weil, Sandra; Pályi, Bernadett; Tomaso, Herbert; Zange, Sabine; Kiland Granerud, Beathe; Drevinek, Michal; Kokotovic, Branko; Wittwer, Matthias; Pflüger, Valentin; Di Caro, Antonino; Stämmler, Maren; Grunow, Roland

    2015-01-01

    In the case of a release of highly pathogenic bacteria (HPB), there is an urgent need for rapid, accurate, and reliable diagnostics. MALDI-TOF mass spectrometry is a rapid, accurate, and relatively inexpensive technique that is becoming increasingly important in microbiological diagnostics to complement classical microbiology, PCR, and genotyping of HPB. In the present study, the results of a joint exercise with 11 partner institutions from nine European countries are presented. In this exercise, 10 distinct microbial samples, among them five HPB, Bacillus anthracis, Brucella canis, Burkholderia mallei, Burkholderia pseudomallei, and Yersinia pestis, were characterized under blinded conditions. Microbial strains were inactivated by high-dose gamma irradiation before shipment. Preparatory investigations ensured that this type of inactivation induced only subtle spectral changes with negligible influence on the quality of the diagnosis. Furthermore, pilot tests on nonpathogenic strains were systematically conducted to ensure the suitability of sample preparation and to optimize and standardize the workflow for microbial identification. The analysis of the microbial mass spectra was carried out by the individual laboratories on the basis of spectral libraries available on site. All mass spectra were also tested against an in-house HPB library at the Robert Koch Institute (RKI). The averaged identification accuracy was 77% in the first case and improved to >93% when the spectral diagnoses were obtained on the basis of the RKI library. The compilation of complete and comprehensive databases with spectra from a broad strain collection is therefore considered of paramount importance for accurate microbial identification. PMID:26063856

  6. Development of a Multiplex Single Base Extension Assay for Mitochondrial DNA Haplogroup Typing

    PubMed Central

    Nelson, Tahnee M.; Just, Rebecca S.; Loreille, Odile; Schanfield, Moses S.; Podini, Daniele

    2007-01-01

    Aim To provide a screening tool to reduce time and sample consumption when attempting mtDNA haplogroup typing. Methods A single base primer extension assay was developed to enable typing, in a single reaction, of twelve mtDNA haplogroup specific polymorphisms. For validation purposes a total of 147 samples were tested including 73 samples successfully haplogroup typed using mtDNA control region (CR) sequence data, 21 samples inconclusively haplogroup typed by CR data, 20 samples previously haplogroup typed using restriction fragment length polymorphism (RFLP) analysis, and 31 samples of known ancestral origin without previous haplogroup typing. Additionally, two highly degraded human bones embalmed and buried in the early 1950s were analyzed using the single nucleotide polymorphisms (SNP) multiplex. Results When the SNP multiplex was used to type the 96 previously CR sequenced specimens, an increase in haplogroup or macrohaplogroup assignment relative to conventional CR sequence analysis was observed. The single base extension assay was also successfully used to assign a haplogroup to decades-old, embalmed skeletal remains dating to World War II. Conclusion The SNP multiplex was successfully used to obtain haplogroup status of highly degraded human bones, and demonstrated the ability to eliminate possible contributors. The SNP multiplex provides a low-cost, high throughput method for typing of mtDNA haplogroups A, B, C, D, E, F, G, H, L1/L2, L3, M, and N that could be useful for screening purposes for human identification efforts and anthropological studies. PMID:17696300

  7. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization

    PubMed Central

    Girard, Laurie D.; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G.

    2014-01-01

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have a high complexity cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotidesequence-dependent segment and a unique “target sequence-independent” 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design of lab-on-chip microfluidic devices, while also reducing consumable costs. At term, it will allow the cost-effective automation of highly multiplexed assays for detection and identification of genetic targets. PMID:25489607

  8. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization.

    PubMed

    Girard, Laurie D; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G

    2015-02-07

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have high complexity and cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotide sequence-dependent segment and a unique "target sequence-independent" 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design of lab-on-chip microfluidic devices, while also reducing consumable costs. At term, it will allow the cost-effective automation of highly multiplexed assays for detection and identification of genetic targets.

  9. MULTIPLE-LOCUS VARIABLE-NUMBER TANDEM REPEAT ANALYSIS OF BRUCELLA ISOLATES FROM THAILAND.

    PubMed

    Kumkrong, Khurawan; Chankate, Phanita; Tonyoung, Wittawat; Intarapuk, Apiradee; Kerdsin, Anusak; Kalambaheti, Thareerat

    2017-01-01

    Brucellosis-induced abortion can result in significant economic loss to farm animals. Brucellosis can be transmitted to humans during slaughter of infected animals or via consumption of contaminated food products. Strain identification of Brucella isolates can reveal the route of transmission. Brucella strains were isolated from vaginal swabs of farm animal, cow milk and from human blood cultures. Multiplex PCR was used to identify Brucella species, and owing to high DNA homology among Brucella isolates, multiple-locus variable-number tandem repeat analysis (MLVA) based on the number of tandem repeats at 16 different genomic loci was used for strain identification. Multiplex PCR categorized the isolates into B. abortus (n = 7), B. melitensis (n = 37), B. suis (n = 3), and 5 of unknown Brucella spp. MLVA-16 clustering analysis differentiated the strains into various genotypes, with Brucella isolates from the same geographic region being closely related, and revealed that the Thai isolates were phylogenetically distinct from those in other countries, including within the Southeast Asian region. Thus, MLVA-16 typing has utility in epidemiological studies.

  10. Fully integrated multiplexed lab-on-a-card assay for enteric pathogens

    NASA Astrophysics Data System (ADS)

    Weigl, B. H.; Gerdes, J.; Tarr, P.; Yager, P.; Dillman, L.; Peck, R.; Ramachandran, S.; Lemba, M.; Kokoris, M.; Nabavi, M.; Battrell, F.; Hoekstra, D.; Klein, E. J.; Denno, D. M.

    2006-01-01

    Under this NIH-funded project, we are developing a lab-on-a-card platform to identify enteric bacterial pathogens in patients presenting with acute diarrhea, with special reference to infections that might be encountered in developing countries. Component functions that are integrated on this platform include on-chip immunocapture of live or whole pathogens, multiplexed nucleic acid amplification and on-chip detection, sample processing to support direct use of clinical specimens, and dry reagent storage and handling. All microfluidic functions are contained on the lab card. This new diagnostic test will be able to rapidly identify and differentiate Shigella dysenteriae serotype 1, Shigella toxin-producing Escherichia coli, E. coli 0157, Campylobacter jejuni, and Salmonella and Shigella species. This presentation will report on progress to date on sample and bacteria processing methodologies, identification and validation of capture antibodies and strategy for organism immunocapture, identification and validation of specific polymerase chain reaction (PCR) primer sequences for over 200 clinical isolates of enteric pathogens, and implementation of on-chip nucleic acid extraction for a subset of those pathogens.

  11. Multiplex PCR method for use in real-time PCR for identification of fish fillets from grouper (Epinephelus and Mycteroperca species) and common substitute species.

    PubMed

    Trotta, Michele; Schönhuth, Susana; Pepe, Tiziana; Cortesi, M Luisa; Puyet, Antonio; Bautista, José M

    2005-03-23

    Mitochondrial 16S rRNA sequences from morphological validated grouper (Epinephelus aeneus, E. caninus, E. costae, and E. marginatus; Mycteroperca fusca and M. rubra), Nile perch (Lates niloticus), and wreck fish (Polyprion americanus) were used to develop an analytical system for group diagnosis based on two alternative Polymerase Chain Reaction (PCR) approaches. The first includes conventional multiplex PCR in which electrophoretic migration of different sizes of bands allowed identification of the fish species. The second approach, involving real-time PCR, produced a single amplicon from each species that showed different Tm values allowing the fish groups to be directly identified. Real-time PCR allows the quick differential diagnosis of the three groups of species and high-throughput screening of multiple samples. Neither PCR system cross-reacted with DNA samples from 41 common marketed fish species, thus conforming to standards for species validation. The use of these two PCR-based methods makes it now possible to discriminate grouper from substitute fish species.

  12. The nature of schizotypy among multigenerational multiplex schizophrenia families

    PubMed Central

    Tarbox, Sarah I.; Almasy, Laura; Gur, Raquel E.; Nimgaonkar, Vishwajit L.; Pogue-Geile, Michael F.

    2012-01-01

    Identification of endophenotypes (Gottesman & Gould, 2003; Gottesman & Shields, 1972) that genetically correlate with schizophrenia and are genetically homogeneous is an important strategy for detecting genes that affect schizophrenia risk. Symptoms of schizotypy may familially correlate with schizophrenia; however, there are critical limitations of the current literature concerning this association. The present study examined the genetic architecture and genetic associations between schizotypy and schizophrenia among multigenerational, multiplex schizophrenia families. Genetic schizotypy factor scales were developed that genetically correlated with schizophrenia, although some relations were unexpected in direction suggesting minimization of “psychotic-like” symptoms. These genetic schizotypy factor scales did not genetically correlate with major depressive disorder or substance dependence indicating specificity to schizophrenia. The results highlight the possibility of significant response bias in schizophrenia families, particularly among close relatives, and suggest an important consideration when acquiring self-report information. This is a topic that deserves future study as the origins of this putative bias in relatives are unclear. In addition, the results support the identification of genetic schizotypy factors as a promising technique for maximizing genetic correlation of endophenotypes with schizophrenia. PMID:22288909

  13. A new multiplex real-time polymerase chain reaction assay for the diagnosis of periprosthetic joint infection.

    PubMed

    Kawamura, Masaki; Kobayashi, Naomi; Inaba, Yutaka; Choe, Hyonmin; Tezuka, Taro; Kubota, So; Saito, Tomoyuki

    2017-11-01

    A new multiplex real-time polymerase chain reaction (PCR) assay was developed to detect methicillin-resistant Staphylococcus (MRS) and to distinguish between gram-positive and gram-negative bacteria. In this study, we validated the sensitivity and specificity of this assay with periprosthetic joint infections (PJIs) and evaluated the utility of PCR for culture-negative PJI. Forty-five samples from 23 infectious PJI cases and 106 samples from 64 non-infectious control cases were analyzed by real-time PCR using a LightCycler Nano ® system. Twenty-eight clinical samples, comprising bacteria of known species isolated consecutively in the microbiological laboratory of our hospital, were used to determine the spectrum of bacterial species that could be detected using the new multiplex primers and probes. The sensitivity and specificity of the MRS- and universal-PCR assays were 92% and 99%, and 91% and 88%, respectively. Twenty-eight species of clinically isolated bacteria were detected using this method and the concordance rate for the identification of gram-positive or gram-negative organisms was 96%. Eight samples were identified as PCR-positive despite a culture-negative result. This novel multiplex real-time PCR system has acceptable sensitivity and specificity and several advantages; therefore, it has potential use for the diagnosis of PJIs, particularly in culture-negative cases.

  14. Rapid detection method for Bacillus anthracis using a combination of multiplexed real-time PCR and pyrosequencing and its application for food biodefense.

    PubMed

    Janzen, Timothy W; Thomas, Matthew C; Goji, Noriko; Shields, Michael J; Hahn, Kristen R; Amoako, Kingsley K

    2015-02-01

    Bacillus anthracis, the causative agent of anthrax, has the capacity to form highly resilient spores as part of its life cycle. The potential for the dissemination of these spores using food as a vehicle is a huge public health concern and, hence, requires the development of a foodborne bioterrorism response approach. In this work, we address a critical gap in food biodefense by presenting a novel, combined, sequential method involving the use of real-time PCR and pyrosequencing for the rapid, specific detection of B. anthracis spores in three food matrices: milk, apple juice, and bottled water. The food samples were experimentally inoculated with 40 CFU ml(-1), and DNA was extracted from the spores and analyzed after immunomagnetic separation. Applying the combination of multiplex real-time PCR and pyrosequencing, we successfully detected the presence of targets on both of the virulence plasmids and the chromosome. The results showed that DNA amplicons generated from a five-target multiplexed real-time PCR detection using biotin-labeled primers can be used for single-plex pyrosequencing detection. The combined use of multiplexed real-time PCR and pyrosequencing is a novel, rapid detection method for B. anthracis from food and provides a tool for accurate, quantitative identification with potential biodefense applications.

  15. An Alternative Approach to "Identification of Unknowns": Designing a Protocol to Verify the Identities of Nitrogen Fixing Bacteria.

    PubMed

    Martinez-Vaz, Betsy M; Denny, Roxanne; Young, Nevin D; Sadowsky, Michael J

    2015-12-01

    Microbiology courses often include a laboratory activity on the identification of unknown microbes. This activity consists of providing students with microbial cultures and running biochemical assays to identify the organisms. This approach lacks molecular techniques such as sequencing of genes encoding 16S rRNA, which is currently the method of choice for identification of unknown bacteria. A laboratory activity was developed to teach students how to identify microorganisms using 16S rRNA polymerase chain reaction (PCR) and validate microbial identities using biochemical techniques. We hypothesized that designing an experimental protocol to confirm the identity of a bacterium would improve students' knowledge of microbial identification techniques and the physiological characteristics of bacterial species. Nitrogen-fixing bacteria were isolated from the root nodules of Medicago truncatula and prepared for 16S rRNA PCR analysis. Once DNA sequencing revealed the identity of the organisms, the students designed experimental protocols to verify the identity of rhizobia. An assessment was conducted by analyzing pre- and posttest scores and by grading students' verification protocols and presentations. Posttest scores were higher than pretest scores at or below p = 0.001. Normalized learning gains (G) showed an improvement of students' knowledge of microbial identification methods (LO4, G = 0.46), biochemical properties of nitrogen-fixing bacteria (LO3, G = 0.45), and the events leading to the establishment of nitrogen-fixing symbioses (LO1&2, G = 0.51, G = 0.37). An evaluation of verification protocols also showed significant improvement with a p value of less than 0.001.

  16. Contemporary microbiology and identification of Corynebacteria spp. causing infections in human.

    PubMed

    Zasada, A A; Mosiej, E

    2018-06-01

    The Corynebacterium is a genus of bacteria of growing clinical importance. Progress in medicine results in growing population of immunocompromised patients and growing number of infections caused by opportunistic pathogens. A new infections caused by new Corynebacterium species and species previously regarded as commensal micro-organisms have been described. Parallel with changes in Corynebacteria infections, the microbiological laboratory diagnostic possibilities are changing. But identification of this group of bacteria to the species level remains difficult. In the paper, we present various manual, semi-automated and automated assays used in clinical laboratories for Corynebacterium identification, such as API Coryne, RapID CB Plus, BBL Crystal Gram Positive ID System, MICRONAUT-RPO, VITEK 2, BD Phoenix System, Sherlock Microbial ID System, MicroSeq Microbial Identification System, Biolog Microbial Identification Systems, MALDI-TOF MS systems, polymerase chain reaction (PCR)-based and sequencing-based assays. The presented assays are based on various properties, like biochemical tests, specific DNA sequences, composition of cellular fatty acids, protein profiles and have specific limitations. The number of opportunistic infections caused by Corynebacteria is increasing due to increase in number of immunocompromised patients. New Corynebacterium species and new human infections, caused by this group of bacteria, has been described recently. However, identification of Corynebacteria is still a challenge despite application of sophisticated laboratory methods. In the study we present possibilities and limitations of various commercial systems for identification of Corynebacteria. © 2018 The Society for Applied Microbiology.

  17. Identification of Microorganisms by High Resolution Tandem Mass Spectrometry with Accurate Statistical Significance

    NASA Astrophysics Data System (ADS)

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y.; Drake, Steven K.; Gucek, Marjan; Suffredini, Anthony F.; Sacks, David B.; Yu, Yi-Kuo

    2016-02-01

    Correct and rapid identification of microorganisms is the key to the success of many important applications in health and safety, including, but not limited to, infection treatment, food safety, and biodefense. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is challenging correct microbial identification because of the large number of choices present. To properly disentangle candidate microbes, one needs to go beyond apparent morphology or simple `fingerprinting'; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptidome profiles of microbes to better separate them and by designing an analysis method that yields accurate statistical significance. Here, we present an analysis pipeline that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using MS/MS data of 81 samples, each composed of a single known microorganism, that the proposed pipeline can correctly identify microorganisms at least at the genus and species levels. We have also shown that the proposed pipeline computes accurate statistical significances, i.e., E-values for identified peptides and unified E-values for identified microorganisms. The proposed analysis pipeline has been implemented in MiCId, a freely available software for Microorganism Classification and Identification. MiCId is available for download at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.

  18. Advantage of MALDI-TOF-MS over biochemical-based phenotyping for microbial identification illustrated on industrial applications.

    PubMed

    Urwyler, S K; Glaubitz, J

    2016-02-01

    Fast microbial identification is becoming increasingly necessary in industry to improve microbial control and reduce biocide consumption. We compared the performances of two systems based on MALDI-TOF MS (VITEK MS and BIOTYPER) and two based on biochemical testing (BIOLOG, VITEK 2 Compact) with genetic methods for the identification of environmental bacteria. At genus level both MALDI-TOF MS-based systems showed the lowest number of false (4%) and approx. 60% correct identifications. In contrast, the biochemical-based systems assigned 25% of the genera incorrectly. The differences were even more apparent at the species level. The BIOTYPER was most conservative, where assigning a species led to the lowest percentage of species identifications (54%) but also to the least wrong assignments (4%). The other three systems showed higher levels of false assignments: 8·7, 40 and 46% respectively. The genus identification performance on four industrial products of the BIOTYPER could be increased up to 94·3% (average 88% of 167 isolates) by evolving the database in a product specific manner. Comparison of the bacterial population in the example of paints, and raw materials used therein, at different production steps demonstrated unequivocally that the contamination of the final paint product originated not from the main raw material. MALDI-TOF-MS has revolutionized speed and precision of microbial identification for clinical isolates outperforming conventional methods. In contrast, few performance studies have been published so far focusing on suitability for particularly industrial applications, geomicrobiology and environmental analytics. This study evaluates the performance of this proteomic phenotyping on such industrial isolates in comparison with biochemical-based phenotyping and genotyping. Further the study exemplifies the power of MALDI-TOF-MS to trace cost-efficiently the dominating cultivable bacterial species throughout an industrial paint production process. Vital information can be retrieved to identify the most crucial contaminating source for the final product. © 2015 The Authors published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  19. Identification of microbes from the surfaces of food-processing lines based on the flow cytometric evaluation of cellular metabolic activity combined with cell sorting.

    PubMed

    Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K

    2016-09-01

    In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.

  20. Molecular Ecology of Drinking Water

    EPA Science Inventory

    The presentation consists of examples of molecular research: –Detection and control (removal and/or inactivation) of microbes in drinking source waters –Changing microbial quality of water during distribution and storage –Detection and identification of microbial agents, incl...

  1. Identification and microbial production of a terpene-based advanced biofuel

    PubMed Central

    Peralta-Yahya, Pamela P.; Ouellet, Mario; Chan, Rossana; Mukhopadhyay, Aindrila; Keasling, Jay D.; Lee, Taek Soon

    2011-01-01

    Rising petroleum costs, trade imbalances and environmental concerns have stimulated efforts to advance the microbial production of fuels from lignocellulosic biomass. Here we identify a novel biosynthetic alternative to D2 diesel fuel, bisabolane, and engineer microbial platforms for the production of its immediate precursor, bisabolene. First, we identify bisabolane as an alternative to D2 diesel by measuring the fuel properties of chemically hydrogenated commercial bisabolene. Then, via a combination of enzyme screening and metabolic engineering, we obtain a more than tenfold increase in bisabolene titers in Escherichia coli to >900 mg l−1. We produce bisabolene in Saccharomyces cerevisiae (>900 mg l−1), a widely used platform for the production of ethanol. Finally, we chemically hydrogenate biosynthetic bisabolene into bisabolane. This work presents a framework for the identification of novel terpene-based advanced biofuels and the rapid engineering of microbial farnesyl diphosphate-overproducing platforms for the production of biofuels. PMID:21952217

  2. Molecular ecology of hydrothermal vent microbial communities.

    PubMed

    Jeanthon, C

    2000-02-01

    The study of the structure and diversity of hydrothermal vent microbial communities has long been restricted to the morphological description of microorganisms and the use of enrichment culture-based techniques. Until recently the identification of the culturable fraction required the isolation of pure cultures followed by testing for multiple physiological and biochemical traits. However, peculiar inhabitants of the hydrothermal ecosystem such as the invertebrate endosymbionts and the dense microbial mat filaments have eluded laboratory cultivation. Substantial progress has been achieved in recent years in techniques for the identification of microorganisms in natural environments. Application of molecular approaches has revealed the existence of unique and previously unrecognized microorganisms. These have provided fresh insight into the ecology, diversity and evolution of mesophilic and thermophilic microbial communities from the deep-sea hydrothermal ecosystem. This review reports the main discoveries made through the introduction of these powerful techniques in the study of deep-sea hydrothermal vent microbiology.

  3. A microbial identification framework for risk assessment.

    PubMed

    Bernatchez, Stéphane; Anoop, Valar; Saikali, Zeina; Breton, Marie

    2018-06-01

    Micro-organisms are increasingly used in a variety of products for commercial uses, including cleaning products. Such microbial-based cleaning products (MBCP) are represented as a more environmentally-friendly alternative to chemically based cleaning products. The identity of the micro-organisms formulated into these products is often considered confidential business information and is not revealed or it is only partly revealed (i.e., identification to the genus, not to the species). That paucity of information complicates the evaluation of the risk associated with their use. The accurate taxonomic identification of those micro-organisms is important so that a suitable risk assessment of the products can be conducted. To alleviate difficulties associated with adequate identification of micro-organisms in MBCP and other products containing micro-organisms, a microbial identification framework for risk assessment (MIFRA) has been elaborated. It serves to provide guidance on a polyphasic tiered approach, combining the data obtained from the use of various methods (i.e., polyphasic approach) combined with the sequential selection of the methods (i.e., tiered) to achieve a satisfactory identity of the micro-organism to an acceptable taxonomic level. The MIFRA is suitable in various risk assessment contexts for micro-organisms used in any commercial product. Copyright © 2018. Published by Elsevier Ltd.

  4. An integrated metagenome and -proteome analysis of the microbial community residing in a biogas production plant.

    PubMed

    Ortseifen, Vera; Stolze, Yvonne; Maus, Irena; Sczyrba, Alexander; Bremges, Andreas; Albaum, Stefan P; Jaenicke, Sebastian; Fracowiak, Jochen; Pühler, Alfred; Schlüter, Andreas

    2016-08-10

    To study the metaproteome of a biogas-producing microbial community, fermentation samples were taken from an agricultural biogas plant for microbial cell and protein extraction and corresponding metagenome analyses. Based on metagenome sequence data, taxonomic community profiling was performed to elucidate the composition of bacterial and archaeal sub-communities. The community's cytosolic metaproteome was represented in a 2D-PAGE approach. Metaproteome databases for protein identification were compiled based on the assembled metagenome sequence dataset for the biogas plant analyzed and non-corresponding biogas metagenomes. Protein identification results revealed that the corresponding biogas protein database facilitated the highest identification rate followed by other biogas-specific databases, whereas common public databases yielded insufficient identification rates. Proteins of the biogas microbiome identified as highly abundant were assigned to the pathways involved in methanogenesis, transport and carbon metabolism. Moreover, the integrated metagenome/-proteome approach enabled the examination of genetic-context information for genes encoding identified proteins by studying neighboring genes on the corresponding contig. Exemplarily, this approach led to the identification of a Methanoculleus sp. contig encoding 16 methanogenesis-related gene products, three of which were also detected as abundant proteins within the community's metaproteome. Thus, metagenome contigs provide additional information on the genetic environment of identified abundant proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Identification of the ESKAPE pathogens by mass spectrometric analysis of microbial membrane glycolipids.

    PubMed

    Leung, Lisa M; Fondrie, William E; Doi, Yohei; Johnson, J Kristie; Strickland, Dudley K; Ernst, Robert K; Goodlett, David R

    2017-07-25

    Rapid diagnostics that enable identification of infectious agents improve patient outcomes, antimicrobial stewardship, and length of hospital stay. Current methods for pathogen detection in the clinical laboratory include biological culture, nucleic acid amplification, ribosomal protein characterization, and genome sequencing. Pathogen identification from single colonies by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of high abundance proteins is gaining popularity in clinical laboratories. Here, we present a novel and complementary approach that utilizes essential microbial glycolipids as chemical fingerprints for identification of individual bacterial species. Gram-positive and negative bacterial glycolipids were extracted using a single optimized protocol. Extracts of the clinically significant ESKAPE pathogens: E nterococcus faecium, S taphylococcus aureus, K lebsiella pneumoniae, A cinetobacter baumannii, P seudomonas aeruginosa, and E nterobacter spp. were analyzed by MALDI-TOF-MS in negative ion mode to obtain glycolipid mass spectra. A library of glycolipid mass spectra from 50 microbial entries was developed that allowed bacterial speciation of the ESKAPE pathogens, as well as identification of pathogens directly from blood bottles without culture on solid medium and determination of antimicrobial peptide resistance. These results demonstrate that bacterial glycolipid mass spectra represent chemical barcodes that identify pathogens, potentially providing a useful alternative to existing diagnostics.

  6. Acute diarrhoea due to a Shiga toxin 2e-producing Escherichia coli O8 : H19

    PubMed Central

    Saupe, Angela; Edel, Birgit; Pfister, Wolfgang; Löffler, Bettina; Ehricht, Ralf

    2017-01-01

    Introduction. Identification of non-O157 Shiga-toxin-producing Escherichia coli (STEC) infections may be underestimated in microbiological diagnosis. Case presentation. A 58-year-old woman developed diarrhoea with watery and subsequently mucous stool. Initial multiplex PCR testing revealed a positive result for stx2. Culture isolation of a STEC was successful only after repeated inoculation of chromogenic E. coli media. Molecular characterization was performed and identified the isolate as stx 2e-positive STEC of serotype O8 : H19. The strain harboured lpfA, but not eae. Conclusion. This case highlights the usefulness of initial multiplex PCR for diagnosis of non-O157 STEC infection. PMID:29026626

  7. Multiplexing Technology for Acoustic Emission Monitoring of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, William; Percy, Daniel

    2003-01-01

    The initiation and propagation of damage mechanisms such as cracks and delaminations generate acoustic waves, which propagate through a structure. These waves can be detected and analyzed to provide the location and severity of damage as part of a structural health monitoring (SHM) system. This methodology of damage detection is commonly known as acoustic emission (AE) monitoring, and is widely used on a variety of applications on civil structures. AE has been widely considered for SHM of aerospace vehicles. Numerous successful ground and flight test demonstrations have been performed, which show the viability of the technology for damage monitoring in aerospace structures. However, one significant current limitation for application of AE techniques on aerospace vehicles is the large size, mass, and power requirements for the necessary monitoring instrumentation. To address this issue, a prototype multiplexing approach has been developed and demonstrated in this study, which reduces the amount of AE monitoring instrumentation required. Typical time division multiplexing techniques that are commonly used to monitor strain, pressure and temperature sensors are not applicable to AE monitoring because of the asynchronous and widely varying rates of AE signal occurrence. Thus, an event based multiplexing technique was developed. In the initial prototype circuit, inputs from eight sensors in a linear array were multiplexed into two data acquisition channels. The multiplexer rapidly switches, in less than one microsecond, allowing the signals from two sensors to be acquired by a digitizer. The two acquired signals are from the sensors on either side of the trigger sensor. This enables the capture of the first arrival of the waves, which cannot be accomplished with the signal from the trigger sensor. The propagation delay to the slightly more distant neighboring sensors makes this possible. The arrival time from this first arrival provides a more accurate source location determination. The multiplexer also identifies which channels are acquired by encoding TTL logic pulses onto the latter portion of the signals. This prototype system was demonstrated using pencil lead break (Hsu-Neilsen) sources on an aluminum plate. It performed as designed providing rapid low noise trigger based switching with encoded channel identification. this multiplexing approach is not limited to linear arrays, but can be easily extended to monitor sensors in planar ot three dimensional arrays. A 32 channel multiplexing system is under development that will allow arbitrary sensor placement. Another benefit of this multiplexing system is the reduction in the expense of data acquisition hardware. In addition, the reduced weight and power requirements are of extreme importance for proposed AE systems on aerospace vehicles.

  8. Identification of secreted bacterial proteins by noncanonical amino acid tagging

    PubMed Central

    Mahdavi, Alborz; Szychowski, Janek; Ngo, John T.; Sweredoski, Michael J.; Graham, Robert L. J.; Hess, Sonja; Schneewind, Olaf; Mazmanian, Sarkis K.; Tirrell, David A.

    2014-01-01

    Pathogenic microbes have evolved complex secretion systems to deliver virulence factors into host cells. Identification of these factors is critical for understanding the infection process. We report a powerful and versatile approach to the selective labeling and identification of secreted pathogen proteins. Selective labeling of microbial proteins is accomplished via translational incorporation of azidonorleucine (Anl), a methionine surrogate that requires a mutant form of the methionyl-tRNA synthetase for activation. Secreted pathogen proteins containing Anl can be tagged by azide-alkyne cycloaddition and enriched by affinity purification. Application of the method to analysis of the type III secretion system of the human pathogen Yersinia enterocolitica enabled efficient identification of secreted proteins, identification of distinct secretion profiles for intracellular and extracellular bacteria, and determination of the order of substrate injection into host cells. This approach should be widely useful for the identification of virulence factors in microbial pathogens and the development of potential new targets for antimicrobial therapy. PMID:24347637

  9. IDENTIFICATION OF AVIAN-SPECIFIC FECAL METAGENOMIC SEQUENCES USING GENOME FRAGMENT ENRICHMENTS

    EPA Science Inventory

    Sequence analysis of microbial genomes has provided biologists the opportunity to compare genetic differences between closely related microorganisms. While random sequencing has also been used to study natural microbial communities, metagenomic comparisons via sequencing analysis...

  10. High-throughput screening of hybridoma supernatants using multiplexed fluorescent cell barcoding on live cells.

    PubMed

    Lu, Mei; Chan, Brian M; Schow, Peter W; Chang, Wesley S; King, Chadwick T

    2017-12-01

    With current available assay formats using either immobilized protein (ELISA, enzyme-linked immunosorbent assay) or immunostaining of fixed cells for primary monoclonal antibody (mAb) screening, researchers often fail to identify and characterize antibodies that recognize the native conformation of cell-surface antigens. Therefore, screening using live cells has become an integral and important step contributing to the successful identification of therapeutic antibody candidates. Thus the need for developing high-throughput screening (HTS) technologies using live cells has become a major priority for therapeutic mAb discovery and development. We have developed a novel technique called Multiplexed Fluorescent Cell Barcoding (MFCB), a flow cytometry-based method based upon the Fluorescent Cell Barcoding (FCB) technique and the Luminex fluorescent bead array system, but is applicable to high-through mAb screens on live cells. Using this technique in our system, we can simultaneously identify or characterize the antibody-antigen binding of up to nine unique fluorescent labeled cell populations in the time that it would normally take to process a single population. This has significantly reduced the amount of time needed for the identification of potential lead candidates. This new technology enables investigators to conduct large-scale primary hybridoma screens using flow cytometry. This in turn has allowed us to screen antibodies more efficiently than before and streamline identification and characterization of lead molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Development and assessment of multiplex high resolution melting assay as a tool for rapid single-tube identification of five Brucella species.

    PubMed

    Gopaul, Krishna K; Sells, Jessica; Lee, Robin; Beckstrom-Sternberg, Stephen M; Foster, Jeffrey T; Whatmore, Adrian M

    2014-12-11

    The zoonosis brucellosis causes economically significant reproductive problems in livestock and potentially debilitating disease of humans. Although the causative agent, organisms from the genus Brucella, can be differentiated into a number of species based on phenotypic characteristics, there are also significant differences in genotype that are concordant with individual species. This paper describes the development of a five target multiplex assay to identify five terrestrial Brucella species using real-time polymerase chain reaction (PCR) and subsequent high resolution melt curve analysis. This technology offers a robust and cost effective alternative to previously described hydrolysis-probe Single Nucleotide Polymorphism (SNP)-based species defining assays. Through the use of Brucella whole genome sequencing five species defining SNPs were identified. Individual HRM assays were developed to these target these changes and, following optimisation of primer concentrations, it was possible to multiplex all five assays in a single tube. In a validation exercise using a panel of 135 Brucella strains of terrestrial and marine origin, it was possible to distinguish the five target species from the other species within this panel. The HRM multiplex offers a number of diagnostic advantages over previously described SNP-based typing approaches. Further, and uniquely for HRM, the successful multiplexing of five assays in a single tube allowing differentiation of five Brucella species in the diagnostic laboratory in a cost-effective and timely manner is described. However there are possible limitations to using this platform on DNA extractions direct from clinical material.

  12. Synthetic internal control sequences to increase negative call veracity in multiplexed, quantitative PCR assays for Phakopsora pachyrhizi

    USDA-ARS?s Scientific Manuscript database

    Quantitative PCR (Q-PCR) utilizing specific primer sequences and a fluorogenic, 5’-exonuclease linear hydrolysis probe is well established as a detection and identification method for Phakopsora pachyrhizi, the soybean rust pathogen. Because of the extreme sensitivity of Q-PCR, the DNA of a single u...

  13. A novel, multiplex, real-time PCR-based approach for the detection of the commonly occurring pathogenic fungi and bacteria.

    PubMed

    Horváth, Ádám; Pető, Zoltán; Urbán, Edit; Vágvölgyi, Csaba; Somogyvári, Ferenc

    2013-12-23

    Polymerase chain reaction (PCR)-based techniques are widely used to identify fungal and bacterial infections. There have been numerous reports of different, new, real-time PCR-based pathogen identification methods although the clinical practicability of such techniques is not yet fully clarified.The present study focuses on a novel, multiplex, real-time PCR-based pathogen identification system developed for rapid differentiation of the commonly occurring bacterial and fungal causative pathogens of bloodstream infections. A multiplex, real-time PCR approach is introduced for the detection and differentiation of fungi, Gram-positive (G+) and Gram-negative (G-) bacteria. The Gram classification is performed with the specific fluorescence resonance energy transfer (FRET) probes recommended for LightCycler capillary real-time PCR. The novelty of our system is the use of a non-specific SYBR Green dye instead of labelled anchor probes or primers, to excite the acceptor dyes on the FRET probes. In conjunction with this, the use of an intercalating dye allows the detection of fungal amplicons.With the novel pathogen detection system, fungi, G + and G- bacteria in the same reaction tube can be differentiated within an hour after the DNA preparation via the melting temperatures of the amplicons and probes in the same tube. This modified FRET technique is specific and more rapid than the gold-standard culture-based methods. The fact that fungi, G + and G- bacteria were successfully identified in the same tube within an hour after the DNA preparation permits rapid and early evidence-based management of bloodstream infections in clinical practice.

  14. Evaluation of species-specific PCR, Bruker MS, VITEK MS and the VITEK 2 system for the identification of clinical Enterococcus isolates.

    PubMed

    Fang, H; Ohlsson, A-K; Ullberg, M; Ozenci, V

    2012-11-01

    The purpose of this investigation was to compare the performance of species-specific polymerase chain reaction (PCR), matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and phenotypic identification systems for the identification of Enterococcus species. A total of 132 clinical isolates were investigated by the following: (1) a multiplex real-time PCR assay targeting ddl Enterococcus faecium, ddl Enterococcus faecalis, vanC1 and vanC2/C3 genes, and a high-resolution melting (HRM) analysis of the groESL gene for the differentiation of Enterococcus casseliflavus and Enterococcus gallinarum; (2) Bruker MS; (3) VITEK MS; and (4) the VITEK 2 system. 16S rRNA gene sequencing was used as a reference method in the study. The 132 isolates were identified as 32 E. faecalis, 63 E. faecium, 16 E. casseliflavus and 21 E. gallinarum. The multiplex PCR, Bruker MS and VITEK MS were able to identify all the isolates correctly at the species level. The VITEK 2 system could identify 131/132 (99.2 %) and 121/132 (91.7 %) of the isolates at the genus and species levels, respectively. The HRM-groESL assay identified all (21/21) E. gallinarum isolates and 81.3 % (13/16) of the E. casseliflavus isolates. The PCR methods described in the present study are effective in identifying the enterococcal species. MALDI-TOF MS is a rapid, reliable and cost-effective identification technique for enterococci. The VITEK 2 system is less efficient at detecting non-faecalis and non-faecium Enterococcus species.

  15. Development of an Enhanced Metaproteomic Approach for Deepening the Microbiome Characterization of the Human Infant Gut

    PubMed Central

    2015-01-01

    The establishment of early life microbiota in the human infant gut is highly variable and plays a crucial role in host nutrient availability/uptake and maturation of immunity. Although high-performance mass spectrometry (MS)-based metaproteomics is a powerful method for the functional characterization of complex microbial communities, the acquisition of comprehensive metaproteomic information in human fecal samples is inhibited by the presence of abundant human proteins. To alleviate this restriction, we have designed a novel metaproteomic strategy based on double filtering (DF) the raw samples, a method that fractionates microbial from human cells to enhance microbial protein identification and characterization in complex fecal samples from healthy premature infants. This method dramatically improved the overall depth of infant gut proteome measurement, with an increase in the number of identified low-abundance proteins and a greater than 2-fold improvement in microbial protein identification and quantification. This enhancement of proteome measurement depth enabled a more extensive microbiome comparison between infants by not only increasing the confidence of identified microbial functional categories but also revealing previously undetected categories. PMID:25350865

  16. Graphene-based aptamer logic gates and their application to multiplex detection.

    PubMed

    Wang, Li; Zhu, Jinbo; Han, Lei; Jin, Lihua; Zhu, Chengzhou; Wang, Erkang; Dong, Shaojun

    2012-08-28

    In this work, a GO/aptamer system was constructed to create multiplex logic operations and enable sensing of multiplex targets. 6-Carboxyfluorescein (FAM)-labeled adenosine triphosphate binding aptamer (ABA) and FAM-labeled thrombin binding aptamer (TBA) were first adsorbed onto graphene oxide (GO) to form a GO/aptamer complex, leading to the quenching of the fluorescence of FAM. We demonstrated that the unique GO/aptamer interaction and the specific aptamer-target recognition in the target/GO/aptamer system were programmable and could be utilized to regulate the fluorescence of FAM via OR and INHIBIT logic gates. The fluorescence changed according to different input combinations, and the integration of OR and INHIBIT logic gates provided an interesting approach for logic sensing applications where multiple target molecules were present. High-throughput fluorescence imagings that enabled the simultaneous processing of many samples by using the combinatorial logic gates were realized. The developed logic gates may find applications in further development of DNA circuits and advanced sensors for the identification of multiple targets in complex chemical environments.

  17. Inflight Microbial Monitoring - An Alternative Method to Culture Based Detection Currently Used on the International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Hummerick, Mary E.; Roman, Monsi; Smith, David J.

    2015-01-01

    Microorganisms including potential human pathogens have been detected on the International Space Station (ISS). The potential to introduce new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Current microbial monitoring methods require enrichment of microorganisms and a 48-hour incubation time resulting in an increase in microbial load, detecting a limited number of unidentified microorganisms. An expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted.

  18. Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y.; Drake, Steven K.; Gucek, Marjan; Sacks, David B.; Yu, Yi-Kuo

    2018-06-01

    Rapid and accurate identification and classification of microorganisms is of paramount importance to public health and safety. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is complicating correct microbial identification even in a simple sample due to the large number of candidates present. To properly untwine candidate microbes in samples containing one or more microbes, one needs to go beyond apparent morphology or simple "fingerprinting"; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptide-centric representations of microbes to better separate them and by augmenting our earlier analysis method that yields accurate statistical significance. Here, we present an updated analysis workflow that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using 226 MS/MS publicly available data files (each containing from 2500 to nearly 100,000 MS/MS spectra) and 4000 additional MS/MS data files, that the updated workflow can correctly identify multiple microbes at the genus and often the species level for samples containing more than one microbe. We have also shown that the proposed workflow computes accurate statistical significances, i.e., E values for identified peptides and unified E values for identified microbes. Our updated analysis workflow MiCId, a freely available software for Microorganism Classification and Identification, is available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.

  19. Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry.

    PubMed

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y; Drake, Steven K; Gucek, Marjan; Sacks, David B; Yu, Yi-Kuo

    2018-06-05

    Rapid and accurate identification and classification of microorganisms is of paramount importance to public health and safety. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is complicating correct microbial identification even in a simple sample due to the large number of candidates present. To properly untwine candidate microbes in samples containing one or more microbes, one needs to go beyond apparent morphology or simple "fingerprinting"; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptide-centric representations of microbes to better separate them and by augmenting our earlier analysis method that yields accurate statistical significance. Here, we present an updated analysis workflow that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using 226 MS/MS publicly available data files (each containing from 2500 to nearly 100,000 MS/MS spectra) and 4000 additional MS/MS data files, that the updated workflow can correctly identify multiple microbes at the genus and often the species level for samples containing more than one microbe. We have also shown that the proposed workflow computes accurate statistical significances, i.e., E values for identified peptides and unified E values for identified microbes. Our updated analysis workflow MiCId, a freely available software for Microorganism Classification and Identification, is available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html . Graphical Abstract ᅟ.

  20. Identification and differentiation of food-related bacteria: A comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry.

    PubMed

    Wenning, Mareike; Breitenwieser, Franziska; Konrad, Regina; Huber, Ingrid; Busch, Ulrich; Scherer, Siegfried

    2014-08-01

    The food industry requires easy, accurate, and cost-effective techniques for microbial identification to ensure safe products and identify microbial contaminations. In this work, FTIR spectroscopy and MALDI-TOF mass spectrometry were assessed for their suitability and applicability for routine microbial diagnostics of food-related microorganisms by analyzing their robustness according to changes in incubation time and medium, identification accuracy and their ability to differentiate isolates down to the strain level. Changes in the protocol lead to a significantly impaired performance of FTIR spectroscopy, whereas they had only little effects on MALDI-TOF MS. Identification accuracy was tested using 174 food-related bacteria (93 species) from an in-house strain collection and 40 fresh isolates from routine food analyses. For MALDI-TOF MS, weaknesses in the identification of bacilli and pseudomonads were observed; FTIR spectroscopy had most difficulties in identifying pseudomonads and enterobacteria. In general, MALDI-TOF MS obtained better results (52-85% correct at species level), since the analysis of mainly ribosomal proteins is more robust and seems to be more reliable. FTIR spectroscopy suffers from the fact that it generates a whole-cell fingerprint and intraspecies diversity may lead to overlapping species borders which complicates identification. In the present study values between 56% and 67% correct species identification were obtained. On the opposite, this high sensitivity offers the opportunity of typing below the species level which was not possible using MALDI-TOF MS. Using fresh isolates from routine diagnostics, both techniques performed well with 88% (MALDI-TOF) and 75% (FTIR) correct identifications at species level, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Rapid and inexpensive body fluid identification by RNA profiling-based multiplex High Resolution Melt (HRM) analysis

    PubMed Central

    Hanson, Erin K.; Ballantyne, Jack

    2014-01-01

    Positive identification of the nature of biological material present on evidentiary items can be crucial for understanding the circumstances surrounding a crime. However, traditional protein-based methods do not permit the identification of all body fluids and tissues, and thus molecular based strategies for the conclusive identification of all forensically relevant biological fluids and tissues need to be developed. Messenger RNA (mRNA) profiling is an example of such a molecular-based approach. Current mRNA body fluid identification assays involve capillary electrophoresis (CE) or quantitative RT-PCR (qRT-PCR) platforms, each with its own limitations. Both platforms require the use of expensive fluorescently labeled primers or probes. CE-based assays require separate amplification and detection steps thus increasing the analysis time. For qRT-PCR assays, only 3-4 markers can be included in a single reaction since each requires a different fluorescent dye. To simplify mRNA profiling assays, and reduce the time and cost of analysis, we have developed single- and multiplex body fluid High Resolution Melt (HRM) assays for the identification of common forensically relevant biological fluids and tissues. The incorporated biomarkers include IL19 (vaginal secretions), IL1F7 (skin), ALAS2 (blood), MMP10 (menstrual blood), HTN3 (saliva) and TGM4 (semen).  The HRM assays require only unlabeled PCR primers and a single saturating intercalating fluorescent dye (Eva Green). Each body-fluid-specific marker can easily be identified by the presence of a distinct melt peak. Usually, HRM assays are used to detect variants or isoforms for a single gene target. However, we have uniquely developed duplex and triplex HRM assays to permit the simultaneous detection of multiple targets per reaction. Here we describe the development and initial performance evaluation of the developed HRM assays. The results demonstrate the potential use of HRM assays for rapid, and relatively inexpensive, screening of biological evidence. PMID:24715968

  2. Rapid and inexpensive body fluid identification by RNA profiling-based multiplex High Resolution Melt (HRM) analysis.

    PubMed

    Hanson, Erin K; Ballantyne, Jack

    2013-01-01

    Positive identification of the nature of biological material present on evidentiary items can be crucial for understanding the circumstances surrounding a crime. However, traditional protein-based methods do not permit the identification of all body fluids and tissues, and thus molecular based strategies for the conclusive identification of all forensically relevant biological fluids and tissues need to be developed. Messenger RNA (mRNA) profiling is an example of such a molecular-based approach. Current mRNA body fluid identification assays involve capillary electrophoresis (CE) or quantitative RT-PCR (qRT-PCR) platforms, each with its own limitations. Both platforms require the use of expensive fluorescently labeled primers or probes. CE-based assays require separate amplification and detection steps thus increasing the analysis time. For qRT-PCR assays, only 3-4 markers can be included in a single reaction since each requires a different fluorescent dye. To simplify mRNA profiling assays, and reduce the time and cost of analysis, we have developed single- and multiplex body fluid High Resolution Melt (HRM) assays for the identification of common forensically relevant biological fluids and tissues. The incorporated biomarkers include IL19 (vaginal secretions), IL1F7 (skin), ALAS2 (blood), MMP10 (menstrual blood), HTN3 (saliva) and TGM4 (semen).  The HRM assays require only unlabeled PCR primers and a single saturating intercalating fluorescent dye (Eva Green). Each body-fluid-specific marker can easily be identified by the presence of a distinct melt peak. Usually, HRM assays are used to detect variants or isoforms for a single gene target. However, we have uniquely developed duplex and triplex HRM assays to permit the simultaneous detection of multiple targets per reaction. Here we describe the development and initial performance evaluation of the developed HRM assays. The results demonstrate the potential use of HRM assays for rapid, and relatively inexpensive, screening of biological evidence.

  3. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed technology is simple and compatible with standard epi-fluorescence microscopes used in biological and clinical laboratories. Thus, 3D multiplexed immunoplasmonics microscopy is ready for clinical applications as a cost-efficient alternative to immunofluorescence.Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed technology is simple and compatible with standard epi-fluorescence microscopes used in biological and clinical laboratories. Thus, 3D multiplexed immunoplasmonics microscopy is ready for clinical applications as a cost-efficient alternative to immunofluorescence. Electronic supplementary information (ESI) available: Characterization of functionalized nanoparticles by UV-visible-NIR spectroscopy, standard dark field microscopy and reflected light microscopy. Immunofluorescence of cells. See DOI: 10.1039/c6nr01257d

  4. Combination of microbiological culture and multiplex PCR increases the range of vaginal microorganisms identified in cervical cancer patients at high risk for bacterial vaginosis and vaginitis.

    PubMed

    Schmidt, Katarzyna; Cybulski, Zefiryn; Roszak, Andrzej; Grabiec, Alicja; Talaga, Zofia; Urbański, Bartosz; Odważna, Joanna; Wojciechowicz, Jacek

    2015-05-01

    Bacterial vaginosis (BV) and vaginitis in cervical cancer patients might becaused by mixed aerobic, anaerobic, and atypical bacteria. Since genital tract infections can be complicated, early and accurate identification of causal pathogens is vital. The purpose of this study was i) to determinate if currently used aerobic culture methods are sufficiently sensitive to identify pathogens that can appear in the cervix of women after cancer treatment; ii) to investigate if molecular methods can improve the diagnostic process of BV and vaginitis, as well as broaden the range of detectable pathogens that would otherwise be difficult to cultivate. A one-year hospital-based study was conducted in 2011/2012. Cervical swabs from 130 patients were examined by microbiological culture and multiplex PCR. Swab samples were positive for 107 and 93 women by microbiological culture and multiplex PCR, respectively The most common bacteria isolated from culture were: Escherichia coli, Enterococcus faecalis, Streptococcus agalactiae, and Staphylococcus aureus, and using the molecular technique were: Gardnerella vaginalis, Bacteroides fragilis, Ureoplasma ureoliticum/parvum, Mobiluncus curtisii and Atopobium vaginae. Multiplex PCR might contribute to the diagnosis of genital tract infections and it broadens the number of detectable microorganisms responsible for BV. Combination of these two methods may become the basis for standardized diagnosis of BV and vaginitis.

  5. High-Throughput Multiplexed Quantitation of Protein Aggregation and Cytotoxicity in a Huntington’s Disease Model

    PubMed Central

    Titus, Steven A; Southall, Noel; Marugan, Juan; Austin, Christopher P; Zheng, Wei

    2012-01-01

    A hallmark of Huntington’s disease is the presence of a large polyglutamine expansion in the first exon of the Huntingtin protein and the propensity of protein aggregation by the mutant proteins. Aberrant protein aggregation also occurs in other polyglutamine expansion disorders, as well as in other neurodegenerative diseases including Parkinson’s, Alzheimer’s, and prion diseases. However, the pathophysiological role of these aggregates in the cell death that characterizes the diseases remains unclear. Identification of small molecule probes that modulate protein aggregation and cytotoxicity caused by aggregated proteins may greatly facilitate the studies on pathogenesis of these diseases and potentially lead to development of new therapies. Based on a detergent insoluble property of the Huntingtin protein aggregates, we have developed a homogenous assay to rapidly quantitate the levels of protein aggregates in a cellular model of Huntington’s disease. The protein aggregation assay has also been multiplexed with a protease release assay for the measurement of cytotoxicity resulting from aggregated proteins in the same cells. Through a testing screen of a compound library, we have demonstrated that this multiplexed cytotoxicity and protein aggregation assay has ability to identify active compounds that prevent cell death and/or modulate protein aggregation in cells of the Huntington’s disease model. Therefore, this multiplexed screening approach is also useful for development of high-throughput screening assays for other neurodegenerative diseases involving protein aggregation. PMID:23346268

  6. Recommendations following a multi-laboratory comparison of microbial source tracking methods

    EPA Science Inventory

    Microbial source tracking (MST) methods are under development to provide resource managers with tools to identify sources of fecal contamination in water. Some of the most promising methods currently under development were recently evaluated in the Source Identification Protocol ...

  7. IDENTIFICATION OF SOURCES OF FECAL POLLUTION IN ENVIRONMENTAL WATERS

    EPA Science Inventory

    A number of Microbial Source Tracking (MST) methods are currently used to determine the origin of fecal pollution impacting environmental waters. MST is based on the assumption that given the appropriate method and indicator organism, the source of fecal microbial pollution can ...

  8. Identification of Bacterial DNA Markers for the Detection of Human and Cattle Fecal Pollution - SLIDES

    EPA Science Inventory

    Technological advances in DNA sequencing and computational biology allow scientists to compare entire microbial genomes. However, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for most laborato...

  9. IDENTIFICATION OF BACTERIAL DNA MARKERS FOR THE DETECTION OF HUMAN AND CATTLE FECAL POLLUTION

    EPA Science Inventory

    Technological advances in DNA sequencing and computational biology allow scientists to compare entire microbial genomes. However, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for most laborato...

  10. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology.

    PubMed

    Clark, Andrew E; Kaleta, Erin J; Arora, Amit; Wolk, Donna M

    2013-07-01

    Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the "nuts and bolts" of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care.

  11. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: a Fundamental Shift in the Routine Practice of Clinical Microbiology

    PubMed Central

    Clark, Andrew E.; Kaleta, Erin J.; Arora, Amit

    2013-01-01

    SUMMARY Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the “nuts and bolts” of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care. PMID:23824373

  12. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Embaye, Tsege; Turk, Kendra A.

    2003-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments where microorganisms had virtually no competition apart from the harsh conditions of hypersalinity, desiccation and intense light. Today, the modern counterparts of these microbial ecosystems find appropriate niches in only a few places where extremes eliminate eukaryotic grazers. Answers to many outstanding questions about the evolution of microorganisms and their environments on early Earth are best answered through study of these extant analogs. Lipids associated with various groups of bacteria can be valuable biomarkers for identification of specific groups of microorganisms both in ancient organic-rich sedimentary rocks (geolipids) and contemporary microbial communities (membrane lipids). Use of compound specific isotope analysis adds additional refinement to the identification of biomarker source, so that it is possible to take advantage of the 3C-depletions associated with various functional groups of organisms (i.e. autotrophs, heterotrophs, methanotrophs, methanogens) responsible for the cycling of carbon within a microbial community. Our recent work has focused on a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico which support the abundant growth of Microcoleus-dominated microbial mats. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface.

  13. Employment of Near Full-Length Ribosome Gene TA-Cloning and Primer-Blast to Detect Multiple Species in a Natural Complex Microbial Community Using Species-Specific Primers Designed with Their Genome Sequences.

    PubMed

    Zhang, Huimin; He, Hongkui; Yu, Xiujuan; Xu, Zhaohui; Zhang, Zhizhou

    2016-11-01

    It remains an unsolved problem to quantify a natural microbial community by rapidly and conveniently measuring multiple species with functional significance. Most widely used high throughput next-generation sequencing methods can only generate information mainly for genus-level taxonomic identification and quantification, and detection of multiple species in a complex microbial community is still heavily dependent on approaches based on near full-length ribosome RNA gene or genome sequence information. In this study, we used near full-length rRNA gene library sequencing plus Primer-Blast to design species-specific primers based on whole microbial genome sequences. The primers were intended to be specific at the species level within relevant microbial communities, i.e., a defined genomics background. The primers were tested with samples collected from the Daqu (also called fermentation starters) and pit mud of a traditional Chinese liquor production plant. Sixteen pairs of primers were found to be suitable for identification of individual species. Among them, seven pairs were chosen to measure the abundance of microbial species through quantitative PCR. The combination of near full-length ribosome RNA gene library sequencing and Primer-Blast may represent a broadly useful protocol to quantify multiple species in complex microbial population samples with species-specific primers.

  14. Application of a Multiplex Quantitative PCR to Assess Prevalence and Intensity Of Intestinal Parasite Infections in a Controlled Clinical Trial

    PubMed Central

    Llewellyn, Stacey; Inpankaew, Tawin; Nery, Susana Vaz; Gray, Darren J.; Verweij, Jaco J.; Clements, Archie C. A.; Gomes, Santina J.; Traub, Rebecca; McCarthy, James S.

    2016-01-01

    Background Accurate quantitative assessment of infection with soil transmitted helminths and protozoa is key to the interpretation of epidemiologic studies of these parasites, as well as for monitoring large scale treatment efficacy and effectiveness studies. As morbidity and transmission of helminth infections are directly related to both the prevalence and intensity of infection, there is particular need for improved techniques for assessment of infection intensity for both purposes. The current study aimed to evaluate two multiplex PCR assays to determine prevalence and intensity of intestinal parasite infections, and compare them to standard microscopy. Methodology/Principal Findings Faecal samples were collected from a total of 680 people, originating from rural communities in Timor-Leste (467 samples) and Cambodia (213 samples). DNA was extracted from stool samples and subject to two multiplex real-time PCR reactions the first targeting: Necator americanus, Ancylostoma spp., Ascaris spp., and Trichuris trichiura; and the second Entamoeba histolytica, Cryptosporidium spp., Giardia. duodenalis, and Strongyloides stercoralis. Samples were also subject to sodium nitrate flotation for identification and quantification of STH eggs, and zinc sulphate centrifugal flotation for detection of protozoan parasites. Higher parasite prevalence was detected by multiplex PCR (hookworms 2.9 times higher, Ascaris 1.2, Giardia 1.6, along with superior polyparasitism detection with this effect magnified as the number of parasites present increased (one: 40.2% vs. 38.1%, two: 30.9% vs. 12.9%, three: 7.6% vs. 0.4%, four: 0.4% vs. 0%). Although, all STH positive samples were low intensity infections by microscopy as defined by WHO guidelines the DNA-load detected by multiplex PCR suggested higher intensity infections. Conclusions/Significance Multiplex PCR, in addition to superior sensitivity, enabled more accurate determination of infection intensity for Ascaris, hookworms and Giardia compared to microscopy, especially in samples exhibiting polyparasitism. The superior performance of multiplex PCR to detect polyparasitism and more accurately determine infection intensity suggests that it is a more appropriate technique for use in epidemiologic studies and for monitoring large-scale intervention trials. PMID:26820626

  15. Multiplex PCR Assay for Differentiation of Helicobacter felis, H. bizzozeronii, and H. salomonis

    PubMed Central

    Baele, M.; Van den Bulck, K.; Decostere, A.; Vandamme, P.; Hänninen, M.-L.; Ducatelle, R.; Haesebrouck, F.

    2004-01-01

    Helicobacter felis, Helicobacter bizzozeronii, and Helicobacter salomonis are frequently found in the gastric mucous membrane of dogs and cats. These large spiral organisms are phylogenetically highly related to each other. Their fastidious nature makes it difficult to cultivate them in vitro, hampering traditional identification methods. We describe here a multiplex PCR test based on the tRNA intergenic spacers and on the urease gene, combined with capillary electrophoresis, that allows discrimination of these three species. In combination with previously described 16S ribosomal DNA-based primers specific for the nonculturable “Candidatus Helicobacter suis,” our procedure was shown to be very useful in determining the species identity of “Helicobacter heilmannii”-like organisms observed in human stomachs and will facilitate research concerning their possible zoonotic importance. PMID:15004062

  16. Detection of respiratory bacterial pathogens causing atypical pneumonia by multiplex Lightmix® RT-PCR.

    PubMed

    Wagner, Karoline; Springer, Burkard; Imkamp, Frank; Opota, Onya; Greub, Gilbert; Keller, Peter M

    2018-04-01

    Pneumonia is a severe infectious disease. In addition to common viruses and bacterial pathogens (e.g. Streptococcus pneumoniae), fastidious respiratory pathogens like Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella spp. can cause severe atypical pneumonia. They do not respond to penicillin derivatives, which may cause failure of antibiotic empirical therapy. The same applies for infections with B. pertussis and B. parapertussis, the cause of pertussis disease, that may present atypically and need to be treated with macrolides. Moreover, these fastidious bacteria are difficult to identify by culture or serology, and therefore often remain undetected. Thus, rapid and accurate identification of bacterial pathogens causing atypical pneumonia is crucial. We performed a retrospective method evaluation study to evaluate the diagnostic performance of the new, commercially available Lightmix ® multiplex RT-PCR assay that detects these fastidious bacterial pathogens causing atypical pneumonia. In this retrospective study, 368 clinical respiratory specimens, obtained from patients suffering from atypical pneumonia that have been tested negative for the presence of common agents of pneumonia by culture and viral PCR, were investigated. These clinical specimens have been previously characterized by singleplex RT-PCR assays in our diagnostic laboratory and were used to evaluate the diagnostic performance of the respiratory multiplex Lightmix ® RT-PCR. The multiplex RT-PCR displayed a limit of detection between 5 and 10 DNA copies for different in-panel organisms and showed identical performance characteristics with respect to specificity and sensitivity as in-house singleplex RT-PCRs for pathogen detection. The Lightmix ® multiplex RT-PCR assay represents a low-cost, time-saving and accurate diagnostic tool with high throughput potential. The time-to-result using an automated DNA extraction device for respiratory specimens followed by multiplex RT-PCR detection was below 4 h, which is expected to significantly improve diagnostics for atypical pneumonia-associated bacterial pathogens. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  17. Multiplex-touchdown PCR assay for the detection and genotyping of Helicobacter pylori from artificially contaminated sheep milk.

    PubMed

    Quaglia, N C; Normanno, G; Dambrosio, A; Celano, G V; Parisi, A; Firinu, A; Buonavoglia, C

    2005-10-01

    Helicobacter pylori (Hp) is an organism commonly present worldwide in the human population, sometimes causing serious illnesses such as duodenal and gastric ulcers, adenocarcinoma of the stomach, and low-grade B-cell mucosa-associated lymphoid tissue lymphoma of the stomach. This article describes a multiplex-touchdown PCR method for the identification and genotyping (vacA-s1/m1, sl/m2, and s2/m2-and cagA genes) of Hp directly from sheep milk artificially contaminated with Hp strains from human gastric biopsies and with Hp ATCC 43504. The strains from humans carried sl/m2 cagA+ and s2/m2 cagA allelic combinations, while the ATCC strains carried an sl/ml cagA+ allelic combination. The technique showed a sensitivity of 15 CFU/ml for species identification and of 1,500 CFU/ml for the detection of genes encoding for VacA and CagA. It has proven to be specific and rapid, and the authors suggest that it be used as a rapid screening method to ensure that sheep milk is uncontaminated with this organism.

  18. A nested multiplex polymerase chain reaction assay for the differential identification of three zooanthroponotic chlamydial strains in porcine swab samples.

    PubMed

    Li, Yingguo; Wang, Yu; Nie, Fuping; Xiao, Jinwen; Wang, Guoming; Yuan, Ling; Li, Zhengguo

    2011-07-01

    Porcine chlamydial infection is an enzootic infectious disease caused by multiple members of the family Chlamydiaceae (e.g. Chlamydophila abortus, Chlamydia suis, and Chlamydophila pneumoniae). Rapid and accurate differentiation of these pathogens is critical in the control and prevention of disease. The aim of the current study was to develop a nested multiplex polymerase chain reaction (nmPCR) assay to simultaneously detect the 3 chlamydial pathogens in clinical samples. In the first round of the nmPCR, 1 pair of family-specific primers were used to amplify the 1,100 base pair (bp) fragment of chlamydial ompA gene. In the second round of the nmPCR, 4 inner primers were designed for Ch. abortus, C. suis, and Ch. pneumoniae. Each pathogen produced a specific amplicon with a size of 340 bp, 526 bp, and 267 bp respectively. The assay was sensitive and specific for detecting target pathogens in both cell cultures and clinical specimens. The results, incorporated with the improved rapid DNA extraction protocol, suggest that the nmPCR could be a promising assay for differential identification of different chlamydial strains in pigs.

  19. Molecular barcoding of venomous snakes and species-specific multiplex PCR assay to identify snake groups for which antivenom is available in Thailand.

    PubMed

    Supikamolseni, A; Ngaoburanawit, N; Sumontha, M; Chanhome, L; Suntrarachun, S; Peyachoknagul, S; Srikulnath, K

    2015-10-30

    DNA barcodes of mitochondrial COI and Cytb genes were constructed from 54 specimens of 16 species for species identification. Intra- and interspecific sequence divergence of the COI gene (10 times) was greater than that of the Cytb gene (4 times), which suggests that the former gene may be a better marker than the latter for species delimitation in snakes. The COI barcode cut-off scores differed by more than 3% between most species, and the minimum interspecific divergence was greater than the maximum intraspecific divergence. Clustering analysis indicated that most species fell into monophyletic clades. These results suggest that these species could be reliably differentiated using COI DNA barcodes. Moreover, a novel species-specific multiplex PCR assay was developed to distinguish between Naja spp, Ophiophagus hannah, Trimeresurus spp, Hydrophiinae, Daboia siamensis, Bungarus fasciatus, and Calloselasma rhodostoma. Antivenom for these species is produced and kept by the Thai Red Cross for clinical use. Our novel PCR assay could easily be applied to venom and saliva samples and could be used effectively for the rapid and accurate identification of species during forensic work, conservation study, and medical research.

  20. Ortholog Identification and Comparative Analysis of Microbial Genomes Using MBGD and RECOG.

    PubMed

    Uchiyama, Ikuo

    2017-01-01

    Comparative genomics is becoming an essential approach for identification of genes associated with a specific function or phenotype. Here, we introduce the microbial genome database for comparative analysis (MBGD), which is a comprehensive ortholog database among the microbial genomes available so far. MBGD contains several precomputed ortholog tables including the standard ortholog table covering the entire taxonomic range and taxon-specific ortholog tables for various major taxa. In addition, MBGD allows the users to create an ortholog table within any specified set of genomes through dynamic calculations. In particular, MBGD has a "My MBGD" mode where users can upload their original genome sequences and incorporate them into orthology analysis. The created ortholog table can serve as the basis for various comparative analyses. Here, we describe the use of MBGD and briefly explain how to utilize the orthology information during comparative genome analysis in combination with the stand-alone comparative genomics software RECOG, focusing on the application to comparison of closely related microbial genomes.

  1. Humans differ in their personal microbial cloud

    PubMed Central

    Altrichter, Adam E.; Bateman, Ashley C.; Stenson, Jason; Brown, GZ; Green, Jessica L.; Bohannan, Brendan J.M.

    2015-01-01

    Dispersal of microbes between humans and the built environment can occur through direct contact with surfaces or through airborne release; the latter mechanism remains poorly understood. Humans emit upwards of 106 biological particles per hour, and have long been known to transmit pathogens to other individuals and to indoor surfaces. However it has not previously been demonstrated that humans emit a detectible microbial cloud into surrounding indoor air, nor whether such clouds are sufficiently differentiated to allow the identification of individual occupants. We used high-throughput sequencing of 16S rRNA genes to characterize the airborne bacterial contribution of a single person sitting in a sanitized custom experimental climate chamber. We compared that to air sampled in an adjacent, identical, unoccupied chamber, as well as to supply and exhaust air sources. Additionally, we assessed microbial communities in settled particles surrounding each occupant, to investigate the potential long-term fate of airborne microbial emissions. Most occupants could be clearly detected by their airborne bacterial emissions, as well as their contribution to settled particles, within 1.5–4 h. Bacterial clouds from the occupants were statistically distinct, allowing the identification of some individual occupants. Our results confirm that an occupied space is microbially distinct from an unoccupied one, and demonstrate for the first time that individuals release their own personalized microbial cloud. PMID:26417541

  2. Identification of Microorganisms by Modern Analytical Techniques.

    PubMed

    Buszewski, Bogusław; Rogowska, Agnieszka; Pomastowski, Paweł; Złoch, Michał; Railean-Plugaru, Viorica

    2017-11-01

    Rapid detection and identification of microorganisms is a challenging and important aspect in a wide range of fields, from medical to industrial, affecting human lives. Unfortunately, classical methods of microorganism identification are based on time-consuming and labor-intensive approaches. Screening techniques require the rapid and cheap grouping of bacterial isolates; however, modern bioanalytics demand comprehensive bacterial studies at a molecular level. Modern approaches for the rapid identification of bacteria use molecular techniques, such as 16S ribosomal RNA gene sequencing based on polymerase chain reaction or electromigration, especially capillary zone electrophoresis and capillary isoelectric focusing. However, there are still several challenges with the analysis of microbial complexes using electromigration technology, such as uncontrolled aggregation and/or adhesion to the capillary surface. Thus, an approach using capillary electrophoresis of microbial aggregates with UV and matrix-assisted laser desorption ionization time-of-flight MS detection is presented.

  3. Comparison of traditional gas chromatography (GC), headspace GC, and the microbial identification library GC system for the identification of Clostridium difficile.

    PubMed Central

    Cundy, K V; Willard, K E; Valeri, L J; Shanholtzer, C J; Singh, J; Peterson, L R

    1991-01-01

    Three gas chromatography (GC) methods were compared for the identification of 52 clinical Clostridium difficile isolates, as well as 17 non-C. difficile Clostridium isolates. Headspace GC and Microbial Identification System (MIS) GC, an automated system which utilizes a software library developed at the Virginia Polytechnic Institute to identify organisms based on the fatty acids extracted from the bacterial cell wall, were compared against the reference method of traditional GC. Headspace GC and MIS were of approximately equivalent accuracy in identifying the 52 C. difficile isolates (52 of 52 versus 51 of 52, respectively). However, 7 of 52 organisms required repeated sample preparation before an identification was achieved by the MIS method. Both systems effectively differentiated C. difficile from non-C. difficile clostridia, although the MIS method correctly identified only 9 of 17. We conclude that the headspace GC system is an accurate method of C. difficile identification, which requires only one-fifth of the sample preparation time of MIS GC and one-half of the sample preparation time of traditional GC. PMID:2007632

  4. Massively parallel sequencing of 17 commonly used forensic autosomal STRs and amelogenin with small amplicons.

    PubMed

    Kim, Eun Hye; Lee, Hwan Young; Yang, In Seok; Jung, Sang-Eun; Yang, Woo Ick; Shin, Kyoung-Jin

    2016-05-01

    The next-generation sequencing (NGS) method has been utilized to analyze short tandem repeat (STR) markers, which are routinely used for human identification purposes in the forensic field. Some researchers have demonstrated the successful application of the NGS system to STR typing, suggesting that NGS technology may be an alternative or additional method to overcome limitations of capillary electrophoresis (CE)-based STR profiling. However, there has been no available multiplex PCR system that is optimized for NGS analysis of forensic STR markers. Thus, we constructed a multiplex PCR system for the NGS analysis of 18 markers (13CODIS STRs, D2S1338, D19S433, Penta D, Penta E and amelogenin) by designing amplicons in the size range of 77-210 base pairs. Then, PCR products were generated from two single-sources, mixed samples and artificially degraded DNA samples using a multiplex PCR system, and were prepared for sequencing on the MiSeq system through construction of a subsequent barcoded library. By performing NGS and analyzing the data, we confirmed that the resultant STR genotypes were consistent with those of CE-based typing. Moreover, sequence variations were detected in targeted STR regions. Through the use of small-sized amplicons, the developed multiplex PCR system enables researchers to obtain successful STR profiles even from artificially degraded DNA as well as STR loci which are analyzed with large-sized amplicons in the CE-based commercial kits. In addition, successful profiles can be obtained from mixtures up to a 1:19 ratio. Consequently, the developed multiplex PCR system, which produces small size amplicons, can be successfully applied to STR NGS analysis of forensic casework samples such as mixtures and degraded DNA samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. A single-step polymerase chain reaction for simultaneous detection and differentiation of nontypeable and serotypeable Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae.

    PubMed

    Kunthalert, Duangkamol; Henghiranyawong, Kritsada; Sistayanarain, Anchalee; Khoothiam, Krissana

    2013-02-01

    The critically high prevalence of bacterial otitis media worldwide has prompted a proper disease management. While vaccine development for otitis media is promising, the reliable and effective methods for diagnosis of such etiologic agents are of importance. We developed a multiplex polymerase chain reaction assay for simultaneous detection and differentiation of nontypeable and serotypeable Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae. Five primer pairs targeting genes fumarate reductase (H. influenzae), outer membrane protein B (M. catarrhalis), major autolysin (S. pneumoniae), capsulation-associated BexA protein (all encapsulated H. influenzae) and 16S rRNA were incorporated in this single-step PCR. Validation of the multiplex PCR was also performed on clinical isolates. The developed multiplex PCR was highly specific, enabling the detection of the target pathogens in a specific manner, either individually or as a mixture of all target organisms. The assay was also found to be sensitive with the lowest detection limit of 1 ng of bacterial DNA. When applied to clinical isolates from diverse specimen sources, the multiplex PCR developed in this study correctly identified each microorganism individually or in a combination of two or more target organisms. All results matched with conventional culture identification. In addition, the ability of such assay to differentiate H. influenzae encapsulation from the study clinical isolates was 100%. Our multiplex PCR provides a rapid and accurate diagnostic tool for detection of the 4 target organisms. Such assay would serve as a useful tool for clinicians and epidemiologists in their efforts to the proper treatment and disease management caused by these organisms. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Diagnostic accuracy of two multiplex real-time polymerase chain reaction assays for the diagnosis of meningitis in children in a resource-limited setting.

    PubMed

    Khumalo, Jermaine; Nicol, Mark; Hardie, Diana; Muloiwa, Rudzani; Mteshana, Phindile; Bamford, Colleen

    2017-01-01

    Accurate etiological diagnosis of meningitis is important, but difficult in resource-limited settings due to prior administration of antibiotics and lack of viral diagnostics. We aimed to develop and validate 2 real-time multiplex PCR (RT-PCR) assays for the detection of common causes of community-acquired bacterial and viral meningitis in South African children. We developed 2 multiplex RT- PCRs for detection of S. pneumoniae, N. meningitidis, H. influenzae, enteroviruses, mumps virus and herpes simplex virus. We tested residual CSF samples from children presenting to a local paediatric hospital over a one-year period, whose CSF showed an abnormal cell count. Results were compared with routine diagnostic tests and the final discharge diagnosis. We calculated accuracy of the bacterial RT-PCR assay compared to CSF culture and using World Health Organisation definitions of laboratory-confirmed bacterial meningitis. From 292 samples, bacterial DNA was detected in 12 (4.1%) and viral nucleic acids in 94 (32%). Compared to CSF culture, the sensitivity and specificity of the bacterial RT-PCR was 100% and 97.2% with complete agreement in organism identification. None of the cases positive by viral RT-PCR had a bacterial cause confirmed on CSF culture. Only 9/90 (10%) of patients diagnosed clinically as bacterial meningitis or partially treated bacterial meningitis tested positive with the bacterial RT-PCR. In this population the use of 2 multiplex RT-PCRs targeting 6 common pathogens gave promising results. If introduced into routine diagnostic testing, these multiplex RT-PCR assays would supplement other diagnostic tests, and have the potential to limit unnecessary antibiotic therapy and hospitalisation.

  7. Diagnostic accuracy of two multiplex real-time polymerase chain reaction assays for the diagnosis of meningitis in children in a resource-limited setting

    PubMed Central

    Khumalo, Jermaine; Nicol, Mark; Hardie, Diana; Muloiwa, Rudzani; Mteshana, Phindile

    2017-01-01

    Introduction Accurate etiological diagnosis of meningitis is important, but difficult in resource-limited settings due to prior administration of antibiotics and lack of viral diagnostics. We aimed to develop and validate 2 real-time multiplex PCR (RT-PCR) assays for the detection of common causes of community-acquired bacterial and viral meningitis in South African children. Methods We developed 2 multiplex RT- PCRs for detection of S. pneumoniae, N. meningitidis, H. influenzae, enteroviruses, mumps virus and herpes simplex virus. We tested residual CSF samples from children presenting to a local paediatric hospital over a one-year period, whose CSF showed an abnormal cell count. Results were compared with routine diagnostic tests and the final discharge diagnosis. We calculated accuracy of the bacterial RT-PCR assay compared to CSF culture and using World Health Organisation definitions of laboratory-confirmed bacterial meningitis. Results From 292 samples, bacterial DNA was detected in 12 (4.1%) and viral nucleic acids in 94 (32%). Compared to CSF culture, the sensitivity and specificity of the bacterial RT-PCR was 100% and 97.2% with complete agreement in organism identification. None of the cases positive by viral RT-PCR had a bacterial cause confirmed on CSF culture. Only 9/90 (10%) of patients diagnosed clinically as bacterial meningitis or partially treated bacterial meningitis tested positive with the bacterial RT-PCR. Discussion In this population the use of 2 multiplex RT-PCRs targeting 6 common pathogens gave promising results. If introduced into routine diagnostic testing, these multiplex RT-PCR assays would supplement other diagnostic tests, and have the potential to limit unnecessary antibiotic therapy and hospitalisation. PMID:28346504

  8. Identification of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from burn patients by multiplex PCR.

    PubMed

    Montazeri, Effat Abbasi; Khosravi, Azar Dokht; Jolodar, Abbas; Ghaderpanah, Mozhgan; Azarpira, Samireh

    2015-05-01

    Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MRCoNS) as important human pathogens are causes of nosocomial infections worldwide. Burn patients are at a higher risk of local and systemic infections with these microorganisms. A screening method for MRSA by using a multiplex polymerase chain reaction (PCR) targeting the 16S ribosomal RNA (rRNA), mecA, and nuc genes was developed. The aim of the present study was to investigate the potential of this PCR assay for the detection of MRSA strains in samples from burn patients. During an 11-month period, 230 isolates (53.11%) of Staphylococcus spp. were collected from burn patients. The isolates were identified as S. aureus by using standard culture and biochemical tests. DNA was extracted from bacterial colonies and multiplex PCR was used to detect MRSA and MRCoNS strains. Of the staphylococci isolates, 149 (64.9%) were identified as S. aureus and 81 (35.21%) were described as CoNS. Among the latter, 51 (62.97%) were reported to be MRCoNS. From the total S. aureus isolates, 132 (88.6%) were detected as MRSA and 17 (11.4%) were methicillin-susceptible S. aureus (MSSA). The presence of the mecA gene in all isolates was confirmed by using multiplex PCR as a gold standard method. This study presented a high MRSA rate in the region under investigation. The 16S rRNA-mecA-nuc multiplex PCR is a good tool for the rapid characterization of MRSA strains. This paper emphasizes the need for preventive measures and choosing effective antimicrobials against MRSA and MRCoNS infections in the burn units. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  9. Taxonomic concepts and practice with complex microbial communities

    USDA-ARS?s Scientific Manuscript database

    This brief review discusses the main points of the Keynote Lecture to be given at the 3rd International Conference on Microbial Diversity, October 27-29, 2015, Perugia, Italy. Key points include the necessity of molecular identification of microorganisms in order to understand their ecology. DNA-bas...

  10. Microbial source tracking in impaired watersheds using PhyloChip and machine-learning classification.

    PubMed

    Dubinsky, Eric A; Butkus, Steven R; Andersen, Gary L

    2016-11-15

    Sources of fecal indicator bacteria are difficult to identify in watersheds that are impacted by a variety of non-point sources. We developed a molecular source tracking test using the PhyloChip microarray that detects and distinguishes fecal bacteria from humans, birds, ruminants, horses, pigs and dogs with a single test. The multiplexed assay targets 9001 different 25-mer fragments of 16S rRNA genes that are common to the bacterial community of each source type. Both random forests and SourceTracker were tested as discrimination tools, with SourceTracker classification producing superior specificity and sensitivity for all source types. Validation with 12 different mammalian sources in mixtures found 100% correct identification of the dominant source and 84-100% specificity. The test was applied to identify sources of fecal indicator bacteria in the Russian River watershed in California. We found widespread contamination by human sources during the wet season proximal to settlements with antiquated septic infrastructure and during the dry season at beaches during intense recreational activity. The test was more sensitive than common fecal indicator tests that failed to identify potential risks at these sites. Conversely, upstream beaches and numerous creeks with less reliance on onsite wastewater treatment contained no fecal signal from humans or other animals; however these waters did contain high counts of fecal indicator bacteria after rain. Microbial community analysis revealed that increased E. coli and enterococci at these locations did not co-occur with common fecal bacteria, but rather co-varied with copiotrophic bacteria that are common in freshwaters with high nutrient and carbon loading, suggesting runoff likely promoted the growth of environmental strains of E. coli and enterococci. These results indicate that machine-learning classification of PhyloChip microarray data can outperform conventional single marker tests that are used to assess health risks, and is an effective tool for distinguishing numerous fecal and environmental sources of pathogen indicators. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Serum proteomic analysis identifies sex-specific differences in lipid metabolism and inflammation profiles in adults diagnosed with Asperger syndrome

    PubMed Central

    2014-01-01

    Background The higher prevalence of Asperger Syndrome (AS) and other autism spectrum conditions in males has been known for many years. However, recent multiplex immunoassay profiling studies have shown that males and females with AS have distinct proteomic changes in serum. Methods Here, we analysed sera from adults diagnosed with AS (males = 14, females = 16) and controls (males = 13, females = 16) not on medication at the time of sample collection, using a combination of multiplex immunoassay and shotgun label-free liquid chromatography mass spectrometry (LC-MSE). The main objective was to identify sex-specific serum protein changes associated with AS. Results Multiplex immunoassay profiling led to identification of 16 proteins that were significantly altered in AS individuals in a sex-specific manner. Three of these proteins were altered in females (ADIPO, IgA, APOA1), seven were changed in males (BMP6, CTGF, ICAM1, IL-12p70, IL-16, TF, TNF-alpha) and six were changed in both sexes but in opposite directions (CHGA, EPO, IL-3, TENA, PAP, SHBG). Shotgun LC-MSE profiling led to identification of 13 serum proteins which had significant sex-specific changes in the AS group and, of these, 12 were altered in females (APOC2, APOE, ARMC3, CLC4K, FETUB, GLCE, MRRP1, PTPA, RN149, TLE1, TRIPB, ZC3HE) and one protein was altered in males (RGPD4). The free androgen index in females with AS showed an increased ratio of 1.63 compared to controls. Conclusion Taken together, the serum multiplex immunoassay and shotgun LC-MSE profiling results indicate that adult females with AS had alterations in proteins involved mostly in lipid transport and metabolism pathways, while adult males with AS showed changes predominantly in inflammation signalling. These results provide further evidence that the search for biomarkers or novel drug targets in AS may require stratification into male and female subgroups, and could lead to the development of novel targeted treatment approaches. PMID:24467795

  12. Evaluation of a highly discriminating multiplex multi-locus variable-number of tandem-repeats (MLVA) analysis for Vibrio cholerae.

    PubMed

    Olsen, Jaran S; Aarskaug, Tone; Skogan, Gunnar; Fykse, Else Marie; Ellingsen, Anette Bauer; Blatny, Janet M

    2009-09-01

    Vibrio cholerae is the etiological agent of cholera and may be used in bioterror actions due to the easiness of its dissemination, and the public fear for acquiring the cholera disease. A simple and highly discriminating method for connecting clinical and environmental isolates of V. cholerae is needed in microbial forensics. Twelve different loci containing variable numbers of tandem-repeats (VNTRs) were evaluated in which six loci were polymorphic. Two multiplex reactions containing PCR primers targeting these six VNTRs resulted in successful DNA amplification of 142 various environmental and clinical V. cholerae isolates. The genetic distribution inside the V. cholerae strain collection was used to evaluate the discriminating power (Simpsons Diversity Index=0.99) of this new MLVA analysis, showing that the assay have a potential to differentiate between various strains, but also to identify those isolates which are collected from a common V. cholerae outbreak. This work has established a rapid and highly discriminating MLVA assay useful for track back analyses and/or forensic studies of V. cholerae infections.

  13. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains

    DOE PAGES

    Lian, Jiazhang; Bao, Zehua; Hu, Sumeng; ...

    2018-02-20

    The CRISPR/Cas9 system has been widely used for multiplex genome engineering of Saccharomyces cerevisiae. Furthermore, its application in manipulating industrial yeast strains is less successful, probably due to the genome complexity and low copy numbers of gRNA expression plasmids. Here we developed an efficient CRISPR/Cas9 system for industrial yeast strain engineering by using our previously engineered plasmids with increased copy numbers. Four genes in both a diploid strain (Ethanol Red, 8 alleles in total) and a triploid strain (ATCC 4124, 12 alleles in total) were knocked out in a single step with 100% efficiency. This system was used to constructmore » xylose-fermenting, lactate-producing industrial yeast strains, in which ALD6, PHO13, LEU2, and URA3 were disrupted in a single step followed by the introduction of a xylose utilization pathway and a lactate biosynthetic pathway on auxotrophic marker plasmids. The optimized CRISPR/Cas9 system provides a powerful tool for the development of industrial yeast based microbial cell factories.« less

  14. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jiazhang; Bao, Zehua; Hu, Sumeng

    The CRISPR/Cas9 system has been widely used for multiplex genome engineering of Saccharomyces cerevisiae. Furthermore, its application in manipulating industrial yeast strains is less successful, probably due to the genome complexity and low copy numbers of gRNA expression plasmids. Here we developed an efficient CRISPR/Cas9 system for industrial yeast strain engineering by using our previously engineered plasmids with increased copy numbers. Four genes in both a diploid strain (Ethanol Red, 8 alleles in total) and a triploid strain (ATCC 4124, 12 alleles in total) were knocked out in a single step with 100% efficiency. This system was used to constructmore » xylose-fermenting, lactate-producing industrial yeast strains, in which ALD6, PHO13, LEU2, and URA3 were disrupted in a single step followed by the introduction of a xylose utilization pathway and a lactate biosynthetic pathway on auxotrophic marker plasmids. The optimized CRISPR/Cas9 system provides a powerful tool for the development of industrial yeast based microbial cell factories.« less

  15. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains.

    PubMed

    Lian, Jiazhang; Bao, Zehua; Hu, Sumeng; Zhao, Huimin

    2018-06-01

    The CRISPR/Cas9 system has been widely used for multiplex genome engineering of Saccharomyces cerevisiae. However, its application in manipulating industrial yeast strains is less successful, probably due to the genome complexity and low copy numbers of gRNA expression plasmids. Here we developed an efficient CRISPR/Cas9 system for industrial yeast strain engineering by using our previously engineered plasmids with increased copy numbers. Four genes in both a diploid strain (Ethanol Red, 8 alleles in total) and a triploid strain (ATCC 4124, 12 alleles in total) were knocked out in a single step with 100% efficiency. This system was used to construct xylose-fermenting, lactate-producing industrial yeast strains, in which ALD6, PHO13, LEU2, and URA3 were disrupted in a single step followed by the introduction of a xylose utilization pathway and a lactate biosynthetic pathway on auxotrophic marker plasmids. The optimized CRISPR/Cas9 system provides a powerful tool for the development of industrial yeast based microbial cell factories. © 2018 Wiley Periodicals, Inc.

  16. Geogenic Factors as Drivers of Microbial Community Diversity in Soils Overlying Polymetallic Deposits.

    PubMed

    Reith, Frank; Zammit, Carla M; Pohrib, Rebecca; Gregg, Adrienne L; Wakelin, Steven A

    2015-11-01

    This study shows that the geogenic factors landform, lithology, and underlying mineral deposits (expressed by elevated metal concentrations in overlying soils) are key drivers of microbial community diversity in naturally metal-rich Australian soils with different land uses, i.e., agriculture versus natural bushland. One hundred sixty-eight soil samples were obtained from two metal-rich provinces in Australia, i.e., the Fifield Au-Pt field (New South Wales) and the Hillside Cu-Au-U rare-earth-element (REE) deposit (South Australia). Soils were analyzed using three-domain multiplex terminal-restriction-fragment-length-polymorphism (M-TRFLP) and PhyloChip microarrays. Geogenic factors were determined using field-mapping techniques and analyses of >50 geochemical parameters. At Fifield, microbial communities differed significantly with geogenic factors and equally with land use (P < 0.05). At Hillside, communities in surface soils (0.03- to 0.2-m depth) differed significantly with landform and land use (P < 0.05). Communities in deeper soils (>0.2 m) differed significantly with lithology and mineral deposit (P < 0.05). Across both sites, elevated metal contents in soils overlying mineral deposits were selective for a range of bacterial taxa, most importantly Acidobacteria, Bacilli, Betaproteobacteria, and Epsilonproteobacteria. In conclusion, long-term geogenic factors can be just as important as land use in determining soil microbial community diversity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Geogenic Factors as Drivers of Microbial Community Diversity in Soils Overlying Polymetallic Deposits

    PubMed Central

    Zammit, Carla M.; Pohrib, Rebecca; Gregg, Adrienne L.; Wakelin, Steven A.

    2015-01-01

    This study shows that the geogenic factors landform, lithology, and underlying mineral deposits (expressed by elevated metal concentrations in overlying soils) are key drivers of microbial community diversity in naturally metal-rich Australian soils with different land uses, i.e., agriculture versus natural bushland. One hundred sixty-eight soil samples were obtained from two metal-rich provinces in Australia, i.e., the Fifield Au-Pt field (New South Wales) and the Hillside Cu-Au-U rare-earth-element (REE) deposit (South Australia). Soils were analyzed using three-domain multiplex terminal-restriction-fragment-length-polymorphism (M-TRFLP) and PhyloChip microarrays. Geogenic factors were determined using field-mapping techniques and analyses of >50 geochemical parameters. At Fifield, microbial communities differed significantly with geogenic factors and equally with land use (P < 0.05). At Hillside, communities in surface soils (0.03- to 0.2-m depth) differed significantly with landform and land use (P < 0.05). Communities in deeper soils (>0.2 m) differed significantly with lithology and mineral deposit (P < 0.05). Across both sites, elevated metal contents in soils overlying mineral deposits were selective for a range of bacterial taxa, most importantly Acidobacteria, Bacilli, Betaproteobacteria, and Epsilonproteobacteria. In conclusion, long-term geogenic factors can be just as important as land use in determining soil microbial community diversity. PMID:26341204

  18. Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics

    PubMed Central

    Radonić, Aleksandar; Kocak Tufan, Zeliha; Domingo, Cristina

    2017-01-01

    Background We describe the development and evaluation of a novel method for targeted amplification and Next Generation Sequencing (NGS)-based identification of viral hemorrhagic fever (VHF) agents and assess the feasibility of this approach in diagnostics. Methodology An ultrahigh-multiplex panel was designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF) virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform. A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients. Principal findings The multiplex primer panel comprises two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. Targeted amplification ensured viral read detection in specimens with the lowest virus concentration (1–10 genome equivalents) and enabled significant increases in specific reads over background for all viruses investigated. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours. Conclusions Virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring. PMID:29155823

  19. Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics.

    PubMed

    Brinkmann, Annika; Ergünay, Koray; Radonić, Aleksandar; Kocak Tufan, Zeliha; Domingo, Cristina; Nitsche, Andreas

    2017-11-01

    We describe the development and evaluation of a novel method for targeted amplification and Next Generation Sequencing (NGS)-based identification of viral hemorrhagic fever (VHF) agents and assess the feasibility of this approach in diagnostics. An ultrahigh-multiplex panel was designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF) virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform. A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients. The multiplex primer panel comprises two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. Targeted amplification ensured viral read detection in specimens with the lowest virus concentration (1-10 genome equivalents) and enabled significant increases in specific reads over background for all viruses investigated. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours. Virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring.

  20. Multiplex identification of sepsis-causing Gram-negative pathogens from the plasma of infected blood.

    PubMed

    Chung, Boram; Park, Chulmin; Cho, Sung-Yeon; Shin, Juyoun; Shin, Sun; Yim, Seon-Hee; Lee, Dong-Gun; Chung, Yeun-Jung

    2018-02-01

    Early and accurate detection of bacterial pathogens in the blood is the most crucial step for sepsis management. Gram-negative bacteria are the most common organisms causing severe sepsis and responsible for high morbidity and mortality. We aimed to develop a method for rapid multiplex identification of clinically important Gram-negative pathogens and also validated whether our system can identify Gram-negative pathogens with the cell-free plasm DNA from infected blood. We designed five MLPA probe sets targeting the genes specific to major Gram-negative pathogens (uidA and lacY for E. coli, ompA for A. baumannii, phoE for K. pneumoniae, and ecfX for P. aeruginosa) and one set targeting the CTX-M group 1 to identify the ESBL producing Gram-negative pathogens. All six target-specific peaks were clearly separated without any non-specific peaks in a multiplex reaction condition. The minimum detection limit was 100 fg of pathogen DNA. When we tested 28 Gram-negative clinical isolates, all of them were successfully identified without any non-specific peaks. To evaluate the clinical applicability, we tested seven blood samples from febrile patients. Three blood culture positive cases showed E. coli specific peaks, while no peak was detected in the other four culture negative samples. This technology can be useful for detection of major sepsis-causing, drug-resistant Gram-negative pathogens and also the major ESBL producing Gram-negatives from the blood of sepsis patients in a clinical setting. This system can help early initiation of effective antimicrobial treatment against Gram-negative pathogens for sepsis patients, which is very crucial for better treatment outcomes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Viruses causing severe acute respiratory infections (SARI) in children ≤5 years of age at a tertiary care hospital in Rajasthan, India.

    PubMed

    Malhotra, Bharti; Swamy, M Anjaneya; Janardhan Reddy, P V; Gupta, M L

    2016-12-01

    Severe acute respiratory infection (SARI) is one of the leading causes of death among children worldwide. As different respiratory viruses exhibit similar symptoms, simultaneous detection of these viruses in a single reaction mixture can save time and cost. The present study was done in a tertiary care children's hospital for rapid identification of viruses causing SARI among children less than or equal to five years of age using multiplex real-time reverse transcription polymerase chain reaction (RT-PCR) kit. A total of 155 throat swabs were collected from equal number of children suspected to have SARI and processed for extraction of nucleic acids using automated extraction system. Multiplex real-time RT-PCR was done to identify the viruses in the samples. The overall positivity for viruses in the study was found to be 72.9 per cent with a co-infection rate of 19.5 per cent. Human metapneumovirus (HMPV) was the predominant virus detected in 25.7 per cent children followed by influenza A (H1N1)pdm09, human rhinovirus (HRV) and human adenovirus (HAdV) in 19.9, 11.0 and 8.8 per cent children, respectively. The HMPV was at its peak in February 2013, HAdV showed two peaks in March-April, 2012 and November 2012-March 2013 while HRV was detected throughout the year. Multiplex real-time PCR helped in rapid identification of viruses. Seventeen viruses were detected in SARI cases with overall positivity of 72.9 per cent. HMPV was the most predominant virus. However, for better clinico-virological correlation, studies are required with complete work up of all the aetiological agents, clinical profile of patients and treatment outcome.

  2. A new PCR-CGE (size and color) method for simultaneous detection of genetically modified maize events.

    PubMed

    Nadal, Anna; Coll, Anna; La Paz, Jose-Luis; Esteve, Teresa; Pla, Maria

    2006-10-01

    We present a novel multiplex PCR assay for simultaneous detection of multiple transgenic events in maize. Initially, five PCR primers pairs specific to events Bt11, GA21, MON810, and NK603, and Zea mays L. (alcohol dehydrogenase) were included. The event specificity was based on amplification of transgene/plant genome flanking regions, i.e., the same targets as for validated real-time PCR assays. These short and similarly sized amplicons were selected to achieve high and similar amplification efficiency for all targets; however, its unambiguous identification was a technical challenge. We achieved a clear distinction by a novel CGE approach that combined the identification by size and color (CGE-SC). In one single step, all five targets were amplified and specifically labeled with three different fluorescent dyes. The assay was specific and displayed an LOD of 0.1% of each genetically modified organism (GMO). Therefore, it was adequate to fulfill legal thresholds established, e.g., in the European Union. Our CGE-SC based strategy in combination with an adequate labeling design has the potential to simultaneously detect higher numbers of targets. As an example, we present the detection of up to eight targets in a single run. Multiplex PCR-CGE-SC only requires a conventional sequencer device and enables automation and high throughput. In addition, it proved to be transferable to a different laboratory. The number of authorized GMO events is rapidly growing; and the acreage of genetically modified (GM) varieties cultivated and commercialized worldwide is rapidly increasing. In this context, our multiplex PCR-CGE-SC can be suitable for screening GM contents in food.

  3. Microbial Characterization During the Early Habitation of the International Space Station

    NASA Technical Reports Server (NTRS)

    Castro, V. A.; Thrasher, A. N.; Healy, M.; Ott, C. M.; Pierson, D. L.

    2004-01-01

    An evaluation of the microbiota from air, water, and surface samples provided a baseline of microbial characterization onboard the International Space Station (ISS) to gain insight into bacterial and fungal contamination during the initial stages of construction and habitation. Using 16S genetic sequencing and rep-PCR, 63 bacterial strains were isolated for identification and fingerprinted for microbial tracking. Of the bacterial strains that were isolated and fingerprinted, 19 displayed similarity to each other. The use of these molecular tools allowed for the identification of bacteria not previously identified using automated biochemical analysis and provided a clear indication of the source of several ISS contaminants. Strains of Bradyrhizobium and Sphingomonas unable to be identified using sequencing were identified by comparison of rep-PCR DNA fingerprints. Distinct DNA fingerprints for several strains of Methylobacterium provided a clear indication of the source of an ISS water supply contaminant. Fungal and bacterial data acquired during monitoring do not suggest there is a current microbial hazard to the spacecraft, nor does any trend indicate a potential health risk. Previous spacecraft environmental analysis indicated that microbial contamination will increase with time and will require continued surveillance. Copyright 2004 Springer-Verlag.

  4. Biomarkers of Rheumatoid Arthritis–Associated Interstitial Lung Disease

    PubMed Central

    Chen, Juan; Doyle, Tracy J.; Liu, Yongliang; Aggarwal, Rohit; Wang, Xiaoping; Shi, Yonghong; Ge, Sheng Xiang; Huang, Heqing; Lin, Qingyan; Liu, Wen; Cai, Yongjin; Koontz, Diane; Fuhrman, Carl R.; Golzarri, Maria F.; Liu, Yushi; Hatabu, Hiroto; Nishino, Mizuki; Araki, Tetsuro; Dellaripa, Paul F.; Oddis, Chester V.; Rosas, Ivan O.; Ascherman, Dana P.

    2015-01-01

    Objective Interstitial lung disease (ILD) is a relatively common extraarticular manifestation of rheumatoid arthritis (RA) that contributes significantly to disease burden and excess mortality. The purpose of this study was to identify peripheral blood markers of RA-associated ILD that can facilitate earlier diagnosis and provide insight regarding the pathogenesis of this potentially devastating disease complication. Methods Patients with RA who were enrolled in a well-characterized Chinese identification cohort or a US replication cohort were subclassified as having RA–no ILD, RA–mild ILD, or RA–advanced ILD, based on high-resolution computed tomography scans of the chest. Multiplex enzyme-linked immunosorbent assays (ELISAs) and Luminex xMAP technology were used to assess 36 cytokines/chemokines, matrix metalloproteinases (MMPs), and acute-phase proteins in the identification cohort. Unadjusted and adjusted logistic regression models were used to quantify the strength of association between RA-ILD and biomarkers of interest. Results MMP-7 and interferon-γ–inducible protein 10 (IP-10)/CXCL10 were identified by multiplex ELISA as potential biomarkers for RA-ILD in 133 RA patients comprising the Chinese identification cohort (50 RA–no ILD, 41 RA-ILD, 42 RA–indeterminate ILD). The findings were confirmed by standard solid-phase sandwich ELISA in the Chinese identification cohort as well as an independent cohort of US patients with RA and different stages of ILD (22 RA–no ILD, 49 RA-ILD, 15 RA–indeterminate ILD), with statistically significant associations in both unadjusted and adjusted logistic regression analyses. Conclusion Levels of MMP-7 and IP-10/CXCL10 are elevated in the serum of RA patients with ILD, whether mild or advanced, supporting their value as pathogenically relevant biomarkers that can contribute to noninvasive detection of this extraarticular disease complication. PMID:25302945

  5. Forensic genetic informativeness of an SNP panel consisting of 19 multi-allelic SNPs.

    PubMed

    Gao, Zehua; Chen, Xiaogang; Zhao, Yuancun; Zhao, Xiaohong; Zhang, Shu; Yang, Yiwen; Wang, Yufang; Zhang, Ji

    2018-05-01

    Current research focusing on forensic personal identification, phenotype inference and ancestry information on single-nucleotide polymorphisms (SNPs) has been widely reported. In the present study, we focused on tetra-allelic SNPs in the Chinese Han population. A total of 48 tetra-allelic SNPs were screened out from the Chinese Han population of the 1000 Genomes Database, including Chinese Han in Beijing (CHB) and Chinese Han South (CHS). Considering the forensic genetic requirement for the polymorphisms, only 11 tetra-allelic SNPs with a heterozygosity >0.06 were selected for further multiplex panel construction. In order to meet the demands of personal identification and parentage identification, an additional 8 tri-allelic SNPs were combined into the final multiplex panel. To ensure application in the degraded DNA analysis, all the PCR products were designed to be 87-188 bp. Employing multiple PCR reactions and SNaPshot minisequencing, 511 unrelated Chinese Han individuals from Sichuan were genotyped. The combined match probability (CMP), combined discrimination power (CDP), and cumulative probability of exclusion (CPE) of the panel were 6.07 × 10 -11 , 0.9999999999393 and 0.996764, respectively. Based on the population data retrieved from the 1000 Genomes Project, Fst values between Chinese Han in Sichuan (SCH) and all the populations included in the 1000 Genomes Project were calculated. The results indicated that two SNPs in this panel may contain ancestry information and may be used as markers of forensic biogeographical ancestry inference. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Rapid Electrochemical Detection and Identification of Microbiological and Chemical Contaminants for Manned Spaceflight Project

    NASA Technical Reports Server (NTRS)

    Pierson, Duane; Botkin, Douglas; Gazda, Daniel

    2014-01-01

    Microbial control in the spacecraft environment is a daunting task, especially in the presence of human crew members. Currently, assessing the potential crew health risk associated with a microbial contamination event requires return of representative environmental samples that are analyzed in a ground-based laboratory. It is therefore not currently possible to quickly identify microbes during spaceflight. This project addresses the unmet need for spaceflight-compatible microbial identification technology. The electrochemical detection and identification platform is expected to provide a sensitive, specific, and rapid sample-to-answer capability for in-flight microbial monitoring that can distinguish between related microorganisms (pathogens and non-pathogens) as well as chemical contaminants. This will dramatically enhance our ability to monitor the spacecraft environment and the health risk to the crew. Further, the project is expected to eliminate the need for sample return while significantly reducing crew time required for detection of multiple targets. Initial work will focus on the optimization of bacterial detection and identification. The platform is designed to release nucleic acids (DNA and RNA) from microorganisms without the use of harmful chemicals. Bacterial DNA or RNA is captured by bacteria-specific probe molecules that are bound to a microelectrode, and that capture event can generate a small change in the electrical current (Lam, et al. 2012. Anal. Chem. 84(1): 21-5.). This current is measured, and a determination is made whether a given microbe is present in the sample analyzed. Chemical detection can be accomplished by directly applying a sample to the microelectrode and measuring the resulting current change. This rapid microbial and chemical detection device is designed to be a low-cost, low-power platform anticipated to be operated independently of an external power source, characteristics optimal for manned spaceflight and areas where power and computing resources are scarce.

  7. EVALUATION OF HOST SPECIFIC PCR-BASED METHODS FOR THE IDENTIFICATION OF FECAL POLLUTION

    EPA Science Inventory

    Microbial Source Tracking (MST) is an approach to determine the origin of fecal pollution impacting a body of water. MST is based on the assumption that, given the appropriate method and indicator, the source of microbial pollution can be identified. One of the key elements of...

  8. Microbiology and Crew Medical Events on the International Space Station

    NASA Technical Reports Server (NTRS)

    Oubre, Cherie M.; Charvat, Jacqueline M.; Kadwa, Biniafer; Taiym, Wafa; Ott, C. Mark; Pierson, Duane; Baalen, Mary Van

    2014-01-01

    The closed environment of the International Space Station (ISS) creates an ideal environment for microbial growth. Previous studies have identified the ubiquitous nature of microorganisms throughout the space station environment. To ensure safety of the crew, microbial monitoring of air and surface within ISS began in December 2000 and continues to be monitored on a quarterly basis. Water monitoring began in 2009 when the potable water dispenser was installed on ISS. However, it is unknown if high microbial counts are associated with inflight medical events. The microbial counts are determined for the air, surface, and water samples collected during flight operations and samples are returned to the Microbiology laboratory at the Johnson Space Center for identification. Instances of microbial counts above the established microbial limit requirements were noted and compared inflight medical events (any non-injury event such as illness, rashes, etc.) that were reported during the same calendar-quarter. Data were analyzed using repeated measures logistic regression for the forty-one US astronauts flew on ISS between 2000 and 2012. In that time frame, instances of microbial counts being above established limits were found for 10 times for air samples, 22 times for surface samples and twice for water. Seventy-eight inflight medical events were reported among the astronauts. A three times greater risk of a medical event was found when microbial samples were found to be high (OR = 3.01; p =.007). Engineering controls, crew training, and strict microbial limits have been established to mitigate the crew medical events and environmental risks. Due to the timing issues of sampling and the samples return to earth, identification of particular microorganisms causing a particular inflight medical event is difficult. Further analyses are underway.

  9. Microbial identification system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Brown, Harlan D.; Scarlett, Janie B.; Skweres, Joyce A.; Fortune, Russell L.; Staples, John L.; Pierson, Duane L.

    1989-01-01

    The Environmental Health System (EHS) and Health Maintenance Facility (HMF) on Space Station Freedom will require a comprehensive microbiology capability. This requirement entails the development of an automated system to perform microbial identifications on isolates from a variety of environmental and clinical sources and, when required, to perform antimicrobial sensitivity testing. The unit currently undergoing development and testing is the Automated Microbiology System II (AMS II) built by Vitek Systems, Inc. The AMS II has successfully completed 12 months of laboratory testing and evaluation for compatibility with microgravity operation. The AMS II is a promising technology for use on Space Station Freedom.

  10. [Microbial "friend-foe" identification in human intestine microsymbiocenosis].

    PubMed

    Bukharin, O V; Petrunova, N B

    2011-01-01

    Development of methodical approach of evaluation of microbial "friend-foe" identification in human intestine microsymbiocenosis. 9 bifidobacteria cultures (dominants) and 18 opportunistic microorganism strains (associants) isolated from patients during examination for intestine dysbiosis and identified by conventional methods were used. Evaluation of microbial "friend-foe" identification in microsymbiocenosis was performed by author developed technique that is based on determination of growth factors (GF), anti-lysozyme activity (ALA) and formation of biofilms (BFF) of associants co-incubated with exometabolites of dominants. GF, ALA, BFF were studied photometrically (Bukharin O.V., 1999, 2009; O'Toole G.A., 2000). The data were statistically analyzed by Fisher-Student criteria. The detected opposite (increase/reduction) phenomenon of the "dominant-associant" pair allowed realization of the "friend-foe" identification in microsymbiocenosis. Associants (E. coli and Enterococcus faecium) were "friend" species, in which bifidobacteria exometabolites did not change growth properties and stimulated ALA (by 17,5--32%) and BFF (by 25 - 39%). Associants (Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Candida albicans) were "foe" microsymbiont species, in which bifidoflora exometabolites decreased GF (by 20,7--68%), ALA (by 22,7--54%) and BFF (by 22,5 --39%). Indigenous microflora during microsymbiocenosis formation can participate in "friend-foe" identification, the basis of which is determined by microsymbiont exometabolites. The data obtained open a perspective of understanding mechanisms of intramicrobial interactions and can be used for both diagnostics and optimal selection of "candidates" during creation of new probiotics and synbiotics.

  11. Affinity Reagents for Multiplexed, Rapid Diagnosis of Bacterial Infections at the Point of Care using Diagnostic Magnetic Resonance

    DTIC Science & Technology

    2012-10-01

    previously demonstrated that we can accurately identify bacteria, including Staphylococcus aureus and Mycobacterium tuberculosis , with startling speed... Mycobacterium tuberculosis , with moderate sensitivity and specificity. Existing antibodies perform poorly for identification of broad classes of...and test panel of existing small molecules with potential to bind to bacterial cell walls. 5. Assess technologies develop recombinant antibodies. 6

  12. Molecular Identification of Adenoviruses Associated with Respiratory Infection in Egypt from 2003 to 2010

    DTIC Science & Technology

    2014-01-30

    World Health Organization (WHO) ILI surveil- lance case definition (fever >38°C and respiratory mani- festations of cough, sore throat or coryza with...a monoplex and maintaining a duplex reaction for HAdV-C and HAdV-E. This multiplex is able to discriminate between HAdV4a-like and HAdV- 4p -like based

  13. Lab-on-a-Chip Proteomic Assays for Psychiatric Disorders.

    PubMed

    Peter, Harald; Wienke, Julia; Guest, Paul C; Bistolas, Nikitas; Bier, Frank F

    2017-01-01

    Lab-on-a-chip assays allow rapid identification of multiple parameters on an automated user-friendly platform. Here we describe a fully automated multiplex immunoassay and readout in less than 15 min using the Fraunhofer in vitro diagnostics (ivD) platform to enable inexpensive point-of-care profiling of sera or a single drop of blood from patients with various diseases such as psychiatric disorders.

  14. Evaluation of a new multiplex PCR assay (ParaGENIE G-Amoeba Real-Time PCR kit) targeting Giardia intestinalis, Entamoeba histolytica and Entamoeba dispar/Entamoeba moshkovskii from stool specimens: evidence for the limited performances of microscopy-based approach for amoeba species identification.

    PubMed

    Morio, F; Valot, S; Laude, A; Desoubeaux, G; Argy, N; Nourrisson, C; Pomares, C; Machouart, M; Le Govic, Y; Dalle, F; Botterel, F; Bourgeois, N; Cateau, E; Leterrier, M; Jeddi, F; Gaboyard, M; Le Pape, P

    2018-02-15

    Besides the potential to identify a wide variety of gastrointestinal parasites, microscopy remains the reference standard in clinical microbiology for amoeba species identification and, especially when coupled with adhesin detection, to discriminate the pathogenic Entamoeba histolytica from its sister but non-pathogenic species Entamoeba dispar/Entamoeba moshkovskii. However, this approach is time-consuming, requires a high-level of expertise that can be jeopardized considering the low prevalence of gastrointestinal parasites in non-endemic countries. Here, we evaluated the CE-IVD-marked multiplex PCR (ParaGENIE G-Amoeba, Ademtech) targeting E. histolytica and E. dispar/E. moshkovskii and Giardia intestinalis. This evaluation was performed blindly on a reference panel of 172 clinical stool samples collected prospectively from 12 laboratories and analysed using a standardized protocol relying on microscopy (and adhesin detection by ELISA for the detection of E. histolytica) including G. intestinalis (n = 37), various amoeba species (n = 55) including E. dispar (n = 15), E. histolytica (n = 5), as well as 17 other gastrointestinal parasites (n = 80), and negative samples (n = 37). This new multiplex PCR assay offers fast and reliable results with appropriate sensitivity and specificity for the detection of G. intestinalis and E. dispar/E. moshkovskii from stools (89.7%/96.9% and 95%/100%, respectively). Detection rate and specificity were greatly improved by the PCR assay, highlighting several samples misidentified by microscopy, including false-negative and false-positive results for both E. dispar/E. moshkovskii and E. histolytica. Given the clinical relevance of amoeba species identification, microbiologists should be aware of the limitations of using an algorithm relying on microscopy coupled with adhesin detection by ELISA. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  15. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules.

    PubMed

    Han, M; Gao, X; Su, J Z; Nie, S

    2001-07-01

    Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots (zinc sulfide-capped cadmium selenide nanocrystals) into polymeric microbeads at precisely controlled ratios. Their novel optical properties (e.g., size-tunable emission and simultaneous excitation) render these highly luminescent quantum dots (QDs) ideal fluorophores for wavelength-and-intensity multiplexing. The use of 10 intensity levels and 6 colors could theoretically code one million nucleic acid or protein sequences. Imaging and spectroscopic measurements indicate that the QD-tagged beads are highly uniform and reproducible, yielding bead identification accuracies as high as 99.99% under favorable conditions. DNA hybridization studies demonstrate that the coding and target signals can be simultaneously read at the single-bead level. This spectral coding technology is expected to open new opportunities in gene expression studies, high-throughput screening, and medical diagnostics.

  16. Development of a multiplex qPCR in real time for quantification and differential diagnosis of Salmonella Gallinarum and Salmonella Pullorum.

    PubMed

    Rubio, Marcela da Silva; Penha Filho, Rafael Antonio Casarin; Almeida, Adriana Maria de; Berchieri, Angelo

    2017-12-01

    Currently there are 2659 Salmonella serovars. The host-specific biovars Salmonella Pullorum and Salmonella Gallinarum cause systemic infections in food-producing and wild birds. Fast diagnosis is crucial to control the dissemination in avian environments. The present work describes the development of a multiplex qPCR in real time using a low-cost DNA dye (SYBr Green) to identify and quantify these biovars. Primers were chosen based on genomic regions of difference (RoD) and optimized to control dimers. Primers pSGP detect both host-specific biovars but not other serovars and pSG and pSP differentiate biovars. Three amplicons showed different melting temperatures (Tm), allowing differentiation. The pSGP amplicon (97 bp) showed Tm of 78°C for both biovars. The pSG amplicon (273 bp) showed a Tm of 86.2°C for S. Gallinarum and pSP amplicon (260 bp) dissociated at 84.8°C for S. Pullorum identification. The multiplex qPCR in real time showed high sensitivity and was capable of quantifying 10 8 -10 1 CFU of these biovars.

  17. APDS: the autonomous pathogen detection system.

    PubMed

    Hindson, Benjamin J; Makarewicz, Anthony J; Setlur, Ujwal S; Henderer, Bruce D; McBride, Mary T; Dzenitis, John M

    2005-04-15

    We have developed and tested a fully autonomous pathogen detection system (APDS) capable of continuously monitoring the environment for airborne biological threat agents. The system was developed to provide early warning to civilians in the event of a bioterrorism incident and can be used at high profile events for short-term, intensive monitoring or in major public buildings or transportation nodes for long-term monitoring. The APDS is completely automated, offering continuous aerosol sampling, in-line sample preparation fluidics, multiplexed detection and identification immunoassays, and nucleic acid-based polymerase chain reaction (PCR) amplification and detection. Highly multiplexed antibody-based and duplex nucleic acid-based assays are combined to reduce false positives to a very low level, lower reagent costs, and significantly expand the detection capabilities of this biosensor. This article provides an overview of the current design and operation of the APDS. Certain sub-components of the ADPS are described in detail, including the aerosol collector, the automated sample preparation module that performs multiplexed immunoassays with confirmatory PCR, and the data monitoring and communications system. Data obtained from an APDS that operated continuously for 7 days in a major U.S. transportation hub is reported.

  18. Elucidating the Burden of HIV in Tissues Using Multiplexed Immunofluorescence and In Situ Hybridization: Methods for the Single-Cell Phenotypic Characterization of Cells Harboring HIV In Situ.

    PubMed

    Vasquez, Joshua J; Hussien, Rajaa; Aguilar-Rodriguez, Brandon; Junger, Henrik; Dobi, Dejan; Henrich, Timothy J; Thanh, Cassandra; Gibson, Erica; Hogan, Louise E; McCune, Joseph; Hunt, Peter W; Stoddart, Cheryl A; Laszik, Zoltan G

    2018-06-01

    Persistent tissue reservoirs of HIV present a major barrier to cure. Defining subsets of infected cells in tissues is a major focus of HIV cure research. Herein, we describe a novel multiplexed in situ hybridization (ISH) (RNAscope) protocol to detect HIV-DNA (vDNA) and HIV-RNA (vRNA) in formalin-fixed paraffin-embedded (FFPE) human tissues in combination with immunofluorescence (IF) phenotyping of the infected cells. We show that multiplexed IF and ISH (mIFISH) is suitable for quantitative assessment of HIV vRNA and vDNA and that multiparameter IF phenotyping allows precise identification of the cellular source of the ISH signal. We also provide semi-quantitative data on the impact of various tissue fixatives on the detectability of vDNA and vRNA with RNAscope technology. Finally, we describe methods to quantitate the ISH signal on whole-slide digital images and validation of the quantitative ISH data with quantitative real-time PCR for vRNA. It is our hope that this approach will provide insight into the biology of HIV tissue reservoirs and to inform strategies aimed at curing HIV.

  19. A spectral profile multiplexed FBG sensor network with application to strain measurement in a Kevlar woven fabric

    NASA Astrophysics Data System (ADS)

    Guo, Guodong; Hackney, Drew; Pankow, Mark; Peters, Kara

    2017-04-01

    A spectral profile division multiplexed fiber Bragg grating (FBG) sensor network is described in this paper. The unique spectral profile of each sensor in the network is identified as a distinct feature to be interrogated. Spectrum overlap is allowed under working conditions. Thus, a specific wavelength window does not need to be allocated to each sensor as in a wavelength division multiplexed (WDM) network. When the sensors are serially connected in the network, the spectrum output is expressed through a truncated series. To track the wavelength shift of each sensor, the identification problem is transformed to a nonlinear optimization problem, which is then solved by a modified dynamic multi-swarm particle swarm optimizer (DMS-PSO). To demonstrate the application of the developed network, a network consisting of four FBGs was integrated into a Kevlar woven fabric, which was under a quasi-static load imposed by an impactor head. Due to the substantial radial strain in the fabric, the spectrums of different FBGs were found to overlap during the loading process. With the developed interrogating method, the overlapped spectrum would be distinguished thus the wavelength shift of each sensor can be monitored.

  20. Multiple-Locus Variable-Number Tandem-Repeats Analysis of Escherichia coli O157 using PCR multiplexing and multi-colored capillary electrophoresis.

    PubMed

    Lindstedt, Bjørn-Arne; Vardund, Traute; Kapperud, Georg

    2004-08-01

    The Multiple-Locus Variable-Number Tandem-Repeats Analysis (MLVA) method is currently being used as the primary typing tool for Shiga-toxin-producing Escherichia coli (STEC) O157 isolates in our laboratory. The initial assay was performed using a single fluorescent dye and the different patterns were assigned using a gel image. Here, we present a significantly improved assay using multiple dye colors and enhanced PCR multiplexing to increase speed, and ease the interpretation of the results. The different MLVA patterns are now based on allele sizes entered as character values, thus removing the uncertainties introduced when analyzing band patterns from the gel image. We additionally propose an easy numbering scheme for the identification of separate isolates that will facilitate exchange of typing data. Seventy-two human and animal strains of Shiga-toxin-producing E. coli O157 were used for the development of the improved MLVA assay. The method is based on capillary separation of multiplexed PCR products of VNTR loci in the E. coli O157 genome labeled with multiple fluorescent dyes. The different alleles at each locus were then assigned to allele numbers, which were used for strain comparison.

  1. Multiplex quantification of Escherichia coli, Salmonella typhi and Vibrio cholera with three DNA targets in single reaction assay.

    PubMed

    Jangampalli Adi, Pradeepkiran; Naidu, Jagadish R; Matcha, Bhaskar

    2017-09-01

    Escherichia coli (E. coli), Salmonella typhi and Vibrio cholera harmful pathogens, which causes various diseases in humans. Rapid diagnosis of bacterial infection is an important for patient management and appropriate therapy during the early phase of the bacterial infected diseases. Among the existing techniques for identifying pathogens were less sensitive and time-consuming processes. In the present study total, 48 clinical 31 blood and 17 urine samples of patients suspected with the infections were collected from SVRR Hospital and used to detect the pathogens. Multiplex polymerase chain reaction (PCR) assay was set to design for the identification of Escherichia coli, Salmonella typhi and Vibrio cholera from the different clinical samples. Rapid diagnosis of Escherichia coli (E. coli), Salmonella and Vibrio cholera pathogens can be done with simultaneously in a single multiplex PCR assay by using specific primers with adjusted PCR conditions. Through this approach, the results represented with out of 31 blood samples 1-15 shows the positive with E. coli and remaining 14 only 11 were correlated with multiplex results of Vibrio cholera, remaining the urine samples all are positive with 17 samples correlate with the Salmonella typhi. Through the high specificity benefits of excellent sensitivity, with high resolution and reproducibility. This method of results proved and illustrates the best potential system for diagnosing the infectious disease with modern trendy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Development and use of tuf gene-based primers for the multiplex PCR detection of Lactobacillus acidophilus, Lactobacillus casei group, Lactobacillus delbrueckii, and Bifidobacterium longum in commercial dairy products.

    PubMed

    Sheu, Sen-Je; Hwang, Wen-zhe; Chen, Hsin-Chih; Chiang, Yu-Cheng; Tsen, Hau-Yang

    2009-01-01

    PCR primers specific for the detection of Lactobacillus acidophilus, Lactobacillus casei group, Lactobacillus delbrueckii, and Bifidobacterium longum were designed based on the elongation factor Tu gene (tuf). The specificity of these four primer sets were confirmed by PCR with 88 bacterial strains of Lactobacillus, Enterococcus, Bifidobacterium, and other bacterial species. Results indicated that these primer sets generated predicted PCR products of 397, 230, 202, and 161 bp for L. acidophilus, L. delbrueckii, L. casei group, and B. longum, respectively. Bacterial species other than the target organisms tested did not generate false-positive results. When these four primer sets were combined for the simultaneous detection of the lactic acid bacteria (LAB) in fermented milk products including yogurt, the LAB species listed on the labels of these products could be identified without the preenrichment step. The identification limit for each LAB strain with this multiplex PCR method was N X 10(3) CFU/ml in milk samples. The results of our multiplex PCR method were confirmed by PCR assay using primers based on the 16S rDNA or the 16S-23S intergenic spacer region and by biochemical tests using the API 50 CHL kit. When this multiplex PCR method was used with the determination of counts of total viable LAB and bifidobacteria, the quality of commercial fermented milk products could be assured.

  3. A comparative molecular analysis of water-filled limestone sinkholes in north-eastern Mexico.

    PubMed

    Sahl, Jason W; Gary, Marcus O; Harris, J Kirk; Spear, John R

    2011-01-01

    Sistema Zacatón in north-eastern Mexico is host to several deep, water-filled, anoxic, karstic sinkholes (cenotes). These cenotes were explored, mapped, and geochemically and microbiologically sampled by the autonomous underwater vehicle deep phreatic thermal explorer (DEPTHX). The community structure of the filterable fraction of the water column and extensive microbial mats that coat the cenote walls was investigated by comparative analysis of small-subunit (SSU) 16S rRNA gene sequences. Full-length Sanger gene sequence analysis revealed novel microbial diversity that included three putative bacterial candidate phyla and three additional groups that showed high intra-clade distance with poorly characterized bacterial candidate phyla. Limited functional gene sequence analysis in these anoxic environments identified genes associated with methanogenesis, sulfate reduction and anaerobic ammonium oxidation. A directed, barcoded amplicon, multiplex pyrosequencing approach was employed to compare ∼100,000 bacterial SSU gene sequences from water column and wall microbial mat samples from five cenotes in Sistema Zacatón. A new, high-resolution sequence distribution profile (SDP) method identified changes in specific phylogenetic types (phylotypes) in microbial mats at varied depths; Mantel tests showed a correlation of the genetic distances between mat communities in two cenotes and the geographic location of each cenote. Community structure profiles from the water column of three neighbouring cenotes showed distinct variation; statistically significant differences in the concentration of geochemical constituents suggest that the variation observed in microbial communities between neighbouring cenotes are due to geochemical variation. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Abiotic factors shape microbial diversity in Sonoran Desert soils.

    PubMed

    Andrew, David R; Fitak, Robert R; Munguia-Vega, Adrian; Racolta, Adriana; Martinson, Vincent G; Dontsova, Katerina

    2012-11-01

    High-throughput, culture-independent surveys of bacterial and archaeal communities in soil have illuminated the importance of both edaphic and biotic influences on microbial diversity, yet few studies compare the relative importance of these factors. Here, we employ multiplexed pyrosequencing of the 16S rRNA gene to examine soil- and cactus-associated rhizosphere microbial communities of the Sonoran Desert and the artificial desert biome of the Biosphere2 research facility. The results of our replicate sampling approach show that microbial communities are shaped primarily by soil characteristics associated with geographic locations, while rhizosphere associations are secondary factors. We found little difference between rhizosphere communities of the ecologically similar saguaro (Carnegiea gigantea) and cardón (Pachycereus pringlei) cacti. Both rhizosphere and soil communities were dominated by the disproportionately abundant Crenarchaeota class Thermoprotei, which comprised 18.7% of 183,320 total pyrosequencing reads from a comparatively small number (1,337 or 3.7%) of the 36,162 total operational taxonomic units (OTUs). OTUs common to both soil and rhizosphere samples comprised the bulk of raw sequence reads, suggesting that the shared community of soil and rhizosphere microbes constitute common and abundant taxa, particularly in the bacterial phyla Proteobacteria, Actinobacteria, Planctomycetes, Firmicutes, Bacteroidetes, Chloroflexi, and Acidobacteria. The vast majority of OTUs, however, were rare and unique to either soil or rhizosphere communities and differed among locations dozens of kilometers apart. Several soil properties, particularly soil pH and carbon content, were significantly correlated with community diversity measurements. Our results highlight the importance of culture-independent approaches in surveying microbial communities of extreme environments.

  5. Abiotic Factors Shape Microbial Diversity in Sonoran Desert Soils

    PubMed Central

    Fitak, Robert R.; Munguia-Vega, Adrian; Racolta, Adriana; Martinson, Vincent G.; Dontsova, Katerina

    2012-01-01

    High-throughput, culture-independent surveys of bacterial and archaeal communities in soil have illuminated the importance of both edaphic and biotic influences on microbial diversity, yet few studies compare the relative importance of these factors. Here, we employ multiplexed pyrosequencing of the 16S rRNA gene to examine soil- and cactus-associated rhizosphere microbial communities of the Sonoran Desert and the artificial desert biome of the Biosphere2 research facility. The results of our replicate sampling approach show that microbial communities are shaped primarily by soil characteristics associated with geographic locations, while rhizosphere associations are secondary factors. We found little difference between rhizosphere communities of the ecologically similar saguaro (Carnegiea gigantea) and cardón (Pachycereus pringlei) cacti. Both rhizosphere and soil communities were dominated by the disproportionately abundant Crenarchaeota class Thermoprotei, which comprised 18.7% of 183,320 total pyrosequencing reads from a comparatively small number (1,337 or 3.7%) of the 36,162 total operational taxonomic units (OTUs). OTUs common to both soil and rhizosphere samples comprised the bulk of raw sequence reads, suggesting that the shared community of soil and rhizosphere microbes constitute common and abundant taxa, particularly in the bacterial phyla Proteobacteria, Actinobacteria, Planctomycetes, Firmicutes, Bacteroidetes, Chloroflexi, and Acidobacteria. The vast majority of OTUs, however, were rare and unique to either soil or rhizosphere communities and differed among locations dozens of kilometers apart. Several soil properties, particularly soil pH and carbon content, were significantly correlated with community diversity measurements. Our results highlight the importance of culture-independent approaches in surveying microbial communities of extreme environments. PMID:22885757

  6. Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters.

    PubMed

    Bottari, Benedetta; Agrimonti, Caterina; Gatti, Monica; Neviani, Erasmo; Marmiroli, Nelson

    2013-01-01

    A multiplex real time PCR (mRealT-PCR) useful to rapidly screen microbial composition of thermophilic starter cultures for hard cooked cheeses and to compare samples with potentially different technological properties was developed. Novel primers directed toward pheS gene were designed and optimized for multiple detection of Lactobacillus helveticus, Lactobacillus delbrueckii, Streptococcus thermophilus and Lactobacillus fermentum. The assay was based on SYBR Green chemistry followed by melting curves analysis. The method was then evaluated for applications in the specific detection of the 4 lactic acid bacteria (LAB) in 29 different natural whey starters for Parmigiano Reggiano cheese production. The results obtained by mRealT-PCR were also compared with those obtained on the same samples by Fluorescence in Situ Hybridization (FISH) and Length-Heterogeneity PCR (LH-PCR). The mRealT-PCR developed in this study, was found to be effective for analyzing species present in the samples with an average sensitivity down to less than 600 copies of DNA and therefore sensitive enough to detect even minor LAB community members of thermophilic starter cultures. The assay was able to describe the microbial population of all the different natural whey starter samples analyzed, despite their natural variability. A higher number of whey starter samples with S. thermophilus and L. fermentum present in their microbial community were revealed, suggesting that these species could be more frequent in Parmigiano Reggiano natural whey starter samples than previously shown. The method was more effective than LH-PCR and FISH and, considering that these two techniques have to be used in combination to detect the less abundant species, the mRealT-PCR was also faster. Providing a single step sensitive detection of L. helveticus, L. delbrueckii, S. thermophilus and L. fermentum, the developed mRealT-PCR could be used for screening thermophilic starter cultures and to follow the presence of those species during ripening of derived dairy products. A major increase in understanding the starter culture contribution to cheese ecosystem could be harnessed to control cheese ripening and flavor formation. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Office space bacterial abundance and diversity in three metropolitan areas.

    PubMed

    Hewitt, Krissi M; Gerba, Charles P; Maxwell, Sheri L; Kelley, Scott T

    2012-01-01

    People in developed countries spend approximately 90% of their lives indoors, yet we know little about the source and diversity of microbes in built environments. In this study, we combined culture-based cell counting and multiplexed pyrosequencing of environmental ribosomal RNA (rRNA) gene sequences to investigate office space bacterial diversity in three metropolitan areas. Five surfaces common to all offices were sampled using sterile double-tipped swabs, one tip for culturing and one for DNA extraction, in 30 different offices per city (90 offices, 450 total samples). 16S rRNA gene sequences were PCR amplified using bar-coded "universal" bacterial primers from 54 of the surfaces (18 per city) and pooled for pyrosequencing. A three-factorial Analysis of Variance (ANOVA) found significant differences in viable bacterial abundance between offices inhabited by men or women, among the various surface types, and among cities. Multiplex pyrosequencing identified more than 500 bacterial genera from 20 different bacterial divisions. The most abundant of these genera tended to be common inhabitants of human skin, nasal, oral or intestinal cavities. Other commonly occurring genera appeared to have environmental origins (e.g., soils). There were no significant differences in the bacterial diversity between offices inhabited by men or women or among surfaces, but the bacterial community diversity of the Tucson samples was clearly distinguishable from that of New York and San Francisco, which were indistinguishable. Overall, our comprehensive molecular analysis of office building microbial diversity shows the potential of these methods for studying patterns and origins of indoor bacterial contamination. "[H]umans move through a sea of microbial life that is seldom perceived except in the context of potential disease and decay." - Feazel et al. (2009).

  8. Forensic interlaboratory evaluation of the ForFLUID kit for vaginal fluids identification.

    PubMed

    Giampaoli, Saverio; Alessandrini, Federica; Berti, Andrea; Ripani, Luigi; Choi, Ajin; Crab, Roselien; De Vittori, Elisabetta; Egyed, Balazs; Haas, Cordula; Lee, Hwan Young; Korabecná, Marie; Noel, Fabrice; Podini, Daniele; Tagliabracci, Adriano; Valentini, Alessio; Romano Spica, Vincenzo

    2014-01-01

    Identification of vaginal fluids is an important step in the process of sexual assaults confirmation. Advances in both microbiology and molecular biology defined technical approaches allowing the discrimination of body fluids. These protocols are based on the identification of specific bacterial communities by microfloraDNA (mfDNA) amplification. A multiplex real time-PCR assay (ForFLUID kit) has been developed for identifying biological fluids and for discrimination among vaginal, oral and fecal samples. In order to test its efficacy and reliability of the assay in the identification of vaginal fluids, an interlaboratory evaluation has been performed on homogeneous vaginal swabs. All the involved laboratories were able to correctly recognize all the vaginal swabs, and no false positives were identified when the assay was applied on non-vaginal samples. The assay represents an useful molecular tool that can be easily adopted by forensic geneticists involved in vaginal fluid identification. Copyright © 2013 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  9. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4).

    PubMed

    Huntemann, Marcel; Ivanova, Natalia N; Mavromatis, Konstantinos; Tripp, H James; Paez-Espino, David; Palaniappan, Krishnaveni; Szeto, Ernest; Pillay, Manoj; Chen, I-Min A; Pati, Amrita; Nielsen, Torben; Markowitz, Victor M; Kyrpides, Nikos C

    2015-01-01

    The DOE-JGI Microbial Genome Annotation Pipeline performs structural and functional annotation of microbial genomes that are further included into the Integrated Microbial Genome comparative analysis system. MGAP is applied to assembled nucleotide sequence datasets that are provided via the IMG submission site. Dataset submission for annotation first requires project and associated metadata description in GOLD. The MGAP sequence data processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs and regulatory RNA features, as well as CRISPR elements. Structural annotation is followed by assignment of protein product names and functions.

  10. Production of polyol oils from soybean oil by bioprocess: results of microbial screening and identification of positive cultures

    USDA-ARS?s Scientific Manuscript database

    Recently we reported methods for microbial screening and production of polyol oils from soybean oil through bioprocessing (Hou and Lin, 2013). Soy-polyol oils (oxygenated acylglycerols) are important starting materials for the manufacture of polymers such as polyurethane. Currently, they are produce...

  11. Development of an autofluorescence spectral database for the identification and classification of microbial extremophiles

    NASA Astrophysics Data System (ADS)

    Davis, Justin; Howard, Hillari; Hoover, Richard B.; Sabanayagam, Chandran R.

    2010-09-01

    Extremophiles are microorganisms that have adapted to severe conditions that were once considered devoid of life. The extreme settings in which these organisms flourish on Earth resemble many extraterrestrial environments. Identification and classification of extremophiles in situ (without the requirement for excessive handling and processing) can provide a basis for designing remotely operated instruments for extraterrestrial life exploration. An important consideration when designing such experiments is to prevent contamination of the environments. We are developing a reference spectral database of autofluorescence from microbial extremophiles using long-UV excitation (408 nm). Aromatic compounds are essential components of living systems, and biological molecules such as aromatic amino acids, nucleotides, porphyrins and vitamins can also exhibit fluorescence under long-UV excitation conditions. Autofluorescence spectra were obtained from a light microscope that additionally allowed observations of microbial geometry and motility. It was observed that all extremophiles studied displayed an autofluorescence peak at around 470 nm, followed by a long decay that was species specific. The autofluorescence database can potentially be used as a reference to identify and classify past or present microbial life in our solar system.

  12. Development of an Autofluorescence Spectral Database for the Identification and Classification of Microbial Extremophiles

    NASA Technical Reports Server (NTRS)

    Sabanayagam, Chandran; Howard, Hillari; Hoover, Richard B.

    2010-01-01

    Extremophiles are microorganisms that have adapted to severe conditions that were once considered devoid of life. The extreme settings in which these organisms flourish on earth resemble many extraterrestrial environments. Identification and classification of extremophiles in situ (without the requirement for excessive handling and processing) can provide a basis for designing remotely operated instruments for extraterrestrial life exploration. An important consideration when designing such experiments is to prevent contamination of the environments. We are developing a reference spectral database of autofluorescence from microbial extremophiles using long-UV excitation (405 nm). Aromatic compounds are essential components of living systems, and biological molecules such as aromatic amino acids, nucleotides, porphyrins and vitamins can also exhibit fluorescence under long-UV excitation conditions. Autofluorescence spectra were obtained from a confocal microscope that additionally allowed observations of microbial geometry and motility. It was observed that all extremophiles studied displayed an autofluorescence peak at around 470 nm, followed by a long decay that was species specific. The autofluorescence database can potentially be used as a reference to identify and classify past or present microbial life in our solar system.

  13. Identification of Fungal Colonies on Ground Control and Flight Veggie Plant Pillows

    NASA Technical Reports Server (NTRS)

    Scotten, Jessica E.; Hummerick, Mary E.; Khodadad, Christina L.; Spencer, Lashelle E.; Massa, Gioia D.

    2017-01-01

    The Veggie system focuses on growing fresh produce that can be harvested and consumed by astronauts. The microbial colonies in each Veggie experiment are evaluated to determine the safety level of the produce and then differences between flight and ground samples. The identifications of the microbial species can detail risks or benefits to astronaut and plant health. Each Veggie ground or flight experiment includes six plants grown from seeds that are glued into wicks in Teflon pillows filled with clay arcillite and fertilizer. Fungal colonies were isolated from seed wicks, growth media, and lettuce (cv. 'Outredgeous') roots grown in VEG-01B pillows on ISS and in corresponding ground control pillows grown in controlled growth chambers. The colonies were sorted by morphology and identified using MicroSeq(TM) 500 16s rDNA Bacterial Identification System and BIOLOG GEN III MicroPlate(TM). Health risks for each fungal identification were then assessed using literature sources. The goal was to identify all the colonies isolated from flight and ground control VEG-01B plants, roots, and rooting medium and compare the resulting identifications.

  14. Two Multiplex Real-Time PCR Assays to Detect and Differentiate Acinetobacter baumannii and Non- baumannii Acinetobacter spp. Carrying blaNDM, blaOXA-23-Like, blaOXA-40-Like, blaOXA-51-Like, and blaOXA-58-Like Genes

    PubMed Central

    Yang, Qiu; Rui, Yongyu

    2016-01-01

    Nosocomial infections caused by Acinetobacter spp. resistant to carbapenems are increasingly reported worldwide. Carbapenem-resistant Acinetobacter (CRA) is becoming a serious concern with increasing patient morbidity, mortality, and lengths of hospital stay. Therefore, the rapid detection of CRA is essential for epidemiological surveillance. Polymerase chain reaction (PCR) has been extensively used for the rapid identification of most pathogens. In this study, we have developed two multiplex real-time PCR assays to detect and differentiate A. baumannii and non-A. baumannii Acinetobacter spp, and common carbapenemase genes, including blaNDM, blaOXA-23-like, blaOXA-40-like, blaOXA-51-like, and blaOXA-58-like. We demonstrate the potential utility of these assays for the direct detection of blaNDM-, blaOXA-23-like-, blaOXA-40-like-, blaOXA-51-like-, and blaOXA-58-like-positive CRA in clinical specimens. Primers were specifically designed, and two multiplex real-time PCR assays were developed: multiplex real-time PCR assay1 for the detection of Acinetobacter baumannii 16S–23S rRNA internal transcribed spacer sequence, the Acinetobacter recA gene, and class-B-metalloenzyme-encoding gene blaNDM; and multiplex real-time PCR assay2 to detect class-D-oxacillinase-encoding genes (blaOXA-23-like, blaOXA-40-like, blaOXA-51-like,and blaOXA-58-like). The assays were performed on an ABI Prism 7500 FAST Real-Time PCR System. CRA isolates were used to compare the assays with conventional PCR and sequencing. Known amounts of CRA cells were added to sputum and fecal specimens and used to test the multiplex real-time PCR assays. The results for target and nontarget amplification showed that the multiplex real-time PCR assays were specific, the limit of detection for each target was 10 copies per 20 μL reaction volume, the assays were linear over six log dilutions of the target genes (r2 > 0.99), and the Ct values of the coefficients of variation for intra- and interassay reproducibility were less than 5%. The multiplex real-time PCR assays showed 100% concordance with conventional PCR when tested against 400 CRA isolates and their sensitivity for the target DNA in sputum and fecal specimens was 102 CFU/mL. Therefore, these novel multiplex real-time PCR assays allow the sensitive and specific characterization and differentiation of blaNDM-, blaOXA-23-like-, blaOXA-40-like-, blaOXA-51-like-, and blaOXA-58-like-positive CRA, making them potential tools for the direct detection of CRA in clinical specimens and the surveillance of nosocomial infections. PMID:27391234

  15. Multi-locus and long amplicon sequencing approach to study microbial diversity at species level using the MinION™ portable nanopore sequencer

    PubMed Central

    Sanz, Yolanda

    2017-01-01

    Abstract The miniaturized and portable DNA sequencer MinION™ has demonstrated great potential in different analyses such as genome-wide sequencing, pathogen outbreak detection and surveillance, human genome variability, and microbial diversity. In this study, we tested the ability of the MinION™ platform to perform long amplicon sequencing in order to design new approaches to study microbial diversity using a multi-locus approach. After compiling a robust database by parsing and extracting the rrn bacterial region from more than 67000 complete or draft bacterial genomes, we demonstrated that the data obtained during sequencing of the long amplicon in the MinION™ device using R9 and R9.4 chemistries were sufficient to study 2 mock microbial communities in a multiplex manner and to almost completely reconstruct the microbial diversity contained in the HM782D and D6305 mock communities. Although nanopore-based sequencing produces reads with lower per-base accuracy compared with other platforms, we presented a novel approach consisting of multi-locus and long amplicon sequencing using the MinION™ MkIb DNA sequencer and R9 and R9.4 chemistries that help to overcome the main disadvantage of this portable sequencing platform. Furthermore, the nanopore sequencing library, constructed with the last releases of pore chemistry (R9.4) and sequencing kit (SQK-LSK108), permitted the retrieval of the higher level of 1D read accuracy sufficient to characterize the microbial species present in each mock community analysed. Improvements in nanopore chemistry, such as minimizing base-calling errors and new library protocols able to produce rapid 1D libraries, will provide more reliable information in the near future. Such data will be useful for more comprehensive and faster specific detection of microbial species and strains in complex ecosystems. PMID:28605506

  16. Microbial quality and molecular identification of cultivable microorganisms isolated from an urban drinking water distribution system (Limassol, Cyprus).

    PubMed

    Botsaris, George; Kanetis, Loukas; Slaný, Michal; Parpouna, Christiana; Makris, Konstantinos C

    2015-12-01

    Microorganisms can survive and multiply in aged urban drinking water distribution systems, leading to potential health risks. The objective of this work was to investigate the microbial quality of tap water and molecularly identify its predominant cultivable microorganisms. Tap water samples collected from 24 different households scattered in the urban area of Limassol, Cyprus, were microbiologically tested following standard protocols for coliforms, E. coli, Pseudomonas spp., Enterococcus spp., and total viable count at 22 and 37 °C. Molecular identification was performed on isolated predominant single colonies using 16SrRNA sequencing. Approximately 85% of the household water samples were contaminated with one or more microorganisms belonging to the genera of Pseudomonas, Corynebacterium, Agrobacterium, Staphylococcus, Bacillus, Delftia, Acinetobacter, Enterococcus, Enterobacter, and Aeromonas. However, all samples tested were free from E. coli. This is the first report in Cyprus molecularly confirming specific genera of relevant microbial communities in tap water.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Richard; Branch, Darren; Edwards, Thayne

    The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures — viruses, bacteria, proteins, and DNA — at clinically relevant levels. This detection occurs within minutes — not hours — at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.

  18. Identification of forensic samples by using an infrared-based automatic DNA sequencer.

    PubMed

    Ricci, Ugo; Sani, Ilaria; Klintschar, Michael; Cerri, Nicoletta; De Ferrari, Francesco; Giovannucci Uzielli, Maria Luisa

    2003-06-01

    We have recently introduced a new protocol for analyzing all core loci of the Federal Bureau of Investigation's (FBI) Combined DNA Index System (CODIS) with an infrared (IR) automatic DNA sequencer (LI-COR 4200). The amplicons were labeled with forward oligonucleotide primers, covalently linked to a new infrared fluorescent molecule (IRDye 800). The alleles were displayed as familiar autoradiogram-like images with real-time detection. This protocol was employed for paternity testing, population studies, and identification of degraded forensic samples. We extensively analyzed some simulated forensic samples and mixed stains (blood, semen, saliva, bones, and fixed archival embedded tissues), comparing the results with donor samples. Sensitivity studies were also performed for the four multiplex systems. Our results show the efficiency, reliability, and accuracy of the IR system for the analysis of forensic samples. We also compared the efficiency of the multiplex protocol with ultraviolet (UV) technology. Paternity tests, undegraded DNA samples, and real forensic samples were analyzed with this approach based on IR technology and with UV-based automatic sequencers in combination with commercially-available kits. The comparability of the results with the widespread UV methods suggests that it is possible to exchange data between laboratories using the same core group of markers but different primer sets and detection methods.

  19. FilmArray, an Automated Nested Multiplex PCR System for Multi-Pathogen Detection: Development and Application to Respiratory Tract Infection

    PubMed Central

    Poritz, Mark A.; Blaschke, Anne J.; Byington, Carrie L.; Meyers, Lindsay; Nilsson, Kody; Jones, David E.; Thatcher, Stephanie A.; Robbins, Thomas; Lingenfelter, Beth; Amiott, Elizabeth; Herbener, Amy; Daly, Judy; Dobrowolski, Steven F.; Teng, David H. -F.; Ririe, Kirk M.

    2011-01-01

    The ideal clinical diagnostic system should deliver rapid, sensitive, specific and reproducible results while minimizing the requirements for specialized laboratory facilities and skilled technicians. We describe an integrated diagnostic platform, the “FilmArray”, which fully automates the detection and identification of multiple organisms from a single sample in about one hour. An unprocessed biologic/clinical sample is subjected to nucleic acid purification, reverse transcription, a high-order nested multiplex polymerase chain reaction and amplicon melt curve analysis. Biochemical reactions are enclosed in a disposable pouch, minimizing the PCR contamination risk. FilmArray has the potential to detect greater than 100 different nucleic acid targets at one time. These features make the system well-suited for molecular detection of infectious agents. Validation of the FilmArray technology was achieved through development of a panel of assays capable of identifying 21 common viral and bacterial respiratory pathogens. Initial testing of the system using both cultured organisms and clinical nasal aspirates obtained from children demonstrated an analytical and clinical sensitivity and specificity comparable to existing diagnostic platforms. We demonstrate that automated identification of pathogens from their corresponding target amplicon(s) can be accomplished by analysis of the DNA melting curve of the amplicon. PMID:22039434

  20. Escherichia coli O26 in feedlot cattle: fecal prevalence, isolation, characterization, and effects of an E. coli O157 vaccine and a direct-fed microbial.

    PubMed

    Paddock, Zac D; Renter, David G; Cull, Charley A; Shi, Xiarong; Bai, Jianfa; Nagaraja, Tiruvoor G

    2014-03-01

    Escherichia coli O26 is second only to O157 in causing foodborne, Shiga toxin-producing E. coli (STEC) infections. Our objectives were to determine fecal prevalence and characteristics of E. coli O26 in commercial feedlot cattle (17,148) that were enrolled in a study to evaluate an E. coli O157:H7 siderophore receptor and porin (SRP(®)) vaccine (VAC) and a direct-fed microbial (DFM; 10(6) colony-forming units [CFU]/animal/day of Lactobacillus acidophilus and 10(9) CFU/animal/day of Propionibacterium freudenreichii). Cattle were randomly allocated to 40 pens within 10 complete blocks; pens were randomly assigned to control, VAC, DFM, or VAC+DFM treatments. Vaccine was administered on days 0 and 21, and DFM was fed throughout the study. Pen-floor fecal samples (30/pen) were collected weekly for the last 4 study weeks. Samples were enriched in E. coli broth and subjected to a multiplex polymerase chain reaction (PCR) designed to detect O26-specific wzx gene and four major virulence genes (stx1, stx2, eae, and ehxA) and to a culture-based procedure that involved immunomagnetic separation and plating on MacConkey agar. Ten presumptive E. coli colonies were randomly picked, pooled, and tested by the multiplex PCR. Pooled colonies positive for O26 serogroup were streaked on sorbose MacConkey agar, and 10 randomly picked colonies per sample were tested individually by the multiplex PCR. The overall prevalence of E. coli O26 was higher (p<0.001) by the culture-based method compared to the PCR assay (22.7 versus 10.5%). The interventions (VAC and or DFM) had no impact on fecal shedding of O26. Serogroup O26 was recovered in pure culture from 23.9% (260 of 1089) of O26 PCR-positive pooled colonies. Only 7 of the 260 isolates were positive for the stx gene and 90.1% of the isolates possessed an eaeβ gene that codes for intimin subtype β, but not the bfpA gene, which codes for bundle-forming pilus. Therefore, the majority of the O26 recovered from feedlot cattle feces was atypical enteropathogenic E. coli, and not STEC.

  1. Microfluidics and microbial engineering.

    PubMed

    Kou, Songzi; Cheng, Danhui; Sun, Fei; Hsing, I-Ming

    2016-02-07

    The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.

  2. Effective identification of Lactobacillus casei group species: genome-based selection of the gene mutL as the target of a novel multiplex PCR assay.

    PubMed

    Bottari, Benedetta; Felis, Giovanna E; Salvetti, Elisa; Castioni, Anna; Campedelli, Ilenia; Torriani, Sandra; Bernini, Valentina; Gatti, Monica

    2017-07-01

    Lactobacillus casei,Lactobacillus paracasei and Lactobacillusrhamnosus form a closely related taxonomic group (the L. casei group) within the facultatively heterofermentative lactobacilli. Strains of these species have been used for a long time as probiotics in a wide range of products, and they represent the dominant species of nonstarter lactic acid bacteria in ripened cheeses, where they contribute to flavour development. The close genetic relationship among those species, as well as the similarity of biochemical properties of the strains, hinders the development of an adequate selective method to identify these bacteria. Despite this being a hot topic, as demonstrated by the large amount of literature about it, the results of different proposed identification methods are often ambiguous and unsatisfactory. The aim of this study was to develop a more robust species-specific identification assay for differentiating the species of the L. casei group. A taxonomy-driven comparative genomic analysis was carried out to select the potential target genes whose similarity could better reflect genome-wide diversity. The gene mutL appeared to be the most promising one and, therefore, a novel species-specific multiplex PCR assay was developed to rapidly and effectively distinguish L. casei, L. paracasei and L. rhamnosus strains. The analysis of a collection of 76 wild dairy isolates, previously identified as members of the L. casei group combining the results of multiple approaches, revealed that the novel designed primers, especially in combination with already existing ones, were able to improve the discrimination power at the species level and reveal previously undiscovered intraspecific biodiversity.

  3. Evaluation of multiplex tandem real-time PCR for detection of Cryptosporidium spp., Dientamoeba fragilis, Entamoeba histolytica, and Giardia intestinalis in clinical stool samples.

    PubMed

    Stark, D; Al-Qassab, S E; Barratt, J L N; Stanley, K; Roberts, T; Marriott, D; Harkness, J; Ellis, J T

    2011-01-01

    The aim of this study was to describe the first development and evaluation of a multiplex tandem PCR (MT-PCR) assay for the detection and identification of 4 common pathogenic protozoan parasites, Cryptosporidium spp., Dientamoeba fragilis, Entamoeba histolytica, and Giardia intestinalis, from human clinical samples. A total of 472 fecal samples submitted to the Department of Microbiology at St. Vincent's Hospital were included in the study. The MT-PCR assay was compared to four real-time PCR (RT-PCR) assays and microscopy by a traditional modified iron hematoxylin stain. The MT-PCR detected 28 G. intestinalis, 26 D. fragilis, 11 E. histolytica, and 9 Cryptosporidium sp. isolates. Detection and identification of the fecal protozoa by MT-PCR demonstrated 100% correlation with the RT-PCR results, and compared to RT-PCR, MT-PCR exhibited 100% sensitivity and specificity, while traditional microscopy of stained fixed fecal smears exhibited sensitivities and specificities of 56% and 100% for Cryptosporidium spp., 38% and 99% for D. fragilis, 47% and 97% for E. histolytica, and 50% and 100% for G. intestinalis. No cross-reactivity was detected in 100 stool samples containing various other bacterial, viral, and protozoan species. The MT-PCR assay was able to provide rapid, sensitive, and specific simultaneous detection and identification of the four most important diarrhea-causing protozoan parasites that infect humans. This study also highlights the lack of sensitivity demonstrated by microscopy, and thus, molecular methods such as MT-PCR must be considered the diagnostic methods of choice for enteric protozoan parasites.

  4. Simultaneous Amplicon Sequencing to Explore Co-Occurrence Patterns of Bacterial, Archaeal and Eukaryotic Microorganisms in Rumen Microbial Communities

    PubMed Central

    Kittelmann, Sandra; Seedorf, Henning; Walters, William A.; Clemente, Jose C.; Knight, Rob; Gordon, Jeffrey I.; Janssen, Peter H.

    2013-01-01

    Ruminants rely on a complex rumen microbial community to convert dietary plant material to energy-yielding products. Here we developed a method to simultaneously analyze the community's bacterial and archaeal 16S rRNA genes, ciliate 18S rRNA genes and anaerobic fungal internal transcribed spacer 1 genes using 12 DNA samples derived from 11 different rumen samples from three host species (Ovis aries, Bos taurus, Cervus elephas) and multiplex 454 Titanium pyrosequencing. We show that the mixing ratio of the group-specific DNA templates before emulsion PCR is crucial to compensate for differences in amplicon length. This method, in contrast to using a non-specific universal primer pair, avoids sequencing non-targeted DNA, such as plant- or endophyte-derived rRNA genes, and allows increased or decreased levels of community structure resolution for each microbial group as needed. Communities analyzed with different primers always grouped by sample origin rather than by the primers used. However, primer choice had a greater impact on apparent archaeal community structure than on bacterial community structure, and biases for certain methanogen groups were detected. Co-occurrence analysis of microbial taxa from all three domains of life suggested strong within- and between-domain correlations between different groups of microorganisms within the rumen. The approach used to simultaneously characterize bacterial, archaeal and eukaryotic components of a microbiota should be applicable to other communities occupying diverse habitats. PMID:23408926

  5. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities.

    PubMed

    Kittelmann, Sandra; Seedorf, Henning; Walters, William A; Clemente, Jose C; Knight, Rob; Gordon, Jeffrey I; Janssen, Peter H

    2013-01-01

    Ruminants rely on a complex rumen microbial community to convert dietary plant material to energy-yielding products. Here we developed a method to simultaneously analyze the community's bacterial and archaeal 16S rRNA genes, ciliate 18S rRNA genes and anaerobic fungal internal transcribed spacer 1 genes using 12 DNA samples derived from 11 different rumen samples from three host species (Ovis aries, Bos taurus, Cervus elephas) and multiplex 454 Titanium pyrosequencing. We show that the mixing ratio of the group-specific DNA templates before emulsion PCR is crucial to compensate for differences in amplicon length. This method, in contrast to using a non-specific universal primer pair, avoids sequencing non-targeted DNA, such as plant- or endophyte-derived rRNA genes, and allows increased or decreased levels of community structure resolution for each microbial group as needed. Communities analyzed with different primers always grouped by sample origin rather than by the primers used. However, primer choice had a greater impact on apparent archaeal community structure than on bacterial community structure, and biases for certain methanogen groups were detected. Co-occurrence analysis of microbial taxa from all three domains of life suggested strong within- and between-domain correlations between different groups of microorganisms within the rumen. The approach used to simultaneously characterize bacterial, archaeal and eukaryotic components of a microbiota should be applicable to other communities occupying diverse habitats.

  6. A Graph-Centric Approach for Metagenome-Guided Peptide and Protein Identification in Metaproteomics

    PubMed Central

    Tang, Haixu; Li, Sujun; Ye, Yuzhen

    2016-01-01

    Metaproteomic studies adopt the common bottom-up proteomics approach to investigate the protein composition and the dynamics of protein expression in microbial communities. When matched metagenomic and/or metatranscriptomic data of the microbial communities are available, metaproteomic data analyses often employ a metagenome-guided approach, in which complete or fragmental protein-coding genes are first directly predicted from metagenomic (and/or metatranscriptomic) sequences or from their assemblies, and the resulting protein sequences are then used as the reference database for peptide/protein identification from MS/MS spectra. This approach is often limited because protein coding genes predicted from metagenomes are incomplete and fragmental. In this paper, we present a graph-centric approach to improving metagenome-guided peptide and protein identification in metaproteomics. Our method exploits the de Bruijn graph structure reported by metagenome assembly algorithms to generate a comprehensive database of protein sequences encoded in the community. We tested our method using several public metaproteomic datasets with matched metagenomic and metatranscriptomic sequencing data acquired from complex microbial communities in a biological wastewater treatment plant. The results showed that many more peptides and proteins can be identified when assembly graphs were utilized, improving the characterization of the proteins expressed in the microbial communities. The additional proteins we identified contribute to the characterization of important pathways such as those involved in degradation of chemical hazards. Our tools are released as open-source software on github at https://github.com/COL-IU/Graph2Pro. PMID:27918579

  7. Quantitative Microbial Risk Assessment Tutorial: Navigate the SDMPB and Identify an 8-digit HUC of Interest

    EPA Science Inventory

    This tutorial reviews some of the screens, icons, and basic functions of the SDMProjectBuilder (SDMPB) that allow a user to identify a watershed of interest that can be used to choose a pour point or 12-digit HUC (HUC-12) for a microbial assessment. It demonstrates how to identif...

  8. ESwab as an Optional Collection Device for Use with the Affirm VPIII Microbial Test System

    PubMed Central

    Rivers, C. A.; Lee, J. Y.; Sharples, N.; Ledeboer, N. A.

    2014-01-01

    The ESwab collection device was compared to the collection swab provided as part of the Affirm VPIII microbial identification test kit for testing vaginal specimens with the Affirm test system. There was excellent agreement between the two sampling devices for Candida spp., Gardnerella vaginalis, and Trichomonas vaginalis. PMID:24523475

  9. Principal Component Analysis of Microbial Community Data from an Accelerated Decay Cellar Test

    Treesearch

    Grant T. Kirker; Patricia K. Lebow

    2014-01-01

    Analysis of microbial communities is a valuable tool for characterization and identification of microbes in a myriad of environments. We are currently using the molecular method terminal restriction fragment length polymorphism (T-RFLP) analysis to characterize changes in bacterial and fungal communities on treated and untreated wood in soil. T-RFLP uses fluorescently...

  10. Multiplexed resequencing analysis to identify rare variants in pooled DNA with barcode indexing using next-generation sequencer.

    PubMed

    Mitsui, Jun; Fukuda, Yoko; Azuma, Kyo; Tozaki, Hirokazu; Ishiura, Hiroyuki; Takahashi, Yuji; Goto, Jun; Tsuji, Shoji

    2010-07-01

    We have recently found that multiple rare variants of the glucocerebrosidase gene (GBA) confer a robust risk for Parkinson disease, supporting the 'common disease-multiple rare variants' hypothesis. To develop an efficient method of identifying rare variants in a large number of samples, we applied multiplexed resequencing using a next-generation sequencer to identification of rare variants of GBA. Sixteen sets of pooled DNAs from six pooled DNA samples were prepared. Each set of pooled DNAs was subjected to polymerase chain reaction to amplify the target gene (GBA) covering 6.5 kb, pooled into one tube with barcode indexing, and then subjected to extensive sequence analysis using the SOLiD System. Individual samples were also subjected to direct nucleotide sequence analysis. With the optimization of data processing, we were able to extract all the variants from 96 samples with acceptable rates of false-positive single-nucleotide variants.

  11. Development and validation of a multiplex reaction analyzing eight miniSTRs of the X chromosome for identity and kinship testing with degraded DNA.

    PubMed

    Castañeda, María; Odriozola, Adrián; Gómez, Javier; Zarrabeitia, María T

    2013-07-01

    We report the development of an effective system for analyzing X chromosome-linked mini short tandem repeat loci with reduced-size amplicons (less than 220 bp), useful for analyzing highly degraded DNA samples. To generate smaller amplicons, we redesigned primers for eight X-linked microsatellites (DXS7132, DXS10079, DXS10074, DXS10075, DXS6801, DXS6809, DXS6789, and DXS6799) and established efficient conditions for a multiplex PCR system (miniX). The validation tests confirmed that it has good sensitivity, requiring as little as 20 pg of DNA, and performs well with DNA from paraffin-embedded tissues, thus showing potential for improved analysis and identification of highly degraded and/or very limited DNA samples. Consequently, this system may help to solve complex forensic cases, particularly when autosomal markers convey insufficient information.

  12. Identification of nonclassical properties of light with multiplexing layouts

    NASA Astrophysics Data System (ADS)

    Sperling, J.; Eckstein, A.; Clements, W. R.; Moore, M.; Renema, J. J.; Kolthammer, W. S.; Nam, S. W.; Lita, A.; Gerrits, T.; Walmsley, I. A.; Agarwal, G. S.; Vogel, W.

    2017-07-01

    In Sperling et al. [Phys. Rev. Lett. 118, 163602 (2017), 10.1103/PhysRevLett.118.163602], we introduced and applied a detector-independent method to uncover nonclassicality. Here, we extend those techniques and give more details on the performed analysis. We derive a general theory of the positive-operator-valued measure that describes multiplexing layouts with arbitrary detectors. From the resulting quantum version of a multinomial statistics, we infer nonclassicality probes based on a matrix of normally ordered moments. We discuss these criteria and apply the theory to our data which are measured with superconducting transition-edge sensors. Our experiment produces heralded multiphoton states from a parametric down-conversion light source. We show that the known notions of sub-Poisson and sub-binomial light can be deduced from our general approach, and we establish the concept of sub-multinomial light, which is shown to outperform the former two concepts of nonclassicality for our data.

  13. Molecular diagnosis of Salmonella typhi and its virulence in suspected typhoid blood samples through nested multiplex PCR.

    PubMed

    Prabagaran, Solai Ramatchandirane; Kalaiselvi, Vellingiri; Chandramouleeswaran, Naganathan; Deepthi, Krishnan Nair Geetha; Brahmadathan, Kootallur Narayanan; Mani, Mariappa

    2017-08-01

    A nested multiplex polymerase chain reaction (PCR) based diagnosis was developed for the detection of virulent Salmonella typhi in the blood specimens from patients suspected for typhoid fever. After the Widal test, two pairs of primers were used for the detection of flagellin gene (fliC) of S. typhi. Among them, those positive for fliC alone were subjected to identification of genes in Via B operon of Salmonella Pathogenesity Island (SPI-7) where four primer pairs were used to detect tviA and tviB genes. Among 250 blood samples tested, 115 were positive by fliC PCR; 22 of these were negative for tviA and tviB. Hence, the method described here can be used to diagnose the incidence of Vi-negative serovar typhi especially in endemic regions where the Vi vaccine is administered. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Identification of nonclassical properties of light with multiplexing layouts

    PubMed Central

    Sperling, J.; Eckstein, A.; Clements, W. R.; Moore, M.; Renema, J. J.; Kolthammer, W. S.; Nam, S. W.; Lita, A.; Gerrits, T.; Walmsley, I. A.; Agarwal, G. S.; Vogel, W.

    2018-01-01

    In Sperling et al. [Phys. Rev. Lett. 118, 163602 (2017)], we introduced and applied a detector-independent method to uncover nonclassicality. Here, we extend those techniques and give more details on the performed analysis. We derive a general theory of the positive-operator-valued measure that describes multiplexing layouts with arbitrary detectors. From the resulting quantum version of a multinomial statistics, we infer nonclassicality probes based on a matrix of normally ordered moments. We discuss these criteria and apply the theory to our data which are measured with superconducting transition-edge sensors. Our experiment produces heralded multiphoton states from a parametric down-conversion light source. We show that the known notions of sub-Poisson and sub-binomial light can be deduced from our general approach, and we establish the concept of sub-multinomial light, which is shown to outperform the former two concepts of nonclassicality for our data. PMID:29670949

  15. Evaluation of the Biolog automated microbial identification system

    NASA Technical Reports Server (NTRS)

    Klingler, J. M.; Stowe, R. P.; Obenhuber, D. C.; Groves, T. O.; Mishra, S. K.; Pierson, D. L.

    1992-01-01

    Biolog's identification system was used to identify 39 American Type Culture Collection reference taxa and 45 gram-negative isolates from water samples. Of the reference strains, 98% were identified to genus level and 76% to species level within 4 to 24 h. Identification of some authentic strains of Enterobacter, Klebsiella, and Serratia was unreliable. A total of 93% of the water isolates were identified.

  16. Expansion of Microbial Forensics

    PubMed Central

    Schmedes, Sarah E.; Sajantila, Antti

    2016-01-01

    Microbial forensics has been defined as the discipline of applying scientific methods to the analysis of evidence related to bioterrorism, biocrimes, hoaxes, or the accidental release of a biological agent or toxin for attribution purposes. Over the past 15 years, technology, particularly massively parallel sequencing, and bioinformatics advances now allow the characterization of microorganisms for a variety of human forensic applications, such as human identification, body fluid characterization, postmortem interval estimation, and biocrimes involving tracking of infectious agents. Thus, microbial forensics should be more broadly described as the discipline of applying scientific methods to the analysis of microbial evidence in criminal and civil cases for investigative purposes. PMID:26912746

  17. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4)

    DOE PAGES

    Huntemann, Marcel; Ivanova, Natalia N.; Mavromatis, Konstantinos; ...

    2015-10-26

    The DOE-JGI Microbial Genome Annotation Pipeline performs structural and functional annotation of microbial genomes that are further included into the Integrated Microbial Genome comparative analysis system. MGAP is applied to assembled nucleotide sequence datasets that are provided via the IMG submission site. Dataset submission for annotation first requires project and associated metadata description in GOLD. The MGAP sequence data processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs and regulatory RNA features, as well as CRISPR elements. In conclusion, structural annotation is followed by assignment of protein product names and functions.

  18. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huntemann, Marcel; Ivanova, Natalia N.; Mavromatis, Konstantinos

    The DOE-JGI Microbial Genome Annotation Pipeline performs structural and functional annotation of microbial genomes that are further included into the Integrated Microbial Genome comparative analysis system. MGAP is applied to assembled nucleotide sequence datasets that are provided via the IMG submission site. Dataset submission for annotation first requires project and associated metadata description in GOLD. The MGAP sequence data processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs and regulatory RNA features, as well as CRISPR elements. In conclusion, structural annotation is followed by assignment of protein product names and functions.

  19. SIPSim: A Modeling Toolkit to Predict Accuracy and Aid Design of DNA-SIP Experiments.

    PubMed

    Youngblut, Nicholas D; Barnett, Samuel E; Buckley, Daniel H

    2018-01-01

    DNA Stable isotope probing (DNA-SIP) is a powerful method that links identity to function within microbial communities. The combination of DNA-SIP with multiplexed high throughput DNA sequencing enables simultaneous mapping of in situ assimilation dynamics for thousands of microbial taxonomic units. Hence, high throughput sequencing enabled SIP has enormous potential to reveal patterns of carbon and nitrogen exchange within microbial food webs. There are several different methods for analyzing DNA-SIP data and despite the power of SIP experiments, it remains difficult to comprehensively evaluate method accuracy across a wide range of experimental parameters. We have developed a toolset (SIPSim) that simulates DNA-SIP data, and we use this toolset to systematically evaluate different methods for analyzing DNA-SIP data. Specifically, we employ SIPSim to evaluate the effects that key experimental parameters (e.g., level of isotopic enrichment, number of labeled taxa, relative abundance of labeled taxa, community richness, community evenness, and beta-diversity) have on the specificity, sensitivity, and balanced accuracy (defined as the product of specificity and sensitivity) of DNA-SIP analyses. Furthermore, SIPSim can predict analytical accuracy and power as a function of experimental design and community characteristics, and thus should be of great use in the design and interpretation of DNA-SIP experiments.

  20. SIPSim: A Modeling Toolkit to Predict Accuracy and Aid Design of DNA-SIP Experiments

    PubMed Central

    Youngblut, Nicholas D.; Barnett, Samuel E.; Buckley, Daniel H.

    2018-01-01

    DNA Stable isotope probing (DNA-SIP) is a powerful method that links identity to function within microbial communities. The combination of DNA-SIP with multiplexed high throughput DNA sequencing enables simultaneous mapping of in situ assimilation dynamics for thousands of microbial taxonomic units. Hence, high throughput sequencing enabled SIP has enormous potential to reveal patterns of carbon and nitrogen exchange within microbial food webs. There are several different methods for analyzing DNA-SIP data and despite the power of SIP experiments, it remains difficult to comprehensively evaluate method accuracy across a wide range of experimental parameters. We have developed a toolset (SIPSim) that simulates DNA-SIP data, and we use this toolset to systematically evaluate different methods for analyzing DNA-SIP data. Specifically, we employ SIPSim to evaluate the effects that key experimental parameters (e.g., level of isotopic enrichment, number of labeled taxa, relative abundance of labeled taxa, community richness, community evenness, and beta-diversity) have on the specificity, sensitivity, and balanced accuracy (defined as the product of specificity and sensitivity) of DNA-SIP analyses. Furthermore, SIPSim can predict analytical accuracy and power as a function of experimental design and community characteristics, and thus should be of great use in the design and interpretation of DNA-SIP experiments. PMID:29643843

  1. The Microbiome and Metabolites in Fermented Pu-erh Tea as Revealed by High-Throughput Sequencing and Quantitative Multiplex Metabolite Analysis

    PubMed Central

    Sulyok, Michael; Liu, Xingzhong; Rao, Mingyong

    2016-01-01

    Pu-erh is a tea produced in Yunnan, China by microbial fermentation of fresh Camellia sinensis leaves by two processes, the traditional raw fermentation and the faster, ripened fermentation. We characterized fungal and bacterial communities in leaves and both Pu-erhs by high-throughput, rDNA-amplicon sequencing and we characterized the profile of bioactive extrolite mycotoxins in Pu-erh teas by quantitative liquid chromatography-tandem mass spectrometry. We identified 390 fungal and 629 bacterial OTUs from leaves and both Pu-erhs. Major findings are: 1) fungal diversity drops and bacterial diversity rises due to raw or ripened fermentation, 2) fungal and bacterial community composition changes significantly between fresh leaves and both raw and ripened Pu-erh, 3) aging causes significant changes in the microbial community of raw, but not ripened, Pu-erh, and, 4) ripened and well-aged raw Pu-erh have similar microbial communities that are distinct from those of young, raw Ph-erh tea. Twenty-five toxic metabolites, mainly of fungal origin, were detected, with patulin and asperglaucide dominating and at levels supporting the Chinese custom of discarding the first preparation of Pu-erh and using the wet tea to then brew a pot for consumption. PMID:27337135

  2. Limitations of the Current Microbial Identification System for Identification of Clinical Yeast Isolates

    PubMed Central

    Kellogg, James A.; Bankert, David A.; Chaturvedi, Vishnu

    1998-01-01

    The ability of the rapid, computerized Microbial Identification System (MIS; Microbial ID, Inc.) to identify a variety of clinical isolates of yeast species was compared to the abilities of a combination of tests including the Yeast Biochemical Card (bioMerieux Vitek), determination of microscopic morphology on cornmeal agar with Tween 80, and when necessary, conventional biochemical tests and/or the API 20C Aux system (bioMerieux Vitek) to identify the same yeast isolates. The MIS chromatographically analyzes cellular fatty acids and compares the results with the fatty acid profiles in its database. Yeast isolates were subcultured onto Sabouraud dextrose agar and were incubated at 28°C for 24 h. The resulting colonies were saponified, methylated, extracted, and chromatographically analyzed (by version 3.8 of the MIS YSTCLN database) according to the manufacturer’s instructions. Of 477 isolates of 23 species tested, 448 (94%) were given species names by the MIS and 29 (6%) were unidentified (specified as “no match” by the MIS). Of the 448 isolates given names by the MIS, only 335 (75%) of the identifications were correct to the species level. While the MIS correctly identified only 102 (82%) of 124 isolates of Candida glabrata, the predictive value of an MIS identification of unknown isolates as C. glabrata was 100% (102 of 102) because no isolates of other species were misidentified as C. glabrata. In contrast, while the MIS correctly identified 100% (15 of 15) of the isolates of Saccharomyces cerevisiae, the predictive value of an MIS identification of unknown isolates as S. cerevisiae was only 47% (15 of 32), because 17 isolates of C. glabrata were misidentified as S. cerevisiae. The low predictive values for accuracy associated with MIS identifications for most of the remaining yeast species indicate that the procedure and/or database for the system need to be improved. PMID:9574676

  3. Rapid and sensitive PCR-dipstick DNA chromatography for multiplex analysis of the oral microbiota.

    PubMed

    Tian, Lingyang; Sato, Takuichi; Niwa, Kousuke; Kawase, Mitsuo; Tanner, Anne C R; Takahashi, Nobuhiro

    2014-01-01

    A complex of species has been associated with dental caries under the ecological hypothesis. This study aimed to develop a rapid, sensitive PCR-dipstick DNA chromatography assay that could be read by eye for multiplex and semiquantitative analysis of plaque bacteria. Parallel oligonucleotides were immobilized on a dipstick strip for multiplex analysis of target DNA sequences of the caries-associated bacteria, Streptococcus mutans, Streptococcus sobrinus, Scardovia wiggsiae, Actinomyces species, and Veillonella parvula. Streptavidin-coated blue-colored latex microspheres were to generate signal. Target DNA amplicons with an oligonucleotide-tagged terminus and a biotinylated terminus were coupled with latex beads through a streptavidin-biotin interaction and then hybridized with complementary oligonucleotides on the strip. The accumulation of captured latex beads on the test and control lines produced blue bands, enabling visual detection with the naked eye. The PCR-dipstick DNA chromatography detected quantities as low as 100 pg of DNA amplicons and demonstrated 10- to 1000-fold higher sensitivity than PCR-agarose gel electrophoresis, depending on the target bacterial species. Semiquantification of bacteria was performed by obtaining a series of chromatograms using serial 10-fold dilution of PCR-amplified DNA extracted from dental plaque samples. The assay time was less than 3 h. The semiquantification procedure revealed the relative amounts of each test species in dental plaque samples, indicating that this disposable device has great potential in analysis of microbial composition in the oral cavity and intestinal tract, as well as in point-of-care diagnosis of microbiota-associated diseases.

  4. Rapid and Sensitive PCR-Dipstick DNA Chromatography for Multiplex Analysis of the Oral Microbiota

    PubMed Central

    Niwa, Kousuke; Kawase, Mitsuo; Tanner, Anne C. R.; Takahashi, Nobuhiro

    2014-01-01

    A complex of species has been associated with dental caries under the ecological hypothesis. This study aimed to develop a rapid, sensitive PCR-dipstick DNA chromatography assay that could be read by eye for multiplex and semiquantitative analysis of plaque bacteria. Parallel oligonucleotides were immobilized on a dipstick strip for multiplex analysis of target DNA sequences of the caries-associated bacteria, Streptococcus mutans, Streptococcus sobrinus, Scardovia wiggsiae, Actinomyces species, and Veillonella parvula. Streptavidin-coated blue-colored latex microspheres were to generate signal. Target DNA amplicons with an oligonucleotide-tagged terminus and a biotinylated terminus were coupled with latex beads through a streptavidin-biotin interaction and then hybridized with complementary oligonucleotides on the strip. The accumulation of captured latex beads on the test and control lines produced blue bands, enabling visual detection with the naked eye. The PCR-dipstick DNA chromatography detected quantities as low as 100 pg of DNA amplicons and demonstrated 10- to 1000-fold higher sensitivity than PCR-agarose gel electrophoresis, depending on the target bacterial species. Semiquantification of bacteria was performed by obtaining a series of chromatograms using serial 10-fold dilution of PCR-amplified DNA extracted from dental plaque samples. The assay time was less than 3 h. The semiquantification procedure revealed the relative amounts of each test species in dental plaque samples, indicating that this disposable device has great potential in analysis of microbial composition in the oral cavity and intestinal tract, as well as in point-of-care diagnosis of microbiota-associated diseases. PMID:25485279

  5. Quantitative Methods for Measuring Repair Rates and Innate-Immune Cell Responses in Wounded Mouse Skin.

    PubMed

    Li, Zhi; Gothard, Elizabeth; Coles, Mark C; Ambler, Carrie A

    2018-01-01

    In skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool. In this paper, we provide detailed methods on the digestion of lesion-specific skin without disrupting antigen expression followed by multiplex cell staining that allows for identification of seven innate-immune populations, including rare subsets such as group-3 innate lymphoid cells (ILC3s), by flow-cytometry analysis. Furthermore, when studying the functions of immune cells to tissue repair an important metric to monitor is size of the wound opening. Normal wounds close steadily albeit at non-linear rates, while slow or stalled wound closure can indicate an underlying problem with the repair process. Calliper measurements are difficult and time-consuming to obtain and can require repeated sedation of experimental animals. We provide advanced methods for measuring of wound openness; digital 3D image capture and semi-automated image processing that allows for unbiased, reliable measurements that can be taken repeatedly over time.

  6. Quantitative Methods for Measuring Repair Rates and Innate-Immune Cell Responses in Wounded Mouse Skin

    PubMed Central

    Li, Zhi; Gothard, Elizabeth; Coles, Mark C.; Ambler, Carrie A.

    2018-01-01

    In skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool. In this paper, we provide detailed methods on the digestion of lesion-specific skin without disrupting antigen expression followed by multiplex cell staining that allows for identification of seven innate-immune populations, including rare subsets such as group-3 innate lymphoid cells (ILC3s), by flow-cytometry analysis. Furthermore, when studying the functions of immune cells to tissue repair an important metric to monitor is size of the wound opening. Normal wounds close steadily albeit at non-linear rates, while slow or stalled wound closure can indicate an underlying problem with the repair process. Calliper measurements are difficult and time-consuming to obtain and can require repeated sedation of experimental animals. We provide advanced methods for measuring of wound openness; digital 3D image capture and semi-automated image processing that allows for unbiased, reliable measurements that can be taken repeatedly over time. PMID:29535723

  7. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes

    PubMed Central

    Rebelo, Ana Rita; Bortolaia, Valeria; Kjeldgaard, Jette S; Pedersen, Susanne K; Leekitcharoenphon, Pimlapas; Hansen, Inge M; Guerra, Beatriz; Malorny, Burkhard; Borowiak, Maria; Hammerl, Jens Andre; Battisti, Antonio; Franco, Alessia; Alba, Patricia; Perrin-Guyomard, Agnes; Granier, Sophie A; De Frutos Escobar, Cristina; Malhotra-Kumar, Surbhi; Villa, Laura; Carattoli, Alessandra; Hendriksen, Rene S

    2018-01-01

    Background and aim Plasmid-mediated colistin resistance mechanisms have been identified worldwide in the past years. A multiplex polymerase chain reaction (PCR) protocol for detection of all currently known transferable colistin resistance genes (mcr-1 to mcr-5, and variants) in Enterobacteriaceae was developed for surveillance or research purposes. Methods: We designed four new primer pairs to amplify mcr-1, mcr-2, mcr-3 and mcr-4 gene products and used the originally described primers for mcr-5 to obtain a stepwise separation of ca 200 bp between amplicons. The primer pairs and amplification conditions allow for single or multiple detection of all currently described mcr genes and their variants present in Enterobacteriaceae. The protocol was validated testing 49 European Escherichia coli and Salmonella isolates of animal origin. Results: Multiplex PCR results in bovine and porcine isolates from Spain, Germany, France and Italy showed full concordance with whole genome sequence data. The method was able to detect mcr-1, mcr-3 and mcr-4 as singletons or in different combinations as they were present in the test isolates. One new mcr-4 variant, mcr-4.3, was also identified. Conclusions: This method allows rapid identification of mcr-positive bacteria and overcomes the challenges of phenotypic detection of colistin resistance. The multiplex PCR should be particularly interesting in settings or laboratories with limited resources for performing genetic analysis as it provides information on the mechanism of colistin resistance without requiring genome sequencing. PMID:29439754

  8. A multiplexed reverse transcriptase PCR assay for identification of viral respiratory pathogens at point-of-care

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letant, S E; .Ortiz, J I; Tammero, L

    2007-04-11

    We have developed a nucleic acid-based assay that is rapid, sensitive, specific, and can be used for the simultaneous detection of 5 common human respiratory pathogens including influenza A, influenza B, parainfluenza type 1 and 3, respiratory syncytial virus, and adenovirus group B, C, and E. Typically, diagnosis on an un-extracted clinical sample can be provided in less than 3 hours, including sample collection, preparation, and processing, as well as data analysis. Such a multiplexed panel would enable rapid broad-spectrum pathogen testing on nasal swabs, and therefore allow implementation of infection control measures, and timely administration of antiviral therapies. Thismore » article presents a summary of the assay performance in terms of sensitivity and specificity. Limits of detection are provided for each targeted respiratory pathogen, and result comparisons are performed on clinical samples, our goal being to compare the sensitivity and specificity of the multiplexed assay to the combination of immunofluorescence and shell vial culture currently implemented at the UCDMC hospital. Overall, the use of the multiplexed RT-PCR assay reduced the rate of false negatives by 4% and reduced the rate of false positives by up to 10%. The assay correctly identified 99.3% of the clinical negatives, 97% of adenovirus, 95% of RSV, 92% of influenza B, and 77% of influenza A without any extraction performed on the clinical samples. The data also showed that extraction will be needed for parainfluenza virus, which was only identified correctly 24% of the time on un-extracted samples.« less

  9. Quantitative and multiplexed detection for blood typing based on quantum dot-magnetic bead assay.

    PubMed

    Xu, Ting; Zhang, Qiang; Fan, Ya-Han; Li, Ru-Qing; Lu, Hua; Zhao, Shu-Ming; Jiang, Tian-Lun

    2017-01-01

    Accurate and reliable blood grouping is essential for safe blood transfusion. However, conventional methods are qualitative and use only single-antigen detection. We overcame these limitations by developing a simple, quantitative, and multiplexed detection method for blood grouping using quantum dots (QDs) and magnetic beads. In the QD fluorescence assay (QFA), blood group A and B antigens were quantified using QD labeling and magnetic beads, and the blood groups were identified according to the R value (the value was calculated with the fluorescence intensity from dual QD labeling) of A and B antigens. The optimized performance of QFA was established by blood typing 791 clinical samples. Quantitative and multiplexed detection for blood group antigens can be completed within 35 min with more than 10 5 red blood cells. When conditions are optimized, the assay performance is satisfactory for weak samples. The coefficients of variation between and within days were less than 10% and the reproducibility was good. The ABO blood groups of 791 clinical samples were identified by QFA, and the accuracy obtained was 100% compared with the tube test. Receiver-operating characteristic curves revealed that the QFA has high sensitivity and specificity toward clinical samples, and the cutoff points of the R value of A and B antigens were 1.483 and 1.576, respectively. In this study, we reported a novel quantitative and multiplexed method for the identification of ABO blood groups and presented an effective alternative for quantitative blood typing. This method can be used as an effective tool to improve blood typing and further guarantee clinical transfusion safety.

  10. The Impact of Human Activities on Microbial Quality of Rivers in the Vhembe District, South Africa.

    PubMed

    Traoré, Afsatou N; Mulaudzi, Khodani; Chari, Gamuchirai J E; Foord, Stefan H; Mudau, Lutendo S; Barnard, Tobias G; Potgieter, Natasha

    2016-08-12

    Water quality testing is dictated by microbial agents found at the time of sampling in reference to their acceptable risk levels. Human activities might contaminate valuable water resources and add to the microbial load present in water bodies. Therefore, the effects of human activities on the microbial quality of rivers collected from twelve catchments in the Vhembe District in South Africa were investigated, with samples analyzed for total coliform (TC) and Eschericha coli (E. coli) contents. Physical parameters and various human activities were recorded for each sampling site. The Quanti-Tray(®) method was adopted for the assessment of TC and E. coli contents in the rivers over a two-year period. A multiplex polymerase chain (PCR) method was used to characterize the strains of E. coli found. The microbial quality of the rivers was poor with both TC and E. coli contents found to be over acceptable limits set by the South African Department of Water and Sanitation (DWS). No significant difference (p > 0.05) was detected between TC and E. coli risks in dry and wet seasons. All six pathogenic E. coli strains were identified and Enteroaggregative E. coli (EAEC), atypical Enteropathogenic E. coli (a-EPEC) and Enterotoxigenic E. coli (ETEC) were the most prevalent E. coli strains detected (respectively, 87%, 86% and 83%). The study indicated that contamination in the majority of sampling sites, due to human activities such as car wash, animal grazing and farming, poses health risks to communities using the rivers for various domestic chores. It is therefore recommended that more education by the respective departments is done to avert pollution of rivers and prevent health risks to the communities in the Vhembe District.

  11. The Impact of Human Activities on Microbial Quality of Rivers in the Vhembe District, South Africa

    PubMed Central

    Traoré, Afsatou N.; Mulaudzi, Khodani; Chari, Gamuchirai J.E.; Foord, Stefan H.; Mudau, Lutendo S.; Barnard, Tobias G.; Potgieter, Natasha

    2016-01-01

    Background: Water quality testing is dictated by microbial agents found at the time of sampling in reference to their acceptable risk levels. Human activities might contaminate valuable water resources and add to the microbial load present in water bodies. Therefore, the effects of human activities on the microbial quality of rivers collected from twelve catchments in the Vhembe District in South Africa were investigated, with samples analyzed for total coliform (TC) and Eschericha coli (E. coli) contents. Methods: Physical parameters and various human activities were recorded for each sampling site. The Quanti-Tray® method was adopted for the assessment of TC and E. coli contents in the rivers over a two-year period. A multiplex polymerase chain (PCR) method was used to characterize the strains of E. coli found. Results: The microbial quality of the rivers was poor with both TC and E. coli contents found to be over acceptable limits set by the South African Department of Water and Sanitation (DWS). No significant difference (p > 0.05) was detected between TC and E. coli risks in dry and wet seasons. All six pathogenic E. coli strains were identified and Enteroaggregative E. coli (EAEC), atypical Enteropathogenic E. coli (a-EPEC) and Enterotoxigenic E. coli (ETEC) were the most prevalent E. coli strains detected (respectively, 87%, 86% and 83%). Conclusions: The study indicated that contamination in the majority of sampling sites, due to human activities such as car wash, animal grazing and farming, poses health risks to communities using the rivers for various domestic chores. It is therefore recommended that more education by the respective departments is done to avert pollution of rivers and prevent health risks to the communities in the Vhembe District. PMID:27529265

  12. Succession of Phenotypic, Genotypic, and Metabolic Community Characteristics during In Vitro Bioslurry Treatment of Polycyclic Aromatic Hydrocarbon-Contaminated Sediments

    PubMed Central

    Ringelberg, David B.; Talley, Jeffrey W.; Perkins, Edward J.; Tucker, Samuel G.; Luthy, Richard G.; Bouwer, Edward J.; Fredrickson, Herbert L.

    2001-01-01

    Dredged harbor sediment contaminated with polycyclic aromatic hydrocarbons (PAHs) was removed from the Milwaukee Confined Disposal Facility and examined for in situ biodegradative capacity. Molecular techniques were used to determine the successional characteristics of the indigenous microbiota during a 4-month bioslurry evaluation. Ester-linked phospholipid fatty acids (PLFA), multiplex PCR of targeted genes, and radiorespirometry techniques were used to define in situ microbial phenotypic, genotypic, and metabolic responses, respectively. Soxhlet extractions revealed a loss in total PAH concentrations of 52%. Individual PAHs showed reductions as great as 75% (i.e., acenapthene and fluorene). Rates of 14C-PAH mineralization (percent/day) were greatest for phenanthrene, followed by pyrene and then chrysene. There was no mineralization capacity for benzo[a]pyrene. Ester-linked phospholipid fatty acid analysis revealed a threefold increase in total microbial biomass and a dynamic microbial community composition that showed a strong correlation with observed changes in the PAH chemistry (canonical r2 of 0.999). Nucleic acid analyses showed copies of genes encoding PAH-degrading enzymes (extradiol dioxygenases, hydroxylases, and meta-cleavage enzymes) to increase by as much as 4 orders of magnitude. Shifts in gene copy numbers showed strong correlations with shifts in specific subsets of the extant microbial community. Specifically, declines in the concentrations of three-ring PAH moieties (i.e., phenanthrene) correlated with PLFA indicative of certain gram-negative bacteria (i.e., Rhodococcus spp. and/or actinomycetes) and genes encoding for naphthalene-, biphenyl-, and catechol-2,3-dioxygenase degradative enzymes. The results of this study suggest that the intrinsic biodegradative potential of an environmental site can be derived from the polyphasic characterization of the in situ microbial community. PMID:11282603

  13. Diagnosis of bacteremia in pediatric oncologic patients by in-house real-time PCR.

    PubMed

    Quiles, Milene Gonçalves; Menezes, Liana Carballo; Bauab, Karen de Castro; Gumpl, Elke Kreuscher; Rocchetti, Talita Trevizani; Palomo, Flavia Silva; Carlesse, Fabianne; Pignatari, Antonio Carlos Campos

    2015-07-23

    Infections are the major cause of morbidity and mortality in children with cancer. Gaining a favorable prognosis for these patients depends on selecting the appropriate therapy, which in turn depends on rapid and accurate microbiological diagnosis. This study employed real-time PCR (qPCR) to identify the main pathogens causing bloodstream infection (BSI) in patients treated at the Pediatric Oncology Institute IOP-GRAACC-UNIFESP-Brazil. Antimicrobial resistance genes were also investigated using this methodology. A total of 248 samples from BACTEC® blood culture bottles and 99 whole-blood samples collected in tubes containing EDTA K2 Gel were isolated from 137 patients. All samples were screened by specific Gram probes for multiplex qPCR. Seventeen sequences were evaluated using gender-specific TaqMan probes and the resistance genes bla SHV, bla TEM, bla CTX, bla KPC, bla IMP, bla SPM, bla VIM, vanA, vanB and mecA were detected using the SYBR Green method. Positive qPCR results were obtained in 112 of the blood culture bottles (112/124), and 90 % agreement was observed between phenotypic and molecular microbial detection methods. For bacterial and fungal identification, the performance test showed: sensitivity 87 %; specificity 91 %; NPV 90 %; PPV 89 % and accuracy of 89 % when compared with the phenotypic method. The mecA gene was detected in 37 samples, extended-spectrum β-lactamases were detected in six samples and metallo-β-lactamase coding genes in four samples, with 60 % concordance between the two methods. The qPCR on whole blood detected eight samples possessing the mecA gene and one sample harboring the vanB gene. The bla KPC, bla VIM, bla IMP and bla SHV genes were not detected in this study. Real-time PCR is a useful tool in the early identification of pathogens and antimicrobial resistance genes from bloodstream infections of pediatric oncologic patients.

  14. Detecting Nonvolatile Life- and Nonlife-Derived Organics in a Carbonaceous Chondrite Analogue with a New Multiplex Immunoassay and Its Relevance for Planetary Exploration.

    PubMed

    Moreno-Paz, Mercedes; Gómez-Cifuentes, Ana; Ruiz-Bermejo, Marta; Hofstetter, Oliver; Maquieira, Ángel; Manchado, Juan M; Morais, Sergi; Sephton, Mark A; Niessner, Reinhard; Knopp, Dietmar; Parro, Victor

    2018-04-11

    Potential martian molecular targets include those supplied by meteoritic carbonaceous chondrites such as amino acids and polycyclic aromatic hydrocarbons and true biomarkers stemming from any hypothetical martian biota (organic architectures that can be directly related to once living organisms). Heat extraction and pyrolysis-based methods currently used in planetary exploration are highly aggressive and very often modify the target molecules making their identification a cumbersome task. We have developed and validated a mild, nondestructive, multiplex inhibitory microarray immunoassay and demonstrated its implementation in the SOLID (Signs of Life Detector) instrument for simultaneous detection of several nonvolatile life- and nonlife-derived organic molecules relevant in planetary exploration and environmental monitoring. By utilizing a set of highly specific antibodies that recognize D- or L- aromatic amino acids (Phe, Tyr, Trp), benzo[a]pyrene (B[a]P), pentachlorophenol, and sulfone-containing aromatic compounds, respectively, the assay was validated in the SOLID instrument for the analysis of carbon-rich samples used as analogues of the organic material in carbonaceous chondrites or even Mars samples. Most of the antibodies enabled sensitivities at the 1-10 ppb level and some even at the ppt level. The multiplex immunoassay allowed the detection of B[a]P as well as aromatic sulfones in a water/methanol extract of an Early Cretaceous lignite sample (c.a., 140 Ma) representing type IV kerogen. No L- or D-aromatic amino acids were detected, reflecting the advanced diagenetic stage and the fossil nature of the sample. The results demonstrate the ability of the liquid extraction by ultrasonication and the versatility of the multiplex inhibitory immunoassays in the SOLID instrument to discriminate between organic matter derived from life and nonlife processes, an essential step toward life detection outside Earth. Key Words: Planetary exploration-Molecular biomarkers-D- and L- aromatic amino acids-Life detection-Multiplex inhibitory/competitive immunoassay-Kerogen type IV. Astrobiology 18, xxx-xxx.

  15. Isolation, identification and differentiation of Campylobacter spp. using multiplex PCR assay from goats in Khartoum State, Sudan.

    PubMed

    Elbrissi, Atif; Sabeil, Y A; Khalifa, Khalda A; Enan, Khalid; Khair, Osama M; El Hussein, A M

    2017-03-01

    The aim of this study was to identify and characterize thermophilic Campylobacter species in faecal samples from goats in Khartoum State, Sudan, by application of multiplex polymerase chain reaction. Campylobacteriosis is a zoonotic disease of global concern, and the organisms can be transmitted to human via food, water and through contact with farm animals and pets. There are five clinically related Campylobacter species: Campylobacter jejuni (C. jejuni). Campylobacter coli, Campylobacter lari, Campylobacter upsaliensis and Campylobacter fetus. Conventional cultural methods to diagnose campylobacteriosis are tedious and time consuming. Wide ranges of genes have been reported to be used for PCR-based identification of Campylobacter spp. We used a multiplex PCR assay to simultaneously detect genes from the major five clinically significant Campylobacter spp. The genes selected were hipO (hippuricase) and 23S rRNA from glyA (serine hydroxymethyl transferase) from each of C. jejuni. C. coli, C. lari, and C. upsaliensis; and sapB2 (surface layer protein) from C. fetus subsp. fetus. The assay was used to identify Campylobacter isolates recovered from 336 cultured faecal samples from goats in three localities in Khartoum State. C. coli was the most predominant isolate (234; 69.6%), followed by C. jejuni (19; 5.7%), C. upsaliensis (13; 3.9%), C. fetus subsp. fetus (7; 2.1%) and C. lari (6; 1.8%). Twenty-nine goats showed mixed infection with Campylobacter spp., 21 of which harbored two Campylobacter spp., while eight animals were infected with three species. Ten out of twelve goats that displayed diarrhea harbored C. coli only. C. coli, C. jejuni and C. upsaliensis showed significant variation with localities. The prevalence of C. coli was significantly higher (87; 25.9%) in goats from Omdurman, whereas C. jejuni and C. upsaliensis were significantly higher (11; 3.3%, 9; 2.7%) in goats from Khartoum. The multiplex PCR assay was found to be rapid and easy to perform and had a high sensitivity and specificity for characterizing the isolates, even in mixed cultures. The study demonstrated the significance of goats as reservoirs in the dissemination of Campylobacter spp. which could be considered as potential agent of caprine enteritis and abortion as well as contamination of the wider environment posing serious public health concern in Khartoum State.

  16. Multiplex Polymerase Chain Reaction for Identification of Shigellae and Four Shigella Species Using Novel Genetic Markers Screened by Comparative Genomics.

    PubMed

    Kim, Hyun-Joong; Ryu, Ji-Oh; Song, Ji-Yeon; Kim, Hae-Yeong

    2017-07-01

    In the detection of Shigella species using molecular biological methods, previously known genetic markers for Shigella species were not sufficient to discriminate between Shigella species and diarrheagenic Escherichia coli. The purposes of this study were to screen for genetic markers of the Shigella genus and four Shigella species through comparative genomics and develop a multiplex polymerase chain reaction (PCR) for the detection of shigellae and Shigella species. A total of seven genomic DNA sequences from Shigella species were subjected to comparative genomics for the screening of genetic markers of shigellae and each Shigella species. The primer sets were designed from the screened genetic markers and evaluated using PCR with genomic DNAs from Shigella and other bacterial strains in Enterobacteriaceae. A novel Shigella quintuplex PCR, designed for the detection of Shigella genus, S. dysenteriae, S. boydii, S. flexneri, and S. sonnei, was developed from the evaluated primer sets, and its performance was demonstrated with specifically amplified results from each Shigella species. This Shigella multiplex PCR is the first to be reported with novel genetic markers developed through comparative genomics and may be a useful tool for the accurate detection of the Shigella genus and species from closely related bacteria in clinical microbiology and food safety.

  17. Morphological characterization and molecular fingerprinting of Nostoc strains by multiplex RAPD.

    PubMed

    Hillol, Chakdar; Pabbi, Sunil

    2012-01-01

    Morphological parameters studied for the twenty selected Nostoc strains were mostly found to be consistent with the earlier reports. But the shape of akinetes observed in this study was a little deviation from the existing descriptions and heterocyst frequency was also found to be different in different strains in spite of growing in the same nitrogen free media. Multiplex RAPD produced reproducible and completely polymorphic amplification profiles for all the strains including some strain specific unique bands which are intended to be useful for identification of those strains. At least one to a maximum of two unique bands was produced by different dual primer combinations. For ten strains out of twenty, strain specific bands were found to be generated. Cluster analysis revealed a vast heterogeneity among these Nostoc strains and no specific clustering based on geographical origin was found except a few strains. It was also observed that morphological data may not necessarily correspond to the genetic data in most of the cases. CCC92 (Nostoc muscorum) and CCC48 (Nostoc punctiforme) showed a high degree of similarity which was well supported by high bootstrap value. The level of similarity of the strains ranged from 0.15 to 0.94. Cluster analysis based on multiplex RAPD showed a good fit revealing the discriminatory power of this technique.

  18. Overlapping MALDI-Mass Spectrometry Imaging for In-Parallel MS and MS/MS Data Acquisition without Sacrificing Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Hansen, Rebecca L.; Lee, Young Jin

    2017-09-01

    Metabolomics experiments require chemical identifications, often through MS/MS analysis. In mass spectrometry imaging (MSI), this necessitates running several serial tissue sections or using a multiplex data acquisition method. We have previously developed a multiplex MSI method to obtain MS and MS/MS data in a single experiment to acquire more chemical information in less data acquisition time. In this method, each raster step is composed of several spiral steps and each spiral step is used for a separate scan event (e.g., MS or MS/MS). One main limitation of this method is the loss of spatial resolution as the number of spiral steps increases, limiting its applicability for high-spatial resolution MSI. In this work, we demonstrate multiplex MS imaging is possible without sacrificing spatial resolution by the use of overlapping spiral steps, instead of spatially separated spiral steps as used in the previous work. Significant amounts of matrix and analytes are still left after multiple spectral acquisitions, especially with nanoparticle matrices, so that high quality MS and MS/MS data can be obtained on virtually the same tissue spot. This method was then applied to visualize metabolites and acquire their MS/MS spectra in maize leaf cross-sections at 10 μm spatial resolution. [Figure not available: see fulltext.

  19. Development of a multiplex real-time PCR for the simultaneous detection of herpes simplex and varicella zoster viruses in cerebrospinal fluid and lesion swab specimens.

    PubMed

    Wong, Anita A; Pabbaraju, Kanti; Wong, Sallene; Tellier, Raymond

    2016-03-01

    Herpes simplex viruses (HSV) and varicella zoster virus (VZV) can have very similar and wide-ranging clinical presentations. Rapid identification is necessary for timely antiviral therapy, especially with infections involving the central nervous system, neonates, and immunocompromised individuals. Detection of HSV-1, HSV-2 and VZV was combined into one real-time PCR reaction utilizing hydrolysis probes. The assay was validated on the LightCycler(®) (Roche) and Applied Biosystems 7500 Real-Time PCR System (Thermo Fisher Scientific Inc.) to detect alphaherpesviruses in cerebral spinal fluid (CSF) and lesion swab specimens, respectively. Validation data on blood and tissue samples are also presented. The multiplex assay showed excellent sensitivity, specificity and reproducibility when compared to two singleplex real-time PCR assays for CSF samples and direct fluorescent antigen/culture for lesion swab samples. Implementation of the multiplex assay has facilitated improved sensitivity and accuracy as well as reduced turn-around-times and costs. The results from a large data set of 16,622 prospective samples tested between August 16, 2012 to February 1, 2014 at the Provincial Laboratory for Public Health (Alberta, Canada) are presented here. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Dynamic changes in clonal cytogenetic architecture during progression of chronic lymphocytic leukemia in patients and patient-derived murine xenografts

    PubMed Central

    Davies, Nicholas J.; Kwok, Marwan; Gould, Clive; Oldreive, Ceri E.; Mao, Jingwen; Parry, Helen; Smith, Edward; Agathanggelou, Angelo; Pratt, Guy; Taylor, Alexander Malcolm R.; Moss, Paul; Griffiths, Mike; Stankovic, Tatjana

    2017-01-01

    Subclonal heterogeneity and clonal selection influences disease progression in chronic lymphocytic leukemia (CLL). It is therefore important that therapeutic decisions are made based on an understanding of the CLL clonal architecture and its dynamics in individual patients. Identification of cytogenetic abnormalities by FISH remains the cornerstone of contemporary clinical practice and provides a simple means for prognostic stratification. Here, we demonstrate that multiplexed-FISH can enhance recognition of CLL subclonal repertoire and its dynamics during disease progression, both in patients and CLL patient-derived xenografts (PDX). We applied a combination of patient-specific FISH probes to 24 CLL cases before treatment and at relapse, and determined putative ancestral relationships between subpopulations with different cytogenetic features. We subsequently established 7 CLL PDX models in NOD/Shi-SCID/IL-2Rγctm1sug/Jic (NOG) mice. Application of multiplexed-FISH to these models demonstrated that all of the identified cytogenetic subpopulations had leukemia propagating activity and that changes in their representation during disease progression could be spontaneous, accelerated by treatment or treatment-induced. We conclude that multiplexed-FISH in combination with PDX models have the potential to distinguish between spontaneous and treatment-induced clonal selection, and therefore provide a valuable tool for the pre-clinical evaluation of novel therapies. PMID:28496009

  1. Detection of four important Eimeria species by multiplex PCR in a single assay.

    PubMed

    You, Myung-Jo

    2014-06-01

    The oocysts of some of the recognized species of chicken coccidiosis are difficult to distinguish morphologically. Diagnostic laboratories are increasingly utilizing DNA-based technologies for the specific identification of Eimeria species. This study reports a multiplex polymerase chain reaction (PCR) assay based on internal transcribed spacer-1 (ITS-1) for the simultaneous diagnosis of the Eimeria tenella, Eimeria acervulina, Eimeria maxima, and Eimeria necatrix species, which infect domestic fowl. Primer pairs specific to each species were designed in order to generate a ladder of amplification products ranging from 20 to 25 bp, and a common optimum annealing temperature for these species was determined to be 52.5 °C. Sensitivity tests were performed for each species, showing a detection threshold of 1-5 pg. All the species were amplified homogeneously, and a homogenous band ladder was observed, indicating that the assay permitted the simultaneous detection of all the species in a single-tube reaction. In the phylogenic study, there was a clear species clustering, which was irrespective of geographical location, for all the ITS-1 sequences used. This multiplex PCR assay represents a rapid and potential cost-effective diagnostic method for the detection of some key Eimeria species that infect domestic fowl. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Identification of the microbial community composition and structure of coal-mine wastewater treatment plants.

    PubMed

    Ma, Qiao; Qu, Yuan-Yuan; Zhang, Xu-Wang; Shen, Wen-Li; Liu, Zi-Yan; Wang, Jing-Wei; Zhang, Zhao-Jing; Zhou, Ji-Ti

    2015-06-01

    The wastewater from coal-mine industry varies greatly and is resistant to biodegradation for containing large quantities of inorganic and organic pollutants. Microorganisms in activated sludge are responsible for the pollutants' removal, whereas the microbial community composition and structure are far from understood. In the present study, the sludges from five coal-mine wastewater treatment plants were collected and the microbial communities were analyzed by Illumina high-throughput sequencing. The diversities of these sludges were lower than that of the municipal wastewater treatment systems. The most abundant phylum was Proteobacteria ranging from 63.64% to 96.10%, followed by Bacteroidetes (7.26%), Firmicutes (5.12%), Nitrospira (2.02%), Acidobacteria (1.31%), Actinobacteria (1.30%) and Planctomycetes (0.95%). At genus level, Thiobacillus and Comamonas were the two primary genera in all sludges, other major genera included Azoarcus, Thauera, Pseudomonas, Ohtaekwangia, Nitrosomonas and Nitrospira. Most of these core genera were closely related with aromatic hydrocarbon degradation and denitrification processes. Identification of the microbial communities in coal-mine wastewater treatment plants will be helpful for wastewater management and control. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Biogeochemistry of Produced Water from Unconventional Wells in the Powder River Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Drogos, D. L.; Nye, C.; Quillinan, S.; Urynowicz, M. A.; Wawrousek, K.

    2017-12-01

    Microbial activity in waters associated with unconventional oil and gas reservoirs is poorly described but can profoundly affect management strategies for produced water (PW), frac fluids, and biocides. Improved identification of microbial communities is required to develop targeted solutions for detrimental microbial activity such as biofouling and to exploit favorable activity such as microbial induced gas production. We quantified the microbial communities and inorganic chemistry in PW samples from cretaceous formations in six unconventional oil and gas wells in the Powder River Basin in northeast Wyoming. The wells are horizontal completions in the Frontier, Niobrara, Shannon, and Turner formations at depths of 10,000 to 12,000 feet, with PW temperatures ranging from 93oF to 130oF. Biocides utilized in frac fluids primarily included glutaraldehyde and Alkyl Dimethyl Benzyl Ammonium Chloride (ADBAC), with first production occurring in 2013. Geochemical results for PW are: pH 6.5 to 6.9; alkalinity (as CaCO3) 219 to 519 ppm; salinity 13,200 to 22,300 ppm; and TDS 39,364 to 62,725 ppm. Illumina MiSeq 16S rRNA sequencing identified the majority of communities in PW are related to anaerobic, thermophilic, halophilic, chemoheterotrophic, and chemoorganotrophic bacteria, including Thermotoga, Clostridiaceae, Thermoanaerobacter, Petrotoga, Anaerobaculum, Clostridiales, Desulfomicrobium, and Halanaerobiaceae. These findings are important for identification of biogeochemical reactions that affect the organic-inorganic-microbial interactions among reservoir rocks, formation waters, and frac fluids. Better understanding of these biogeochemical reactions would allow producers to formulate frac fluids and biocides to encourage beneficial microbial phenomena such as biogenic gas production while discouraging detrimental effects such as biofouling.

  4. Quantitative comparison of the in situ microbial communities in different biomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.C.; Ringelberg, D.B.; Palmer, R.J.

    1995-12-31

    A system to define microbial communities in different biomes requires the application of non-traditional methodology. Classical microbiological methods have severe limitations for the analysis of environmental samples. Pure-culture isolation, biochemical testing, and/or enumeration by direct microscopic counting are not well suited for the estimation of total biomass or the assessment of community composition within environmental samples. Such methods provide little insight into the in situ phenotypic activity of the extant microbiota since these techniques are dependent on microbial growth and thus select against many environmental microorganisms which are non- culturable under a wide range of conditions. It has been repeatedlymore » documented in the literature that viable counts or direct counts of bacteria attached to sediment grains are difficult to quantitative and may grossly underestimate the extent of the existing community. The traditional tests provide little indication of the in situ nutritional status or for evidence of toxicity within the microbial community. A more recent development (MIDI Microbial Identification System), measure free and ester-linked fatty acids from isolated microorganisms. Bacterial isolates are identified by comparing their fatty acid profiles to the MIKI database which contains over 8000 entries. The application of the MIKI system to the analysis of environmental samples however, has significant drawbacks. The MIDI system was developed to identify clinical microorganisms and requires their isolation and culture on trypticase soy agar at 27{degrees}C. Since many isolates are unable to grow at these restrictive growth conditions, the system does not lend itself to identification of some environmental organisms. A more applicable methodology for environmental microbial analysis is based on the liquid extrication and separation of microbial lipids from environmental samples, followed by quantitative analysis using gas chromatography/« less

  5. Expansion of Microbial Forensics.

    PubMed

    Schmedes, Sarah E; Sajantila, Antti; Budowle, Bruce

    2016-08-01

    Microbial forensics has been defined as the discipline of applying scientific methods to the analysis of evidence related to bioterrorism, biocrimes, hoaxes, or the accidental release of a biological agent or toxin for attribution purposes. Over the past 15 years, technology, particularly massively parallel sequencing, and bioinformatics advances now allow the characterization of microorganisms for a variety of human forensic applications, such as human identification, body fluid characterization, postmortem interval estimation, and biocrimes involving tracking of infectious agents. Thus, microbial forensics should be more broadly described as the discipline of applying scientific methods to the analysis of microbial evidence in criminal and civil cases for investigative purposes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Development of a rapid SNP-typing assay to differentiate Bifidobacterium animalis ssp. lactis strains used in probiotic-supplemented dairy products.

    PubMed

    Lomonaco, Sara; Furumoto, Emily J; Loquasto, Joseph R; Morra, Patrizia; Grassi, Ausilia; Roberts, Robert F

    2015-02-01

    Identification at the genus, species, and strain levels is desirable when a probiotic microorganism is added to foods. Strains of Bifidobacterium animalis ssp. lactis (BAL) are commonly used worldwide in dairy products supplemented with probiotic strains. However, strain discrimination is difficult because of the high degree of genome identity (99.975%) between different genomes of this subspecies. Typing of monomorphic species can be carried out efficiently by targeting informative single nucleotide polymorphisms (SNP). Findings from a previous study analyzing both reference and commercial strains of BAL identified SNP that could be used to discriminate common strains into 8 groups. This paper describes development of a minisequencing assay based on the primer extension reaction (PER) targeting multiple SNP that can allow strain differentiation of BAL. Based on previous data, 6 informative SNP were selected for further testing, and a multiplex preliminary PCR was optimized to amplify the DNA regions containing the selected SNP. Extension primers (EP) annealing immediately adjacent to the selected SNP were developed and tested in simplex and multiplex PER to evaluate their performance. Twenty-five strains belonging to 9 distinct genomic clusters of B. animalis ssp. lactis were selected and analyzed using the developed minisequencing assay, simultaneously targeting the 6 selected SNP. Fragment analysis was subsequently carried out in duplicate and demonstrated that the assay yielded 8 specific profiles separating the most commonly used commercial strains. This novel multiplex PER approach provides a simple, rapid, flexible SNP-based subtyping method for proper characterization and identification of commercial probiotic strains of BAL from fermented dairy products. To assess the usefulness of this method, DNA was extracted from yogurt manufactured with and without the addition of B. animalis ssp. lactis BB-12. Extracted DNA was then subjected to the minisequencing protocol, resulting in a SNP profile matching the profile for the strain BB-12. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Quantitative multiplex quantum dot in-situ hybridisation based gene expression profiling in tissue microarrays identifies prognostic genes in acute myeloid leukaemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tholouli, Eleni; MacDermott, Sarah; Hoyland, Judith

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Development of a quantitative high throughput in situ expression profiling method. Black-Right-Pointing-Pointer Application to a tissue microarray of 242 AML bone marrow samples. Black-Right-Pointing-Pointer Identification of HOXA4, HOXA9, Meis1 and DNMT3A as prognostic markers in AML. -- Abstract: Measurement and validation of microarray gene signatures in routine clinical samples is problematic and a rate limiting step in translational research. In order to facilitate measurement of microarray identified gene signatures in routine clinical tissue a novel method combining quantum dot based oligonucleotide in situ hybridisation (QD-ISH) and post-hybridisation spectral image analysis was used for multiplex in-situ transcript detection inmore » archival bone marrow trephine samples from patients with acute myeloid leukaemia (AML). Tissue-microarrays were prepared into which white cell pellets were spiked as a standard. Tissue microarrays were made using routinely processed bone marrow trephines from 242 patients with AML. QD-ISH was performed for six candidate prognostic genes using triplex QD-ISH for DNMT1, DNMT3A, DNMT3B, and for HOXA4, HOXA9, Meis1. Scrambled oligonucleotides were used to correct for background staining followed by normalisation of expression against the expression values for the white cell pellet standard. Survival analysis demonstrated that low expression of HOXA4 was associated with poorer overall survival (p = 0.009), whilst high expression of HOXA9 (p < 0.0001), Meis1 (p = 0.005) and DNMT3A (p = 0.04) were associated with early treatment failure. These results demonstrate application of a standardised, quantitative multiplex QD-ISH method for identification of prognostic markers in formalin-fixed paraffin-embedded clinical samples, facilitating measurement of gene expression signatures in routine clinical samples.« less

  8. Computer applications making rapid advances in high throughput microbial proteomics (HTMP).

    PubMed

    Anandkumar, Balakrishna; Haga, Steve W; Wu, Hui-Fen

    2014-02-01

    The last few decades have seen the rise of widely-available proteomics tools. From new data acquisition devices, such as MALDI-MS and 2DE to new database searching softwares, these new products have paved the way for high throughput microbial proteomics (HTMP). These tools are enabling researchers to gain new insights into microbial metabolism, and are opening up new areas of study, such as protein-protein interactions (interactomics) discovery. Computer software is a key part of these emerging fields. This current review considers: 1) software tools for identifying the proteome, such as MASCOT or PDQuest, 2) online databases of proteomes, such as SWISS-PROT, Proteome Web, or the Proteomics Facility of the Pathogen Functional Genomics Resource Center, and 3) software tools for applying proteomic data, such as PSI-BLAST or VESPA. These tools allow for research in network biology, protein identification, functional annotation, target identification/validation, protein expression, protein structural analysis, metabolic pathway engineering and drug discovery.

  9. Comparison of culture and a multiplex probe PCR for identifying Mycoplasma species in bovine milk, semen and swab samples

    PubMed Central

    Parker, Alysia M.; House, John K.; Hazelton, Mark S.; Bosward, Katrina L.; Sheehy, Paul A.

    2017-01-01

    Mycoplasma spp. are a major cause of mastitis, arthritis and pneumonia in cattle, and have been associated with reproductive disorders in cows. While culture is the traditional method of identification the use of PCR has become more common. Several investigators have developed PCR protocols to detect M. bovis in milk, yet few studies have evaluated other sample types or other important Mycoplasma species. Therefore the objective of this study was to develop a multiplex PCR assay to detect M. bovis, M. californicum and M. bovigenitalium, and evaluate its analytical performance against traditional culture of bovine milk, semen and swab samples. The PCR specificity was determined and the limit of detection evaluated in spiked milk, semen and swabs. The PCR was then compared to culture on 474 field samples from individual milk, bulk tank milk (BTM), semen and swab (vaginal, preputial, nose and eye) samples. Specificity analysis produced appropriate amplification for all M. bovis, M. californicum and M. bovigenitalium isolates. Amplification was not seen for any of the other Mollicutes or eubacterial isolates. The limit of detection of the PCR was best in milk, followed by semen and swabs. When all three Mycoplasma species were present in a sample, the limit of detection increased. When comparing culture and PCR, overall there was no significant difference in the proportion of culture and PCR positive samples. Culture could detect significantly more positive swab samples. No significant differences were identified for semen, individual milk or BTM samples. PCR identified five samples with two species present. Culture followed by 16S-23S rRNA sequencing did not enable identification of more than one species. Therefore, the superior method for identification of M. bovis, M. californicum and M. bovigenitalium may be dependent on the sample type being analysed, and whether the identification of multiple target species is required. PMID:28264012

  10. Identification and Characterization of Imipenem-Resistant Klebsiella pneumoniae and Susceptible Klebsiella variicola Isolates Obtained from the Same Patient.

    PubMed

    Garza-Ramos, Ulises; Moreno-Dominguez, Stephania; Hernández-Castro, Rigoberto; Silva-Sanchez, Jesús; Barrios, Humberto; Reyna-Flores, Fernando; Sanchez-Perez, Alejandro; Carrillo-Casas, Erika M; Sanchez-León, María Carmen; Moncada-Barron, David

    2016-04-01

    Klebsiella variicola, a bacterium closely genetically related to Klebsiella pneumoniae, is commonly misidentified as K. pneumoniae by biochemical tests. To distinguish between the two bacteria, phylogenetic analysis of the rpoB gene and the identification of unique genes in both bacterial species by multiplex-polymerase chain reaction (PCR) provide the means to reliably identify and genotype K. variicola. In recent years, K. variicola has been described both as the cause of an intrahospital outbreak in a pediatric hospital, which resulted in sepsis in inpatients, and as a frequent cause of bloodstream infections. In the present study, K. pneumoniae and K. variicola were isolated from a unique patient displaying different antimicrobial susceptibility phenotypes and different genotypes of virulence determinants. Eight clinical isolates were obtained at different time intervals; all during a 5-month period. The isolates were identified as K. pneumoniae by an automated identification system. The clinical (biochemical test) and molecular (multiplex-PCR and rpoB gene) characterization identified imipenem resistance in the first six K. pneumoniae ST258 isolates, which encode the SHV-12 cephalosporinase and KPC-3 carbapenemase genes. The two last remaining isolates corresponded to susceptible K. variicola. The bacterial species showed a specific profile of virulence-associated determinants, specifically the fimA, fimH, and ecpRAB fimbrial-encoding genes identified only in K. pneumoniae isolates. However, the entb (enterobactin), mrkD (fimbrial adhesin), uge (epimerase), ureA (urease), and wabG (transferase) genes were shared between both bacterial species. Recent studies attribute a higher mortality rate to K. variicola than to K. pneumonia. This work highlights the identification of K. pneumoniae and the closely related K. variicola isolated from the same patient. The value of distinguishing between these two bacterial species is in their clinical significance, their different phenotypes and genotypes, and the fact that they can be isolated from the same patient.

  11. A comparative study of quantitative immunohistochemistry and quantum dot immunohistochemistry for mutation carrier identification in Lynch syndrome.

    PubMed

    Barrow, Emma; Evans, D Gareth; McMahon, Ray; Hill, James; Byers, Richard

    2011-03-01

    Lynch Syndrome is caused by mutations in DNA mismatch repair (MMR) genes. Mutation carrier identification is facilitated by immunohistochemical detection of the MMR proteins MHL1 and MSH2 in tumour tissue and is desirable as colonoscopic screening reduces mortality. However, protein detection by conventional immunohistochemistry (IHC) is subjective, and quantitative techniques are required. Quantum dots (QDs) are novel fluorescent labels that enable quantitative multiplex staining. This study compared their use with quantitative 3,3'-diaminobenzidine (DAB) IHC for the diagnosis of Lynch Syndrome. Tumour sections from 36 mutation carriers and six controls were obtained. These were stained with DAB on an automated platform using antibodies against MLH1 and MSH2. Multiplex QD immunofluorescent staining of the sections was performed using antibodies against MLH1, MSH2 and smooth muscle actin (SMA). Multispectral analysis of the slides was performed. The staining intensity of DAB and QDs was measured in multiple colonic crypts, and the mean intensity scores calculated. Receiver operating characteristic (ROC) curves of staining performance for the identification of mutation carriers were evaluated. For quantitative DAB IHC, the area under the MLH1 ROC curve was 0.872 (95% CI 0.763 to 0.981), and the area under the MSH2 ROC curve was 0.832 (95% CI 0.704 to 0.960). For quantitative QD IHC, the area under the MLH1 ROC curve was 0.812 (95% CI 0.681 to 0.943), and the area under the MSH2 ROC curve was 0.598 (95% CI 0.418 to 0.777). Despite the advantage of QD staining to enable several markers to be measured simultaneously, it is of lower utility than DAB IHC for the identification of MMR mutation carriers. Automated DAB IHC staining and quantitative slide analysis may enable high-throughput IHC.

  12. Molecular Microbial Analysis of Lactobacillus Strains Isolated from the Gut of Calves for Potential Probiotic Use

    PubMed Central

    Soto, Lorena P.; Frizzo, Laureano S.; Bertozzi, Ezequiel; Avataneo, Elizabeth; Sequeira, Gabriel J.; Rosmini, Marcelo R.

    2010-01-01

    The intestinal microbiota has an influence on the growth and health status of the hosts. This is of particular interest in animals reared using intensive farming practices. Hence, it is necessary to know more about complexity of the beneficial intestinal microbiota. The use of molecular methods has revolutionized microbial identification by improving its quality and effectiveness. The specific aim of the study was to analyze predominant species of Lactobacillus in intestinal microbial ecosystem of young calves. Forty-two lactic acid bacteria (LAB) isolated from intestinal tract of young calves were characterized by: Amplified Ribosomal DNA Restriction Analysis (ARDRA), by using Hae III, Msp I, and Hinf I restriction enzymes, and 16S rDNA gene sequencing. ARDRA screening revealed nine unique patterns among 42 isolates, with the same pattern for 29 of the isolates. Gene fragments of 16S rDNA of 19 strains representing different patterns were sequenced to confirm the identification of these species. These results confirmed that ARDRA is a good tool for identification and discrimination of bacterial species isolated from complex ecosystem and between closely related groups. This paper provides information about the LAB species predominant in intestinal tract of young calves that could provide beneficial effects when administered as probiotic. PMID:20445780

  13. Affirm VPIII microbial identification test can be used to detect gardnerella vaginalis, Candida albicans and trichomonas vaginalis microbial infections in Korean women.

    PubMed

    Byun, Seung Won; Park, Yeon Joon; Hur, Soo Young

    2016-04-01

    The aim of this study was to compare Affirm VPIII Microbial Identification Test results for Korean women to those obtained for Gardnerella vaginalis through Nugent score, Candida albicans based on vaginal culture and Trichomonas vaginalis based on wet smear diagnostic standards. Study participants included 195 women with symptomatic or asymptomatic vulvovaginitis under hospital obstetric or gynecologic care. A definite diagnosis was made based on Nugent score for Gardnerella, vaginal culture for Candida and wet prep for Trichomonas vaginalis. Affirm VPIII Microbial Identification Test results were then compared to diagnostic standard results. Of the 195 participants, 152 were symptomatic, while 43 were asymptomatic. Final diagnosis revealed 68 (37.87%) cases of Gardnerella, 29 (14.87%) cases of Candida, one (0.51%) case of Trichomonas, and 10 (5.10%) cases of mixed infections. The detection rates achieved by each detection method (Affirm assay vs diagnostic standard) for Gardnerella and Candida were not significantly different (33.33% vs 34.8% for Gardnerella, 13.33% vs 14.87% for Candida, respectively). The sensitivity and specificity of the Affirm test for Gardnerella compared to the diagnostic standard were 75.0% and 88.98%, respectively. For Candida, the sensitivity and specificity of the Affirm test compared to the diagnostic standard were 82.76% and 98.80%, respectively. The number of Trichomonas cases was too small (1 case) to be statistically analyzed. The Affirm test is a quick tool that can help physicians diagnose and treat patients with infectious vaginitis at the point of care. © 2016 Japan Society of Obstetrics and Gynecology.

  14. Rapid Identification of Pathogens from Positive Blood Cultures by Multiplex PCR using the FilmArray System

    PubMed Central

    Blaschke, Anne J.; Heyrend, Caroline; Byington, Carrie L.; Fisher, Mark A.; Barker, Elizabeth; Garrone, Nicholas F.; Thatcher, Stephanie A.; Pavia, Andrew T.; Barney, Trenda; Alger, Garrison D.; Daly, Judy A.; Ririe, Kirk M.; Ota, Irene; Poritz, Mark A.

    2012-01-01

    Sepsis is a leading cause of death. Rapid and accurate identification of pathogens and antimicrobial resistance directly from blood culture could improve patient outcomes. The FilmArray® (FA; Idaho Technology, Inc., Salt Lake City, UT) Blood Culture (BC) panel can identify > 25 pathogens and 4 antibiotic resistance genes from positive blood cultures in 1 hour. We compared a development version of the panel to conventional culture and susceptibility testing on 102 archived blood cultures from adults and children with bacteremia. Of 109 pathogens identified by culture, 95% were identified by FA. Among 111 prospectively collected blood cultures, the FA identified 84 of 92 pathogens (91%) covered by the panel. Among 25 Staphylococcus aureus and 21 Enterococcus species detected, FA identified all culture-proven MRSA and VRE. The FA BC panel is an accurate method for the rapid identification of pathogens and resistance genes from blood culture. PMID:22999332

  15. Quantifying the contribution of single microbial cells to nitrogen assimilation in aquatic environments

    NASA Astrophysics Data System (ADS)

    Musat, N.; Kuypers, M. M. M.

    2009-04-01

    Nitrogen is a primary productivity-limiting nutrient in the ocean. The nitrogen limitation of productivity may be overcome by organisms capable of converting dissolved N2 into fixed nitrogen available to the ecosystem. In many oceanic regions, growth of phytoplankton is nitrogen limited because fixation of N2 cannot make up for the removal of fixed inorganic nitrogen (NH4+, NO2-, NO3-) by anaerobic microbial processes. The amount of available fixed nitrogen in the ocean can be changed by the biological processes of heterotrophic denitrification, anaerobic ammonium oxidation and nitrogen fixation. For a complete understanding of nitrogen cycling in the ocean a link between the microbial and biogeochemical processes at the single cell level and their role in global biogeochemical cycles is essential. Here we report a recently developed method, Halogen In Situ Hybridization-Secondary Ion Mass Spectroscopy (HISH-SIMS) and its potential application to study the nitrogen-cycle processes in the ocean. The method allows simultaneous phylogenetic identification and quantitation of metabolic activities of single microbial cells in the environment. It uses horseradish-peroxidase-labeled oligonucleotide probes and fluorine-containing tyramides for the identification of microorganisms in combination with stable-isotope-labeling experiments for analyzing the metabolic function of single microbial cells. HISH-SIMS was successfully used to study nitrogen assimilation and nitrogen fixation by anaerobic phototrophs in a meromictic alpine lake. The HISH-SIMS method enables studies of the ecophysiology of individual, phylogenetically identified microorganisms involved in the N-cycle and allows us to track the flow of nitrogen within microbial communities.

  16. Understanding Caries From the Oral Microbiome Perspective.

    PubMed

    Tanner, Anne C R; Kressirer, Christine A; Faller, Lina L

    2016-07-01

    Dental caries is a major disease of the oral cavity with profound clinical significance. Caries results from a transition of a healthy oral microbiome into an acidogenic community of decreased microbial diversity in response to excessive dietary sugar intake. Microbiological cultivation, molecular identification, gene expression and metabolomic analyses show the importance of the entire microbial community in understanding the role of the microbiome in the pathology of caries.

  17. Peptide code-on-a-microplate for protease activity analysis via MALDI-TOF mass spectrometric quantitation.

    PubMed

    Hu, Junjie; Liu, Fei; Ju, Huangxian

    2015-04-21

    A peptide-encoded microplate was proposed for MALDI-TOF mass spectrometric (MS) analysis of protease activity. The peptide codes were designed to contain a coding region and the substrate of protease for enzymatic cleavage, respectively, and an internal standard method was proposed for the MS quantitation of the cleavage products of these peptide codes. Upon the cleavage reaction in the presence of target proteases, the coding regions were released from the microplate, which were directly quantitated by using corresponding peptides with one-amino acid difference as the internal standards. The coding region could be used as the unique "Protease ID" for the identification of corresponding protease, and the amount of the cleavage product was used for protease activity analysis. Using trypsin and chymotrypsin as the model proteases to verify the multiplex protease assay, the designed "Trypsin ID" and "Chymotrypsin ID" occurred at m/z 761.6 and 711.6. The logarithm value of the intensity ratio of "Protease ID" to internal standard was proportional to trypsin and chymotrypsin concentration in a range from 5.0 to 500 and 10 to 500 nM, respectively. The detection limits for trypsin and chymotrypsin were 2.3 and 5.2 nM, respectively. The peptide-encoded microplate showed good selectivity. This proposed method provided a powerful tool for convenient identification and activity analysis of multiplex proteases.

  18. Mini-SNaPshot multiplex assays authenticate elephant ivory and simultaneously identify the species origin.

    PubMed

    Kitpipit, Thitika; Thongjued, Kantima; Penchart, Kitichaya; Ouithavon, Kanita; Chotigeat, Wilaiwan

    2017-03-01

    Illegal trading of ivory is mainly responsible for the dramatic decline in elephant populations. Thailand is one of the largest laundering hotspots for African ivory, as the domestic Asian elephant ivory can be legally traded. So, to help combat ivory poaching and smuggling, an efficient method is needed to identify the elephant species from its ivory and ivory products. In this study, a mini-SNaPshot ® multiplex assay was developed and fully validated for the identification of confiscated ivory and low DNA template ivory products. Elephantid- and elephant species-specific mitochondrial single nucleotide polymorphisms (SNPs) were identified from 207 mammalian and 1705 elephant/mammoth cytochrome b sequence alignments. Seven informative SNPs were used for assay development. The assay unambiguously and accurately identified authentic elephant ivory and its species of origin on the basis of peak size and color observed in the haplotype profile. The assay was highly efficient for analysis of confiscated ivory and low-template ivory products with a 99.29% success rate (N=140). It was highly reproducible, exhibited no cross-reaction with eight other mammalian DNA; and had 100% identification accuracy. In addition, nested and direct PCR amplification were also compatible with the developed assay. This efficient assay should benefit wildlife forensic laboratories and aid in the prosecution of elephant-related crimes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Rapid sex identification of papaya (Carica papaya) using multiplex loop-mediated isothermal amplification (mLAMP).

    PubMed

    Hsu, Te-Hua; Gwo, Jin-Chywan; Lin, Kuan-Hung

    2012-10-01

    Papaya (Carica papaya L.) is established as a cash crop throughout the tropical and subtropical regions due to its easy adaptation to diverse agricultural conditions, high yields, and prompt returns. The sex types of papaya plants are hermaphrodite, male, and female. Among them, hermaphroditic plants are the major type in papaya production, because the fruit has commercial advantages over that of the other sexes. Sex inheritance in papaya is determined by the M and M(h) dominant alleles in males and hermaphrodites, respectively, and a recessive m allele in females. Currently, all hermaphrodite seeds are not available due to the lethality of dominant homozygosity. Therefore, in this study, six male-hermaphrodite-specific markers were developed for a rapid sex identification using multiplex loop-mediated isothermal amplification (mLAMP) to efficiently and precisely select hermaphroditic individuals in the seedling or early growth stage. The LM1-LAMP assay consisted of two sex-LAMP reactions for amplifying two male-specific markers (T12 and Cpsm90) in one reaction, and showed several advantages in terms of a rapid reaction time (<1 h), isothermal conditions (less equipment required), a high efficiency (0.5 ng of DNA required in the reaction mixture), and an economical reaction system (5 μl in volume). The established method can be easily performed in the field by visual inspection and facilitates the selection of all hermaphroditic individuals in papaya production.

  20. Rapid and sensitive multiplex single-tube nested PCR for the identification of five human Plasmodium species.

    PubMed

    Saito, Takahiro; Kikuchi, Aoi; Kaneko, Akira; Isozumi, Rie; Teramoto, Isao; Kimura, Masatsugu; Hirasawa, Noriyasu; Hiratsuka, Masahiro

    2018-06-01

    Malaria is caused by five species of Plasmodium in humans. Microscopy is currently used for pathogen detection, requiring considerable training and technical expertise as the parasites are often difficult to differentiate morphologically. Rapid diagnostic tests are as reliable as microscopy and offer faster diagnoses but possess lower detection limits and are incapable of distinguishing among the parasitic species. To improve global health efforts towards malaria control, a rapid, sensitive, species-specific, and economically viable diagnostic method is needed. In this study, we designed a malaria diagnostic method involving a multiplex single-tube nested PCR targeting Plasmodium mitochondrial cytochrome c oxidase III and single-stranded tag hybridization chromatographic printed-array strip. The detection sensitivity was found to be at least 40 times higher than that of agarose gel electrophoresis with ethidium bromide. This system also enables the identification of both single- and mixed-species malaria infections. The assay was validated with 152 Kenyan samples; using nested PCR as the standard, the assay's sensitivity and specificity were 88.7% and 100.0%, respectively. The turnaround time required, from PCR preparation to signal detection, is 90min. Our method should improve the diagnostic speed, treatment efficacy, and control of malaria, in addition to facilitating surveillance within global malaria eradication programs. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Short tandem repeat analysis in Japanese population.

    PubMed

    Hashiyada, M

    2000-01-01

    Short tandem repeats (STRs), known as microsatellites, are one of the most informative genetic markers for characterizing biological materials. Because of the relatively small size of STR alleles (generally 100-350 nucleotides), amplification by polymerase chain reaction (PCR) is relatively easy, affording a high sensitivity of detection. In addition, STR loci can be amplified simultaneously in a multiplex PCR. Thus, substantial information can be obtained in a single analysis with the benefits of using less template DNA, reducing labor, and reducing the contamination. We investigated 14 STR loci in a Japanese population living in Sendai by three multiplex PCR kits, GenePrint PowerPlex 1.1 and 2.2. Fluorescent STR System (Promega, Madison, WI, USA) and AmpF/STR Profiler (Perkin-Elmer, Norwalk, CT, USA). Genomic DNA was extracted using sodium dodecyl sulfate (SDS) proteinase K or Chelex 100 treatment followed by the phenol/chloroform extraction. PCR was performed according to the manufacturer's protocols. Electrophoresis was carried out on an ABI 377 sequencer and the alleles were determined by GeneScan 2.0.2 software (Perkin-Elmer). In 14 STRs loci, statistical parameters indicated a relatively high rate, and no significant deviation from Hardy-Weinberg equilibrium was detected. We apply this STR system to paternity testing and forensic casework, e.g., personal identification in rape cases. This system is an effective tool in the forensic sciences to obtain information on individual identification.

  2. The occurrence, transmission, virulence and antibiotic resistance of Listeria monocytogenes in fish processing plant.

    PubMed

    Skowron, Krzysztof; Kwiecińska-Piróg, Joanna; Grudlewska, Katarzyna; Świeca, Agnieszka; Paluszak, Zbigniew; Bauza-Kaszewska, Justyna; Wałecka-Zacharska, Ewa; Gospodarek-Komkowska, Eugenia

    2018-06-13

    The aim of this research was to investigate the occurrence of Listeria monocytogenes in fish and fish processing plant and to determine their transmission, virulence and antibiotic resistance. L. monocytogenes was isolated according to the ISO 11290-1. The identification of L. monocytogenes was confirmed by multiplex PCR method. Genetic similarity of L. monocytogenes strains was determined with the Pulsed-Filed Gene Electrophoresis (PFGE) method. The multiplex PCR was used for identification of L. monocytogenes serogroups and detection of selected virulence genes (actA, fbpA, hlyA, iap, inlA, inlB, mpl, plcA, plcB, prfA). The L. monocytogens isolates susceptibility to penicillin, ampicillin, meropenem, erythromycin, trimethoprim/sulfamethoxazole was evaluated with disc diffusion method according to EUCAST v. 7.1. The presence of 237 L. monocytogenes isolates (before genetic similarity assessment) in 614 examined samples was confirmed. After strain differentiation by PFGE techniques the presence of 161 genetically different strains were confirmed. The genetic similarity of the examined isolates suggested that the source of the L. monocytogenes strains were fishes originating from farms. All tested strains possessed all detected virulence genes. Among examined strains, the most (26, 38.6%) belonged to the group 1/2a-3a. The most of tested strains were resistant to erythromycin (47.1%) and trimethoprim/sulfamethoxazole (47.1%). Copyright © 2018. Published by Elsevier B.V.

  3. Development of Highly Sensitive and Specific mRNA Multiplex System (XCYR1) for Forensic Human Body Fluids and Tissues Identification

    PubMed Central

    Xu, Yan; Xie, Jianhui; Cao, Yu; Zhou, Huaigu; Ping, Yuan; Chen, Liankang; Gu, Lihua; Hu, Wei; Bi, Gang; Ge, Jianye; Chen, Xin; Zhao, Ziqin

    2014-01-01

    The identification of human body fluids or tissues through mRNA-based profiling is very useful for forensic investigations. Previous studies have shown mRNA biomarkers are effective to identify the origin of biological samples. In this study, we selected 16 tissue specific biomarkers to evaluate their specificities and sensitivities for human body fluids and tissues identification, including porphobilinogen deaminase (PBGD), hemoglobin beta (HBB) and Glycophorin A (GLY) for circulatory blood, protamine 2 (PRM2) and transglutaminase 4 (TGM4) for semen, mucin 4 (MUC4) and human beta defensin 1(HBD1) for vaginal secretion, matrix metalloproteinases 7 and 11 (MMP7 and MMP11) for menstrual blood, keratin 4(KRT4) for oral mucosa, loricrin (LOR) and cystatin 6 (CST6) for skin, histatin 3(HTN3) for saliva, statherin (STATH) for nasal secretion, dermcidin (DCD) for sweat and uromodulin (UMOD) for urine. The above mentioned ten common forensic body fluids or tissues were used in the evaluation. Based on the evaluation, a reverse transcription (RT) PCR multiplex assay, XCYR1, which includes 12 biomarkers (i.e., HBB, GLY, HTN3, PRM2, KRT4, MMP11, MUC4, DCD, UMOD, MMP7, TGM4, and STATH) and 2 housekeeping genes [i.e., glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18SrRNA], was developed. This assay was further validated with real casework samples and mock samples (with both single source and mixture) and it was approved that XCYR1 is effective to identify common body fluids or tissues (i.e., circulatory blood, saliva, semen, vaginal secretion, menstrual blood, oral mucosa, nasal secretion, sweat and urine) in forensic casework samples. PMID:24991806

  4. Development of highly sensitive and specific mRNA multiplex system (XCYR1) for forensic human body fluids and tissues identification.

    PubMed

    Xu, Yan; Xie, Jianhui; Cao, Yu; Zhou, Huaigu; Ping, Yuan; Chen, Liankang; Gu, Lihua; Hu, Wei; Bi, Gang; Ge, Jianye; Chen, Xin; Zhao, Ziqin

    2014-01-01

    The identification of human body fluids or tissues through mRNA-based profiling is very useful for forensic investigations. Previous studies have shown mRNA biomarkers are effective to identify the origin of biological samples. In this study, we selected 16 tissue specific biomarkers to evaluate their specificities and sensitivities for human body fluids and tissues identification, including porphobilinogen deaminase (PBGD), hemoglobin beta (HBB) and Glycophorin A (GLY) for circulatory blood, protamine 2 (PRM2) and transglutaminase 4 (TGM4) for semen, mucin 4 (MUC4) and human beta defensin 1(HBD1) for vaginal secretion, matrix metalloproteinases 7 and 11 (MMP7 and MMP11) for menstrual blood, keratin 4(KRT4) for oral mucosa, loricrin (LOR) and cystatin 6 (CST6) for skin, histatin 3(HTN3) for saliva, statherin (STATH) for nasal secretion, dermcidin (DCD) for sweat and uromodulin (UMOD) for urine. The above mentioned ten common forensic body fluids or tissues were used in the evaluation. Based on the evaluation, a reverse transcription (RT) PCR multiplex assay, XCYR1, which includes 12 biomarkers (i.e., HBB, GLY, HTN3, PRM2, KRT4, MMP11, MUC4, DCD, UMOD, MMP7, TGM4, and STATH) and 2 housekeeping genes [i.e., glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18SrRNA], was developed. This assay was further validated with real casework samples and mock samples (with both single source and mixture) and it was approved that XCYR1 is effective to identify common body fluids or tissues (i.e., circulatory blood, saliva, semen, vaginal secretion, menstrual blood, oral mucosa, nasal secretion, sweat and urine) in forensic casework samples.

  5. Identification and Differentiation of Verticillium Species and V. longisporum Lineages by Simplex and Multiplex PCR Assays

    PubMed Central

    Inderbitzin, Patrik; Davis, R. Michael; Bostock, Richard M.; Subbarao, Krishna V.

    2013-01-01

    Accurate species identification is essential for effective plant disease management, but is challenging in fungi including Verticillium sensu stricto (Ascomycota, Sordariomycetes, Plectosphaerellaceae), a small genus of ten species that includes important plant pathogens. Here we present fifteen PCR assays for the identification of all recognized Verticillium species and the three lineages of the diploid hybrid V. longisporum. The assays were based on DNA sequence data from the ribosomal internal transcribed spacer region, and coding and non-coding regions of actin, elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase and tryptophan synthase genes. The eleven single target (simplex) PCR assays resulted in amplicons of diagnostic size for V. alfalfae, V. albo-atrum, V. dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii, V. nonalfalfae, V. nubilum, V. tricorpus, V. zaregamsianum, and Species A1 and Species D1, the two undescribed ancestors of V. longisporum. The four multiple target (multiplex) PCR assays simultaneously differentiated the species or lineages within the following four groups: Verticillium albo-atrum, V. alfalfae and V. nonalfalfae; Verticillium dahliae and V. longisporum lineages A1/D1, A1/D2 and A1/D3; Verticillium dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii and V. tricorpus; Verticillium isaacii, V. klebahnii and V. tricorpus. Since V. dahliae is a parent of two of the three lineages of the diploid hybrid V. longisporum, no simplex PCR assay is able to differentiate V. dahliae from all V. longisporum lineages. PCR assays were tested with fungal DNA extracts from pure cultures, and were not evaluated for detection and quantification of Verticillium species from plant or soil samples. The DNA sequence alignments are provided and can be used for the design of additional primers. PMID:23823707

  6. High-Efficiency Genome Editing of Streptomyces Species by an Engineered CRISPR/Cas System.

    PubMed

    Wang, Y; Cobb, R E; Zhao, H

    2016-01-01

    Next-generation sequencing technologies have rapidly expanded the genomic information of numerous organisms and revealed a rich reservoir of natural product gene clusters from microbial genomes, especially from Streptomyces, the largest genus of known actinobacteria at present. However, genetic engineering of these bacteria is often time consuming and labor intensive, if even possible. In this chapter, we describe the design and construction of pCRISPomyces, an engineered Type II CRISPR/Cas system, for targeted multiplex gene deletions in Streptomyces lividans, Streptomyces albus, and Streptomyces viridochromogenes with editing efficiency ranging from 70% to 100%. We demonstrate pCRISPomyces as a powerful tool for genome editing in Streptomyces. © 2016 Elsevier Inc. All rights reserved.

  7. The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms.

    PubMed

    Ingham, Colin J; Sprenkels, Ad; Bomer, Johan; Molenaar, Douwe; van den Berg, Albert; van Hylckama Vlieg, Johan E T; de Vos, Willem M

    2007-11-13

    A miniaturized, disposable microbial culture chip has been fabricated by microengineering a highly porous ceramic sheet with up to one million growth compartments. This versatile culture format, with discrete compartments as small as 7 x 7 mum, allowed the growth of segregated microbial samples at an unprecedented density. The chip has been used for four complementary applications in microbiology. (i) As a fast viable counting system that showed a dynamic range of over 10,000, a low degree of bias, and a high culturing efficiency. (ii) In high-throughput screening, with the recovery of 1 fluorescent microcolony in 10,000. (iii) In screening for an enzyme-based, nondominant phenotype by the targeted recovery of Escherichia coli transformed with the plasmid pUC18, based on expression of the lacZ reporter gene without antibiotic-resistance selection. The ease of rapid, successive changes in the environment of the organisms on the chip, needed for detection of beta-galactosidase activity, highlights an advantageous feature that was also used to screen a metagenomic library for the same activity. (iv) In high-throughput screening of >200,000 isolates from Rhine water based on metabolism of a fluorogenic organophosphate compound, resulting in the recovery of 22 microcolonies with the desired phenotype. These isolates were predicted, on the basis of rRNA sequence, to include six new species. These four applications suggest that the potential for such simple, readily manufactured chips to impact microbial culture is extensive and may facilitate the full automation and multiplexing of microbial culturing, screening, counting, and selection.

  8. Pushing the Limits of MALDI-TOF Mass Spectrometry: Beyond Fungal Species Identification

    PubMed Central

    Rizzato, Cosmeri; Lombardi, Lisa; Zoppo, Marina; Lupetti, Antonella; Tavanti, Arianna

    2015-01-01

    Matrix assisted laser desorption ionization time of flight (MALDI-TOF) is a powerful analytical tool that has revolutionized microbial identification. Routinely used for bacterial identification, MALDI-TOF has recently been applied to both yeast and filamentous fungi, confirming its pivotal role in the rapid and reliable diagnosis of infections. Subspecies-level identification holds an important role in epidemiological investigations aimed at tracing virulent or drug resistant clones. This review focuses on present and future applications of this versatile tool in the clinical mycology laboratory. PMID:29376916

  9. Detection of α-thalassemia-1 Southeast Asian and Thai Type Deletions and β-thalassemia 3.5-kb Deletion by Single-tube Multiplex Real-time PCR with SYBR Green1 and High-resolution Melting Analysis

    PubMed Central

    Wiengkum, Thanatcha; Srithep, Sarinee; Chainoi, Isarapong; Singboottra, Panthong; Wongwiwatthananukit, Sanchai

    2011-01-01

    Background Prevention and control of thalassemia requires simple, rapid, and accurate screening tests for carrier couples who are at risk of conceiving fetuses with severe thalassemia. Methods Single-tube multiplex real-time PCR with SYBR Green1 and high-resolution melting (HRM) analysis were used for the identification of α-thalassemia-1 Southeast Asian (SEA) and Thai type deletions and β-thalassemia 3.5-kb gene deletion. The results were compared with those obtained using conventional gap-PCR. DNA samples were derived from 28 normal individuals, 11 individuals with α-thalassemia-1 SEA type deletion, 2 with α-thalassemia-1 Thai type deletion, and 2 with heterozygous β-thalassemia 3.5-kb gene deletion. Results HRM analysis indicated that the amplified fragments from α-thalassemia-1 SEA type deletion, α-thalassemia-1 Thai type deletion, β-thalassemia 3.5-kb gene deletion, and the wild-type β-globin gene had specific peak heights at mean melting temperature (Tm) values of 86.89℃, 85.66℃, 77.24℃, and 74.92℃, respectively. The results obtained using single-tube multiplex real-time PCR with SYBR Green1 and HRM analysis showed 100% consistency with those obtained using conventional gap-PCR. Conclusions Single-tube multiplex real-time PCR with SYBR Green1 and HRM analysis is a potential alternative for routine clinical screening of the common types of α- and β-thalassemia large gene deletions, since it is simple, cost-effective, and highly accurate. PMID:21779184

  10. Multiplex Touchdown PCR for Rapid Typing of the Opportunistic Pathogen Propionibacterium acnes

    PubMed Central

    Barnard, Emma; Nagy, István; Hunyadkürti, Judit; Patrick, Sheila

    2015-01-01

    The opportunistic human pathogen Propionibacterium acnes is composed of a number of distinct phylogroups, designated types IA1, IA2, IB, IC, II, and III, which vary in their production of putative virulence factors, their inflammatory potential, and their biochemical, aggregative, and morphological characteristics. Although multilocus sequence typing (MLST) currently represents the gold standard for unambiguous phylogroup classification and individual strain identification, it is a labor-intensive and time-consuming technique. As a consequence, we developed a multiplex touchdown PCR assay that in a single reaction can confirm the species identity and phylogeny of an isolate based on its pattern of reaction with six primer sets that target the 16S rRNA gene (all isolates), ATPase (types IA1, IA2, and IC), sodA (types IA2 and IB), atpD (type II), and recA (type III) housekeeping genes, as well as a Fic family toxin gene (type IC). When applied to 312 P. acnes isolates previously characterized by MLST and representing types IA1 (n = 145), IA2 (n = 20), IB (n = 65), IC (n = 7), II (n = 45), and III (n = 30), the multiplex displayed 100% sensitivity and 100% specificity for detecting isolates within each targeted phylogroup. No cross-reactivity with isolates from other bacterial species was observed. This multiplex assay will provide researchers with a rapid, high-throughput, and technically undemanding typing method for epidemiological and phylogenetic investigations. It will facilitate studies investigating the association of lineages with various infections and clinical conditions, and it will serve as a prescreening tool to maximize the number of genetically diverse isolates selected for downstream higher-resolution sequence-based analyses. PMID:25631794

  11. Hyperspectral fluorescence imaging with multi wavelength LED excitation

    NASA Astrophysics Data System (ADS)

    Luthman, A. Siri; Dumitru, Sebastian; Quirós-Gonzalez, Isabel; Bohndiek, Sarah E.

    2016-04-01

    Hyperspectral imaging (HSI) can combine morphological and molecular information, yielding potential for real-time and high throughput multiplexed fluorescent contrast agent imaging. Multiplexed readout from targets, such as cell surface receptors overexpressed in cancer cells, could improve both sensitivity and specificity of tumor identification. There remains, however, a need for compact and cost effective implementations of the technology. We have implemented a low-cost wide-field multiplexed fluorescence imaging system, which combines LED excitation at 590, 655 and 740 nm with a compact commercial solid state HSI system operating in the range 600 - 1000 nm. A key challenge for using reflectance-based HSI is the separation of contrast agent fluorescence from the reflectance of the excitation light. Here, we illustrate how it is possible to address this challenge in software, using two offline reflectance removal methods, prior to least-squares spectral unmixing. We made a quantitative comparison of the methods using data acquired from dilutions of contrast agents prepared in well-plates. We then established the capability of our HSI system for non-invasive in vivo fluorescence imaging in small animals using the optimal reflectance removal method. The HSI presented here enables quantitative unmixing of at least four fluorescent contrast agents (Alexa Fluor 610, 647, 700 and 750) simultaneously in living mice. A successful unmixing of the four fluorescent contrast agents was possible both using the pure contrast agents and with mixtures. The system could in principle also be applied to imaging of ex vivo tissue or intraoperative imaging in a clinical setting. These data suggest a promising approach for developing clinical applications of HSI based on multiplexed fluorescence contrast agent imaging.

  12. Microbial Monitoring of Common Opportunistic Pathogens by Comparing Multiple Real-time PCR Platforms for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Roman, Monserrate C.; Jones, Kathy U.; Oubre, Cherie M.; Castro, Victoria; Ott, Mark C.; Birmele, Michele; Venkateswaran, Kasthuri J.; Vaishampayan, Parag A.

    2013-01-01

    Current methods for microbial detection: a) Labor & time intensive cultivation-based approaches that can fail to detect or characterize all cells present. b) Requires collection of samples on orbit and transportation back to ground for analysis. Disadvantages to current detection methods: a) Unable to perform quick and reliable detection on orbit. b) Lengthy sampling intervals. c) No microbe identification.

  13. Novel techniques and findings in the study of plant microbiota: search for plant probiotics.

    PubMed

    Berlec, Aleš

    2012-09-01

    Plants live in intimate relationships with numerous microorganisms present inside or outside plant tissues. The plant exterior provides two distinct ecosystems, the rhizosphere (below ground) and the phyllosphere (above ground), both populated by microbial communities. Most studies on plant microbiota deal with pathogens or mutualists. This review focuses on plant commensal bacteria, which could represent a rich source of bacteria beneficial to plants, alternatively termed plant probiotics. Plant commensal bacteria have been addressed only recently with culture-independent studies. These use next-generation sequencing, DNA microarray technologies and proteomics to decipher microbial community composition and function. Diverse bacterial populations are described in both rhizosphere and phyllosphere of different plants. The microorganisms can emerge from neighboring environmental ecosystems at random; however their survival is regulated by the plant. Influences from the environment, such as pesticides, farming practice and atmosphere, also affect the composition of microbial communities. Apart from community composition studies, some functional studies have also been performed. These include identification of broad-substrate surface receptors and methanol utilization enzymes by the proteomic approach, as well as identification of bacterial species that are important mediators of disease-suppressive soil phenomenon. Experience from more advanced human microbial studies could provide useful information and is discussed in the context of methodology and common trends. Administration of microbial mixtures of whole communities, rather than individual species, is highlighted and should be considered in future agricultural applications. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. In-Flight Microbial Monitor

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Mullenix, Pamela; Wheeler, Raymond M.; Ruby, Anna Maria

    2015-01-01

    Previous research has shown that potential human pathogens have been detected on the International Space Station (ISS). New microorganisms are introduced with every exchange of crew and cargo. Microorganisms introduced to the ISS are readily transferred between crew and subsystems (i.e., ECLSS, environmental control and life support systems). Current microbial characterization methods require a culture-based enrichment of microorganisms and at least a 48-hour incubation time. This increases the microbial load while detecting only a limited number of microorganisms. The culture-based method detects approximately 1-10% of the total organisms present and provides no identification. To identify and enumerate ISS samples requires that the microbes be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, inflight method of microbial detection, identification, and enumeration is needed. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganisms at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  15. Nanoscale Test Strips for Multiplexed Blood Analysis

    NASA Technical Reports Server (NTRS)

    Chan, Eugene

    2015-01-01

    A critical component of the DNA Medicine Institute's Reusable Handheld Electrolyte and Lab Technology for Humans (rHEALTH) sensor are nanoscale test strips, or nanostrips, that enable multiplexed blood analysis. Nanostrips are conceptually similar to the standard urinalysis test strip, but the strips are shrunk down a billionfold to the microscale. Each nanostrip can have several sensor pads that fluoresce in response to different targets in a sample. The strips carry identification tags that permit differentiation of a specific panel from hundreds of other nanostrip panels during a single measurement session. In Phase I of the project, the company fabricated, tested, and demonstrated functional parathyroid hormone and vitamin D nanostrips for bone metabolism, and thrombin aptamer and immunoglobulin G antibody nanostrips. In Phase II, numerous nanostrips were developed to address key space flight-based medical needs: assessment of bone metabolism, immune response, cardiac status, liver metabolism, and lipid profiles. This unique approach holds genuine promise for space-based portable biodiagnostics and for point-of-care (POC) health monitoring and diagnostics here on Earth.

  16. Multiplex High-Throughput Targeted Proteomic Assay To Identify Induced Pluripotent Stem Cells.

    PubMed

    Baud, Anna; Wessely, Frank; Mazzacuva, Francesca; McCormick, James; Camuzeaux, Stephane; Heywood, Wendy E; Little, Daniel; Vowles, Jane; Tuefferd, Marianne; Mosaku, Olukunbi; Lako, Majlinda; Armstrong, Lyle; Webber, Caleb; Cader, M Zameel; Peeters, Pieter; Gissen, Paul; Cowley, Sally A; Mills, Kevin

    2017-02-21

    Induced pluripotent stem cells have great potential as a human model system in regenerative medicine, disease modeling, and drug screening. However, their use in medical research is hampered by laborious reprogramming procedures that yield low numbers of induced pluripotent stem cells. For further applications in research, only the best, competent clones should be used. The standard assays for pluripotency are based on genomic approaches, which take up to 1 week to perform and incur significant cost. Therefore, there is a need for a rapid and cost-effective assay able to distinguish between pluripotent and nonpluripotent cells. Here, we describe a novel multiplexed, high-throughput, and sensitive peptide-based multiple reaction monitoring mass spectrometry assay, allowing for the identification and absolute quantitation of multiple core transcription factors and pluripotency markers. This assay provides simpler and high-throughput classification into either pluripotent or nonpluripotent cells in 7 min analysis while being more cost-effective than conventional genomic tests.

  17. STR-typing of ancient skeletal remains: which multiplex-PCR kit is the best?

    PubMed Central

    Harder, Melanie; Renneberg, Rebecca; Meyer, Patrick; Krause-Kyora, Ben; von Wurmb-Schwark, Nicole

    2012-01-01

    Aim To comparatively test nine commercially available short tandem repeat (STR)-multiplex kits (PowerPlex 16, 16HS, ES, ESI17, ESX17, S5 [all Promega]; AmpFiSTR Identifiler, NGM and SEfiler [all Applied Biosystems]) for their efficiency and applicability to analyze ancient and thus highly degraded DNA samples. Methods Fifteen human skeletal remains from the late medieval age were obtained and analyzed using the nine polymerase chain reaction assays with slightly modified protocols. Data were systematically compared to find the most meaningful and sensitive assay. Results The ESI, ESX, and NGM kits showed the best overall results regarding amplification success, detection rate, identification of heterozygous alleles, sex determination, and reproducibility of the obtained data. Conclusion Since application of these three kits enables the employment of different primer sequences for all the investigated amplicons, a combined application is recommended for best possible and – most importantly – reliable genetic analysis of ancient skeletal material or otherwise highly degraded samples, eg, from forensic cases. PMID:23100203

  18. Multiplex PCR assay for the detection of five meat species forbidden in Islamic foods.

    PubMed

    Ali, Md Eaqub; Razzak, Md Abdur; Hamid, Sharifah Bee Abd; Rahman, Md Mahfujur; Amin, Md Al; Rashid, Nur Raifana Abd; Asing

    2015-06-15

    Food falsification has direct impact on public health, religious faith, fair-trades and wildlife. For the first time, here we described a multiplex polymerase chain reaction assay for the accurate identification of five meat species forbidden in Islamic foods in a single assay platform. Five pairs of species-specific primers were designed targeting mitochondrial ND5, ATPase 6, and cytochrome b genes to amplify 172, 163, 141, 129 and 108 bp DNA fragments from cat, dog, pig, monkey and rat meats, respectively. All PCR products were identified in gel-images and electrochromatograms obtained from Experion Bioanalyzer. Species-specificity checking against 15 important meat and fish and 5 plant species detected no cross-species amplification. Screening of target species in model and commercial meatballs reflected its application to detect target species in process foods. The assay was tested to detect 0.01-0.02 ng DNA under raw states and 1% suspected meats in meatball formulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The readout chain for the bar PANDA MVD strip detector

    NASA Astrophysics Data System (ADS)

    Schnell, R.; Brinkmann, K.-Th.; Di Pietro, V.; Kleines, H.; Goerres, A.; Riccardi, A.; Rivetti, A.; Rolo, M. D.; Sohlbach, H.; Zaunick, H.-G.

    2015-02-01

    The bar PANDA (antiProton ANnihilation at DArmstadt) experiment will study the strong interaction in annihilation reactions between an antiproton beam and a stationary gas jet target. The detector will comprise different sub-detectors for tracking, particle identification and calorimetry. The Micro-Vertex Detector (MVD) as the innermost part of the tracking system will allow precise tracking and detection of secondary vertices. For the readout of the double-sided silicon strip sensors a custom-made ASIC is being developed, employing the Time-over-Threshold (ToT) technique for digitization and utilize time-to-digital converters (TDC) to provide a high-precision time stamp of the hit. A custom-made Module Data Concentrator ASIC (MDC) will multiplex the data of all front-ends of one sensor towards the CERN-developed GBT chip set (GigaBit Transceiver). The MicroTCA-based MVD Multiplexer Board (MMB) at the off-detector site will receive and concentrate the data from the GBT links and transfer it to FPGA-based compute nodes for global event building.

  20. Platform for Quantitative Evaluation of Spatial Intratumoral Heterogeneity in Multiplexed Fluorescence Images.

    PubMed

    Spagnolo, Daniel M; Al-Kofahi, Yousef; Zhu, Peihong; Lezon, Timothy R; Gough, Albert; Stern, Andrew M; Lee, Adrian V; Ginty, Fiona; Sarachan, Brion; Taylor, D Lansing; Chennubhotla, S Chakra

    2017-11-01

    We introduce THRIVE (Tumor Heterogeneity Research Interactive Visualization Environment), an open-source tool developed to assist cancer researchers in interactive hypothesis testing. The focus of this tool is to quantify spatial intratumoral heterogeneity (ITH), and the interactions between different cell phenotypes and noncellular constituents. Specifically, we foresee applications in phenotyping cells within tumor microenvironments, recognizing tumor boundaries, identifying degrees of immune infiltration and epithelial/stromal separation, and identification of heterotypic signaling networks underlying microdomains. The THRIVE platform provides an integrated workflow for analyzing whole-slide immunofluorescence images and tissue microarrays, including algorithms for segmentation, quantification, and heterogeneity analysis. THRIVE promotes flexible deployment, a maintainable code base using open-source libraries, and an extensible framework for customizing algorithms with ease. THRIVE was designed with highly multiplexed immunofluorescence images in mind, and, by providing a platform to efficiently analyze high-dimensional immunofluorescence signals, we hope to advance these data toward mainstream adoption in cancer research. Cancer Res; 77(21); e71-74. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Multiplex PCR for the Detection of Lactobacillus pontis and Two Related Species in a Sourdough Fermentation

    PubMed Central

    Müller, Martin R. A.; Ehrmann, Matthias A.; Vogel, Rudi F.

    2000-01-01

    A specific multiplex PCR assay based on the amplification of parts of the 16S rRNA molecule was designed. Primers derived from variable regions of the 16S rRNA provided a means of easily differentiating the species Lactobacillus pontis and Lactobacillus panis. They could be clearly discriminated from the phylogenetically related species Lactobacillus vaginalis, Lactobacillus oris, and Lactobacillus reuteri and from other lactobacilli commonly known to be present in sourdough. Other strains isolated together with L. pontis from an industrial sourdough fermentation could be clearly separated from these species by comparative sequence analysis and construction of a specific PCR primer. For a fast identification a DNA isolation protocol based on the ultrasonic lysis of cells from single colonies was developed. To demonstrate the potential of such techniques for tracking these organisms in a laboratory-scale fermentation, we combined the specific PCR assay with direct DNA extraction from the organisms in the sourdough without previous cultivation. PMID:10788389

  2. MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform

    PubMed Central

    Suyama, Yoshihisa; Matsuki, Yu

    2015-01-01

    Restriction-enzyme (RE)-based next-generation sequencing methods have revolutionized marker-assisted genetic studies; however, the use of REs has limited their widespread adoption, especially in field samples with low-quality DNA and/or small quantities of DNA. Here, we developed a PCR-based procedure to construct reduced representation libraries without RE digestion steps, representing de novo single-nucleotide polymorphism discovery, and its genotyping using next-generation sequencing. Using multiplexed inter-simple sequence repeat (ISSR) primers, thousands of genome-wide regions were amplified effectively from a wide variety of genomes, without prior genetic information. We demonstrated: 1) Mendelian gametic segregation of the discovered variants; 2) reproducibility of genotyping by checking its applicability for individual identification; and 3) applicability in a wide variety of species by checking standard population genetic analysis. This approach, called multiplexed ISSR genotyping by sequencing, should be applicable to many marker-assisted genetic studies with a wide range of DNA qualities and quantities. PMID:26593239

  3. Reverse transcription multiplex PCR for differentiation between polio- and enteroviruses from clinical and environmental samples.

    PubMed

    Egger, D; Pasamontes, L; Ostermayer, M; Bienz, K

    1995-06-01

    For the rapid detection of polioviruses and their differentiation from nonpoliovirus enteroviruses, we developed a protocol in which clinical or environmental specimens are first inoculated onto cell cultures in tubes. After overnight incubation, the cultures are subjected to reverse transcription multiplex PCR with a primer pair which detects all enteroviruses (T. Hyypiä, P. Auvinen, and M. Maaronen, J. Gen. Virol. 70:3261-3268 1989) and two newly designed primer pairs specific for all 36 poliovirus strains tested. The PCR products can unequivocally be identified by their lengths in agarose gels, whereas the genetic heterogeneity of the poliovirus strains precludes identification by back-hybridization with internal probes. The proposed protocol is highly insensitive to the inhibitory effects of substances in the sample (stool, sewage). It allows for the detection of polioviruses and for polioviruses to be distinguished from nonpoliovirus enteroviruses within 24 h, and it allows for the concomitant isolation of a viable strain suitable for further typing.

  4. Usefulness of Multiplex Real-Time PCR for Simultaneous Pathogen Detection and Resistance Profiling of Staphylococcal Bacteremia

    PubMed Central

    Chung, Yousun; Kim, Taek Soo; Min, Young Gi; Hong, Yun Ji; Park, Jeong Su; Hwang, Sang Mee; Song, Kyoung-Ho; Kim, Eu Suk; Kim, Hong Bin; Song, Junghan; Kim, Eui-Chong

    2016-01-01

    Staphylococci are the leading cause of nosocomial blood stream infections. Fast and accurate identification of staphylococci and confirmation of their methicillin resistance are crucial for immediate treatment with effective antibiotics. A multiplex real-time PCR assay that targets mecA, femA specific for S. aureus, femA specific for S. epidermidis, 16S rRNA for universal bacteria, and 16S rRNA specific for staphylococci was developed and evaluated with 290 clinical blood culture samples containing Gram-positive cocci in clusters (GPCC). For the 262 blood cultures identified to the species level with the MicroScan WalkAway system (Siemens Healthcare Diagnostics, USA), the direct real-time PCR assay of positive blood cultures showed very good agreement for the categorization of staphylococci into methicillin-resistant S. aureus (MRSA), methicillin-susceptible S. aureus (MSSA), methicillin-resistant S. epidermidis (MRSE), methicillin-susceptible S. epidermidis (MSSE), methicillin-resistant non-S. epidermidis CoNS (MRCoNS), and methicillin-susceptible non-S. epidermidis CoNS (MSCoNS) (κ = 0.9313). The direct multiplex real-time PCR assay of positive blood cultures containing GPCC can provide essential information at the critical point of infection with a turnaround time of no more than 4 h. Further studies should evaluate the clinical outcome of using this rapid real-time PCR assay in glycopeptide antibiotic therapy in clinical settings. PMID:27403436

  5. Evaluation of a rapid single multiplex microsatellite-based assay for use in forensic genetic investigations in dogs.

    PubMed

    Clark, Leigh Anne; Famula, Thomas R; Murphy, Keith E

    2004-10-01

    To develop a set of microsatellite markers, composed of a minimal number of these markers, suitable for use in forensic genetic investigations in dogs. Blood, tissue, or buccal epithelial cells from 364 dogs of 85 breeds and mixed breeds and 19 animals from related species in the family Canidae. 61 tetranucleotide microsatellite markers were characterized on the basis of number and size of alleles, ease of genotyping, chromosomal location, and ability to be coamplified. The range in allele size, number of alleles, total heterozygosity, and fixation index for each marker were determined by use of genotype data from 383 dogs and related species. Polymorphism information content was calculated for several breeds of dogs. 7 microsatellite markers could be coamplified. These markers were labeled with fluorescent dyes, multiplexed into a single reaction, and optimized for resolution in a commercial genetic analyzer. The multiplex set was used to identify sires for 2 mixed litters. The test was not species specific; genotype information collected for wolves, coyotes, jackals, New Guinea singing dogs, and an African wild dog could not distinguish between these species. This set of 7 microsatellite markers is useful in forensic applications (ie, identification of dogs and determination of parentage) in closely related animals and is applicable to a wide range of species belonging to the family Canidae.

  6. Multiplexed screening of natural humoral immunity identifies antibodies at fine specificity for complex and dynamic viral targets.

    PubMed

    McCutcheon, Krista M; Gray, Julia; Chen, Natalie Y; Liu, Keyi; Park, Minha; Ellsworth, Stote; Tripp, Ralph A; Tompkins, S Mark; Johnson, Scott K; Samet, Shelly; Pereira, Lenore; Kauvar, Lawrence M

    2014-01-01

    Viral entry targets with therapeutic neutralizing potential are subject to multiple escape mechanisms, including antigenic drift, immune dominance of functionally irrelevant epitopes, and subtle variations in host cell mechanisms. A surprising finding of recent years is that potent neutralizing antibodies to viral epitopes independent of strain exist, but are poorly represented across the diverse human population. Identifying these antibodies and understanding the biology mediating the specific immune response is thus difficult. An effective strategy for meeting this challenge is to incorporate multiplexed antigen screening into a high throughput survey of the memory B cell repertoire from immune individuals. We used this approach to discover suites of cross-clade antibodies directed to conformational epitopes in the stalk region of the influenza A hemagglutinin (HA) protein and to select high-affinity anti-peptide antibodies to the glycoprotein B (gB) of human cytomegalovirus. In each case, our screens revealed a restricted VH and VL germline usage, including published and previously unidentified gene families. The in vivo evolution of paratope specificity with optimal neutralizing activity was understandable after correlating biological activities with kinetic binding and epitope recognition. Iterative feedback between antigen probe design based on structure and function information with high throughput multiplexed screening demonstrated a generally applicable strategy for efficient identification of safe, native, finely tuned antibodies with the potential for high genetic barriers to viral escape.

  7. Multiplex real-time PCR monitoring of intestinal helminths in humans reveals widespread polyparasitism in Northern Samar, the Philippines.

    PubMed

    Gordon, Catherine A; McManus, Donald P; Acosta, Luz P; Olveda, Remigio M; Williams, Gail M; Ross, Allen G; Gray, Darren J; Gobert, Geoffrey N

    2015-06-01

    The global socioeconomic importance of helminth parasitic disease is underpinned by the considerable clinical impact on millions of people. While helminth polyparasitism is considered common in the Philippines, little has been done to survey its extent in endemic communities. High morphological similarity of eggs between related species complicates conventional microscopic diagnostic methods which are known to lack sensitivity, particularly in low intensity infections. Multiplex quantitative PCR diagnostic methods can provide rapid, simultaneous identification of multiple helminth species from a single stool sample. We describe a multiplex assay for the differentiation of Ascaris lumbricoides, Necator americanus, Ancylostoma, Taenia saginata and Taenia solium, building on our previously published findings for Schistosoma japonicum. Of 545 human faecal samples examined, 46.6% were positive for at least three different parasite species. High prevalences of S. japonicum (90.64%), A. lumbricoides (58.17%), T. saginata (42.57%) and A. duodenale (48.07%) were recorded. Neither T. solium nor N. americanus were found to be present. The utility of molecular diagnostic methods for monitoring helminth parasite prevalence provides new information on the extent of polyparasitism in the Philippines municipality of Palapag. These methods and findings have potential global implications for the monitoring of neglected tropical diseases and control measures. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  8. Prevalence of Eimeria spp. in Broilers by Multiplex PCR in the Southern Region of Brazil on Two Hundred and Fifty Farms.

    PubMed

    Moraes, Julio Cesar; França, Marciél; Sartor, Amélia Aparecida; Bellato, Valdomiro; de Moura, Anderson Barbosa; de Lourdes Borba Magalhães, Maria; de Souza, Antonio Pereira; Miletti, Luiz Claudio

    2015-06-01

    Parasitic infections caused by Eimeria species are responsible for most economic losses in poultry production. Prevalence studies can adequately assist the design of prophylaxis strategies for disease control. Therefore, stool samples from 251 flocks of broilers from 28 to 48 days old were collected in 21 municipalities in the state of Santa Catarina, Brazil, to detect and examine the prevalence of Eimeria acervulina, Eimeria maxima, Eimeria tenella, Eimeria mitis, Eimeria praecox, Eimeria necatrix, and Eimeria brunetti. The oocysts were recovered and quantified, and the species were identified by a multiplex PCR technique. Amplicons of seven Eimeria species originating from the PCR-positive samples were cloned. Microscopy studies demonstrated that 96% of the farms were positive for the Eimeria. Seven species were identified, as follows: E. maxima (63.7%) and E. acervulina (63.3%) were the most prevalent species, followed by E. tenella (54.6%), E. mitis (38.6%), E. praecox (25.1%), E. necatrix (24.3%), and E. brunetti (13.1%). The average number of species detected per farm was 2.96, and the most common were E. acervulina, E. maxima, and E. tenella (9.16%). The sequencing of the clones confirmed the specificity and effectiveness of multiplex PCR for the identification of seven species of Eimeria, so this tool can be useful in studying circulating species in poultry farms, thereby assisting prophylactic measures against coccidiosis.

  9. Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azer Yalin; Bryan Willson

    Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies andmore » approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.« less

  10. Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Katz, O.; Natan, A.; Silberberg, Y.; Rosenwaks, S.

    2008-04-01

    We demonstrate a single-beam, standoff (>10m) detection and identification of various materials including minute amounts of explosives under ambient light conditions. This is obtained by multiplex coherent anti-Stokes Raman scattering spectroscopy (CARS) using a single femtosecond phase-shaped laser pulse. We exploit the strong nonresonant background for amplification of the backscattered resonant CARS signals by employing a homodyne detection scheme. The simple and highly sensitive spectroscopic technique has a potential for hazardous materials standoff detection applications.

  11. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. | Office of Cancer Genomics

    Cancer.gov

    The CRISPR-Cas9 system has revolutionized gene editing both at single genes and in multiplexed loss-of-function screens, thus enabling precise genome-scale identification of genes essential for proliferation and survival of cancer cells. However, previous studies have reported that a gene-independent antiproliferative effect of Cas9-mediated DNA cleavage confounds such measurement of genetic dependency, thereby leading to false-positive results in copy number-amplified regions.

  12. R&D 100 Winner 2010: Acoustic Wave Biosensors

    ScienceCinema

    Larson, Richard; Branch, Darren; Edwards, Thayne

    2018-01-16

    The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures — viruses, bacteria, proteins, and DNA — at clinically relevant levels. This detection occurs within minutes — not hours — at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.

  13. Optical Security System Based on the Biometrics Using Holographic Storage Technique with a Simple Data Format

    NASA Astrophysics Data System (ADS)

    Jun, An Won

    2006-01-01

    We implement a first practical holographic security system using electrical biometrics that combines optical encryption and digital holographic memory technologies. Optical information for identification includes a picture of face, a name, and a fingerprint, which has been spatially multiplexed by random phase mask used for a decryption key. For decryption in our biometric security system, a bit-error-detection method that compares the digital bit of live fingerprint with of fingerprint information extracted from hologram is used.

  14. Correlation of maple sap composition with bacterial and fungal communities determined by multiplex automated ribosomal intergenic spacer analysis (MARISA).

    PubMed

    Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis

    2011-08-01

    During collection, maple sap is contaminated by bacteria and fungi that subsequently colonize the tubing system. The bacterial microbiota has been more characterized than the fungal microbiota, but the impact of both components on maple sap quality remains unclear. This study focused on identifying bacterial and fungal members of maple sap and correlating microbiota composition with maple sap properties. A multiplex automated ribosomal intergenic spacer analysis (MARISA) method was developed to presumptively identify bacterial and fungal members of maple sap samples collected from 19 production sites during the tapping period. Results indicate that the fungal community of maple sap is mainly composed of yeast related to Mrakia sp., Mrakiella sp., Guehomyces pullulans, Cryptococcus victoriae and Williopsis saturnus. Mrakia, Mrakiella and Guehomyces peaks were identified in samples of all production sites and can be considered dominant and stable members of the fungal microbiota of maple sap. A multivariate analysis based on MARISA profiles and maple sap chemical composition data showed correlations between Candida sake, Janthinobacterium lividum, Williopsis sp., Leuconostoc mesenteroides, Mrakia sp., Rhodococcus sp., Pseudomonas tolaasii, G. pullulans and maple sap composition at different flow periods. This study provides new insights on the relationship between microbial community and maple sap quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Simultaneous detection and serotyping of dengue infection using single tube multiplex CDC Dengue Real-Time RT-PCR from India.

    PubMed

    Sharma, Shashi; Tandel, Kundan; Danwe, Surabhi; Bhatt, Puneet; Dash, P K; Ranjan, Praveer; Rathi, K R; Gupta, Rajiv Mohan; Parida, M M

    2018-03-01

    Four antigenically different dengue virus serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) are known to cause infections in humans. Some of these are known to cause more severe disease than the others. Chances for developing Dengue hemorrhagic fever-dengue shock syndrome (DHF-DSS) increases significantly with history of previous infection with one of the four serotypes. Therefore, early diagnosis, serotyping and providing early warning of dengue fever epidemics to concerned authorities becomes very important for better patient outcome and to curb the rapid spread in the community. During the 2014 outbreak, a total of 100 samples from suspected cases of dengue were collected. NS1 antigen based rapid test was used for serological diagnosis. Dengue complex one step reverse transcription-polymerase chain reaction was performed to look for presence of viral RNA. Single tube multiplex RT-PCR was also performed to look for infecting serotype. CDC Dengue Multiplex Real Time PCR assay was performed for rapid diagnosis and simultaneous serotyping of the dengue virus. Out of the 100 samples screened, 69 were found to be positive by NS1Ag Rapid test. 34 samples were found positive by dengue consensus RT-PCR assay. 22 samples were found to be positive by single tube Dengue multiplex RT-PCR assay. Serotype DEN-2 was present in maximum numbers followed by DEN-3. 44 samples were found positive by DENV CDC Multiplex Real time PCR assay. DEN-2 was found in maximum numbers followed by DEN-1. Dengue remains to be an important health problem in India and across the globe. Few serotypes of dengue are more dangerous than the others. Rapid diagnosis and serotyping remains the key for better patient management and prevention of disease spreading in the community. Highly sensitive, specific and rapid CDC real time RT-PCR assay was found to be most promising tool among all available molecular diagnostic methods. This will serve a rapid and reliable simultaneous dengue virus detection as well serotyping assay in near future for rapid identification of dengue suspected sample screening.

  16. Evaluation of a real-time PCR assay for detection and quantification of bacterial DNA directly in blood of preterm neonates with suspected late-onset sepsis.

    PubMed

    van den Brand, Marre; van den Dungen, Frank A M; Bos, Martine P; van Weissenbruch, Mirjam M; van Furth, A Marceline; de Lange, Annemieke; Rubenjan, Anna; Peters, Remco P H; Savelkoul, Paul H M

    2018-04-22

    Rapid and accurate diagnosis of neonatal sepsis is highly warranted because of high associated morbidity and mortality. The aim of this study was to evaluate the performance of a novel multiplex PCR assay for diagnosis of late-onset sepsis and to investigate the value of bacterial DNA load (BDL) determination as a measure of infection severity. This cross-sectional study was conducted in a neonatal intensive care unit. Preterm and/or very low birth weight infants suspected for late-onset sepsis were included. Upon suspicion of sepsis, a whole blood sample was drawn for multiplex PCR to detect the eight most common bacteria causing neonatal sepsis, as well as for blood culture. BDL was determined in episodes with a positive multiplex PCR. In total, 91 episodes of suspected sepsis were investigated, and PCR was positive in 53 (58%) and blood culture in 60 (66%) episodes, yielding no significant difference in detection rate (p = 0.17). Multiplex PCR showed a sensitivity of 77%, specificity of 81%, positive predictive value of 87%, and negative predictive value of 68% compared with blood culture. Episodes with discordant results of PCR and blood culture included mainly detection of coagulase-negative staphylococci (CoNS). C-reactive protein (CRP) level and immature to total neutrophil (I/T) ratio were lower in these episodes, indicating less severe disease or even contamination. Median BDL was high (4.1 log 10 cfu Eq/ml) with a wide range, and was it higher in episodes with a positive blood culture than in those with a negative blood culture (4.5 versus 2.5 log 10 cfu Eq/ml; p < 0.0001). For CoNS infection episodes BDL and CRP were positively associated (p = 0.004), and for Staphylococcus aureus infection episodes there was a positive association between BDL and I/T ratio (p = 0.049). Multiplex PCR provides a powerful assay to enhance rapid identification of the causative pathogen in late-onset sepsis. BDL measurement may be a useful indicator of severity of infection.

  17. Portable Immune-Assessment System

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Stowe, Raymond P.; Mishra, Saroj K.

    1995-01-01

    Portable immune-assessment system developed for use in rapidly identifying infections or contaminated environment. System combines few specific fluorescent reagents for identifying immune-cell dysfunction, toxic substances, buildup of microbial antigens or microbial growth, and potential identification of pathogenic microorganisms using fluorescent microplate reader linked to laptop computer. By using few specific dyes for cell metabolism, DNA/RNA conjugation, specific enzyme activity, or cell constituents, one makes immediate, onsite determination of person's health or of contamination of environment.

  18. Post-Mortem Identification of a Fire Carbonized Body by STR Genotyping.

    PubMed

    Dumache, Raluca; Muresan, Camelia; Ciocan, Veronica; Rogobete, Alexandru F; Enache, Alexandra

    2016-10-01

    Identification of bodies of unknown identity that are victims of exposure to very high temperatures, resulting from fires, plane crashes, and terrorist attacks, represents one of the most difficult sides of forensic genetics, because of the advanced state of decomposition. The aim of this study was the identification of the carbonized cadaver of a fire victim through STR genotyping. We used blood samples obtained from the iliac artery during the autopsy examination as biological samples from the unidentified victim. After DNA isolation and quantification, we proceeded to its amplification using the multiplex PCR kit AmpFlSTR Identifiler. The DNA products were separated using an ABI 3500 genetic analyzer. Further analysis of the data was done using Gene Mapper ID-X version 1.4 software. In this case, it was possible to obtain a complete DNA profile from the biological samples. Due to the fact that the amelogenin gene presented two alleles, X and Y, we concluded that the victim was a man. We conclude that STR profiling of unidentified bodies (carbonized, decomposed) represents a powerful method of human identification in forensic medicine.

  19. MALDI-TOF MS in the Microbiology Laboratory: Current Trends.

    PubMed

    Schubert, Sören; Kostrzewa, Markus

    2017-01-01

    Within less than a decade matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has become a gold standard for microbial identification in clinical microbiology laboratories. Besides identification of microorganisms the typing of single strains as well as the antibiotic and antimycotic resistance testing has come into focus in order to speed up the microbiological diagnostic. However, the full potential of MALDI-TOF MS has not been tapped yet and future technological advancements will certainly expedite this method towards novel applications and enhancement of current practice. So, the following chapter shall be rather a brainstorming and forecast of how MALDI-TOF MS will develop to influence clinical diagnostics and microbial research in the future. It shall open up the stage for further discussions and does not claim for overall validity.

  20. Microbial Load Monitor

    NASA Technical Reports Server (NTRS)

    Gibson, S. F.; Royer, E. R.

    1979-01-01

    The Microbial Load Monitor (MLM) is an automated and computerized system for detection and identification of microorganisms. Additionally, the system is designed to enumerate and provide antimicrobic susceptibility profiles for medically significant bacteria. The system is designed to accomplish these tasks in a time of 13 hours or less versus the traditional time of 24 hours for negatives and 72 hours or more for positives usually required for standard microbiological analysis. The MLM concept differs from other methods of microbial detection in that the system is designed to accept raw untreated clinical samples and to selectively identify each group or species that may be present in a polymicrobic sample.

  1. Cloning and characterization of a novel α-amylase from a fecal microbial metagenome.

    PubMed

    Xu, Bo; Yang, Fuya; Xiong, Caiyun; Li, Junjun; Tang, Xianghua; Zhou, Junpei; Xie, Zhenrong; Ding, Junmei; Yang, Yunjuan; Huang, Zunxi

    2014-04-01

    To isolate novel and useful microbial enzymes from uncultured gastrointestinal microorganisms, a fecal microbial metagenomic library of the pygmy loris was constructed. The library was screened for amylolytic activity, and 8 of 50,000 recombinant clones showed amylolytic activity. Subcloning and sequence analysis of a positive clone led to the identification a novel gene (amyPL) coding for α-amylase. AmyPL was expressed in Escherichia coli BL21 (DE3) and the purified AmyPL was enzymatically characterized. This study is the first to report the molecular and biochemical characterization of a novel α-amylase from a gastrointestinal metagenomic library.

  2. Regulatory RNA-assisted genome engineering in microorganisms.

    PubMed

    Si, Tong; HamediRad, Mohammad; Zhao, Huimin

    2015-12-01

    Regulatory RNAs are increasingly recognized and utilized as key modulators of gene expression in diverse organisms. Thanks to their modular and programmable nature, trans-acting regulatory RNAs are especially attractive in genome-scale applications. Here we discuss the recent examples in microbial genome engineering implementing various trans-acting RNA platforms, including sRNA, RNAi, asRNA and CRISRP-Cas. In particular, we focus on how the scalable and multiplex nature of trans-acting RNAs has been used to tackle the challenges in creating genome-wide and combinatorial diversity for functional genomics and metabolic engineering applications. Advances in computational design and context-dependent regulation are also discussed for their contribution in improving fine-tuning capabilities of trans-acting RNAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Absolute Quantification of Middle- to High-Abundant Plasma Proteins via Targeted Proteomics.

    PubMed

    Dittrich, Julia; Ceglarek, Uta

    2017-01-01

    The increasing number of peptide and protein biomarker candidates requires expeditious and reliable quantification strategies. The utilization of liquid chromatography coupled to quadrupole tandem mass spectrometry (LC-MS/MS) for the absolute quantitation of plasma proteins and peptides facilitates the multiplexed verification of tens to hundreds of biomarkers from smallest sample quantities. Targeted proteomics assays derived from bottom-up proteomics principles rely on the identification and analysis of proteotypic peptides formed in an enzymatic digestion of the target protein. This protocol proposes a procedure for the establishment of a targeted absolute quantitation method for middle- to high-abundant plasma proteins waiving depletion or enrichment steps. Essential topics as proteotypic peptide identification and LC-MS/MS method development as well as sample preparation and calibration strategies are described in detail.

  4. Aneuploidy identification in pre-B acute lymphoblastic leukemia patients at diagnosis by Multiplex Ligation-dependent Probe Amplification (MLPA).

    PubMed

    Vázquez-Reyes, A; Bobadilla-Morales, L; Barba-Barba, C; Macías-Salcedo, G; Serafín-Saucedo, G; Velázquez-Rivera, M E; Almodóvar-Cuevas, M C; Márquez-Mora, A; Pimentel-Gutiérrez, H J; Ortega-de-la-Torre, C; Cruz-Osorio, R M; Nava-Gervasio, S; Rivera-Vargas, J; Sánchez-Zubieta, F; Corona-Rivera, J R; Corona-Rivera, A

    2017-08-01

    Three-quarters of the patients with acute lymphoblastic leukemia (ALL), show numerical or structural chromosomal alterations, which are important factors in leukemogenesis. The use of Multiplex Ligation-dependent Probes Amplification (MLPA) has been mainly limited for searching copy number alterations of genes, suggesting that MLPA could detect numerical alterations in cancer. However, the use of MLPA in pediatrics to analyze subtelomeric sequences for aneuploidy detection has not been considered in previous studies. The aim of this study was to identify aneuploidy for the first time using MLPA and correlate the results with karyotype and DNA-index (DI), from preB ALL patients. Forty-two bone marrow samples were analyzed by cytogenetics and flow cytometry to determine the DI. The chromosomal gains and/or losses were detected by the SALSA MLPA P036 Subtelomere Mix 1 probemix ® . The chromosomal number matched in 36 out of 42 samples between MLPA and karyotype (R 2 =0.7829, p=3.7×10 -10 ), 18/42 between MLPA and DI (R 2 =0.1556, p=0.023), and 20/42 between karyotype and DI (R 2 =0.1509, p=0.015). MLPA results correlated with karyotype and DI. The use of MLPA led us to identify a gained marker chromosome. Our results indicate that MLPA could be a useful and fast alternative tool for aneuploidy identification in pediatric leukemia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota.

    PubMed

    Zhang, Xu; Ning, Zhibin; Mayne, Janice; Moore, Jasmine I; Li, Jennifer; Butcher, James; Deeke, Shelley Ann; Chen, Rui; Chiang, Cheng-Kang; Wen, Ming; Mack, David; Stintzi, Alain; Figeys, Daniel

    2016-06-24

    The gut microbiota has been shown to be closely associated with human health and disease. While next-generation sequencing can be readily used to profile the microbiota taxonomy and metabolic potential, metaproteomics is better suited for deciphering microbial biological activities. However, the application of gut metaproteomics has largely been limited due to the low efficiency of protein identification. Thus, a high-performance and easy-to-implement gut metaproteomic approach is required. In this study, we developed a high-performance and universal workflow for gut metaproteome identification and quantification (named MetaPro-IQ) by using the close-to-complete human or mouse gut microbial gene catalog as database and an iterative database search strategy. An average of 38 and 33 % of the acquired tandem mass spectrometry (MS) spectra was confidently identified for the studied mouse stool and human mucosal-luminal interface samples, respectively. In total, we accurately quantified 30,749 protein groups for the mouse metaproteome and 19,011 protein groups for the human metaproteome. Moreover, the MetaPro-IQ approach enabled comparable identifications with the matched metagenome database search strategy that is widely used but needs prior metagenomic sequencing. The response of gut microbiota to high-fat diet in mice was then assessed, which showed distinct metaproteome patterns for high-fat-fed mice and identified 849 proteins as significant responders to high-fat feeding in comparison to low-fat feeding. We present MetaPro-IQ, a metaproteomic approach for highly efficient intestinal microbial protein identification and quantification, which functions as a universal workflow for metaproteomic studies, and will thus facilitate the application of metaproteomics for better understanding the functions of gut microbiota in health and disease.

  6. Development of a Genome-Proxy Microarray for Profiling Marine Microbial Communities and its Application to a Time Series in Monterey Bay, California

    DTIC Science & Technology

    2008-09-01

    community representation. 12 survey a complex microbial community. Community DNA or rRNA extracted from a sample may require amplification before...restricted to cultivated clades, since not only do many clades have sufficient database representation due to 16S environmental surveys , but such...well developed for standard and comprehensive surveys . Depending on the population being targeted and the identification method, FCM can be a

  7. [Methodology of Screening New Antibiotics: Present Status and Prospects].

    PubMed

    Trenin, A S

    2015-01-01

    Due to extensive distribution of pathogen resistance to available pharmaceuticals and serious problems in the treatment of various infections and tumor diseases, the necessity of new antibiotics is urgent. The basic methodological approaches to chemical synthesis of antibiotics and screening of new antibiotics among natural products, mainly among microbial secondary metabolites, are considered in the review. Since the natural compounds are very much diverse, screening of such substances gives a good opportunity to discover antibiotics of various chemical structure and mechanism of action. Such an approach followed by chemical or biological transformation, is capable of providing the health care with new effective pharmaceuticals. The review is mainly concentrated on screening of natural products and methodological problems, such as: isolation of microbial producers from the habitats, cultivation of microorganisms producing appropriate substances, isolation and chemical characterization of microbial metabolites, identification of the biological activity of the metabolites. The main attention is paid to the problems of microbial secondary metabolism and design of new models for screening biologically active compounds. The last achievements in the field of antibiotics and most perspective approaches to future investigations are discussed. The main methodological approach to isolation and cultivation of the producers remains actual and needs constant improvement. The increase of the screening efficiency can be achieved by more rapid chemical identification of antibiotics and design of new screening models based on the biological activity detection.

  8. Inflight Microbial Monitoring- An Alternative Method to Culture Based Detection Currently Used on the International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Roman, Monsi; Hummerick, Mary E.; Smith, David J.; Wheeler, Raymond M.

    2015-01-01

    Previous research has shown that potentially destructive microorganisms and human pathogens have been detected on the International Space Station (ISS). The likelihood of introducing new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Microorganisms introduced to the ISS are readily transferred between crew and subsystems (i.e. ECLSS, environmental control and life support systems). Current microbial characterization methods require enrichment of microorganisms and at least a 48-hour incubation time. This increases the microbial load while detecting only a limited number of the total microorganisms. The culture based method detects approximately 1-10% of the total organisms present and provides no identification. To identify and enumerate ISS microbes requires that samples be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganisms at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  9. Inflight Microbial Monitoring-An Alternative Method to Culture Based Detection Currently Used on International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Roman, Monsi; Hummerick, Mary E.; Smith, David J.; Wheeler, Raymond M.

    2015-01-01

    Previous research has shown that microorganisms and potential human pathogens have been detected on the International Space Station (ISS). The potential to introduce new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Previous research has shown that microorganisms introduced to the ISS are readily transferred between crew and subsystems and back (i.e. ECLSS, environmental control and life support systems). Current microbial characterization methods require enrichment of microorganisms and a 48-hour incubation time. This increases the microbial load while detecting a limited number of microorganisms. The culture based method detects approximately 1-10% of the total organisms present and provides no identification, To identify and enumerate ISS samples requires that samples to be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganism at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  10. Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks.

    PubMed

    Khan, Faisal Nadeem; Zhong, Kangping; Zhou, Xian; Al-Arashi, Waled Hussein; Yu, Changyuan; Lu, Chao; Lau, Alan Pak Tao

    2017-07-24

    We experimentally demonstrate the use of deep neural networks (DNNs) in combination with signals' amplitude histograms (AHs) for simultaneous optical signal-to-noise ratio (OSNR) monitoring and modulation format identification (MFI) in digital coherent receivers. The proposed technique automatically extracts OSNR and modulation format dependent features of AHs, obtained after constant modulus algorithm (CMA) equalization, and exploits them for the joint estimation of these parameters. Experimental results for 112 Gbps polarization-multiplexed (PM) quadrature phase-shift keying (QPSK), 112 Gbps PM 16 quadrature amplitude modulation (16-QAM), and 240 Gbps PM 64-QAM signals demonstrate OSNR monitoring with mean estimation errors of 1.2 dB, 0.4 dB, and 1 dB, respectively. Similarly, the results for MFI show 100% identification accuracy for all three modulation formats. The proposed technique applies deep machine learning algorithms inside standard digital coherent receiver and does not require any additional hardware. Therefore, it is attractive for cost-effective multi-parameter estimation in next-generation elastic optical networks (EONs).

  11. Review of Detection of Brucella sp. by Polymerase Chain Reaction

    PubMed Central

    Yu, Wei Ling; Nielsen, Klaus

    2010-01-01

    Here we present a review of most of the currently used polymerase chain reaction (PCR)-based methods for identification of Brucella bacteria in biological samples. We focused in particular on methods using single-pair primers, multiplex primers, real-time PCRs, PCRs for marine Brucella, and PCRs for molecular biotyping. These methods are becoming very important tools for the identification of Brucella, at the species level and recently also at the biovar level. These techniques require minimum biological containment and can provide results in a very short time. In addition, genetic fingerprinting of isolates aid in epidemiological studies of the disease and its control. PCR-based methods are more useful and practical than conventional methods used to identify Brucella spp., and new methods for Brucella spp identification and typing are still being developed. However, the sensitivity, specificity, and issues of quality control and quality assurance using these methods must be fully validated on clinical samples before PCR can be used in routine laboratory testing for brucellosis. PMID:20718083

  12. Constructing STR multiplexes for individual identification of Hungarian red deer.

    PubMed

    Szabolcsi, Zoltan; Egyed, Balazs; Zenke, Petra; Padar, Zsolt; Borsy, Adrienn; Steger, Viktor; Pasztor, Erzsebet; Csanyi, Sandor; Buzas, Zsuzsanna; Orosz, Laszlo

    2014-07-01

    Red deer is the most valuable game of the fauna in Hungary, and there is a strong need for genetic identification of individuals. For this purpose, 10 tetranucleotide STR markers were developed and amplified in two 5-plex systems. The study presented here includes the flanking region sequence analysis and the allele nomenclature of the 10 loci as well as the PCR optimization of the DeerPlex I and II. LD pairwise tests and cross-species similarity analyses showed the 10 loci to be independently inherited. Considerable levels of genetic differences between two subpopulations were recorded, and F(ST) was 0.034 using AMOVA. The average probability of identity (PI(ave)) was at the value of 2.6736 × 10(-15). This low value for PI(ave) nearly eliminates false identification. An illegal hunting case solved by DeerPlex is described herein. The calculated likelihood ratio (LR) illustrates the potential of the 10 red deer microsatellite markers for forensic investigations. © 2014 American Academy of Forensic Sciences.

  13. Multiplex Identification of Gram-Positive Bacteria and Resistance Determinants Directly from Positive Blood Culture Broths: Evaluation of an Automated Microarray-Based Nucleic Acid Test

    PubMed Central

    Buchan, Blake W.; Ginocchio, Christine C.; Manii, Ryhana; Cavagnolo, Robert; Pancholi, Preeti; Swyers, Lettie; Thomson, Richard B.; Anderson, Christopher; Kaul, Karen; Ledeboer, Nathan A.

    2013-01-01

    Background A multicenter study was conducted to evaluate the diagnostic accuracy (sensitivity and specificity) of the Verigene Gram-Positive Blood Culture Test (BC-GP) test to identify 12 Gram-positive bacterial gene targets and three genetic resistance determinants directly from positive blood culture broths containing Gram-positive bacteria. Methods and Findings 1,252 blood cultures containing Gram-positive bacteria were prospectively collected and tested at five clinical centers between April, 2011 and January, 2012. An additional 387 contrived blood cultures containing uncommon targets (e.g., Listeria spp., S. lugdunensis, vanB-positive Enterococci) were included to fully evaluate the performance of the BC-GP test. Sensitivity and specificity for the 12 specific genus or species targets identified by the BC-GP test ranged from 92.6%–100% and 95.4%–100%, respectively. Identification of the mecA gene in 599 cultures containing S. aureus or S. epidermidis was 98.6% sensitive and 94.3% specific compared to cefoxitin disk method. Identification of the vanA gene in 81 cultures containing Enterococcus faecium or E. faecalis was 100% sensitive and specific. Approximately 7.5% (87/1,157) of single-organism cultures contained Gram-positive bacteria not present on the BC-GP test panel. In 95 cultures containing multiple organisms the BC-GP test was in 71.6% (68/95) agreement with culture results. Retrospective analysis of 107 separate blood cultures demonstrated that identification of methicillin resistant S. aureus and vancomycin resistant Enterococcus spp. was completed an average of 41.8 to 42.4 h earlier using the BC-GP test compared to routine culture methods. The BC-GP test was unable to assign mecA to a specific organism in cultures containing more than one Staphylococcus isolate and does not identify common blood culture contaminants such as Micrococcus, Corynebacterium, and Bacillus. Conclusions The BC-GP test is a multiplex test capable of detecting most leading causes of Gram-positive bacterial blood stream infections as well as genetic markers of methicillin and vancomycin resistance directly from positive blood cultures. Please see later in the article for the Editors' Summary PMID:23843749

  14. Comparative Metagenomics of Gut and Ocean: Identification of Microbial Marker Genes for Complex Environmental Properties (2011 JGI User Meeting)

    ScienceCinema

    Bork, Peer

    2018-02-14

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Peer Bork of the European Molecular Biology Laboratory on Comparative Metagenomics of Gut and Ocean: Identification of Microbial Marker Genes for Complex Environmental Properties at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.

  15. Microbial Communities in Produced Water of the Green River Basin in Southeast Wyoming.

    NASA Astrophysics Data System (ADS)

    Wawrousek, K.; Drogos, D. L.; Urynowicz, M. A.; Nye, C.; Quillinan, S.

    2017-12-01

    Despite the prevalence of hydraulic fracturing for natural gas production, little is understood about the downhole microbial ecosystems encountered. Illumina MiSeq 16S rRNA sequencing has been performed on waters collected from the water-gas separator of five hydraulically fractured wells in the Green River Basin in southeast Wyoming, and identification of bacteria and archaea reveal the presence of several microbes. Well depths ranged from approximately 9,500ft to 11,500ft. Correlations between inorganic chemistry, such as pH, salinity, and metals naturally present in the groundwater, as well as biocides used during fracturing and production were made when analyzing different microbial communities. Preliminary results identify several microbial families including: Clostridiales, Thermoanaerobacterales, Synergistales, Alteromonadales, and Thermotogales. Of the 5 sampled oil wells in the Greater Green River Basin, 16 microbes were identified in all samples. These included microbes such as Anaerobaculum, Thermovirga, and an unclassified Clostridiaceae. Ongoing work includes matching unclassified 16S sequences present in multiple samples and correlating microbial populations across wells to understand better the microbial communities present in these exotic environmental conditions.

  16. Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform.

    PubMed

    Madison, Andrew C; Royal, Matthew W; Vigneault, Frederic; Chen, Liji; Griffin, Peter B; Horowitz, Mark; Church, George M; Fair, Richard B

    2017-09-15

    Electrowetting-on-dielectric (EWD) digital microfluidic laboratory-on-a-chip platforms demonstrate excellent performance in automating labor-intensive protocols. When coupled with an on-chip electroporation capability, these systems hold promise for streamlining cumbersome processes such as multiplex automated genome engineering (MAGE). We integrated a single Ti:Au electroporation electrode into an otherwise standard parallel-plate EWD geometry to enable high-efficiency transformation of Escherichia coli with reporter plasmid DNA in a 200 nL droplet. Test devices exhibited robust operation with more than 10 transformation experiments performed per device without cross-contamination or failure. Despite intrinsic electric-field nonuniformity present in the EP/EWD device, the peak on-chip transformation efficiency was measured to be 8.6 ± 1.0 × 10 8 cfu·μg -1 for an average applied electric field strength of 2.25 ± 0.50 kV·mm -1 . Cell survival and transformation fractions at this electroporation pulse strength were found to be 1.5 ± 0.3 and 2.3 ± 0.1%, respectively. Our work expands the EWD toolkit to include on-chip microbial electroporation and opens the possibility of scaling advanced genome engineering methods, like MAGE, into the submicroliter regime.

  17. Personalizing Protein Nourishment

    PubMed Central

    DALLAS, DAVID C.; SANCTUARY, MEGAN R.; QU, YUNYAO; KHAJAVI, SHABNAM HAGHIGHAT; VAN ZANDT, ALEXANDRIA E.; DYANDRA, MELISSA; FRESE, STEVEN A.; BARILE, DANIELA; GERMAN, J. BRUCE

    2016-01-01

    Proteins are not equally digestible—their proteolytic susceptibility varies by their source and processing method. Incomplete digestion increases colonic microbial protein fermentation (putrefaction), which produces toxic metabolites that can induce inflammation in vitro and have been associated with inflammation in vivo. Individual humans differ in protein digestive capacity based on phenotypes, particularly disease states. To avoid putrefaction-induced intestinal inflammation, protein sources and processing methods must be tailored to the consumer’s digestive capacity. This review explores how food processing techniques alter protein digestibility and examines how physiological conditions alter digestive capacity. Possible solutions to improving digestive function or matching low digestive capacity with more digestible protein sources are explored. Beyond the ileal digestibility measurements of protein digestibility, less invasive, quicker and cheaper techniques for monitoring the extent of protein digestion and fermentation are needed to personalize protein nourishment. Biomarkers of protein digestive capacity and efficiency can be identified with the toolsets of peptidomics, metabolomics, microbial sequencing and multiplexed protein analysis of fecal and urine samples. By monitoring individual protein digestive function, the protein component of diets can be tailored via protein source and processing selection to match individual needs to minimize colonic putrefaction and, thus, optimize gut health. PMID:26713355

  18. Electrokinetic stringency control in self-assembled monolayer-based biosensors for multiplex urinary tract infection diagnosis.

    PubMed

    Liu, Tingting; Sin, Mandy L Y; Pyne, Jeff D; Gau, Vincent; Liao, Joseph C; Wong, Pak Kin

    2014-01-01

    Rapid detection of bacterial pathogens is critical toward judicious management of infectious diseases. Herein, we demonstrate an in situ electrokinetic stringency control approach for a self-assembled monolayer-based electrochemical biosensor toward urinary tract infection diagnosis. The in situ electrokinetic stringency control technique generates Joule heating induced temperature rise and electrothermal fluid motion directly on the sensor to improve its performance for detecting bacterial 16S rRNA, a phylogenetic biomarker. The dependence of the hybridization efficiency reveals that in situ electrokinetic stringency control is capable of discriminating single-base mismatches. With electrokinetic stringency control, the background noise due to the matrix effects of clinical urine samples can be reduced by 60%. The applicability of the system is demonstrated by multiplex detection of three uropathogenic clinical isolates with similar 16S rRNA sequences. The results demonstrate that electrokinetic stringency control can significantly improve the signal-to-noise ratio of the biosensor for multiplex urinary tract infection diagnosis. Urinary tract infections remain a significant cause of mortality and morbidity as secondary conditions often related to chronic diseases or to immunosuppression. Rapid and sensitive identification of the causative organisms is critical in the appropriate management of this condition. These investigators demonstrate an in situ electrokinetic stringency control approach for a self-assembled monolayer-based electrochemical biosensor toward urinary tract infection diagnosis, establishing that such an approach significantly improves the biosensor's signal-to-noise ratio. © 2013.

  19. Research on aircraft trailing vortex detection based on laser's multiplex information echo

    NASA Astrophysics Data System (ADS)

    Zhao, Nan-xiang; Wu, Yong-hua; Hu, Yi-hua; Lei, Wu-hu

    2010-10-01

    Airfoil trailing vortex is an important reason for the crash, and vortex detection is the basic premise for the civil aeronautics boards to make the flight measures and protect civil aviation's security. So a new method of aircraft trailing vortex detection based on laser's multiplex information echo has been proposed in this paper. According to the classical aerodynamics theories, the formation mechanism of the trailing vortex from the airfoil wingtip has been analyzed, and the vortex model of Boeing 737 in the taking-off phase has also been established on the FLUENT software platform. Combining with the unique morphological structure characteristics of trailing vortex, we have discussed the vortex's possible impact on the frequency, amplitude and phase information of laser echo, and expounded the principle of detecting vortex based on fusing this information variation of laser echo. In order to prove the feasibility of this detecting technique, the field experiment of detecting the vortex of civil Boeing 737 by laser has been carried on. The experimental result has shown that the aircraft vortex could be found really in the laser scanning area, and its diffusion characteristic has been very similar to the previous simulation result. Therefore, this vortex detection means based on laser's multiplex information echo was proved to be practicable relatively in this paper. It will provide the detection and identification of aircraft's trailing vortex a new way, and have massive research value and extensive application prospect as well.

  20. Evaluation of a 13-loci STR multiplex system for Cannabis sativa genetic identification.

    PubMed

    Houston, Rachel; Birck, Matthew; Hughes-Stamm, Sheree; Gangitano, David

    2016-05-01

    Marijuana (Cannabis sativa) is the most commonly used illicit substance in the USA. The development of a validated method using Cannabis short tandem repeats (STRs) could aid in the individualization of samples as well as serve as an intelligence tool to link multiple cases. For this purpose, a modified 13-loci STR multiplex method was optimized and evaluated according to ISFG and SWGDAM guidelines. A real-time PCR quantification method for C. sativa was developed and validated, and a sequenced allelic ladder was also designed to accurately genotype 199 C. sativa samples from 11 U.S. Customs and Border Protection seizures. Distinguishable DNA profiles were generated from 127 samples that yielded full STR profiles. Four duplicate genotypes within seizures were found. The combined power of discrimination of this multilocus system is 1 in 70 million. The sensitivity of the multiplex STR system is 0.25 ng of template DNA. None of the 13 STR markers cross-reacted with any of the studied species, except for Humulus lupulus (hops) which generated unspecific peaks. Phylogenetic analysis and case-to-case pairwise comparison of 11 cases using F st as genetic distance revealed the genetic association of four groups of cases. Moreover, due to their genetic similarity, a subset of samples (N = 97) was found to form a homogeneous population in Hardy-Weinberg and linkage equilibrium. The results of this research demonstrate the applicability of this 13-loci STR system in associating Cannabis cases for intelligence purposes.

  1. A multiplex real-time PCR assay for identification of Pneumocystis jirovecii, Histoplasma capsulatum, and Cryptococcus neoformans/Cryptococcus gattii in samples from AIDS patients with opportunistic pneumonia.

    PubMed

    Gago, Sara; Esteban, Cristina; Valero, Clara; Zaragoza, Oscar; Puig de la Bellacasa, Jorge; Buitrago, María José

    2014-04-01

    A molecular diagnostic technique based on real-time PCR was developed for the simultaneous detection of three of the most frequent causative agents of fungal opportunistic pneumonia in AIDS patients: Pneumocystis jirovecii, Histoplasma capsulatum, and Cryptococcus neoformans/Cryptococcus gattii. This technique was tested in cultured strains and in clinical samples from HIV-positive patients. The methodology used involved species-specific molecular beacon probes targeted to the internal transcribed spacer regions of the rDNA. An internal control was also included in each assay. The multiplex real-time PCR assay was tested in 24 clinical strains and 43 clinical samples from AIDS patients with proven fungal infection. The technique developed showed high reproducibility (r(2) of >0.98) and specificity (100%). For H. capsulatum and Cryptococcus spp., the detection limits of the method were 20 and 2 fg of genomic DNA/20 μl reaction mixture, respectively, while for P. jirovecii the detection limit was 2.92 log10 copies/20 μl reaction mixture. The sensitivity in vitro was 100% for clinical strains and 90.7% for clinical samples. The assay was positive for 92.5% of the patients. For one of the patients with proven histoplasmosis, P. jirovecii was also detected in a bronchoalveolar lavage sample. No PCR inhibition was detected. This multiplex real-time PCR technique is fast, sensitive, and specific and may have clinical applications.

  2. Interlaboratory transfer of a PCR multiplex method for simultaneous detection of four genetically modified maize lines: Bt11, MON810, T25, and GA21.

    PubMed

    Hernández, Marta; Rodríguez-Lázaro, David; Zhang, David; Esteve, Teresa; Pla, Maria; Prat, Salomé

    2005-05-04

    The number of cultured hectares and commercialized genetically modified organisms (GMOs) has increased exponentially in the past 9 years. Governments in many countries have established a policy of labeling all food and feed containing or produced by GMOs. Consequently, versatile, laboratory-transferable GMO detection methods are in increasing demand. Here, we describe a qualitative PCR-based multiplex method for simultaneous detection and identification of four genetically modified maize lines: Bt11, MON810, T25, and GA21. The described system is based on the use of five primers directed to specific sequences in these insertion events. Primers were used in a single optimized multiplex PCR reaction, and sequences of the amplified fragments are reported. The assay allows amplification of the MON810 event from the 35S promoter to the hsp intron yielding a 468 bp amplicon. Amplification of the Bt11 and T25 events from the 35S promoter to the PAT gene yielded two different amplicons of 280 and 177 bp, respectively, whereas amplification of the 5' flanking region of the GA21 gave rise to an amplicon of 72 bp. These fragments are clearly distinguishable in agarose gels and have been reproduced successfully in a different laboratory. Hence, the proposed method comprises a rapid, simple, reliable, and sensitive (down to 0.05%) PCR-based assay, suitable for detection of these four GM maize lines in a single reaction.

  3. Morphological observation and characterization of the Pseudoregma bambucicola with the scanning electron microscope.

    PubMed

    Nong, Xiang; Zeng, Xuemei; Yang, Yaojun; Liang, Zi; Tang, Mei; Liao, Lejuan; Luo, Chaobing

    2017-11-01

    Both leica microscopic camera system and scanning electron microscopy was used to observe and characterize the feet, back, abdomen, antennae and mouthparts of the Pseudoregma bambucicola from the bamboo, Bambusa multiplex . The possible functions of all the external morphological characteristics of the P. bambucicola were described and discussed in detail, which offers a basis for further enriching the biology, phylogeny and ecological niche of the P. bambucicola . Moreover, the morphological results should contribute to morphological identification and differentiation of the P. bambucicola from other aphids in the same family.

  4. The effect of microbial degradation on the chromatographic profiles of tiki torch fuel, lamp oil, and turpentine.

    PubMed

    Turner, Dee A; Goodpaster, John V

    2011-07-01

    Biodegradation can result in selective removal of many of the compounds required for the identification of an ignitable liquid. In this study, the effects of microbial degradation on tiki torch fuel, lamp oil, and turpentine are reported. Samples of soil spiked with 20 μL of the liquids were stored at room temperature for up to 7 days. The ignitable liquids were then recovered using passive headspace concentration onto charcoal strips followed by solvent elution using pentane. Microbial degradation of tiki torch fuel resulted in the loss of the n-alkanes relative to the branched alkanes. Changes in the profile of the lamp oil were minor due to the highly branched nature of its alkanes. Microbial degradation of turpentine resulted in the selective loss of limonene and o-cymene. Overall, significant degradation by microbial action could result in the inability to identify the presence of an ignitable liquid or misclassify the ignitable liquid found. © 2011 American Academy of Forensic Sciences.

  5. Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin

    PubMed Central

    Kim, Hyeun Bum; Borewicz, Klaudyna; White, Bryan A.; Singer, Randall S.; Sreevatsan, Srinand; Tu, Zheng Jin; Isaacson, Richard E.

    2012-01-01

    Antimicrobials have been used extensively as growth promoters (AGPs) in agricultural animal production. However, the specific mechanism of action for AGPs has not yet been determined. The work presented here was to determine and characterize the microbiome of pigs receiving one AGP, tylosin, compared with untreated pigs. We hypothesized that AGPs exerted their growth promoting effect by altering gut microbial population composition. We determined the fecal microbiome of pigs receiving tylosin compared with untreated pigs using pyrosequencing of 16S rRNA gene libraries. The data showed microbial population shifts representing both microbial succession and changes in response to the use of tylosin. Quantitative and qualitative analyses of sequences showed that tylosin caused microbial population shifts in both abundant and less abundant species. Our results established a baseline upon which mechanisms of AGPs in regulation of health and growth of animals can be investigated. Furthermore, the data will aid in the identification of alternative strategies to improve animal health and consequently production. PMID:22955886

  6. Influence of Geographical Origin and Flour Type on Diversity of Lactic Acid Bacteria in Traditional Belgian Sourdoughs▿ †

    PubMed Central

    Scheirlinck, Ilse; Van der Meulen, Roel; Van Schoor, Ann; Vancanneyt, Marc; De Vuyst, Luc; Vandamme, Peter; Huys, Geert

    2007-01-01

    A culture-based approach was used to investigate the diversity of lactic acid bacteria (LAB) in Belgian traditional sourdoughs and to assess the influence of flour type, bakery environment, geographical origin, and technological characteristics on the taxonomic composition of these LAB communities. For this purpose, a total of 714 LAB from 21 sourdoughs sampled at 11 artisan bakeries throughout Belgium were subjected to a polyphasic identification approach. The microbial composition of the traditional sourdoughs was characterized by bacteriological culture in combination with genotypic identification methods, including repetitive element sequence-based PCR fingerprinting and phenylalanyl-tRNA synthase (pheS) gene sequence analysis. LAB from Belgian sourdoughs belonged to the genera Lactobacillus, Pediococcus, Leuconostoc, Weissella, and Enterococcus, with the heterofermentative species Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus plantarum, and Lactobacillus pontis as the most frequently isolated taxa. Statistical analysis of the identification data indicated that the microbial composition of the sourdoughs is mainly affected by the bakery environment rather than the flour type (wheat, rye, spelt, or a mixture of these) used. In conclusion, the polyphasic approach, based on rapid genotypic screening and high-resolution, sequence-dependent identification, proved to be a powerful tool for studying the LAB diversity in traditional fermented foods such as sourdough. PMID:17675431

  7. Influence of geographical origin and flour type on diversity of lactic acid bacteria in traditional Belgian sourdoughs.

    PubMed

    Scheirlinck, Ilse; Van der Meulen, Roel; Van Schoor, Ann; Vancanneyt, Marc; De Vuyst, Luc; Vandamme, Peter; Huys, Geert

    2007-10-01

    A culture-based approach was used to investigate the diversity of lactic acid bacteria (LAB) in Belgian traditional sourdoughs and to assess the influence of flour type, bakery environment, geographical origin, and technological characteristics on the taxonomic composition of these LAB communities. For this purpose, a total of 714 LAB from 21 sourdoughs sampled at 11 artisan bakeries throughout Belgium were subjected to a polyphasic identification approach. The microbial composition of the traditional sourdoughs was characterized by bacteriological culture in combination with genotypic identification methods, including repetitive element sequence-based PCR fingerprinting and phenylalanyl-tRNA synthase (pheS) gene sequence analysis. LAB from Belgian sourdoughs belonged to the genera Lactobacillus, Pediococcus, Leuconostoc, Weissella, and Enterococcus, with the heterofermentative species Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus plantarum, and Lactobacillus pontis as the most frequently isolated taxa. Statistical analysis of the identification data indicated that the microbial composition of the sourdoughs is mainly affected by the bakery environment rather than the flour type (wheat, rye, spelt, or a mixture of these) used. In conclusion, the polyphasic approach, based on rapid genotypic screening and high-resolution, sequence-dependent identification, proved to be a powerful tool for studying the LAB diversity in traditional fermented foods such as sourdough.

  8. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens

    DOE PAGES

    Srinivasan, Ramya; Karaoz, Ulas; Volegova, Marina; ...

    2015-02-06

    According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n =more » 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci.« less

  9. Use of 16S rRNA Gene for Identification of a Broad Range of Clinically Relevant Bacterial Pathogens

    PubMed Central

    Srinivasan, Ramya; Karaoz, Ulas; Volegova, Marina; MacKichan, Joanna; Kato-Maeda, Midori; Miller, Steve; Nadarajan, Rohan; Brodie, Eoin L.; Lynch, Susan V.

    2015-01-01

    According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n = 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci. PMID:25658760

  10. Microbial Contaminants of Cord Blood Units Identified by 16S rRNA Sequencing and by API Test System, and Antibiotic Sensitivity Profiling

    PubMed Central

    França, Luís; Simões, Catarina; Taborda, Marco; Diogo, Catarina; da Costa, Milton S.

    2015-01-01

    Over a period of ten months a total of 5618 cord blood units (CBU) were screened for microbial contamination under routine conditions. The antibiotic resistance profile for all isolates was also examined using ATB strips. The detection rate for culture positive units was 7.5%, corresponding to 422 samples.16S rRNA sequence analysis and identification with API test system were used to identify the culturable aerobic, microaerophilic and anaerobic bacteria from CBUs. From these samples we recovered 485 isolates (84 operational taxonomic units, OTUs) assigned to the classes Bacteroidia, Actinobacteria, Clostridia, Bacilli, Betaproteobacteria and primarily to the Gammaproteobacteria. Sixty-nine OTUs, corresponding to 447 isolates, showed 16S rRNA sequence similarities above 99.0% with known cultured bacteria. However, 14 OTUs had 16S rRNA sequence similarities between 95 and 99% in support of genus level identification and one OTU with 16S rRNA sequence similarity of 90.3% supporting a family level identification only. The phenotypic identification formed 29 OTUs that could be identified to the species level and 9 OTUs that could be identified to the genus level by API test system. We failed to obtain identification for 14 OTUs, while 32 OTUs comprised organisms producing mixed identifications. Forty-two OTUs covered species not included in the API system databases. The API test system Rapid ID 32 Strep and Rapid ID 32 E showed the highest proportion of identifications to the species level, the lowest ratio of unidentified results and the highest agreement to the results of 16S rRNA assignments. Isolates affiliated to the Bacilli and Bacteroidia showed the highest antibiotic multi-resistance indices and microorganisms of the Clostridia displayed the most antibiotic sensitive phenotypes. PMID:26512991

  11. Microbial Contaminants of Cord Blood Units Identified by 16S rRNA Sequencing and by API Test System, and Antibiotic Sensitivity Profiling.

    PubMed

    França, Luís; Simões, Catarina; Taborda, Marco; Diogo, Catarina; da Costa, Milton S

    2015-01-01

    Over a period of ten months a total of 5618 cord blood units (CBU) were screened for microbial contamination under routine conditions. The antibiotic resistance profile for all isolates was also examined using ATB strips. The detection rate for culture positive units was 7.5%, corresponding to 422 samples.16S rRNA sequence analysis and identification with API test system were used to identify the culturable aerobic, microaerophilic and anaerobic bacteria from CBUs. From these samples we recovered 485 isolates (84 operational taxonomic units, OTUs) assigned to the classes Bacteroidia, Actinobacteria, Clostridia, Bacilli, Betaproteobacteria and primarily to the Gammaproteobacteria. Sixty-nine OTUs, corresponding to 447 isolates, showed 16S rRNA sequence similarities above 99.0% with known cultured bacteria. However, 14 OTUs had 16S rRNA sequence similarities between 95 and 99% in support of genus level identification and one OTU with 16S rRNA sequence similarity of 90.3% supporting a family level identification only. The phenotypic identification formed 29 OTUs that could be identified to the species level and 9 OTUs that could be identified to the genus level by API test system. We failed to obtain identification for 14 OTUs, while 32 OTUs comprised organisms producing mixed identifications. Forty-two OTUs covered species not included in the API system databases. The API test system Rapid ID 32 Strep and Rapid ID 32 E showed the highest proportion of identifications to the species level, the lowest ratio of unidentified results and the highest agreement to the results of 16S rRNA assignments. Isolates affiliated to the Bacilli and Bacteroidia showed the highest antibiotic multi-resistance indices and microorganisms of the Clostridia displayed the most antibiotic sensitive phenotypes.

  12. Colony fingerprint for discrimination of microbial species based on lensless imaging of microcolonies

    PubMed Central

    Maeda, Yoshiaki; Dobashi, Hironori; Sugiyama, Yui; Saeki, Tatsuya; Lim, Tae-kyu; Harada, Manabu; Matsunaga, Tadashi; Yoshino, Tomoko

    2017-01-01

    Detection and identification of microbial species are crucial in a wide range of industries, including production of beverages, foods, cosmetics, and pharmaceuticals. Traditionally, colony formation and its morphological analysis (e.g., size, shape, and color) with a naked eye have been employed for this purpose. However, such a conventional method is time consuming, labor intensive, and not very reproducible. To overcome these problems, we propose a novel method that detects microcolonies (diameter 10–500 μm) using a lensless imaging system. When comparing colony images of five microorganisms from different genera (Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans), the images showed obvious different features. Being closely related species, St. aureus and St. epidermidis resembled each other, but the imaging analysis could extract substantial information (colony fingerprints) including the morphological and physiological features, and linear discriminant analysis of the colony fingerprints distinguished these two species with 100% of accuracy. Because this system may offer many advantages such as high-throughput testing, lower costs, more compact equipment, and ease of automation, it holds promise for microbial detection and identification in various academic and industrial areas. PMID:28369067

  13. Array of Synthetic Oligonucleotides to Generate Unique Multi-Target Artificial Positive Controls and Molecular Probe-Based Discrimination of Liposcelis Species

    PubMed Central

    Arif, Mohammad; Opit, George; Mendoza-Yerbafría, Abigail; Dobhal, Shefali; Li, Zhihong; Kučerová, Zuzana; Ochoa-Corona, Francisco M.

    2015-01-01

    Several species of the genus Liposcelis are common insect pests that cause serious qualitative and quantitative losses to various stored grains and processed grain products. They also can contaminate foods, transmit pathogenic microorganisms and cause allergies in humans. The common occurrence of multi-species infestations and the fact that it is difficult to identify and discriminate Liposcelis spp. make accurate, rapid detection and discriminatory tools absolutely necessary for confirmation of their identity. In this study, PCR primers and probes specific to different Liposcelis spp. were designed based on nucleotide sequences of the cytochrome oxidase 1 (CO1) gene. Primer sets ObsCo13F/13R, PeaCo15F/14R, BosCO7F/7R, BruCo5F/5R, and DecCo11F/11R were used to specifically detect Liposcelis obscura Broadhead, Liposcelis pearmani Lienhard, Liposcelis bostrychophila Badonnel, Liposcelis brunnea Motschulsky and Liposcelis decolor (Pearman) in multiplex endpoint PCRs, which amplified products of 438-, 351-, 191-, 140-, and 87-bp, respectively. In multiplex TaqMan qPCR assays, orange, yellow, red, crimson and green channels corresponding to reporter dyes 6-ROXN, HEX, Cy5, Quasar705 and 6-FAM specifically detected L. obscura, L. brunnea, L. bostrychophila, L. pearmani and L. decolor, respectively. All developed primer and probe sets allowed specific amplification of corresponding targeted Liposcelis species. The development of multiplex endpoint PCR and multiplex TaqMan qPCR will greatly facilitate psocid identification and their management. The use of APCs will streamline and standardize PCR assays. APC will also provide the opportunity to have all positive controls in a single tube, which reduces maintenance cost and labor, but increases the accuracy and reliability of the assays. These novel methods from our study will have applications in pest management, biosecurity, quarantine, food safety, and routine diagnostics. PMID:26086728

  14. Identification and characterization of Dichelobacter nodosus serogroup H from ovine footrot in India.

    PubMed

    Vinod Kumar, N; Sreenivasulu, D; Karthik, A

    2016-08-01

    A total of 56 foot swabs were collected from inter digital spaces of sheep with footrot lesions were screened for 16 rRNA of Dichelobacter nodosus by PCR. Out of the 56 samples, 38(67.85%) were found to be positive. All the positive samples were subjected to multiplex PCR targeting fimA gene for identification of serogroups of D. nodosus. Serogroup H was found along with serogroup B in 12 (55.26%) samples and with serogroup I in 8 (22.2%) samples. The serogroup H was identified for the first time from the Indian subcontinent. The phylogenetic analysis of the present sequence with the available serogroup H sequences of GenBank revealed to be in close association with the serotype H1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Comparison of DNA-based techniques for differentiation of production strains of ale and lager brewing yeast.

    PubMed

    Kopecká, J; Němec, M; Matoulková, D

    2016-06-01

    Brewing yeasts are classified into two species-Saccharomyces pastorianus and Saccharomyces cerevisiae. Most of the brewing yeast strains are natural interspecies hybrids typically polyploids and their identification is thus often difficult giving heterogenous results according to the method used. We performed genetic characterization of a set of the brewing yeast strains coming from several yeast culture collections by combination of various DNA-based techniques. The aim of this study was to select a method for species-specific identification of yeast and discrimination of yeast strains according to their technological classification. A group of 40 yeast strains were characterized using PCR-RFLP analysis of ITS-5·8S, NTS, HIS4 and COX2 genes, multiplex PCR, RAPD-PCR of genomic DNA, mtDNA-RFLP and electrophoretic karyotyping. Reliable differentiation of yeast to the species level was achieved by PCR-RFLP of HIS4 gene. Numerical analysis of the obtained RAPD-fingerprints and karyotype revealed species-specific clustering corresponding with the technological classification of the strains. Taxonomic position and partial hybrid nature of strains were verified by multiplex PCR. Differentiation among species using the PCR-RFLP of ITS-5·8S and NTS region was shown to be unreliable. Karyotyping and RFLP of mitochondrial DNA evinced small inaccuracies in strain categorization. PCR-RFLP of HIS4 gene and RAPD-PCR of genomic DNA are reliable and suitable methods for fast identification of yeast strains. RAPD-PCR with primer 21 is a fast and reliable method applicable for differentiation of brewing yeasts with only 35% similarity of fingerprint profile between the two main technological groups (ale and lager) of brewing strains. It was proved that PCR-RFLP method of HIS4 gene enables precise discrimination among three technologically important Saccharomyces species. Differentiation of brewing yeast to the strain level can be achieved using the RAPD-PCR technique. © 2016 The Society for Applied Microbiology.

  16. The quest for rare variants: pooled multiplexed next generation sequencing in plants.

    PubMed

    Marroni, Fabio; Pinosio, Sara; Morgante, Michele

    2012-01-01

    Next generation sequencing (NGS) instruments produce an unprecedented amount of sequence data at contained costs. This gives researchers the possibility of designing studies with adequate power to identify rare variants at a fraction of the economic and labor resources required by individual Sanger sequencing. As of today, few research groups working in plant sciences have exploited this potentiality, showing that pooled NGS provides results in excellent agreement with those obtained by individual Sanger sequencing. The aim of this review is to convey to the reader the general ideas underlying the use of pooled NGS for the identification of rare variants. To facilitate a thorough understanding of the possibilities of the method, we will explain in detail the possible experimental and analytical approaches and discuss their advantages and disadvantages. We will show that information on allele frequency obtained by pooled NGS can be used to accurately compute basic population genetics indexes such as allele frequency, nucleotide diversity, and Tajima's D. Finally, we will discuss applications and future perspectives of the multiplexed NGS approach.

  17. Simultaneous detection of Legionella species and L. anisa, L. bozemanii, L. longbeachae and L. micdadei using conserved primers and multiple probes in a multiplex real-time PCR assay.

    PubMed

    Cross, Kristen E; Mercante, Jeffrey W; Benitez, Alvaro J; Brown, Ellen W; Diaz, Maureen H; Winchell, Jonas M

    2016-07-01

    Legionnaires' disease is a severe respiratory disease that is estimated to cause between 8,000 and 18,000 hospitalizations each year, though the exact burden is unknown due to under-utilization of diagnostic testing. Although Legionella pneumophila is the most common species detected in clinical cases (80-90%), other species have also been reported to cause disease. However, little is known about Legionnaires' disease caused by these non-pneumophila species. We designed a multiplex real-time PCR assay for detection of all Legionella spp. and simultaneous specific identification of four clinically-relevant Legionella species, L. anisa, L. bozemanii, L. longbeachae, and L. micdadei, using 5'-hydrolysis probe real-time PCR. The analytical sensitivity for detection of nucleic acid from each target species was ≤50fg per reaction. We demonstrated the utility of this assay in spiked human sputum specimens. This assay could serve as a tool for understanding the scope and impact of non-pneumophila Legionella species in human disease. Published by Elsevier Inc.

  18. A Code Division Design Strategy for Multiplexing Fiber Bragg Grating Sensing Networks

    PubMed Central

    Varón, Margarita

    2017-01-01

    In this paper, an encoding strategy is used to design specialized fiber Bragg grating (FBG) sensors. The encoding of each sensor requires two binary codewords to define the amplitude and phase patterns of each sensor. The combined pattern (amplitude and phase) makes each sensor unique and therefore two or more sensors can be identified under spectral overlapping. In this way, we add another dimension to the multiplexing of FBG sensors, obtaining an increase factor ‘n’ to enhance the number of sensors that the system can handle. A proof-of-concept scenario with three sensors was performed, including the manufacturing of the encoded sensors. Furthermore, an interrogation setup to detect the sensors central wavelength was proposed and its working principle was theoretically developed. Results show that total identification of the central wavelength is performed under spectral overlapping between the manufactured sensors, achieving a three-time improvement of the system capacity. Finally, the error due to overlapping between the sensors was assessed obtaining approximately 3 pm, which makes the approach suitable for use in real measurement systems. PMID:29104231

  19. Two alternative multiplex PCRs for the identification of the seven species of anglerfish (Lophius spp.) using an end-point or a melting curve analysis real-time protocol.

    PubMed

    Castigliego, Lorenzo; Armani, Andrea; Tinacci, Lara; Gianfaldoni, Daniela; Guidi, Alessandra

    2015-01-01

    Anglerfish (Lophius spp.) is consumed worldwide and is an important economic resource though its seven species are often fraudulently interchanged due to their different commercial value, especially when sold in the form of fillets or pieces. Molecular analysis is the only possible mean to verify traceability and counteract fraud. We developed two multiplex PCRs, one end-point and one real-time with melting curve post-amplification analysis, which can even be run with the simplest two-channel thermocyclers. The two methods were tested on seventy-five reference samples. Their specificity was checked in twenty more species of those most commonly available on the market and in other species of the Lophiidae family. Both methods, the choice of which depends on the equipment and budget of the lab, provide a rapid and easy-to-read response, improving both the simplicity and cost-effectiveness of existing methods for identifying Lophius species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates.

    PubMed

    Nakatsuka, Nako; Cao, Huan H; Deshayes, Stephanie; Melkonian, Arin Lucy; Kasko, Andrea M; Weiss, Paul S; Andrews, Anne M

    2018-05-31

    Aptamers are chemically synthesized oligonucleotides or peptides with molecular recognition capabilities. We investigated recognition of substrate-tethered small-molecule targets, using neurotransmitters as examples, and fluorescently labeled DNA aptamers. Substrate regions patterned via microfluidic channels with dopamine or L-tryptophan were selectively recognized by previously identified dopamine or L-tryptophan aptamers, respectively. The on-substrate dissociation constant determined for the dopamine aptamer was comparable to, though slightly greater than the previously determined solution dissociation constant. Using pre-functionalized neurotransmitter-conjugated oligo(ethylene glycol) alkanethiols and microfluidics patterning, we produced multiplexed substrates to capture and to sort aptamers. Substrates patterned with L-DOPA, L-DOPS, and L-5-HTP enabled comparison of the selectivity of the dopamine aptamer for different targets via simultaneous determination of in situ binding constants. Thus, beyond our previous demonstrations of recognition by protein binding partners (i.e., antibodies and G-protein-coupled receptors), strategically optimized small-molecule-functionalized substrates show selective recognition of nucleic acid binding partners. These substrates are useful for side-by-side target comparisons, and future identification and characterization of novel aptamers targeting neurotransmitters or other important small-molecules.

Top