Science.gov

Sample records for multiplexed readout system

  1. Enhancements to a Superconducting Quantum Interference Device (SQUID) Multiplexer Readout and Control System

    NASA Technical Reports Server (NTRS)

    Forgione, J.; Benford, D. J.; Buchanan, E. D.; Moseley, S. H.; Rebar, J.; Shafer, R. A.

    2004-01-01

    Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA s Goddard Space Flight Center acquired a Mark 111 system and subsequently designed upgrades to suit our and our collaborators purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided hooks in the Mark III system to allow readout of signals from outside the Mark 111 system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.

  2. Development of Frequency-Division Multiplexing Readout System for Large-Format TES X-ray Microcalorimeter Arrays

    NASA Astrophysics Data System (ADS)

    Sakai, K.; Yamamoto, R.; Takei, Y.; Mitsuda, K.; Yamasaki, N. Y.; Hidaka, M.; Nagasawa, S.; Kohjiro, S.; Miyazaki, T.

    2016-07-01

    We are developing the frequency-division multiplexing (FDM) readout system aimed to realize the 400-pixel transition edge sensor (TES) microcalorimeter array for the DIOS mission as well as large-format arrays with more than a thousand of TES for future space missions such as the ATHENA mission. The developed system consists of the low-power superconducting quantum interference device (SQUID), the digital FDM electronics, and the analog front-end to bridge the SQUID and the digital electronics. Using the developed readout system, we performed a TES readout experiment and succeeded to multiplex four TES signals with the single-staged cryogenic setup. We have experienced two issues during the experiment: an excess noise and crosstalk. The brief overview of the developed system and the details, results, and issues of the TES multiplexing readout experiment is discussed.

  3. Planar Lithographed Superconducting LC Resonators for Frequency-Domain Multiplexed Readout Systems

    NASA Astrophysics Data System (ADS)

    Rotermund, K.; Barch, B.; Chapman, S.; Hattori, K.; Lee, A.; Palaio, N.; Shirley, I.; Suzuki, A.; Tran, C.

    2016-07-01

    Cosmic microwave background (CMB) polarization experiments are increasing the number of transition edge sensor (TES) bolometers to increase sensitivity. In order to maintain low thermal loading of the sub-Kelvin stage, the frequency-domain multiplexing (FDM) factor has to increase accordingly. FDM is achieved by placing TES bolometers in series with inductor-capacitor (LC) resonators, which select the readout frequency. The multiplexing factor can be raised with a large total readout bandwidth and small frequency spacing between channels. The inductance is kept constant to maintain a uniform readout bandwidth across detectors, while the maximum acceptable value is determined by bolometer stability. Current technology relies on commercially available ceramic chip capacitors. These have high scatter in their capacitance thereby requiring large frequency spacing. Furthermore, they have high equivalent series resistance (ESR) at higher frequencies and are time consuming and tedious to hand assemble via soldering. A solution lies in lithographed, planar spiral inductors (currently in use by some experiments) combined with interdigitated capacitors on a silicon (Si) substrate. To maintain reasonable device dimensions, we have reduced trace and gap widths of the LCs to 4 \\upmu m. We increased the inductance from 16 to 60 \\upmu H to achieve a higher packing density, a requirement for FDM systems with large multiplexing factors. Additionally, the Si substrate yields low ESR values across the entire frequency range and lithography makes mass production of LC pairs possible. We reduced mutual inductance between inductors by placing them in a checkerboard pattern with the capacitors, thereby increasing physical distances between adjacent inductors. We also reduce magnetic coupling of inductors with external sources by evaporating a superconducting ground plane onto the backside of the substrate. We report on the development of lithographed LCs in the 1-5 MHz range for use

  4. Microwave multiplex readout for superconducting sensors

    NASA Astrophysics Data System (ADS)

    Ferri, E.; Becker, D.; Bennett, D.; Faverzani, M.; Fowler, J.; Gard, J.; Giachero, A.; Hays-Wehle, J.; Hilton, G.; Maino, M.; Mates, J.; Puiu, A.; Nucciotti, A.; Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L.

    2016-07-01

    The absolute neutrino mass scale is still an outstanding challenge in both particle physics and cosmology. The calorimetric measurement of the energy released in a nuclear beta decay is a powerful tool to determine the effective electron-neutrino mass. In the last years, the progress on low temperature detector technologies has allowed to design large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy ( eV on keV) and time resolution ( 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. Microwave frequency domain readout is the best available technique to readout large array of low temperature detectors, such as Transition Edge Sensors (TESs) or Microwave Kinetic Inductance Detectors (MKIDs). In this way a multiplex factor of the order of thousands can be reached, limited only by the bandwidth of the available commercial fast digitizers. This microwave multiplexing system will be used to readout the HOLMES detectors, an array of 1000 microcalorimeters based on TES sensors in which the 163Ho will be implanted. HOLMES is a new experiment for measuring the electron neutrino mass by means of the electron capture (EC) decay of 163Ho. We present here the microwave frequency multiplex which will be used in the HOLMES experiment and the microwave frequency multiplex used to readout the MKID detectors developed in Milan as well.

  5. Read-out optical schemes for holographic memory system based on multiplexed computer generated 1D Fourier holograms

    NASA Astrophysics Data System (ADS)

    Donchenko, Sergey S.; Odinokov, Sergey B.; Bobrinev, Vladimir I.; Betin, Alexandr Y.; Zlokazov, Evgenie Y.

    2015-05-01

    Computer holographic synthesis allows to significantly simplify the recording scheme of microholograms in holographic memory system as the classic high precision holographic setup based on two-beam interference is removed by simple scale reduction projection scheme. Application of computer generated 1D-Fourier holograms provides the possibility of selective reconstruction of the multiplexed holograms with different orientation of data lines by corresponding rotation of anamorphic objective (cylindrical lens), used in the read-out systems. Two configurations of read-out optical scheme were investigated by our team: full-page scheme and line-by-line scheme. In the present article we report the specificities of these schemes and consider their advantages and disadvantages. The results of experimental modeling of both read-out configurations are also presented.

  6. Fast Multiplexed Readout of Xmon Qubits Part I: Design

    NASA Astrophysics Data System (ADS)

    Sank, Daniel; Jeffrey, E.; Mutus, J. Y.; White, T. C.; Barends, R.; Kelly, J.; Chen, Y.; Roushan, P.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Megrant, A.; Neill, C.; O'Malley, P.; Quintana, C.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, J. M.

    2014-03-01

    Realization of a surface code quantum computer requires fast scalable qubit readout. Previous systems have shown accurate readout in continuous wave mode. This neglects the transient response time which is crucial for the operation of the surface code and for measurement accuracy in the presence of finite qubit T1. We have designed a readout system, based on an integrated band pass filter, which achieves very fast transient response while maintaining long qubit T1. Our design uses separate readout resonators for each qubit. This allows individual qubit readout with frequency multiplexing while preventing correlated measurement errors. By connecting each resonator to a single filter the device requires zero additional on chip area and no extra control lines. We present design considerations, theory of operation, and physical layout of the device. With high fidelity gates this system forms the final element needed for a surface code cell.

  7. Delay grid multiplexing: simple time-based multiplexing and readout method for silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Won, Jun Yeon; Ko, Guen Bae; Lee, Jae Sung

    2016-10-01

    In this paper, we propose a fully time-based multiplexing and readout method that uses the principle of the global positioning system. Time-based multiplexing allows simplifying the multiplexing circuits where the only innate traces that connect the signal pins of the silicon photomultiplier (SiPM) channels to the readout channels are used as the multiplexing circuit. Every SiPM channel is connected to the delay grid that consists of the traces on a printed circuit board, and the inherent transit times from each SiPM channel to the readout channels encode the position information uniquely. Thus, the position of each SiPM can be identified using the time difference of arrival (TDOA) measurements. The proposed multiplexing can also allow simplification of the readout circuit using the time-to-digital converter (TDC) implemented in a field-programmable gate array (FPGA), where the time-over-threshold (ToT) is used to extract the energy information after multiplexing. In order to verify the proposed multiplexing method, we built a positron emission tomography (PET) detector that consisted of an array of 4  ×  4 LGSO crystals, each with a dimension of 3  ×  3  ×  20 mm3, and one- to-one coupled SiPM channels. We first employed the waveform sampler as an initial study, and then replaced the waveform sampler with an FPGA-TDC to further simplify the readout circuits. The 16 crystals were clearly resolved using only the time information obtained from the four readout channels. The coincidence resolving times (CRTs) were 382 and 406 ps FWHM when using the waveform sampler and the FPGA-TDC, respectively. The proposed simple multiplexing and readout methods can be useful for time-of-flight (TOF) PET scanners.

  8. Delay grid multiplexing: simple time-based multiplexing and readout method for silicon photomultipliers.

    PubMed

    Won, Jun Yeon; Ko, Guen Bae; Lee, Jae Sung

    2016-10-07

    In this paper, we propose a fully time-based multiplexing and readout method that uses the principle of the global positioning system. Time-based multiplexing allows simplifying the multiplexing circuits where the only innate traces that connect the signal pins of the silicon photomultiplier (SiPM) channels to the readout channels are used as the multiplexing circuit. Every SiPM channel is connected to the delay grid that consists of the traces on a printed circuit board, and the inherent transit times from each SiPM channel to the readout channels encode the position information uniquely. Thus, the position of each SiPM can be identified using the time difference of arrival (TDOA) measurements. The proposed multiplexing can also allow simplification of the readout circuit using the time-to-digital converter (TDC) implemented in a field-programmable gate array (FPGA), where the time-over-threshold (ToT) is used to extract the energy information after multiplexing. In order to verify the proposed multiplexing method, we built a positron emission tomography (PET) detector that consisted of an array of 4  ×  4 LGSO crystals, each with a dimension of 3  ×  3  ×  20 mm(3), and one- to-one coupled SiPM channels. We first employed the waveform sampler as an initial study, and then replaced the waveform sampler with an FPGA-TDC to further simplify the readout circuits. The 16 crystals were clearly resolved using only the time information obtained from the four readout channels. The coincidence resolving times (CRTs) were 382 and 406 ps FWHM when using the waveform sampler and the FPGA-TDC, respectively. The proposed simple multiplexing and readout methods can be useful for time-of-flight (TOF) PET scanners.

  9. TES Detector Noise Limited Readout Using SQUID Multiplexers

    NASA Technical Reports Server (NTRS)

    Staguhn, J. G.; Benford, D. J.; Chervenak, J. A.; Khan, S. A.; Moseley, S. H.; Shafer, R. A.; Deiker, S.; Grossman, E. N.; Hilton, G. C.; Irwin, K. D.

    2004-01-01

    The availability of superconducting Transition Edge Sensors (TES) with large numbers of individual detector pixels requires multiplexers for efficient readout. The use of multiplexers reduces the number of wires needed between the cryogenic electronics and the room temperature electronics and cuts the number of required cryogenic amplifiers. We are using an 8 channel SQUID multiplexer to read out one-dimensional TES arrays which are used for submillimeter astronomical observations. We present results from test measurements which show that the low noise level of the SQUID multiplexers allows accurate measurements of the TES Johnson noise, and that in operation, the readout noise is dominated by the detector noise. Multiplexers for large number of channels require a large bandwidth for the multiplexed readout signal. We discuss the resulting implications for the noise performance of these multiplexers which will be used for the readout of two dimensional TES arrays in next generation instruments.

  10. Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters

    NASA Technical Reports Server (NTRS)

    Porst, J.-P.; Adams, J. S.; Balvin, M.; Bandler, S.; Beyer, J.; Busch, S. E.; Drung, D.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.

    2012-01-01

    Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution.

  11. Orthogonal sequencing multiplexer for superconducting nanowire single-photon detectors with RSFQ electronics readout circuit.

    PubMed

    Hofherr, Matthias; Wetzstein, Olaf; Engert, Sonja; Ortlepp, Thomas; Berg, Benjamin; Ilin, Konstantin; Henrich, Dagmar; Stolz, Ronny; Toepfer, Hannes; Meyer, Hans-Georg; Siegel, Michael

    2012-12-17

    We propose an efficient multiplexing technique for superconducting nanowire single-photon detectors based on an orthogonal detector bias switching method enabling the extraction of the average count rate of a set of detectors by one readout line. We implemented a system prototype where the SNSPDs are connected to an integrated cryogenic readout and a pulse merger system based on rapid single flux quantum (RSFQ) electronics. We discuss the general scalability of this concept, analyze the environmental requirements which define the resolvability and the accuracy and demonstrate the feasibility of this approach with experimental results for a SNSPD array with four pixels.

  12. Multiplexed Readout of Thermal Bolometers with Superconducting Transition Edge Thermometers

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Allen, Christine A.; Chervenak, James A.; Freund, Mino M.; Kutyrev, Alexander S.; Moseley, S. Harvey; Shafer, Richard A.; Staguhn, Johannes G.; Grossman, Erich N.; Hilton, Gene C.

    2001-01-01

    History shows that in astronomy, more is better. In the near future, direct detector arrays for the far-infrared and submillimeter will contain hundreds to thousands of elements. A multiplexed readout is necessary for practical implementation of such arrays, and has been developed using SQUIDs. The technology permits a 32 x 32 array of bolometers to be read out using approximately 100 wires rather than the >2000 needed with direct wiring. These bolometer arrays are made by micromachining techniques, using superconducting transition edge sensors as the thermistors. We describe the development of this multiplexed superconducting bolometer array architecture as a step toward bringing about the first astronomically useful arrays of this design. This technology will be used in the Submillimeter and Far Infrared Experiment (SAFIRE) instrument on Stratospheric Observatory for Infrared Astronomy (SOFIA), and is a candidate for a wide variety of other spectroscopic and photometric instruments.

  13. Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements.

    PubMed

    Dobbs, M A; Lueker, M; Aird, K A; Bender, A N; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Cho, H-M; Clarke, J; Crawford, T M; Crites, A T; Flanigan, D I; de Haan, T; George, E M; Halverson, N W; Holzapfel, W L; Hrubes, J D; Johnson, B R; Joseph, J; Keisler, R; Kennedy, J; Kermish, Z; Lanting, T M; Lee, A T; Leitch, E M; Luong-Van, D; McMahon, J J; Mehl, J; Meyer, S S; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Richards, P L; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vanderlinde, K; Vieira, J D; Vu, C; Westbrook, B; Williamson, R

    2012-07-01

    A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.

  14. Development of a multiplexed readout with high position resolution for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Lee, Sangwon; Choi, Yong; Kang, Jihoon; Jung, Jin Ho

    2017-04-01

    Detector signals for positron emission tomography (PET) are commonly multiplexed to reduce the number of digital processing channels so that the system can remain cost effective while also maintaining imaging performance. In this work, a multiplexed readout combining Anger position estimation algorithm and position decoder circuit (PDC) was developed to reduce the number of readout channels by a factor of 24, 96-to-4. The data acquisition module consisted of a TDC (50 ps resolution), 4-channel ADCs (12 bit, 105 MHz sampling rate), 2 GB SDRAM and USB3.0. The performance of the multiplexed readout was assessed with a high-resolution PET detector block composed of 2×3 detector modules, each consisting of an 8×8 array of 1.52×1.52×6 mm3 LYSO, a 4×4 array of 3×3 mm2 silicon photomultiplier (SiPM) and 13.4×13.4 mm2 light guide with 0.7 mm thickness. The acquired flood histogram showed that all 384 crystals could be resolved. The average energy resolution at 511 keV was 13.7±1.6% full-width-at-half-maximum (FWHM) and the peak-to-valley ratios of the flood histogram on the horizontal and vertical lines were 18.8±0.8 and 22.8±1.3, respectively. The coincidence resolving time of a pair of detector blocks was 6.2 ns FWHM. The reconstructed phantom image showed that rods down to a diameter of 1.6 mm could be resolved. The results of this study indicate that the multiplexed readout would be useful in developing a PET with a spatial resolution less than the pixel size of the photosensor, such as a SiPM array.

  15. Frequency-Domain Multiplexed Readout for Superconducting Gamma-Ray Detectors

    SciTech Connect

    Dreyer, Jonathan G.; Arnold, Kam; Lanting, Trevor M.; Dobbs, Matt A.; Friedrich, Stephan; Lee, Adrian T.; Spieler, Helmuth G.

    2006-08-30

    We are developing a frequency-multiplexed readout for arrays of high-resolution Gamma detectors based on superconducting transition edge sensors (TESs). Each sensor is part of an LCR resonant circuit and is biased at an identifying carrier frequency. Several carrier signals are added and amplified with a single SQUID preamplifier at 4 K. Gamma absorption modulates the amplitude of the carrier, and demodulation at room temperature retrieves the initial temperature evolution of the sensor. This multiplexing system has originally been developed to read out large arrays of bolometers for cosmic microwave background studies. To accommodate the faster Gamma-ray signals, its demodulator bandwidth is being extended to 20 kHz to allow reading out up to eight TESs with a detector bandwidth of 10 kHz. Here we characterize the system noise performance and show how this multiplexing scheme can be adapted to read out arrays of superconducting Gamma-ray detectors.

  16. Medipix2 parallel readout system

    NASA Astrophysics Data System (ADS)

    Fanti, V.; Marzeddu, R.; Randaccio, P.

    2003-08-01

    A fast parallel readout system based on a PCI board has been developed in the framework of the Medipix collaboration. The readout electronics consists of two boards: the motherboard directly interfacing the Medipix2 chip, and the PCI board with digital I/O ports 32 bits wide. The device driver and readout software have been developed at low level in Assembler to allow fast data transfer and image reconstruction. The parallel readout permits a transfer rate up to 64 Mbytes/s. http://medipix.web.cern ch/MEDIPIX/

  17. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout

    SciTech Connect

    Allman, M. S. Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Mirin, R.; Nam, S. W.; Marsili, F.; Beyer, A.; Shaw, M. D.; Kumor, D.

    2015-05-11

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array as well as characterization measurements are discussed.

  18. Integrated performance of a frequency domain multiplexing readout in the SPT-3G receiver

    NASA Astrophysics Data System (ADS)

    Bender, A. N.; Ade, P. A. R.; Anderson, A. J.; Avva, J.; Ahmed, Z.; Arnold, K.; Austermann, J. E.; Basu Thakur, R.; Benson, B. A.; Bleem, L. E.; Byrum, K.; Carlstrom, J. E.; Carter, F. W.; Chang, C. L.; Cho, H. M.; Cliche, J. F.; Crawford, T. M.; Cukierman, A.; Czaplewski, D. A.; Ding, J.; Divan, R.; de Haan, T.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Gilbert, A.; Groh, J. C.; Guyser, R.; Halverson, N. W.; Harke-Hosemann, A.; Harrington, N. L.; Hattori, K.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O.; Khaire, T.; Korman, M.; Kubik, D.; Kuo, C. L.; Lee, A. T.; Leitch, E. M.; Lendinez, S.; Meyer, S. S.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Shariff, J. A.; Shirley, Ian; Shirokoff, E.; Smecher, G.; Sobrin, J.; Stan, L.; Stark, A. A.; Story, K.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.

    2016-07-01

    The third generation receiver for the South Pole Telescope, SPT-3G, will make extremely deep, arcminuteresolution maps of the temperature and polarization of the cosmic microwave background. The SPT-3G maps will enable studies of the B-mode polarization signature, constraining primordial gravitational waves as well as the effect of massive neutrinos on structure formation in the late universe. The SPT-3G receiver will achieve exceptional sensitivity through a focal plane of 16,000 transition-edge sensor bolometers, an order of magnitude more than the current SPTpol receiver. SPT-3G uses a frequency domain multiplexing (fMux) scheme to read out the focal plane, combining the signals from 64 bolometers onto a single pair of wires. The fMux readout facilitates the large number of detectors in the SPT-3G focal plane by limiting the thermal load due to readout wiring on the 250 millikelvin cryogenic stage. A second advantage of the fMux system is that the operation of each bolometer can be optimized. In addition to these benefits, the fMux readout introduces new challenges into the design and operation of the receiver. The bolometers are operated at a range of frequencies up to 5 MHz, requiring control of stray reactances over a large bandwidth. Additionally, crosstalk between multiplexed detectors will inject large false signals into the data if not adequately mitigated. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016. Here, we present the pre-deployment performance of the fMux readout system with the SPT-3G focal plane.

  19. GaAs Multiplexers for VLWIR Detector Readout Below 10 Kelvin

    NASA Technical Reports Server (NTRS)

    Cunningham, T.; Fitzsimmons, M. J.

    1997-01-01

    A multiplexer and buffer based on GaAs JFET technology is presented. This multiplexer operates normally from room temperature down to 4 Kelvin and is suitable for the readout of Very Long Wavelength Infrared Detectors that must be cooled to below 10 Kelvin.

  20. The PAUCam readout electronics system

    NASA Astrophysics Data System (ADS)

    Jiménez, Jorge; Illa, José M.; Cardiel-Sas, Laia; de Vicente, Juan; Castilla, Javier; Casas, Ricard

    2016-08-01

    The PAUCam is an optical camera with a wide field of view of 1 deg x 1 deg and up to 46 narrow and broad band filters. The camera is already installed on the William Herschel Telescope (WHT) in the Canary Islands, Spain and successfully commissioned during the first period of 2015. The paper presents the main results from the readout electronics commissioning tests and include an overview of the whole readout electronics system, its configuration and current performance.

  1. Multiplexed detection of cardiac biomarkers in serum with nanowire arrays using readout ASIC.

    PubMed

    Zhang, Guo-Jun; Chai, Kevin Tshun Chuan; Luo, Henry Zhan Hong; Huang, Joon Min; Tay, Ignatius Guang Kai; Lim, Andy Eu-Jin; Je, Minkyu

    2012-05-15

    Early detection of cardiac biomarkers for diagnosis of heart attack is the key to saving lives. Conventional method of detection like the enzyme-linked immunosorbent assay (ELISA) is time consuming and low in sensitivity. Here, we present a label-free detection system consisting of an array of silicon nanowire sensors and an interface readout application specific integrated circuit (ASIC). This system provides a rapid solution that is highly sensitive and is able to perform direct simultaneous-multiplexed detection of cardiac biomarkers in serum. Nanowire sensor arrays were demonstrated to have the required selectivity and sensitivity to perform multiplexed detection of 100 fg/ml troponin T, creatine kinase MM, and creatine kinase MB in serum. A good correlation between measurements from a probe station and the readout ASIC was obtained. Our detection system is expected to address the existing limitations in cardiac health management that are currently imposed by the conventional testing platform, and opens up possibilities in the development of a miniaturized device for point-of-care diagnostic applications.

  2. A novel method of encoded multiplexing readout for micro-pattern gas detectors

    NASA Astrophysics Data System (ADS)

    Qi, Bin-Xiang; Liu, Shu-Bin; Ji, Heng; Shen, Zhong-Tao; Ma, Si-Yuan; Liu, Hong-Bang; Huang, Wen-Qian; An, Qi

    2016-05-01

    The requirement of a large number of electronic channels poses a big challenge to the further applications of Micro-pattern Gas Detectors (MPGDs). By using the redundancy that at least two neighboring strips record the signal of a particle, a novel method of encoded multiplexing readout for MPGDs is presented in this paper. The method offers a feasible and easily-extensible way of encoding and decoding, and can significantly reduce the number of readout channels. A verification test was carried out on a 5 cm × 5 cm Thick Gas Electron Multiplier (THGEM) detector using a 8 keV Cu X-ray source with 100 μm slit, where 166 strips were read out by 21 encoded readout channels. The test results show good linearity in its position response, and the spatial resolution root-mean-square (RMS) of the test system is about 260 μm. This method has potential to build large area detectors and can be easily adapted to other detectors similar to MPGDs. Supported by National Natural Science Foundation of China (11222552, 11265003)

  3. Multiplex television transmission system

    NASA Technical Reports Server (NTRS)

    Reed, W. R.

    1967-01-01

    Time-multiplexing system enables several cameras to share a single commercial television transmission channel. This system is useful in industries for visually monitoring several operating areas or instrument panels from a remote location.

  4. Multiplexed fluorescence readout using time responses of color coded signals for biomolecular detection.

    PubMed

    Nishimura, Takahiro; Ogura, Yusuke; Tanida, Jun

    2016-12-01

    Fluorescence readout is an important technique for detecting biomolecules. In this paper, we present a multiplexed fluorescence readout method using time varied fluorescence signals. To generate the fluorescence signals, coded strands and a set of universal molecular beacons are introduced. Each coded strand represents the existence of an assigned target molecule. The coded strands have coded sequences to generate temporary fluorescence signals through binding to the molecular beacons. The signal generating processes are modeled based on the reaction kinetics between the coded strands and molecular beacons. The model is used to decode the detected fluorescence signals using maximum likelihood estimation. Multiplexed fluorescence readout was experimentally demonstrated with three molecular beacons. Numerical analysis showed that the readout accuracy was enhanced by the use of time-varied fluorescence signals.

  5. Multiplexed fluorescence readout using time responses of color coded signals for biomolecular detection

    PubMed Central

    Nishimura, Takahiro; Ogura, Yusuke; Tanida, Jun

    2016-01-01

    Fluorescence readout is an important technique for detecting biomolecules. In this paper, we present a multiplexed fluorescence readout method using time varied fluorescence signals. To generate the fluorescence signals, coded strands and a set of universal molecular beacons are introduced. Each coded strand represents the existence of an assigned target molecule. The coded strands have coded sequences to generate temporary fluorescence signals through binding to the molecular beacons. The signal generating processes are modeled based on the reaction kinetics between the coded strands and molecular beacons. The model is used to decode the detected fluorescence signals using maximum likelihood estimation. Multiplexed fluorescence readout was experimentally demonstrated with three molecular beacons. Numerical analysis showed that the readout accuracy was enhanced by the use of time-varied fluorescence signals. PMID:28018742

  6. Code-division-multiplexed readout of large arrays of TES microcalorimeters

    NASA Astrophysics Data System (ADS)

    Morgan, K. M.; Alpert, B. K.; Bennett, D. A.; Denison, E. V.; Doriese, W. B.; Fowler, J. W.; Gard, J. D.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; O'Neil, G. C.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Swetz, D. S.

    2016-09-01

    Code-division multiplexing (CDM) offers a path to reading out large arrays of transition edge sensor (TES) X-ray microcalorimeters with excellent energy and timing resolution. We demonstrate the readout of X-ray TESs with a 32-channel flux-summed code-division multiplexing circuit based on superconducting quantum interference device (SQUID) amplifiers. The best detector has energy resolution of 2.28 ± 0.12 eV FWHM at 5.9 keV and the array has mean energy resolution of 2.77 ± 0.02 eV over 30 working sensors. The readout channels are sampled sequentially at 160 ns/row, for an effective sampling rate of 5.12 μs/channel. The SQUID amplifiers have a measured flux noise of 0.17 μΦ0/√Hz (non-multiplexed, referred to the first stage SQUID). The multiplexed noise level and signal slew rate are sufficient to allow readout of more than 40 pixels per column, making CDM compatible with requirements outlined for future space missions. Additionally, because the modulated data from the 32 SQUID readout channels provide information on each X-ray event at the row rate, our CDM architecture allows determination of the arrival time of an X-ray event to within 275 ns FWHM with potential benefits in experiments that require detection of near-coincident events.

  7. Multiplexing terbium- and europium-based TR-FRET readouts to increase kinase assay capacity.

    PubMed

    Horton, Robert A; Vogel, Kurt W

    2010-09-01

    Identification and characterization of kinase inhibitor potency and selectivity is often an iterative process in which a library of compounds is first screened against a single kinase, and hits from that screen are then profiled against other kinases to determine specificity. By developing kinase assays that employ either a terbium- or a europium-based time-resolved fluorescence resonance energy transfer (TR-FRET) readout, one can take advantage of the distinct emission properties of these labels to develop assays for 2 kinases that can be performed simultaneously in the same well. This not only increases the information content provided per assay well but can immediately provide information on compound specificity. The authors have applied this strategy to the development of multiplexed assays for 2 examples systems: EGFR and IKKbeta, as well as lipid kinase family members mTOR and PIK3C3. They demonstrate the ability of these multiplexed assays to characterize selective kinase inhibitors in a dose-response mode, with no difference in results obtained from traditional single kinase assays performed separately.

  8. First implementation of TES bolometer arrays with SQUID-based multiplexed readout on a balloon-borne platform

    NASA Astrophysics Data System (ADS)

    Aubin, François; Aboobaker, Asad M.; Ade, Peter; Baccigalupi, Carlo; Bao, Chaoyun; Borrill, Julian; Cantalupo, Christopher; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Grainger, Will; Hanany, Shaul; Hubmayr, Johannes; Hyland, Peter; Hillbrand, Seth; Jaffe, Andrew; Johnson, Bradley; Jones, Terry; Kisner, Theodore; Klein, Jeff; Korotkov, Andrei; Leach, Sam; Lee, Adrian; Limon, Michele; MacDermid, Kevin; Matsumura, Tomotake; Meng, Xiaofan; Miller, Amber; Milligan, Michael; Polsgrove, Daniel; Ponthieu, Nicolas; Raach, Kate; Reichborn-Kjennerud, Britt; Sagiv, Ilan; Smecher, Graeme; Tran, Huan; Tucker, Gregory S.; Vinokurov, Yury; Yadav, Amit; Zaldarriaga, Matias; Zilic, Kyle

    2010-07-01

    EBEX (the E and B EXperiment) is a balloon-borne telescope designed to measure the polarisation of the cosmic microwave background radiation. During a two week long duration science flight over Antarctica, EBEX will operate 768, 384 and 280 spider-web transition edge sensor (TES) bolometers at 150, 250 and 410 GHz, respectively. The 10-hour EBEX engineering flight in June 2009 over New Mexico and Arizona provided the first usage of both a large array of TES bolometers and a Superconducting QUantum Interference Device (SQUID) based multiplexed readout in a space-like environment. This successful demonstration increases the technology readiness level of these bolometers and the associated readout system for future space missions. A total of 82, 49 and 82 TES detectors were operated during the engineering flight at 150, 250 and 410 GHz. The sensors were read out with a new SQUID-based digital frequency domain multiplexed readout system that was designed to meet the low power consumption and robust autonomous operation requirements presented by a balloon experiment. Here we describe the system and the remote, automated tuning of the bolometers and SQUIDs. We compare results from tuning at float to ground, and discuss bolometer performance during flight.

  9. Multiplexing Readout of TES Microcalorimeters Based on Analog Baseband Feedback

    SciTech Connect

    Takei, Y.; Yamasaki, N.Y; Mitsuda, K.; Kimura, S.; Hirakoso, W.; Masui, K.; Korte, P. A. J. de; Kuur, J. van der; Gottardi, L.

    2009-12-16

    A TES microcalorimeter array is a promising spectrometer with excellent energy resolution and a moderate imaging capability. To realize a large format array in space, multiplexing the TES signals at the low tempersture stage is mandatory. We are developing frequency division multiplexing (FDM) based on baseband feedback technique. In FDM, each TES is AC-biased with a different carrier frequency. Signals from several pixels are summed and then read out by one SQUID. The maximum number of multiplexed pixels are limited by the frequency band in which the SQUID can be operated in a flux-locked loop, which is {approx}1 MHz with standard flux-locked loop circuit. In the baseband feedback, the signal ({approx}10 kHz band) from the TES is once demodulated. Then a reconstructed copy of the modulated signal with an appropriate phase is fed back to the SQUID input coil to maintain an approximately constant magnetic flux. This can be implemented even for large cable delays and automatically suppresses the carrier. We developed a prototype electronics for the baseband feedback based on an analog phase sensitive detector (PSD) and a multiplier. Combined with Seiko 80-SSA SQUID amp, open-loop gain of 8 has been obtained for 10 kHz baseband signal at 5 MHz carrier frequency, with a moderate noise contribution of 27pA/{radical}(Hz) at input.

  10. A low power front-end architecture for SiPM readout with integrated ADC and multiplexed readout

    NASA Astrophysics Data System (ADS)

    Sacco, I.; Fischer, P.; Ritzert, M.; Peric, I.

    2013-01-01

    Silicon Photo-Multiplier (SiPM) detectors are becoming widely used for optical photon and, in conjunction with suited scintillators, for gamma detection in both medical imaging and particle physics experiments. The spatial resolution can be improved by using smaller SiPMs with a corresponding increase in front-end channels density. The timing resolution of the whole system is a function of the detector parameters and of the characteristics of the front-end electronics. We present a low power front-end readout architecture which allows reading out several SiPMs though a single line in order to maximize the number of SiPMs. The design offers good timing performance and includes a simple charge digitizer in every channel. Four different single-ended channel designs have been designed, submitted for fabrication and characterized electronically and with SiPMs. The timing performance is obtained by using a low input impedance, precise threshold setting of a leading edge discriminator and a programmable input dc potential to set the SiPM HV bias on a channel per channel basis. Programmable low- and high-pass filters should allow reducing baseline fluctuations and noise. A simple ADC is implemented by first integrating the signal current and then discharging it at a constant rate until the baseline is reached again. The current consumption of the single channel is typically less than 10 mA. The time and energy information are sent out on a single wire. In order to keep as low as possible the output cabling the signals from different channels can be multiplexed on the same cable. The processing of these signals (extraction of time, ADC amplitude determination and channel number decoding) is performed by an external FPGA. The overall architecture, the front-end designs, and measurements with SiPMs are presented.

  11. Indium Hybridization of Large Format TES Bolometer Arrays to Readout Multiplexers for Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Costen, Nick; Allen, Christine

    2007-01-01

    This conference poster reviews the Indium hybridization of the large format TES bolometer arrays. We are developing a key technology to enable the next generation of detectors. That is the Hybridization of Large Format Arrays using Indium bonded detector arrays containing 32x40 elements which conforms to the NIST multiplexer readout architecture of 1135 micron pitch. We have fabricated and hybridized mechanical models with the detector chips bonded after being fully back-etched. The mechanical support consists of 30 micron walls between elements Demonstrated electrical continuity for each element. The goal is to hybridize fully functional array of TES detectors to NIST readout.

  12. Development and characterization of the readout system for POLARBEAR-2

    NASA Astrophysics Data System (ADS)

    Barron, D.; Ade, P. A. R.; Akiba, Y.; Aleman, C.; Arnold, K.; Atlas, M.; Bender, A.; Borrill, J.; Chapman, S.; Chinone, Y.; Cukierman, A.; Dobbs, M.; Elleflot, T.; Errard, J.; Fabbian, G.; Feng, G.; Gilbert, A.; Halverson, N. W.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Holzapfel, W. L.; Hori, Y.; Inoue, Y.; Jaehnig, G. C.; Katayama, N.; Keating, B.; Kermish, Z.; Keskitalo, R.; Kisner, T.; Le Jeune, M.; Lee, A. T.; Matsuda, F.; Matsumura, T.; Morii, H.; Myers, M. J.; Navroli, M.; Nishino, H.; Okamura, T.; Peloton, J.; Rebeiz, G.; Reichardt, C. L.; Richards, P. L.; Ross, C.; Sholl, M.; Siritanasak, P.; Smecher, G.; Stebor, N.; Steinbach, B.; Stompor, R.; Suzuki, A.; Suzuki, J.; Takada, S.; Takakura, T.; Tomaru, T.; Wilson, B.; Yamaguchi, H.; Zahn, O.

    2014-07-01

    POLARBEAR-2 is a next-generation receiver for precision measurements of the polarization of the cosmic microwave background (Cosmic Microwave Background (CMB)). Scheduled to deploy in early 2015, it will observe alongside the existing POLARBEAR-1 receiver, on a new telescope in the Simons Array on Cerro Toco in the Atacama desert of Chile. For increased sensitivity, it will feature a larger area focal plane, with a total of 7,588 polarization sensitive antenna-coupled Transition Edge Sensor (TES) bolometers, with a design sensitivity of 4.1 uKrt(s). The focal plane will be cooled to 250 milliKelvin, and the bolometers will be read-out with 40x frequency domain multiplexing, with 36 optical bolometers on a single SQUID amplifier, along with 2 dark bolometers and 2 calibration resistors. To increase the multiplexing factor from 8x for POLARBEAR-1 to 40x for POLARBEAR-2 requires additional bandwidth for SQUID readout and well-defined frequency channel spacing. Extending to these higher frequencies requires new components and design for the LC filters which define channel spacing. The LC filters are cold resonant circuits with an inductor and capacitor in series with each bolometer, and stray inductance in the wiring and equivalent series resistance from the capacitors can affect bolometer operation. We present results from characterizing these new readout components. Integration of the readout system is being done first on a small scale, to ensure that the readout system does not affect bolometer sensitivity or stability, and to validate the overall system before expansion into the full receiver. We present the status of readout integration, and the initial results and status of components for the full array.

  13. The Belle II SVD data readout system

    NASA Astrophysics Data System (ADS)

    Thalmeier, R.; Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Bulla, L.; Casarosa, G.; Ceccanti, M.; Cervenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doleźal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyś, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnićka, P.; Lanceri, L.; Lettenbicher, J.; Lueck, T.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaya, I.; Rizzo, G.; Rozanska, M.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2017-02-01

    The Belle II Experiment at the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan, will explore the asymmetry between matter and antimatter and search for new physics beyond the standard model. 172 double-sided silicon strip detectors are arranged cylindrically in four layers around the collision point to be part of a system which measures the tracks of the collision products of electrons and positrons. A total of 1748 radiation-hard APV25 chips read out 128 silicon strips each and send the analog signals by time-division multiplexing out of the radiation zone to 48 Flash Analog Digital Converter Modules (FADC). Each of them applies processing to the data; for example, it uses a digital finite impulse response filter to compensate line signal distortions, and it extracts the peak timing and amplitude from a set of several data points for each hit, using a neural network. We present an overview of the SVD data readout system, along with front-end electronics, cabling, power supplies and data processing.

  14. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Li, Q.; Lu, X.

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  15. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.; Li, Q.; Lu, X.

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  16. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Li, Qingbo; Lu, Xiandan

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  17. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.; Li, Qingbo; Lu, Xiandan

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  18. Television multiplexing system

    NASA Technical Reports Server (NTRS)

    Simpkins, L. G. (Inventor)

    1973-01-01

    A television multiplexing system which includes a circuit that inserts a digital codes sync signal and a digital code into a video signal for identifying the channel is described. The digital sync signal and the digital coded signals are generated by a single crystal controlled clock so that they are always in synchronism with each other. In demultiplexing the signals are utilized for shifting the digital coded signals into a shift register. The shift register, in turn, activates a decoder according to the code stored in the shift register for selecting the proper recording disk or receiver for storing the video signal.

  19. Chopped molecular beam multiplexing system

    NASA Technical Reports Server (NTRS)

    Adams, Billy R. (Inventor)

    1986-01-01

    The integration of a chopped molecular beam mass spectrometer with a time multiplexing system is described. The chopping of the molecular beam is synchronized with the time intervals by a phase detector and a synchronous motor. Arithmetic means are generated for phase shifting the chopper with respect to the multiplexer. A four channel amplifier provides the capacity to independently vary the baseline and amplitude in each channel of the multiplexing system.

  20. A balanced, superconducting multiplier circuit for fast-switching and multiplexed qubit readout: Design and modeling

    NASA Astrophysics Data System (ADS)

    Rosenthal, Eric I.; Chapman, Benjamin J.; Moores, Brad A.; Kerckhoff, Joseph; Lehnert, K. W.

    Superconducting qubits hold great promise for the development of new quantum-information technology. Coherence times of individual transmon qubits in microwave cavities are consistently improving. While qubits are becoming well developed tools, scaling qubit readout for many-qubit architectures remains prohibitively complex and expensive. Here, we present a concept for a multipurpose device that enables time or code domain multiplexing of qubit readout. It is a two-port, microwave device that can be switched rapidly between three modes of operation: transmission, reflection and inversion. The design is based on a Wheatstone bridge-like structure of tunable inductors, which we realize with arrays of SQUIDs. A single bias line modulates the flux through the SQUIDs, and hence the imbalance of the bridge, putting the device in one of its three modes of operation. This talk will discuss the theory, design and layout behind the device and its potential use for multiplexing of qubit networks. The device is designed to operate over a broad bandwidth (4-8 GHz), and to have low dissipation, appropriate for integration with superconducting qubit networks.

  1. General purpose multiplexing device for cryogenic microwave systems

    NASA Astrophysics Data System (ADS)

    Chapman, Benjamin J.; Moores, Bradley A.; Rosenthal, Eric I.; Kerckhoff, Joseph; Lehnert, K. W.

    2016-05-01

    We introduce and experimentally characterize a general purpose device for signal processing in circuit quantum electrodynamics systems. The device is a broadband two-port microwave circuit element with three modes of operation: it can transmit, reflect, or invert incident signals between 4 and 8 GHz. This property makes it a versatile tool for lossless signal processing at cryogenic temperatures. In particular, rapid switching (≤ 15 ns ) between these operation modes enables several multiplexing readout protocols for superconducting qubits. We report the device's performance in a two-channel code domain multiplexing demonstration. The multiplexed data are recovered with fast readout times (up to 400 ns ) and infidelities ≤ 10-2 for probe powers ≥ 7 fW , in agreement with the expectation for binary signaling with Gaussian noise.

  2. Measurement of MKID Performance with High-Speed and Wide-Band Readout System

    NASA Astrophysics Data System (ADS)

    Karatsu, Kenichi; Naruse, M.; Nitta, T.; Sekine, M.; Sekiguchi, S.; Sekimoto, Y.; Noguchi, T.; Uzawa, Y.; Matsuo, H.; Kiuchi, H.

    2014-08-01

    Microwave kinetic inductance detectors (MKIDs) are being developed at the National Astronomical Observatory of Japan to enable precise measurements of the cosmic microwave background. One of the features of MKIDs is scalability using a frequency-division multiplexing (FDMUX) readout scheme. A digital fast fourier transform spectrometer (FFTS) is a good way to read out a number of resonance frequencies simultaneously and fully utilize the advantage of FDMUX of MKIDs. We have developed FFTS readout electronics using an ADC/DAC with 1 Gsps (sample per second) sampling rate and 270 MHz bandwidth. We measured the noise characteristics of a single MKID in the frequency range of 60 Hz-30 kHz with this readout system, and found the noise was almost equivalent to the noise measured by ordinary analog IQ down-converter readout. This indicates our FFTS electronics do not add any additional noise to the MKID readout system over the frequency range.

  3. Indium Hybridization of Large Format TES Bolometer Arrays to Readout Multiplexers for Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Costen, Nick; Allen, Christine

    2007-01-01

    The advance of new detector technologies combined with enhanced fabrication methods has resulted in an increase in development of large format arrays. The next generation of scientific instruments will utilize detectors containing hundreds to thousands of elements providing a more efficient means to conduct large area sky surveys. Some notable detectors include a 32x32 x-ray microcalorimeter for Constellation-X, an infrared bolometer called SAFIRE to fly on the airborne observatory SOFIA, and the sub-millimeter bolometer SCUBA-2 to be deployed at the JCMT which will use more than 10,000 elements for two colors, each color using four 32x40 arrays. Of these detectors, SCUBA-2 is farthest along in development and uses indium hybridization to multiplexers for readout of the large number of elements, a technology that will be required to enable the next generation of large format arrays. Our current efforts in working toward large format arrays have produced GISMO, the Goddard IRAM Superconducting 2-Millimeter observer. GISMO is a far infrared instrument to be field tested later this year at the IRAM 30 meter telescope in Spain. GISMO utilizes transition edge sensor (TES) technology in an 8x16 filled array format that allows for typical fan-out wiring and wire-bonding to four 1x32 NIST multiplexers. GISMO'S electrical wiring is routed along the tops of 30 micron walls which also serve as the mechanical framework for the array. This architecture works well for the 128 element array, but is approaching the limit for routing the necessary wires along the surface while maintaining a high fill factor. Larger format arrays will benefit greatly from making electrical connections through the wafer to the backside, where they can be hybridized to a read-out substrate tailored to handling the wiring scheme. The next generation array we are developing is a 32x40 element array on a pitch of 1135 microns that conforms to the NIST multiplexer, already developed for the SCUBA-2

  4. A wire spark chamber capacitive readout system with low leakage current and small systematic error

    NASA Astrophysics Data System (ADS)

    Anderhub, H. B.; Boecklin, J.; von Gunten, H. P.; Koenig, H.; Le Coultre, P.; Makowiecki, D.; Seiler, P. G.

    1983-02-01

    A wire spark chamber capacitive readout system with analog FET switch multiplexing and CAMAC interface is described. Two wire planes per chamber are read out. The information of each plane is sequentially digitized in one ADC. This and the low leakage current of the FET switches guarantee a small systematic error of the measurement of the spark position.

  5. Linearized superconducting quantum interference device array for high bandwidth frequency-domain readout multiplexing.

    PubMed

    Lanting, T; Dobbs, M; Spieler, H; Lee, A T; Yamamoto, Y

    2009-09-01

    We have designed and demonstrated a superconducting quantum interference device (SQUID) array linearized with cryogenic feedback. To achieve the necessary loop gain, a 300-element series array SQUID is constructed from three monolithic 100-element series arrays. A feedback resistor completes the loop from the SQUID output to the input coil. The short feedback path of this linearized SQUID array (LISA) allows for a substantially larger flux-locked loop bandwidth as compared to a SQUID flux-locked loop that includes a room temperature amplifier. The bandwidth, linearity, noise performance, and 3 Phi(0) dynamic range of the LISA are sufficient for its use in our target application: the multiplexed readout of transition-edge sensor bolometers.

  6. Gravity Probe B gyroscope readout system

    NASA Astrophysics Data System (ADS)

    Muhlfelder, B.; Lockhart, J.; Aljabreen, H.; Clarke, B.; Gutt, G.; Luo, M.

    2015-11-01

    We describe the Gravity Probe B London-moment readout system successfully used on-orbit to measure two gyroscope spin axis drift rates predicted by general relativity. The system couples the magnetic signal of a spinning niobium-coated rotor into a low noise superconducting quantum interference device. We describe the multi-layered magnetic shield needed to attenuate external fields that would otherwise degrade readout performance. We discuss the ∼35 nrad/yr drift rate sensitivity that was achieved on-orbit.

  7. Integrated multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Tan, Hongdong

    2002-05-14

    The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.

  8. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    SciTech Connect

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-06-14

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 10{sup 4} ≤ Q ≤ 2 × 10{sup 4} and the square root of spectral density of current noise referred to the SQUID input √S{sub I} = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S{sub 21} enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers P{sub MR} make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √S{sub I} is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of P{sub MR}) or the quantization noise due to the resolution of 300-K electronics (for large values of P{sub MR}). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the

  9. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    NASA Astrophysics Data System (ADS)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-06-01

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 104 ≤ Q ≤ 2 × 104 and the square root of spectral density of current noise referred to the SQUID input √SI = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers PMR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √SI is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of PMR) or the quantization noise due to the resolution of 300-K electronics (for large values of PMR). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √SI ≤ 5 pA/√Hz, i.e., close to √SI of

  10. Study of spacecraft direct readout meteorological systems

    NASA Technical Reports Server (NTRS)

    Bartlett, R.; Elam, W.; Hoedemaker, R.

    1973-01-01

    Characteristics are defined of the next generation direct readout meteorological satellite system with particular application to Tiros N. Both space and ground systems are included. The recommended space system is composed of four geosynchronous satellites and two low altitude satellites in sun-synchronous orbit. The goesynchronous satellites transmit to direct readout ground stations via a shared S-band link, relayed FOFAX satellite cloud cover pictures (visible and infrared) and weather charts (WEFAX). Basic sensor data is transmitted to regional Data Utilization Stations via the same S-band link. Basic sensor data consists of 0.5 n.m. sub-point resolution data in the 0.55 - 0.7 micron spectral region, and 4.0 n.m. resolution data in the 10.5 - 12.6 micron spectral region. The two low altitude satellites in sun-synchronous orbit provide data to direct readout ground stations via a 137 MHz link, a 400 Mhz link, and an S-band link.

  11. Architecture of a modular, multichannel readout system for dense electrochemical biosensor microarrays

    NASA Astrophysics Data System (ADS)

    Ramfos, Ioannis; Blionas, Spyridon; Birbas, Alexios

    2015-01-01

    The architecture of a modular, multichannel readout system for dense electrochemical microarrays, targeting Lab-on-a-Chip applications, is presented. This approach promotes efficient component reusability through a hybrid multiplexing methodology, maintaining high levels of sampling performance and accuracy. Two readout modes are offered, which can be dynamically interchanged following signal profiling, to cater for both rapid signal transitions and weak current responses. Additionally, functional extensions to the described architecture are discussed, which provide the system with multi-biasing capabilities. A prototype integrated circuit of the proposed architecture’s analog core and a supporting board were implemented to verify the working principles. The system was evaluated using standard loads, as well as electrochemical sensor arrays. Through a range of operating conditions and loads, the prototype exhibited a highly linear response and accurately delivered the readout of input signals with fast transitions and wide dynamic ranges.

  12. Television multiplexing system

    NASA Technical Reports Server (NTRS)

    Simpkins, L. G.

    1971-01-01

    System with single, standard, wideband line transmits ten or more real time TV video data displays over hard wire to recorders more than 22.5 km from source. Digital logic and integrated circuits ensure high reliability and low maintenance. System is adaptable for video sampling applications.

  13. Prototype readout electronics for the upgraded ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Sielewicz, K. M.; Aglieri Rinella, G.; Bonora, M.; Ferencei, J.; Giubilato, P.; Rossewij, M. J.; Schambach, J.; Vanat, T.

    2017-01-01

    The ALICE Collaboration is preparing a major upgrade to the experimental apparatus. A key element of the upgrade is the construction of a new silicon-based Inner Tracking System containing 12 Gpixels in an area of 10 m2. Its readout system consists of 192 readout units that control the pixel sensors and the power units, and deliver the sensor data to the counting room. A prototype readout board has been designed to test: the interface between the sensor modules and the readout electronics, the signal integrity and reliability of data transfer, the interface to the ALICE DAQ and trigger, and the susceptibility of the system to the expected radiation level.

  14. Laser multiplexing system

    DOEpatents

    Johnson, Steve A.; English, Jr., Ronald Edward; White, Ronald K.

    2001-01-01

    A plurality of copper lasers, as radiant power sources, emits a beam of power carrying radiation. A plurality of fiber injection assemblies receives power from the plurality of copper lasers and injects such power into a plurality of fibers for individually transmitting the received power to a plurality of power-receiving devices. The power-transmitting fibers of the system are so arranged that power is delivered therethrough to each of the power-receiving devices such that, even if a few of the radiant power sources and/or fibers fail, the power supply to any of the power receiving devices will not completely drop to zero but will drop by the same proportionate amount.

  15. Development of a new readout system for the near-infrared detector of HONIR

    NASA Astrophysics Data System (ADS)

    Ui, Takahiro; Sako, Shigeyuki; Yamashita, Takuya; Akitaya, Hiroshi; Kawabata, Koji S.; Nakaya, Hidehiko; Moritani, Yuki; Itoh, Ryosuke; Takaki, Katsutoshi; Urano, Takeshi; Ueno, Issei; Ohsugi, Takashi; Yoshida, Michitoshi; Nakao, Hikaru; Hashiba, Yasuhito

    2014-08-01

    We developed a new readout system for the near-infrared detector VIRGO-2K (2kx2k HgCdTe array) installed in the optical-infrared simultaneous camera, HONIR, for the 1.5 m Kanata telescope at Higashi-Hiroshima observatory. The main goal of this development is to read out one frame within ~ 1 second through 16 output readout mode of the detector, in order to reduce the overhead time per exposure. The system is based on a CCD controller, Kiso Array Controller (KAC). We redesigned the analog part of KAC to fit VIRGO-2K. We employed a fully differential input circuit and a third order Bessel low-pass filter for noise reduction and a constant current system to improve the linearity of the detector. We set the cutoff frequency of the Bessel low-pass filter at the readout clock rate (120 kHz). We also set the constant current at 200 μA according to the data sheet of VIRGO-2K. We tested the new readout system at room temperature and confirmed that the low-pass filter works well as designed. The fluctuation of the current level of the constant current system is less than 2% for the typical output voltage range of VIRGO-2K (3.2-4.4 V). We measured the readout noise caused by the new readout system (connected to cooled multiplexer) and found that it is 30-40 μV rms, being comparable to or slightly higher than the typical readout noise of VIRGO-2K, ˜ 37 μV rms.

  16. A new interpolation arithmetic based readout signals process method for infrared imaging system applications

    NASA Astrophysics Data System (ADS)

    Li, Xinyi; Yao, Suying; Zhao, Yiqiang

    2009-07-01

    A new readout signals process circuit for infrared focal plane array (IR FPA) applications is proposed. In the proposed structure the continuous-time current signals from the detector array are mirrored, amplified, integrated on the integration capacitors and changed to discrete analog voltage signals. Next, these voltage signals are amplified and modulated by a group of encoded signals from the column buses, then fed to a multiple-input analog adder to generate a single serial output data stream. The generated single serial data stream is transferred to the mitigate noise circuit and is converted to digital signals by the A/D converter. For very large format detector arrays applications the speed restriction of the time-multiplexing circuitry and the A/D converter will be released. Since no scan technique has been used, all the output signals from an entire row in the detector array have been readout simultaneously without loss of optical power, the scalability of the photon-signals, the readout efficiency and the accuracy of the imaging system will be improved. Theory analysis and experimental results show that the proposed idea is reasonable and efficient. The proposed readout method is a solid option for large format infrared detector arrays and highly integrated infrared imaging system applications. In addition, the proposed idea also can be used for other active and passive imaging readout integrated circuits.

  17. A novel readout system for wireless passive pressure sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Huixin; Hong, Yingping; Ge, Binger; Liang, Ting; Xiong, Jijun

    2014-03-01

    This paper presents a novel readout system for wireless passive pressure sensors based on the inductively coupled inductor and cavity (LC) resonant circuits. The proposed system consists of a reader antenna inductively coupled to the sensor circuit, a readout circuit, and a personal computer (PC) post processing unit. The readout circuit generates a voltage signal representing the sensor's capacitance. The frequency of the reader antenna driving signal is a constant, which is equal to the sensor's resonant frequency at zero pressure. Based on mechanical and electrical modeling, the pressure sensor design based on the high temperature co-fired ceramic (HTCC) technology is conducted and discussed. The functionality and accuracy of the readout system are tested with a voltage-capacitance measurement system and demonstrated in a realistic pressure measurement environment, so that the overall performance and the feasibility of the readout system are proved.

  18. FASTBUS readout system for the CDF DAQ upgrade

    SciTech Connect

    Andresen, J.; Areti, H.; Black, D.

    1993-11-01

    The Data Acquisition System (DAQ) at the Collider Detector at Fermilab is currently being upgraded to handle a minimum of 100 events/sec for an aggregate bandwidth that is at least 25 Mbytes/sec. The DAQ System is based on a commercial switching network that has interfaces to VME bus. The modules that readout the front end crates (FASTBUS and RABBIT) have to deliver the data to the VME bus based host adapters of the switch. This paper describes a readout system that has the required bandwidth while keeping the experiment dead time due to the readout to a minimum.

  19. Self-triggering readout system for the neutron lifetime experiment PENeLOPE

    NASA Astrophysics Data System (ADS)

    Gaisbauer, D.; Konorov, I.; Steffen, D.; Paul, S.

    2016-07-01

    The aim of PENeLOPE (Precision Experiment on Neutron Lifetime Operating with Proton Extraction) at the Forschungsreaktor München II is a high-precision measurement of the neutron lifetime and thereby an improvement of the parameter's precision by one order of magnitude. In order to achieve a higher accuracy, modern experiments naturally require state-of-the-art readout electronics, as well as high-performance data acquisition systems. This paper presents the self-triggering readout system designed for PENeLOPE which features a continuous pedestal tracking, configurable signal detection logic, floating ground up to 30 kV, cryogenic environment and the novel Switched Enabling Protocol (SEP). The SEP is a time-division multiplexing transport level protocol developed for a star network topology.

  20. Handheld chemiresistive gas sensor readout system

    NASA Astrophysics Data System (ADS)

    Joubert, Trudi-Heleen; du Toit, Jurie; Mkwakikunga, Bonex; Bosscha, Peter

    2016-02-01

    Low-cost and non-invasive diabetes diagnosis is increasingly important [1], and this paper presents a handheld readout system for chemiresistive gas sensors in a breath acetone diagnostic application. The sensor contains reference and detection devices, used for the detection of gas concentration. Fabrication is by dropcasting a metaloxide nanowire solution onto gold interdigitated electrodes, which had been manufactured on silicon. The resulting layer is a wide bandgap n-type semiconductor material sensitive to acetone, producing a change in resistance between the electrode terminals [2]. Chemiresistive sensors typically require temperatures of 300-500 °C, while variation of sensing temperature is also employed for selective gas detection. The nano-structured functional material requires low temperatures due to large surface area, but heating is still required for acceptable recovery kinetics. Furthermore, UV illumination improves the sensor recovery [3], and is implemented in this system. Sensor resistances range from 100 Ω to 50 MΩ, while the sensor response time require a sampling frequency of 10Hz. Sensor resistance depends on temperature, humidity, and barometric pressure. The GE CC2A23 temperature sensor is used over a range of -10°C to 60°C, the Honeywell HIH5031 humidity sensor operates up to 85% over this temperature range, and the LPS331AP barometric pressure sensor measures up to 1.25 bar. Honeywell AWM43300V air flow sensors monitor the flow rate up to 1000 sccm. An LCD screen displays all the sensor data, as well as real time date and time, while all measurements are also logged in CSV-format. The system operates from a rechargeable battery.

  1. A radiation-tolerant electronic readout system for portal imaging

    NASA Astrophysics Data System (ADS)

    Östling, J.; Brahme, A.; Danielsson, M.; Iacobaeus, C.; Peskov, V.

    2004-06-01

    A new electronic portal imaging device, EPID, is under development at the Karolinska Institutet and the Royal Institute of Technology. Due to considerable demands on radiation tolerance in the radiotherapy environment, a dedicated electronic readout system has been designed. The most interesting aspect of the readout system is that it allows to read out ˜1000 pixels in parallel, with all electronics placed outside the radiation beam—making the detector more radiation resistant. In this work we are presenting the function of a small prototype (6×100 pixels) of the electronic readout board that has been tested. Tests were made with continuous X-rays (10-60 keV) and with α particles. The results show that, without using an optimised gas mixture and with an early prototype only, the electronic readout system still works very well.

  2. Multiplexed Oversampling Digitizer in 65 nm CMOS for Column-Parallel CCD Readout

    SciTech Connect

    Grace, Carl; Walder, Jean-Pierre; von der Lippe, Henrik

    2012-04-10

    A digitizer designed to read out column-parallel charge-coupled devices (CCDs) used for high-speed X-ray imaging is presented. The digitizer is included as part of the High-Speed Image Preprocessor with Oversampling (HIPPO) integrated circuit. The digitizer module comprises a multiplexed, oversampling, 12-bit, 80 MS/s pipelined Analog-to-Digital Converter (ADC) and a bank of four fast-settling sample-and-hold amplifiers to instrument four analog channels. The ADC multiplexes and oversamples to reduce its area to allow integration that is pitch-matched to the columns of the CCD. Novel design techniques are used to enable oversampling and multiplexing with a reduced power penalty. The ADC exhibits 188 ?V-rms noise which is less than 1 LSB at a 12-bit level. The prototype is implemented in a commercially available 65 nm CMOS process. The digitizer will lead to a proof-of-principle 2D 10 Gigapixel/s X-ray detector.

  3. High speed readout electronics development for frequency-multiplexed kinetic inductance detector design optimization

    NASA Astrophysics Data System (ADS)

    Bourrion, O.; Vescovi, C.; Catalano, A.; Calvo, M.; D'Addabbo, A.; Goupy, J.; Boudou, N.; Macias-Perez, J. F.; Monfardini, A.

    2013-12-01

    Microwave Kinetic Inductance Detectors (MKID) are a promising solution for space-borne mm-wave astronomy. To optimize their design and make them insensitive to the ballistic phonons created by cosmic-ray interactions in the substrate, the phonon propagation in silicon must be studied. A dedicated fast readout electronics, using channelized Digital Down Conversion for monitoring up to 12 MKIDs over a 100 MHz bandwidth was developed. Thanks to the fast ADC sampling and steep digital filtering, In-phase and Quadrature samples, having a high dynamic range, are provided at ~ 2 Msps. This paper describes the technical solution chosen and the results obtained.

  4. The SoLid anti-neutrino detector's readout system

    NASA Astrophysics Data System (ADS)

    Arnold, L.; Beaumont, W.; Cussans, D.; Newbold, D.; Ryder, N.; Weber, A.

    2017-02-01

    The SoLid collaboration have developed an intelligent readout system to reduce their 3200 silicon photomultiplier detector's data rate by a factor of 10000 whilst maintaining high efficiency for storing data from anti-neutrino interactions. The system employs an FPGA-level waveform characterisation to trigger on neutron signals. Following a trigger, data from a space-time region of interest around the neutron will be read out using the IPbus protocol. In these proceedings the design of the readout system is explained and results showing the performance of a prototype version of the system are presented.

  5. Frequency-domain multiplex with eight-input SQUID and readout electronics over 1 MHz

    NASA Astrophysics Data System (ADS)

    Masui, K.; Takei, Y.; Ikeda, H.; Kimura, S.; Mitsuda, K.; Yamasaki, N. Y.

    2006-04-01

    In a magnetic summation method, TES and SQUID driving circuits are isolated and thus small crosstalk and stray impedance are expected. Since a FLL circuit with a large bandwidth and a small noise level is required for a SQUID, we designed and produced an electronics to meet our design of multiplexing with an 8-input SQUID. The FLL circuit achieved an open loop-gain bandwidth product of 8 MHz with 1 m wire length, which is enough for a TES to be operated with a bias current of 70 μA, and a noise level of 30 pA/√{Hz}.

  6. A double photomultiplier Compton camera and its readout system for mice imaging

    SciTech Connect

    Fontana, Cristiano Lino; Atroshchenko, Kostiantyn; Baldazzi, Giuseppe; Uzunov, Nikolay; Di Domenico, Giovanni

    2013-04-19

    We have designed a Compton Camera (CC) to image the bio-distribution of gamma-emitting radiopharmaceuticals in mice. A CC employs the 'electronic collimation', i.e. a technique that traces the gamma-rays instead of selecting them with physical lead or tungsten collimators. To perform such a task, a CC measures the parameters of the Compton interaction that occurs in the device itself. At least two detectors are required: one (tracker), where the primary gamma undergoes a Compton interaction and a second one (calorimeter), in which the scattered gamma is completely absorbed. Eventually the polar angle and hence a 'cone' of possible incident directions are obtained (event with 'incomplete geometry'). Different solutions for the two detectors are proposed in the literature: our design foresees two similar Position Sensitive Photomultipliers (PMT, Hamamatsu H8500). Each PMT has 64 output channels that are reduced to 4 using a charge multiplexed readout system, i.e. a Series Charge Multiplexing net of resistors. Triggering of the system is provided by the coincidence of fast signals extracted at the last dynode of the PMTs. Assets are the low cost and the simplicity of design and operation, having just one type of device; among drawbacks there is a lower resolution with respect to more sophisticated trackers and full 64 channels Readout. This paper does compare our design of our two-Hamamatsu CC to other solutions and shows how the spatial and energy accuracy is suitable for the inspection of radioactivity in mice.

  7. A double photomultiplier Compton camera and its readout system for mice imaging

    NASA Astrophysics Data System (ADS)

    Fontana, Cristiano Lino; Atroshchenko, Kostiantyn; Baldazzi, Giuseppe; Bello, Michele; Uzunov, Nikolay; Di Domenico, Giovanni Di

    2013-04-01

    We have designed a Compton Camera (CC) to image the bio-distribution of gamma-emitting radiopharmaceuticals in mice. A CC employs the "electronic collimation", i.e. a technique that traces the gamma-rays instead of selecting them with physical lead or tungsten collimators. To perform such a task, a CC measures the parameters of the Compton interaction that occurs in the device itself. At least two detectors are required: one (tracker), where the primary gamma undergoes a Compton interaction and a second one (calorimeter), in which the scattered gamma is completely absorbed. Eventually the polar angle and hence a "cone" of possible incident directions are obtained (event with "incomplete geometry"). Different solutions for the two detectors are proposed in the literature: our design foresees two similar Position Sensitive Photomultipliers (PMT, Hamamatsu H8500). Each PMT has 64 output channels that are reduced to 4 using a charge multiplexed readout system, i.e. a Series Charge Multiplexing net of resistors. Triggering of the system is provided by the coincidence of fast signals extracted at the last dynode of the PMTs. Assets are the low cost and the simplicity of design and operation, having just one type of device; among drawbacks there is a lower resolution with respect to more sophisticated trackers and full 64 channels Readout. This paper does compare our design of our two-Hamamatsu CC to other solutions and shows how the spatial and energy accuracy is suitable for the inspection of radioactivity in mice.

  8. Spatial distribution read-out system for thermoluminescence sheets

    NASA Technical Reports Server (NTRS)

    Yamamoto, I.; Tomiyama, T.; Imaeda, K.; Ninagawa, K.; Wada, T.; Yamashita, Y.; Misaki, A.

    1985-01-01

    A spatial distribution read-out system of thermoluminescence (TL) sheets is developed. This system consists of high gain image intensifier, a CCD-TV camera, a video image processor and a host computer. This system has been applied to artificial TL sheets (BaSO4:Eu doped) for detecting high energy electromagnetic shower and heavy nuclei tracks.

  9. A Digital Readout System For The CSO Microwave Kinetic Inductance Camera

    NASA Astrophysics Data System (ADS)

    Max-Moerbeck, Walter; Mazin, B. A.; Zmuidzinas, J.

    2007-12-01

    Submillimeter galaxies are important to the understanding of galaxy formation and evolution. Determination of the spectral energy distribution in the millimeter and submillimeter regimes allows important and powerful diagnostics. Our group is developing a camera for the Caltech Submillimeter Observatory (CSO) using Microwave Kinetic Inductance Detectors (MKIDs). MKIDs are superconducting devices whose impedance changes with the absorption of photons. The camera will have 600 spatial pixels and 4 bands at 750 μm, 850 μm, 1.1 mm and 1.3 mm. For each spatial pixel of the camera the radiation is coupled to the MKIDs using phased-array antennas. This signal is split into 4 different bands using filters and detected using the superconductor as part of a MKID's resonant circuit. The detection process consists of measurement of the changes in the transmission through the resonator when it is illuminated. By designing resonant circuits to have different resonant frequencies and high transmission out resonance, MKIDs can be frequency-domain multiplexed. This allows the simultaneous readout of many detectors through a single coaxial cable. The readout system makes use of microwave IQ modulation and is based on commercial electronics components operating at room temperature. The basic readout has been demonstrated on the CSO. We are working on the implementation of an improved design to be tested on a prototype system with 6x6 pixels and 4 colors next April on the CSO.

  10. A compact light readout system for longitudinally segmented shashlik calorimeters

    NASA Astrophysics Data System (ADS)

    Berra, A.; Brizzolari, C.; Cecchini, S.; Cindolo, F.; Jollet, C.; Longhin, A.; Ludovici, L.; Mandrioli, G.; Mauri, N.; Meregaglia, A.; Paoloni, A.; Pasqualini, L.; Patrizii, L.; Pozzato, M.; Pupilli, F.; Prest, M.; Sirri, G.; Terranova, F.; Vallazza, E.; Votano, L.

    2016-09-01

    The longitudinal segmentation of shashlik calorimeters is challenged by dead zones and non-uniformities introduced by the light collection and readout system. This limitation can be overcome by direct fiber-photosensor coupling, avoiding routing and bundling of the wavelength shifter fibers and embedding ultra-compact photosensors (SiPMs) in the bulk of the calorimeter. We present the first experimental test of this readout scheme performed at the CERN PS-T9 beamline in 2015 with negative particles in the 1-5 GeV energy range. In this paper, we demonstrate that the scheme does not compromise the energy resolution and linearity compared with standard light collection and readout systems. In addition, we study the performance of the calorimeter for partially contained charged hadrons to assess the e / π separation capability and the response of the photosensors to direct ionization.

  11. Upgrade of the D0 luminosity monitor readout system

    SciTech Connect

    Anderson, John; Bridges, Lloyd; Casey, Brendan; Enari, Yuji; Green, Johnny; Johnson, Marvin; Kwarciany, Rick; Miao, Chyi-Chiang; Partridge, Richard; Yoo, Hwi Dong; Wang, Jigang; /Brown U. /Fermilab

    2006-12-01

    We describe upgrades to the readout system for the D0 Luminosity Monitor. The D0 Luminosity Monitor consists of plastic scintillation detectors with fine-mesh photomultiplier readout that cover the pseudorapidity range 2.7 < |{eta}| < 4.4. The detector is designed to provide a precise measurement of the rate for non-diffractive inelastic collisions that is used to calculate the TeVatron luminosity at D0. The new readout system is based on custom VME electronics that make precise time-of-flight and charge measurements for each luminosity counter. These measurements are used to identify beam crossings with non-diffractive interactions by requiring in-time hits in both the forward and backward luminosity counters. We have also significantly increased signal/noise for the photomultiplier signals by developing a new front-end preamplifier and improving the grounding scheme.

  12. READOUT SYSTEM FOR ARRAYS OF FRISCH-RING CDZNTE DETECTORS.

    SciTech Connect

    CUI, Y.; BOLOTNIKOV, A.E.; CAMARDA, G.S.; DE GERONIMO, G.; O'CONNOR, P.; JAMES, R.B.; KARGAR, A.; HARRISON, M.J.; MCGREGOR, D.S.

    2006-10-29

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution for identifying isotopes, <1% FWHM at 662 keV, and good efficiency for detecting gamma rays. We will fabricate and test at Brookhaven National Laboratory an integrated module of a 64-element array of 6 x 6 x 12 mm{sup 3} Frisch-ring detectors, coupled with a readout electronics system. It supports 64 readout channels, and includes front-end electronics, signal processing circuit, USB interface and high-voltage power supply. The data-acquisition software is used to process the data stream, which includes amplitude and timing information for each detected event. This paper describes the design and assembly of the detector modules, readout electronics, and a conceptual prototype system. Some test results are also reported.

  13. The NA62 liquid Krypton calorimeter's new readout system

    NASA Astrophysics Data System (ADS)

    Ceccucci, A.; Fantechi, R.; Farthouat, P.; Lamanna, G.; Rouet, J.; Ryjov, V.; Venditti, S.

    2014-01-01

    The NA62 experiment [1] at CERN SPS (Super Proton Synchrotron) accelerator aims at studying Kaon decays with high precision. The high resolution Liquid Krypton (LKr) calorimeter, built for the NA48 [2] experiment, is a crucial part of the experiment photon-veto system; to cope with the new requirements, the back-end electronics of the LKr had to be completely renewed. Due to the huge number of the calorimeter readout channels ( ~ 14 K) and the maintenance requirement over 10 years of the experiment lifetime, the decision to sub-contract the development and production to industry was taken in 2011. This paper presents the primary test results of the Calorimeter REAdout Module (CREAM) [3] prototype delivered by the manufacturer in March 2013. All essential features, analog performance, data processing and readout, are covered.

  14. Optimized readout system for cooled optically stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Eschbach, P. A.

    1990-09-01

    Cooled Optically Stimulated Luminescence (COSL) in CaF2:Mn is an ionizing radiation dosimetry method recently developed at the Pacific Northwest Laboratory (PNL). In this method CaF2:Mn crystals irradiated by gamma radiation at room temperature are cooled to liquid nitrogen temperature (77 K), stimulated by ultraviolet laser light at 326 nm, and allowed to warm to room temperature. Light emission proportional to the gamma exposure occurs as the TLD warms from liquid nitrogen temperature to room temperature. The new method is an example of a highly sensitive phototransfer technique which could form the basis for future radiation dosimetry applications. Measurements to date have shown high potential for measuring gamma exposures in the range of 10 microR. The high sensitivity of the COSL technique is due in part to the larger quantum efficiency of radiative recombination at low temperatures and to the complete absence of the incandescent background associated with conventional thermoluminescent readout methods. Along with the potential for a system which is more sensitive than thermoluminescent readers, multiple COSL readouts can be performed with minimal reduction in the COSL intensity. The multiple readout capability can serve as a possible permanent dosimetry record, thus allowing the reanalysis of a questionable reading. In an attempt to optimize the sensitivity of the COSL method, a new readout system is being developed.

  15. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  16. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  17. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figures.

  18. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figs.

  19. New readout system optimized for the Planck Surveyor bolometric instrument

    NASA Astrophysics Data System (ADS)

    Gaertner, Siegfried; Benoit, A.; Piat, M.

    1998-08-01

    We have developed a new readout system for bolometers optimized for the Planck Surveyor experiment, a satellite mission dedicated to survey the Cosmological Microwave Background. The bolometer resistance is measured in a bridge with a capacitance load, using a periodic square wave bias current in order to remove the 1/f noises of the electronics. The use of a capacitance allows to reduce the transient signal and to get rid of the Johnson noise. The bias voltages are fully controlled by computer, and the lock-in detection is digital. This system has been implemented and successfully tested on the Diabolo ground- based astronomical experiment. Using the advantages of our readout system, we have built and fully tested an engineering model of the space qualifiable electronics which fulfills the scientific and technical requirements of the Planck Surveyor bolometric instrument: low noise system down to 0.1 Hz, electrical power consumption lower than 40 Watts and volume lower than 15 liters. Our presentation will consist in a full description of this readout system and a review of the current test results. Our system could also be adapted, with some modifications, to other space born instruments which use bolometers.

  20. Fast Low-Cost Multiple Sensor Readout System

    DOEpatents

    Carter-Lewis, David; Krennich, Frank; Le Bohec, Stephane; Petry, Dirk; Sleege, Gary

    2004-04-06

    A low resolution data acquisition system is presented. The data acquisition system has a plurality of readout modules serially connected to a controller. Each readout module has a FPGA in communication with analog to digital (A/D) converters, which are connected to sensors. The A/D converter has eight bit or lower resolution. The FPGA detects when a command is addressed to it and commands the A/D converters to convert analog sensor data into digital data. The digital data is sent on a high speed serial communication bus to the controller. A graphical display is used in one embodiment to indicate if a sensor reading is outside of a predetermined range.

  1. Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena x-ray observatory

    NASA Astrophysics Data System (ADS)

    van der Kuur, J.; Gottardi, L. G.; Akamatsu, H.; van Leeuwen, B. J.; den Hartog, R.; Haas, D.; Kiviranta, M.; Jackson, B. J.

    2016-07-01

    Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes. Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory. This paper discusses the design considerations which are applicable to optimise the multiplex factor within the boundary conditions as set by the space craft. More specifically, the interplay between the science requirements such as pixel dynamic range, pixel speed, and cross talk, and the space craft requirements such as the power dissipation budget, available bandwidth, and electromagnetic compatibility will be discussed.

  2. Readout Circuits for Noise Compensation in ISFET Sensory System

    NASA Astrophysics Data System (ADS)

    Das, M. P.; Bhuyan, M.; Talukdar, C.

    2015-12-01

    This paper presents two different noise reduction techniques for ion sensitive field effect transistor (ISFET) readout configuration and their comparison. The proposed circuit configurations are immune to the noise generated from the ISFET sensory system and particularly to the low frequency pH dependent 1/ f electrochemical noise. The methods used under this study are compensation of noise by differential OPAMP based and Wheatstone bridge circuit, where two identical commercial ISFET sensors were used. The statistical and frequency analysis of the data generated by this two methods were compared for different pH value ranging from pH 2 to 10 at room temperature, and it is found that the readout circuits are able to compensate the noise to a great extent.

  3. Fiber optic multiplex optical transmission system

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1977-01-01

    A multiplex optical transmission system which minimizes external interference while simultaneously receiving and transmitting video, digital data, and audio signals is described. Signals are received into subgroup mixers for blocking into respective frequency ranges. The outputs of these mixers are in turn fed to a master mixer which produces a composite electrical signal. An optical transmitter connected to the master mixer converts the composite signal into an optical signal and transmits it over a fiber optic cable to an optical receiver which receives the signal and converts it back to a composite electrical signal. A de-multiplexer is coupled to the output of the receiver for separating the composite signal back into composite video, digital data, and audio signals. A programmable optic patch board is interposed in the fiber optic cables for selectively connecting the optical signals to various receivers and transmitters.

  4. SPIDR, a general-purpose readout system for pixel ASICs

    NASA Astrophysics Data System (ADS)

    van der Heijden, B.; Visser, J.; van Beuzekom, M.; Boterenbrood, H.; Kulis, S.; Munneke, B.; Schreuder, F.

    2017-02-01

    The SPIDR (Speedy PIxel Detector Readout) system is a flexible general-purpose readout platform that can be easily adapted to test and characterize new and existing detector readout ASICs. It is originally designed for the readout of pixel ASICs from the Medipix/Timepix family, but other types of ASICs or front-end circuits can be read out as well. The SPIDR system consists of an FPGA board with memory and various communication interfaces, FPGA firmware, CPU subsystem and an API library on the PC . The FPGA firmware can be adapted to read out other ASICs by re-using IP blocks. The available IP blocks include a UDP packet builder, 1 and 10 Gigabit Ethernet MAC's and a "soft core" CPU . Currently the firmware is targeted at the Xilinx VC707 development board and at a custom board called Compact-SPIDR . The firmware can easily be ported to other Xilinx 7 series and ultra scale FPGAs. The gap between an ASIC and the data acquisition back-end is bridged by the SPIDR system. Using the high pin count VITA 57 FPGA Mezzanine Card (FMC) connector only a simple chip carrier PCB is required. A 1 and a 10 Gigabit Ethernet interface handle the connection to the back-end. These can be used simultaneously for high-speed data and configuration over separate channels. In addition to the FMC connector, configurable inputs and outputs are available for synchronization with other detectors. A high resolution (≈ 27 ps bin size) Time to Digital converter is provided for time stamping events in the detector. The SPIDR system is frequently used as readout for the Medipix3 and Timepix3 ASICs. Using the 10 Gigabit Ethernet interface it is possible to read out a single chip at full bandwidth or up to 12 chips at a reduced rate. Another recent application is the test-bed for the VeloPix ASIC, which is developed for the Vertex Detector of the LHCb experiment. In this case the SPIDR system processes the 20 Gbps scrambled data stream from the VeloPix and distributes it over four 10 Gigabit

  5. Substation alarm multiplexing system (SAMS)

    SciTech Connect

    ElBadaly, H.; Gaughan, J.; Ward, G.; Amengual, S.

    1996-03-01

    This paper describes an on going R&D project to develop, design, install, and assess the field performance of an advanced substation alarm system. SAMS provides a highly fault-tolerant system for the reporting of equipment alarms. SAMS separates and identifies each of the multiple alarm contacts, transmits an alarm condition over existing substation two-wire system, and displays the alarm source, and its associated technical information, on a touch-screen monitor inside the substation control room, and a remote central location and on a hand held terminal which may be carried anywhere within the substation. SAMS is currently installed at the Sherman Creek substation in the Bronx for the purpose of a three month field evaluation.

  6. A novel IPTV program multiplex access system to EPON

    NASA Astrophysics Data System (ADS)

    Xu, Xian; Liu, Deming; He, Wei; Lu, Xi

    2007-11-01

    With the rapid development of high speed networks, such as Ethernet Passive Optical Network (EPON), traffic patterns in access networks have evolved from traditional text-oriented service to the mixed text-, voice- and video- based services, leading to so called "Triple Play". For supporting IPTV service in EPON access network infrastructure, in this article we propose a novel IPTV program multiplex access system to EPON, which enables multiple IPTV program source servers to seamlessly access to IPTV service access port of optical line terminal (OLT) in EPON. There are two multiplex schemes, namely static multiplex scheme and dynamic multiplex scheme, in implementing the program multiplexing. Static multiplex scheme is to multiplex all the IPTV programs and forward them to the OLT, regardless of the need of end-users. While dynamic multiplex scheme can dynamically multiplex and forward IPTV programs according to what the end-users actually demand and those watched by no end-user would not be multiplexed. By comparing these two schemes, a reduced traffic of EPON can be achieved by using dynamic multiplex scheme, especially when most end-users are watching the same few IPTV programs. Both schemes are implemented in our system, with their hardware and software designs described.

  7. The LCLS Undulator Beam Loss Monitor Readout System

    SciTech Connect

    Dusatko, John; Browne, M.; Fisher, A.S.; Kotturi, D.; Norum, S.; Olsen, J.; /SLAC

    2012-07-23

    The LCLS Undulator Beam Loss Monitor System is required to detect any loss radiation seen by the FEL undulators. The undulator segments consist of permanent magnets which are very sensitive to radiation damage. The operational goal is to keep demagnetization below 0.01% over the life of the LCLS. The BLM system is designed to help achieve this goal by detecting any loss radiation and indicating a fault condition if the radiation level exceeds a certain threshold. Upon reception of this fault signal, the LCLS Machine Protection System takes appropriate action by either halting or rate limiting the beam. The BLM detector consists of a PMT coupled to a Cherenkov radiator located near the upstream end of each undulator segment. There are 33 BLMs in the system, one per segment. The detectors are read out by a dedicated system that is integrated directly into the LCLS MPS. The BLM readout system provides monitoring of radiation levels, computation of integrated doses, detection of radiation excursions beyond set thresholds, fault reporting and control of BLM system functions. This paper describes the design, construction and operational performance of the BLM readout system.

  8. Readout techniques for photon-counting microchannel image systems

    NASA Technical Reports Server (NTRS)

    Lampton, Michael

    1988-01-01

    A comparative evaluation is made of such readout methods for the microchannel plates that are commonly used in EUV, FUV, and X-ray low light level image systems as the (1) phosphor-video, (2) phosphor and binary-mask encoder, (3) direct discrete-position encoder, (4) direct analog amplitude position-encoder systems, and (5) delay-line encoders. Relative advantages and limitations are discussed in the context of low light level space-based astronomy applications. The delay-line technique offers great promise for high-resolution applications where oversampling is mandatory, as in spectroscopy.

  9. Development of the rf-SQUID Based Multiplexing System for the HOLMES Experiment

    NASA Astrophysics Data System (ADS)

    Puiu, A.; Becker, D.; Bennett, D.; Faverzani, M.; Ferri, E.; Fowler, J.; Gard, J.; Hays-Wehle, J.; Hilton, G.; Giachero, A.; Maino, M.; Mates, J.; Nucciotti, A.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L.

    2016-07-01

    Measuring the neutrino mass is one of the most compelling issues in particle physics. The European Research Council has funded HOLMES, a new experiment for a direct measurement of neutrino mass that started in 2014. HOLMES will perform a precise measurement of the end point of the Electron Capture decay spectrum of ^{163}Ho in order to extract information on neutrino mass with a sensitivity as low as 0.4 eV. HOLMES, in its final configuration, will deploy a 1000 pixel array of low-temperature microcalorimeters: each calorimeter consists of an absorber, where the Ho atoms will be implanted, coupled to a transition edge sensor thermometer. The read out for an array of 1000 cryogenic detectors is a crucial matter: for HOLMES, a special radio-frequency-based multiplexing system is being developed. In this contribution, we outline the performance and special features of the multiplexing system and readout methods chosen for HOLMES.

  10. Trigger and Readout System for the Ashra-1 Detector

    NASA Astrophysics Data System (ADS)

    Aita, Y.; Aoki, T.; Asaoka, Y.; Morimoto, Y.; Motz, H. M.; Sasaki, M.; Abiko, C.; Kanokohata, C.; Ogawa, S.; Shibuya, H.; Takada, T.; Kimura, T.; Learned, J. G.; Matsuno, S.; Kuze, S.; Binder, P. M.; Goldman, J.; Sugiyama, N.; Watanabe, Y.

    Highly sophisticated trigger and readout system has been developed for All-sky Survey High Resolution Air-shower (Ashra) detector. Ashra-1 detector has 42 degree diameter field of view. Detection of Cherenkov and fluorescence light from large background in the large field of view requires finely segmented and high speed trigger and readout system. The system is composed of optical fiber image transmission system, 64 × 64 channel trigger sensor and FPGA based trigger logic processor. The system typically processes the image within 10 to 30 ns and opens the shutter on the fine CMOS sensor. 64 × 64 coarse split image is transferred via 64 × 64 precisely aligned optical fiber bundle to a photon sensor. Current signals from the photon sensor are discriminated by custom made trigger amplifiers. FPGA based processor processes 64 × 64 hit pattern and correspondent partial area of the fine image is acquired. Commissioning earth skimming tau neutrino observational search was carried out with this trigger system. In addition to the geometrical advantage of the Ashra observational site, the excellent tau shower axis measurement based on the fine imaging and the night sky background rejection based on the fine and fast imaging allow zero background tau shower search. Adoption of the optical fiber bundle and trigger LSI realized 4k channel trigger system cheaply. Detectability of tau shower is also confirmed by simultaneously observed Cherenkov air shower. Reduction of the trigger threshold appears to enhance the effective area especially in PeV tau neutrino energy region. New two dimensional trigger LSI was introduced and the trigger threshold was lowered. New calibration system of the trigger system was recently developed and introduced to the Ashra detector

  11. Compact confocal readout system for three-dimensional memories using a laser-feedback semiconductor laser.

    PubMed

    Nakano, Masaharu; Kawata, Yoshimasa

    2003-08-01

    We present a compact confocal readout system for three-dimensional optical memories that uses the thresholding property of a semiconductor laser for feedback light. The system has higher axial resolution than a conventional confocal system with a pinhole. We demonstrate readout results for data recorded in two recording layers with the developed system.

  12. Readout system of TPC/MPD NICA project

    SciTech Connect

    Averyanov, A. V.; Bajajin, A. G.; Chepurnov, V. F.; Cheremukhina, G. A.; Fateev, O. V.; Korotkova, A. M.; Levchanovskiy, F. V.; Lukstins, J.; Movchan, S. A.; Razin, S. V.; Rybakov, A. A.; Vereschagin, S. V. Zanevsky, Yu. V.; Zaporozhets, S. A.; Zruyev, V. N.

    2015-12-15

    The time-projection chamber (TPC) is the main tracking detector in the MPD/NICA. The information on charge-particle tracks in the TPC is registered by the MWPG with cathode pad readout. The frontend electronics (FEE) are developed with use of modern technologies such as application specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), and data transfer to a concentrator via a fast optical interface. The main parameters of the FEE are as follows: total number of channels, ∼95 000; data stream from the whole TPC, 5 GB/s; low power consumption, less than 100 mW/ch; signal to noise ratio (S/N), 30; equivalent noise charge (ENC), <1000e{sup –} (C{sub in} = 10–20 pF); and zero suppression (pad signal rejection ∼90%). The article presents the status of the readout chamber construction and the data acquisition system. The results of testing FEE prototypes are presented.

  13. System for Multiplexing Acoustic Emission (AE) Instrumentation

    NASA Technical Reports Server (NTRS)

    Prosser, William H. (Inventor); Perey, Daniel F. (Inventor); Gorman, Michael R. (Inventor); Scales, Edgar F. (Inventor)

    2003-01-01

    An acoustic monitoring device has at least two acoustic sensors with a triggering mechanism and a multiplexing circuit. After the occurrence of a triggering event at a sensor, the multiplexing circuit allows a recording component to record acoustic emissions at adjacent sensors. The acoustic monitoring device is attached to a solid medium to detect the occurrence of damage.

  14. The FDM readout system for the TES bolometers of the SWIPE instrument on the balloon-borne LSPE experiment

    NASA Astrophysics Data System (ADS)

    Vaccaro, D.; Baldini, A. M.; Cei, F.; Galli, L.; Gallucci, G.; Grassi, M.; Iezzi, A.; Incagli, M.; Nicolò, D.; Spinella, F.; Venturini, M.; Venturini, Y.; Signorelli, G.

    2016-07-01

    We present the design and first tests of a prototype readout for the SWIPE instrument onboard the LSPE balloon-borne experiment. LSPE aims at measuring the linear polarization of the Cosmic Microwave Background (CMB) at large angular scales, to find the imprint of inflation on the B-mode CMB polarization. The SWIPE instrument hosts two focal planes hosting 163 TES Au/Mo spiderweb bolometers each, cooled at 0.3 K for the detection of microwave frequencies of 140, 220 and 240 GHz. To read all the detectors, a 16 channel frequency domain multiplexing readout system has been devised, consisting of LC resonators composed of custom Nb superconducting inductors and commercial SMD capacitors. A set-up consisting of 14 LC resonators shows that we can accommodate 16 channels in the frequency range between 200 kHz and 1.6 MHz, since the necessary line-widths can be achieved. A preliminary firmware for the generation and read-out of the biasing frequency comb is also discussed.

  15. Merlin: a fast versatile readout system for Medipix3

    NASA Astrophysics Data System (ADS)

    Plackett, R.; Horswell, I.; Gimenez, E. N.; Marchal, J.; Omar, D.; Tartoni, N.

    2013-01-01

    This contribution reports on the development of a new high rate readout system for the Medipix3 hybrid pixel ASIC developed by the Detector Group at Diamond Light Source. It details the current functionality of the system and initial results from tests on Diamond's B16 beamline. The Merlin system is based on a National Instruments PXI/FlexRIO system running a Xilinx Virtex5 FPGA. It is capable of recording Medipix3 256 by 256 by 12 bit data frames at over 1 kHz in bursts of 1200 frames and running at over 100 Hz continuously to disk or over a TCP/IP link. It is compatible with the standard Medipix3 single chipboards developed at CERN and is capable of driving them over cable lengths of up to 10 m depending on the data rate required. In addition to a standalone graphical interface, a system of remote TCP/IP control and data transfer has been developed to allow easy integration with third party control systems and scripting languages. Two Merlin systems are being deployed on the B16 and I16 beamlines at Diamond and the system has been integrated with the EPICS/GDA control systems used. Results from trigger synchronisation, fast burst and high rate tests made on B16 in March are reported and demonstrate an encouraging reliability and timing accuracy. In addition to normal high resolution imaging applications of Medipix3, the results indicate the system could profitably be used in `pump and probe' style experiments, where a very accurate, high frame rate is especially beneficial. In addition to these two systems, Merlin is being used by the Detector Group to test the Excalibur 16 chip hybrid modules, and by the LHCb VELO Pixel Upgrade group in their forthcoming testbeams. Additionally the contribution looks forward to further developments and improvements in the system, including full rate quad chip readout capability, multi-FPGA support, long distance optical communication and further functionality enhancements built on the capabilities of the Medipix3 chips.

  16. Adaptive data acquisition multiplexing system and method

    NASA Technical Reports Server (NTRS)

    Sinderson, Richard L. (Inventor); Salazar, George A. (Inventor); Haddick, Clyde M., Jr. (Inventor); Spahn, Caroll J. (Inventor); Venkatesh, Chikkabelarangala N. (Inventor)

    1990-01-01

    A reconfigurable telemetry multiplexer is described which includes a monitor-terminal and a plurality of remote terminals. The remote terminals each include signal conditioning for a plurality of sensors for measuring parameters which are converted by an analog to digital converter. CPU's in the remote terminals store instructions for prompting system configuration and reconfiguration commands. The measurements, instructions, and the terminal's present configuration and status data are transmitted to the monitor-terminal and displayed. In response to menu-driven prompts generated and displayed at the monitor-terminal, data generation request commands, status and health commands, and the like are input at the monitor-terminal and transmitted to the remote terminals. The CPU in each remote terminal receives the various commands, stores them in electrically alterable memory, and reacts in accordance with the commands to reconfigure a plurality of aspects of the system. The CPU in each terminal also generates parameter measurements, status and health signals, and transmits these signals of the respective terminals to the monitor-terminal for low data rate operator viewing and to higher rate external transmission/monitor equipment. Reconfiguration may be in real time during the general period of parameter measurement acquisition, and may include alteration of the gain, automatic gain rescaling, bias, and or sampling rates associated with one or more of the parameter measurements made by the remote terminals.

  17. Transmission of multiplexed video signals in multimode optical fiber systems

    NASA Technical Reports Server (NTRS)

    White, Preston, III

    1988-01-01

    Kennedy Space Center has the need for economical transmission of two multiplexed video signals along multimode fiberoptic systems. These systems must span unusual distances and must meet RS-250B short-haul standards after reception. Bandwidth is a major problem and studies of the installed fibers, available LEDs and PINFETs led to the choice of 100 MHz as the upper limit for the system bandwidth. Optical multiplexing and digital transmission were deemed inappropriate. Three electrical multiplexing schemes were chosen for further study. Each of the multiplexing schemes included an FM stage to help meet the stringent S/N specification. Both FM and AM frequency division multiplexing methods were investigated theoretically and these results were validated with laboratory tests. The novel application of quadrature amplitude multiplexing was also considered. Frequency division multiplexing of two wideband FM video signal appears the most promising scheme although this application requires high power highly linear LED transmitters. Futher studies are necessary to determine if LEDs of appropriate quality exist and to better quantify performance of QAM in this application.

  18. Transmission of multiplexed video signals in multimode optical fiber systems

    NASA Astrophysics Data System (ADS)

    White, Preston, III

    1988-10-01

    Kennedy Space Center has the need for economical transmission of two multiplexed video signals along multimode fiberoptic systems. These systems must span unusual distances and must meet RS-250B short-haul standards after reception. Bandwidth is a major problem and studies of the installed fibers, available LEDs and PINFETs led to the choice of 100 MHz as the upper limit for the system bandwidth. Optical multiplexing and digital transmission were deemed inappropriate. Three electrical multiplexing schemes were chosen for further study. Each of the multiplexing schemes included an FM stage to help meet the stringent S/N specification. Both FM and AM frequency division multiplexing methods were investigated theoretically and these results were validated with laboratory tests. The novel application of quadrature amplitude multiplexing was also considered. Frequency division multiplexing of two wideband FM video signal appears the most promising scheme although this application requires high power highly linear LED transmitters. Futher studies are necessary to determine if LEDs of appropriate quality exist and to better quantify performance of QAM in this application.

  19. Monolithically integrated reconfigurable add-drop multiplexer for mode-division-multiplexing systems.

    PubMed

    Wang, Shipeng; Wu, Hao; Tsang, Hon Ki; Dai, Daoxin

    2016-11-15

    An integrated reconfigurable optical add-drop multiplexer (ROADM) for mode-division-multiplexing systems is proposed and demonstrated for the first time, to the best of our knowledge. The present ROADM with four mode-channels is composed of a four-channel mode demultiplexer, four identical 2×2 thermo-optic Mach-Zehnder switches (MZSs), and a four-channel mode multiplexer, which are integrated monolithically on silicon. All the devices are designed for operation with TM polarization. The ROADM can add/drop any one of the mode channels freely by thermally turning on/off the corresponding MZS. For the added/dropped mode-channels, the excess loss is 1-5 dB, and the extinction ratio is 15-20 dB in the wavelength range of 1535-1565 nm.

  20. Readout of a 176 pixel FDM system for SAFARI TES arrays

    NASA Astrophysics Data System (ADS)

    Hijmering, R. A.; den Hartog, R.; Ridder, M.; van der Linden, A. J.; van der Kuur, J.; Gao, J. R.; Jackson, B.

    2016-07-01

    In this paper we present the results of our 176-pixel prototype of the FDM readout system for SAFARI, a TES-based focal-plane instrument for the far-IR SPICA mission. We have implemented the knowledge obtained from the detailed study on electrical crosstalk reported previously. The effect of carrier leakage is reduced by a factor two, mutual impedance is reduced to below 1 nH and mutual inductance is removed. The pixels are connected in stages, one quarter of the array half of the array and the full array, to resolve intermediate technical issues. A semi-automated procedure was incorporated to find all optimal settings for all pixels. And as a final step the complete array has been connected and 132 pixels have been read out simultaneously within the frequency range of 1-3.8MHz with an average frequency separation of 16kHz. The noise was found to be detector limited and was not affected by reading out all pixels in a FDM mode. With this result the concept of using FDM for multiplexed bolometer read out for the SAFARI instrument has been demonstrated.

  1. ALICE inner tracking system readout electronics prototype testing with the CERN ``Giga Bit Transceiver''

    NASA Astrophysics Data System (ADS)

    Schambach, J.; Rossewij, M. J.; Sielewicz, K. M.; Aglieri Rinella, G.; Bonora, M.; Ferencei, J.; Giubilato, P.; Vanat, T.

    2016-12-01

    The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. This contribution describes laboratory and radiation testing results with this prototype board set.

  2. Optical aberration compensation in a multiplexed optical trapping system

    NASA Astrophysics Data System (ADS)

    Čižmár, T.; Dalgarno, H. I. C.; Ashok, P. C.; Gunn-Moore, F. J.; Dholakia, K.

    2011-04-01

    In this paper we discuss optical aberrations within a multiplexed optical trapping system. We analyze two of the most powerful methods for optical trap multiplexing: time-shared beam steering and holographic beam shaping in a tandem system with an acousto-optic deflector and spatial light modulator. We show how to isolate and correct for the aberrations introduced by these individual optical components using the spatial light modulator and demonstrate the enhancement this provides to optical trapping.

  3. Toward a Reduced-Wire Readout System for Ultrasound Imaging

    PubMed Central

    Lim, Jaemyung; Arkan, Evren F.; Degertekin, F. Levent; Ghovanloo, Maysam

    2015-01-01

    We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply. PMID:25571135

  4. Toward a reduced-wire readout system for ultrasound imaging.

    PubMed

    Lim, Jaemyung; Arkan, Evren F; Degertekin, F Levent; Ghovanloo, Maysam

    2014-01-01

    We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply.

  5. Experimental demonstration of subcarrier multiplexed quantum key distribution system.

    PubMed

    Mora, José; Ruiz-Alba, Antonio; Amaya, Waldimar; Martínez, Alfonso; García-Muñoz, Víctor; Calvo, David; Capmany, José

    2012-06-01

    We provide, to our knowledge, the first experimental demonstration of the feasibility of sending several parallel keys by exploiting the technique of subcarrier multiplexing (SCM) widely employed in microwave photonics. This approach brings several advantages such as high spectral efficiency compatible with the actual secure key rates, the sharing of the optical fainted pulse by all the quantum multiplexed channels reducing the system complexity, and the possibility of upgrading with wavelength division multiplexing in a two-tier scheme, to increase the number of parallel keys. Two independent quantum SCM channels featuring a sifted key rate of 10 Kb/s/channel over a link with quantum bit error rate <2% is reported.

  6. A platform for multiplexed sensing of biomolecules using high-Q microring resonator arrays with differential readout and integrated microfluidics

    NASA Astrophysics Data System (ADS)

    Wright, J. B.; Brener, I.; Westlake, K. R.; Branch, D. W.; Shaw, M. J.; Vawter, G. A.

    2010-02-01

    We demonstrate chemical/biological sensor arrays based on high quality factor evanescent microring waveguide resonators in a process that is compatible with CMOS fabrication, glass microfluidic integration, and robust surface chemistry ligand attachment. We cancel out any fluctuations due to liquid temperature variations through a differential dual sensor design. Using laser locking servo techniques we attain detection sensitivities in the ng/ml range. This combination of silicon photonic sensors, robust packaging, high sensitivity and arrayed design is capable of providing a platform for multiplexed chem-bio sensing of molecules suspended in solution.

  7. X-ray and gamma ray detector readout system

    DOEpatents

    Tumer, Tumay O; Clajus, Martin; Visser, Gerard

    2010-10-19

    A readout electronics scheme is under development for high resolution, compact PET (positron emission tomography) imagers based on LSO (lutetium ortho-oxysilicate, Lu.sub.2SiO.sub.5) scintillator and avalanche photodiode (APD) arrays. The key is to obtain sufficient timing and energy resolution at a low power level, less than about 30 mW per channel, including all required functions. To this end, a simple leading edge level crossing discriminator is used, in combination with a transimpedance preamplifier. The APD used has a gain of order 1,000, and an output noise current of several pA/ Hz, allowing bipolar technology to be used instead of CMOS, for increased speed and power efficiency. A prototype of the preamplifier and discriminator has been constructed, achieving timing resolution of 1.5 ns FWHM, 2.7 ns full width at one tenth maximum, relative to an LSO/PMT detector, and an energy resolution of 13.6% FWHM at 511 keV, while operating at a power level of 22 mW per channel. Work is in progress towards integration of this preamplifier and discriminator with appropriate coincidence logic and amplitude measurement circuits in an ASIC suitable for a high resolution compact PET instrument. The detector system and/or ASIC can also be used for many other applications for medical to industrial imaging.

  8. The electronics readout and the DAQ system of the DRAGO Anger Camera

    NASA Astrophysics Data System (ADS)

    Gola, A.; Fiorini, C.; Porro, M.; Zanchi, M.

    2007-02-01

    The aim of the DRAGO project, supported by Italian INFN, is the development of a high-resolution, compact γ-ray imager, based on the Anger Camera principle. In this configuration, the light generated by a unique scintillator is read by an array of 77 Silicon Drift Detectors. In order to locate the position of interaction of the photon inside the scintillator, it is necessary to make an amplification and filtering of the detector signals followed by a processing of the acquired data. The electronics readout and processing system can be divided in two separate parts: the analog front end and the DAQ board. The analog front end is composed of 80 readout channels divided in 10 CMOS chips, produced in the 0.35 μm AMS technology, each one processing 8 channels. Each analog channel of the circuit includes a low-noise preamplifier, a sixth-order semigaussian shaping amplifier with four selectable peaking times from 1.8 μs up to 6 μs, a peak stretcher and a baseline holder. The energy resolution measured using a single channel of the chip with a Silicon Drift Detector Droplet (SD 3) is of 128 eV FWHM at 6 keV with the detector cooled at -20 °C. The 8 analog channels of the chip are multiplexed to a single analog output and fed to the acquisition system. For each γ event, this system performs the A/D conversion of all the signals of the array and sends them to a host PC, where the position reconstruction algorithm is executed. The DAQ board contains 10 ADCs, each one dedicated to a single ASIC of the analog section and having a resolution of 13 bit (ENOB). The burst conversion rate of the 10 ADCs together is 50 Ms/s resulting in a dead time of about 2 μs/event. The converted data are stored in a FIFO memory, for buffering, and then are transferred to the host PC via a USB 2.0 interface, which allows an event rate of more than 40k events/s for the whole Anger Camera, compatible with the application.

  9. The PCIe-based readout system for the LHCb experiment

    NASA Astrophysics Data System (ADS)

    Cachemiche, J. P.; Duval, P. Y.; Hachon, F.; Le Gac, R.; Réthoré, F.

    2016-02-01

    The LHCb experiment is designed to study differences between particles and anti-particles as well as very rare decays in the beauty and charm sector at the LHC. The detector will be upgraded in 2019 in order to significantly increase its efficiency, by removing the first-level hardware trigger. The upgrade experiment will implement a trigger-less readout system in which all the data from every LHC bunch-crossing are transported to the computing farm over 12000 optical links without hardware filtering. The event building and event selection are carried out entirely in the farm. Another original feature of the system is that data transmitted through these fibres arrive directly to computers through a specially designed PCIe card called PCIe40. The same board handles the data acquisition flow and the distribution of fast and slow controls to the detector front-end electronics. It embeds one of the most powerful FPGAs currently available on the market with 1.2 million logic cells. The board has a bandwidth of 480 Gbits/s in both input and output over optical links and 100 Gbits/s over the PCI Express bus to the CPU. We will present how data circulate through the board and in the PC server for achieving the event building. We will focus on specific issues regarding the design of such a board with a very large FPGA, in particular in terms of power supply dimensioning and thermal simulations. The features of the board will be detailed and we will finally present the first performance measurements.

  10. Electronics for a Next-Generation SQUID-Based Time-Domain Multiplexing System

    SciTech Connect

    Reintsema, C. D.; Doriese, W. R.; Hilton, G. C.; Irwin, K. D.; Krinsky, J. W.; Adams, J. S.; Baker, R.; Bandler, S. R.; Kelly, R. L.; Kilbourne, C. A.; Porter, F. S.; Figueroa-Feliciano, E.; Wikus, P.

    2009-12-16

    A decade has elapsed since the design, development and realization of a SQUID-based time-division multiplexer at NIST. During this time the system has been used extensively for low-temperature-detector-array measurements. Concurrently, there have been substantial advancements both in detector array and commercial electronic component technology. The relevance and applicability of the technology has blossomed as well, often accompanied by more demanding measurement requirements. These factors have motivated a complete redesign of the NIST room-temperature read-out electronics. The redesign has leveraged advancements in component technology to achieve new capabilities better suited to the SQUID multiplexers and detector arrays being realized today. As examples of specific performance enhancements, the overall system bandwidth has been increased by a factor of four (a row switching rate of 6.24 MHz), the compactness has been increased by over a factor of two (a higher number of detector columns and rows per circuit board), and there are two high speed outputs per column (allowing fast switching of SQUID offsets in addition to digital feedback). The system architecture, design implementations, and performance advantages of the new system will be discussed. As an application example, the science chain flight electronics for the Micro-X High Resolution Microcalorimeter X-ray Imaging Rocket will be described as both a motivation for, and a direct implementation of the new system.

  11. Holographic data storage system combining shift-multiplexing with peristrophic-multiplexing

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Kengo; Tsukamoto, Yu; Okubo, Kaito; Yamamoto, Manabu

    2014-02-01

    Holographic data storage (HDS) is a next-generation optical storage that uses the principles of holography. The multiplex holographic recording method is an important factor that affects the recording capacity of this storage. Various multiplex recording methods have been proposed so far. In this study, we focus on shift multiplexing with spherical waves and propose a method of shift multiplex recording that combines the peristrophic multiplexed recording. Simulation and experimental verification shows that the proposed method is effective in principle.

  12. Optical free-space wavelength-division-multiplexing transport system.

    PubMed

    Lin, Chun-Yu; Lin, Ying-Pyng; Lu, Hai-Han; Chen, Chia-Yi; Jhang, Tai-Wei; Chen, Min-Chou

    2014-01-15

    An optical free-space wavelength-division-multiplexing (WDM) transport system employing vertical cavity surface emitting lasers and spatial light modulators with 16-quadrature amplitude modulation orthogonal frequency-division multiplexing modulating signals over a 17.5 m free-space link is proposed and demonstrated. With the help of a low-noise amplifier and data comparator, good bit error rate performance is obtained for each optical channel. Such an optical free-space WDM transport system would be attractive for providing services including data and telecommunication services.

  13. Compact reflection holographic recording system with high angle multiplexing

    NASA Astrophysics Data System (ADS)

    Kanayasu, Mayumi; Yamada, Takehumi; Takekawa, Shunsuke; Akieda, Kensuke; Goto, Akiyo; Yamamoto, Manabu

    2011-02-01

    Holographic memory systems have been widely researched since 1963. However, the size of the drives required and the deterioration of reconstructed data resulting from shrinkage of the medium have made practical use of a hologram memory difficult. In light of this, we propose a novel holographic recording/reconstructing system: a dual-reference beam reflection system that is smaller than conventional systems such as the off-axis or co-axis types, and which is expected to increase the number of multiplexing in angle multiplexed recording. In this multiplex recording system, two laser beams are used as reference beams, and the recorded data are reconstructed stably, even if there is shrinkage of the recording medium. In this paper, a reflection holographic memory system is explained in detail. In addition, the change in angle selectivity resulting from shrinkage of the medium is analyzed using the laminated film three-dimensional simulation method. As a result, we demonstrate that a dual-reference beam multiplex recording system is effective in reducing the influence of medium shrinkage.

  14. Mixed species radioiodine air sampling readout and dose assessment system

    DOEpatents

    Distenfeld, Carl H.; Klemish, Jr., Joseph R.

    1978-01-01

    This invention provides a simple, reliable, inexpensive and portable means and method for determining the thyroid dose rate of mixed airborne species of solid and gaseous radioiodine without requiring highly skilled personnel, such as health physicists or electronics technicians. To this end, this invention provides a means and method for sampling a gas from a source of a mixed species of solid and gaseous radioiodine for collection of the mixed species and readout and assessment of the emissions therefrom by cylindrically, concentrically and annularly molding the respective species around a cylindrical passage for receiving a conventional probe-type Geiger-Mueller radiation detector.

  15. Microphone multiplex system provides multiple outlets from single source

    NASA Technical Reports Server (NTRS)

    Lauver, R. E.

    1966-01-01

    Microphone multiplex system accepts an audio signal from a single source and provides any number of low impedance outputs at microphone level with complete isolation between output channels. Any input or output may be converted to high impedance by eliminating the associated transformer.

  16. Photon nonlinear mixing in subcarrier multiplexed quantum key distribution systems.

    PubMed

    Capmany, José

    2009-04-13

    We provide, for the first time to our knowledge, an analysis of the influence of nonlinear photon mixing on the end to end quantum bit error rate (QBER) performance of subcarrier multiplexed quantum key distribution systems. The results show that negligible impact is to be expected for modulation indexes in the range of 2%.

  17. Drive system and readout characteristics of micro-reflector optical disc

    NASA Astrophysics Data System (ADS)

    Saito, Kimihiro; Horigome, Toshihiro; Miyamoto, Hirotaka; Yamatsu, Hisayuki; Tanabe, Norihiro; Hayashi, Kunihiko; Fujita, Goro; Kobayashi, Seiji; Kudo, Takao; Uchiyama, Hiroshi

    2007-06-01

    This paper reviews the analyses and the experimental results of Micro-reflector optical disc system. In Micro-reflector optical disc, data are recorded on multiple virtual planes in a monolithic holographic medium. We have demonstrated the possibility of huge capacity from our analyses of readout characteristics of the Micro-reflector. In addition, we have developed the five-axis servo control system in order to achieve precise control of two counter-propagating light spots in recording media. Using this system, we succeeded in four-layer recording/readout.

  18. An application specific integrated circuit based multi-anode microchannel array readout system

    NASA Technical Reports Server (NTRS)

    Smeins, Larry G.; Stechman, John M.; Cole, Edward H.

    1991-01-01

    Size reduction of two new multi-anode microchannel array (MAMA) readout systems is described. The systems are based on two analog and one digital application specific integrated circuits (ASICs). The new readout systems reduce volume over previous discrete designs by 80 percent while improving electrical performance on virtually every significant parameter. Emphasis is made on the packaging used to achieve the volume reduction. Surface mount technology (SMT) is combined with modular construction for the analog portion of the readout. SMT reliability concerns and the board area impact of MIL SPEC SMT components is addressed. Package selection for the analog ASIC is discussed. Future sytems will require even denser packaging and the volume reduction progression is shown.

  19. Performance improvement of hybrid subcarrier multiplexing optical spectrum code division multiplexing system using spectral direct decoding detection technique

    NASA Astrophysics Data System (ADS)

    Sahbudin, R. K. Z.; Abdullah, M. K.; Mokhtar, M.

    2009-06-01

    This paper proposes a hybrid subcarrier multiplexing/optical spectrum code division multiplexing (SCM/OSCDM) system for the purpose of combining the advantages of both techniques. Optical spectrum code division multiple-access (OSCDMA) is one of the multiplexing techniques that is becoming popular because of the flexibility in the allocation of channels, ability to operate asynchronously, enhanced privacy and increased capacity in bursty nature networks. On the other hand, subcarrier multiplexing (SCM) technique is able to enhance the channel data rate of OSCDMA systems. In this paper, a newly developed detection technique for the OSCDM called spectral direct decoding (SDD) detection technique is compared mathematically with the AND subtraction detection technique. The system utilizes a new unified code construction named KS (Khazani-Syed) code. The results characterizing the bit-error-rate (BER) show that SDD offers a significant improved performance at BER of 10 -9.

  20. Detector apparatus having a hybrid pixel-waveform readout system

    DOEpatents

    Meng, Ling-Jian

    2014-10-21

    A gamma ray detector apparatus comprises a solid state detector that includes a plurality of anode pixels and at least one cathode. The solid state detector is configured for receiving gamma rays during an interaction and inducing a signal in an anode pixel and in a cathode. An anode pixel readout circuit is coupled to the plurality of anode pixels and is configured to read out and process the induced signal in the anode pixel and provide triggering and addressing information. A waveform sampling circuit is coupled to the at least one cathode and configured to read out and process the induced signal in the cathode and determine energy of the interaction, timing of the interaction, and depth of interaction.

  1. Conversion factors between human and automatic readouts of CDMAM phantom images of CR mammography systems

    NASA Astrophysics Data System (ADS)

    Figl, Michael; Homolka, Peter; Osanna-Elliott, Angelika; Semturs, Friedrich; Kaar, Marcus; Hummel, Johann

    2016-09-01

    In mammography screening, profound assessment of technical image quality is imperative. The European protocol for the quality control of the physical and technical aspects of mammography screening (EPQCM) suggests using an alternate fixed choice contrast-detail phantom-like CDMAM. For the evaluation of technical image quality, human or automated readouts can be used. For automatic evaluation, a software (cdcom) is provided by EUREF. If the automated readout indicates unacceptable image quality, additional human readout may be performed overriding the automated readout. As the latter systematically results in higher image quality ratings, conversion factors between both methods are regularly applied. Since most image quality issues with mammography systems arise within CR systems, an assessment restricted to CR systems with data from the Austrian Reference Center in the mammography screening program has been conducted. Forty-five CR systems were evaluated. Human readouts were performed with a randomisation software to avoid bias due to learning effects. Additional automatic evaluation allowed for the computation of conversion factors between human and automatic readouts. These factors were substantially lower compared to those suggested by EUREF, namely 1.21 compared to 1.62 (EUREF UK method) and 1.42 (EUREF EU method) for 0.1 mm, and 1.40 compared to 1.83 (EUREF UK) and 1.73 (EUREF EU) for 0.25 mm structure size, respectively. Using either of these factors to adjust patient dose in order to comply with image quality requirements results in differences in the dose increase of up to 90%. This necessitates a consensus on their proper application and limits the validity of the assessment methods. Clear criteria for CR systems based on appropriate studies should be promoted.

  2. Conversion factors between human and automatic readouts of CDMAM phantom images of CR mammography systems.

    PubMed

    Figl, Michael; Homolka, Peter; Osanna-Elliott, Angelika; Semturs, Friedrich; Kaar, Marcus; Hummel, Johann

    2016-09-21

    In mammography screening, profound assessment of technical image quality is imperative. The European protocol for the quality control of the physical and technical aspects of mammography screening (EPQCM) suggests using an alternate fixed choice contrast-detail phantom-like CDMAM. For the evaluation of technical image quality, human or automated readouts can be used. For automatic evaluation, a software (cdcom) is provided by EUREF. If the automated readout indicates unacceptable image quality, additional human readout may be performed overriding the automated readout. As the latter systematically results in higher image quality ratings, conversion factors between both methods are regularly applied. Since most image quality issues with mammography systems arise within CR systems, an assessment restricted to CR systems with data from the Austrian Reference Center in the mammography screening program has been conducted. Forty-five CR systems were evaluated. Human readouts were performed with a randomisation software to avoid bias due to learning effects. Additional automatic evaluation allowed for the computation of conversion factors between human and automatic readouts. These factors were substantially lower compared to those suggested by EUREF, namely 1.21 compared to 1.62 (EUREF UK method) and 1.42 (EUREF EU method) for 0.1 mm, and 1.40 compared to 1.83 (EUREF UK) and 1.73 (EUREF EU) for 0.25 mm structure size, respectively. Using either of these factors to adjust patient dose in order to comply with image quality requirements results in differences in the dose increase of up to 90%. This necessitates a consensus on their proper application and limits the validity of the assessment methods. Clear criteria for CR systems based on appropriate studies should be promoted.

  3. Remote (250 km) Fiber Bragg Grating Multiplexing System

    PubMed Central

    Fernandez-Vallejo, Montserrat; Rota-Rodrigo, Sergio; Lopez-Amo, Manuel

    2011-01-01

    We propose and demonstrate two ultra-long range fiber Bragg grating (FBG) sensor interrogation systems. In the first approach four FBGs are located 200 km from the monitoring station and a signal to noise ratio of 20 dB is obtained. The second improved version is able to detect the four multiplexed FBGs placed 250 km away, offering a signal to noise ratio of 6–8 dB. Consequently, this last system represents the longest range FBG sensor system reported so far that includes fiber sensor multiplexing capability. Both simple systems are based on a wavelength swept laser to scan the reflection spectra of the FBGs, and they are composed by two identical-lengths optical paths: the first one intended to launch the amplified laser signal by means of Raman amplification and the other one is employed to guide the reflection signal to the reception system. PMID:22164101

  4. Capacity of arbitrary-order orbital angular momentum multiplexing system

    NASA Astrophysics Data System (ADS)

    Zhao, Yaqin; Zhong, Xin; Ren, Guanghui; He, Shengyang; Wu, Zhilu

    2017-03-01

    Arbitrary-order orbital angular momentum multiplexing (AOAMM) systems utilize OAM modes with both integer and fractional topological charges which are non-orthogonal. In this paper, the transmission matrix and the capacity per unit bandwidth, i.e., the spectral efficiency (SE) of an AOAMM system is derived based on the spatial cross correlations of the OAM submodes under different aperture conditions. The results show that in limited apertures, the SEs of AOAMM systems increase dramatically as the interval of two adjacent OAM submodes decreases by losing orthogonality. AOAMM systems are effective choices for satisfying the explosive growth of the communication requirements. This paper provides insight into the selection of spatially multiplexing approaches and the design of interference mitigation techniques for AOAMM systems with increased SEs.

  5. Characteristics of a large system of pad readout wire proportional chambers for the HPC calorimeter

    SciTech Connect

    Camporesi, T.; Cavallo, F.R.; Giordano, V.; Laurenti, G.; Molinari, G.; Navarria, F.L.; Privitera, P.; Rovelli, T.; Valenti, G.; Zucchini, A.

    1989-02-01

    A large system of wire proportional chambers is being constructed for the readout of the High-Density Projection Chamber (HPC) of the DELPHI experiment at the Large Electron-Positron storage ring. The system consists of 144 chambers, each 0.3 m/sup 2/ wide and read out via cathode pads, located at the end of the HPC drift volume.

  6. Functional Description of Read-out Electronics for Time-Domain Multiplexed Bolometers for Millimeter and Sub-millimeter Astronomy

    NASA Astrophysics Data System (ADS)

    Battistelli, E. S.; Amiri, M.; Burger, B.; Halpern, M.; Knotek, S.; Ellis, M.; Gao, X.; Kelly, D.; Macintosh, M.; Irwin, K.; Reintsema, C.

    2008-05-01

    We have developed multi-channel electronics (MCE) which work in concert with time-domain multiplexors developed at NIST, to control and read signals from large format bolometer arrays of superconducting transition edge sensors (TESs). These electronics were developed as part of the Submillimeter Common-User Bolometer Array-2 (SCUBA2 ) camera, but are now used in several other instruments. The main advantages of these electronics compared to earlier versions is that they are multi-channel, fully programmable, suited for remote operations and provide a clean geometry, with no electrical cabling outside of the Faraday cage formed by the cryostat and the electronics chassis. The MCE is used to determine the optimal operating points for the TES and the superconducting quantum interference device (SQUID) amplifiers autonomously. During observation, the MCE execute a running PID-servo and apply to each first stage SQUID a feedback signal necessary to keep the system in a linear regime at optimal gain. The feedback and error signals from a ˜1000-pixel array can be written to hard drive at up to 2 kHz.

  7. Some Progress In The Development Of An Optical Readout System For The LISA Gravitational Reference Sensor

    NASA Astrophysics Data System (ADS)

    Acernese, Fausto; De Rosa, Rosario; Di Fiore, Luciano; Garufi, Fabio; La Rana, Adele; Milano, Leopoldo

    2006-11-01

    In this paper, we report on the progress in the development of an optical read-out (ORO) system for the inertial sensor of the LISA gravitational wave antenna. The device is based on optical levers and position sensors and is intended to be integrated in the present baseline design for the LISA inertial sensor, which is based on capacitive readout of the test mass position. In particular, we report some improved measurement of the sensitivity of this device, performed with a bench-top rigid set-up and tests on a real scale prototype.

  8. Multimegabit Operation Multiplexer System. [PCM telemetry unit for space applications

    NASA Technical Reports Server (NTRS)

    Giri, R. R.; Maxwell, M. S.

    1973-01-01

    The Multimegabit Operation Multiplexer System (MOMS) is a high-data-rate PCM telemetry unit capable of sampling and encoding 60 scanning radiometer and four vidicon channels at 250 kilosamples/second and 5 megasamples/second, respectively. This sampling capacity plus the seven-bit quantization requires a total throughput rate of 40 megasamples/second and 280 megabits/second. To produce these rates efficiently, the system was divided into a pair of identical 140-megabit blocks. A low-power 20-MHz analog multiplexer and analog-to-digital converter were developed together with a video sample-and-hold that features an aperture time error of less than 50 psec. Breadboard testing of these basic building blocks confirmed the design prediction that the total system would consume 27 watts of power. Two 140-megabit output parts are suitable for quadriphase modulation.

  9. Research on copying system of dynamic multiplex holographic stereograms

    NASA Astrophysics Data System (ADS)

    Fu, Huaiping; Yang, Hong; Zheng, Tong

    2003-05-01

    The most important advantage of holographic stereograms over conventional hologram is that they can produce 3D images at any desired scale with movement, holographers in many countries involved in the studies towards it. We began our works in the early 80's and accomplished two research projects automatic system for making synthetic holograms and multiplex synthetic rainbow holograms, Based on these works, a large scale holographic stereogram of an animated goldfish was made by us for practical advertisement. In order to meet the needs of the market, a copying system for making multiplex holographic stereograms, and a special kind of silver halide holographic film developed by us recently. The characteristic of the copying system and the property of the special silver-halide emulsion are introduced in this paper.

  10. Infrared readout electronics; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Editor)

    1992-01-01

    The present volume on IR readout electronics discusses cryogenic readout using silicon devices, cryogenic readout using III-V and LTS devices, multiplexers for higher temperatures, and focal-plane signal processing electronics. Attention is given to the optimization of cryogenic CMOS processes for sub-10-K applications, cryogenic measurements of aerojet GaAs n-JFETs, inP-based heterostructure device technology for ultracold readout applications, and a three-terminal semiconductor-superconductor transimpedance amplifier. Topics addressed include unfulfilled needs in IR astronomy focal-plane readout electronics, IR readout integrated circuit technology for tactical missile systems, and radiation-hardened 10-bit A/D for FPA signal processing. Also discussed are the implementation of a noise reduction circuit for spaceflight IR spectrometers, a real-time processor for staring receivers, and a fiber-optic link design for INMOS transputers.

  11. Readout Circuit System for In2O3/RGO Nanocomposite Gas Sensors

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Yi

    A readout circuit system for In2O3/RGO nanocomposite gas sensors using open-source software has been developed for the first time. The readout system adopts a Raspberry Pi as an electronic control unit and incorporates different electronics components to realize the function of a source measure unit (SMU). During the operation, real-time results of measured gas concentrations can be accessed through the Internet and alarm functions are also included. All control programs were written in Python language. Using this readout system, current response of gas sensors toward oxygen concentrations (2,000---32,000 ppm) in argon environment at 140 °C are in a good agreement with the data measured by Agilent SMU (B2902A). Furthermore, temperature effects and transient response of the proposed system are investigated. The success of this readout system demonstrates the potential use of open-source hardware to construct scientific instruments with the advantages of miniaturization, low cost, flexible design, and Internet access.

  12. Multiplexed broadband beam steering system utilizing high speed MEMS mirrors.

    PubMed

    Knoernschild, Caleb; Kim, Changsoon; Lu, Felix P; Kim, Jungsang

    2009-04-27

    We present a beam steering system based on micro-electromechanical systems technology that features high speed steering of multiple laser beams over a broad wavelength range. By utilizing high speed micromirrors with a broadband metallic coating, our system has the flexibility to simultaneously incorporate a wide range of wavelengths and multiple beams. We demonstrate reconfiguration of two independent beams at different wavelengths (780 and 635 nm) across a common 5x5 array with 4 micros settling time. Full simulation of the optical system provides insights on the scalability of the system. Such a system can provide a versatile tool for applications where fast laser multiplexing is necessary.

  13. Choosing the number of readout systems of a photoelectric angle converter

    NASA Astrophysics Data System (ADS)

    Latyev, S. M.; Mitrofanov, S. S.

    1994-09-01

    This paper discusses certain errors of photoelectric angle converters whose effect can be lessened by making the best choice of the number of readout systems and of their definite mutual placement. Recommendations are given for compensating the systematic and random errors of a converter.

  14. Readout system of multi-level run-length-limited read-only disc

    NASA Astrophysics Data System (ADS)

    Wang, Hequn; Xu, Haizheng; Pan, Longfa; Yan, Mingming

    2008-12-01

    The Radio Frequency (RF) signal of the Multi-Level Run-Length-Limited (ML-RLL) read-only disc is different from that of DVD, so the readout system of the ML-RLL read-only disc is built specially. The readout system of the ML-RLL read-only disc can realize servo control, RF signal readout and so on. The readout system consists of Digital Versatile Disc (DVD) traverse, analog front-end and digital processing part. Analog front-end can realize front-end amplification of the output signal of the optical pick-up and power drive of mechanism. Digital processing part mainly consists of digital circuits, which functions are the servo controlling, demodulation and decoding of RF signal, general control and so on. The whole system is implemented on two Field Programmable Gate Array (FPGA) chips and the experimental results show a good performance. We tested the important signals, and experimental results are also given to verify the performance of this development platform, which meets the controlling and detecting requirements to multi-level read-only disc completely. The Bit Error Rate (SER) can achieve below 10-4.

  15. Development of microwave kinetic inductance detectors and their readout system for LiteBIRD

    NASA Astrophysics Data System (ADS)

    Hattori, K.; Hazumi, M.; Ishino, H.; Kibayashi, A.; Kibe, Y.; Mima, S.; Okamura, T.; Sato, N.; Tomaru, T.; Yamada, Y.; Yoshida, M.; Yuasa, T.; Watanabe, H.

    2013-12-01

    Primordial gravitational waves generated by inflation have produced an odd-parity pattern B-mode in the cosmic microwave background (CMB) polarization. LiteBIRD (Light satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection) aims at detecting this B-mode polarization precisely. It requires about 2000 detectors capable of detecting a frequency range from 50 GHz to 250 GHz with ultra low noise. Superconducting detectors are suitable for this requirement. We have fabricated and tested microwave kinetic inductance detectors (MKIDs) and developed a new readout system. We have designed antenna-coupled MKIDs. Quasi-particles are created by incident radiation and are detected as a change of the surface impedance of a superconductor strip. This change of the surface impedance is translated into the change of the resonant frequency of a microwave signal transmitted through the resonator. We also have developed a new readout system for MKIDs. The newly developed readout system is not only able to read out the amplitude and the phase data with the homodyne detection for multi-channels, but also provides a unique feature of tracking the resonant frequency of the target resonator. This mechanism enables us to detect signals with a large dynamic range. We report on the recent R&D status of the developing MKIDs and on the read-out system for LiteBIRD.

  16. Development of readout system for FE-I4 pixel module using SiTCP

    NASA Astrophysics Data System (ADS)

    Teoh, J. J.; Hanagaki, K.; Ikegami, Y.; Takubo, Y.; Terada, S.; Unno, Y.

    2013-12-01

    The ATLAS pixel detector will be replaced in the future High Luminosity-Large Hadron Collider (HL-LHC) upgrade to preserve or improve the detector performance at high luminosity environment. To meet the tight requirements of the upgrade, a new pixel Front-End (FE) Integrated Circuit (IC) called FE-I4 has been developed. We have then devised a readout system for the new FE IC. Our system incorporates Silicon Transmission Control Protocol (SiTCP) technology (Uchida, 2008 [1]) which utilizes the standard TCP/IP and UDP communication protocols. This technology allows direct data access and transfer between a readout hardware chain and PC via a high speed Ethernet. In addition, the communication protocols are small enough to be implemented in a single Field-Programable Gate Array (FPGA). Relying on this technology, we have been able to construct a very compact, versatile and fast readout system. We have developed a firmware and software together with the readout hardware chain. We also have established basic functionalities for reading out FE-I4.

  17. A fast embedded readout system for large-area Medipix and Timepix systems

    NASA Astrophysics Data System (ADS)

    Brogna, A. S.; Balzer, M.; Smale, S.; Hartmann, J.; Bormann, D.; Hamann, E.; Cecilia, A.; Zuber, M.; Koenig, T.; Zwerger, A.; Weber, M.; Fiederle, M.; Baumbach, T.

    2014-05-01

    In this work we present a novel readout electronics for an X-ray sensor based on a Si crystal bump-bonded to an array of 3 × 2 Medipix ASICs. The pixel size is 55 μm × 55 μm with a total number of ~ 400k pixels and a sensitive area of 42 mm × 28 mm. The readout electronics operate Medipix-2 MXR or Timepix ASICs with a clock speed of 125 MHz. The data acquisition system is centered around an FPGA and each of the six ASICs has a dedicated I/O port for simultaneous data acquisition. The settings of the auxiliary devices (ADCs and DACs) are also processed in the FPGA. Moreover, a high-resolution timer operates the electronic shutter to select the exposure time from 8 ns to several milliseconds. A sophisticated trigger is available in hardware and software to synchronize the acquisition with external electro-mechanical motors. The system includes a diagnostic subsystem to check the sensor temperature and to control the cooling Peltier cells and a programmable high-voltage generator to bias the crystal. A network cable transfers the data, encapsulated into the UDP protocol and streamed at 1 Gb/s. Therefore most notebooks or personal computers are able to process the data and to program the system without a dedicated interface. The data readout software is compatible with the well-known Pixelman 2.x running both on Windows and GNU/Linux. Furthermore the open architecture encourages users to write their own applications. With a low-level interface library which implements all the basic features, a MATLAB or Python script can be implemented for special manipulations of the raw data. In this paper we present selected images taken with a microfocus X-ray tube to demonstrate the capability to collect the data at rates up to 120 fps corresponding to 0.76 Gb/s.

  18. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    SciTech Connect

    Claus, R.

    2015-10-23

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. Furthermore, the full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.

  19. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    SciTech Connect

    Bartoldus, R.; Claus, R.; Garelli, N.; Herbst, R. T.; Huffer, M.; Iakovidis, G.; Iordanidou, K.; Kwan, K.; Kocian, M.; Lankford, A. J.; Moschovakos, P.; Nelson, A.; Ntekas, K.; Ruckman, L.; Russell, J.; Schernau, M.; Schlenker, S.; Su, D.; Valderanis, C.; Wittgen, M.; Yildiz, S. C.

    2016-01-25

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all of these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. In conclusion, we will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.

  20. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    DOE PAGES

    Bartoldus, R.; Claus, R.; Garelli, N.; ...

    2016-01-25

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all ofmore » these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. In conclusion, we will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.« less

  1. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    DOE PAGES

    Claus, R.

    2015-10-23

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQmore » building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. Furthermore, the full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.« less

  2. A new analogue sampling readout system for the COMPASS RICH-1 detector

    NASA Astrophysics Data System (ADS)

    Abbon, P.; Dafni, T.; Delagnes, E.; Deschamps, H.; Gerassimov, S.; Ketzer, B.; Kolosov, V.; Konorov, I.; Kravtchuk, N.; Kunne, F.; Magnon, A.; Neyret, D.; Panebianco, S.; Paul, S.; Rebourgeard, P.

    2008-05-01

    A new electronic readout for CsI-coated multiwire proportional chambers (MWPC), used as photon detectors in the COMPASS ring imaging Cherenkov (RICH) detector, is described. A prototype system comprising more than 5000 channels has been built and tested in high-intensity beam conditions. It is based on the APV25-S1 analogue sampling chip, and replaces the GASSIPLEX chip readout used previously. The APV25 chip, although originally designed for Silicon microstrip detectors, is shown to perform well even with "slow" signals from an MWPC, maintaining a signal-to-noise ratio (SNR) of 9. For every trigger the system reads out three consecutive amplitudes in time, thus allowing to extract information on both the signal amplitude and its timing. This information is used to reduce pile-up events in a high-rate environment. Prototype tests of the new readout electronics on a central RICH photocathode in nominal COMPASS beam conditions showed that the effective time window is reduced from more than 3 μs for the GASSIPLEX to less than 400 ns for the APV25 chip. This leads to a significant improvement of the signal-to-background ratio (SBR) with respect to the original readout. A gain by a factor of 5-6 was experimentally verified in the very forward region of phase space, where pile-up due to the muon beam halo is most significant. Owing to its pipelined architecture, the new readout system also considerably reduces the dead time per event, thus allowing to make use of trigger rates exceeding 50 kHz.

  3. Catch and release: integrated system for multiplexed detection of bacteria.

    PubMed

    Verbarg, Jasenka; Plath, William D; Shriver-Lake, Lisa C; Howell, Peter B; Erickson, Jeffrey S; Golden, Joel P; Ligler, Frances S

    2013-05-21

    An integrated system with automated immunomagnetic separation and processing of fluidic samples was demonstrated for multiplexed optical detection of bacterial targets. Mixtures of target-specific magnetic bead sets were processed in the NRL MagTrap with the aid of rotating magnet arrays that entrapped and moved the beads within the channel during reagent processing. Processing was performed in buffer and human serum matrixes with 10-fold dilutions in the range of 10(2)-10(6) cells/mL of target bacteria. Reversal of magnets' rotation post-processing released the beads back into the flow and moved them into the microflow cytometer for optical interrogation. Identification of the beads and the detection of PE fluorescence were performed simultaneously for multiplexed detection. Multiplexing was performed with specifically targeted bead sets to detect E. coli 0157.H7, Salmonella Common Structural Antigen, Listeria sp., and Shigella sp., dose-response curves were obtained, and limits of detection were calculated for each target in the buffer and clinical matrix. Additional tests demonstrated the potential for using the MagTrap to concentrate target from larger volumes of sample prior to the addition of assay reagents.

  4. Multiplexed fiber-optic transmission system

    NASA Technical Reports Server (NTRS)

    Bell, C. H.

    1977-01-01

    Digital, audio, and video data channels spanning 100 megahertz bandwidth are transmitted via single fiber-optical link. System is flexible by virtue of its plug-in modularity and optical patchboard that allows it to adjust to data and bandwidth changes.

  5. Wave-front coded optical readout for the MEMS-based uncooled infrared imaging system

    NASA Astrophysics Data System (ADS)

    Li, Tian; Zhao, Yuejin; Dong, Liquan; Liu, Xiaohua; Jia, Wei; Hui, Mei; Yu, Xiaomei; Gong, Cheng; Liu, Weiyu

    2012-11-01

    In the space limited infrared imaging system based MEMS, the adjustment of optical readout part is inconvenient. This paper proposed a method of wave-front coding to extend the depth of focus/field of the optical readout system, to solve the problem above, and to reduce the demanding for precision in processing and assemblage of the optical readout system itself as well. The wave-front coded imaging system consists of optical coding and digital decoding. By adding a CPM (Cubic Phase Mask) on the pupil plane, it becomes non-sensitive to defocussing within an extended range. The system has similar PSFs and almost equally blurred intermediate images can be obtained. Sharp images are supposed to be acquired based on image restoration algorithms, with the same PSF as a decoding core. We studied the conventional optical imaging system, which had the same optical performance with the wave-front coding one for comparing. Analogue imaging experiments were carried out. And one PSF was used as a simple direct inverse filter, for imaging restoration. Relatively sharp restored images were obtained. Comparatively, the analogue defocussing images of the conventional system were badly destroyed. Using the decrease of the MTF as a standard, we found the depth of focus/field of the wave-front coding system had been extended significantly.

  6. Coherent operation of detector systems and their readout electronics in a complex experiment control environment

    NASA Astrophysics Data System (ADS)

    Koestner, Stefan

    2009-09-01

    With the increasing size and degree of complexity of today's experiments in high energy physics the required amount of work and complexity to integrate a complete subdetector into an experiment control system is often underestimated. We report here on the layered software structure and protocols used by the LHCb experiment to control its detectors and readout boards. The experiment control system of LHCb is based on the commercial SCADA system PVSS II. Readout boards which are outside the radiation area are accessed via embedded credit card sized PCs which are connected to a large local area network. The SPECS protocol is used for control of the front end electronics. Finite state machines are introduced to facilitate the control of a large number of electronic devices and to model the whole experiment at the level of an expert system.

  7. A 128 Multiplexing Factor Time-Domain SQUID Multiplexer

    NASA Astrophysics Data System (ADS)

    Prêle, D.; Voisin, F.; Piat, M.; Decourcelle, T.; Perbost, C.; Chapron, C.; Rambaud, D.; Maestre, S.; Marty, W.; Montier, L.

    2016-07-01

    A cryogenic 128:1 Time-Domain Multiplexer (TDM) has been developed for the readout of kilo-pixel Transition Edge Sensor (TES) arrays dedicated to the Q&U Bolometric Interferometer for Cosmology (QUBIC) instrument which aims to measure the B-mode polarization of the Cosmic Microwave Background. Superconducting QUantum Interference Devices (SQUIDs) are usually used to read out TESs. Moreover, SQUIDs are used to build TDM by biasing sequentially the SQUIDs connected together—one for each TES. In addition to this common technique which allows a typical 32 multiplexing factor, a cryogenic integrated circuit provides a 4:1 second multiplexing stage. This cryogenic integrated circuit is one of the original part of our TDM achieving an unprecedented 128 multiplexing factor. We present these two dimension TDM stages: topology of the SQUID multiplexer, operation of the cryogenic integrated circuit, and integration of the full system to read out a TES array dedicated to the QUBIC instrument. Flux-locked loop operation in multiplexed mode is also discussed.

  8. The read-out and control system For the ATLAS SemiConductor Tracker

    NASA Astrophysics Data System (ADS)

    Sandaker, H.

    2005-04-01

    The SemiConductor Tracker (SCT) in the ATLAS experiment has entered the stage of system assembly. Around 35% of the 4088 silicon modules are already produced, tested and will soon be mounted on the four barrel cylinders and 18 end-cap disks which make up the SCT. A new Data Acquisition System (DAQ) will provide binary readout, via front-end ASICs, of 16,000 silicon wafers and 6.3 million read-out channels using optical links. A new Detector Control System (DCS) will control up to 500 V bias voltage and the 30 kW low voltage power to the modules, as well as monitor the C3F8 evaporative cooling system, humidity and temperatures. Recently, several macro-assembly sites have mounted modules on both end-cap and barrel prototype structures and gained first experience with system-operation of the SCT. This presentation will give an overview of the full system required to operate and read-out a large-scale silicon detector. A description of both off-detector systems, DAQ and DCS, and their interactions will be presented, as well as the macro-assembly status.

  9. Multiplex electric discharge gas laser system

    NASA Technical Reports Server (NTRS)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  10. Baseband feedback for SAFARI-SPICA using Frequency Domain Multiplexing

    NASA Astrophysics Data System (ADS)

    Bounab, A.; de Korte, P.; Cros, A.; van der Kuur, J.; van Leeuwen, B. J.; Monna, B.; Mossel, R.; Nieuwenhuizen, A.; Ravera, L.

    We report on the performance of the digital baseband feedback circuit developed to readout and process signals from arrays of transition edge sensors for SPICA-SAFARI in frequency domain multiplexing (FDM). The standard procedure to readout the SQUID current amplifiers is to use a feedback loop (flux-locked loop: FLL). However the achievable FFL bandwidth is limited by the cable transport delay t_d, which makes standard feedback inconvenient. A much better approach is to use baseband feedback. We have developed a model of the electronic readout chain for SPICA-SAFARI instrument by using an Anlog-digital co-simulation based on Simulink-System Generator environment.

  11. Design of versatile ASIC and protocol tester for CBM readout system

    NASA Astrophysics Data System (ADS)

    Zabołotny, W. M.; Byszuk, A. P.; Emschermann, D.; Gumiński, M.; Juszczyk, B.; Kasiński, K.; Kasprowicz, G.; Lehnert, J.; Müller, W. F. J.; Poźniak, K.; Romaniuk, R.; Szczygieł, R.

    2017-02-01

    Silicon Tracking System (STS), Muon Chamber (MUCH) and Transition Radiation Detector (TRD) subdetectors in the Compressed Baryonic Matter (CBM) detector system at Facility for Antiproton and Ion Research (FAIR) use the same innovative protocol ensuring reliable synchronization of the communication link between the controller and the front-end ASIC, transmission of time-deterministic commands to the ASIC and efficient readout of data. The paper describes the FPGA-based tester platform which can be used both for the verification of the protocol implementation in a front-end ASIC at the design stage, and for testing of the produced ASICs. Due to its modularity, the platform can be easily adapted for different integrated circuits and readout systems.

  12. A read-out system for the Medipix2 chip capable of 500 frames per second

    NASA Astrophysics Data System (ADS)

    Maiorino, M.; Martinez, R.; Pellegrini, G.; Blanchot, G.; Chmeissani, M.; Garcia, J.; Lozano, M.; Puigdengoles, C.; Ullan, M.

    2006-07-01

    High-speed X-ray-imaging acquisition technique is a growing field that can be used to understand microscopic mechanism of different phenomena in biology and material science. IFAE and CNM developed a very high-speed readout system, named DEMAS, for the Medipix2. The system is able to read a single Medipix2 chip through the parallel bus at a rate of 1 kHz.With a duty cycle of 50%, the real sampling speed is 500 frames per second (fps). This implies that 1 ms is allocated to the exposure time and another millisecond is devoted to the read-out of the chip. In such configuration, the raw data throughput is about 500 Mbit/s. For the first time we present examples of acquisition at 500 fps of moving samples with X-rays working in direct capture and photon counting mode.

  13. A prototype scalable readout system for micro-pattern gas detectors

    NASA Astrophysics Data System (ADS)

    Zheng, Qi-Bin; Liu, Shu-Bin; Tian, Jing; Li, Cheng; Feng, Chang-Qing; An, Qi

    2016-08-01

    A scalable readout system (SRS) is designed to provide a general solution for different micro-pattern gas detectors in various applications. The system mainly consists of three kinds of modules: the ASIC card, the adapter card and the front-end card (FEC). The ASIC cards, mounted with particular ASIC chips, are designed for receiving detector signals. The adapter card is in charge of digitizing the output signals from several ASIC cards. The FEC, edged-mounted with the adapter, has field-programmable gate array (FPGA)-based reconfigurable logic and I/O interfaces, allowing users to choose different ASIC cards and adapters for different experiments, which expands the system to various applications. The FEC transfers data through Gigabit Ethernet protocol realized by a TCP processor (SiTCP) IP core in FPGA. By assembling a flexible number of FECs in parallel through Gigabit Ethernet, the readout system can be tailored to specific sizes to adapt to the experiment scales and readout requirements. In this paper, two kinds of multi-channel ASIC chip, VA140 and AGET, are applied to verify the scalability of this SRS architecture. Based on this VA140 or AGET SRS, one FEC covers 8 ASIC (VA140) cards handling 512 detector channels, or 4 ASIC (AGET) cards handling 256 detector channels, respectively. More FECs can be assembled in crates to handle thousands of detector channels. Supported by National Natural Science Foundation of China (11222552)

  14. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  15. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  16. Systematic Comparison of the MINOS Near and Far Detector Readout Systems

    SciTech Connect

    Cabrera, Anatael

    2005-06-22

    The MINOS experiment is a neutrino oscillation baseline experiment intending to use high resolution L/E neutrinos to measure the atmospheric neutrino oscillations parameters to unprecedented precision. Two detectors have been built to realize the measurements, a Near detector, located about 1km downstream from the beam target at the Fermi Laboratory, and a Far detector, located at 736km, at the Soudan Laboratory. The technique relies on the Near detector to measure the un-oscillated neutrino spectrum, while the Far detector measures the neutrino spectrum once oscillated. The comparison between the two measurements is expected to allow MINOS to measure Δm2 beyond 10% precision level. The Near and Far detectors have been built similarly to minimize possible systematic effects. Both detectors have been endowed with different readout systems, as the beam event rates are very different. The MINOS calibration detector (CalDet), installed at CERN, was instrumented with both readout systems such that they can simultaneously measure and characterize the energy deposition (response and event topology) of incident known particle from test-beams. This thesis presents the investigations to quantify the impact of the performance of both readout systems on the MINOS results using the measurements obtained with CalDet. The relative comparison of the responses of both readout systems have been measured to be consistent with being identical within a systematic uncertainty of 0.6%. The event topologies have been found to be negligibly affected. In addition, the performance of the detector simulations have been thoroughly investigated and validated to be in agreement with data within similar level of uncertainties.

  17. The readout and control system of the Dark Energy Camera

    NASA Astrophysics Data System (ADS)

    Honscheid, Klaus; Elliott, Ann; Annis, James; Bonati, Marco; Buckley-Geer, Elizabeth; Castander, Francisco; daCosta, Luiz; Fausti, Angelo; Karliner, Inga; Kuhlmann, Steve; Neilsen, Eric; Patton, Kenneth; Reil, Kevin; Roodman, Aaron; Thaler, Jon; Serrano, Santiago; Soares Santos, Marcelle; Suchyta, Eric

    2012-09-01

    The Dark Energy Camera (DECam) is a new 520 Mega Pixel CCD camera with a 3 square degree field of view designed for the Dark Energy Survey (DES). DES is a high precision, multi-bandpass, photometric survey of 5000 square degrees of the southern sky. DECam is currently being installed at the prime focus of the Blanco 4-m telescope at the Cerro- Tololo International Observatory (CTIO). In this paper we describe SISPI, the data acquisition and control system of the Dark Energy Camera. SISPI is implemented as a distributed multi-processor system with a software architecture based on the Client-Server and Publish-Subscribe design patterns. The underlying message passing protocol is based on PYRO, a powerful distributed object technology system written entirely in Python. A distributed shared variable system was added to support exchange of telemetry data and other information between different components of the system. We discuss the SISPI infrastructure software, the image pipeline, the observer console and user interface architecture, image quality monitoring, the instrument control system, and the observation strategy tool.

  18. SPIDR: a read-out system for Medipix3 & Timepix3

    NASA Astrophysics Data System (ADS)

    Visser, J.; van Beuzekom, M.; Boterenbrood, Henk; van der Heijden, B.; Muñoz, J. I.; Kulis, S.; Munneke, B.; Schreuder, F.

    2015-12-01

    The realisation of the Timepix3 chip opened the way for new opportunities in research areas such as particle tracking with both semiconductor sensors and gas filled time projection chambers, electron microscopy and imaging mass spectrometry. To exploit the full capability of the Timepix3 chip, Nikhef developed a compact read-out system, called SPIDR that can deal with the high data output of 80 Mhits per chip per second. The main read-out board connects to both 10 Gb Ethernet and 1 Gb Ethernet devices. The latter obviously at a reduced rate. The main board connects to individual chip-carrier boards via a standard FMC connector. The system is designed such that support for other readout chips is foreseen via reprogramming of the FPGA. Besides the Timepix3 chip also the Medipix3 chip is currently supported. Both the main board and the chip carrier boards are cooled, via the housing and a fan to obtain a stable temperature of around 40 ± 0.2 °C for the Timepix3 chips. We will present the system and the results obtained with the LHCb beam telescope at CERN and proton radiography data obtained with a time projection chamber based on GEM technology.

  19. Performance of Front-End Readout System for PHENIX RICH

    SciTech Connect

    Oyama, K.; Hamagaki, H.; Nishimura, S.; Shigaki, K.; Hayano, R.S.; Hibino, M.; Kametani, S.; Kikuchi, J.; Matsumoto, T.; Sakaguchi, T.; Ebisu, K.; Hara, H.; Tanaka, Y.; Ushiroda, T.; Moscone, C.G.; Wintenberg, A.L.; Young, G.R.

    1999-11-15

    A front-end electronics system has been developed for the Ring Imaging Cerenkov (RICH) detector of the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC), Brookhaven National Laboratory (BNL). A high speed custom back-plane with source synchronous bus architecture, a full custom analog ASIC, and board modules with FPGA's and CPLD's were developed for high performance real time data acquisition. The transfer rate of the back-lane has reached 640 MB/s with 128 bits data bus. Total transaction time is estimated to be less than 30 {micro}s per event. The design specifications and test results of the system are presented in this paper.

  20. Small-Scale Readout System Prototype for the STAR PIXEL Detector

    SciTech Connect

    Szelezniak, Michal; Anderssen, Eric; Greiner, Leo; Matis, Howard; Ritter, Hans Georg; Stezelberger, Thorsten; Sun, Xiangming; Thomas, James; Vu, Chinh; Wieman, Howard

    2008-10-10

    Development and prototyping efforts directed towards construction of a new vertex detector for the STAR experiment at the RHIC accelerator at BNL are presented. This new detector will extend the physics range of STAR by allowing for precision measurements of yields and spectra of particles containing heavy quarks. The innermost central part of the new detector is a high resolution pixel-type detector (PIXEL). PIXEL requirements are discussed as well as a conceptual mechanical design, a sensor development path, and a detector readout architecture. Selected progress with sensor prototypes dedicated to the PIXEL detector is summarized and the approach chosen for the readout system architecture validated in tests of hardware prototypes is discussed.

  1. Validation of a highly integrated SiPM readout system with a TOF-PET demonstrator

    NASA Astrophysics Data System (ADS)

    Niknejad, T.; Setayeshi, S.; Tavernier, S.; Bugalho, R.; Ferramacho, L.; Di Francesco, A.; Leong, C.; Rolo, M. D.; Shamshirsaz, M.; Silva, J. C.; Silva, R.; Silveira, M.; Zorraquino, C.; Varela, J.

    2016-12-01

    We have developed a highly integrated, fast and compact readout electronics for Silicon Photomultiplier (SiPM) based Time of Flight Positron Emission Tomography (TOF-PET) scanners. The readout is based on the use of TOP-PET Application Specific Integrated Circuit (PETsys TOFPET1 ASIC) with 64 channels, each with its amplifier, discriminator, Time to Digital Converter (TDC) and amplitude determination using Time Over Threshold (TOT). The ASIC has 25 ps r.m.s. intrinsic time resolution and fully digital output. The system is optimised for high rates, good timing, low power consumption and low cost. For validating the readout electronics, we have built a technical PET scanner, hereafter called ``demonstrator'', with 2'048 SiPM channels. The PET demonstrator has 16 compact Detector Modules (DM). Each DM has two ASICs reading 128 SiPM pixels in one-to-one coupling to 128 Lutetium Yttrium Orthosilicate (LYSO) crystals measuring 3.1 × 3.1 × 15 mm3 each. The data acquisition system for the demonstrator has two Front End Boards type D (FEB/D), each collecting the data of 1'024 channels (8 DMs), and transmitting assembled data frames through a serial link (4.8 Gbps), to a single Data Acquisition (DAQ) board plugged into the Peripheral Component Interconnect Express (PCIe) bus of the data acquisition PC. Results obtained with this PET demonstrator are presented.

  2. System Architecture of the Dark Energy Survey Camera Readout Electronics

    SciTech Connect

    Shaw, Theresa; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; Chappa, Steve; de Vicente, Juan; Holm, Scott; Huffman, Dave; Kozlovsky, Mark; Martinez, Gustavo; Moore, Todd; /Madrid, CIEMAT /Fermilab /Illinois U., Urbana /Fermilab

    2010-05-27

    The Dark Energy Survey makes use of a new camera, the Dark Energy Camera (DECam). DECam will be installed in the Blanco 4M telescope at Cerro Tololo Inter-American Observatory (CTIO). DECam is presently under construction and is expected to be ready for observations in the fall of 2011. The focal plane will make use of 62 2Kx4K and 12 2kx2k fully depleted Charge-Coupled Devices (CCDs) for guiding, alignment and focus. This paper will describe design considerations of the system; including, the entire signal path used to read out the CCDs, the development of a custom crate and backplane, the overall grounding scheme and early results of system tests.

  3. High-performance low-noise 128-channel readout-integrated circuit for flat-panel x-ray detector systems

    NASA Astrophysics Data System (ADS)

    Beuville, Eric J.; Belding, Mark; Costello, Adrienne N.; Hansen, Randy; Petronio, Susan M.

    2004-05-01

    A silicon mixed-signal integrated circuit is needed to extract and process x-ray induced signals from a coated flat panel thin film transistor array (TFT) in order to generate a digital x-ray image. Indigo Systems Corporation has designed, fabricated, and tested such a readout integrated circuit (ROIC), the ISC9717. This off-the-shelf, high performance, low-noise, 128-channel device is fully programmable with a multistage pipelined architecture and a 9 to 14-bit programmable A/D converter per channel, making it suitable for numerous X-ray medical imaging applications. These include high-resolution radiography in single frame mode and fluoroscopy where high frame rates are required. The ISC9717 can be used with various flat panel arrays and solid-state detectors materials: Selenium (Se), Cesium Iodide (CsI), Silicon (Si), Amorphous Silicon, Gallium Arsenide (GaAs), and Cadmium Zinc Telluride (CdZnTe). The 80-micron pitch ROIC is designed to interface (wire bonding or flip-chip) along one or two sides of the x-ray panel, where ROICs are abutted vertically, each reading out charge from pixels multiplexed onto 128 horizontal read lines. The paper will present the design and test results of the ROIC, including the mechanical and electrical interface to a TFT array, system performance requirements, output multiplexing of the digital signals to an off-board processor, and characterization test results from fabricated arrays.

  4. Multiplexed labeling system for high-throughput cell sorting.

    PubMed

    Shin, Seung Won; Park, Kyung Soo; Song, In Hyun; Shin, Woo Jung; Kim, Byung Woo; Kim, Dong-Ik; Um, Soong Ho

    2016-09-01

    Flow cytometry and fluorescence activated cell sorting techniques were designed to realize configurable classification and separation of target cells. A number of cell phenotypes with different functionalities have recently been revealed. Before simultaneous selective capture of cells, it is desirable to label different samples with the corresponding dyes in a multiplexing manner to allow for a single analysis. However, few methods to obtain multiple fluorescent colors for various cell types have been developed. Even when restricted laser sources are employed, a small number of color codes can be expressed simultaneously. In this study, we demonstrate the ability to manifest DNA nanostructure-based multifluorescent colors formed by a complex of dyes. Highly precise self-assembly of fluorescent dye-conjugated oligonucleotides gives anisotropic DNA nanostructures, Y- and tree-shaped DNA (Y-DNA and T-DNA, respectively), which may be used as platforms for fluorescent codes. As a proof of concept, we have demonstrated seven different fluorescent codes with only two different fluorescent dyes using T-DNA. This method provides maximum efficiency for current flow cytometry. We are confident that this system will provide highly efficient multiplexed fluorescent detection for bioanalysis compared with one-to-one fluorescent correspondence for specific marker detection.

  5. Design and performance of a modular low-radioactivity readout system for cryogenic detectors in the CDMS experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Barnes, P. D., Jr.; Brink, P. L.; Cabrera, B.; Clarke, R. M.; Gaitskell, R. J.; Golwala, S. R.; Huber, M. E.; Kurylowicz, M.; Mandic, V.; Martinis, J. M.; Meunier, P.; Mirabolfathi, N.; Nam, S. W.; Perillo-Isaac, M.; Saab, T.; Sadoulet, B.; Schnee, R. W.; Seitz, D. N.; Shutt, T.; Smith, G. W.; Stockwell, W. K.; Sundqvist, K. M.; White, S.

    2008-07-01

    The Cryogenic Dark Matter Search (CDMS) experiment employs ultra-cold solid-state detectors to search for rare events resulting from WIMP-nucleus scattering. An innovative detector packaging and readout system has been developed to meet the unusual combination of requirements for: low temperature, low radioactivity, low energy threshold, and large channel count. Features include use of materials with low radioactivity such as multi-layer KAPTON laminates for circuit boards; immunity to microphonic noise via a vacuum coaxial wiring design, manufacturability, and modularity. The detector readout design had to accommodate various electronic components which have to be operated in close proximity to the detector as well maintaining separate individual temperatures (ranging from 600 mK to 150 K) in order to achieve optimal noise performance. The paper will describe the general electrical, thermal, and mechanical designs of the CDMS readout system, as well as presenting the theoretical and measured performance of the detector readout channels.

  6. Efficient Hybrid DFE Algorithms in Spatial Multiplexing Systems

    NASA Astrophysics Data System (ADS)

    Jiang, Wenjie; Asai, Yusuke; Aikawa, Satoru; Ogawa, Yasutaka

    The wireless systems that establish multiple input multiple output (MIMO) channels through multiple antennas at both ends of the communication link, have been proved to have tremendous potential to linearly lift the capacity of conventional scalar channel. In this paper, we present two efficient decision feedback equalization algorithms that achieve optimal and suboptimal detection order in MIMO spatial multiplexing systems. The new algorithms combine the recursive matrix inversion and ordered QR decomposition approaches, which are developed for nulling cancellation interaface Bell Labs layered space time (BLAST) and back substitution interface BLAST. As a result, new algorithms achieve total reduced complexities in frame based transmission with various payload lengths compared with the earlier methods. In addition, they enable shorter detection delay by carrying out a fast hybrid preprocessing. Moreover, the operation precision insensitivity of order optimization greatly relaxes the word length of matrix inversion, which is the most computational intensive part within the MIMO detection task.

  7. Wide angle holographic display system with spatiotemporal multiplexing.

    PubMed

    Kozacki, Tomasz; Finke, Grzegorz; Garbat, Piotr; Zaperty, Weronika; Kujawińska, Małgorzata

    2012-12-03

    This paper presents a wide angle holographic display system with extended viewing angle in both horizontal and vertical directions. The display is constructed from six spatial light modulators (SLM) arranged on a circle and an additional SLM used for spatiotemporal multiplexing and a viewing angle extension in two perpendicular directions. The additional SLM, that is synchronized with the SLMs on the circle is placed in the image space. This method increases effective space bandwidth product of display system data from 12.4 to 50 megapixels. The software solution based on three Nvidia graphic cards is developed and implemented in order to achieve fast and synchronized displaying. The experiments presented for both synthetic and real 3D data prove the possibility to view binocularly having good quality images reconstructed in full FoV of the display.

  8. Phase 1 upgrade of the CMS drift tubes read-out system

    NASA Astrophysics Data System (ADS)

    Navarro-Tobar, Á.; Triossi, A.; Fernández-Bedoya, C.; Redondo, I.; Redondo, D.; Sastre, J.; Cela-Ruiz, J. M.; Esteban, L.

    2017-03-01

    In order to cope with up to two times the nominal LHC luminosity, the second level of the readout system of the CMS Drift Tubes (DT) electronics needs to be redesigned to minimize event processing time and remove present bottlenecks. The μ ROS boards are μ TCA modules, which include a Xilinx Virtex-7 FPGA and are equipped with up to 6 12-channel optical receivers of the 240 Mbps input links. Each board collects the information from up to 72 input links (3 DT sectors), requiring a total of 25 boards. The design of the system and the first validation tests will be described.

  9. Performance characteristics of commercial Y-STR multiplex systems.

    PubMed

    Mayntz-Press, Kathleen A; Ballantyne, Jack

    2007-09-01

    In this work, a number of performance checks were carried out to evaluate the efficacy of commercial Y-short tandem repeats (Y-STR) kits for casework applications. The study evaluated the sensitivity, specificity and stability of the Y-STR markers used and the ability to obtain a male profile from postcoital samples taken at various time points after intercourse. All systems performed well with 1-3 ng of male DNA as recommended by the manufacturers. All systems gave full profiles at 100 pg of input DNA, which is within the realm of low copy number DNA analysis. Moreover all, except Y-Plex12, gave full profiles with 30-50 pg of male DNA. No increased performance was obtained with any of the systems by increasing the cycle number beyond that recommended by the various manufacturers. When up to 1 microg of female DNA was used (in the absence of male DNA) no female DNA cross reactivity was observed with the Y-Plex 12 and Y-Filer systems. PowerPlex Y produced female DNA derived products near the DYS438 and within the DYS392 loci at a rare allele position with high input DNA levels (300 ng and 1 microg, respectively). Male/female DNA admixture experiments indicated the particularly high specificity of the Y-Filer and PowerPlex Y systems under conditions of several thousand fold female DNA excess. All systems were able to detect the minor alleles in male/male DNA admixtures at a 1:5 dilution with the PowerPlex Y and Y-Filer being able to detect some minor alleles at 1:20. Species testing indicated some limited, minor cross reactivity of the commercial systems with some domestic male mammals although it is easily recognizable and would not pose any problems in casework analysis. As expected a significant number of cross-reacting products were obtained with nonhuman primate species. All Y-STR multiplex systems tested were able to produce complete Y-STR profiles from bloodstains and semen stains exposed up to 6 weeks when the samples were protected against precipitation and

  10. Innovative multi-cantilever array sensor system with MOEMS read-out

    NASA Astrophysics Data System (ADS)

    Ivaldi, F.; Bieniek, T.; Janus, P.; Grabiec, P.; Majstrzyk, W.; Kopiec, D.; Gotszalk, T.

    2016-11-01

    Cantilever based sensor system are a well-established sensor family exploited in several every-day life applications as well as in high-end research areas. The very high sensitivity of such systems and the possibility to design and functionalize the cantilevers to create purpose built and highly selective sensors have increased the interest of the scientific community and the industry in further exploiting this promising sensors type. Optical deflection detection systems for cantilever sensors provide a reliable, flexible method for reading information from cantilevers with the highest sensitivity. However the need of using multi-cantilever arrays in several fields of application such as medicine, biology or safety related areas, make the optical method less suitable due to its structural complexity. Working in the frame of a the Joint Undertaking project Lab4MEMS II our group proposes a novel and innovative approach to solve this issue, by integrating a Micro-Opto-Electro-Mechanical-System (MOEMS) with dedicated optics, electronics and software with a MOEMS micro-mirror, ultimately developed in the frame of Lab4MEMSII. In this way we are able to present a closely packed, lightweight solution combining the advantages of standard optical read-out systems with the possibility of recording multiple read-outs from large cantilever arrays quasi simultaneously.

  11. A simple readout electronics for automatic power controlled self-mixing laser diode systems.

    PubMed

    Cattini, Stefano; Rovati, Luigi

    2008-08-01

    The paper describes a simple electronic circuit to drive a laser diode for self-mixing interferometry. The network integrates a stable commercial automatic power controller and a current mirror based readout of the interferometric signal. The first prototype version of the circuit has been realized and characterized. The system allows easily performing precise interferometric measurements with no thermostatic circuitry to stabilize the laser diode temperature and an automatic control gain network to compensate emitted optical power fluctuations. To achieve this result, in the paper a specific calibration procedure to be performed is described.

  12. Interlaboratory study of DNA extraction from multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for individual kernel detection system of genetically modified maize.

    PubMed

    Akiyama, Hiroshi; Sakata, Kozue; Makiyma, Daiki; Nakamura, Kosuke; Teshima, Reiko; Nakashima, Akie; Ogawa, Asako; Yamagishi, Toru; Futo, Satoshi; Oguchi, Taichi; Mano, Junichi; Kitta, Kazumi

    2011-01-01

    In many countries, the labeling of grains, feed, and foodstuff is mandatory if the genetically modified (GM) organism content exceeds a certain level of approved GM varieties. We previously developed an individual kernel detection system consisting of grinding individual kernels, DNA extraction from the individually ground kernels, GM detection using multiplex real-time PCR, and GM event detection using multiplex qualitative PCR to analyze the precise commingling level and varieties of GM maize in real sample grains. We performed the interlaboratory study of the DNA extraction with multiple ground samples, multiplex real-time PCR detection, and multiplex qualitative PCR detection to evaluate its applicability, practicality, and ruggedness for the individual kernel detection system of GM maize. DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR were evaluated by five laboratories in Japan, and all results from these laboratories were consistent with the expected results in terms of the commingling level and event analysis. Thus, the DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for the individual kernel detection system is applicable and practicable in a laboratory to regulate the commingling level of GM maize grain for GM samples, including stacked GM maize.

  13. Cavity-enhanced eigenmode and angular hybrid multiplexing in holographic data storage systems.

    PubMed

    Miller, Bo E; Takashima, Yuzuru

    2016-12-26

    Resonant optical cavities have been demonstrated to improve energy efficiencies in Holographic Data Storage Systems (HDSS). The orthogonal reference beams supported as cavity eigenmodes can provide another multiplexing degree of freedom to push storage densities toward the limit of 3D optical data storage. While keeping the increased energy efficiency of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modification of current angular multiplexing HDSS.

  14. A microfluidic device for the automated electrical readout of low-density glass-slide microarrays.

    PubMed

    Díaz-González, María; Salvador, J Pablo; Bonilla, Diana; Marco, M Pilar; Fernández-Sánchez, César; Baldi, Antoni

    2015-12-15

    Microarrays are a powerful platform for rapid and multiplexed analysis in a wide range of research fields. Electrical readout systems have emerged as an alternative to conventional optical methods for microarray analysis thanks to its potential advantages like low-cost, low-power and easy miniaturization of the required instrumentation. In this work an automated electrical readout system for low-cost glass-slide microarrays is described. The system enables the simultaneous conductimetric detection of up to 36 biorecognition events by incorporating an array of interdigitated electrode transducers. A polydimethylsiloxane microfluidic structure has been designed that creates microwells over the transducers and incorporates the microfluidic channels required for filling and draining them with readout and cleaning solutions, thus making the readout process fully automated. Since the capture biomolecules are not immobilized on the transducer surface this readout system is reusable, in contrast to previously reported electrochemical microarrays. A low-density microarray based on a competitive enzymatic immunoassay for atrazine detection was used to test the performance of the readout system. The electrical assay shows a detection limit of 0.22±0.03 μg L(-1) similar to that obtained with fluorescent detection and allows the direct determination of the pesticide in polluted water samples. These results proved that an electrical readout system such as the one presented in this work is a reliable and cost-effective alternative to fluorescence scanners for the analysis of low-density microarrays.

  15. Results from a prototype MAPS sensor telescope and readout system with zero suppression for the heavy flavor tracker at STAR

    NASA Astrophysics Data System (ADS)

    Greiner, L.; Matis, H. S.; Ritter, H. G.; Rose, A.; Stezelberger, T.; Sun, X.; Szelezniak, M.; Thomas, J.; Vu, C.; Wieman, H.

    2008-05-01

    We describe a three Mimostar-2 Monolithic Active Pixel Sensor (MAPS) sensor telescope prototype with an accompanying readout system incorporating on-the-fly data sparsification. The system has been characterized and we report on the measured performance of the sensor telescope and readout system in beam tests conducted both at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL) and in the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). This effort is part of the development and prototyping work that will lead to a vertex detector for the STAR experiment.

  16. A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems.

    PubMed

    Park, Kyeonghwan; Kim, Seung Mok; Eom, Won-Jin; Kim, Jae Joon

    2017-04-03

    This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors.

  17. On the Integration of a Readout System Dedicated for Neutron Discrimination in Harsh Environment

    NASA Astrophysics Data System (ADS)

    Ben Krit, S.; Rahajandraibe, W.; Coulié-Castellani, K.; Micolau, G.; Lyoussi, A.

    2016-02-01

    New insights related to the integration of a readout system dedicated for the detection and discrimination of neutrons are presented here. This study takes place in the framework of the I_SMART European project. This system will have to work later in a harsh environment in terms of temperature and radiations, what makes not only the development of specifications for operation and reliability of the components necessary but also the investigation of margins for the interplay of the system. Implementation of the analog conditioning chain at transistor level (AMS (Analog/Mixed Signal) 0.35μm CMOS technology) is investigated here where electrical performances have been validated at SPICE-level simulations using "Spectre" simulator (SPICE-based) under Cadence DFII.

  18. Analog filtering methods improve leading edge timing performance of multiplexed SiPMs

    NASA Astrophysics Data System (ADS)

    Bieniosek, M. F.; Cates, J. W.; Grant, A. M.; Levin, C. S.

    2016-08-01

    Multiplexing many SiPMs to a single readout channel is an attractive option to reduce the readout complexity of high performance time of flight (TOF) PET systems. However, the additional dark counts and shaping from each SiPM cause significant baseline fluctuations in the output waveform, degrading timing measurements using a leading edge threshold. This work proposes the use of a simple analog filtering network to reduce the baseline fluctuations in highly multiplexed SiPM readouts. With 16 SiPMs multiplexed, the FWHM coincident timing resolution for single 3~\\text{mm}× 3~\\text{mm}× 20 mm LYSO crystals was improved from 401  ±  4 ps without filtering to 248  ±  5 ps with filtering. With 4 SiPMs multiplexed, using an array of 3~\\text{mm}× 3~\\text{mm}× 20 mm LFS crystals the mean time resolution was improved from 436  ±  6 ps to 249  ±  2 ps. Position information was acquired with a novel binary positioning network. All experiments were performed at room temperature with no active temperature regulation. These results show a promising technique for the construction of high performance multiplexed TOF PET readout systems using analog leading edge timing pickoff.

  19. Analog filtering methods improve leading edge timing performance of multiplexed SiPMs.

    PubMed

    Bieniosek, M F; Cates, J W; Grant, A M; Levin, C S

    2016-08-21

    Multiplexing many SiPMs to a single readout channel is an attractive option to reduce the readout complexity of high performance time of flight (TOF) PET systems. However, the additional dark counts and shaping from each SiPM cause significant baseline fluctuations in the output waveform, degrading timing measurements using a leading edge threshold. This work proposes the use of a simple analog filtering network to reduce the baseline fluctuations in highly multiplexed SiPM readouts. With 16 SiPMs multiplexed, the FWHM coincident timing resolution for single [Formula: see text] mm LYSO crystals was improved from 401  ±  4 ps without filtering to 248  ±  5 ps with filtering. With 4 SiPMs multiplexed, using an array of [Formula: see text] mm LFS crystals the mean time resolution was improved from 436  ±  6 ps to 249  ±  2 ps. Position information was acquired with a novel binary positioning network. All experiments were performed at room temperature with no active temperature regulation. These results show a promising technique for the construction of high performance multiplexed TOF PET readout systems using analog leading edge timing pickoff.

  20. A simple wavelength division multiplexing system for active learning teaching

    NASA Astrophysics Data System (ADS)

    Zghal, Mourad; Ghalila, Hassen; Ben Lakhdar, Zohra

    2009-06-01

    The active learning project consists in a series of workshops for educators, researchers and students and promotes an innovative method of teaching physics using simple, inexpensive materials that can be fabricated locally. The objective of the project is to train trainers and inspire students to learn physics. The workshops are based on the use of laboratory work and hands-on activities in the classroom. The interpretation of these experiments is challenging for some students, and the experiments can lead to a significant amount of discussion. The workshops are organized within the framework of the project ``Active Learning in Optics and Photonics" (ALOP) mainly funded by UNESCO, with the support of ICTP (Abdus Salam International Centre for Theoretical Physics) and SPIE. ALOP workshops offer high school, college or university physics teachers the opportunity to improve their conceptual understanding of optics. These workshops usually run for five days and cover several of the topics usually found in any introductory university physics program. Optics and photonics are used as subject matter because it is relevant as well as adaptable to research and educational conditions in many developing countries [1]. In this paper, we will mainly focus on a specific topic of the ALOP workshops, namely optical communications and Wavelength Division Multiplexing technology (WDM). This activity was originally developed by Mazzolini et al [2]. WDM is a technology used in fibre-optic communications for transmitting two or more separate signals over a single fibre optic cable by using a separate wavelength for each signal. Multiple signals are carried together as separate wavelengths of light in a multiplexed signal. Simple and inexpensive WDM system was implemented in our laboratory using light emitting diodes or diode lasers, plastic optical fibres, a set of optical filters and lenses, prism or grating, and photodiodes. Transmission of audio signals using home-made, simple

  1. 21 CFR 862.2570 - Instrumentation for clinical multiplex test systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... also integrate reagent handling, hybridization, washing, dedicated instrument control, and other... Laboratory Instruments § 862.2570 Instrumentation for clinical multiplex test systems. (a) Identification... process detected signals. (b) Classification. Class II (special controls). The special control is...

  2. 21 CFR 862.2570 - Instrumentation for clinical multiplex test systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... also integrate reagent handling, hybridization, washing, dedicated instrument control, and other... Laboratory Instruments § 862.2570 Instrumentation for clinical multiplex test systems. (a) Identification... process detected signals. (b) Classification. Class II (special controls). The special control is...

  3. Performance of the Prototype Readout System for the CMS Endcap Hadron Calorimeter Upgrade

    NASA Astrophysics Data System (ADS)

    Chaverin, Nate; Dittmann, Jay; Hatakeyama, Kenichi; Pastika, Nathaniel; CMS Collaboration

    2016-03-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will upgrade the photodetectors and readout systems of the endcap hadron calorimeter during the technical stop scheduled for late 2016 and early 2017. A major milestone for this project was a highly successful testbeam run at CERN in August 2015. The testbeam run served as a full integration test of the electronics, allowing a study of the response of the preproduction electronics to the true detector light profile, as well as a test of the light yield of various new plastic scintillator materials. We present implications for the performance of the hadron calorimeter front-end electronics based on testbeam data, and we report on the production status of various components of the system in preparation for the upgrade.

  4. Optical add/drop filter for wavelength division multiplexed systems

    DOEpatents

    Deri, Robert J.; Strand, Oliver T.; Garrett, Henry E.

    2002-01-01

    An optical add/drop filter for wavelength division multiplexed systems and construction methods are disclosed. The add/drop filter includes a first ferrule having a first pre-formed opening for receiving a first optical fiber; an interference filter oriented to pass a first set of wavelengths along the first optical fiber and reflect a second set of wavelengths; and, a second ferrule having a second pre-formed opening for receiving the second optical fiber, and the reflected second set of wavelengths. A method for constructing the optical add/drop filter consists of the steps of forming a first set of openings in a first ferrule; inserting a first set of optical fibers into the first set of openings; forming a first set of guide pin openings in the first ferrule; dividing the first ferrule into a first ferrule portion and a second ferrule portion; forming an interference filter on the first ferrule portion; inserting guide pins through the first set of guide pin openings in the first ferrule portion and second ferrule portion to passively align the first set of optical fibers; removing material such that light reflected from the interference filter from the first set of optical fibers is accessible; forming a second set of openings in a second ferrule; inserting a second set of optical fibers into the second set of openings; and positioning the second ferrule with respect to the first ferrule such that the second set of optical fibers receive the light reflected from the interference filter.

  5. Analysis of an all optical de-multiplexer architecture utilizing bevel design for spatially multiplexed optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Murshid, Syed H.; Finch, Michael F.; Lovell, Gregory L.

    2014-09-01

    Spatial domain multiplexing (SDM) is a system that allows multiple channels of light to traverse a single fiber, utilizing separate spatial regions inside the carrier fiber, thereby applying a new degree of photon freedom for optical fiber communications. These channels follow a helical pattern, the screen projection of which is viewable as concentric rings at the output end of the system. The MIMO nature of the SDM system implies that a typical pin-diode or APD will be unable to distinguish between these channels, as the diode will interpret the combination of the SDM signals from all channels as a single signal. As such, spatial de-multiplexing methods must be introduced to properly detect the SDM based MIMO signals. One such method utilizes a fiber consisting of multiple, concentric, hollow core fibers to route each channel independently and thereby de-mux the signals into separate fibers or detectors. These de-mux fibers consist of hollow core cylindrical structures with beveled edges on one side that gradually taper to route the circular, ring type, output energy patterns into a spot with the highest possible efficiency. This paper analyzes the beveled edge by varying its length and analyzing the total output power for each predetermined length allowing us to simulate ideal bevel length to minimize both system losses as well as total de-mux footprint. OptiBPM simulation engine is employed for these analyses.

  6. Multiplexed Molecular Diagnostics for Respiratory, Gastrointestinal, and Central Nervous System Infections.

    PubMed

    Hanson, Kimberly E; Couturier, Marc Roger

    2016-11-15

    The development and implementation of highly multiplexed molecular diagnostic tests have allowed clinical microbiology laboratories to more rapidly and sensitively detect a variety of pathogens directly in clinical specimens. Current US Food and Drug Administration-approved multiplex panels target multiple different organisms simultaneously and can identify the most common pathogens implicated in respiratory viral, gastrointestinal, or central nervous system infections. This review summarizes the test characteristics of available assays, highlights the advantages and limitations of multiplex technology for infectious diseases, and discusses potential utilization of these new tests in clinical practice.

  7. New conversion factors between human and automatic readouts of the CDMAM phantom for CR systems

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Homolka, Peter; Osanna-Elliot, Angelika; Kaar, Marcus; Semtrus, Friedrich; Figl, Michael

    2016-03-01

    Mammography screenings demand for profound image quality (IQ) assessment to guarantee their screening success. The European protocol for the quality control of the physical and technical aspects of mammography screening (EPQCM) suggests a contrast detail phantom such as the CDMAM phantom to evaluate IQ. For automatic evaluation a software is provided by the EUREF. As human and automatic readouts differ systematically conversion factors were published by the official reference organisation (EUREF). As we experienced a significant difference for these factors for Computed Radiography (CR) systems we developed an objectifying analysis software which presents the cells including the gold disks randomly in thickness and rotation. This allows to overcome the problem of an inevitable learning effect where observers know the position of the disks in advance. Applying this software, 45 computed radiography (CR) systems were evaluated and the conversion factors between human and automatic readout determined. The resulting conversion factors were compared with the ones resulting from the two methods published by EUREF. We found our conversion factors to be substantially lower than those suggested by EUREF, in particular 1.21 compared to 1.42 (EUREF EU method) and 1.62 (EUREF UK method) for 0.1 mm, and 1.40 compared to 1.73 (EUREF EU) and 1.83 (EUREF UK) for 0.25 mm disc diameter, respectively. This can result in a dose increase of up to 90% using either of these factors to adjust patient dose in order to fulfill image quality requirements. This suggests the need of an agreement on their proper application and limits the validity of the assessment methods. Therefore, we want to stress the need for clear criteria for CR systems based on appropriate studies.

  8. Finite element simulations of low-mass readout cables for the CBM Silicon Tracking System using RAPHAEL

    NASA Astrophysics Data System (ADS)

    Singla, M.; Chatterji, S.; Müller, W. F. J.; Kleipa, V.; Heuser, J. M.

    2014-01-01

    The first three-dimensional simulation study of thin multi-line readout cables using finite element simulation tool RAPHAEL is being reported. The application is the Silicon Tracking System (STS) of the fixed-target heavy-ion experiment Compressed Baryonic Matter (CBM), under design at the forthcoming accelerator center FAIR in Germany. RAPHAEL has been used to design low-mass analog readout cables with minimum possible Equivalent Noise Charge (ENC). Various trace geometries and trace materials have been explored in detail for this optimization study. These cables will bridge the distance between the microstrip detectors and the signal processing electronics placed at the periphery of the silicon tracking stations. SPICE modeling has been implemented in Sentaurus Device to study the transmission loss (dB loss) in cables and simulation has been validated with measurements. An optimized design having minimum possible ENC, material budget and transmission loss for the readout cables has been proposed.

  9. Micromachined tunable VCSELs for wavelength division multiplexing systems

    NASA Astrophysics Data System (ADS)

    Martin, Wayne Alan

    2002-01-01

    Exponential increases in computer power have caused phenomenal growth in data traffic over years and current networks are struggling to keep up with demand. Optical Wavelength Division Multiplexing technology is now being deployed to exploit the enormous bandwidth of optical fiber, but the cost and power requirements for WDM systems are high. Micromachined Tunable VCSELS (MTVCSELs) can reduce both the cost and power needed to implement WDM systems. The MTVCSEL uses an electrostatically controlled membrane for tuning. This tuning method requires much less power than temperature tuning methods. Tunable devices reduce the cost of system redundancy by allowing one tunable device to replace an entire rack of fixed wavelength lasers. Additionally, VCSELS emit a circular beam that is easier to couple into fibers than the elliptical beam produced by edge-emitting lasers. One of the key challenges facing WDM systems is controlling the wavelength of the lasers in the system. Arrayed Waveguide Gratings (AWGs) have been demonstrated with 256 channels in a single device, 25 GHz channel spacings and 30 dB of isolation. Since AWGs are fabricated in a semiconductor process it is easy to produce copies of the same design with closely matched characteristics. This makes them the ideal device to serve as a channel standard in WDM systems. Each laser must be tuned to transmit on a different channel of the AWG to prevent crosstalk. This work demonstrates a novel method of wavelength control using an MTVCSEL that can be used with any wavelength selective element such as an AWG. In this work, MTVCSELs have been fabricated and improvements to the fabrication process have been demonstrated. Additionally, frequency locking by dithering the output of the MTVCSEL has been demonstrated and shown to track changes in the center wavelength of a channel up to 11 nm. The frequency locking system can compensate for differences and drift in the MTVCSEL characteristics and also select different

  10. Development of low mass optical readout for high data bandwidth systems.

    SciTech Connect

    Underwood, D.; DeLurgio, P.; Drake, G.; Fernando, W.; Lopez, D.; Salvachua-Ferrando, B.; Stanek, R.

    2010-10-01

    At Argonne National Laboratory the High Energy Physics and Center for Nanoscale Materials Divisions are working on a project to develop a new generation of detector readout using high speed data transfer optical devices that can be implemented in particle physics or for long distances. Free-space communications devices offer the potential for reductions in mass, power, and cost of data paths for on-board trigger and readout of tracking detectors. The project involves three areas of study: light modulation, the design and construction of MEMS optical devices, and the control systems for maintaining precise laser light positioning. We demonstrate an optical link in air over one meter and with low error rate at 1 Gb/s. We demonstrate steering of an optical beam over a meter with a precision of 5 micrometers utilizing a MEMS mirror and reflected light in the feedback loop. For early testing, light modulation tests with a fiber link using Li-Niobate modulators and a data generation and error checking chip are done at 1 Gb/s. Many companies and universities are developing modulators which will be incorporated into CMOS chips. We are doing radiation hardness studies for one of the materials involved. Laser light will need to be steered on to and kept centered on the detector in the presence of thermal or mechanical motion, etc. This steering will be controlled by MEMS mirrors. Polycrystalline and crystalline silicon based mirror designs are being studied. We review the current status of the project and outline plans for the future development of the system.

  11. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    SciTech Connect

    Koopman, R P; Langlois, R G; Nasarabadi, S; Benett, W J; Colston, B W; Johnson, D C; Brown, S B; Stratton, P L; Milanovich, F P

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flow cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.

  12. Communications with chaotic optoelectronic systems cryptography and multiplexing

    NASA Astrophysics Data System (ADS)

    Rontani, Damien

    With the rapid development of optical communications and the increasing amount of data exchanged, it has become utterly important to provide effective architectures to protect sensitive data. The use of chaotic optoelectronic devices has already demonstrated great potential in terms of additional computational security at the physical layer of the optical network. However, the determination of the security level and the lack of a multi-user framework are two hurdles which have prevented their deployment on a large scale. In this thesis, we propose to address these two issues. First, we investigate the security of a widely used chaotic generator, the external cavity semiconductor laser (ECSL). This is a time-delay system known for providing complex and high-dimensional chaos, but with a low level of security regarding the identification of its most critical parameter, the time delay. We perform a detailed analysis of the in uence of the ECSL parameters to devise how higher levels of security can be achieved and provide a physical interpretation of their origin. Second, we devise new architectures to multiplex optical chaotic signals and realize multi-user communications at high bit rates. We propose two different approaches exploiting known chaotic optoelectronic devices. The first one uses mutually coupled ECSL and extends typical chaos-based encryption strategies, such as chaos-shift keying (CSK) and chaos modulation (CMo). The second one uses an electro-optical oscillator (EOO) with multiple delayed feedback loops and aims first at transposing coded-division multiple access (CDMA) and then at developing novel strategies of encryption and decryption, when the time-delays of each feedback loop are time-dependent.

  13. GBT based readout in the CBM experiment

    NASA Astrophysics Data System (ADS)

    Lehnert, J.; Byszuk, A. P.; Emschermann, D.; Kasinski, K.; Müller, W. F. J.; Schmidt, C. J.; Szczygiel, R.; Zabolotny, W. M.

    2017-02-01

    The CBM experiment at FAIR will use GBTX and Versatile Link based readout systems for several of its subdetectors. The paper describes the GBT based readout concept in CBM, emphasizing the common features among systems. Particular choices and features of the readout are motivated mainly by the requirements in the readout of the silicon tracking system (STS). Common developments like a common CBM readout board are presented. The prototype board provides full GBT functionality for all systems, can be interfaced to various prototype readout chains and be refined for later detector specific versions.

  14. Subcarrier multiplexing system with built-in dispersion reduction

    SciTech Connect

    Sargis, P.D.; Haigh, R.E.; McCammon, K.G.

    1995-09-08

    Dispersion is effectively reduced in a 1550-nm subcarrier-multiplexed fiber link by using optical pre-filtering at the receiver. Recent experimental results demonstrate transmission of two 2.5 Gbit/s data channels over 220 km of ordinary single-mode fiber.

  15. Focal plane infrared readout circuit

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2002-01-01

    An infrared imager, such as a spectrometer, includes multiple infrared photodetectors and readout circuits for reading out signals from the photodetectors. Each readout circuit includes a buffered direct injection input circuit including a differential amplifier with active feedback provided through an injection transistor. The differential amplifier includes a pair of input transistors, a pair of cascode transistors and a current mirror load. Photocurrent from a photodetector can be injected onto an integration capacitor in the readout circuit with high injection efficiency at high speed. A high speed, low noise, wide dynamic range linear infrared multiplexer array for reading out infrared detectors with large capacitances can be achieved even when short exposure times are used. The effect of image lag can be reduced.

  16. Detection Systems and Algorithms for Multiplexed Quantum Dots

    NASA Astrophysics Data System (ADS)

    Goss, Kelly Christine

    Quantum Dots (QDs) are semiconductor nanocrystals that absorb light and re-emit at a wavelength dependent on its size and shape. A group of quantum dots can be designed to have a unique spectral emission by varying the size of the quantum dots (wavelength) and number of quantum dots (optical power) [1]. This technology is refered to as Multiplexed Quantum Dots (MxQD) and when it was first proposed, MxQD tags were created with 6 optical power levels and one QD colour or 3 QD colours and 2 optical power levels. It was hypothesized that a realistic limit to the number of tags would be a system of 6 optical power levels and 6 QD colours resulting in 46655 unique tags. In recent work, the fabrication and detection of 9 unique tags [2] was demonstrated which is still far from the predicted capability of the technology. The limitations affecting the large number of unique tags are both the fabrication methods and the data detection algorithms used to read the spectral emissions. This thesis makes contributions toward improving the data detection algorithms for MxQD tags. To accomplish this, a communications system model is developed that includes the inteference between QD colours, Inter-Symbol Interference (ISI), and additive noise. The model is developed for the two optical detectors, namely a Charge-Coupled Device (CCD) spectrometer and photodiode detectors. The model also includes an analytical expression for the Signal-to-Noise Ratio (SNR) of the detectors. For the CCD spectrometer, this model is verified with an experimental prototype. With the models in place, communications systems tools are applied that overcome both ISI and noise. This is an improvement over previous work in the field that only considered algorithms to overcome the ISI or noise separately. Specifically, this thesis outlines the proposal of a matched filter to improve SNR, a Minimum Mean Square Error (MMSE) equalizer that mitigates ISI in the presence of noise and a Maximum Likelihood Sequence

  17. Development of a fast read-out system of a single photon counting detector for mammography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Lopez, F. C.; Rigon, L.; Longo, R.; Arfelli, F.; Bergamaschi, A.; Chen, R. C.; Dreossi, D.; Schmitt, B.; Vallazza, E.; Castelli, E.

    2011-12-01

    A single-photon counting detector read-out system for mammography with synchrotron radiation has been developed with the aim to meet the needs of the mammographic imaging station of the SYRMEP beamline at ELETTRA. The system called PICASSO (Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiatiOn) is a modular detector that implements a read-out system with MYTHEN II ASICs, an embedded Linux-based controller board and a Scientific Linux acquisition workstation. The system architecture and characteristics are herein presented. The system was tested at the SYRMEP beamline and achieved a frame rate of 33 Hz for 8448 channels at 24-bit dynamic range, and it is capable of continuously acquiring up to 2000 frames. Standard mammographic phantoms were imaged and good quality images were obtained at doses comparable with what is delivered in conventional full field mammographic systems.

  18. A front-end readout Detector Board for the OpenPET electronics system.

    PubMed

    Choong, W-S; Abu-Nimeh, F; Moses, W W; Peng, Q; Vu, C Q; Wu, J-Y

    2015-08-01

    We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.

  19. A front-end readout Detector Board for the OpenPET electronics system

    DOE PAGES

    Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.; ...

    2015-08-12

    Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less

  20. A front-end readout Detector Board for the OpenPET electronics system

    SciTech Connect

    Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.; Peng, Q.; Vu, C. Q.; Wu, J. -Y.

    2015-08-12

    Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.

  1. A self contained Linux based data acquisition system for 2D detectors with delay line readout

    NASA Astrophysics Data System (ADS)

    Beltran, D.; Toledo, J.; Klora, A. C.; Ramos-Lerate, I.; Martínez, J. C.

    2007-01-01

    This article describes a fast and self-contained data acquisition system for 2D gas-filled detectors with delay line readout. It allows the realization of time resolved experiments in the millisecond scale. The acquisition system comprises of an industrial PC running Linux, a commercial time-to-digital converter and an in-house developed histogramming PCI card. The PC provides a mass storage for images and a graphical user interface for system monitoring and control. The histogramming card builds images with a maximum count rate of 5 MHz limited by the time-to-digital converter. Histograms are transferred to the PC at 85 MB/s. This card also includes a time frame generator, a calibration channel unit and eight digital outputs for experiment control. The control software was developed for easy integration into a beamline, including scans. The system is fully operational at the Spanish beamline BM16 at the ESRF in France, the neutron beamlines Adam and Eva at the ILL in France, the Max Plank Institute in Stuttgart in Germany, the University of Copenhagen in Denmark and at the future ALBA synchrotron in Spain. Some representative collected images from synchrotron and neutron beamlines are presented.

  2. A front-end readout Detector Board for the OpenPET electronics system

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Abu-Nimeh, F.; Moses, W. W.; Peng, Q.; Vu, C. Q.; Wu, J.-Y.

    2015-08-01

    We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is ``time stamped'' by a time-to-digital converter (TDC) implemented inside the FPGA . This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.

  3. A front-end readout Detector Board for the OpenPET electronics system

    PubMed Central

    Choong, W.-S.; Abu-Nimeh, F.; Moses, W.W.; Peng, Q.; Vu, C.Q.; Wu, J.-Y.

    2016-01-01

    We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is “time stamped” by a time-to-digital converter (TDC) implemented inside the FPGA. This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc. PMID:27134641

  4. Cost-effective fiber multiplexing system based on low coherence interferometers and application to temperature measurement

    NASA Astrophysics Data System (ADS)

    Jiang, Meng; Zhao, Zhongze; Li, Kun; Wang, Zeming; Zhan, Yage; Zhou, Hongying; Yang, Fu

    2016-12-01

    Based on the low-coherence interferometric principles, a cost-effective all-fiber Mach-Zehnder multiplexing system is proposed and demonstrated. The system consists of two interferometers: sensing interferometer and demodulation interferometer. By scanning an optical tunable delay line back and forth constantly with a stable speed, sensing fibers with different optical paths can be temporal interrogated. The system is experimentally proved to have a high performance with a good stability and low system noises. The multiplexing capacity of the system is also investigated. An experiment of measuring the surrounding temperature is carried out. A sensitivity of 12 μm/°C is achieved within the range of 20°C to 80°C. This low cost fiber multiplexing system has a potential application in the remote monitoring of temperature and strain in building structures, such as bridges and towers.

  5. System design for precise digitization and readout of the CSNS-WNS BaF2 spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, De-Liang; Cao, Ping; Wang, Qi; He, Bing; Zhang, Ya-Xi; Qi, Xin-Cheng; Yu, Tao; An, Qi

    2017-02-01

    The BaF2 (barium fluoride) spectrometer is one of the experiment facilities at the CSNS-WNS (White Neutron Source at China Spallation Neutron Source), currently under construction. It is designed to precisely measure the (n, γ) cross section, with 92 crystal elements and complete 4π steradian coverage. In order to improve the precision of measurement, in this paper, a new precise digitization and readout method is proposed. Waveform digitizing with 1 GSps sampling rate and 12-bit resolution is used to precisely capture the detector signal. To solve the problem of massive data readout and processing, the readout electronics is designed as a distributed architecture with 4 PXIe crates. The digitized signal is concentrated to the PXIe crate controller through a PCIe bus on the backplane and transmitted to the data acquisition system over gigabit Ethernet in parallel. Besides, the clock and trigger can be fanned out synchronously to every electronic channel over a high-precision distribution network. Test results show that the prototype of the readout electronics can achieve good performance and meet the requirements of the CSNS-WNS BaF2 spectrometer. Supported by National Research and Development plan (2016YFA0401602) and NSAF (U1530111)

  6. Novel elements for dense wavelength division multiplexing systems

    NASA Astrophysics Data System (ADS)

    Tishinin, Denis Vasilievich

    2000-08-01

    This work discusses the details of design, characteristics and fabrication of novel elements for dense wavelength division/multiplexing (DWDM) systems. Semiconductor optical amplifiers operating at 1.3μm center wavelength and μ-resonators for filters and switches at 1.55μm are also demonstrated. Tensile and compressive strain quantum wells were used to create polarization insensitive amplifiers with built-in mode transformer sections. Mode transformer regions monolithically integrated with the amplifier waveguide provide mode coupling from the tightly confined elliptical mode inside the semiconductor waveguide to the circular mode in the input/output fiber. We were able to improve butt coupling to a single mode fiber by 3-4 dB compared to losses in an un-tapered device. Alignment tolerances were also improved in both directions. Our lateral taper design was shown to preserve polarization of the propagating light and does not limit chip gain. Gain for devices with mode transformers was found to be 18dB for both polarizations with polarization dependence less that 1dB. The saturation power was measured to be 10dBm for both input light polarizations, indicating that the taper does not limit saturation power. The gain bandwidth was found to be 30 nm at -3dB level from the peak. A low reflectivity single layer coating was developed to fabricate this amplifier. Active monitoring allows us to achieve reproducible devices with residual reflectivity as low as 10-4-10-5. Active and passive μ-resonator elements were developed as add/drop filters and switches. Structures with both passive and active elements were demonstrated. A novel vertical integration approach was proposed and implemented to create completely new device geometry. Vertical coupling provides precise control over device performance and enables novel photonic integrated circuits. Wafer bonding was used to enable the 3- dimensional processing employed with vertical waveguide interaction. Micro cavities

  7. Issues and directions in IR detector readout electronics

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.

    1990-01-01

    An introduction to the major issues encountered in the readout of imaging detector arrays in the infrared are presented. These include circuit issues such as multiplexing, buffering, and noise, as well as materials issues. Future directions in infrared readout electronics will also be discussed. These include on-chip signal processing and advanced hybridization schemes. Finally, recent work at Columbia on 2DEG-charge coupled devices for IR detector multiplexing are described.

  8. High throughput optical readout of dense arrays of nanomechanical systems for sensing applications

    NASA Astrophysics Data System (ADS)

    Martínez, N. F.; Kosaka, P. M.; Tamayo, J.; Ramírez, J.; Ahumada, O.; Mertens, J.; Hien, T. D.; Rijn, C. V.; Calleja, M.

    2010-12-01

    We present an instrument based on the scanning of a laser beam and the measurement of the reflected beam deflection that enables the readout of arrays of nanomechanical systems without limitation in the geometry of the sample, with high sensitivity and a spatial resolution of few micrometers. The measurement of nanoscale deformations on surfaces of cm2 is performed automatically, with minimal need of user intervention for optical alignment. To exploit the capability of the instrument for high throughput biological and chemical sensing, we have designed and fabricated a two-dimensional array of 128 cantilevers. As a proof of concept, we measure the nanometer-scale bending of the 128 cantilevers, previously coated with a thin gold layer, induced by the adsorption and self-assembly on the gold surface of several self-assembled monolayers. The instrument is able to provide the static and dynamic responses of cantilevers with subnanometer resolution and at a rate of up to ten cantilevers per second. The instrumentation and the fabricated chip enable applications for the analysis of complex biological systems and for artificial olfaction.

  9. Fiber faceplate modulation readout in Bi-material micro-cantilever mirror array imaging system

    NASA Astrophysics Data System (ADS)

    Hui, Mei; Xia, Zhengzheng; Liu, Ming; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2016-05-01

    Fiber faceplate modulation was applied to read out the precise actuation of silicon-based, surface micro-fabricated cantilever mirrors array in optical imaging system. The faceplate was made by ordered bundles consisting of as many as ten thousands fibers. The transmission loss of an individual fiber in the bundles was 0.35dB/cm and the cross talk between neighboring fibers in the faceplate was about 15%. Micro-cantilever mirrors array (Focal-Plane Array (FPA)) which composed of two-level bi-material pixels, absorb incident infrared flux and result in a temperature increase. The temperature distribution of incident flux transformed to the deformation distribution in FPA which has a very big difference in coefficients of thermal expansion. FPA plays the roles of target sensing and has the characteristics of high detection sensitivity. Instead of general filter such as knife edge or pinhole, fiber faceplate modulate the beam reflected by the units of FPA. An optical readout signal brings a visible spectrum into pattern recognition system, yielding a visible image on monitor. Thermal images at room temperature have been obtained. The proposed method permits optical axis compact and image noise suppression.

  10. 1 ns time to digital converters for the KM3NeT data readout system

    SciTech Connect

    Calvo, David [IFIC, Instituto de Física Corpuscular, CSIC- Universidad de Valencia, C Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT collaboration aims at the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean Sea consisting of thousands of glass spheres (nodes), each of them containing 31 photomultiplier (PMT) of small photocathode area. The readout and data acquisition system of KM3NeT has to collect, treat and send to shore, in an economic way, the enormous amount of data produced by the photomultipliers. For this purpose, 31 high-resolution time-interval measuring channels are implemented on the Field-Programmable Gate Arrays (FPGA) based on Time to Digital Converter (TDC). TDC are very common devices in particles physics experiments. Architectures with low resources occupancy are desirable allowing the implementation of other instrumentation, communication and synchronization systems on the same device. The required resolution to measure both, time of flight and timestamp must be 1 ns. A 4-Oversampling technique with two high frequency clocks is used to achieve this resolution. The proposed TDC firmware is developed using very few resources in Xilinx Kintex-7.

  11. Compensated digital readout family

    NASA Technical Reports Server (NTRS)

    Ludwig, David E.; Skow, Michael

    1991-01-01

    ISC has completed test on an IC which has 32 channels of amplifiers, low pass anti-aliasing filters, 13-bit analog-to-digital (A/D) converters with non-uniformity correction per channel and a digital multiplexer. The single slope class of A/D conversion is described, as are the unique variations required for incorporation of this technique for use with on-focal plane detector readout electronics. This paper describes the architecture used to implement the digital on-focal plane signal processing functions. Results from measured data on a test IC are presented for a circuit containing these functions operating at a sensor frame rate of 1000 hertz.

  12. Analog signal multiplexing for PSAPD-based PET detectors: simulation and experimental validation

    PubMed Central

    Lau, Frances W Y; Vandenbroucke, Arne; Reynolds, Paul D; Olcott, Peter D; Horowitz, Mark A; Levin, Craig S

    2013-01-01

    A 1 mm3 resolution clinical positron emission tomography (PET) system employing 4608 position-sensitive avalanche photodiodes (PSAPDs) is under development. This paper describes a detector multiplexing technique that simplifies the readout electronics and reduces the density of the circuit board design. The multiplexing scheme was validated using a simulation framework that models the PSAPDs and front-end multiplexing circuits to predict the signal-to-noise ratio and flood histogram performance. Two independent experimental setups measured the energy resolution, time resolution, crystal identification ability and count rate both with and without multiplexing. With multiplexing, there was no significant degradation in energy resolution, time resolution and count rate. There was a relative 6.9 ± .0% and 9.4 ± 1.0% degradation in the figure of merit that characterizes the crystal identification ability observed in the measured and simulated ceramic-mounted PSAPD module flood histograms, respectively. PMID:21081831

  13. Data communication in read-out systems: how fast can we go over copper wires?

    NASA Astrophysics Data System (ADS)

    Schrader, J. H. R.; Klumperink, E. A. M.; Visschers, J. L.; Nauta, B.

    2004-09-01

    In a digital X-ray imaging system, data has to be transmitted from the detector to the storage system. In future digital X-ray imaging systems, higher data rates will be needed. For some applications, e.g. protein crystallography at synchrotron beams, data rates in the order of gigabits per second are expected. Present trend for such systems is to move from a parallel data bus towards a high-speed serial readout. For high speed signaling over short distances (up to 10m) the attenuation of copper cables is low enough to permit multi-gigabit per second speeds. In this article, an overview will be given of problems encountered in high speed data transmission over copper cable and techniques will be shown to overcome these problems. The bandwidth bottleneck in short distance communication is in the IC-technology and not in the channel. The cable transfer function results in inter-symbol interference (ISI). The skin-effect is the most significant cause of ISI for short length (10m) coaxial copper cables. Fortunately, equalization can compensate for these effects. An equalizer has a transfer function that is the inverse of the channel transfer function. With the correct equalizer, a very low Bit Error Ratio (BER) can be achieved. The measured RG-58U cable (τ1=0.12ns) could transmit at a bit rate of 8.3Gbps, with a BER of 10-12. Multi-gigabit speeds are possible over short length coaxial copper cables.

  14. Multiplex detection of plant pathogens through the Luminex MagPlex bead system.

    PubMed

    van der Vlugt, René A A; van Raaij, Henry; de Weerdt, Marjanne; Bergervoet, Jan H W

    2015-01-01

    Here we describe a versatile multiplex method for both the serological and molecular detection of plant pathogens. The Luminex MagPlex bead system uses small paramagnetic microspheres ("beads"), either coated with specific antibodies or oligonucleotides, which capture respectively viruses and/or bacteria or PCR products obtained from their genetic material. The Luminex MagPlex bead system allows true multiplex detection of up to 500 targets in a single sample on a routine basis. The liquid suspension nature of the method significantly improves (1) assay speed, (2) detection limits and (3) dynamic range. It can also considerably reduce labor and consumables costs.

  15. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    PubMed Central

    Jeong, Sinyoung; Kim, Yong-il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-01-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures. PMID:25820115

  16. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    NASA Astrophysics Data System (ADS)

    Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-03-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.

  17. Microstrip electrode readout noise for load-dominated long shaping-time systems

    NASA Astrophysics Data System (ADS)

    Collier, Kelsey; Cunnington, Taylor; Crosby, Sean; Fadeyev, Vitaliy; Martinez-McKinney, Forest; Mistry, Khilesh; Schumm, Bruce A.; Spencer, Edwin; Taylor, Aaron; Wilder, Max

    2013-11-01

    In cases such as that of the proposed International Linear Collider (ILC), for which the beam-delivery and detector-occupancy characteristics permit a long shaping-time readout of the microstrip sensors, it is possible to envision long (∼1 meter) daisy-chained ‘ladders’ of fine-pitch sensors read out by a single front-end amplifier. In this study, a long shaping-time (∼2 μsec) front-end amplifier has been used to measure readout noise as a function of detector load. Comparing measured noise to that expected from lumped and distributed models of the load network, it is seen that network effects significantly mitigate the amount of readout noise contributed by the detector load. Further reduction in noise is demonstrated for the case that the sensor load is read out from its center rather than its end.

  18. An integrated microspectrometer for localised multiplexing measurements.

    PubMed

    Hu, Zhixiong; Glidle, Andrew; Ironside, Charles; Cooper, Jonathan M; Yin, Huabing

    2015-01-07

    We describe the development of an integrated lensed Arrayed Waveguide Grating (AWG) microspectrometer for localized multiplexing fluorescence measurements. The device, which has a footprint that is only 1 mm wide and 1 cm long, is capable of spectroscopic measurements on chip. Multiple fluorescence signals were measured simultaneously based upon simple intensity readouts from a CCD camera. We also demonstrate the integration of the AWG spectrometer with a microfluidic platform using a lensing function to confine the beam shape for focused illumination. This capability enhances signal collection, gives better spatial resolution, and provides a route for the analysis of small volume samples (e.g. cells) in flow. To show these capabilities we developed a novel "bead-AWG" platform with which we demonstrate localized multiplexed fluorescence detection either simultaneously or successively. Such an integrated system provides the basis for a portable system capable of optical detection of multi-wavelength fluorescence from a single defined location.

  19. Optical delay encoding for fast timing and detector signal multiplexing in PET

    PubMed Central

    Grant, Alexander M.; Levin, Craig S.

    2015-01-01

    Purpose: The large number of detector channels in modern positron emission tomography (PET) scanners poses a challenge in terms of readout electronics complexity. Multiplexing schemes are typically implemented to reduce the number of physical readout channels, but often result in performance degradation. Novel methods of multiplexing in PET must be developed to avoid this data degradation. The preservation of fast timing information is especially important for time-of-flight PET. Methods: A new multiplexing scheme based on encoding detector interaction events with a series of extremely fast overlapping optical pulses with precise delays is demonstrated in this work. Encoding events in this way potentially allows many detector channels to be simultaneously encoded onto a single optical fiber that is then read out by a single digitizer. A two channel silicon photomultiplier-based prototype utilizing this optical delay encoding technique along with dual threshold time-over-threshold is demonstrated. Results: The optical encoding and multiplexing prototype achieves a coincidence time resolution of 160 ps full width at half maximum (FWHM) and an energy resolution of 13.1% FWHM at 511 keV with 3 × 3 × 5 mm3 LYSO crystals. All interaction information for both detectors, including timing, energy, and channel identification, is encoded onto a single optical fiber with little degradation. Conclusions: Optical delay encoding and multiplexing technology could lead to time-of-flight PET scanners with fewer readout channels and simplified data acquisition systems. PMID:26233181

  20. Multiplexed SNP genotyping using the Qbead™ system: a quantum dot-encoded microsphere-based assay

    PubMed Central

    Xu, Hongxia; Sha, Michael Y.; Wong, Edith Y.; Uphoff, Janet; Xu, Yanzhang; Treadway, Joseph A.; Truong, Anh; O’Brien, Eamonn; Asquith, Steven; Stubbins, Michael; Spurr, Nigel K.; Lai, Eric H.; Mahoney, Walt

    2003-01-01

    We have developed a new method using the Qbead™ system for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The Qbead system employs fluorescent Qdot™ semiconductor nanocrystals, also known as quantum dots, to encode microspheres that subsequently can be used as a platform for multiplexed assays. By combining mixtures of quantum dots with distinct emission wavelengths and intensities, unique spectral ‘barcodes’ are created that enable the high levels of multiplexing required for complex genetic analyses. Here, we applied the Qbead system to SNP genotyping by encoding microspheres conjugated to allele-specific oligonucleotides. After hybridization of oligonucleotides to amplicons produced by multiplexed PCR of genomic DNA, individual microspheres are analyzed by flow cytometry and each SNP is distinguished by its unique spectral barcode. Using 10 model SNPs, we validated the Qbead system as an accurate and reliable technique for multiplexed SNP genotyping. By modifying the types of probes conjugated to microspheres, the Qbead system can easily be adapted to other assay chemistries for SNP genotyping as well as to other applications such as analysis of gene expression and protein–protein interactions. With its capability for high-throughput automation, the Qbead system has the potential to be a robust and cost-effective platform for a number of applications. PMID:12682378

  1. The Design and Realization of Linear Calibration System of a Large Dynamic Range Readout Unit for a BGO Calorimeter

    NASA Astrophysics Data System (ADS)

    Xie, Ming-Gang; Guo, Jian-Hua; Wu, Jian; Chang, Jin

    2015-01-01

    The DArk Matter Particle Explorer (DAMPE) is proposed by the Purple Mountain Observatory, Chinese Academy of Sciences. This project expects to find the evidence of the existence of dark matter particles in the universe via the detection of the high-energy electrons and gamma-ray particles produced possibly by the annihilation of dark matter particles. The major component of the satellite payload is a BGO (Bismuth Germanate Oxide) calorimeter, which is used to detect the particles in the energy range from 5 GeV to 10 TeV. According to a physical simulation, the dynamic range of each BGO detection unit is about 1.5×105. In order to test the readout linearity of the BGO detection unit, we have implemented a simple linear calibration system covering such a large dynamic range. The experimental result shows that the readout nonlinearity of the BGO detection unit in the entire dynamic range is less than 2.7%.

  2. The electronics readout and data acquisition system of the KM3NeT neutrino telescope node

    SciTech Connect

    Real, Diego [IFIC, Instituto de Física Corpuscular, CSIC-Universidad de Valencia, C Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT neutrino telescope will be composed by tens of thousands of glass spheres, called Digital Optical Module (DOM), each of them containing 31 PMTs of small photocathode area (3'). The readout and data acquisition system of KM3NeT have to collect, treat and send to shore, in an economic way, the enormous amount of data produced by the photomultipliers and at the same time to provide time synchronization between each DOM at the level of 1 ns. It is described in the present article the Central Logic Board, that integrates the Time to Digital Converters and the White Rabbit protocol used for the DOM synchronization in a transparent way, the Power Board used in the DOM, the PMT base to readout the photomultipliers and the respective collecting boards, the so called Octopus Board.

  3. Establishment of a system based on universal multiplex-PCR for screening genetically modified crops.

    PubMed

    Lu, I-Jen; Lin, Chih-Hui; Pan, Tzu-Ming

    2010-03-01

    The rapid development of many genetically modified (GM) crops in the past two decades makes it necessary to introduce an alternative strategy for routine screening and identification. In this study, we established a universal multiplex PCR detection system which will effectively reduce the number of reactions needed for sample identification. The PCR targets of this system include the six most frequently used transgenic elements: cauliflower mosaic virus (CaMV) 35S promoter, Agrobacterium tumefaciens nopaline synthase (nos) promoter, Agrobacterium tumefaciens nopaline synthase (nos) terminator, the neomycin phosphotransferase II (nptII) gene, the 5-enolpyruvylshikimate-3-phosphate synthase (CP4 epsps) gene of Agrobacterium tumefaciens strain CP4, and the phosphinothricin N-acetyltransferase (pat) gene. According to the AGBIOS database, the coverage of this detection system is 93% of commercial GM crops. This detection system could detect all certified reference materials (CRMs) at the 1.0% level. The correct combination of all the CRM amplicon patterns proved the specificity of this multiplex PCR system. Furthermore, the amplicon patterns of this multiplex PCR detection system could be used as an index of classification which will narrow the range of possible GM products. The simulation result of this multiplex PCR detection system on all commercialized 139 GM products in the AGBIOS database showed that the maximum number of PCR reactions needed to identify an unknown sample can be reduced to 13. In this study, we established a high-throughput multiplex PCR detection system with feasible sensitivity, specificity, and cost. By incorporating this detection system, the routine GM crop-detection process will meet the challenges resulting from a rapid increase in the number of GM crops in the future.

  4. Compact multispectral fluorescence imaging system with spectral multiplexed volume holographic grating

    NASA Astrophysics Data System (ADS)

    Lv, Yanlu; Cai, Chuangjian; Bai, Jing; Luo, Jianwen

    2016-12-01

    Traditional spectral imaging systems mainly rely on spatial scanning or spectral scanning methods to acquire spatial and spectral features. The acquisition is time-consuming and cannot fully satisfy the need of monitoring dynamic phenomenon and observing different structures of the specimen simultaneously. To overcome these barriers, we develop a video-rate simultaneous multispectral imaging system built with a spectral multiplexed volume holographic grating (VHG) and few optical components. Four spectral multiplexed volume holograms optimized for four discrete spectral bands (centered at 488 nm, 530 nm, 590 nm and 620 nm) are recorded into an 8×12 mm photo-thermal refractive glass. The diffraction efficiencies of all the holograms within the multiplexed VHG are greater than 80%. With the high throughout multiplexed VHG, the system can work with both reflection and fluorescence modes and allow simultaneous acquisition of spectral and spatial information with a single exposure. Imaging experiments demonstrate that the multispectral images of the target illuminated with white light source can be obtained. Fluorescence images of multiple fluorescence objects (two glass beads filled with 20 uL 1.0 mg/mL quantum dots solutions that emit 530 +/- 15 nm and 620 +/- 15 nm fluorescence, respectively) buried 3 mm below the surface of a tissue mimicking phantom are acquired. The results demonstrate that the system can provide complementary information in fluorescence imaging. The design diagram of the proposed system is given to explain the advantage of compactness and flexibility in integrating with other imaging platforms.

  5. A multiplexed system for quantitative comparisons of chromatin landscapes

    PubMed Central

    van Galen, Peter; Viny, Aaron D.; Ram, Oren; Ryan, Russell J.H.; Cotton, Matthew J.; Donohue, Laura; Sievers, Cem; Drier, Yotam; Liau, Brian B.; Gillespie, Shawn M.; Carroll, Kaitlin M.; Cross, Michael B.; Levine, Ross L.; Bernstein, Bradley E.

    2015-01-01

    Genome-wide profiling of histone modifications can provide systematic insight into the regulatory elements and programs engaged in a given cell type. However, conventional chromatin immunoprecipitation and sequencing (ChIP-seq) does not capture quantitative information on histone modification levels, requires large amounts of starting material, and involves tedious processing of each individual sample. Here we address these limitations with a technology that leverages DNA barcoding to profile chromatin quantitatively and in multiplexed format. We concurrently map relative levels of multiple histone modifications across multiple samples, each comprising as few as a thousand cells. We demonstrate the technology by monitoring dynamic changes following inhibition of P300, EZH2 or KDM5, by linking altered epigenetic landscapes to chromatin regulator mutations, and by mapping active and repressive marks in purified human hematopoietic stem cells. Hence, this technology enables quantitative studies of chromatin state dynamics across rare cell types, genotypes, environmental conditions and drug treatments. PMID:26687680

  6. A Multiplexed System for Quantitative Comparisons of Chromatin Landscapes.

    PubMed

    van Galen, Peter; Viny, Aaron D; Ram, Oren; Ryan, Russell J H; Cotton, Matthew J; Donohue, Laura; Sievers, Cem; Drier, Yotam; Liau, Brian B; Gillespie, Shawn M; Carroll, Kaitlin M; Cross, Michael B; Levine, Ross L; Bernstein, Bradley E

    2016-01-07

    Genome-wide profiling of histone modifications can provide systematic insight into the regulatory elements and programs engaged in a given cell type. However, conventional chromatin immunoprecipitation and sequencing (ChIP-seq) does not capture quantitative information on histone modification levels, requires large amounts of starting material, and involves tedious processing of each individual sample. Here, we address these limitations with a technology that leverages DNA barcoding to profile chromatin quantitatively and in multiplexed format. We concurrently map relative levels of multiple histone modifications across multiple samples, each comprising as few as a thousand cells. We demonstrate the technology by monitoring dynamic changes following inhibition of p300, EZH2, or KDM5, by linking altered epigenetic landscapes to chromatin regulator mutations, and by mapping active and repressive marks in purified human hematopoietic stem cells. Hence, this technology enables quantitative studies of chromatin state dynamics across rare cell types, genotypes, environmental conditions, and drug treatments.

  7. Study on the MWIR imaging ability of optical readout bimaterial microcantilever FPA uncooled infrared imaging system

    NASA Astrophysics Data System (ADS)

    Zhou, Bingbing; Feng, Yun; Zhao, Yuejin; Dong, Liquan; Liu, Ming; Chu, Xuhong; Yu, Xiaomei

    2016-09-01

    In this paper, we analyze and experimentally demonstrate the medium-wave infrared (MWIR) imaging ability based on optical readout bimaterial microcantilever focal plane array (FPA) uncooled infrared imaging system. Multiband infrared imaging technology has been a hotspot in the field of infrared imaging. In the infrared band, medium-wave infrared (3 5 μm) has minimal attenuation of atmospheric infrared window, and it also covers many atomic and molecular absorption peak. Imaging study on MWIR radiation source also appears particularly important. First of all, we introduce the bimaterial microcantilever IR sensing principle and the fabrication of the bimaterial microcantilever FPA. Secondly, the paper introduces the theory of the optical-thermal-mechnical reading based on FPA. Finally, the experimental platform was constructed to conduct the MWIR imaging experiment. The medium-wave infrared radiation source consists of a continuous-wave optical parametric oscillator (OPO) that is pumped by a polarization-maintained, single-mode fiber amplifier. The length of the 50mm periodically polarized LiNbO3 crystal (5%MgO) is used as the nonlinear crystal. The stable cavity of the ring is designed, and the output of the 3 4 μm band is realized by the design of the nonlinear crystal polarization period. And the FPA employed in our experiment contains 256×256 pixels fabricated on a glass substrate, whose working bandwidth is covering the three IR atmospheric windows. The experimental results show that the bimaterial microcantilever FPA has a good imaging ability to the MWIR sources.

  8. Design and fabrication of optical system for time-multiplex autostereoscopic display.

    PubMed

    Liou, Jian-Chiun; Chen, Fo-Hau

    2011-06-06

    We propose and experimentally demonstrate a novel time-multiplexed autostereoscopic multi-view full resolution 3D display based on the lenticular lens array in association with the control of the active dynamic LED backlight. The lenticular lenses of the lens array optical system receive the light and deflect the light into each viewing zone in a time sequence.

  9. Linear Frequency Modulated Signals VS Orthogonal Frequency Division Multiplexing Signals for Synthetic Aperture Radar Systems

    DTIC Science & Technology

    2014-06-01

    OFDM ) signal versus a linear frequency modulated or chirp signal on simulated synthetic aperture radar (SAR) imagery. Various parameters of the...transmitted signal, such as pulse duration, transmitted signal energy, bandwidth, and (specifically for the OFDM signal) number of subcarriers and...SAR system design cost. 14. SUBJECT TERMS Synthetic aperture radar (SAR), orthogonal frequency division multiplexing ( OFDM ), linear

  10. 21 CFR 862.2570 - Instrumentation for clinical multiplex test systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... hardware components, as well as raw data storage mechanisms, data acquisition software, and software to... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical.... Instrumentation for clinical multiplex test systems is a device intended to measure and sort multiple...

  11. 21 CFR 862.2570 - Instrumentation for clinical multiplex test systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... hardware components, as well as raw data storage mechanisms, data acquisition software, and software to... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical.... Instrumentation for clinical multiplex test systems is a device intended to measure and sort multiple...

  12. Profiling of multiple signal pathway activities by multiplexing antibody and GFP-based translocation assays.

    PubMed

    Henriksen, Ulla; Fog, Jacob; Loechel, Frosty; Praestegaard, Morten

    2008-08-01

    Multiplexing of GFP based and immunofluorescence translocation assays enables easy acquisition of multiple readouts from the same cell in a single assay run. Immunofluorescence assays monitor translocation, phosphorylation, and up/down regulation of endogenous proteins. GFP-based assays monitor translocation of stably expressed GFP-fusion proteins. Such assays may be multiplexed along (vertical), across (horizontal), and between (branch) signal pathways. Examples of these strategies are presented: 1) The MK2-GFP assay monitors translocation of MK2-GFP from the nucleus to the cytoplasm in response to stimulation of the p38 pathway. By applying different immunofluorescent assays to the MK2 assay, a multiplexed HCA system is created for deconvolution of p38 pathway activation including assay readouts for MK2, p38, NFkappaB, and c-Jun. 2) A method for evaluating GPCR activation and internalization in a single assay run has been established by multiplexing GFP-based internalization assays with immunofluorescence assays for downstream transducers of GPCR activity: pCREB (cAMP sensor), NFATc1 (Ca(2+) sensor), and ERK (G-protein activation). Activation of the AT1 receptor is given as an example. 3) Cell toxicity readouts can be linked to primary readouts of interest via acquisition of secondary parameters describing cellular morphology. This approach is used to flag cytotoxic compounds and deselect false positives. The ATF6 Redistribution assay is provided as an example. These multiplex strategies provide a unique opportunity to enhance HCA data quality and save time during drug discovery. From a single assay run, several assay readouts are obtained that help the user to deconvolute the mode of action of test compounds.

  13. Data multiplex system for the dispensing station at the Tritium Research Laboratory

    SciTech Connect

    Strout, R.E.

    1980-03-01

    Throughout the Tritium Research Laboratory's dispensing station, pressure and temperature are monitored continuously. A multiplex system brings the data from the monitoring points to a central location for use in a programmable calculator. The system consists of a programmable calculator, a multiprogrammer, four address units, digital panel meters, and buffer units interfacing the meters with the rest of the components. This report describes how each component fits into the system to make it work.

  14. A DSP-based readout and online processing system for a new focal-plane polarimeter at AGOR

    NASA Astrophysics Data System (ADS)

    Hagemann, M.; Bassini, R.; van den Berg, A. M.; Ellinghaus, F.; Frekers, D.; Hannen, V. M.; Häupke, T.; Heyse, J.; Jacobs, E.; Kirsch, M.; Krüsemann, B.; Rakers, S.; Sohlbach, H.; Wörtche, H. J.

    1999-11-01

    A Focal-Plane Polarimeter (FPP) for the large acceptance Big-Bite Spectrometer (BBS) at AGOR using a novel readout architecture has been commissioned at the KVI Groningen. The instrument is optimized for medium-energy polarized proton scattering near or at 0°. For the handling of the high counting rates at extreme forward angles and for the suppression of small-angle scattering in the graphite analyzer, a high-performance data processing DSP system connecting to the LeCroy FERA and PCOS ECL bus architecture has been made operational and tested successfully. Details of the system and the functions of the various electronic components are described.

  15. Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system.

    PubMed

    Li, Zhaohui; Jiang, Tao; Li, Haibo; Zhang, Xuebing; Li, Cai; Li, Chao; Hu, Rong; Luo, Ming; Zhang, Xu; Xiao, Xiao; Yang, Qi; Yu, Shaohua

    2013-09-23

    In this paper, we experimentally demonstrate the first 110-Gb/s multi-band superchannel coherent optical orthogonal frequency-division multiplexing based on offset quadrature amplitude modulation (OFDM/OQAM) system. Unlike the conventional orthogonal band-multiplexed OFDM system, no timing or frequency synchronization is required for the OFDM/OQAM system. We further investigate the influence of guard band, and find that very trivial guard band spacing (< 20 MHz) is required without any sensitivity performance or spectral efficiency degradation. Thus, the newly designed scheme would significantly reduce the implementation constrains for the band-multiplexed superchannel coherent optical OFDM system.

  16. Development of readout electronics for POLARBEAR-2 cosmic microwave background experiment

    DOE PAGES

    Hattori, K.; Akiba, Y.; Arnold, K.; ...

    2016-01-06

    The readout of transition-edge sensor (TES) bolometers with a large multiplexing factor is key for the next generation cosmic microwave background (CMB) experiment, Polarbear-2, having 7588 TES bolometers. To enable the large arrays, we have been developing a readout system with a multiplexing factor of 40 in the frequency domain. Extending that architecture to 40 bolometers requires an increase in the bandwidth of the SQUID electronics, above 4 MHz. This paper focuses on cryogenic readout and shows how it affects cross talk and the responsivity of the TES bolometers. A series resistance, such as equivalent series resistance of capacitors formore » LC filters, leads to non-linear response of the bolometers. A wiring inductance modulates a voltage across the bolometers and causes cross talk. They should be controlled well to reduce systematic errors in CMB observations. As a result, we have been developing a cryogenic readout with a low series impedance and have tuned bolometers in the middle of their transition at a high frequency (>3 MHz).« less

  17. Development of readout electronics for POLARBEAR-2 cosmic microwave background experiment

    SciTech Connect

    Hattori, K.; Akiba, Y.; Arnold, K.; Barron, D.; Bender, A. N.; Cukierman, A.; de Haan, T.; Dobbs, M.; Elleflot, T.; Hasegawa, M.; Hazumi, M.; Holzapfel, W.; Hori, Y.; Keating, B.; Kusaka, A.; Lee, A.; Montgomery, J.; Rotermund, K.; Shirley, I.; Suzuki, A.; Whitehorn, N.

    2016-01-06

    The readout of transition-edge sensor (TES) bolometers with a large multiplexing factor is key for the next generation cosmic microwave background (CMB) experiment, Polarbear-2, having 7588 TES bolometers. To enable the large arrays, we have been developing a readout system with a multiplexing factor of 40 in the frequency domain. Extending that architecture to 40 bolometers requires an increase in the bandwidth of the SQUID electronics, above 4 MHz. This paper focuses on cryogenic readout and shows how it affects cross talk and the responsivity of the TES bolometers. A series resistance, such as equivalent series resistance of capacitors for LC filters, leads to non-linear response of the bolometers. A wiring inductance modulates a voltage across the bolometers and causes cross talk. They should be controlled well to reduce systematic errors in CMB observations. As a result, we have been developing a cryogenic readout with a low series impedance and have tuned bolometers in the middle of their transition at a high frequency (>3 MHz).

  18. Development of Readout Electronics for POLARBEAR-2 Cosmic Microwave Background Experiment

    NASA Astrophysics Data System (ADS)

    Hattori, K.; Akiba, Y.; Arnold, K.; Barron, D.; Bender, A. N.; Cukierman, A.; de Haan, T.; Dobbs, M.; Elleflot, T.; Hasegawa, M.; Hazumi, M.; Holzapfel, W.; Hori, Y.; Keating, B.; Kusaka, A.; Lee, A.; Montgomery, J.; Rotermund, K.; Shirley, I.; Suzuki, A.; Whitehorn, N.

    2016-07-01

    The readout of transition-edge sensor (TES) bolometers with a large multiplexing factor is key for the next generation cosmic microwave background (CMB) experiment, Polarbear-2 (Suzuki in J Low Temp Phys 176:719, 2014), having 7588 TES bolometers. To enable the large arrays, we have been developing a readout system with a multiplexing factor of 40 in the frequency domain. Extending that architecture to 40 bolometers requires an increase in the bandwidth of the SQUID electronics, above 4 MHz. This paper focuses on cryogenic readout and shows how it affects cross talk and the responsivity of the TES bolometers. A series resistance, such as equivalent series resistance of capacitors for LC filters, leads to non-linear response of the bolometers. A wiring inductance modulates a voltage across the bolometers and causes cross talk. They should be controlled well to reduce systematic errors in CMB observations. We have been developing a cryogenic readout with a low series impedance and have tuned bolometers in the middle of their transition at a high frequency (>3 MHz).

  19. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Astrophysics Data System (ADS)

    Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Coughlin, K. P.; Crowley, K. T.; Datta, R.; Devlin, M. J.; Duff, S. M.; Dunkley, J.; Dünner, R.; van Engelen, A.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Hills, F.; Hilton, G. C.; Hincks, A. D.; Hloẑek, R.; Ho, S. P.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A. B.; Li, D.; McMahon, J.; Munson, C.; Nati, F.; Newburgh, L.; Niemack, M. D.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

  20. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Technical Reports Server (NTRS)

    Henderson, S.W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Wollack, E. J.

    2016-01-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies-imaged in intensity and polarization at few arcminute-scale resolution-will enable precision cosmological constraints and also awide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the AdvancedACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the AdvancedACTPol cryogenic detector arrays.

  1. Multiplexed Volume Bragg Gratings in Narrowand Broad-band Spectral Systems: Analysis and Application

    NASA Astrophysics Data System (ADS)

    Ingersoll, Gregory B.

    Volume Bragg gratings (VBGs) are important holographic optical elements in many spectral systems. Using multiple volume gratings, whether multiplexed or arranged sequentially, provides advantages to many types of systems in overall efficiency, dispersion performance, flexibility of design, etc. However, the use of multiple gratings---particularly when the gratings are multiplexed in a single holographic optical element (HOE)---is subject to inter-grating coupling effects that ultimately limit system performance. Analyzing these coupling effects requires a more complex mathematical model than the straightforward analysis of a single volume grating. We present a matrix-based algorithm for determining diffraction efficiencies of significant coupled waves in these multiplexed grating holographic optical elements (HOEs). Several carefully constructed experiments with spectrally multiplexed gratings in dichromated gelatin verify our conclusions. Applications of this theory to broad- and narrow-band systems are explored in detailed simulations. Broadband systems include spectrum splitters for diverse-bandgap photovoltaic (PV) cells. Volume Bragg gratings can serve as effective spectrum splitters, but the inherent dispersion of a VBG can be detrimental given a broad-spectrum input. The performance of a holographic spectrum splitter element can be improved by utilizing multiple volume gratings, each operating in a slightly different spectral band. However, care must be taken to avoid inter-grating coupling effects that limit ultimate performance. We explore broadband multi-grating holographic optical elements (HOEs) in sandwiched arrangements where individual single-grating HOEs are placed in series, and in multiplexed arrangements where multiple gratings are recorded in a single HOE. Particle swarm optimization (PSO) is used to tailor these systems to the solar spectrum taking into account both efficiency and dispersion. Both multiplexed and sandwiched two-grating systems

  2. Shift multiplexing in a compact holographic storage system by using planar waveguide referencing

    NASA Astrophysics Data System (ADS)

    Yi, Tao; Zhang, Jiasen; Yan, Lifen; Gong, Qihuang

    2005-01-01

    We propose a shift multiplexing method for a compact holographic volume storage system by using planar waveguide referencing. In the method, a planar waveguide is used to steer the reference beam and shift multiplexing is implemented by shifting the recording medium. We measure the diffraction efficiencies with respect to the shift distance of the medium for different widths of the waveguide. The selectivity of the storage system can be about 1.0 μm when the width of the waveguide is 0.05 mm. Multiple holograms are stored with a spatial separation of 2.5 μm. By using the planar waveguide, a high storage density can be achieved. As the planar waveguide is already commonly used in integrated optical systems, the whole storage system can become more compact and simpler.

  3. Common Readout Unit (CRU) - A new readout architecture for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Mitra, J.; Khan, S. A.; Mukherjee, S.; Paul, R.

    2016-03-01

    The ALICE experiment at the CERN Large Hadron Collider (LHC) is presently going for a major upgrade in order to fully exploit the scientific potential of the upcoming high luminosity run, scheduled to start in the year 2021. The high interaction rate and the large event size will result in an experimental data flow of about 1 TB/s from the detectors, which need to be processed before sending to the online computing system and data storage. This processing is done in a dedicated Common Readout Unit (CRU), proposed for data aggregation, trigger and timing distribution and control moderation. It act as common interface between sub-detector electronic systems, computing system and trigger processors. The interface links include GBT, TTC-PON and PCIe. GBT (Gigabit transceiver) is used for detector data payload transmission and fixed latency path for trigger distribution between CRU and detector readout electronics. TTC-PON (Timing, Trigger and Control via Passive Optical Network) is employed for time multiplex trigger distribution between CRU and Central Trigger Processor (CTP). PCIe (Peripheral Component Interconnect Express) is the high-speed serial computer expansion bus standard for bulk data transport between CRU boards and processors. In this article, we give an overview of CRU architecture in ALICE, discuss the different interfaces, along with the firmware design and implementation of CRU on the LHCb PCIe40 board.

  4. Integrated Semiconductor-based Diagnostics System for Multiplexed Genomic Amplification and Electrochemical Detection of Biothreat Agents

    DTIC Science & Technology

    2009-01-01

    contract effort focused on the development of an automated, cartridge-based genotyping system that integrates a multiplex polymerase chain reaction...REPORT b.ABSTRACT c. THIS PAGE ABSTRACT OF PAGES Kristian Roth $X u U U SAR 19b. TELEPHONE NUMBER 425-493-2368 Standard Form 298 (Rev 8/98...Biothreat Agents Report Title ABSTRACT This contract effort focused on the development of an automated, cartridge-based genotyping system that integrates a

  5. Nonlinear interaction in differential mode delay managed mode-division multiplexed transmission systems.

    PubMed

    Rademacher, Georg; Warm, Stefan; Petermann, Klaus

    2015-01-12

    We analyze the impact of Differential Mode Delay (DMD) Management on the nonlinear impairments in mode-division multiplexed transmission systems. It is found out that DMD Management can lead to a degraded performance, due to enhanced intermodal nonlinear interaction. This can be attributed to an increased correlation of co-propagating channels, similar to the effects that show up in dispersion managed single-mode systems.

  6. Charge Identification of Highly Ionizing Particles in Desensitized Nuclear Emulsion Using High Speed Read-Out System

    SciTech Connect

    Toshito, T.; Kodama, K.; Yusa, K.; Ozaki, M.; Amako, K.; Kameoka, S.; Murakami, K.; Sasaki, T.; Aoki, S.; Ban, T.; Fukuda, T.; Naganawa, N.; Nakamura, T.; Natsume, M.; Niwa, K.; Takahashi, S.; Kanazawa, M.; Kanematsu, N.; Komori, M.; Sato, S.; Asai, M.; /Nagoya U. /Aichi U. of Education /Gunma U., Maebashi /JAXA, Sagamihara /KEK, Tsukuba /Kobe U. /Chiba, Natl. Inst. Rad. Sci. /SLAC /Toho U.

    2006-05-10

    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290 MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsion film to highly ionizing particles.

  7. A programmable energy efficient readout chip for a multiparameter highly integrated implantable biosensor system

    NASA Astrophysics Data System (ADS)

    Nawito, M.; Richter, H.; Stett, A.; Burghartz, J. N.

    2015-11-01

    In this work an Application Specific Integrated Circuit (ASIC) for an implantable electrochemical biosensor system (SMART implant, Stett et al., 2014) is presented. The ASIC drives the measurement electrodes and performs amperometric measurements for determining the oxygen concentration, potentiometric measurements for evaluating the pH-level as well as temperature measurements. A 10-bit pipeline analog to digital (ADC) is used to digitize the acquired analog samples and is implemented as a single stage to reduce power consumption and chip area. For pH measurements, an offset subtraction technique is employed to raise the resolution to 12-bits. Charge integration is utilized for oxygen and temperature measurements with the capability to cover current ranges between 30 nA and 1 μA. In order to achieve good performance over a wide range of supply and process variations, internal reference voltages are generated from a programmable band-gap regulated circuit and biasing currents are supplied from a wide-range bootstrap current reference. To accommodate the limited available electrical power, all components are designed for low power operation. Also a sequential operation approach is applied, in which essential circuit building blocks are time multiplexed between different measurement types. All measurement sequences and parameters are programmable and can be adjusted for different tissues and media. The chip communicates with external unites through a full duplex two-wire Serial Peripheral Interface (SPI), which receives operational instructions and at the same time outputs the internally stored measurement data. The circuit has been fabricated in a standard 0.5-μm CMOS process and operates on a supply as low as 2.7 V. Measurement results show good performance and agree with circuit simulation. It consumes a maximum of 500 μA DC current and is clocked between 500 kHz and 4 MHz according to the measurement parameters. Measurement results of the on-chip ADC show a

  8. Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors.

    PubMed

    Doriese, W B; Morgan, K M; Bennett, D A; Denison, E V; Fitzgerald, C P; Fowler, J W; Gard, J D; Hays-Wehle, J P; Hilton, G C; Irwin, K D; Joe, Y I; Mates, J A B; O'Neil, G C; Reintsema, C D; Robbins, N O; Schmidt, D R; Swetz, D S; Tatsuno, H; Vale, L R; Ullom, J N

    2016-07-01

    Time-division multiplexing (TDM) is a mature scheme for the readout of arrays of transition-edge sensors (TESs). TDM is based on superconducting-quantum-interference-device (SQUID) current amplifiers. Multiple spectrometers based on gamma-ray and X-ray microcalorimeters have been operated with TDM readout, each at the scale of 200 sensors per spectrometer, as have several astronomical cameras with thousands of sub-mm or microwave bolometers. Here we present the details of two different versions of our TDM system designed to read out X-ray TESs. The first has been field-deployed in two 160-sensor (8 columns × 20 rows) spectrometers and four 240-sensor (8 columns × 30 rows) spectrometers. It has a three-SQUID-stage architecture, switches rows every 320 ns, and has total readout noise of 0.41 μΦ0/√Hz. The second, which is presently under development, has a two-SQUID-stage architecture, switches rows every 160 ns, and has total readout noise of 0.19 μΦ0/√Hz. Both quoted noise values are non-multiplexed and referred to the first-stage SQUID. In a demonstration of this new architecture, a multiplexed 1-column × 32-row array of NIST TESs achieved average energy resolution of 2.55±0.01 eV at 6 keV.

  9. Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors

    NASA Astrophysics Data System (ADS)

    Doriese, W. B.; Morgan, K. M.; Bennett, D. A.; Denison, E. V.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; Mates, J. A. B.; O'Neil, G. C.; Reintsema, C. D.; Robbins, N. O.; Schmidt, D. R.; Swetz, D. S.; Tatsuno, H.; Vale, L. R.; Ullom, J. N.

    2016-07-01

    Time-division multiplexing (TDM) is a mature scheme for the readout of arrays of transition-edge sensors (TESs). TDM is based on superconducting-quantum-interference-device (SQUID) current amplifiers. Multiple spectrometers based on gamma-ray and X-ray microcalorimeters have been operated with TDM readout, each at the scale of 200 sensors per spectrometer, as have several astronomical cameras with thousands of sub-mm or microwave bolometers. Here we present the details of two different versions of our TDM system designed to read out X-ray TESs. The first has been field-deployed in two 160-sensor (8 columns × 20 rows) spectrometers and four 240-sensor (8 columns × 30 rows) spectrometers. It has a three-SQUID-stage architecture, switches rows every 320 ns, and has total readout noise of 0.41 μ Φ 0 / surd Hz. The second, which is presently under development, has a two-SQUID-stage architecture, switches rows every 160 ns, and has total readout noise of 0.19 μ Φ 0 / surd Hz. Both quoted noise values are non-multiplexed and referred to the first-stage SQUID. In a demonstration of this new architecture, a multiplexed 1-column × 32-row array of NIST TESs achieved average energy resolution of 2.55± 0.01 eV at 6 keV.

  10. Achieving fast timing performance with multiplexed SiPMs.

    PubMed

    Bieniosek, M F; Cates, J W; Levin, C S

    2016-04-07

    Using time of flight (ToF) measurements for positron emission tomography (PET) is an attractive avenue for increasing the signal to noise (SNR) ratio of PET images. However, achieving excellent time resolution required for high SNR gain using silicon photomultipliers (SiPM) requires many resource heavy high bandwidth readout channels. A method of multiplexing many SiPM signals into a single electronic channel would greatly simplify ToF PET systems. However, multiplexing SiPMs degrades time resolution because of added dark counts and signal shaping. In this work the relative contribution of dark counts and signal shaping to timing degradation is simulated and a baseline correction technique to mitigate the effect of multiplexing on the time resolution of analog SiPMs is simulated and experimentally verified. A charge sharing network for multiplexing is proposed and tested. Results show a full width at half maximum (FWHM) coincidence time resolution of [Formula: see text] ps for a single 3 mm  ×  3 mm  ×  20 mm LYSO scintillation crystals coupled to an array of sixteen 3 mm  ×  3 mm SiPMs that are multiplexed to a single timing channel (in addition to 4 position channels). A [Formula: see text] array of 3 mm  ×  3 mm  ×  20 mm LFS crystals showed an average FWHM coincidence time resolution of [Formula: see text] ps using the same timing scheme. All experiments were performed at room temperature with no thermal regulation. These results show that excellent time resolution for ToF can be achieved with a highly multiplexed analog SiPM readout.

  11. A low-noise and fast pre-amplifier and readout system for SiPMs

    NASA Astrophysics Data System (ADS)

    Biroth, M.; Achenbach, P.; Downie, E.; Thomas, A.

    2015-07-01

    To operate silicon photomultipliers (SiPMs) in a demanding environment with large temperature gradients, different amplifier concepts were characterized by analyzing SiPM pulse-shapes and charge distributions. A fully differential 4-wire SiPM pre-amplifier with separated tracks for the bias voltage and with good common-mode noise suppression was developed and successfully tested. To achieve highest single-pixel resolutions an online after-pulse and pile-up suppression was realized with fast readout electronics based on digital filters.

  12. ADVANCED READOUT ELECTRONICS FOR MULTIELEMENT CdZnTe SENSORS.

    SciTech Connect

    DE GERONIMO,G.; O CONNOR,P.; KANDASAMY,A.; GROSHOLZ,J.

    2002-07-08

    A generation of high performance front-end and read-out ASICs customized for highly segmented CdZnTe sensors is presented. The ASICs, developed in a multi-year effort at Brookhaven National Laboratory, are targeted to a wide range of applications including medical, safeguards/security, industrial, research, and spectroscopy. The front-end multichannel ASICs provide high accuracy low noise preamplification and filtering of signals, with versions for small and large area CdZnTe elements. They implement a high order unipolar or bipolar shaper, an innovative low noise continuous reset system with self-adapting capability to the wide range of detector leakage currents, a new system for stabilizing the output baseline and high output driving capability. The general-purpose versions include programmable gain and peaking time. The read-out multichannel ASICs provide fully data driven high accuracy amplitude and time measurements, multiplexing and time domain derandomization of the shaped pulses. They implement a fast arbitration scheme and an array of innovative two-phase offset-free rail-to-rail analog peak detectors for buffering and absorption of input rate fluctuations, thus greatly relaxing the rate requirement on the external ADC. Pulse amplitude, hit timing, pulse risetime, and channel address per processed pulse are available at the output in correspondence of an external readout request. Prototype chips have been fabricated in 0.5 and 0.35 {micro}m CMOS and tested. Design concepts and experimental results are discussed.

  13. Development of an Optical Read-Out System for the LISA/NGO Gravitational Reference Sensor: A Status Report

    NASA Astrophysics Data System (ADS)

    Di Fiore, L.; De Rosa, R.; Garufi, F.; Grado, A.; Milano, L.; Spagnuolo, V.; Russano, G.

    2013-01-01

    The LISA group in Napoli is working on the development of an Optical Read-Out (ORO) system, based on optical levers and position sensitive detectors, for the LISA gravitational reference sensor. ORO is not meant as an alternative, but as an addition, to capacitive readout, that is the reference solution for LISA/NGO and will be tested on flight by LISA-Pathfinder. The main goal is the introduction of some redundancy with consequent mission risk mitigation. Furthermore, the ORO system is more sensitive than the capacitive one and its usage would allow a significant relaxation of the specifications on cross-couplings in the drag free control loops. The reliability of the proposed ORO device and the fulfilment of the sensitivity requirements have been already demonstrated in bench-top measurements and tests with the four mass torsion pendulum developed in Trento as a ground testing facility for LISA-Pathfinder and LISA hardware. In this paper we report on the present status of this activity presenting the last results and perspectives on some relevant aspects. 1) System design, measured sensitivity and noise characterization. 2) Possible layouts for integration in LISA/NGO and bench-top tests on real scale prototypes. 3) Search for space compatible components and preliminary tests. We will also discuss next steps in view of a possible application in LISA/NGO.

  14. Spectrally efficient polarization multiplexed direct-detection OFDM system without frequency gap.

    PubMed

    Wei, Chia-Chien; Zeng, Wei-Siang; Lin, Chun-Ting

    2016-01-25

    We experimentally demonstrate a spectrally efficient direct-detection orthogonal frequency-division multiplexing (DD-OFDM) system. In addition to polarization-division multiplexing, removing the frequency gap further improves the spectral efficiency of the OFDM system. The frequency gap between a reference carrier and OFDM subcarriers avoids subcarrier-to-subcarrier beating interference (SSBI) in traditional DD-OFDM systems. Without dynamic polarization control, the resulting interference after square-law direct detection in the proposed gap-less system is polarization-dependent and composed of linear inter-carrier interference (ICI) and nonlinear SSBI. Thus, this work proposes an iterative multiple-input multiple-output detection scheme to remove the mixed polarization-dependent interference. Compared to the previous scheme, which only removes ICI, the proposed scheme can further eliminate SSBI to achieve the improvement of ∼ 7 dB in signal-to-noise ratio. Without the need for polarization control, we successfully utilize 7-GHz bandwidth to transmit a 39.5-Gbps polarization multiplexed OFDM signal over 100 km.

  15. The stabilization of a multiplexed optical fiber interferometer system for on-line precision measurement

    NASA Astrophysics Data System (ADS)

    Fang, Xie; Chen, Zhi Min

    2008-12-01

    The stabilization of a multiplexed optical fiber interferometer system for on-line displacement precision measurement with a simple electric feedback loop is presented. Based on the characteristics of fiber Bragg gratings, the multiplexed optical fiber interferometer system includes two independent optical fiber Michelson interferometers of which the optical path is almost overlapped. One interferometer is used for the stabilization while the other interferometer is used for the measurement. A feed back signal from the feedback loop is driving a tube PZT on which one arm of the fiber interferometer is wounded. The phase-shift in the two arms of the interferometer resulting from the temperature fluctuations and other types of environmental disturbances is compensated. The bandwidth of the feedback loop is 5kHz. This makes the multiplexed fiber interferometer system stable enough for the on-line precision measurement. An active phase tracking technique is applied for signal processing to achieve high resolution. The measurement resolution of the system is less than 2nm.

  16. An Ultra-High Discrimination Y Chromosome Short Tandem Repeat Multiplex DNA Typing System

    PubMed Central

    Hanson, Erin K.; Ballantyne, Jack

    2007-01-01

    In forensic casework, Y chromosome short tandem repeat markers (Y-STRs) are often used to identify a male donor DNA profile in the presence of excess quantities of female DNA, such as is found in many sexual assault investigations. Commercially available Y-STR multiplexes incorporating 12–17 loci are currently used in forensic casework (Promega's PowerPlex® Y and Applied Biosystems' AmpFlSTR® Yfiler®). Despite the robustness of these commercial multiplex Y-STR systems and the ability to discriminate two male individuals in most cases, the coincidence match probabilities between unrelated males are modest compared with the standard set of autosomal STR markers. Hence there is still a need to develop new multiplex systems to supplement these for those cases where additional discriminatory power is desired or where there is a coincidental Y-STR match between potential male participants. Over 400 Y-STR loci have been identified on the Y chromosome. While these have the potential to increase the discrimination potential afforded by the commercially available kits, many have not been well characterized. In the present work, 91 loci were tested for their relative ability to increase the discrimination potential of the commonly used ‘core’ Y-STR loci. The result of this extensive evaluation was the development of an ultra high discrimination (UHD) multiplex DNA typing system that allows for the robust co-amplification of 14 non-core Y-STR loci. Population studies with a mixed African American and American Caucasian sample set (n = 572) indicated that the overall discriminatory potential of the UHD multiplex was superior to all commercial kits tested. The combined use of the UHD multiplex and the Applied Biosystems' AmpFlSTR® Yfiler® kit resulted in 100% discrimination of all individuals within the sample set, which presages its potential to maximally augment currently available forensic casework markers. It could also find applications in human evolutionary

  17. Development of a Microwave SQUID-Multiplexed TES Array for MUSTANG-2

    NASA Astrophysics Data System (ADS)

    Stanchfield, S. M.; Ade, P. A. R.; Aguirre, J.; Brevik, J. A.; Cho, H. M.; Datta, R.; Devlin, M. J.; Dicker, S. R.; Dober, B.; Egan, D.; Ford, P.; Hilton, G.; Hubmayr, J.; Irwin, K. D.; Marganian, P.; Mason, B. S.; Mates, J. A. B.; McMahon, J.; Mello, M.; Mroczkowski, T.; Romero, C.; Tucker, C.; Vale, L.; White, S.; Whitehead, M.; Young, A. H.

    2016-07-01

    MUSTANG-2 is a 90 GHz feedhorn-coupled, microwave SQUID-multiplexed TES bolometer array in the final stages of development for operation on the 100-m Robert C. Byrd Green Bank Telescope. We present the camera design and report the performance during the first season of observation, in which 64 of the available 215 pixels in the focal plane were populated. We highlight the microwave multiplexing readout technology, which is envisioned as a path to read out the next generation of large pixel-count cryogenic focal planes. In this regard, MUSTANG2 is a pathfinder for this multiplexing technology. We present noise spectra which show no detector noise degradation when read out with microwave SQUID multiplexing, and we present first light images of Jupiter and M87, which demonstrate the end-to-end system performance.

  18. Wavelength-multiplexed fiber-optic position encoder for aircraft control systems

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Krasowski, Michael J.; Sotomayor, Jorge L.; Fritsch, Klaus; Flatico, Joseph M.; Bathurst, Richard L.; Eustace, John G.; Anthan, Donald J.

    1991-01-01

    NASA-Lewis has developed wavelength-multiplexed digital position fiber-optics transducers for use in aircraft control systems. A prototype LED-powered rotary encoder for a commercial aircraft turbofan engine is under construction which will have 8-bit resolution and an operational temperature in the 90 C range. A compact electrooptics module is also under development which will be able to withstand gas turbine environments. A second-generation device will incorporate integrated photonics technologies to increase optical power margin.

  19. Semiconductor laser with a birefringent external cavity for information systems with wavelength division multiplexing

    SciTech Connect

    Paranin, V D; Matyunin, S A; Tukmakov, K N

    2013-10-31

    The spectrum of a semiconductor laser with a birefringent external Gires – Tournois cavity is studied. The generation of two main laser modes corresponding to the ordinary and extraordinary wave resonances is found. It is shown that the radiation spectrum is controlled with a high energy efficiency without losses for spectral filtration. The possibility of using two-mode lasing in optical communication systems with wavelength division multiplexing is shown. (control of laser radiation parameters)

  20. Fiber Bragg Grating Interrogation System and Method with Fiber String Multiplexing.

    DTIC Science & Technology

    1997-02-28

    operation. 12 In Fig. 1, ELED 10 transmits light into the optical fiber 16 13 which contains a plurality of fiber Bragg gratings (FBGs) 20. 14 The FBGs...RESEARCH DEPARTMENT OF THE NAVY CODE OOCC3 ARLINGTON VA 22217-5660 19970523 097 WJ& Lma mszEGZED * Serial No.: PATENT APPLICATION Inventors: Alan D...Kersey et al. Navy Case No. 77809 1 FIBER BRAGG GRATING INTERROGATION SYSTEM 2 AND METHOD WITH FIBER STRING MULTIPLEXING 3 SPECIFICATION 4 1

  1. A Design, Fabrication and Test of a Precision Positioning Servo Drive for a Multiplexed Imaging System

    DTIC Science & Technology

    1991-09-01

    ORGANIZATION (if applicable) Navy Postgraduate School PH/Dv Naval Postgraduate School 6c. ADDRESS (City, State , and ZIPCode) 7b ADDRESS (City. State , and ZIP...ORGANIZATION (If applicable) 8C. ADDRESS (City, State , and ZIP Code) 10 SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO NO NO...Fabrication and Test of a Precision Positioning Servo Drive for a Multiplexed Imaging System by Joseph Patrick Sargent Jr. Lieutenant, United States Coast

  2. Analysis of de-noising methods to improve the precision of the ILSF BPM electronic readout system

    NASA Astrophysics Data System (ADS)

    Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.

    2016-12-01

    In order to have optimum operation and precise control system at particle accelerators, it is required to measure the beam position with the precision of sub-μm. We developed a BPM electronic readout system at Iranian Light Source Facility and it has been experimentally tested at ALBA accelerator facility. The results show the precision of 0.54 μm in beam position measurements. To improve the precision of this beam position monitoring system to sub-μm level, we have studied different de-noising methods such as principal component analysis, wavelet transforms, filtering by FIR, and direct averaging method. An evaluation of the noise reduction was given to testify the ability of these methods. The results show that the noise reduction based on Daubechies wavelet transform is better than other algorithms, and the method is suitable for signal noise reduction in beam position monitoring system.

  3. SVD-based evaluation of multiplexing in multipinhole SPECT systems.

    PubMed

    Jorgensen, Aaron K; Zeng, Gengsheng L

    2008-01-01

    Multipinhole SPECT system design is largely a trial-and-error process. General principles can give system designers a general idea of how a system with certain characteristics will perform. However, the specific performance of any particular system is unknown before the system is tested. The development of an objective evaluation method that is not based on experimentation would facilitate the optimization of multipinhole systems. We derive a figure of merit for prediction of SPECT system performance based on the entire singular value spectrum of the system. This figure of merit contains significantly more information than the condition number of the system, and is therefore more revealing of system performance. This figure is then compared with simulated results of several SPECT systems and is shown to correlate well to the results of the simulations. The proposed figure of merit is useful for predicting system performance, but additional steps could be taken to improve its accuracy and applicability. The limits of the proposed method are discussed, and possible improvements to it are proposed.

  4. Multiplexed bead-based mesofluidic system for gene diagnosis and genotyping.

    PubMed

    Jin, Sheng-Quan; Ye, Bang-Ce; Huo, Hao; Zeng, Ai-Jun; Xie, Cheng-Ke; Ren, Bing-Qiang; Huang, Hui-Jie

    2010-12-01

    We have developed a novel multiplexed bead-based mesofluidic system (MBMS) based on the specific recognition events on the surface of a series of microbeads (diameter 250 μm) arranged in polydimethylsiloxane (PDMS) microchannels (diameter 300 μm) with the predetermined order and assembled an apparatus implementing automatically the high-throughput bead-based assay and further demonstrated its feasibility and flexibility of gene diagnosis and genotyping, such as β-thalassemia mutation detection and HLA-DQA genotyping. The apparatus, consisting of bead-based mesofluidic PDMS chip, liquid-processing module, and fluorescence detection module, can integrate the procedure of automated-sampling, hybridization reactions, washing, and in situ fluorescence detection. The results revealed that MBMS is fast, has high sensitivity, and can be automated to carry out parallel and multiplexed genotyping and has the potential to open up new routes to flexible, high-throughput approaches for bioanalysis.

  5. Unyvero i60 implant and tissue infection (ITI) multiplex PCR system in diagnosing periprosthetic joint infection.

    PubMed

    Hischebeth, Gunnar T R; Randau, Thomas M; Buhr, Johanna K; Wimmer, Matthias D; Hoerauf, Achim; Molitor, Ernst; Bekeredjian-Ding, Isabelle; Gravius, Sascha

    2016-02-01

    Periprosthetic joint infection (PJI) is one of the most challenging complications in orthopedic surgery. In cases of suspected periprosthetic joint infection several diagnostic methods are available. In this study we investigated the performance of the newly available Unyvero i60 implant and tissue infection (ITI) multiplex PCR System. 62 specimens from 31 patients with suspected PJI or aseptic loosening of a painful joint arthoplasty were included in this study. Besides the established diagnostic procedures we included a commercial multiplex PCR detection system for diagnosis of PJI. The PCR results obtained from analysis of sonication and synovial fluids (62 specimens) showed a sensitivity of 66.7%, a specificity of 100%, a positive predictive value (PPV) of 100% and a negative predictive value (NPV) of 68.4% when compared to cultural methods. Notably, cultures from sonication fluid displayed a sensitivity of 88.9%, a specificity of 61.5%, a PPV of 76.2% and a NPV of 80.0% when compared to tissue cultures. In conclusion, multiplex PCR is an additional - rapid - method for diagnosing PJI. Positive results with the PCR assay used in this study were always confirmed by subsequent matching culture positivity. However, apart from the time saved the nucleic acid amplification technique did not yield additional information than that obtained from microbiological cultures.

  6. Method of implementing frequency encoded multiplexer and demultiplexer systems using nonlinear semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Garai, Sisir Kumar; Mukhopadhyay, Sourangshu

    2009-11-01

    Multiplexing and demultiplexing are the essential parts of any communication network. In case of optical multiplexing and demultiplexing the coding of the data as well as the coding of control signals are most important issues. Many encoding/decoding mechanisms have already been developed in optical communication technology. Recently frequency encoding technique has drawn some special interest to the scientific communities. The advantage of frequency encoding technique over any other techniques is that as the frequency is fundamental character of any signal so it remains unaltered in reflection, refraction, absorption, etc. during transmission of the signal and therefore the system will execute the operation with reliability. On the other hand, the switching speed of semiconductor optical amplifiers (SOA) is sufficiently high with property of best on/off contrast ratio. In our present communication we propose a method of implementing a '4-to-1' multiplexer (MUX) and a '1-to-4' demultiplexer (DEMUX) exploiting the switching character of nonlinear SOA with the use of frequency encoded control signals. To implement the '4-to-1' MUX and '1-to-4' DEMUX system, the frequency selection by multiquantum well (MQW)-grating filter-based SOA has been used for frequency routing purpose. At the same time, the polarization rotation character of SOA has also been exploited to get the desired purpose. Here the fast switching action of SOA with reliable frequency encoded control input signals, it is possible to achieve a faithful MUX/DEMUX service at tera-Hz operational speed.

  7. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen

    2014-07-01

    A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.

  8. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  9. Sensor readout detector circuit

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  10. Subcarrier multiplexing tolerant dispersion transmission system employing optical broadband sources.

    PubMed

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-16

    This paper presents a novel SCM optical transmission system for next-generation WDM-PONs combining broadband optical sources and a Mach-Zehnder interferometric structure. The approach leeds to transport RF signals up to 50 GHz being compatible with RoF systems since a second configuration has been proposed in order to overcome dispersion carrier suppression effect using DSB modulation. The theoretical analysis validates the potentiality of the system also considering the effects of the dispersion slope over the transmission window.

  11. Choice of Illumination System & Fluorophore for Multiplex Immunofluorescence on FFPE Tissue Sections

    PubMed Central

    Kishen, Ria E. B.; Kluth, David C.; Bellamy, Christopher O. C.

    2016-01-01

    The recent availability of novel dyes and alternative light sources to facilitate complex tissue immunofluorescence studies such as multiplex labelling has not been matched by reports critically evaluating the considerations and relative benefits of these new tools, particularly in combination. Product information is often limited to wavelengths used for older fluorophores (FITC, TRITC & corresponding Alexa dyes family). Consequently, novel agents such as Quantum dots are not widely appreciated or used, despite highly favourable properties including extremely bright emission, stability and potentially reduced tissue autofluorescence at the excitation wavelength. Using spectral analysis, we report here a detailed critical appraisal and comparative evaluation of different light sources and fluorophores in multiplex immunofluorescence of clinical biopsy sections. The comparison includes mercury light, metal halide and 3 different LED-based systems, using 7 Qdots (525, 565, 585, 605, 625, 705), Cy3 and Cy5. We discuss the considerations relevant to achieving the best combination of light source and fluorophore for accurate multiplex fluorescence quantitation. We highlight practical limitations and confounders to quantitation with filter-based approaches. PMID:27632367

  12. Cytokines profiling by multiplex analysis in experimental arthritis: which pathophysiological relevance for articular versus systemic mediators?

    PubMed Central

    2012-01-01

    Introduction We have taken advantage of the large screening capacity of a multiplex immunoassay to better define the respective contribution of articular versus systemic cytokines in experimental arthritis. Methods We performed a follow up (from 7 hours to 14 days) multiplex analysis of 24 cytokines in synovial fluid and sera of rats developing Antigen-Induced Arthritis (AIA) and confronted their protein level changes with molecular, biochemical, histological and clinical events occurring in the course of the disease. Results The time-scheduled findings in arthritic joints correlated with time-dependent changes of cytokine amounts in joint effusions but not with their blood levels. From seven hours after sensitization, high levels of chemokines (MCP-1, MIP1α, GRO/KC, RANTES, eotaxin) were found in synovial fluid of arthritic knees whereas perivascular infiltration occurred in the synovium; local release of inflammatory cytokines (IFNγ, IL-1β, IL-6) preceded the spreading of inflammation and resulted in progressive degradation of cartilage and bone. Finally a local overexpression of several cytokines/adipocytokines poorly described in arthritis (IL-13, IL-18, leptin) was observed. Conclusions Distinct panels of cytokines were found in arthritic fluid during AIA, and the expected effect of mediators correlated well with changes occurring in joint tissues. Moreover, multiplex analysis could be helpful to identify new pathogenic mediators and to elucidate the mechanisms supporting the efficacy of putative targeted therapies. PMID:22414623

  13. The performance of the bolometer array and readout system during the 2012/2013 flight of the E and B experiment (EBEX)

    NASA Astrophysics Data System (ADS)

    MacDermid, Kevin; Aboobaker, Asad M.; Ade, Peter; Aubin, François; Baccigalupi, Carlo; Bandura, Kevin; Bao, Chaoyun; Borrill, Julian; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Grain, Julien; Grainger, William; Hanany, Shaul; Helson, Kyle; Hillbrand, Seth; Hilton, Gene; Hubmayr, Hannes; Irwin, Kent; Johnson, Bradley; Jaffe, Andrew; Jones, Terry; Kisner, Ted; Klein, Jeff; Korotkov, Andrei; Lee, Adrian; Levinson, Lorne; Limon, Michele; Miller, Amber; Milligan, Michael; Pascale, Enzo; Raach, Katherine; Reichborn-Kjennerud, Britt; Reintsema, Carl; Sagiv, Ilan; Smecher, Graeme; Stompor, Radek; Tristram, Matthieu; Tucker, Greg; Westbrook, Ben; Zilic, Kyle

    2014-07-01

    EBEX is a balloon-borne telescope designed to measure the polarization of the cosmic microwave background radiation. During its eleven day science flight in the Austral Summer of 2012, it operated 955 spider-web transition edge sensor (TES) bolometers separated into bands at 150, 250 and 410 GHz. This is the first time that an array of TES bolometers has been used on a balloon platform to conduct science observations. Polarization sensitivity was provided by a wire grid and continuously rotating half-wave plate. The balloon implementation of the bolometer array and readout electronics presented unique development requirements. Here we present an outline of the readout system, the remote tuning of the bolometers and Superconducting QUantum Interference Device (SQUID) amplifiers, and preliminary current noise of the bolometer array and readout system.

  14. An Integrated Front-End Readout And Feature Extraction System for the BaBar Drift Chamber

    SciTech Connect

    Zhang, Jinlong; /Colorado U.

    2006-08-10

    The BABAR experiment has been operating at SLAC's PEP-II asymmetric B-Factory since 1999. The accelerator has achieved more than three times its original design luminosity of 3 x 10{sup 33} cm{sup -2} s{sup -1}, with plans for an additional factor of three in the next two years. To meet the experiment's performance requirements in the face of significantly higher trigger and background rates, the drift chamber's front-end readout system has been redesigned around the Xilinx Spartan 3 FPGA. The new system implements analysis and feature-extraction of digitized waveforms in the front-end, reducing the data bandwidth required by a factor of four.

  15. Characterization of direct readout Si:Sb and Si:Ga infrared detector arrays for space-based astronomy

    NASA Technical Reports Server (NTRS)

    Mckelvey, Mark E.; Mccreight, Craig R.; Goebel, John H.; Moss, Nicolas N.; Savage, Maureen L.

    1988-01-01

    Preliminary test results from the evaluation of Si:Sb and Si:Ga 58 x 62-element infrared detector arrays are presented. These devices are being characterized under background conditions and readout rates representative of operation in orbiting, crogenically-cooled infrared observatories. The arrays are hybridized to silicon direct-readout multiplexers which allow random-access and nondestructive readout. Array performance optimization is being conducted with a flexible microcomputer-based drive and readoaut electronics system. Preliminary Si:Sb measurements indicate a sense node capacitance of 0.06 pF, peak (28-micron) responsivity above 3 A/W at 2V bias, read noise of 130 rms e(-), dark current approximately 10 e(-)/s, and a well capacity greater than 10 to the 5th e(-). The limited test data available on the performance of the Si:Ga array are also discussed.

  16. A low-noise 64-channel front-end readout ASIC for CdZnTe detectors aimed to hard X-ray imaging systems

    NASA Astrophysics Data System (ADS)

    Gan, B.; Wei, T.; Gao, W.; Liu, H.; Hu, Y.

    2016-04-01

    In this paper, we report on the recent development of a 64-channel low-noise front-end readout ASIC for CdZnTe detectors aimed to hard X-ray imaging systems. The readout channel is comprised of a charge sensitive amplifier, a leakage current compensation circuit, a CR-RC shaper, two S-K filters, an inverse proportional amplifier, a peak-detect-and-hold circuit, a discriminator and trigger logic, a time sequence control circuit and a driving buffer. The readout ASIC is implemented in TSMC 0.35 μm mixed-signal CMOS technology, the die size of the prototype chip is 2.7 mm×8.0 mm. The overall gain of the readout channel is 200 mV/fC, the power consumption is less than 8 mW/channel, the linearity error is less than 1%, the inconsistency among the channels is less than 2.86%, and the equivalent noise charge of a typical channel is 66 e- at zero farad plus 14 e- per picofarad. By connecting this readout ASIC to an 8×8 pixel CdZnTe detector, we obtained an energy spectrum, the energy resolution of which is 4.5% at the 59.5 keV line of 241Am source.

  17. A multiplexed immunoassay system based upon reciprocating centrifugal microfluidics

    NASA Astrophysics Data System (ADS)

    Noroozi, Zahra; Kido, Horacio; Peytavi, Régis; Nakajima-Sasaki, Rie; Jasinskas, Algimantas; Micic, Miodrag; Felgner, Philip L.; Madou, Marc J.

    2011-06-01

    A novel, centrifugal disk-based micro-total analysis system (μTAS) for low cost and high throughput semi-automated immunoassay processing was developed. A key innovation in the disposable immunoassay disk design is in a fluidic structure that enables very efficient micro-mixing based on a reciprocating mechanism in which centrifugal acceleration acting upon a liquid element first generates and stores pneumatic energy that is then released by a reduction of the centrifugal acceleration, resulting in a reversal of direction of flow of the liquid. Through an alternating sequence of high and low centrifugal acceleration, the system reciprocates the flow of liquid within the disk to maximize incubation/hybridization efficiency between antibodies and antigen macromolecules during the incubation/hybridization stage of the assay. The described reciprocating mechanism results in a reduction in processing time and reagent consumption by one order of magnitude.

  18. A multiplexed immunoassay system based upon reciprocating centrifugal microfluidics

    PubMed Central

    Noroozi, Zahra; Kido, Horacio; Peytavi, Régis; Nakajima-Sasaki, Rie; Jasinskas, Algimantas; Micic, Miodrag; Felgner, Philip L.; Madou, Marc J.

    2011-01-01

    A novel, centrifugal disk-based micro-total analysis system (μTAS) for low cost and high throughput semi-automated immunoassay processing was developed. A key innovation in the disposable immunoassay disk design is in a fluidic structure that enables very efficient micro-mixing based on a reciprocating mechanism in which centrifugal acceleration acting upon a liquid element first generates and stores pneumatic energy that is then released by a reduction of the centrifugal acceleration, resulting in a reversal of direction of flow of the liquid. Through an alternating sequence of high and low centrifugal acceleration, the system reciprocates the flow of liquid within the disk to maximize incubation/hybridization efficiency between antibodies and antigen macromolecules during the incubation/hybridization stage of the assay. The described reciprocating mechanism results in a reduction in processing time and reagent consumption by one order of magnitude. PMID:21721711

  19. Recent Results of a New Microwave SQUID Multiplexer

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Limketkai, B.; Bumble, B.; LeDuc, H. G.

    2007-01-01

    We are developing a proof-of-concept microwave SQUID multiplexer containing four SQUIDs coupled to GHz frequency resonant circuits and fed with a single microwave readout line. The resonators are half-wave coplanar waveguide sections and are similar to the structures used for the microwave kinetic inductance detectors developed in our group. Optimal values for the interdigital gap capacitors were determined to maximize the sensitivity of the transmitted and reflected microwave signal with respect to changes in the dynamic resistance of the SQUID. The dc current-bias line for the SQUID has an in-line inductive high frequency filter to minimize coupling between the bias line and resonator. A high frequency modulation scheme is proposed to eliminate the need for individual flux biasing of the SQUIDs, which extends the dynamic range of the readout. In this scheme a common modulation signal is imposed on each SQUID and the received signal is demodulated at one and two times the modulation frequency to maintain sensitivity at any flux state. We present the recent results of the microwave SQUID multiplexer system operating at a readout frequency range of 10 - 11GHz.

  20. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs

    PubMed Central

    Kakuda, Tsuneo; Shojo, Hideki; Tanaka, Mayumi; Nambiar, Phrabhakaran; Minaguchi, Kiyoshi; Umetsu, Kazuo; Adachi, Noboru

    2016-01-01

    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10−13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs. PMID:27355212

  1. Automatic readout micrometer

    DOEpatents

    Lauritzen, T.

    A measuring system is described for surveying and very accurately positioning objects with respect to a reference line. A principle use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse of fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.

  2. Automatic readout micrometer

    DOEpatents

    Lauritzen, Ted

    1982-01-01

    A measuring system is disclosed for surveying and very accurately positioning objects with respect to a reference line. A principal use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse or fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.

  3. Reusable conductimetric array of interdigitated microelectrodes for the readout of low-density microarrays.

    PubMed

    Mallén, Maria; Díaz-González, María; Bonilla, Diana; Salvador, Juan P; Marco, María P; Baldi, Antoni; Fernández-Sánchez, César

    2014-06-17

    Low-density protein microarrays are emerging tools in diagnostics whose deployment could be primarily limited by the cost of fluorescence detection schemes. This paper describes an electrical readout system of microarrays comprising an array of gold interdigitated microelectrodes and an array of polydimethylsiloxane microwells, which enabled multiplexed detection of up to thirty six biological events on the same substrate. Similarly to fluorescent readout counterparts, the microarray can be developed on disposable glass slide substrates. However, unlike them, the presented approach is compact and requires a simple and inexpensive instrumentation. The system makes use of urease labeled affinity reagents for developing the microarrays and is based on detection of conductivity changes taking place when ionic species are generated in solution due to the catalytic hydrolysis of urea. The use of a polydimethylsiloxane microwell array facilitates the positioning of the measurement solution on every spot of the microarray. Also, it ensures the liquid tightness and isolation from the surrounding ones during the microarray readout process, thereby avoiding evaporation and chemical cross-talk effects that were shown to affect the sensitivity and reliability of the system. The performance of the system is demonstrated by carrying out the readout of a microarray for boldenone anabolic androgenic steroid hormone. Analytical results are comparable to those obtained by fluorescent scanner detection approaches. The estimated detection limit is 4.0 ng mL(-1), this being below the threshold value set by the World Anti-Doping Agency and the European Community.

  4. Development and test in liquid argon of the light readout system for the ArDM experiment

    NASA Astrophysics Data System (ADS)

    Boccone, V.

    2009-12-01

    ArDM is a new-generation WIMP detector which will measure simultaneously light and charge from scintillation and ionization of liquid argon. Our goal is to construct, characterize and operate a 1 ton liquid argon (LAr) underground detector. The project relies on the read out of the VUV scintillation light and on the extraction of the electrons produced by ionization from the liquid into the gas phase of the detector. The light has to be converted with wavelength shifters such as TetraPhenyl Butadiene in order to be detected by photomultipliers with bialkali photocathodes. I describe the light readout system and the tests of the prototype with liquid argon in the full size detector.

  5. The Design and Realization of Linear Calibration System of a Large Dynamic Range Readout Unit for a BGO Calorimeter

    NASA Astrophysics Data System (ADS)

    Xie, M. G.; Guo, J. H.; Wu, J.; Chang, J.

    2014-03-01

    The DArk Matter Particle Explorer (DAMPE) is proposed by Purple Mountain Observatory, Chinese Academy of Sciences. This project expects to find the evidence of the existence of dark matter particle in the universe via the detection of high-energy electron and gamma-ray. A major component of the payload is a BGO (Bismuth Germanate Oxide) calorimeter, which is used to detect the particles in the energy range from 5 GeV to 10 TeV. According to a physical simulation, the dynamic range of each BGO detection unit is about 1.5×10^{5}. In order to test the linearity of BGO detection readout unit, we implement a simple linearity calibration system covering such a large dynamic range. The experimental result shows that the nonlinearity of the entire dynamic range is less than 2.7%.

  6. Experimental investigation of silicon photomultipliers as compact light readout systems for gamma-ray spectroscopy applications in fusion plasmas

    SciTech Connect

    Nocente, M. Gorini, G.; Fazzi, A.; Lorenzoli, M.; Pirovano, C.; Tardocchi, M.; Cazzaniga, C.; Rebai, M.; Uboldi, C.; Varoli, V.

    2014-11-15

    A matrix of Silicon Photo Multipliers has been developed for light readout from a large area 1 in. × 1 in. LaBr{sub 3} crystal. The system has been characterized in the laboratory and its performance compared to that of a conventional photo multiplier tube. A pulse duration of 100 ns was achieved, which opens up to spectroscopy applications at high counting rates. The energy resolution measured using radioactive sources extrapolates to 3%–4% in the energy range E{sub γ} = 3–5 MeV, enabling gamma-ray spectroscopy measurements at good energy resolution. The results reported here are of relevance in view of the development of compact gamma-ray detectors with spectroscopy capabilities, such as an enhanced gamma-ray camera for high power fusion plasmas, where the use of photomultiplier is impeded by space limitation and sensitivity to magnetic fields.

  7. High Speed Buffered Injection Readout for Airborne Visible and Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Pain, B.; Shaw, T.; Eastwood, M.; Green, R. O.

    1998-01-01

    Design and operation of a high speed, low noise, wide dynamic range linear infrared multiplexer array for readout of infrared detectors with large detector capacitance is presented. Image lag related to abrupt transitions of signal currents is analyzed.

  8. Advanced Spatial-Division Multiplexed Measurement Systems Propositions-From Telecommunication to Sensing Applications: A Review.

    PubMed

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2016-08-30

    The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM

  9. Advanced Spatial-Division Multiplexed Measurement Systems Propositions—From Telecommunication to Sensing Applications: A Review

    PubMed Central

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2016-01-01

    The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM

  10. Multiplexed Holographic Data Storage in Bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Mehrl, David J.; Krile, Thomas F.

    1997-01-01

    High density optical data storage, driven by the information revolution, remains at the forefront of current research areas. Much of the current research has focused on photorefractive materials (SBN and LiNbO3) and polymers, despite various problems with expense, durability, response time and retention periods. Photon echo techniques, though promising, are questionable due to the need for cryogenic conditions. Bacteriorhodopsin (BR) films are an attractive alternative recording medium. Great strides have been made in refining BR, and materials with storage lifetimes as long as 100 days have recently become available. The ability to deposit this robust polycrystalline material as high quality optical films suggests the use of BR as a recording medium for commercial optical disks. Our own recent research has demonstrated the suitability of BR films for real time spatial filtering and holography. We propose to fully investigate the feasibility of performing holographic mass data storage in BR. Important aspects of the problem to be investigated include various data multiplexing techniques (e.g. angle- amplitude- and phase-encoded multiplexing, and in particular shift-multiplexing), multilayer recording techniques, SLM selection and data readout using crossed polarizers for noise rejection. Systems evaluations of storage parameters, including access times, memory refresh constraints, erasure, signal-to-noise ratios and bit error rates, will be included in our investigations.

  11. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system.

    PubMed

    Xie, Kabin; Minkenberg, Bastian; Yang, Yinong

    2015-03-17

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system is being harnessed as a powerful tool for genome engineering in basic research, molecular therapy, and crop improvement. This system uses a small guide RNA (gRNA) to direct Cas9 endonuclease to a specific DNA site; thus, its targeting capability is largely constrained by the gRNA-expressing device. In this study, we developed a general strategy to produce numerous gRNAs from a single polycistronic gene. The endogenous tRNA-processing system, which precisely cleaves both ends of the tRNA precursor, was engineered as a simple and robust platform to boost the targeting and multiplex editing capability of the CRISPR/Cas9 system. We demonstrated that synthetic genes with tandemly arrayed tRNA-gRNA architecture were efficiently and precisely processed into gRNAs with desired 5' targeting sequences in vivo, which directed Cas9 to edit multiple chromosomal targets. Using this strategy, multiplex genome editing and chromosomal-fragment deletion were readily achieved in stable transgenic rice plants with a high efficiency (up to 100%). Because tRNA and its processing system are virtually conserved in all living organisms, this method could be broadly used to boost the targeting capability and editing efficiency of CRISPR/Cas9 toolkits.

  12. Quantification of MDL-induced signal degradation in MIMO-OFDM mode-division multiplexing systems.

    PubMed

    Tian, Yu; Li, Juhao; Zhu, Paikun; Wu, Zhongying; Chen, Yuanxiang; He, Yongqi; Chen, Zhangyuan

    2016-08-22

    Mode-division multiplexing (MDM) transmission over few-mode optical fiber has emerged as a promising technology to enhance transmission capacity, in which multiple-input-multiple-output (MIMO) digital signal processing (DSP) after coherent detection is used to demultiplex the signals. Compared with conventional single-mode systems, MIMO-MDM systems suffer non-recoverable signal degradation induced by mode-dependent loss (MDL). In this paper, the MDL-induced signal degradation in orthogonal-frequency-division-multiplexing (OFDM) MDM systems is theoretically quantified in terms of mode-average error vector magnitude (EVM) through frequency domain norm analysis. A novel scalar MDL metric is proposed considering the probability distribution of the practical MDM input signals, and a closed-form expression for EVM measured after zero-force (ZF) MIMO equalization is derived. Simulation results show that the EVM estimations utilizing the novel MDL metric remain unbiased for unrepeated links. For a 6 × 100 km 20-mode MDM transmission system, the estimation accuracy is improved by more than 90% compared with that utilizing traditional condition number (CN) based MDL metric. The proposed MDL metric can be used to predict the MDL-induced SNR penalty in a theoretical manner, which will be beneficial for the design of practical MIMO-MDM systems.

  13. Review on recent developments in hybrid optical amplifier for dense wavelength division multiplexed system

    NASA Astrophysics Data System (ADS)

    Singh, Simranjit; Kaler, Rajinder Singh

    2015-10-01

    Hybrid optical amplifiers (HOAs) are crucially important for broadband band amplification, and are widely deployed in high-capacity dense wavelength division multiplexed systems. We summarize the present state-of-the-art in this rapidly growing field. In addition, theoretical background and various inline configurations of optical amplifiers have been presented. Various issues such as gain flatness, gain bandwidth, transient effect, and crosstalk were presented in HOAs. Results show that the HOAs provide better gain flatness without using any expensive gain flattening techniques, and an acceptable range of gain, noise figure, bit error rate, and transience.

  14. Multiplexed fiber Fabry-Perot temperature sensor system using white-light interferometry.

    PubMed

    Chen, Yichao; Taylor, Henry F

    2002-06-01

    A novel monitoring system for a fiber Fabry-Perot interferometer (FFPI) temperature sensor has yielded a resolution of 0.013 degrees C (0.0025 fringe). Light from a broadband source passes through a scanned Michelson interferometer and is reflected from a FFPI to produce a fringe pattern, the temporal position of which is proportional to a change in the optical length of the fiber interferometer. A second Michelson interferometer with a distributed-feedback laser source is used to correct for variations in the translation rate of the motor-driven scanning mirror. Coherence multiplexing of three such sensors has also been demonstrated.

  15. Orthogonal frequency-division multiplexing access (OFDMA) based wireless visible light communication (VLC) system

    NASA Astrophysics Data System (ADS)

    Sung, Jiun-Yu; Yeh, Chien-Hung; Chow, Chi-Wai; Lin, Wan-Feng; Liu, Yang

    2015-11-01

    An orthogonal frequency-division multiplexing access (OFDMA) based visible light communication (VLC) system is proposed in this paper. The architecture of the proposed system is divided into several VLC cells, which is defined in this paper. The deployment and upgrade of the system involve only simple combination of the VLC cells. Hence it is economically advantageous. To guarantee smooth communication, nearly equal data rate is provided at every location within the system with no concern on the system scale. The user location monitor strategy is also discussed to solve the region division issues. The characteristics of the proposed system are analyzed in detail in this paper. A one-dimensional experiment was demonstrated with 13.6 Mb/s data rate.

  16. Inter-channel nonlinear crosstalk in analog phase-modulated wavelength-division-multiplexed systems.

    PubMed

    Kim, Hoon; Lee, J H; Ji, Ho-Chul

    2008-12-08

    We investigate the inter-channel nonlinear optical crosstalk in analog phase-modulated (PM) wavelength-division-multiplexed systems. The optical transmitters of the PM system produce constant optical intensity at the output. However, the chromatic dispersion of fiber induces amplitude fluctuations which in turn give rise to fiber nonlinearities to other channels through stimulated Raman scattering (SRS) and optical Kerr effect. We present theoretical analysis on SRS and cross-phase modulation (XPM) for PM systems and compare it with two-channel experiment and numerical simulation. The results show that PM systems significantly suppress SRS and XPM, compared to intensity-modulated systems. Our experiment and simulation results confirm that the total nonlinear crosstalk in the analog PM WDM system is reduced up to 15 dB.

  17. Multiplexed infrared photodetection using resonant radio-frequency circuits

    SciTech Connect

    Liu, R.; Lu, R.; Gong, S.; Wasserman, D.; Roberts, C.; Allen, J. W.; Allen, M. S.; Wenner, B. R.

    2016-02-08

    We demonstrate a room-temperature semiconductor-based photodetector where readout is achieved using a resonant radio-frequency (RF) circuit consisting of a microstrip split-ring resonator coupled to a microstrip busline, fabricated on a semiconductor substrate. The RF resonant circuits are characterized at RF frequencies as function of resonator geometry, as well as for their response to incident IR radiation. The detectors are modeled analytically and using commercial simulation software, with good agreement to our experimental results. Though the detector sensitivity is weak, the detector architecture offers the potential for multiplexing arrays of detectors on a single read-out line, in addition to high speed response for either direct coupling of optical signals to RF circuitry, or alternatively, carrier dynamics characterization of semiconductor, or other, material systems.

  18. Multiplexed infrared photodetection using resonant radio-frequency circuits

    NASA Astrophysics Data System (ADS)

    Liu, R.; Lu, R.; Roberts, C.; Gong, S.; Allen, J. W.; Allen, M. S.; Wenner, B. R.; Wasserman, D.

    2016-02-01

    We demonstrate a room-temperature semiconductor-based photodetector where readout is achieved using a resonant radio-frequency (RF) circuit consisting of a microstrip split-ring resonator coupled to a microstrip busline, fabricated on a semiconductor substrate. The RF resonant circuits are characterized at RF frequencies as function of resonator geometry, as well as for their response to incident IR radiation. The detectors are modeled analytically and using commercial simulation software, with good agreement to our experimental results. Though the detector sensitivity is weak, the detector architecture offers the potential for multiplexing arrays of detectors on a single read-out line, in addition to high speed response for either direct coupling of optical signals to RF circuitry, or alternatively, carrier dynamics characterization of semiconductor, or other, material systems.

  19. Development of the 19 X-STR loci multiplex system and genetic analysis of a Zhejiang Han population in China.

    PubMed

    Yang, XingYi; Wu, WeiWei; Chen, LinLi; Liu, ChangHui; Zhang, XiaoFang; Chen, Ling; Feng, XingLin; Wang, HuiJun; Liu, Chao

    2016-08-01

    The 19 X-STRs multiplex system is a PCR-based amplification kit that facilitates simultaneous amplification of 19 X-chromosomal STR loci (i.e. DXS7423, DXS10148, DXS10159, DXS6809, DXS7424, DXS8378, DXS10164, DXS10162, DXS7132, DXS10079, DXS6789, DXS101, DXS10103,DXS10101, HPTRB, DXS10075, DXS10074, DXS10135, and DXS10134). Eleven loci were extensively used in an Investigator Qiagen Argus X-12 (DXS7423, DXS10148, DXS8378, DXS10162, DXS7132, DXS10079, DXS10103, DXS10101, HPTRB, DXS10074, and DXS10135). In this research, the multiplex system was tested for detection sensitivity, DNA mixtures, inhibitor tolerance and species specificity; SWGDAM Validation Guidelines - Approved December 2012 were followed for the human fluorescent STR multiplex PCR reagent. Samples from 181 unrelated Zhejiang Han individuals (121 males and 60 females) were typed using this multiplex system. The results show that this 19X-STRs multiplex system is a robust and reliable amplification means to facilitate forensic and human identification testing.

  20. Evaluation of a 13-loci STR multiplex system for Cannabis sativa genetic identification.

    PubMed

    Houston, Rachel; Birck, Matthew; Hughes-Stamm, Sheree; Gangitano, David

    2016-05-01

    Marijuana (Cannabis sativa) is the most commonly used illicit substance in the USA. The development of a validated method using Cannabis short tandem repeats (STRs) could aid in the individualization of samples as well as serve as an intelligence tool to link multiple cases. For this purpose, a modified 13-loci STR multiplex method was optimized and evaluated according to ISFG and SWGDAM guidelines. A real-time PCR quantification method for C. sativa was developed and validated, and a sequenced allelic ladder was also designed to accurately genotype 199 C. sativa samples from 11 U.S. Customs and Border Protection seizures. Distinguishable DNA profiles were generated from 127 samples that yielded full STR profiles. Four duplicate genotypes within seizures were found. The combined power of discrimination of this multilocus system is 1 in 70 million. The sensitivity of the multiplex STR system is 0.25 ng of template DNA. None of the 13 STR markers cross-reacted with any of the studied species, except for Humulus lupulus (hops) which generated unspecific peaks. Phylogenetic analysis and case-to-case pairwise comparison of 11 cases using F st as genetic distance revealed the genetic association of four groups of cases. Moreover, due to their genetic similarity, a subset of samples (N = 97) was found to form a homogeneous population in Hardy-Weinberg and linkage equilibrium. The results of this research demonstrate the applicability of this 13-loci STR system in associating Cannabis cases for intelligence purposes.

  1. A robust and scalable neuromorphic communication system by combining synaptic time multiplexing and MIMO-OFDM.

    PubMed

    Srinivasa, Narayan; Zhang, Deying; Grigorian, Beayna

    2014-03-01

    This paper describes a novel architecture for enabling robust and efficient neuromorphic communication. The architecture combines two concepts: 1) synaptic time multiplexing (STM) that trades space for speed of processing to create an intragroup communication approach that is firing rate independent and offers more flexibility in connectivity than cross-bar architectures and 2) a wired multiple input multiple output (MIMO) communication with orthogonal frequency division multiplexing (OFDM) techniques to enable a robust and efficient intergroup communication for neuromorphic systems. The MIMO-OFDM concept for the proposed architecture was analyzed by simulating large-scale spiking neural network architecture. Analysis shows that the neuromorphic system with MIMO-OFDM exhibits robust and efficient communication while operating in real time with a high bit rate. Through combining STM with MIMO-OFDM techniques, the resulting system offers a flexible and scalable connectivity as well as a power and area efficient solution for the implementation of very large-scale spiking neural architectures in hardware.

  2. Frequency domain multiplexing for large-scale bolometer arrays

    SciTech Connect

    Spieler, Helmuth

    2002-05-31

    The development of planar fabrication techniques for superconducting transition-edge sensors has brought large-scale arrays of 1000 pixels or more to the realm of practicality. This raises the problem of reading out a large number of sensors with a tractable number of connections. A possible solution is frequency-domain multiplexing. I summarize basic principles, present various circuit topologies, and discuss design trade-offs, noise performance, cross-talk and dynamic range. The design of a practical device and its readout system is described with a discussion of fabrication issues, practical limits and future prospects.

  3. Comparison of polarization-mode dispersion tolerances in polarization-multiplexing systems with different modulation formats

    NASA Astrophysics Data System (ADS)

    Liu, Hankui; Zhang, Xianmin; Chen, Kangsheng

    2006-03-01

    The polarization-mode dispersion (PMD) tolerance of 10 Gb/s polarization-multiplexing (PM) system is investigated. Using the importance sampling (IS) method, the outage probabilities of the PM systems with three modulation formats, including on-off keying (OOK), differential phase-shift keying (DPSK) and differential quadrature phase-shift keying (DQPSK), are quantified. When the amplified spontaneous emission (ASE) noise is assumed to be dominant, we evaluate the optical power penalties caused by the PMD effect at bit error rate (BER) of 10-12. The performance of compensated PM systems with variable optical delay line is also described. The simulation results indicate that the OOK signal with higher duty cycle (DC) performs better in the PM systems with PMD compensation. It is found that the higher-order PMD impairs seriously the performance of the PM system, and phase-keying formats are more sensitive to the PMD than the OOK.

  4. Development and field demonstration of an eight-element receive wavelength-multiplexed true-time-delay steering system.

    PubMed

    Goutzoulis, A P; Zomp, J M

    1997-10-10

    We describe the design and development of an eight-element hardware-compressive receive true-time-delay steering system that employs wavelength-division multiplexing. The laboratory system performance and results from the system demonstration at the antenna range are discussed.

  5. Low complexity digital backpropagation for high baud subcarrier-multiplexing systems.

    PubMed

    Zhang, Fangyuan; Zhuge, Qunbi; Qiu, Meng; Plant, David V

    2016-07-25

    In this paper, we propose two modifications to reduce the complexity of the subcarrier-multiplexing (SCM) based digital backpropagation (DBP) for high symbol rate SCM systems. The first one is to reduce the number of interfering subcarriers (RS-SCM-DBP) when evaluating the cross-subcarrier nonlinearity (CSN). The second one is to replace the original frequency domain CSN filters with the infinite impulse response (IIR) filters (IIR-RS-SCM-DBP) in the CSN compensation. The performance of the proposed schemes are numerically evaluated in three-channel dual-polarization (DP) 16QAM wavelength-division multiplexing (WDM) transmissions. The aggregate symbol rate for each channel is 120 GBaud and the transmission distance is 1600 km. For the SCM system with 16 subcarriers, the IIR-RS-SCM-DBP with only 4 interfering subcarriers and 2 steps can achieve a 0.3 dB Q-factor improvement in the WDM transmission. Compared to the original SCM-DBP, the proposed IIR-RS-SCM-DBP reduces the complexity by 48% at a performance loss of only 0.07 dB.

  6. Electra: Repetitively Pulsed Angularly Multiplexed KrF Laser System Performance

    NASA Astrophysics Data System (ADS)

    Wolford, Matthew; Myers, Matthew; Giuliani, John; Sethian, John; Burns, Patrick; Hegeler, Frank; Jaynes, Reginald

    2008-11-01

    As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system. The multistage amplifier system consists of a commercial discharge laser and two doubled sided electron beam pumped amplifiers. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Two angularly multiplexed beams have extracted 30 J of KrF laser light with an aperture 8 x 10 cm^2, which is sufficient to extract over 500 J from the main amplifier and models agree. The main amplifier of Electra in oscillator mode has demonstrated single shot and rep-rate laser energies exceeding 700 J with 100 ns pulsewidth at 248 nm with an aperture 29 x 29 cm^2. Continuous operation of the KrF electron beam pumped oscillator has lasted for more than 2.5 hours without failure at 1 Hz and 2.5 Hz. The measured intensity and pulse energy for durations greater than thousand shots are consistent at measurable rep-rates of 1 Hz, 2.5 Hz and 5 Hz.

  7. Compressed sensing theory-based channel estimation for optical orthogonal frequency division multiplexing communication system

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Li, Minghui; Wang, Ruyan; Liu, Yuanni; Song, Daiping

    2014-09-01

    Due to the spare multipath property of the channel, a channel estimation method, which is based on partial superimposed training sequence and compressed sensing theory, is proposed for line of sight optical orthogonal frequency division multiplexing communication systems. First, a continuous training sequence is added at variable power ratio to the cyclic prefix of orthogonal frequency division multiplexing symbols at the transmitter prior to transmission. Then the observation matrix of compressed sensing theory is structured by the use of the training symbols at receiver. Finally, channel state information is estimated using sparse signal reconstruction algorithm. Compared to traditional training sequences, the proposed partial superimposed training sequence not only improves the spectral efficiency, but also reduces the influence to information symbols. In addition, compared with classical least squares and linear minimum mean square error methods, the proposed compressed sensing theory based channel estimation method can improve both the estimation accuracy and the system performance. Simulation results are given to demonstrate the performance of the proposed method.

  8. Multiplex transmission system for gate drive signals of inverter circuit using surface acoustic wave filters

    NASA Astrophysics Data System (ADS)

    Suzuki, Akifumi; Ueda, Kensuke; Goka, Shigeyoshi; Wada, Keiji; Kakio, Shoji

    2016-07-01

    We propose and fabricate a multiplexed transmission system based on frequency-division multiple access (FDMA) with surface acoustic wave (SAW) filters. SAW filters are suitable for use in wide-gap switching devices and multilevel inverters because of their capability to operate at high temperatures, good electrical isolation, low cost, and high reliability. Our proposed system reduces the number of electrical signal wires needed to control each switching device and eliminates the need for isolation circuits, simplifying the transmission system and gate drive circuits. We successfully controlled two switching devices with a single coaxial line and confirmed the operation of a single-phase half-bridge inverter at a supply voltage of 100 V, and the total delay time to control the switching devices was less than 2.5 µs. Our experimental results validated our proposed system.

  9. Weighted Multiplex Networks

    PubMed Central

    Menichetti, Giulia; Remondini, Daniel; Panzarasa, Pietro; Mondragón, Raúl J.; Bianconi, Ginestra

    2014-01-01

    One of the most important challenges in network science is to quantify the information encoded in complex network structures. Disentangling randomness from organizational principles is even more demanding when networks have a multiplex nature. Multiplex networks are multilayer systems of nodes that can be linked in multiple interacting and co-evolving layers. In these networks, relevant information might not be captured if the single layers were analyzed separately. Here we demonstrate that such partial analysis of layers fails to capture significant correlations between weights and topology of complex multiplex networks. To this end, we study two weighted multiplex co-authorship and citation networks involving the authors included in the American Physical Society. We show that in these networks weights are strongly correlated with multiplex structure, and provide empirical evidence in favor of the advantage of studying weighted measures of multiplex networks, such as multistrength and the inverse multiparticipation ratio. Finally, we introduce a theoretical framework based on the entropy of multiplex ensembles to quantify the information stored in multiplex networks that would remain undetected if the single layers were analyzed in isolation. PMID:24906003

  10. Linear readout of object manifolds

    NASA Astrophysics Data System (ADS)

    Chung, SueYeon; Lee, Daniel D.; Sompolinsky, Haim

    2016-06-01

    Objects are represented in sensory systems by continuous manifolds due to sensitivity of neuronal responses to changes in physical features such as location, orientation, and intensity. What makes certain sensory representations better suited for invariant decoding of objects by downstream networks? We present a theory that characterizes the ability of a linear readout network, the perceptron, to classify objects from variable neural responses. We show how the readout perceptron capacity depends on the dimensionality, size, and shape of the object manifolds in its input neural representation.

  11. Performance analysis of modified Asymmetrically-Clipped Optical Orthogonal Frequency-Division Multiplexing systems

    NASA Astrophysics Data System (ADS)

    Mohamed, Salma D.; Shalaby, Hossam M. H.; Andonovic, Ivan; Aly, Moustafa H.

    2016-12-01

    A modification to the Asymmetrically-Clipped Optical Orthogonal Frequency-Division Multiplexing (ACO-OFDM) technique is proposed through unipolar encoding. A performance analysis of the Bit Error Rate (BER) is developed and Monte Carlo simulations are carried out to verify the analysis. Results are compared to that of the corresponding ACO-OFDM system under the same bit energy and transmission rate; an improvement of 1 dB is obtained at a BER of 10-4 . In addition, the performance of the proposed system in the presence of atmospheric turbulence is investigated using single-input multiple-output (SIMO) configuration and its performance under that environment is compared to that of ACO-OFDM. Energy improvements of 4 dB and 2.2 dB are obtained at a BER of 10-4 for SIMO systems of 1 and 2 photodetectors at the receiver for the case of strong turbulence, respectively.

  12. Developmental validation of a Cannabis sativa STR multiplex system for forensic analysis.

    PubMed

    Howard, Christopher; Gilmore, Simon; Robertson, James; Peakall, Rod

    2008-09-01

    A developmental validation study based on recommendations of the Scientific Working Group on DNA Analysis Methods (SWGDAM) was conducted on a multiplex system of 10 Cannabis sativa short tandem repeat loci. Amplification of the loci in four multiplex reactions was tested across DNA from dried root, stem, and leaf sources, and DNA from fresh, frozen, and dried leaf tissue with a template DNA range of 10.0-0.01 ng. The loci were amplified and scored consistently for all DNA sources when DNA template was in the range of 10.0-1.0 ng. Some allelic dropout and PCR failure occurred in reactions with lower template DNA amounts. Overall, amplification was best using 10.0 ng of template DNA from dried leaf tissue indicating that this is the optimal source material. Cross species amplification was observed in Humulus lupulus for three loci but there was no allelic overlap. This is the first study following SWGDAM validation guidelines to validate short tandem repeat markers for forensic use in plants.

  13. Establishing a DNA identification system for pigs (Sus scrofa) using a multiplex STR amplification.

    PubMed

    Lin, Yu-Chih; Hsieh, Hsing-Mei; Lee, James Chun-I; Hsiao, Chung-Ting; Lin, Der-Yuh; Linacre, Adrian; Tsai, Li-Chin

    2014-03-01

    In this study we establish a novel STR multiplex using 13 tetra-nucleotide STRs and the amelogenin marker for the forensic identification of pigs. The genotypes and allele frequency were generated based on 341 samples from 11 pig breeds in Taiwan. Genetic variation was tested including Na, Ne, Ho, He, F-statistics, PIC, Pm and PE for each STR locus and for each breed. Based upon the 341 samples in this study, the CPm and CPEtrio of the 13 STR loci were 1.31 E-11 and 0.9996 respectively. The CPItrio based on ten family sets ranged from 4.012 E+4 to 4.332 E+6 for paternity test. Validation of the multiplex included: determining the sensitivity of the test, where reproducible full DNA profiles were obtained using an initial template of between 0.25 and 1 ng; a comprehensive range of tissue types generated the same genotype; and the specificity was confirmed as no DNA full profile was generated for any species other than Sus scrofa. Based on the phylogenetic analysis, the European domestic breeds clustered separately from the Asian breeds, as expected, and their hybrids formed unique clades respectively between the clades of Asian and European breeds. Eleven test samples, acting as unknown samples, matched all expected breeds. We demonstrate that this novel 14-plex PCR system is valuable in pig individualization, parentage testing, breed assessment, phylogenetic study and forensic applications.

  14. Developing a new nonbinary SNP fluorescent multiplex detection system for forensic application in China.

    PubMed

    Liu, Yanfang; Liao, Huidan; Liu, Ying; Guo, Juanjuan; Sun, Yi; Fu, Xiaoliang; Xiao, Ding; Cai, Jifeng; Lan, Lingmei; Xie, Pingli; Zha, Lagabaiyila

    2017-02-06

    Nonbinary single-nucleotide polymorphisms (SNPs) are potential forensic genetic markers because their discrimination power is greater than that of normal binary SNPs, and that they can detect highly degraded samples. We previously developed a nonbinary SNP multiplex typing assay. In this study, we selected additional 20 nonbinary SNPs from the NCBI SNP database and verified them through pyrosequencing. These 20 nonbinary SNPs were analyzed using the fluorescent-labeled SNaPshot multiplex SNP typing method. The allele frequencies and genetic parameters of these 20 nonbinary SNPs were determined among 314 unrelated individuals from Han populations from China. The total power of discrimination was 0.9999999999994, and the cumulative probability of exclusion was 0.9986. Moreover, the result of the combination of this 20 nonbinary SNP assay with the 20 nonbinary SNP assay we previously developed demonstrated that the cumulative probability of exclusion of the 40 nonbinary SNPs was 0.999991 and that no significant linkage disequilibrium was observed in all 40 nonbinary SNPs. Thus, we concluded that this new system consisting of new 20 nonbinary SNPs could provide highly informative polymorphic data which would be further used in forensic application and would serve as a potentially valuable supplement to forensic DNA analysis.

  15. SNO+ Readout Electronics Upgrades

    NASA Astrophysics Data System (ADS)

    Bonventre, Richard; Shokair, Timothy; Knapik, Robert

    2012-03-01

    The SNO+ experiment is designed to explore several topics in neutrino physics including neutrinoless double beta decay, reactor antineutrinos, and low energy solar neutrinos. SNO+ uses the existing Sudbury Neutrino Observatory (SNO) detector, with the heavy water target replaced with liquid scintillator. The new target requires an upgrade to the command and control electronics to handle the higher rates expected with scintillation light as compared to Cherenkov light. The readout electronics have been upgraded to autonomously push data to a central data acquisition computer over ethernet from each of the 19 front end crates. The autonomous readout is achieved with a field programmable gate array (FPGA) with an embedded processor. Inside the FPGA fabric a state machine is configured to pull data across the VME-like bus of each crate. A small C program, making use of the open source Light Weight IP (LWIP) libraries, is run directly on the hardware (with no operating system) to push the data via TCP/IP. The hybrid combination of `high-level' C code and a `low-level' VHDL state machine is a cost effective and flexible solution for reading out individual front end crates.

  16. Novel Multiplexer to Enable Multiple-Module Imaging with Adjustable High Spatial Resolution and Predetermined Display Bandwidth for Array Medical Imaging Systems.

    PubMed

    Sharma, P; Titus, A H; Qu, B; Huang, Y; Wang, W; Kuhls-Gilcrist, A; Cartwright, A N; Bednarek, D R; Rudin, S

    2010-01-01

    We describe a custom multiple-module multiplexer integrated circuit (MMMIC) that enables the combination of discrete Electron multiplying charge coupled devices (EMCCD) based imaging modules to improve medical imaging systems. It is highly desirable to have flexible imaging systems that provide high spatial resolution over a specific region of interest (ROI) and a field of view (FOV) large enough to encompass areas of clinical interest. Also, such systems should be dynamic, i.e. should be able to maintain a specified acquisition bandwidth irrespective of the size of the imaged FOV. The MMMIC achieves these goals by 1) multiplexing the outputs of an array of imaging modules to enable a larger FOV, 2) enabling a number of binning modes for adjustable high spatial resolution, and 3) enabling selection of a subset of modules in the array to achieve ROI imaging at a predetermined display bandwidth. The MMMIC design also allows multiple MMMICs to be connected to control larger arrays. The prototype MMMIC was designed and fabricated in the ON-SEMI 0.5μm CMOS process through MOSIS (www.mosis.org). It has three 12-bit inputs, a single 12-bit output, three input enable bits, and one output enable, so that one MMMIC can control the output from three discrete imager arrays. The modular design of the MMMIC enables four identical chips, connected in a two-stage sequential arrangement, to readout a 3×3 collection of individual imaging modules. The first stage comprises three MMMICs (each connected to three of the individual imaging module), and the second stage is a single MMMIC whose 12-bit output is then sent via a CameraLink interface to the system computer. The prototype MMMIC was successfully tested using digital outputs from two EMCCD-based detectors to be used in an x-ray imaging array detector system.Finally, we show how the MMMIC can be used to extend an imaging system to include any arbitrary (M×N) array of imaging modules enabling a large FOV along with ROI imaging

  17. RF Single Electron Transistor Readout Amplifiers for Superconducting Astronomical Detectors for X-Ray to Sub-mm Wavelengths

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas; Aassime, Abdelhanin; Delsing, Per; Frunzio, Luigi; Li, Li-Qun; Prober, Daniel; Schoelkopf, Robert; Segall, Ken; Wilson, Chris; Stahle, Carl

    2000-01-01

    We report progress on using a new type of amplifier, the Radio-Frequency Single-Electron Transistor (RF-SET), to develop multi-channel sensor readout systems for fast and sensitive readout of high impedance cryogenic photodetectors such as Superconducting Tunnel Junctions and Single Quasiparticle Photon Counters. Although cryogenic, these detectors are desirable because of capabilities not other-wise attainable. However, high impedances and low output levels make low-noise, high-speed readouts challenging, and large format arrays would be facilitated by compact, low-power, on-chip integrated amplifiers. Well-suited for this application are RF-SETs, very high performance electrometers which use an rf readout technique to provide 100 MHz bandwidth. Small size, low power, and cryogenic operation allow direct integration with detectors, and using multiple rf carrier frequencies permits simultaneous readout of 20-50 amplifiers with a common electrical connection. We describe both the first 2-channel demonstration of this wavelength division multiplexing technique for RF-SETs, and Charge-Locked-Loop operation with 100 kHz of closed-loop bandwidth.

  18. Digital subcarrier multiplexing for fiber nonlinearity mitigation in coherent optical communication systems.

    PubMed

    Qiu, Meng; Zhuge, Qunbi; Chagnon, Mathieu; Gao, Yuliang; Xu, Xian; Morsy-Osman, Mohamed; Plant, David V

    2014-07-28

    In this work we experimentally investigate the improved intra-channel fiber nonlinearity tolerance of digital subcarrier multiplexed (SCM) signals in a single-channel coherent optical transmission system. The digital signal processing (DSP) for the generation and reception of the SCM signals is described. We show experimentally that the SCM signal with a nearly-optimum number of subcarriers can extend the maximum reach by 23% in a 24 GBaud DP-QPSK transmission with a BER threshold of 3.8 × 10(-3) and by 8% in a 24 GBaud DP-16-QAM transmission with a BER threshold of 2 × 10(-2). Moreover, we show by simulations that the improved performance of SCM signals is observed over a wide range of baud rates, further indicating the merits of SCM signals in baud-rate flexible agile transmissions and future high-speed optical transport systems.

  19. An IIR adaptive electronic equalizer for polarization multiplexed fiber optic communication systems

    NASA Astrophysics Data System (ADS)

    Zeng, Xiang-Ye; Liu, Jian-Fei; Zhao, Qi-Da

    2011-09-01

    An electronic digital equalizer for polarization multiplex coherent fiber optic communication systems is designed to compensate polarization mode dispersion (PMD) and residual chromatic dispersion (CD) of transmission channel. The proposed equalizer is realized with fraction spaced infinite impulse response (IIR) butterfly structure with 21 feedforward taps and 2 feedback taps. Compared with finite impulse response (FIR) structure, this structure can reduce implementation complexity of hardware under the same condition. To keep track of the random variation of channel characteristics, the filter weights are updated by least mean square (LMS) algorithm. The simulation results show that the proposed equalizer can compensate residual chromatic dispersion (CD) of 1600 ps/nm and differential group delay (DGD) of 90 ps simultaneously, and also can increase the PMD and residual CD tolerance of the whole communication system.

  20. Preface to the special issue on next-generation multiplexing schemes in fiber-based systems

    NASA Astrophysics Data System (ADS)

    Sillard, Pierre; Essiambre, René-Jean; Jung, Yongmin; Yamamoto, Takashi

    2017-02-01

    Since the beginning of optical communications in the late 70s, capacity has kept up with the exponential growth of traffic demand. This has been enabled by many technologies among which the most up-to-date wavelength multiplexing combined with coherent detection of polarized-multiplexed quadrature-amplitude-modulated signals. There is, however, a growing realization that this might no longer be sufficient and that next-generation multiplexing schemes are needed to avoid an imminent capacity crunch.

  1. Multiplexed image storage by electromagnetically induced transparency in a solid

    NASA Astrophysics Data System (ADS)

    Heinze, G.; Rentzsch, N.; Halfmann, T.

    2012-11-01

    We report on frequency- and angle-multiplexed image storage by electromagnetically induced transparency (EIT) in a Pr3+:Y2SiO5 crystal. Frequency multiplexing by EIT relies on simultaneous storage of light pulses in atomic coherences, driven in different frequency ensembles of the inhomogeneously broadened solid medium. Angular multiplexing by EIT relies on phase matching of the driving laser beams, which permits simultaneous storage of light pulses propagating under different angles into the crystal. We apply the multiplexing techniques to increase the storage capacity of the EIT-driven optical memory, in particular to implement multiplexed storage of larger two-dimensional amounts of data (images). We demonstrate selective storage and readout of images by frequency-multiplexed EIT and angular-multiplexed EIT, as well as the potential to combine both multiplexing approaches towards further enhanced storage capacities.

  2. 2x2 MIMO-OFDM Gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON.

    PubMed

    Deng, Lei; Pang, Xiaodan; Zhao, Ying; Othman, M B; Jensen, Jesper Bevensee; Zibar, Darko; Yu, Xianbin; Liu, Deming; Monroy, Idelfonso Tafur

    2012-02-13

    We propose a spectral efficient radio over wavelength division multiplexed passive optical network (WDM-PON) system by combining optical polarization division multiplexing (PDM) and wireless multiple input multiple output (MIMO) spatial multiplexing techniques. In our experiment, a training-based zero forcing (ZF) channel estimation algorithm is designed to compensate the polarization rotation and wireless multipath fading. A 797 Mb/s net data rate QPSK-OFDM signal with error free (<1 × 10(5)) performance and a 1.59 Gb/s net data rate 16QAM-OFDM signal with BER performance of 1.2 × 10(2) are achieved after transmission of 22.8 km single mode fiber followed by 3 m and 1 m air distances, respectively.

  3. Fully switchable multi-wavelength fiber laser based interrogator system for remote and versatile fiber optic sensors multiplexing structures

    NASA Astrophysics Data System (ADS)

    Bravo Acha, M.; DeMiguel-Soto, V.; Ortigosa, A.; Lopez-Amo, M.

    2014-05-01

    A novel interrogation system for multiple fiber optic sensor technologies and based on a fully-switchable multiwavelength fiber laser (MWFL) is proposed and experimentally demonstrated. The MWFL can generate any wavelength combination with a minimum emission line distance up to 50 GHz fitting the ITU grid specifications. On the other hand, as proof of concept sensor network, two different networks were multiplexed by using a remote powered by light fiber optic switch. They are based on two different sensor technologies. One of them based on PCF intensity sensors and multiplexed by using an 8 port WDM and the other one based on wavelength temperature/strain FBG sensors.

  4. Efficient Routing of Star-Ring Hybrid Topology with Optical Add and Drop Multiplexer in DWDM System

    NASA Astrophysics Data System (ADS)

    Bala, Anju; Dewra, Sanjeev

    2016-12-01

    This paper investigates the performance of star-ring hybrid topology networks with optical add and drop multiplexer (OADM) in dense wavelength division multiplexing (DWDM) system with 0.8 nm channel spacing at different bit rates (5, 10 and 15 Gbps) in terms of bit error rate (BER), quality factor and optical signal-to-noise ratio (OSNR). OADM has the capability to add and drop the new channels and provides the wavelength routing between star and ring topologies. It is observed that the hybrid topology supports 128 users on upper and lower ends with 150 km distance between the nodes of ring network without dispersion compensating fiber.

  5. A Readout IC Using Two-Step Fastest Signal Identification for Compact Data Acquisition of PET Systems.

    PubMed

    Jung, Sung-Jin; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2016-10-20

    A readout integrated circuit (ROIC) using two-step fastest signal identification (FSI) is proposed to reduce the number of input channels of a data acquisition (DAQ) block with a high-channel reduction ratio. The two-step FSI enables the proposed ROIC to filter out useless input signals that arise from scattering and electrical noise without using complex and bulky circuits. In addition, an asynchronous fastest signal identifier and a self-trimmed comparator are proposed to identify the fastest signal without using a high-frequency clock and to reduce misidentification, respectively. The channel reduction ratio of the proposed ROIC is 16:1 and can be extended to 16 × N:1 using N ROICs. To verify the performance of the two-step FSI, the proposed ROIC was implemented into a gamma photon detector module using a Geiger-mode avalanche photodiode with a lutetium-yttrium oxyorthosilicate array. The measured minimum detectable time is 1 ns. The difference of the measured energy and timing resolution between with and without the two-step FSI are 0.8% and 0.2 ns, respectively, which are negligibly small. These measurement results show that the proposed ROIC using the two-step FSI reduces the number of input channels of the DAQ block without sacrificing the performance of the positron emission tomography (PET) systems.

  6. A Readout IC Using Two-Step Fastest Signal Identification for Compact Data Acquisition of PET Systems

    PubMed Central

    Jung, Sung-Jin; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2016-01-01

    A readout integrated circuit (ROIC) using two-step fastest signal identification (FSI) is proposed to reduce the number of input channels of a data acquisition (DAQ) block with a high-channel reduction ratio. The two-step FSI enables the proposed ROIC to filter out useless input signals that arise from scattering and electrical noise without using complex and bulky circuits. In addition, an asynchronous fastest signal identifier and a self-trimmed comparator are proposed to identify the fastest signal without using a high-frequency clock and to reduce misidentification, respectively. The channel reduction ratio of the proposed ROIC is 16:1 and can be extended to 16 × N:1 using N ROICs. To verify the performance of the two-step FSI, the proposed ROIC was implemented into a gamma photon detector module using a Geiger-mode avalanche photodiode with a lutetium-yttrium oxyorthosilicate array. The measured minimum detectable time is 1 ns. The difference of the measured energy and timing resolution between with and without the two-step FSI are 0.8% and 0.2 ns, respectively, which are negligibly small. These measurement results show that the proposed ROIC using the two-step FSI reduces the number of input channels of the DAQ block without sacrificing the performance of the positron emission tomography (PET) systems. PMID:27775623

  7. Projection multiplex recording of computer-synthesised one-dimensional Fourier holograms for holographic memory systems: mathematical and experimental modelling

    SciTech Connect

    Betin, A Yu; Bobrinev, V I; Verenikina, N M; Donchenko, S S; Odinokov, S B; Evtikhiev, N N; Zlokazov, E Yu; Starikov, S N; Starikov, R S

    2015-08-31

    A multiplex method of recording computer-synthesised one-dimensional Fourier holograms intended for holographic memory devices is proposed. The method potentially allows increasing the recording density in the previously proposed holographic memory system based on the computer synthesis and projection recording of data page holograms. (holographic memory)

  8. A data acquisition system for two-dimensional position sensitive micropattern gas detectors with delay-line readout

    NASA Astrophysics Data System (ADS)

    Hanu, A. R.; Prestwich, W. V.; Byun, S. H.

    2015-04-01

    We present a data acquisition (DAQ) system for two-dimensional position sensitive micropattern gas detectors using the delay-line method for readout. The DAQ system consists of a field programmable gate array (FPGA) as the main data processor and our time-to-digital (TDC) mezzanine card for making time measurements. We developed the TDC mezzanine card around the Acam TDC-GPX ASIC and it features four independent stop channels referenced to a common start, a typical timing resolution of ~81 ps, and a 17-bit measurement range, and is compliant with the VITA 57.1 standard. For our DAQ system, we have chosen the Xilinx SP601 development kit which features a single Spartan 6 FPGA, 128 MB of DDR2 memory, and a serial USB interface for communication. Output images consist of 1024×1024 square pixels, where each pixel has a 32-bit depth and corresponds to a time difference of 162 ps relative to its neighbours. When configured for a 250 ns acquisition window, the DAQ can resolve periodic event rates up to 1.8×106 Hz without any loses and will report a maximum event rate of 6.11×105 Hz for events whose arrival times follow Poisson statistics. The integral and differential non-linearities have also been measured and are better than 0.1% and 1.5%, respectively. Unlike commercial units, our DAQ system implements the delay-line image reconstruction algorithm entirely in hardware and is particularly attractive for its modularity, low cost, ease of integration, excellent linearity, and high throughput rate.

  9. System-level considerations for the front-end readout ASIC in the CBM experiment from the power supply perspective

    NASA Astrophysics Data System (ADS)

    Kasinski, K.; Koczon, P.; Ayet, S.; Löchner, S.; Schmidt, C. J.

    2017-03-01

    New fixed target experiments using high intensity beams with energy up to 10 AGeV from the SIS100 synchrotron presently being constructed at FAIR/GSI are under preparation. Most of the readout electronics and power supplies are expected to be exposed to a very high flux of nuclear reaction products and have to be radiation tolerant up to 3 MRad (TID) and sustain up to 1014/cm2 of 1 MeV neutron equivalent in their life time. Moreover, the mostly minimum ionising particles under investigation leave very little signal in the sensors. Therefore very low noise level amplitude measurements are required by the front-end electronics for effective tracking. Sensor and interconnecting micro-cable capacitance and series resistance in conjunction with intrinsic noise of the charge sensitive amplifier are dominant noise sources in the system. However, the single-ended architecture of the amplifiers employed for the charge processing channels implies a potential problem with noise contributions from power supply sources. Strict system-level constraints leave very little freedom in selecting a power supply structure optimal with respect to: power efficiency, cooling capabilities and power density on modules, but also noise injection to the front-end via the power supply lines. Design of the power supply and distribution system of the Silicon Tracking System in the CBM experiment together with details on the front-end ASICs (STS -XYTER2) and measurement results of power supply and conditioning electronics (selected DC/DC converter and LDO regulators) are presented.

  10. SQUID Multiplexers for Cryogenic Detector Arrays

    NASA Technical Reports Server (NTRS)

    Irwin, Kent; Beall, James; Deiker, Steve; Doriese, Randy; Duncan, William; Hilton, Gene; Moseley, S. Harvey; Reintsema, Carl; Stahle, Caroline; Ullom, Joel; Vale, Leila

    2004-01-01

    SQUID multiplexers make it possible to build arrays of thousands of cryogenic detectors with a manageable number of readout channels. We are developing time-division SQUID multiplexers based on Nb trilayer SQUIDs to read arrays of superconducting transition-edge sensors. Our first-generation, 8-channel SQUID multiplexer was used in FIBRE, a one-dimensional TES array for submillimeter astronomy. Our second-generation 32-pixel multiplexer, based on an improved architecture, has been developed for instruments including Constellation-X, SCUBA-2, and solar x-ray astronomy missions. SCUBA-2, which is being developed for the James Clerk Maxwell Telescope, will have more than 10,000 pixels. We are now developing a third-generation architecture based on superconducting hot-electron switches. The use of SQUID multiplexers in instruments operating at above 2 K will also be discussed.

  11. Readout of two-kilopixel transition-edge sensor arrays for Advanced ACTPol

    NASA Astrophysics Data System (ADS)

    Henderson, Shawn W.; Stevens, Jason R.; Amiri, Mandana; Austermann, Jason; Beall, James A.; Chaudhuri, Saptarshi; Cho, Hsiao-Mei; Choi, Steve K.; Cothard, Nicholas F.; Crowley, Kevin T.; Duff, Shannon M.; Fitzgerald, Colin P.; Gallardo, Patricio A.; Halpern, Mark; Hasselfield, Matthew; Hilton, Gene; Ho, Shuay-Pwu Patty; Hubmayr, Johannes; Irwin, Kent D.; Koopman, Brian J.; Li, Dale; Li, Yaqiong; McMahon, Jeff; Nati, Federico; Niemack, Michael; Reintsema, Carl D.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Vavagiakis, Eve M.; Ward, Jonathan T.

    2016-07-01

    Advanced ACTPol is an instrument upgrade for the six-meter Atacama Cosmology Telescope (ACT) designed to measure the cosmic microwave background (CMB) temperature and polarization with arcminute-scale angular resolution. To achieve its science goals, Advanced ACTPol utilizes a larger readout multiplexing factor than any previous CMB experiment to measure detector arrays with approximately two thousand transition-edge sensor (TES) bolometers in each 150 mm detector wafer. We present the implementation and testing of the Advanced ACTPol time-division multiplexing readout architecture with a 64-row multiplexing factor. This includes testing of individual multichroic detector pixels and superconducting quantum interference device (SQUID) multiplexing chips as well as testing and optimizing of the integrated readout electronics. In particular, we describe the new automated multiplexing SQUID tuning procedure developed to select and optimize the thousands of SQUID parameters required to readout each Advanced ACTPol array. The multichroic detector pixels in each array use separate channels for each polarization and each of the two frequencies, such that four TESes must be read out per pixel. Challenges addressed include doubling the number of detectors per multiplexed readout channel compared to ACTPol and optimizing the Nyquist inductance to minimize detector and SQUID noise aliasing.

  12. A low power readout circuit approach for uncooled resistive microbolometer FPAs

    NASA Astrophysics Data System (ADS)

    Tepegoz, Murat; Toprak, Alperen; Akin, Tayfun

    2008-04-01

    This paper presents a new, low power readout circuit approach for uncooled resistive microbolometer FPAs. The readout circuits of the microbolometer detectors contain parallel readout channels whose outputs are driven and multiplexed on large bus capacitances in order to form the output of the readout circuit. High number of opamps used in the readout channel array and large output capacitances that these opamps should drive necessitates the use of high output current capacity structures, which results in large power dissipation. This paper proposes two new methods in order to decrease the power dissipation of the readout circuits for uncooled thermal FPAs. The first method is called the readout channel group concept, where the readout channel array is separated into groups in order to decrease the load capacitance seen by the readout channel output. The second method utilizes a special opamp architecture where the output current driving capacity can be digitally controlled. This method enables efficient use of power by activating the high output current driving capacity only during the output multiplexing. The simulations show that using these methods results in a power dissipation reduction of 80% and 91% for the readout channels optimized for a single output 384x288 FPA operating at 25 fps and for a two-output 640x480 FPA operating at 30 fps, respectively.

  13. Multiplex PageRank.

    PubMed

    Halu, Arda; Mondragón, Raúl J; Panzarasa, Pietro; Bianconi, Ginestra

    2013-01-01

    Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.

  14. Towards a multi-channel TOF-PET system with SiPM readout

    NASA Astrophysics Data System (ADS)

    Garutti, Erika; Göttlich, Martin; Harion, Tobias; Hegemann, Niklas; Schmidt, Maximilian; Schultz-Coulon, Hans-Christian; Shen, Wei; Silenzi, Alessandro; Stamen, Rainer; Tadday, Alexander; Xu, Chen

    2012-12-01

    The goal of this project is to develop a multi-channel TOF-PET system with a 300 ps FWHM time resolution, a factor two improvement with respect to commercially available systems (Surti et al., 2007 [1]). In a TOF-PET system, the time-of-flight information can be used to improve significantly the sensitivity of the detector as shown in Karp et al. (2008) [2]. The target time resolution has been achieved in two channel systems with LYSO (Kim and Wang, 2008 [3]), the aim is to port this results into a multi-channel system. This work extends the results shown in Göttlich et al. (2010) [4], studying the stability of the detector performance in different geometries and configurations.

  15. The readout and control system of the mid-size telescope prototype of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Oya, I.; Anguner, O.; Behera, B.; Birsin, E.; Fuessling, M.; Melkumyan, D.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.; Cta Consortium,the

    2014-06-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  16. A drift detector system with anode and cathode readout in the GlueX experiment

    SciTech Connect

    Berdnikov, V V; Somov, S V; Pentchev, L; Zihlmann, B

    2015-01-01

    A drift detector system designed to detect charged particle tracks in the GlueX experiment dedicated to study the nature of confinement is described. The key design features of the drift chambers associated with the requirement of a minimum material budget in the path of secondary particles are presented. The spatial resolution and the detection efficiency have been measured with cosmic rays using the automatic data acquisition system.

  17. Group-Specific Multiplex PCR Detection Systems for the Identification of Flying Insect Prey

    PubMed Central

    Sint, Daniela; Niederklapfer, Bettina; Kaufmann, Ruediger; Traugott, Michael

    2014-01-01

    The applicability of species-specific primers to study feeding interactions is restricted to those ecosystems where the targeted prey species occur. Therefore, group-specific primer pairs, targeting higher taxonomic levels, are often desired to investigate interactions in a range of habitats that do not share the same species but the same groups of prey. Such primers are also valuable to study the diet of generalist predators when next generation sequencing approaches cannot be applied beneficially. Moreover, due to the large range of prey consumed by generalists, it is impossible to investigate the breadth of their diet with species-specific primers, even if multiplexing them. However, only few group-specific primers are available to date and important groups of prey such as flying insects have rarely been targeted. Our aim was to fill this gap and develop group-specific primers suitable to detect and identify the DNA of common taxa of flying insects. The primers were combined in two multiplex PCR systems, which allow a time- and cost-effective screening of samples for DNA of the dipteran subsection Calyptratae (including Anthomyiidae, Calliphoridae, Muscidae), other common dipteran families (Phoridae, Syrphidae, Bibionidae, Chironomidae, Sciaridae, Tipulidae), three orders of flying insects (Hymenoptera, Lepidoptera, Plecoptera) and coniferous aphids within the genus Cinara. The two PCR assays were highly specific and sensitive and their suitability to detect prey was confirmed by testing field-collected dietary samples from arthropods and vertebrates. The PCR assays presented here allow targeting prey at higher taxonomic levels such as family or order and therefore improve our ability to assess (trophic) interactions with flying insects in terrestrial and aquatic habitats. PMID:25525799

  18. A high-performance miniaturized time division multiplexed sensor system for remote structural health monitoring

    NASA Astrophysics Data System (ADS)

    Lloyd, Glynn D.; Everall, Lorna A.; Sugden, Kate; Bennion, Ian

    2004-09-01

    We report for the first time the design, implementation and commercial application of a hand-held optical time division multiplexed, distributed fibre Bragg grating sensor system. A unique combination of state-of-the art electronic and optical components enables system miniaturization whilst maintaining exceptional performance. Supporting more than 100 low-cost sensors per channel, the battery-powered system operates remotely via a wireless GSM link, making it ideal for real-time structural health monitoring in harsh environments. Driven by highly configurable timing electronics, an off-the-shelf telecommunications semiconductor optical amplifier performs combined amplification and gating. This novel optical configuration boasts a spatial resolution of less than 20cm and an optical signal to noise ratio of better than 30dB, yet utilizes sensors with reflectivity of only a few percent and does not require RF speed signal processing devices. This paper highlights the performance and cost advantages of a system that utilizes TDM-style mass manufactured commodity FBGs. Created in continual lengths, these sensors reduce stock inventory, eradicate application-specific array design and simplify system installation and expansion. System analysis from commercial installations in oil exploration, wind energy and vibration measurement will be presented, with results showing kilohertz interrogation speed and microstrain resolution.

  19. Data acquisition and readout system for the LUX dark matter experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Bai, X.; Bedikian, S.; Bernard, E.; Bernstein, A.; Bradley, A.; Cahn, S. B.; Carmona-Benitez, M. C.; Carr, D.; Chapman, J. J.; Clark, K.; Classen, T.; Coffey, T.; Curioni, A.; Dazeley, S.; de Viveiros, L.; Dragowsky, M.; Druszkiewicz, E.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gibson, K. R.; Hall, C.; Hanhardt, M.; Holbrook, B.; Ihm, M.; Jacobsen, R. G.; Kastens, L.; Kazkaz, K.; Lander, R.; Larsen, N.; Lee, C.; Leonard, D.; Lesko, K.; Lyashenko, A.; Malling, D. C.; Mannino, R.; McKinsey, D. N.; Mei, D.; Mock, J.; Morii, M.; Nelson, H.; Nikkel, J. A.; Pangilinan, M.; Phelps, P.; Shutt, T.; Skulski, W.; Sorensen, P.; Spaans, J.; Stiegler, T.; Svoboda, R.; Sweany, M.; Szydagis, M.; Thomson, J.; Tripathi, M.; Verbus, J. R.; Walsh, N.; Webb, R.; White, J. T.; Wlasenko, M.; Wolfs, F. L. H.; Woods, M.; Zhang, C.

    2012-03-01

    LUX is a two-phase (liquid/gas) xenon time projection chamber designed to detect nuclear recoils from interactions with dark matter particles. Signals from the LUX detector are processed by custom-built analog electronics which provide properly shaped signals for the trigger and data acquisition (DAQ) systems. The DAQ is composed of commercial digitizers with firmware customized for the LUX experiment. Data acquisition systems in rare-event searches must accommodate high rate and large dynamic range during precision calibrations involving radioactive sources, while also delivering low threshold for maximum sensitivity. The LUX DAQ meets these challenges using real-time baseline suppression that allows for a maximum event acquisition rate in excess of 1.5 kHz with virtually no deadtime. This paper describes the LUX DAQ and the novel acquisition techniques employed in the LUX experiment.

  20. Design of multiplexed fiber optic chemical sensing system using clad-removable optical fibers

    NASA Astrophysics Data System (ADS)

    Yun, Chang-Yong; Dhital, Dipesh; Lee, Jung-Ryul; Park, Gyuhae; Kwon, Il-Bum

    2012-02-01

    To prevent possible threats to public safety and economic loss from chemical leakage accidents, novel chemical sensing techniques for regular monitoring and leakage detection have been developed for various fields. We propose a fiber optic liquid chemical sensor (FOCS) system using specialty optical fibers and an optical time domain reflectometer (OTDR), and is based on the leaky wave mode sensing principle. OTDR enables simple multiplexing where individual sensor nodes along the fiber length could be interrogated by a common OTDR. The sensor node in the optical fiber is prepared by removing the desired length of a protective layer using mechanical stripping and chemical etching techniques. A novel laser stripping technique with superior capability to fabricate quasi-distributed dense sensor nodes is devised as well. The FOCS system is further analyzed to characterize the sensor response behavior in relation to the sensor node length and possible environmental and chemical temperature effect. Under the condition satisfying the leaky wave mode principle and within the minimum acceptable refractive index (RI) range by the system, this FOCS system could monitor numerous liquid chemicals with variable refractive indices and has been tested with positive results. In addition, the system shows the possibility for multi-point detection and is further expanded into a hybrid technique capable of estimating the refractive index range of the detected chemical.

  1. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    SciTech Connect

    Noroozian, Omid; Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N.; Kang, Zhao

    2013-11-11

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a {sup 153}Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/√(Hz) at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 10{sup 3} elements and spectral resolving powers R=λ/Δλ>10{sup 3}.

  2. Upgrade of the Trigger Readout System of the ATLAS Liquid Argon Calorimeters

    NASA Astrophysics Data System (ADS)

    Marino, C. P.

    2014-06-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034cm-2s-1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η| <3.2, and for hadronic calorimetry in the region from |η| =1.5 to |η| =4.9. The ATLAS LAr calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sums analog signals to provide coarsely grained energy sums to the Level-1 trigger system, which is optimized for nominal LHC luminosities. In 2018, an instantaneous luminosity of 2-3 ×1034cm-2s-1 is expected, far beyond the nominal one for which the detector was designed. In order to cope with this increased trigger rate, an improved spatial granularity of the trigger primitives is proposed to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For these purposes, a new LAr Trigger Digitizer Board (LTDB) is being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new LAr digital processing system (LDPS). The LDPS applies a digital filtering and identifies significant energy depositions in each trigger channel. The refined trigger primitives are then transmitted to the Level-1 trigger system to extract improved trigger signatures.

  3. A SQUID readout system for a superconducting gyroscope. [superconducting quantum interference device

    NASA Technical Reports Server (NTRS)

    Hendricks, J. B.

    1975-01-01

    A design of a read out system for a superconducting gyroscope to be used in an orbiting gyroscope relativity experiment is discussed. The 'London Moment' of the superconducting rotor, which lies along the spin axis of the rotor, will be measured with a SQUID-type magnetometer. The SQUID will be built around the gyro rotor, with a very close spacing to give an inductance between 10 millionths and 1 millionth Hy. A SQUID of this design should resolve 2.07 times 10 to the minus 19th weber. The angular resolution of the gyroscope will then be 0.0035 arc-second, which is sufficient for the intended experiment.

  4. The read-out system of spatial distribution of thermoluminescence in meteorites

    NASA Technical Reports Server (NTRS)

    Ninagawa, K.; Yamamoto, I.; Takano, Y.; Wada, T.; Yamashita, Y.; Takaoka, N.

    1985-01-01

    The thermoluminescence (TL) technique used for dating the terrestrial age of meteorites is based on the TL fading of interior samples. The depth dependence of the TL for Antarctic meteorites with fusion crust is measured. Usually, meteorites are powdered and their TL measured under a photomultiplier. In this case, a TL spatial distribution of a cross section of antarctic meteorites is measured using a read out system of spatial distribution of TL, since a meteorite is made up of inhomogeneous material. Antarctic meteorites MET-78028(L6) and ALH-77278(L13) are used.

  5. Readout process and noise elimination firmware for the Fermilab beam loss system

    SciTech Connect

    Wu, Jinyuan; Baumbaugh, Alan; Drennan, Craig; Thurman-Keup, Randy; Lewis, Jonathan; Shi, Zonghan; /Fermilab

    2007-05-01

    In the Fermilab Beam Loss Monitor System, inputs from ion chambers are integrated for a short period of time, digitized and processed to create the accelerator abort request signals. The accelerator power supplies employing 3-phase 60Hz AC cause noise at various harmonics on our inputs which must be eliminated for monitoring purposes. During accelerator ramping, both the sampling frequency and the amplitudes of the noise components change. As such, traditional digital filtering can partially reduce certain noise components but not all. A nontraditional algorithm was developed in our work to eliminate remaining ripples. The sequencing in the FPGA firmware is conducted by a micro-sequencer core we developed: the Enclosed Loop Micro-Sequencer (ELMS). The unique feature of the ELMS is that it supports the ''FOR'' loops with pre-defined iterations at the machine code level, which provides programming convenience and avoids many micro-complexities from the beginning.

  6. Multiple layer optical memory system using second-harmonic-generation readout

    DOEpatents

    Boyd, Gary T.; Shen, Yuen-Ron

    1989-01-01

    A novel optical read and write information storage system is described which comprises a radiation source such as a laser for writing and illumination, the radiation source being capable of radiating a preselected first frequency; a storage medium including at least one layer of material for receiving radiation from the radiation source and capable of being surface modified in response to said radiation source when operated in a writing mode and capable of generating a pattern of radiation of the second harmonic of the preselected frequency when illuminated by the radiation source at the preselected frequency corresponding to the surface modifications on the storage medium; and a detector to receive the pattern of second harmonic frequency generated.

  7. Systemic risk in multiplex networks with asymmetric coupling and threshold feedback

    NASA Astrophysics Data System (ADS)

    Burkholz, Rebekka; Leduc, Matt V.; Garas, Antonios; Schweitzer, Frank

    2016-06-01

    We study cascades on a two-layer multiplex network, with asymmetric feedback that depends on the coupling strength between the layers. Based on an analytical branching process approximation, we calculate the systemic risk measured by the final fraction of failed nodes on a reference layer. The results are compared with the case of a single layer network that is an aggregated representation of the two layers. We find that systemic risk in the two-layer network is smaller than in the aggregated one only if the coupling strength between the two layers is small. Above a critical coupling strength, systemic risk is increased because of the mutual amplification of cascades in the two layers. We even observe sharp phase transitions in the cascade size that are less pronounced on the aggregated layer. Our insights can be applied to a scenario where firms decide whether they want to split their business into a less risky core business and a more risky subsidiary business. In most cases, this may lead to a drastic increase of systemic risk, which is underestimated in an aggregated approach.

  8. High sensitivity automated multiplexed immunoassays using photonic crystal enhanced fluorescence microfluidic system.

    PubMed

    Tan, Yafang; Tang, Tiantian; Xu, Haisheng; Zhu, Chenqi; Cunningham, Brian T

    2015-11-15

    We demonstrate a platform that integrates photonic crystal enhanced fluorescence (PCEF) detection of a surface-based microspot fluorescent assay with a microfluidic cartridge to achieve simultaneous goals of high analytic sensitivity (single digit pg/mL), high selectivity, low sample volume, and assay automation. The PC surface, designed to provide optical resonances for the excitation wavelength and emission wavelength of Cyanines 5 (Cy5), was used to amplify the fluorescence signal intensity measured from a multiplexed biomarker microarray. The assay system is comprised of a plastic microfluidic cartridge for holding the PC and an assay automation system that provides a leak-free fluid interface during introduction of a sequence of fluids under computer control. Through the use of the assay automation system and the PC embedded within the microfluidic cartridge, we demonstrate pg/mL-level limits of detection by performing representative biomarker assays for interleukin 3 (IL3) and Tumor Necrosis Factor (TNF-α). The results are consistent with limits of detection achieved without the use of the microfluidic device with the exception that coefficients of variability from spot-to-spot are substantially lower than those obtained by performing assays with manual manipulation of assay liquids. The system's capabilities are compatible with the goal of diagnostic instruments for point-of-care settings.

  9. Study on performance of coherent orthogonal frequency division multiplexing system in exponential atmospheric turbulent channel

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Li, Yuan; Ma, Jing; Guo, Qiang

    2016-11-01

    We analyze the performance of a coherent orthogonal frequency division multiplexing (OFDM) system and a serial decode and forward relay transmission multihop coherent free-space optical OFDM system using an exponential distribution atmospheric turbulence model under the circumstance of strong atmospheric turbulence. The attenuation of the atmospheric channel fading model mainly considers the light intensity scintillation caused by atmospheric turbulence and interaction between the path consumption, the transmitter and the receiver. The OFDM signal mapping method uses quadrature amplitude modulation. We also derive the formulas of the outage probability and symbol error rate of the coherent OFDM and multihop system, respectively, under the conditions described above. In addition, a simulation is performed, which is essential to evaluate the influence of key factors including coherent detection in a number of relay nodes, the mapping orders, and the number of subcarriers, which have a significant effect on the outage performance and the bit error performance of the OFDM-FSO system under the strong atmospheric turbulence.

  10. R&D on a novel spectro-imaging polarimeter with Micromegas detectors and a Caliste readout system

    NASA Astrophysics Data System (ADS)

    Attié, D.; Blondel, C.; Boilevin-Kayl, L.; Desforges, D.; Ferrer-Ribas, E.; Giomataris, I.; Gevin, O.; Jeanneau, F.; Limousin, O.; Meuris, A.; Papaevangelou, T.; Peyaud, A.

    2015-07-01

    Micromegas detectors, part of the Micro-Pattern Gaseous Detectors (MPGD) family, are used in a very wide range of applications in the High Energy Physics community but also in astroparticle and neutrino physics. In most of the Micromegas applications the design of the detector vessel and the readout plane is extremely coupled. A way of dissociating these two components would be by separating the amplification structure and the detector volume from the readout plane and electronics. This is achieved with the so called piggyback Micromegas detectors. They open up new possibilities of applications in terms of adaptability to new electronics. In particular piggyback resistive Micromegas can be easily coupled to modern pixel array electronic ASICs. First tests have been carried out with a Medipix chip where the protection of the resistive layer has been proved. The results of very recent tests coupling piggyback Micromegas with the readout module of Caliste are presented. Caliste is a high performance spectro-imager with event time-tagging capability, able to detect photons between 2 keV and 250 keV in the context of a spatial micro spectro-imaging polarimetrer. In the current application, with the Piggyback Micromegas, we use the readout module only as the sensitive detector. We benefit of the good spatial resolution thanks to the high density readout pixels ( 600 μm pixel pitch), to the low noise, to the low power and to the radiation hard integrated front-end IDEF-X electronics. The advantage of such a device is to have a high gain, low noise, low threshold, and robust detector operating at room temperature. This would be very attractive for spatial applications, for instance X-ray polarisation.

  11. Spatial-phase code-division multiple-access system with multiplexed Fourier holography switching for reconfigurable optical interconnection.

    PubMed

    Takasago, K; Takekawa, M; Shirakawa, A; Kannari, F

    2000-05-10

    A new, to our knowledge, space-variant optical interconnection system based on a spatial-phase code-division multiple-access technique with multiplexed Fourier holography is described. In this technique a signal beam is spread over wide spatial frequencies by an M-sequence pseudorandom phase code. At a receiver side a selected signal beam is properly decoded, and at the same time its spatial pattern is shaped with a Fourier hologram, which is recorded by light that is encoded with the same M-sequence phase mask as the desired signal beam and by light whose spatial beam pattern is shaped to a signal routing pattern. Using the multiplexed holography, we can simultaneously route multisignal flows into individually specified receiver elements. The routing pattern can also be varied by means of switching the encoding phase code or replacing the hologram. We demonstrated a proof-of-principle experiment with a doubly multiplexed hologram that enables simultaneous routing of two signal beams. Using a numerical model, we showed that the proposed scheme can manage more than 250 routing patterns for one signal flow with one multiplexed hologram at a signal-to-noise ratio of ~5.

  12. DNA analysis of fingernail debris using different multiplex systems: a case report.

    PubMed

    Lederer, T; Betz, P; Seidl, S

    2001-01-01

    A 55-year-old male nurse was accused of having introduced his fingers by force into the anus of a 20-year-old female patient. Debris from the fingernails of the suspect recovered 2 days after the incident was analysed with the VNTR locus D1S80, the triplex PCR system AmpFlSTR Blue kit, the AmpFlSTR Profiler kit and the pentaplex system genRES MPX. The D1S80 singleplex reaction revealed indications of DNA from the victim in the fingernail debris of the left hand. Using the AmpFlSTR Blue kit and AmpFlSTR Profiler, DNA alleles of the victim were found at four additional loci, while allelic drop-out was observed at five other loci. Only the pentaplex kit genRES MPX revealed alleles at all loci which could be assigned to the victim. Calculation of likelihood ratios resulted in a value of 1.4 x 10(5) using the combination of the multiplex systems AmpF1STR Blue kit and AmpFlSTR Profiler and 2.8 x 10(8) for the genRES MPX kit. This case demonstrates the high sensitivity of the new genRES MPX kit and that DNA profiling of fingernail debris is possible despite a time lapse of 2 days between the incident and recovery of the evidential material.

  13. Improved superimposed training sequence-based timing synchronization for space optical orthogonal frequency division multiplexing system

    NASA Astrophysics Data System (ADS)

    Wang, Ruyan; Wang, Xiaobing; Zhao, Hui

    2015-10-01

    This paper investigates the timing synchronization problem of a space optical orthogonal frequency division multiplexing (OOFDM) communication system. First, based on the good autocorrelation property of generalized chirp-like sequence, a training sequence is constructed to fit the non-negative light intensity signal requirement of the OOFDM system, of which the front and rear portions are cyclical and the whole is mirror-symmetric. No longer a periodic-repetition structure, the mirror-symmetric structure can effectively avoid the side lobe of objective function and reduce the complexity of correlation calculation, and thereby can improve the synchronization performance. Then, the constructed training sequence is superimposed on a complete data symbol for transmission to efficiently utilize transmitting power and spectrum resources of the communication system. At the receiver, the position of timing synchronization is estimated using maximum-likelihood algorithm and the correlation between the local sequence and the received signal. Simulation results show that, compared with several existing methods, the proposed timing synchronization method achieves better synchronization performances under both strong and weak atmospheric turbulence channels.

  14. High Sensitivity Automated Multiplexed Immunoassays Using Photonic Crystal Enhanced Fluorescence Microfluidic System

    PubMed Central

    Tan, Yafang; Tang, Tiantian; Xu, Haisheng; Zhu, Chenqi; Cunningham, Brian T.

    2015-01-01

    We demonstrate a platform that integrates photonic crystal enhanced fluorescence (PCEF) detection of a surface-based microspot fluorescent assay with a microfluidic cartridge to achieve simultaneous goals of high analytic sensitivity (single digit pg/mL), high selectivity, low sample volume, and assay automation. The PC surface, designed to provide optical resonances for the excitation wavelength and emission wavelength of Cyanines 5 (Cy5), was used to amplify the fluorescence signal intensity measured from a multiplexed biomarker microarray. The assay system is comprised of a plastic microfluidic cartridge for holding the PC and an assay automation system that provides a leak-free fluid interface during introduction of a sequence of fluids under computer control. Through the use of the assay automation system and the PC embedded within the microfluidic cartridge, we demonstrate pg/mL-level limits of detection by performing representative biomarker assays for interleukin 3 (IL3) and Tumor Necrosis Factor (TNF-α). The results are consistent with limits of detection achieved without the use of the microfluidic device with the exception that coefficients of variability from spot-to-spot are substantially lower than those obtained by performing assays with manual manipulation of assay liquids. The system’s capabilities are compatible with the goal of diagnostic instruments for point-of-care settings. PMID:26043313

  15. Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems

    SciTech Connect

    Wang, Anbo; Pickrell, Gary

    2012-03-31

    This report summarizes technical progress on the program Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed jointly by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering and the Department of Materials Science and Engineering at Virginia Tech. This three-year project started on October 1, 2008. In the project, a fiber optical sensing system based on intrinsic Fabry-Perot Interferometer (IFPI) was developed for strain and temperature measurements for Ultra Supercritical boiler condition assessment. Investigations were focused on sensor design, fabrication, attachment techniques and novel materials for high temperature and strain measurements. At the start of the project, the technical requirements for the sensing technology were determined together with our industrial partner Alstom Power. As is demonstrated in Chapter 4, all the technical requirements are successfully met. The success of the technology extended beyond laboratory test; its capability was further validated through the field test at DOE NETL, in which the sensors yielded distributed temperature mapping of a testing coupon installed in the turbine test rig. The measurement results agreed well with prior results generated with thermocouples. In this project, significant improvements were made to the IFPI sensor technology by splicing condition optimization, transmission loss reduction, sensor signal demodulation and sensor system design.

  16. Increment of Access Points in Integrated System of Wavelength Division Multiplexed Passive Optical Network Radio over Fiber.

    PubMed

    Amiri, I S; Alavi, S E; Soltanian, M R K; Fisal, N; Supa'at, A S M; Ahmad, H

    2015-07-08

    This paper describes a novel technique to increase the numbers of access points (APs) in a wavelength division multiplexed-passive optical network (WDM-PON) integrated in a 100 GHz radio-over-fiber (RoF). Eight multi-carriers separated by 25 GHz intervals were generated in the range of 193.025 to 193.200 THz using a microring resonator (MRR) system incorporating an add-drop filter system. All optically generated multi-carriers were utilized in an integrated system of WDM-PON-RoF for transmission of four 43.6 Gb/sec orthogonal frequency division multiplexing (OFDM) signals. Results showed that an acceptable BER variation for different path lengths up to 25 km was achievable for all four access points and thus the transmission of four OFDM channels is feasible for a 25 km standard single mode fiber (SSMF) path length.

  17. Improved digital backward propagation for the compensation of inter-channel nonlinear effects in polarization-multiplexed WDM systems.

    PubMed

    Mateo, Eduardo F; Zhou, Xiang; Li, Guifang

    2011-01-17

    An improved split-step method (SSM) for digital backward propagation (DBP) applicable to wavelength-division multiplexed (WDM) transmission with polarization-division multiplexing (PDM) is presented. A coupled system of nonlinear partial differential equations, derived from the Manakov equations, is used for DBP. The above system enables the implementation of DBP on a channel-by-channel basis, where only the effect of phase-mismatched four-wave mixing (FWM) is neglected. A novel formulation of the SSM for PDM-WDM systems is presented where new terms are included in the nonlinear step to account for inter-polarization mixing effects. In addition, the effect of inter-channel walk-off is included. This substantially reduces the computational load compared to the conventional SSM.

  18. A multi-channel integrated readout circuit (MIROC) chip for solid state charged particle detectors

    NASA Astrophysics Data System (ADS)

    He, Xiang

    2011-12-01

    Various electronic amplifier systems have been developed during the past years for solid state detectors for energetic charged particle detection. Most of them were based on the design of discrete parts or high performance hybrid packaged chips. With rapid development of modern integrated circuit industry, there are more and more integrated systems built for such applications. This work describes a novel multi-channel integrated readout circuit (MIROC) mixed-signal ASIC for solid stage charged particle detectors. The chip contains nineteen analog amplifier channels including the test channel, three on-chip 8-bit ADCs, each equipped with a 8-bit parallel-to-serial shift register, three 19-input analog multiplexers, and other digital control logic modules. This was the first known integrated readout system with multiple channels and multiple ADCs, by the time the project started. The chip is designed with special interest in 1MeV electrons. It is a highly integrated system that only requires minimal external controls, which could significantly reduce cost, space, power and total mass of the readout system, and reduce the development cycle of new instruments. MIROC chip was fabricated with IBM 7WL 0.18microm SiGe BiCMOS technology through MOSIS MEP research license, and has been tested, with key components characterized. Measured only 4mmx4mm, this highly integrated readout system has a FWHM noise below 20keV. The four configurable conversion gain levels of the amplifier chains, measured to be 164mV/MeV, 378mV/MeV, 611mV/MeV and 950mV/MeV, make the chip capable of studying energetic charged particles over the range of 100keV up to 6MeV.

  19. BESIII ETOF upgrade readout electronics commissioning

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Zhuang; Dai, Hong-Liang; Wu, Zhi; Heng, Yue-Kun; Zhang, Jie; Cao, Ping; Ji, Xiao-Lu; Li, Cheng; Sun, Wei-Jia; Wang, Si-Yu; Wang, Yun

    2017-01-01

    It is proposed to upgrade the endcap time-of-flight (ETOF) of the Beijing Spectrometer III (BESIII) with a multi-gap resistive plate chamber (MRPC), aiming at an overall time resolution of about 80 ps. After completing the entire readout electronics system, some experiments, such as heat radiation, radiation hardness and large-current beam tests, have been carried out to confirm the reliability and stability of the readout electronics. An on-detector test of the readout electronics has also been performed with the beam at the BEPCII E3 line. The test results indicate that the readout electronics system fulfills its design requirements. Supported by Chinese Academy of Sciences (1G201331231172010)

  20. Full-duplex multiband orthogonal frequency division multiplexing ultra-wideband over fiber system

    NASA Astrophysics Data System (ADS)

    He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu

    2015-01-01

    A full-duplex multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system is proposed, and bidirectional transmission of a 1.28-Gbps MB-OFDM UWB signal over 50-km standard single-mode fiber (SSMF) is demonstrated. An optical remote heterodyning mixing scheme is employed to generate a 60-GHz optical millimeter wave. Meanwhile, an optical carrier without modulation data is extracted by using a fiber Bragg grating for the uplink MB-OFDM UWB signal transmission. After 50-km SSMF transmission at a bit error rate of 1×10-4, the power penalties are 0.7 dB for a 4 quadrature amplitude modulation (QAM)-uplink and 1.0 dB for a 16QAM-uplink, respectively. The proposed scheme would greatly reduce the cost and significantly improve the spectrum utilization efficiency in the full-duplex MB-OFDM UWBoF systems.

  1. Multiplexed bead-based mesofluidic system for detection of food-borne pathogenic bacteria.

    PubMed

    Jin, Sheng-Quan; Yin, Bin-Cheng; Ye, Bang-Ce

    2009-11-01

    In the present study, a simple and rapid multiplexed bead-based mesofluidic system (BMS) was developed for simultaneous detection of food-borne pathogenic bacteria, including Staphylococcus aureus, Vibrio parahaemolyticus, Listeria monocytogenes, Salmonella, Enterobacter sakazakii, Shigella, Escherichia coli O157:H7, and Campylobacter jejuni. This system is based on utilization of isothiocyanate-modified microbeads that are 250 mum in diameter, which were immobilized with specific amino-modified oligonucleotide probes and placed in polydimethylsiloxane microchannels. PCR products from the pathogens studied were pumped into microchannels to hybridize with the oligonucleotide-modified beads, and hybridization signals were detected using a conventional microarray scanner. The short sequences of nucleic acids (21 bases) and PCR products characteristic of bacterial pathogens could be detected at concentrations of 1 pM and 10 nM, respectively. The detection procedure could be performed in less than 30 min with high sensitivity and specificity. The assay was simple and fast, and the limits of quantification were in the range from 500 to 6,000 CFU/ml for the bacterial species studied. The feasibility of identification of food-borne bacteria was investigated with samples contaminated with bacteria, including milk, egg, and meat samples. The results demonstrated that the BMS method can be used for effective detection of multiple pathogens in different foodstuffs.

  2. Electra: durable repetitively pulsed angularly multiplexed KrF laser system

    NASA Astrophysics Data System (ADS)

    Wolford, Matthew F.; Myers, Matthew C.; Giuliani, John L.; Sethian, John D.; Burns, Patrick M.; Hegeler, Frank; Jaynes, Reginald

    2008-02-01

    Electra is a repetitively pulsed, electron beam pumped Krypton Fluoride (KrF) laser at the Naval Research Laboratory that is developing the technologies that can meet the Inertial Fusion Energy (IFE) requirements for durability, efficiency, and cost. The technologies developed on Electra should be directly scalable to a full size fusion power plant beam line. As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system which, consists of a commercial discharge laser (LPX 305i, Lambda Physik), 175 keV electron beam pumped (40 ns flat-top) preamplifier, and 530 keV (100 ns flat-top) main amplifier. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Single shot yield of 452 J has been extracted from the initial shots of the Electra laser system using a relatively low energy preamplifier laser beam. In rep-rate burst of 5 Hz for durations of one second a total energy of 1.585 kJ (average 317 J/pulse) has been attained. Total energy of 2.5 kJ has been attained over a two second period. For comparison, the main amplifier of Electra in oscillator mode has demonstrated at 2.5 Hz rep-rate average laser yield of 270 J over a 2 hour period.

  3. Enhanced 16 Spiral quadrature amplitude modulation scheme for coherent optical orthogonal frequency division multiplexing systems

    NASA Astrophysics Data System (ADS)

    He, Jing; Li, Chong; Chen, Lin; Chen, Ming

    2014-09-01

    We propose an enhanced 16 Spiral quadrature amplitude modulation (QAM) (16 E-Spiral QAM) scheme to overcome the laser phase noise in a coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. Considering both additive white Gaussian noise and large phase noise, 16 E-Spiral QAM schemes have a better transmission performance compared to conventional 16 QAM CO-OFDM systems. The simulated results show that the required optical signal-to-noise ratio (OSNR) of the proposed 16 QAM is, respectively, 0.8 and 2.3 dB less than 16 Spiral and conventional 16 QAM at a bit error rate (BER) of 10-3 in a back-to-back case. After 800-km transmission over a single-mode fiber, the tolerance for the laser linewidth of the 16 E-Spiral QAM can improve about 30 kHz with an OSNR of 18 dB compared to that of a conventional 16 QAM.

  4. Microchip-based multiplex electro-immunosensing system for the detection of cancer biomarkers.

    PubMed

    Ko, Yong-Jun; Maeng, Joon-Ho; Ahn, Yoomin; Hwang, Seung Yong; Cho, Nahm-Gyoo; Lee, Seoung-Hwan

    2008-08-01

    Microfluidic-based microchips have become the focus of research interest for immunoassays and biomarker diagnostics. This is due to their aptitude for high-throughput processing, small sample volume, and short analysis times. In this paper, we describe the development of a microchip-based multiplex electro-immunosensing system for simultaneous detection of cancer biomarkers using gold nanoparticles and silver enhancer. Our microchip is composed of biocompatible poly(PDMS) and glass substrates. To fix the antibody-immobilized microbeads, we used pillar-type microfilters within a reaction chamber. An immunogold silver staining (IGSS) method was used to amplify the electrical signal that corresponded to the immune complex. To demonstrate this approach, we simultaneously assayed three cancer biomarkers, alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), and prostate-specific antigen (PSA) on the microchip. The electrical signal generated from the result of the immunoreaction was measured and monitored by a PC-based system. The overall assay time was reduced from 3-8 h to about 55 min when compared to conventional immunoassays. The working range of the proposed microchip was from 10(-3) to 10(-1) microg/mL of the target antigen.

  5. Readout and DAQ for Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Platkevic, Michal

    2010-01-01

    Data readout and acquisition control of pixel detectors demand the transfer of significantly a large amounts of bits between the detector and the computer. For this purpose dedicated interfaces are used which are designed with focus on features like speed, small dimensions or flexibility of use such as digital signal processors, field-programmable gate arrays (FPGA) and USB communication ports. This work summarizes the readout and DAQ system built for state-of-the-art pixel detectors of the Medipix family.

  6. Self-calibrating multiplexer circuit

    DOEpatents

    Wahl, Chris P.

    1997-01-01

    A time domain multiplexer system with automatic determination of acceptable multiplexer output limits, error determination, or correction is comprised of a time domain multiplexer, a computer, a constant current source capable of at least three distinct current levels, and two series resistances employed for calibration and testing. A two point linear calibration curve defining acceptable multiplexer voltage limits may be defined by the computer by determining the voltage output of the multiplexer to very accurately known input signals developed from predetermined current levels across the series resistances. Drift in the multiplexer may be detected by the computer when the output voltage limits, expected during normal operation, are exceeded, or the relationship defined by the calibration curve is invalidated.

  7. A new, multiplex, quantitative real-time polymerase chain reaction system for nucleic acid detection and quantification.

    PubMed

    Liang, Fang; Arora, Neetika; Zhang, Kang Liang; Yeh, David Che Cheng; Lai, Richard; Pearson, Darnley; Barnett, Graeme; Whiley, David; Sloots, Theo; Corrie, Simon R; Barnard, Ross T

    2013-01-01

    Quantitative real-time polymerase chain reaction (qPCR) has emerged as a powerful investigative and diagnostic tool with potential to generate accurate and reproducible results. qPCR can be designed to fulfil the four key aspects required for the detection of nucleic acids: simplicity, speed, sensitivity, and specificity. This chapter reports the development of a novel real-time multiplex quantitative PCR technology, dubbed PrimRglo™, with a potential for high-degree multiplexing. It combines the capacity to simultaneously detect many viruses, bacteria, or nucleic acids, in a single reaction tube, with the ability to quantitate viral or bacterial load. The system utilizes oligonucleotide-tagged PCR primers, along with complementary fluorophore-labelled and quencher-labelled oligonucleotides. The analytic sensitivity of PrimRglo technology was compared with the widely used Taqman(®) and SYBR green detection systems.

  8. Population data on 10 non-CODIS STR loci in Japanese population using a newly developed multiplex PCR system.

    PubMed

    Asamura, H; Ota, M; Fukushima, H

    2008-11-01

    This paper describes a newly devised autosomal short tandem repeat (STR) multiplex polymerase chain reaction (PCR) systems for 10 loci (D1S1656, D2S1353, D8S1132, D12S1090, D14S608, D18S535, D19S253, D20S480, D21S226, and D22S689) unlinked to the core STR loci (non-CODIS loci). Of 252 samples taken from the Japanese population, PCR products ranged in length from 107 bp to 319 bp. No significant deviations from Hardy-Weinberg equilibrium were observed at any of the 10 loci. The accumulated power of discrimination and power of exclusion for the 10 loci were 0.999999999998 and 0.99991, respectively. We conclude that the present multiplex system for the 10 non-CODIS loci represents a powerful tool for forensic applications.

  9. Effectiveness of phase-conjugated twin waves on fiber nonlinearity in spatially multiplexed all-optical OFDM system

    NASA Astrophysics Data System (ADS)

    Hmood, Jassim K.; Noordin, Kamarul A.; Harun, Sulaiman W.

    2016-07-01

    In this paper, we investigate the effectiveness of using phase-conjugated twin waves (PCTWs) technique to mitigate fiber nonlinear impairments in spatially multiplexed all-optical orthogonal frequency division multiplexing (AO-OFDM) systems. In this technique, AO-OFDM signal and its phase-conjugated copy are directly transmitted through two identical fiber links. At the receiver, the two signals are coherently superimposed to cancel the phase noise and to enhance signal-to-noise ratio (SNR). To show the effectiveness of proposed technique, a spatially multiplexed AO-OFDM system is demonstrated by numerical simulation. AO-OFDM signal and its phase conjugated copy are optically generated by using optical coupler-based inverse fast Fourier transform (OIFFT)/fast Fourier transform (OFFT). The generated signal includes 29 subcarriers where each subcarrier is modulated by 4-quadrature amplitude modulation (4QAM) format at a symbol rate of 25 Gsymbol/s. The results reveal that transmission performance is considerably improved where the transmission distance of the proposed system is increased by ∼45% as compared to that of original system without PCTWs technique.

  10. Analog bus driver and multiplexer

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Hancock, Bruce (Inventor); Cunningham, Thomas J. (Inventor)

    2012-01-01

    For a source-follower signal chain, the ohmic drop in the selection switch causes unacceptable voltage offset, non-linearity, and reduced small signal gain. For an op amp signal chain, the required bias current and the output noise rises rapidly with increasing the array format due to a rapid increase in the effective capacitance caused by the Miller effect boosting up the contribution of the bus capacitance. A new switched source-follower signal chain circuit overcomes limitations of existing op-amp based or source follower based circuits used in column multiplexers and data readout. This will improve performance of CMOS imagers, and focal plane read-out integrated circuits for detectors of infrared or ultraviolet light.

  11. Analysis of four-wave mixing between pulses in high-data-rate quasi-linear subchannel-multiplexed systems.

    PubMed

    Zweck, John; Menyuk, Curtis R

    2002-07-15

    We study four-wave mixing between pulses in two subchannels of a quasi-linear 40-Gbit/s subchannel-multiplexed system. For a pseudorandom bit string there are resonances in the mean of the ghost pulse energy and in the jitter of the energy in the marks as functions of the subchannel frequency spacing. However, away from these resonances the effect of four-wave mixing decreases as the subchannel spacing increases, permitting propagation over longer distances.

  12. Designing multiplex PCR system of Campylobacter jejuni for efficient typing by improving monoplex PCR binary typing method.

    PubMed

    Yamada, Kazuhiro; Ibata, Ami; Suzuki, Masahiro; Matsumoto, Masakado; Yamashita, Teruo; Minagawa, Hiroko; Kurane, Ryuichiro

    2015-01-01

    Campylobacter jejuni is responsible for the majority of Campylobacter infections. As the molecular epidemiological study of outbreaks, pulsed-field gel electrophoresis (PFGE) is performed in general. But PFGE has several problems. PCR binary typing (P-BIT) method is a typing method for Campylobacter spp. that was recently developed, and was reported to have a similar discriminatory power and stability to those of PFGE. We modified the P-BIT method from 18 monoplex PCRs to two multiplex PCR systems (mP-BIT). The same results were obtained from monoplex PCRs using original primers and multiplex PCR in the representative isolates. The mP-BIT can analyze 48 strains at a time by using 96-well PCR systems and can identify C. jejuni because mP-BIT includes C. jejuni marker. The typing of the isolates by the mP-BIT and PFGE demonstrated generally concordant results and the mP-BIT method (D = 0.980) has a similar discriminatory power to that of PFGE with SmaI digest (D = 0.975) or KpnI digest (D = 0.987) as with original article. The mP-BIT method is quick, simple and easy, and comes to be able to perform it at low cost by having become a multiplex PCR system. Therefore, the mP-BIT method with two multiplex PCR systems has high potential for a rapid first-line surveillance typing assay of C. jejuni and can be used for routine surveillance and outbreak investigations of C. jejuni in the future.

  13. Clock-distribution with instantaneous synchronization for 160 Gbit/s optical time-domain multiplexed systems packet transmission.

    PubMed

    Gomez-Agis, Fausto; Calabretta, Nicola; Albores-Mejia, Aaron; Dorren, Harm J S

    2010-10-01

    We demonstrate for the first time, to our knowledge, a clock-distribution method for ultra-high-speed optical time-domain multiplexed systems data packets that provides instantaneous synchronization, fast locking/unlocking times, and a highly stable bursty clock, enabling error-free operation of 160 to 10 Gbit/s time demultiplexing with a power penalty of 1.5 dB after 51 km transmission in standard single-mode fiber (ITU G.652).

  14. A multichannel system for the transmission of data along a fiber light guide with time division multiplex

    NASA Astrophysics Data System (ADS)

    Sokol, V. F.; Sedunov, B. I.; Enikeeva, K. Sh.; Abdiev, S.; Repin, A. V.; Bychkov, V. M.

    The system is designed so that the information and synchronizing signals are transmitted along a single light guide. The light guide in the communication line has a length of approximately 100 m. A light-emitting diode and a p-i-n photodiode are used as optoelectronic converters. Microcircuits of the 155 series are used in the multiplex and seal-failure devices. Information is transmitted at the rate of 5 megabits/s.

  15. An optical fiber multiplexing interferometric system for measuring remote and high precision step height

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Xie, Fang; Ma, Sen; Chen, Liang

    2015-02-01

    In this paper, an optical fiber multiplexing interferometric system including a Fizeau interferometer and a Michelson interferometer is designed for remote and high precision step height measurement. The Fizeau interferometer which is inserted in the remote sensing field is used for sensing the measurand, while the Michelson interferometer which is stabilized by a feedback loop works in both modes of low coherence interferometry and high coherence interferometry to demodulate the measurand. The range of the step height is determined by the low coherence interferometry and the value of it is measured precisely by the high coherence interferometry. High precision has been obtained by using the symmetrical peak-searching method to address the peak of the low coherence interferogram precisely and stabilizing the Michelson interferometer with a feedback loop. The maximum step height that could be measured is 6 mm while the measurement resolution is less than 1 nm. The standard deviation of 10 times measurement results of a step height of 1 mm configurated with two gauge blocks is 0.5 nm.

  16. Remote and high precision step height measurement with an optical fiber multiplexing interferometric system

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Xie, Fang; Ma, Sen; Chen, Liang

    2015-03-01

    An optical fiber multiplexing low coherence and high coherence interferometric system, which includes a Fizeau interferometer as the sensing element and a Michelson interferometer as the demodulating element, is designed for remote and high precision step height measurement. The Fizeau interferometer is placed in the remote field for sensing the measurand, while the Michelson interferometer which works in both modes of low coherence interferometry and high coherence interferometry is employed for demodulating the measurand. The range of the step height is determined by the low coherence interferometry and the value of it is measured precisely by the high coherence interferometry. High precision has been obtained by searching precisely the peak of the low coherence interferogram symmetrically from two sides of the low coherence interferogram and stabilizing the Michelson interferometer with a feedback loop. The maximum step height that could be measured is 6 mm while the measurement resolution is less than 1 nm. The standard deviation of 10 times measurement results of a step height of 1 mm configurated with two gauge blocks is 0.5 nm.

  17. Joint Diversity for the Block Diagonalization-Precoded Spatial Multiplexing System with Multiple Users

    NASA Astrophysics Data System (ADS)

    Lee, Donghun; Kang, Hyunduk; Jeong, Byungjang

    In this paper, we propose a joint diversity algorithm for error-rate minimization in multi-user spatial multiplexing (SM) systems with block diagonalization (BD)-precoding. The proposed algorithm adapts or selects the user set, transmit antenna subset, and the number of streams by an exhaustive search over the available resources. The proposed algorithm makes use of the multi-user diversity (MUD) and the spatial diversity gains as well as the array gain through selecting the best set. Exhaustive search, however, imposes a heavy burden in terms of computational complexity which exponentially increases with the size of the total number of users, streams, and transmit antennas. For complexity reduction, we propose two suboptimal algorithms which reduce the search space by first selecting the best user or by both selecting the best user and fixing the number of streams. Simulation results show that the proposed algorithms improve error probability over the conventional algorithm due to their diversity improvement and the signal-to-noise ratio (SNR) gains over the conventional algorithm. We also show that the suboptimal algorithms significantly reduce the computational complexity over exhaustive search with low-SNR loss.

  18. An integrated system of ABO typing and multiplex STR testing for forensic DNA analysis.

    PubMed

    Jiang, Xianhua; He, Juan; Jia, Fei; Shen, Hongying; Zhao, Jinling; Chen, Chuguang; Bai, Liping; Liu, Feng; Hou, Guangwei; Guo, Faye

    2012-12-01

    A new amplification system for ABO and STR genotyping in a single reaction has been successfully developed. Two types of information can be obtained from a biological sample at one time. One is the classical information of ABO blood group typing for screening suspects and the other is STR information for individual identification. The system allows for the simultaneous detection of 15 autosomal STR loci (containing all CODIS STR loci as well as Penta D and Penta E), six ABO genotypes (O/O, B/B, A/A, A/O, A/B, and B/O) and the gender-determining locus Amelogenin. Primers are designed so that the amplicons are distributed ranging from 75bp to 500bp within a four-dye fluorescent design, leaving a fourth dye for the internal size standard. With 30 cycles, the results showed that the optimal amount of DNA template for this multiplex ranges from 250pg to 2ng and the lowest detection threshold is 125pg (as low as 63pg for ABO loci). For the DNA template outside the optimal detection range, we could adjust the number of cycles to obtain the robust profiles. Mixture studies showed that over 83% of minor alleles were detected at 1:9 ratios. The full profiles were still observed when 4ng of degraded DNA was digested by DNase I and 1ng undegraded DNA was added to 40μM haematin. Polymerase chain reaction (PCR)-based conditions including the concentrations of primers, magnesium and the Taq polymerase as well as volume, cycle numbers and annealing temperature were examined and optimised. In addition, the system was validated by 364 bloodstain samples and 32 common casework samples. According to the Chinese National Standards and Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines, our system demonstrates good detection performance and is an ideal tool for forensic DNA typing with potential application.

  19. 60-GHz optical/wireless MIMO system integrated with optical subcarrier multiplexing and 2x2 wireless communication.

    PubMed

    Lin, Chi-Hsiang; Lin, Chun-Ting; Huang, Hou-Tzu; Zeng, Wei-Siang; Chiang, Shou-Chih; Chang, Hsi-Yu

    2015-05-04

    This paper proposes a 2x2 MIMO OFDM Radio-over-Fiber scheme based on optical subcarrier multiplexing and 60-GHz MIMO wireless transmission. We also schematically investigated the principle of optical subcarrier multiplexing, which is based on a dual-parallel Mach-Zehnder modulator (DP-MZM). In our simulation result, combining two MIMO OFDM signals to drive DP-MZM gives rise to the PAPR augmentation of less than 0.4 dB, which mitigates nonlinear distortion. Moreover, we applied a Levin-Campello bit-loading algorithm to compensate for the uneven frequency responses in the V-band. The resulting system achieves OFDM signal rates of 61.5-Gbits/s with BER of 10(-3) over 25-km SMF transmission followed by 3-m wireless transmission.

  20. Use of subcarrier multiplexing for self-routing of data packets in a high-performance system area network

    NASA Astrophysics Data System (ADS)

    Saraswat, Sanjay

    1998-10-01

    In self-routing packet networks, the state of intermediate nodes (switches) is set or reset on the basis of the information present in the packet header. Subcarrier multiplexing (SCM) modulates a number of frequency-separated RF sub-carriers onto a common laser at a single wavelength. SCM has the advantage of high data throughput. It also requires fewer opto-electronic components and avoids walk- off between header and payload due to fiber dispersion. In this paper we describe a novel use of sub-carrier multiplexing for self-routing of data packet within the switching fabric of a high performance system area network. Using SCM data packets are routed optically to the destination without being converted to the electrical domain at the intermediate stages within the network.

  1. Updated Campylobacter jejuni Capsule PCR Multiplex Typing System and Its Application to Clinical Isolates from South and Southeast Asia

    PubMed Central

    Poly, Frédéric; Serichantalergs, Oralak; Kuroiwa, Janelle; Pootong, Piyarat; Mason, Carl; Guerry, Patricia; Parker, Craig T.

    2015-01-01

    Campylobacter jejuni produces a polysaccharide capsule that is the major determinant of the Penner serotyping scheme. This passive slide agglutination typing system was developed in the early 1980’s and was recognized for over two decades as the gold standard for C. jejuni typing. A preliminary multiplex PCR technique covering 17 serotypes was previously developed in order to replace this classic serotyping scheme. Here we report the completion of the multiplex PCR technology that is able to identify all the 47 Penner serotypes types known for C. jejuni. The number of capsule types represented within the 47 serotypes is 35. We have applied this method to a collection of 996 clinical isolates from Thailand, Cambodia and Nepal and were able to successfully determine capsule types of 98% of these. PMID:26630669

  2. Grating light modulators for use as de-multiplexer and switching device in wavelength-selective switching systems

    NASA Astrophysics Data System (ADS)

    Pothisorn, Araya; Hariz, Alex J.

    2007-12-01

    All optical switches have been used with measured success in response to a high demand in all optical networks, and a dramatic increase in the Internet and communication needs over the last decade. The wavelength-selective switch is the mechanism used in various switching applications. MEMS-based wavelength-selective switches (WSS) are the most promising technology to bring all-optical switches into wide implementation by providing reasonable cost, excellent performance, and most reliable use of micro-electromechanical systems (MEMS) technology. Optical-MEMS devices, often referred to as micro-opto-electromechanical systems or MOEMS; have been used successfully in optical network systems and particularly in switching devices such as waveguide and free-space switches. Free-space switching devices are more popular than waveguide switches, because they offer faster switching time and are more scalable. 1D MEMS-based WSSs, using free-space approach, require the use of integrated multiplexer/de-multiplexer and micro-mirror arrays for their operations [1, 2]. The switching time depends primarily on the time it takes for the scanning micro-mirrors to steer de-multiplexed beams to the desired output ports. This is due to the fact that the mirrors are the main inertial components in free-space switching systems. Grating Light Modulators (GLM) were introduced a decade ago for use in diffraction optics. Research has begun to investigate their use in communication optics. Unlike other 1D MEMS-based WSS, GLM promises to offer very low loss for the whole system and fast switching time of as low as 20 ns with no integrated micro-mirrors [3-5]. We propose the development of a switching system incorporating a GLM as the central unit acting as both de-multiplexer and switching device in one spot, and which does not require any moving micro-mirror arrays. Therefore, the switching time is entirely dependent on the GLM device which is relatively fast. GLMs use diffraction principles to

  3. Orbital angular momentum in four channel spatial domain multiplexing system for multi-terabit per second communication architectures

    NASA Astrophysics Data System (ADS)

    Murshid, Syed H.; Muralikrishnan, Hari P.; Kozaitis, Samuel P.

    2012-06-01

    Bandwidth increase has always been an important area of research in communications. A novel multiplexing technique known as Spatial Domain Multiplexing (SDM) has been developed at the Optronics Laboratory of Florida Institute of Technology to increase the bandwidth to T-bits/s range. In this technique, space inside the fiber is used effectively to transmit up to four channels of same wavelength at the same time. Experimental and theoretical analysis shows that these channels follow independent helical paths inside the fiber without interfering with each other. Multiple pigtail laser sources of exactly the same wavelength are used to launch light into a single carrier fiber in a fashion that resulting channels follow independent helical trajectories. These helically propagating light beams form optical vortices inside the fiber and carry their own Orbital Angular Momentum (OAM). The outputs of these beams appear as concentric donut shaped rings when projected on a screen. This endeavor presents the experimental outputs and simulated results for a four channel spatially multiplexed system effectively increasing the system bandwidth by a factor of four.

  4. Tests of the standard (30 hz) NCER FM multiplex telemetry system, augmented by two timing channels and a compensation reference signal, used to record multiplexed seismic network data on magnetic tape

    USGS Publications Warehouse

    Eaton, Jerry P.

    1976-01-01

    The application of subtractive compensation to USGS seismic magnetic tape recording and playback systems was examined in a recent USGS Open-file report (1). It was found, for the standard (30 Hz) NCER multiplex system, that subtractive compensation utilizing a 4688 Hz reference signal multiplexed onto each data track was more effective than that utilizing a 3125 Hz reference signal recorded separately on a different track. Moreover, it was found that the portion of the spectrum between the uppermost data channel (3060 Hz + or - 125 Hz) and the compensation reference signal (4688 Hz) could be used to record an additional timing signal, with a center frequency of 3700 Hz and a broader playback bandwidth (ca 0 to 100 Hz) than that of the standard data channels. Accordingly, for the tests described in that report, the standard 8-datachannel multiplex system was augmented by one additional timing channel with a center frequency of 3700 Hz. The 3700 Hz discriminator used in those tests was not successfully set up to utilize subtractive compensation; so its output from a tape playback was quite noisy. Subsequently, further tests have been carried out on the application of subtractive compensation to a 4-channel broad-band multiplex system and to the standard multiplex system, both recorded on field tape recorders with relatively poor tape speed control (2), (3). In the course of these experiments, it was discovered that two separate timing channe1s, not just one, can be inserted between the uppermost data channel and the compensation reference signal, Furthermore, it was possible to adjust the discriminators used to playback these timing channels so that they profited significantly from subtractive compensation even though the playback bandwidth was 0 to 100 Hz (for short rise times of square wave timing signals). The advantages of recording two timing signals on each data track include: 1) one standard time signal to be used for critical timing, e.g. IRIG E, can be

  5. Doubling transmission capacity in optical wireless system by antenna horizontal- and vertical-polarization multiplexing.

    PubMed

    Li, Xinying; Yu, Jianjun; Zhang, Junwen; Dong, Ze; Chi, Nan

    2013-06-15

    We experimentally demonstrate 2×56 Gb/s two-channel polarization-division-multiplexing quadrature-phase-shift-keying signal delivery over 80 km single-mode fiber-28 and 2 m Q-band (33-50 GHz) wireless link, adopting antenna horizontal- (H-) and vertical-polarization (V-polarization) multiplexing. At the wireless receiver, classic constant-modulus-algorithm equalization based on digital signal processing can realize polarization demultiplexing and remove the crosstalk at the same antenna polarization. By adopting antenna polarization multiplexing, the signal baud rate and performance requirements for optical and wireless devices can be reduced but at the cost of double antennas and devices, while wireless transmission capacity can also be increased but at the cost of stricter requirements for V-polarization. The isolation is only about 19 dB when V-polarization deviation approaches 10°, which will affect high-speed (>50 Gb/s) wireless delivery.

  6. Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays.

    PubMed

    Rousserie, Gilles; Sukhanova, Alyona; Even-Desrumeaux, Klervi; Fleury, Fabrice; Chames, Patrick; Baty, Daniel; Oleinikov, Vladimir; Pluot, Michel; Cohen, Jacques H M; Nabiev, Igor

    2010-04-01

    Understanding cellular systems requires identification and analysis of their multiple components and determination of how they act together and are regulated. Microarray technology is one of the few tools that is able to solve such problems. It is based on high-throughput recognition of a target to the probe and has the potential to simultaneously measure the presence of numerous molecules in multiplexed tests, all contained in a small drop of test fluid. Microarrays allow the parallel analysis of genomic or proteomic content in healthy versus disease-affected or altered tissues or cells. The signal read-out from the microarrays is done with organic dyes which often suffer of photobleaching, low brightness and background fluorescence. Recent data show that the use of fluorescent nanocrystals named "quantum dots" (QDs) allows to push these limits away. QDs are sufficiently bright to be detected as individual particles, extremely resistant against photobleaching and provide unique possibilities for multiplexing, thus supplying the microarray technology with a novel read-out option enabling the sensitivity of detection to reach the single-molecule level. This paper reviews QDs applications to microarray-based detection and demonstrates how the combination of microarray and QDs technologies may increase sensitivity and highly parallel capacities of multiplexed microarrays. Such a combination should provide the breakthrough results in drug discovery, cancer diagnosis and establish new therapeutic approaches through the identification of binding target molecules and better understanding of cell signalling pathways.

  7. Aqueous two-phase system patterning of detection antibody solutions for cross-reaction-free multiplex ELISA

    NASA Astrophysics Data System (ADS)

    Frampton, John P.; White, Joshua B.; Simon, Arlyne B.; Tsuei, Michael; Paczesny, Sophie; Takayama, Shuichi

    2014-05-01

    Accurate disease diagnosis, patient stratification and biomarker validation require the analysis of multiple biomarkers. This paper describes cross-reactivity-free multiplexing of enzyme-linked immunosorbent assays (ELISAs) using aqueous two-phase systems (ATPSs) to confine detection antibodies at specific locations in fully aqueous environments. Antibody cross-reactions are eliminated because the detection antibody solutions are co-localized only to corresponding surface-immobilized capture antibody spots. This multiplexing technique is validated using plasma samples from allogeneic bone marrow recipients. Patients with acute graft versus host disease (GVHD), a common and serious condition associated with allogeneic bone marrow transplantation, display higher mean concentrations for four multiplexed biomarkers (HGF, elafin, ST2 and TNFR1) relative to healthy donors and transplant patients without GVHD. The antibody co-localization capability of this technology is particularly useful when using inherently cross-reactive reagents such as polyclonal antibodies, although monoclonal antibody cross-reactivity can also be reduced. Because ATPS-ELISA adapts readily available antibody reagents, plate materials and detection instruments, it should be easily transferable into other research and clinical settings.

  8. Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems.

    PubMed

    Chen, Sitao; Shi, Yaocheng; He, Sailing; Dai, Daoxin

    2015-05-18

    A compact silicon hybrid (de)multiplexer is designed and demonstrated by integrating a single bi-directional AWG with a polarization diversity circuit, which consists of an ultra-short polarization-beam splitter (PBS) based on a bent coupler and a polarization rotator (PR) based on a silicon-on-insulator nanowire with a cut corner. The present hybrid (de)multiplexer can operate for both TE- and TM- polarizations and thus is available for PDM-WDM systems. An 18-channel hybrid (de)multiplexer is realized with 9 wavelengths as an example. The wavelength-channel spacing is 400GHz (i.e., Δλ(ch) = 3.2nm) and the footprint of the device is about 530μm × 210μm. The channel crosstalk is about -13dB and the total excess loss is about 7dB. The excess loss increases by about 1~2dB due to the cascaded polarization diversity circuit in comparison with a single bi-directional AWG.

  9. Performance of a multiplexed serological microarray for the detection of antibodies against central nervous system pathogens.

    PubMed

    Jääskeläinen, Anne J; Viitala, Sari M; Kurkela, Satu; Hepojoki, Satu; Sillanpää, Heidi; Kallio-Kokko, Hannimari; Bergström, Tomas; Suni, Jukka; Närvänen, Ale; Vapalahti, Olli; Vaheri, Antti

    2014-05-01

    Central nervous system (CNS) infections have multiple potential causative agents for which simultaneous pathogen screening can provide a useful tool. This study evaluated a multiplexed microarray for the simultaneous detection of antibodies against CNS pathogens. The performance of selected microarray antigens for the detection of IgG antibodies against herpes simplex virus 1 and 2 (HSV-1 and HSV-2), varicella-zoster virus (VZV), adenovirus, Mycoplasma pneumoniae and Borrelia burgdorferi sensu lato, was evaluated using serum sample panels tested with reference assays used in a routine diagnostic laboratory. The microarray sensitivity for HSV-1, HSV-2, VZV, adenovirus and M. pneumonia ranged from 77% to 100%, and the specificity ranged from 74% to 97%. Very variable sensitivities and specificities were found for borrelial antigens of three different VlsE protein IR(6) peptide variants (IR6p1, IR6p2, IR6p4) and three recombinant decorin binding proteins A (DbpA; DbpAIa, DbpA91, DbpAG40). For single antigens, good specificity was shown for antigens of IR6p4 and DbpAIa (96%), while DbpA91, IR6p1 and IR6p2 were moderately specific (88-92%). The analytical sensitivity of the microarray was dependent on the borrelial IgG concentration of the specimen. The overall performance and technical features of the platform showed that the platform supports both recombinant proteins, whole viruses and peptides as antigens. This study showed diagnostic potential for all six CNS pathogens, including Borrelia burgdorferi sensu lato, using glutaraldehyde based microarray, and further highlighted the importance of careful antigen selection and the requirement for the use of multiple borrelial antigens in order to increase specificity without a major lack of sensitivity.

  10. Preclinical Assessment of a Fully Automated Multiplex PCR Panel for Detection of Central Nervous System Pathogens

    PubMed Central

    Slechta, E. S.; Killpack, J. A.; Heyrend, C.; Lunt, T.; Daly, J. A; Hemmert, A. C.

    2015-01-01

    We evaluated a multiplexed PCR panel for the detection of 16 bacterial, viral, and fungal pathogens in cerebrospinal fluid. Panel results were compared to routine testing, and discrepancies were resolved by additional nucleic acid amplification tests or sequencing. Overall, the positive and negative agreements across methods were 92.9% and 91.9%, respectively. PMID:26719436

  11. A positron emission tomograph based on LSO-APD modules with a sampling ADC read-out system for a students' advanced laboratory course.

    PubMed

    Schneider, Florian R; Mann, Alexander B; Konorov, Igor; Delso, Gaspar; Paul, Stephan; Ziegler, Sibylle I

    2012-06-01

    A one-day laboratory course on positron emission tomography (PET) for the education of physics students and PhD students in medical physics has been set up. In the course, the physical background and the principles of a PET scanner are introduced. Course attendees set the system in operation, calibrate it using a (22)Na point source and reconstruct different source geometries filled with (18)F. The PET scanner features an individual channel read-out of 96 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to avalanche photodiodes (APD). The analog data of each APD are digitized by fast sampling analog to digital converters (SADC) and processed within field programmable gate arrays (FPGA) to extract amplitudes and time stamps. All SADCs are continuously sampling with a precise rate of 80MHz, which is synchronous for the whole system. The data is transmitted via USB to a Linux PC, where further processing and the image reconstruction are performed. The course attendees get an insight into detector techniques, modern read-out electronics, data acquisition and PET image reconstruction. In addition, a short introduction to some common software applications used in particle and high energy physics is part of the course.

  12. Spectral contents readout of birefringent sensor

    NASA Technical Reports Server (NTRS)

    Redner, Alex S.

    1989-01-01

    The technical objective of this research program was to develop a birefringent sensor, capable of measuring strain/stress up to 2000 F and a readout system based on Spectral Contents analysis. As a result of the research work, a data acquisition system was developed, capable of measuring strain birefringence in a sensor at 2000 F, with multi-point static and dynamic capabilities. The system uses a dedicated spectral analyzer for evaluation of stress-birefringence and a PC-based readout. Several sensor methods were evaluated. Fused silica was found most satisfactory. In the final evaluation, measurements were performed up to 2000 F and the system performance exceeded expectations.

  13. Development of a 20-locus fluorescent multiplex system as a valuable tool for national DNA database.

    PubMed

    Jiang, Xianhua; Guo, Fei; Jia, Fei; Jin, Ping; Sun, Zhu

    2013-02-01

    The multiplex system allows the detection of 19 autosomal short tandem repeat (STR) loci [including all Combined DNA Index System (CODIS) STR loci as well as D2S1338, D6S1043, D12S391, D19S433, Penta D and Penta E] plus the sex-determining locus Amelogenin in a single reaction, comprising all STR loci in various commercial kits used in the China national DNA database (NDNAD). Primers are designed so that the amplicons are distributed ranging from 90 base pairs (bp) to 450 bp within a five-dye fluorescent design with the fifth dye reserved for the internal size standard. With 30 cycles, 125 pg to 2 ng DNA template showed optimal profiling result, while robust profiles could also be achieved by adjusting the cycle numbers for the DNA template beyond that optimal DNA input range. Mixture studies showed that 83% and 87% of minor alleles were detected at 9:1 and 1:9 ratios, respectively. When 4 ng of degraded DNA was digested by 2-min DNase and 1 ng undegraded DNA was added to 400 μM haematin, the complete profiles were still observed. Polymerase chain reaction (PCR)-based procedures were examined and optimized including the concentrations of primer set, magnesium and the Taq polymerase as well as volume, cycle number and annealing temperature. In addition, the system has been validated by 3000 bloodstain samples and 35 common case samples in line with the Chinese National Standards and Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines. The total probability of identity (TPI) can reach to 8×10(-24), where DNA database can be improved at the level of 10 million DNA profiles or more because the number of expected match is far from one person (4×10(-10)) and can be negligible. Further, our system also demonstrates its good performance in case samples and it will be an ideal tool for forensic DNA typing and databasing with potential application.

  14. Hybrid cable television and orthogonal-frequency-division-multiplexing transport system basing on single wavelength polarization and amplitude remodulation schemes.

    PubMed

    Chang, Ching-Hung; Liu, Wei-Chen; Peng, Peng-Chun; Lu, Hai-Han; Wu, Po-Yi; Wang, Jyun-Bo

    2011-05-01

    A hybrid community antenna television (CATV) and orthogonal-frequency-division-multiplexing (OFDM) transport system is proposed and experimentally demonstrated to transmit multiple CATV channels and bi-directional radio frequency signals on a single optical carrier. By polarization remodulating an optical CATV signal with downstream OFDM signals and then amplitude remodulating upstream OFDM signals with the hybrid CATV/OFDM signals, this architecture can efficiently utilize only one optical carrier to support optical analog/digital CATV transmission and bi-directional wireless broadband services for each client. Good experimental results prove that this architecture provides a proper wavelength utilization scheme for future multiwavelength optical transport systems.

  15. Read-out electronics for DC squid magnetic measurements

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-01-01

    Read-out electronics for DC SQUID sensor systems, the read-out electronics incorporating low Johnson noise radio-frequency flux-locked loop circuitry and digital signal processing algorithms in order to improve upon the prior art by a factor of at least ten, thereby alleviating problems caused by magnetic interference when operating DC SQUID sensor systems in magnetically unshielded environments.

  16. Nanosecond monolithic CMOS readout cell

    DOEpatents

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  17. Final Report Nucleic Acid System - PCR, Multiplex Assays and Sample Preparation Project

    SciTech Connect

    Koopman, R.P.; Langlois, R.G.; Nasarabadi, S.; Benett, W.J.; Richards, J.B.; Hadley, D.R.; Miles, R.R.; Brown, S.B.; Stratton, P.L.; Milanovich, F.P.

    2001-04-20

    The objective of this project was to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction). This entailed not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This project had two principal deliverables: (1) design, construct, test and deliver a 24 chamber, multiplex capable suitcase sized PCR instrument, and (2) develop and reduce to practice a multiplex assay for the detection of PCR product by flow cytometry. In addition, significant resources were allocated to test and evaluation of the Hand-held Advanced Nucleic Acid Analyzer (HANAA). This project helps provide the signature and intelligence gathering community the ability to perform, on-site or remote, rapid analysis of environmental or like samples for the presence of a suite of biological warfare pathogens.

  18. 10 Mb/s visible light transmission system using a polymer light-emitting diode with orthogonal frequency division multiplexing.

    PubMed

    Le, Son T; Kanesan, T; Bausi, F; Haigh, P A; Rajbhandari, S; Ghassemlooy, Z; Papakonstantinou, I; Popoola, W O; Burton, A; Le Minh, H; Cacialli, F; Ellis, A D

    2014-07-01

    We present a newly designed polymer light-emitting diode with a bandwidth of ~350  kHz for high-speed visible light communications. Using this new polymer light-emitting diode as a transmitter, we have achieved a record transmission speed of 10  Mb/s for a polymer light-emitting diode-based optical communication system with an orthogonal frequency division multiplexing technique, matching the performance of single carrier formats using multitap equalization. For achieving such a high data-rate, a power pre-emphasis technique was adopted.

  19. Multiplex fluorophore systems on DNA with new diverse fluorescence properties and ability to sense the hybridization dynamics.

    PubMed

    Lee, Dong Gyu; Kim, In Sun; Park, Jung Woo; Seo, Young Jun

    2014-07-14

    We developed a multiplexed fluorophore system on a DNA scaffold (MFD) that produced new and diverse fluorescence properties depending on the mixing pattern and sequence that could not be obtained from each monomer fluorophore. Our approach for producing new fluorescence properties is relatively facile: simply mixing fluorophores on a DNA scaffold provides large variations in the color and intensity using only one excitation wavelength with high "Stokes shifts" (~190 nm). Furthermore these special fluorescence properties could be controlled by the hybridization pattern and were therefore dependent on the structural changes in DNA.

  20. Color multiplexing hybridization probes using the apolipoprotein E locus as a model system for genotyping.

    PubMed

    Bernard, P S; Pritham, G H; Wittwer, C T

    1999-09-10

    Fluorescent hybridization probes were multiplexed for color genotyping of the apolipoprotein E locus using model oligonucleotide targets. Fluorescence resonance energy transfer was observed during adjacent hybridization of 3'-fluorescein-labeled "donor" probes paired with 5'-labeled "acceptor" probes with different emission spectra reporting at codons 112 and 158. The acceptor dyes emitted at either 640 nm (LightCycler Red 640) or 705 nm (LightCycler Red 705) and were monitored with a LightCycler, a thermal cycler with an integrated fluorimeter. The color of the acceptor dye identified each site and the characteristic melting temperatures of the fluorescein-labeled probes identified single base changes within each codon. Color compensation of temperature-dependent spectral overlap was applied to completely separate each channel. Competition between the probes and the complementary strand for the target sequence decreased resonance energy transfer, indicating an advantage of single-stranded target. Hybridization probes of the same length, but different GC content are T(m) shifted by the same amount during A:C mismatch duplex melting. Genotyping was optimal at both sites if melting curve analysis was preceded by a slow (1 degrees C/s) annealing phase. Although each site preferred different concentrations of Mg(2+) and target strand for optimal genotyping, conditions for multiplexing were found. This method, along with an appropriate amplification technique, should allow real-time multiplex genotyping from genomic DNA.

  1. Resonant cavity based time-domain multiplexing techniques for coherently combined fiber laser systems

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Ruppe, J.; Stanfield, P.; Nees, J.; Wilcox, R.; Galvanauskas, A.

    2015-10-01

    This paper describes novel time-domain multiplexing techniques that use various resonant cavity configurations for increasing pulse energy extraction per each parallel amplification channel of a coherently combined array. Two different techniques are presented: a so-called N2 coherent array combining technique, applicable to a periodic pulse train, and a coherent pulse stacking amplification (CPSA) technique, applicable to a pulse burst. The first technique is a coherent combining technique, which achieves simultaneous beam combining and time-domain pulse multiplexing/down-counting using traveling-wave Fabry-Perot type resonators. The second technique is purely a time-domain pulse multiplexing technique, used with either a single amplifier or an amplifier array, which uses traveling-wave Gires-Tourmois type resonators. The importance of these techniques is that they can enable stacking of very large number of pulses, thus increasing effective amplified-pulse duration potentially by 102 to 103 times, and reducing fiber array size by the corresponding factor. This could lead to very compact coherently combined arrays even for generating very high pulse energies in the range of 1 to 100 J.

  2. Genetic individualization of Cannabis sativa by a short tandem repeat multiplex system.

    PubMed

    Mendoza, Maria A; Mills, DeEtta K; Lata, Hemant; Chandra, Suman; ElSohly, Mahmoud A; Almirall, Jose R

    2009-01-01

    Cannabis sativa is the most frequently used of all illicit drugs in the USA. Cannabis has been used throughout history for its stems in the production of hemp fiber, seed for oil and food, and buds and leaves as a psychoactive drug. Short tandem repeats (STRs) were chosen as molecular markers owing to their distinct advantages over other genetic methods. STRs are codominant, can be standardized such that reproducibility between laboratories can be easily achieved, have a high discrimination power, and can be multiplexed. In this study, six STR markers previously described for C. sativa were multiplexed into one reaction. The multiplex reaction was able to individualize 98 cannabis samples (14 hemp and 84 marijuana, authenticated as originating from 33 of the 50 states of the USA) and detect 29 alleles averaging 4.8 alleles per loci. The data did not relate the samples from the same state to each other. This is the first study to report a single-reaction sixplex and apply it to the analysis of almost 100 cannabis samples of known geographic origin.

  3. De-Li-DAQ-2D - a new data acquisition system for position-sensitive neutron detectors with delay-line readout

    NASA Astrophysics Data System (ADS)

    Levchanovskiy, F. V.; Murashkevich, S. M.

    2016-09-01

    Software for a data acquisition system of modern one- and two-dimensional position-sensitive detectors with delay-line readout, which includes a software interface to a new electronic module De-Li-DAQ-2D with a USB interface, is presented. The new system after successful tests on the stand and on several spectrometers of the IBR-2 reactor has been integrated into the software complex SONIX+ [1]. The De-Li- DAQ-2D module [2] contains an 8-channel time-code converter (TDC-GPX) with a time resolution of 80 ps, field programmable gate array (FPGA), 1 Gbyte histogram memory and high-speed interface with a fiber-optic communication line. A real count rate is no less than 106 events/s. The De-Li-DAQ-2D module is implemented in the NIM standard. The De-Li-DAQ-2D module can operate in two modes: histogram mode and list mode.

  4. Combining spatial domain multiplexing and orbital angular momentum of photon-based multiplexing to increase the bandwidth of optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Murshid, Syed; Alanzi, Saud; Hridoy, Arnob; Lovell, Gregory L.; Parhar, Gurinder; Chakravarty, Abhijit; Chowdhury, Bilas

    2016-06-01

    Spatial domain multiplexing/space division multiplexing (SDM) can increase the bandwidth of existing and futuristic optical fibers by an order of magnitude or more. In the SDM technique, we launch multiple single-mode pigtail laser sources of the same wavelength into a carrier multimode fiber at different angles. The launching angles decide the output of the carrier fiber by allocating separate spatial locations for each channel. Each channel follows a helical trajectory while traversing the length of the carrier fiber, thereby allowing spatial reuse of optical frequencies. We launch light from five different single-mode pigtail laser sources (of same wavelength) at different angles (with respect to the axis of the carrier fiber) into the carrier fiber. Owing to helical propagation, five distinct concentric donut-shaped rings with negligible crosstalk at the output end of the fiber were obtained. These SDM channels also exhibit orbital angular momentum (OAM), thereby adding an extradegree of photon freedom. We present the experimental data of five spatially multiplexed channels and compare them with simulated results to show that this technique can potentially improve the data capacity of optical fibers by an order of magnitude: A factor of five using SDM and another factor of two using OAM.

  5. Design and Measurement of a Low-Noise 64-Channels Front-End Readout ASIC for CdZnTe Detectors

    SciTech Connect

    Gan, Bo; Wei, Tingcun; Gao, Wu; Liu, Hui; Hu, Yann

    2015-07-01

    Cadmium zinc telluride (CdZnTe) detectors, as one of the principal detectors for the next-generation X-ray and γ-ray imagers, have high energy resolution and supporting electrode patterning in the radiation environment at room-temperature. In the present, a number of internationally renowned research institutions and universities are actively using these detector systems to carry out researches of energy spectrum analysis, medical imaging, materials characterization, high-energy physics, nuclear plant monitoring, and astrophysics. As the most important part of the readout system for the CdZnTe detector, the front-end readout application specific integrated circuit (ASIC) would have an important impact on the performances of the whole detector system. In order to ensure the small signal to noise ratio (SNR) and sufficient range of the output signal, it is necessary to design a front-end readout ASIC with very low noise and very high dynamic range. In addition, radiation hardness should be considered when the detectors are utilized in the space applications and high energy physics experiments. In this paper, we present measurements and performances of a novel multi-channel radiation-hardness low-noise front-end readout ASIC for CdZnTe detectors. The readout circuits in each channel consist of charge sensitive amplifier, leakage current compensation circuit (LCC), CR-RC shaper, S-K filter, inverse proportional amplifier, peak detect and hold circuit (PDH), discriminator and trigger logic, time sequence control circuit and driving buffer. All of 64 readout channels' outputs enter corresponding inputs of a 64 channel multiplexer. The output of the mux goes directly out of the chip via the output buffer. The 64-channel readout ASIC is implemented using the TSMC 0.35 μm mixed-signal CMOS technology. The die size of the prototype chip is 2.7 mm x 8 mm. At room temperature, the equivalent noise level of a typical channel reaches 66 e{sup -} (rms) at zero farad for a power

  6. Novel Multiplexing Technique for Detector and Mixer Arrays

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; McGrath, William R.

    2001-01-01

    Future submillimeter and far-infrared space telescopes will require large-format (many 1000's of elements) imaging detector arrays to perform state-of-the-art astronomical observations. A crucial issue related to a focal plane array is a readout scheme which is compatible with large numbers of cryogenically-cooled (typically < 1 K) detectors elements. When the number of elements becomes of the order of thousands, the physical layout for individual readout amplifiers becomes nearly impossible to realize for practical systems. Another important concern is the large number of wires leading to a 0.1-0.3 K platform. In the case of superconducting transition edge sensors (TES), a scheme for time-division multiplexing of SQUID read-out amplifiers has been recently demonstrated. In this scheme the number of SQUIDs is equal to the number (N) of the detectors, but only one SQUID is turned on at a time. The SQUIDs are connected in series in each column of the array, so the number of wires leading to the amplifiers can be reduced, but it is still of the order of N. Another approach uses a frequency domain multiplexing scheme of the bolometer array. The bolometers are biased with ac currents whose frequencies are individual for each element and are much higher than the bolometer bandwidth. The output signals are connected in series in a summing loop which is coupled to a single SQUID amplifier. The total number of channels depends on the ratio between the SQUID bandwidth and the bolometer bandwidth and can be at least 100 according to the authors. An important concern about this technique is a contribution of the out-of-band Johnson noise which multiplies by factor N(exp 1/2) for each frequency channel. We propose a novel solution for large format arrays based on the Hadamard transform coding technique which requires only one amplifier to read out the entire array of potentially many 1000's of elements and uses approximately 10 wires between the cold stage and room temperature

  7. A nucleic acid strand displacement system for the multiplexed detection of tuberculosis-specific mRNA using quantum dots

    NASA Astrophysics Data System (ADS)

    Gliddon, H. D.; Howes, P. D.; Kaforou, M.; Levin, M.; Stevens, M. M.

    2016-05-01

    The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar range using only a standard laboratory plate reader. We demonstrate the utility of our QD-based system for the detection of two genes selected from a microarray-derived tuberculosis-specific gene expression signature. Levels of up- and downregulated gene transcripts comprising this signature can be combined to give a disease risk score, making the signature more amenable for use as a diagnostic marker. Our QD-based approach to detect these transcripts could pave the way for novel diagnostic assays for tuberculosis.The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar

  8. Field-based multiplex and quantitative assay platforms for diagnostics

    NASA Astrophysics Data System (ADS)

    Venkatasubbarao, Srivatsa; Dixon, C. Edward; Chipman, Russell; Scherer, Axel; Beshay, Manal; Kempen, Lothar U.; Chandra Sekhar, Jai Ganesh; Yan, Hong; Puccio, Ava; Okonkwo, David; McClain, Stephen; Gilbert, Noah; Vyawahare, Saurabh

    2011-06-01

    The U.S. military has a continued interest in the development of handheld, field-usable sensors and test kits for a variety of diagnostic applications, such as traumatic brain injury (TBI) and infectious diseases. Field-use presents unique challenges for biosensor design, both for the readout unit and for the biological assay platform. We have developed robust biosensor devices that offer ultra-high sensitivity and also meet field-use needs. The systems under development include a multiplexed quantitative lateral flow test strip for TBI diagnostics, a field test kit for the diagnosis of pathogens endemic to the Middle East, and a microfluidic assay platform with a label-free reader for performing complex biological automated assays in the field.

  9. A kind of multilevel authentication system for multiple-image by modulated real part synthesis and iterative phase multiplexing

    NASA Astrophysics Data System (ADS)

    Pan, Xuemei; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2016-04-01

    A kind of multilevel authentication system for multiple-image based on modulated real part synthesis and iterative phase multiplexing in the Fresnel domain is proposed. In the design process of the low-level authentication system, a series of normalized real part information are iteratively generated by phase retrieval algorithm in the Fresnel domain, and the final private keys for different individual low-level certification images can be fabricated by binary amplitude modulation, superposition, synthesis, and sampling; while in the design process of the high-level authentication system, the final private keys for different individual high-level certification images can be generated by iterative phase information encoding and multiplexing. During the high-level authentication, the meaningful certification image can be reconstructed by the inverse Fresnel transform with the corresponding correct private keys, meanwhile, the correlation coefficient is utilized as judgment criterion; while in the low-level authentication, with the help of correct keys, the noise-like image with meaningless information can be recovered, but a remarkable peak output in the nonlinear correlation coefficient can be generated, which is adopted as the criterion to judge whether the low-level authentication is successful or not. Theoretical analysis and numerical simulations both verify the feasibility of the proposed method.

  10. Genetic analysis of eight population groups living in Taiwan using a 13 X-chromosomal STR loci multiplex system.

    PubMed

    Hwa, Hsiao-Lin; Lee, James Chun-I; Chang, Yih-Yuan; Yin, Hsiang-Yi; Chen, Ya-Hui; Tseng, Li-Hui; Su, Yi-Ning; Ko, Tsang-Ming

    2011-01-01

    A 13 X-chromosomal short tandem repeat (STR) multiplex system (DXS6807, DXS8378, DSX9902, DXS7132, DXS9898, DXS6809, DXS6789, DXS7424, DXS101, GATA172D05, HPRTB, DXS8377, and DXS7423) was tested on 1,037 DNA samples from eight population groups currently living in Taiwan. Different distributions of the allelic frequencies in different populations were presented. DXS8377 and DXS101 were the two most polymorphic loci in these eight populations, whereas DXS7423 was the least informative marker in most of the populations studied. The genetic distances between the populations and the constructed phylogenetic tree revealed a long genetic distance between Asian and Caucasian populations as well as isolation of the Tao population. The phylogenetic tree grouped populations into clusters compatible with their ethnogeographic relationships. This 13 X-chromosomal short tandem repeat multiplex system offers a considerable number of polymorphic patterns in different populations. This system can be useful in forensic identification casework and ethnogeographic research.

  11. The development and application of a multiplex short tandem repeat (STR) system for identifying subspecies, individuals and sex in tigers.

    PubMed

    Zou, Zheng-Ting; Uphyrkina, Olga V; Fomenko, Pavel; Luo, Shu-Jin

    2015-07-01

    Poaching and trans-boundary trafficking of tigers and body parts are threatening the world's last remaining wild tigers. Development of an efficient molecular genetic assay for tracing the origins of confiscated specimens will assist in law enforcement and wildlife forensics for this iconic flagship species. We developed a multiplex genotyping system "tigrisPlex" to simultaneously assess 22 short tandem repeat (STR, or microsatellite) loci and a gender-identifying SRY gene, all amplified in 4 reactions using as little as 1 ng of template DNA. With DNA samples used for between-run calibration, the system generates STR genotypes that are directly compatible with voucher tiger subspecies genetic profiles, hence making it possible to identify subspecies via bi-parentally inherited markers. We applied "tigrisPlex" to 12 confiscated specimens from Russia and identified 6 individuals (3 females and 3 males), each represented by duplicated samples and all designated as Amur tigers (Panthera tigris altaica) with high confidence. This STR multiplex system can serve as an effective and versatile approach for genetic profiling of both wild and captive tigers as well as confiscated tiger products, fulfilling various conservation needs for identifying the origins of tiger samples.

  12. Increment of Access Points in Integrated System of Wavelength Division Multiplexed Passive Optical Network Radio over Fiber

    PubMed Central

    Amiri, I. S.; Alavi, S. E.; Soltanian, M. R. K.; Fisal, N.; Supa’at, A. S. M.; Ahmad, H.

    2015-01-01

    This paper describes a novel technique to increase the numbers of access points (APs) in a wavelength division multiplexed-passive optical network (WDM-PON) integrated in a 100 GHz radio-over-fiber (RoF). Eight multi-carriers separated by 25 GHz intervals were generated in the range of 193.025 to 193.200 THz using a microring resonator (MRR) system incorporating an add-drop filter system. All optically generated multi-carriers were utilized in an integrated system of WDM-PON-RoF for transmission of four 43.6 Gb/sec orthogonal frequency division multiplexing (OFDM) signals. Results showed that an acceptable BER variation for different path lengths up to 25 km was achievable for all four access points and thus the transmission of four OFDM channels is feasible for a 25 km standard single mode fiber (SSMF) path length. PMID:26153536

  13. Low-cost, multiplexed biosensor for disease diagnosis

    NASA Astrophysics Data System (ADS)

    Myatt, Christopher J.; Delaney, Marie; Todorof, Kathryn; Heil, James; Givens, Monique; Schooley, Robert T.; Lochhead, Michael J.

    2009-02-01

    Cost-effective disease diagnosis in resource-limited settings remains a critical global health challenge. Qualitative rapid tests based on lateral flow technology provide valuable screening information, but require relatively expensive confirmatory tests and generally lack quantitation. We report on a fluorescence technology that combines low cost instrumented readout with passive pumping in a disposable cartridge. The detection system utilizes a novel waveguide illumination approach in conjunction with commercial CMOS imagers. Total instrument cost in production are projected to be around $100 This cost structure and instrument ease of use will enable use in point-of-care settings, outside of centralized laboratories. The system has been used for detection and analysis of proteins, antibodies, nucleic acids, and cells. Here we will report first on our development of a multiplexed, array-based serology assay for HIV and common AIDS co-infections. Data will be presented for HIV/HCV antibody testing in human serum samples. In addition, we will present data on the use of the system for sensitive detection of bacterial RNA. Current detection limit for the model multiplexed RNA sandwich assay is 1 femtomolar target RNA. Finally, a high magnification version of the system is used to image immunostained human T cells.

  14. Developed and evaluated a multiplex mRNA profiling system for body fluid identification in Chinese Han population.

    PubMed

    Song, Feng; Luo, Haibo; Hou, Yiping

    2015-10-01

    In forensic casework, identification the cellular origin from a biological sample is crucial to the case investigation and reconstruction in crime scene. DNA/RNA co-extraction for STR typing and human body fluids identification has been proposed as an efficient and comprehensive assay for forensic analysis. Several cell-specific messenger RNA (mRNA) markers for identification of the body fluids have been proposed by previous studies. In this study, a novel multiplex mRNA profiling system included 19 markers was developed and performed by reverse transcription endpoint polymerase chain reaction (RT-PCR). The multiplex combined 3 housekeeping gene markers and 16 cell-specific markers that have been used to identify five types of human body fluids: peripheral blood, semen, saliva, vaginal secretions and menstrual blood. The specificity, sensitivity, stability and detectability of the mixture were explored in our study. Majority of the cell-specific mRNA markers showed high specificity, although cross-reactivity was observed sporadically. Specific profiling for per body fluid was obtained. Moreover, the interpretation guidelines for inference of body fluid types were performed according to the A. Lindenbergh et al. The scoring guidelines can be applied to any RNA multiplex, which was based on six different scoring categories (observed, observed and fits, sporadically observed and fits, not observed, sporadically observed, not reliable, and non-specific due to high input). The simultaneous extraction of DNA showed positive full or partial profiling results of all samples. It demonstrated that the approach of combined STR-profiling and RNA profiling was suitable and reliable to detect the donor and origin of human body fluids in Chinese Han population.

  15. Reflective variable optical attenuators and fibre ring lasers for wavelength-division multiplexing systems

    NASA Astrophysics Data System (ADS)

    Liu, He Liang

    Wavelength division multiplexing (WDM) optical fibre system is an important enabling technology to fulfill the demands for bandwidth in the modern information age. The main objective of this project is to study novel devices with the potential to enhance the performance of WDM systems. In particular, a novel reflective variable optical attenuator (RVOA) used for dynamic gain equalization (DGE) and fibre lasers based on an entirely new type of erbium-doped fibres with ultrawide tuning range were investigated theoretically and experimentally. We proposed a new type of RVOA device which could be potentially integrated with arrayed waveguide grating (AWG) to reduce the cost of DGE substantially. Initially, fibre-based RVOAs, fabricated with optical fibre components such as fibre coupler and Faraday rotator mirror, were investigated theoretically and experimentally. Larger attenuation range up to 22 dB was realized for fibre coupler-based ROVA with a Faraday rotator mirror and its polarization-dependent loss is about 0.5 dB. Then polymeric waveguide-based RVOAs were investigated theoretically and experimentally. Using an epoxy Novolak resin as core material and an UV-cured resin (Norland's NOA61) as cladding material, a polymeric waveguide RVOA was successfully fabricated. The dynamic 15 dB attenuation range was achieved and the PDL was less than 0.2 dB. The measured insertion loss of the polymeric waveguide RVOA was too large (about 18 dB) and was mainly induced by coupling loss, material loss and poor alignment. In the second part of the study, fibre ring lasers with continuous wavelength tuning over wide wavelength range and fibre ring lasers with discrete wavelength tuning were investigated. Tunable lasers are important devices in WDM systems because they could be employed as reserved sources and therefore avoiding the need to stock large inventory of lasers to cover the ITU-wavelength grid. In this project, erbium ions doped bismuth oxide glass fibres instead of

  16. Development of a 24-locus multiplex system to incorporate the core loci in the Combined DNA Index System (CODIS) and the European Standard Set (ESS).

    PubMed

    Guo, Fei; Shen, Hongying; Tian, Huaizhou; Jin, Ping; Jiang, Xianhua

    2014-01-01

    The 24-locus multiplex system allows co-amplification and fluorescent detection of 24 loci (23 STR loci and Amelogenin), including STR loci in the Combined DNA Index System (CODIS) and the ESS (European Standard Set) as well as five additional loci (D2S1338, D6S1043, D19S433, Penta D and Penta E) commonly used in commercial kits. It facilitates data sharing and minimizes adventitious matches within national or between international DNA databases. Additionally, the system can amplify directly from blood and buccal samples spotted on filter paper and swabs and reduce the cycling time to less than one hour and a half. Primers, internal size standard, allelic ladders and matrix standard set were designed and created in-house with a design strategy to work in this multiplex. Developmental validation experiments followed the Scientific Working Group on DNA Analysis Methods (SWGDAM) and the Chinese National Standard (GA/T815-2009) guidelines. The system was evaluated by species specificity, sensitivity, stability, precision and accuracy, case-type samples, population, mixture and PCR-based studies. The results demonstrate that the 24-locus multiplex system is a robust and reliable identification assay as required for forensic DNA typing and databasing.

  17. Low-power priority Address-Encoder and Reset-Decoder data-driven readout for Monolithic Active Pixel Sensors for tracker system

    NASA Astrophysics Data System (ADS)

    Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.

    2015-06-01

    Active Pixel Sensors used in High Energy Particle Physics require low power consumption to reduce the detector material budget, low integration time to reduce the possibilities of pile-up and fast readout to improve the detector data capability. To satisfy these requirements, a novel Address-Encoder and Reset-Decoder (AERD) asynchronous circuit for a fast readout of a pixel matrix has been developed. The AERD data-driven readout architecture operates the address encoding and reset decoding based on an arbitration tree, and allows us to readout only the hit pixels. Compared to the traditional readout structure of the rolling shutter scheme in Monolithic Active Pixel Sensors (MAPS), AERD can achieve a low readout time and a low power consumption especially for low hit occupancies. The readout is controlled at the chip periphery with a signal synchronous with the clock, allows a good digital and analogue signal separation in the matrix and a reduction of the power consumption. The AERD circuit has been implemented in the TowerJazz 180 nm CMOS Imaging Sensor (CIS) process with full complementary CMOS logic in the pixel. It works at 10 MHz with a matrix height of 15 mm. The energy consumed to read out one pixel is around 72 pJ. A scheme to boost the readout speed to 40 MHz is also discussed. The sensor chip equipped with AERD has been produced and characterised. Test results including electrical beam measurement are presented.

  18. Downlink Data Multiplexer

    NASA Technical Reports Server (NTRS)

    Holland, Douglas; Steele, Glen F.; Romero, Denise M.; Koudelka, Robert David

    2004-01-01

    A multiplexer/demultiplexer system has been developed to enable the transmission, over a single channel, of four data streams generated by a variety of sources at different (including variable) bit rates. In the original intended application, replicas of this multiplexer/demultiplexer system would be incorporated into the spacecraft-to-ground communication systems of the space shuttles. The multiplexer of each system would be installed in the spacecraft, where it would acquire and process data from such sources as commercial digital camcorders, video tape recorders, and the spacecraft telemetry system. The demultiplexer of each system would be installed in a ground station. Purely terrestrial systems of similar design could be attractive for use in situations in which there are requirements to transmit multiple streams of high-quality video data and possibly other data over single channels. The figure is a block diagram of the multiplexer as configured to process data received via three fiber-optic channels like those of the International Space Station and one electrical-cable channel that conforms to the Institute of Electrical and Electronic Engineers (IEEE) 1394 standard. (This standard consists of specifications of a high-speed serial data interface, the physical layer of which includes a cable known in the art as "FireWire." An IEEE 1394 interface can also transfer power between the components to which it is connected.) The fiber-optic channels carry packet and/or bit-stream signals that conform to the standards of the Consultative Committee for Space Data Systems (CCSDS). The IEEE 1394 interface accepts an isochronous signal like that from a digital camcorder or a video tape recorder. The processing of the four input data streams to combine them into one output stream is governed by a statistical multiplexing algorithm that features a flow-control capability and makes it possible to utilize the transmission channel with nearly 100-percent efficiency. This

  19. A training-aided MIMO equalization based on matrix transformation in the space division multiplexed fiber-optic transmission system

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoning; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Tian, Qinghua; Zhang, Qi; Tian, Feng; Li, Dengao; Zhao, Jumin; Wang, Renfan

    2016-10-01

    A novel training sequence is designed for the space division multiplexed fiber-optic transmission system in this paper. The training block is consisting of segmented sequence, which can be used to compensate time offset and distortion (such as dispersion) in the transmission link. The channel function can be obtained by one tap equalization in the receiver side. This paper designs the training sequence by adjusting the length of the training signals and implementing matrix transformation, to obtain the coefficient of equalizer for channel detect and equalization. This new training sequence reduces system complexity and improves transmission efficiency at the same time. Compared with blind equalization, the matrix transformation based training sequence can reduce system complexity, and perform targeted equalization to the mechanism of mode coupling in the space division optical fiber system. As a result, it can effectively improve signal transmission quality and reduce bit error rate.

  20. Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate

    NASA Astrophysics Data System (ADS)

    Hoshizawa, Taku; Shimada, Ken-ichi; Fujita, Kouji; Tada, Yukinobu

    2016-09-01

    Aiming at the realization of an optical data storage system with a large disc capacity and a high transfer rate suitable for digital data archiving, we have defined the specifications of an angular-multiplexing holographic data storage system with a disc capacity of 2 TB and a transfer rate of 1 Gbps on the basis of a run-length-limited (RLL) high-density recording method using RLL modulation. To realize the specifications, RLL turbo coding, a servo system for the reference beam angle, and a servo system for book tracking were newly invented. Also, to satisfy the specifications, a holographic disc and several key components were developed in cooperation with several specialty companies. Eventually, we confirmed a high-density recording of 2.4 Tbit/in.2 achieved by the RLL high-density recording method, using evaluation equipment complying with the specifications for single book recording.

  1. The data acquisition system for a fixed target experiment at NICA complex at JINR and its connection to the ATLAS TileCal readout electronics

    NASA Astrophysics Data System (ADS)

    Tomiwa, K. G.; Slepnev, I.; Bazylev, S.

    2015-10-01

    Today's large-scale science projects have always encountered challenges in processing large data flow from the experiments, the ATLAS detector records proton-proton collisions provided by the Large Hadron Collider (LHC) at CERN every 50 ns which results in a total data flow of 10 Pb/s. These data must be reduced to the science data product for further analysis, thus a very fast decisions need to be executed, to modify this large amounts of data at high rates. The capabilities required to support this scale of data movement is development and improvement of high-throughput electronics. The upgraded LHC will provide collisions at rates that will be at least 10 times higher than those of today due to it's luminosity by 2022. This will require a complete redesign of the read-out electronics and Processing Units (PU) in the Tile-calorimeter (TileCal) of the ATLAS experiment. A general purpose, high-throughput PU has been developed for the TileCal at CERN, by using several ARM-processors in cluster configuration. The PU is capable of handling large data throughput and apply advanced operations at high rates. This system has been proposed for the fixed target experiment at NICA complex to handle the first level processes and event building. The aim of this work is to have a look at the architecture of the data acquisition system (DAQ) of the fixed target experiment at the NICA complex at JINR, by compiling the data-flow requirements of all the subcomponents. Furthermore, the VME DAQ modules characteristics to control, triggering and data acquisition will be described in order to define the DAQ with maximum readout efficiency, no dead time and data selection and compression.

  2. First demonstration and detailed characterization of a multimode amplifier for Space Division Multiplexed transmission systems.

    PubMed

    Jung, Y; Alam, S; Li, Z; Dhar, A; Giles, D; Giles, I P; Sahu, J K; Poletti, F; Grüner-Nielsen, L; Richardson, D J

    2011-12-12

    We present the first demonstration of a multimode (two mode-group) erbium-doped fiber amplifier for Space Division Multiplexed (SDM) applications and demonstrate various design and performance features of such devices. In particular we experimentally demonstrate that differential modal gains can be controlled and reduced both by fiber design and control of the pump field distribution. Using a suitably designed fiber we demonstrate simultaneous modal gains of ~20 dB for different pair-wise combinations of spatial and polarization modes in an EDFA supporting amplification of 6 distinct modes.

  3. Multiplexed Holographic Data Storage in Bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Mehrl, David J.; Krile, Thomas F.

    1999-01-01

    Biochrome photosensitive films in particular Bacteriorhodopsin exhibit features which make these materials an attractive recording medium for optical data storage and processing. Bacteriorhodopsin films find numerous applications in a wide range of optical data processing applications; however the short-term memory characteristics of BR limits their applications for holographic data storage. The life-time of the BR can be extended using cryogenic temperatures [1], although this method makes the system overly complicated and unstable. Longer life-times can be provided in one modification of BR - the "blue" membrane BR [2], however currently available films are characterized by both low diffraction efficiency and difficulties in providing photoreversible recording. In addition, as a dynamic recording material, the BR requires different wavelengths for recording and reconstructing of optical data in order to prevent the information erasure during its readout. This fact also put constraints on a BR-based Optical Memory, due to information loss in holographic memory systems employing the two-lambda technique for reading-writing thick multiplexed holograms.

  4. Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Wong, Allan C. L.; Childs, Paul A.; Peng, Gang-Ding

    2006-02-01

    We present a multiplexed fibre Fizeau interferometer (FFI) and fibre Bragg grating (FBG) sensor system for simultaneous measurement of quasi-static strain and temperature. A combined spatial-frequency and wavelength- division multiplexing scheme is employed to multiplex the FFI and FBG sensors. A demodulation technique based on the discrete wavelet transform with signal processing enhancements is used to determine the measurand- induced physical changes of the sensors. The noise associated with the sensor signal is reduced by the block-level-thresholding wavelet denoising method, which is applied via the demodulation technique. This sensor system yields a high accuracy and resolution, and low crosstalk. It is well suited for long-term quasi-static measurements, especially for the structural health monitoring of large-scale structures.

  5. Joint mitigation of laser phase noise and fiber nonlinearity for polarization-multiplexed QPSK and 16-QAM coherent transmission systems.

    PubMed

    Morsy-Osman, Mohamed; Zhuge, Qunbi; Chen, Lawrence R; Plant, David V

    2011-12-12

    We propose the use of pilot-aided (PA) transmission, enabled by single-sideband-subcarrier modulation of both quadratures in the DSP-domain, in single-carrier systems to mitigate jointly laser phase noise and fiber nonlinearity. In addition to tolerance against laser phase noise, we show that the proposed scheme also improves the nonlinear tolerance of both polarization-division-multiplexed (PDM) QPSK and 16-QAM coherent transmission systems by increasing the maximum allowable launch power by 1 dB and 1.5 dB, respectively. The improved nonlinear performance of both systems also manifests itself as an increase in the maximum reach by 720 km and 480 km, respectively. Finally, when digital-to-analog converters (DACs) with lower bit resolutions are used at the transmitter, PA transmission is shown to preserve the same performance improvement over the non-PA case.

  6. Multiplex agarose gel electrophoresis system for variable number of tandem repeats genotyping: analysis example using Mycobacterium tuberculosis.

    PubMed

    Wada, Takayuki; Maeda, Shinji

    2013-04-01

    As one genotyping method for Mycobacterium tuberculosis, variable number of tandem repeats (VNTR) is a promising tool to trace the undefined transmission of tuberculosis, but it often requires large equipment such as a genetic analyzer for DNA fragment analysis or CE system to conduct systematic analyses. For convenient genotyping at low cost in laboratories, we designed a multiplex PCR system that is applicable to agarose gel electrophoresis using fluorescent PCR primers. For tuberculosis genotyping by VNTR, the copy quantities of minisatellite DNA must be determined in more than 12 loci. The system can halve laborious electrophoresis processes by presenting an image of two VNTR amplicons on a single lane. No expensive equipment is necessary for this method. Therefore, it is useful even in developing countries.

  7. Multiplex single cell quantification of rare RNA transcripts from protoplasts in a model plant system.

    PubMed

    Kadam, Ulhas S; Schulz, Burkhard; Irudayaraj, Joseph M K

    2017-03-16

    Here we demonstrate multiplex and simultaneous detection of four different rare RNA species from plant, Arabidopsis thaliana, using surface enhanced Raman spectroscopy and gold nanoprobes at single cell resolution. We show the applicability of nanoparticle-based Raman spectroscopic sensor to study intracellular RNA copies. First, we demonstrate that gold-nanoparticles decorate with Raman probes and carrying specific nucleic acid probe sequences can be uptaken by the protoplasts. We confirm the internalization of gold nanoprobes by TEM, ICP-MS, and fluorescence imaging. Second, we show the utility of a SERS platform to monitor individual alternatively spliced (AS) variants and miRNA copies within single cells. Finally, the distinctive spectral features of Raman-active dyes were exploited for multiplex analysis of AtPTB2, AtDCL2, miR156a, and miR172a. Furthermore, single cell studies were validated by in vitro quantification and evaluation of nanotoxicity of gold probes. Raman tag functionalized gold nanosensors yielded an approach for the tracking rare RNAs within the protoplasts. The SERS based approach for quantification of RNAs has capability to be a highly sensitive, accurate, and discerning method for single cell studies including AS variants quantification and rare miRNA detection in specific plant species. This article is protected by copyright. All rights reserved.

  8. Electrical delay line multiplexing for pulsed mode radiation detectors

    NASA Astrophysics Data System (ADS)

    Vinke, Ruud; Yeom, Jung Yeol; Levin, Craig S.

    2015-04-01

    Medical imaging systems are composed of a large number of position sensitive radiation detectors to provide high resolution imaging. For example, whole-body Positron Emission Tomography (PET) systems are typically composed of thousands of scintillation crystal elements, which are coupled to photosensors. Thus, PET systems greatly benefit from methods to reduce the number of data acquisition channels, in order to reduce the system development cost and complexity. In this paper we present an electrical delay line multiplexing scheme that can significantly reduce the number of readout channels, while preserving the signal integrity required for good time resolution performance. We experimented with two 4 × 4 LYSO crystal arrays, with crystal elements having 3 mm × 3 mm × 5 mm and 3 mm × 3 mm × 20 mm dimensions, coupled to 16 Hamamatsu MPPC S10931-050P SiPM elements. Results show that each crystal could be accurately identified, even in the presence of scintillation light sharing and inter-crystal Compton scatter among neighboring crystal elements. The multiplexing configuration degraded the coincidence timing resolution from ∼243 ps FWHM to ∼272 ps FWHM when 16 SiPM signals were combined into a single channel for the 4 × 4 LYSO crystal array with 3 mm × 3 mm × 20 mm crystal element dimensions, in coincidence with a 3 mm × 3 mm × 5 mm LYSO crystal pixel. The method is flexible to allow multiplexing configurations across different block detectors, and is scalable to an entire ring of detectors.

  9. Electrical delay line multiplexing for pulsed mode radiation detectors.

    PubMed

    Vinke, Ruud; Yeom, Jung Yeol; Levin, Craig S

    2015-04-07

    Medical imaging systems are composed of a large number of position sensitive radiation detectors to provide high resolution imaging. For example, whole-body Positron Emission Tomography (PET) systems are typically composed of thousands of scintillation crystal elements, which are coupled to photosensors. Thus, PET systems greatly benefit from methods to reduce the number of data acquisition channels, in order to reduce the system development cost and complexity. In this paper we present an electrical delay line multiplexing scheme that can significantly reduce the number of readout channels, while preserving the signal integrity required for good time resolution performance. We experimented with two 4 × 4 LYSO crystal arrays, with crystal elements having 3 mm × 3 mm × 5 mm and 3 mm × 3 mm × 20 mm dimensions, coupled to 16 Hamamatsu MPPC S10931-050P SiPM elements. Results show that each crystal could be accurately identified, even in the presence of scintillation light sharing and inter-crystal Compton scatter among neighboring crystal elements. The multiplexing configuration degraded the coincidence timing resolution from ∼243 ps FWHM to ∼272 ps FWHM when 16 SiPM signals were combined into a single channel for the 4 × 4 LYSO crystal array with 3 mm × 3 mm × 20 mm crystal element dimensions, in coincidence with a 3 mm × 3 mm × 5 mm LYSO crystal pixel. The method is flexible to allow multiplexing configurations across different block detectors, and is scalable to an entire ring of detectors.

  10. Electrical delay line multiplexing for pulsed mode radiation detectors

    PubMed Central

    Vinke, Ruud; Yeom, Jung Yeol; Levin, Craig S.

    2015-01-01

    Medical imaging systems are composed of a large number of position sensitive radiation detectors to provide high resolution imaging. For example, whole-body Positron Emission Tomography (PET) systems are typically composed of thousands of scintillation crystal elements, which are coupled to photosensors. Thus, PET systems greatly benefit from methods to reduce the number of data acquisition channels, in order to reduce the system development cost and complexity. In this paper we present an electrical delay line multiplexing scheme that can significantly reduce the number of readout channels, while preserving the signal integrity required for good time resolution performance. We experimented with two 4 × 4 LYSO crystal arrays, with crystal elements having 3 mm × 3 mm × 5 mm and 3 mm × 3 mm × 20 mm dimensions, coupled to 16 Hamamatsu MPPC S10931-050P SiPM elements. Results show that each crystal could be accurately identified, even in the presence of scintillation light sharing and inter-crystal Compton scatter among neighboring crystal elements. The multiplexing configuration degraded the coincidence timing resolution from ~ 243 ps FWHM to ~272 ps FWHM when 16 SiPM signals were combined into a single channel for the 4 × 4 LYSO crystal array with 3 mm × 3 mm × 20 mm crystal element dimensions, in coincidence with a 3 mm × 3 mm × 5 mm LYSO crystal pixel. The method is exible to allow multiplexing configurations across different block detectors, and is scalable to an entire ring of detectors. PMID:25768002

  11. Percolation in real multiplex networks

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Radicchi, Filippo

    2016-12-01

    We present an exact mathematical framework able to describe site-percolation transitions in real multiplex networks. Specifically, we consider the average percolation diagram valid over an infinite number of random configurations where nodes are present in the system with given probability. The approach relies on the locally treelike ansatz, so that it is expected to accurately reproduce the true percolation diagram of sparse multiplex networks with negligible number of short loops. The performance of our theory is tested in social, biological, and transportation multiplex graphs. When compared against previously introduced methods, we observe improvements in the prediction of the percolation diagrams in all networks analyzed. Results from our method confirm previous claims about the robustness of real multiplex networks, in the sense that the average connectedness of the system does not exhibit any significant abrupt change as its individual components are randomly destroyed.

  12. Readout of the upgraded ALICE-ITS

    NASA Astrophysics Data System (ADS)

    Szczepankiewicz, A.

    2016-07-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb-Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  13. Development of two multiplex PCR systems for the analysis of 12 X-chromosomal STR loci in a northwestern Italian population sample.

    PubMed

    Robino, C; Giolitti, A; Gino, S; Torre, C

    2006-09-01

    Two multiplex polymerase chain reaction systems for the automated profiling of 12 X-chromosomal short tandem repeat (STR) markers were developed. Multiplex A consisted of DXS6789, DXS6809, GATA172D05, DXS101, DXS8378, and DXS8377. Multiplex B consisted of DXS7132, DXS6800, DXS6801, DXS7424, HPRTB, and DXS10011. The set of amplified X-STRs was designed to include groups of closely linked markers (DXS101-DXS7424 and DXS6789-DXS6801-DXS6809) to generate highly informative haplotypes for kinship testing. A population genetics study of the 12 X-STRs was conducted in a northwestern Italian population sample (n=160, 80 women and 80 men). A diallelic pattern at locus DXS6789 was observed in one man.

  14. NASA Communications Division (NASCOM) Tracking and Data Relay Satellite System (TDRSS) shuttle multiplexer-demultiplexer data system (MDM) and supporting items

    NASA Technical Reports Server (NTRS)

    New, S. R.

    1981-01-01

    The multiplexer-demultiplexer (MDM) project included the design, documentation, manufacture, and testing of three MDM Data Systems. The equipment is contained in 59 racks, and includes more than 3,000 circuit boards and 600 microprocessors. Spares, circuit card testers, a master set of programmable integrated circuits, and a program development system were included as deliverables. All three MDM's were installed, and were operationally tested. The systems performed well with no major problems. The progress and problems analysis, addresses schedule conformance, new technology, items awaiting government approval, and project conclusions are summarized. All contract modifications are described.

  15. A Multiplexed, Two-Electrode Platform for Biosensing based on DNA-Mediated Charge Transport

    PubMed Central

    Furst, Ariel L.; Hill, Michael G.; Barton, Jacqueline K.

    2015-01-01

    We have developed a thin layer, multiplexed biosensing platform that features two working-electrode arrays for detecting small molecules, nucleic acid sequences, and DNA-binding proteins. DNA duplexes are patterned onto the primary electrode array, while a secondary electrode array is used both to initiate DNA monolayer formation, and for electrochemical readout via DNA-mediated charge transport (DNA CT) chemistry. Electrochemical reduction of Cu(phendione)22+ (phendione is 1,10-phenanthroline-5,6-dione) at the secondary electrodes induces covalent attachment via click chemistry of ethynyl-labeled DNA probe duplexes onto the primary electrodes that have been treated with azide-terminated alkythiols. Electrochemical impedance spectroscopy and cyclic voltammetry confirm that catalyst activation at the secondary electrode is essential to maintain the integrity of the DNA monolayer. Electrochemical readout of DNA CT processes that occur at the primary electrode is accomplished at the secondary electrode. The two-electrode system enables the platform to function as a collector-generator using either ferrocyanide or ferricyanide as mediators with methylene blue and DNA charge transport. Electrochemical measurements at the secondary electrode eliminate the need for large background corrections. The resulting sensitivity of this platform enables the reliable and simultaneous detection of femtomoles of the transcription factors TATA-binding protein and CopG on a single multiplexed device. PMID:26042916

  16. Free-Space optical interconnects for cable-less readout in particle physics detectors

    SciTech Connect

    Chramowicz, John; Kwan, Simon; Moretti, Tony; Sugg, Alan; Prosser, Alan; /Fermilab

    2010-10-01

    Particle physics detectors utilize readout data links requiring a complicated network of copper wires or optical fibers. These links are both massive and costly. Upgrades to such detectors may require additional bandwidth to be provisioned with limited space available to route new cables or fibers. In contrast, free-space optical interconnects will offer cable-less readout, thereby resulting in significant reductions of material and labor. A collaborative effort between Fermilab and Vega Wave Systems is pursuing the development of a unique free-space optical link design that utilizes the transparency of silicon at wavelengths including 1310 nm and multiple wavelengths used in standard telecommunications applications such as coarse wavelength division multiplexing (CWDM). The first step in the pursuit of that design is a proof that the concept may be viable. To that end, experiments have been performed to characterize the bit error rate performance of a prototype link over a free-space optical path and through doped silicon at multi-gigabit rates. These experiments have demonstrated that operation within acceptable bit error rates is possible using single and multiple wavelength transmission arrangements.

  17. Digitial readout for microwave kinetic inductance detectors and applications in high time resolution astronomy

    NASA Astrophysics Data System (ADS)

    Strader, Matthew James

    This dissertation spans two topics relating to optical to near-infrared astronomical cameras built around Microwave Kinetic Inductance Detectors (MKIDs). The first topic is the development of a digital readout system for 10- to 30-kilopixel arrays of MKIDs. MKIDs are superconducting detectors that can detect individual photons with a wide range of wavelengths with high time resolution (SI{2}{micro s}) and low energy resolution. The advantage of MKIDs over other low temperature detectors with similar capabilities is that it is relatively straightforward to multiplex MKIDs into large arrays. All the complexity of readout is in room temperature electronics. This work discusses the implementation and programming of these electronics. The second part of this work demonstrates the capabilities of the prototype optical and near-infrared MKID instrument with observations of pulsars. Detecting optical pulsations in these objects require high time resolution and low noise. The discovery of a correlation between the brightness of optical pulses from the Crab pulsar and the time of arrival of coincident giant radio pulses is presented. The search for optical pulses from a millisecond pulsar J0337+1715 is discussed along with a new upper limit on the brightness of its optical pulses.

  18. Multifunction optical filter with a Michelson-Gires-Tournois interferometer for wavelength-division-multiplexed network system applications.

    PubMed

    Dingel, B B; Izutsu, M

    1998-07-15

    We propose using a novel multifunction optical filter with a Michelson-Gires-Tournois interferometer (MGTI) for future smart wavelength-division-multiplexed network system applications. The MGTI filter is a typical Michelson interferometer in which one of its reflecting mirrors is replaced with a Gires-Tournois resonator. One unique feature of this device is that it can function as a channel-passing (CP), a channel-dropping (CD), or a wide-bandpass (BP) filter, depending on the interferometer arm-length difference. Other interesting features are that (1) the linewidths of both the CP and the CD filter are twice as narrow as that of a typical Fabry-Perot filter with similar parameters, (2) theoretical visibility is always unity regardless of the mirror reflectance value, and (3) the BP filter has an excellent boxlike response function. Numerical results showing these characteristics are presented.

  19. The multianalyser system of the three axes neutron spectrometer PUMA: Pilot experiments with the innovative multiplex technique

    NASA Astrophysics Data System (ADS)

    Sobolev, Oleg; Hoffmann, Ron; Gibhardt, Holger; Jünke, Norbert; Knorr, Andreas; Meyer, Volker; Eckold, Götz

    2015-02-01

    A new type of multiplex technique for three axes neutron spectrometers has been realized and successfully commissioned at the PUMA spectrometer at FRM II. Consisting of eleven analyser-detector channels which can be configured individually, this technique is especially suitable for kinetic experiments where a single excitation spectrum is recorded as a function of time without the need to move the spectrometer. On a time-scale of seconds an entire spectrum can be recorded thus allowing users to monitor changes during fast kinetic processes in single shot experiments without the need for stroboscopic techniques. Moreover, the multianalyser system provides an efficient and rapid tool for mapping excitations in (Q,ω)-space. The results of pilot experiments demonstrate the performance of this new technique and a user-friendly software is presented which assists users during their experiments.

  20. The RD53 collaboration's SystemVerilog-UVM simulation framework and its general applicability to design of advanced pixel readout chips

    NASA Astrophysics Data System (ADS)

    Marconi, S.; Conti, E.; Placidi, P.; Christiansen, J.; Hemperek, T.

    2014-10-01

    The foreseen Phase 2 pixel upgrades at the LHC have very challenging requirements for the design of hybrid pixel readout chips. A versatile pixel simulation platform is as an essential development tool for the design, verification and optimization of both the system architecture and the pixel chip building blocks (Intellectual Properties, IPs). This work is focused on the implemented simulation and verification environment named VEPIX53, built using the SystemVerilog language and the Universal Verification Methodology (UVM) class library in the framework of the RD53 Collaboration. The environment supports pixel chips at different levels of description: its reusable components feature the generation of different classes of parameterized input hits to the pixel matrix, monitoring of pixel chip inputs and outputs, conformity checks between predicted and actual outputs and collection of statistics on system performance. The environment has been tested performing a study of shared architectures of the trigger latency buffering section of pixel chips. A fully shared architecture and a distributed one have been described at behavioral level and simulated; the resulting memory occupancy statistics and hit loss rates have subsequently been compared.

  1. Use of a Hierarchical Oligonucleotide Primer Extension Approach for Multiplexed Relative Abundance Analysis of Methanogens in Anaerobic Digestion Systems

    PubMed Central

    Chuang, Hui-Ping; Hsu, Mao-Hsuan; Chen, Wei-Yu

    2013-01-01

    In this study, we established a rapid multiplex method to detect the relative abundances of amplified 16S rRNA genes from known cultivatable methanogens at hierarchical specificities in anaerobic digestion systems treating industrial wastewater and sewage sludge. The method was based on the hierarchical oligonucleotide primer extension (HOPE) technique and combined with a set of 27 primers designed to target the total archaeal populations and methanogens from 22 genera within 4 taxonomic orders. After optimization for their specificities and detection sensitivity under the conditions of multiple single-nucleotide primer extension reactions, the HOPE approach was applied to analyze the methanogens in 19 consortium samples from 7 anaerobic treatment systems (i.e., 513 reactions). Among the samples, the methanogen populations detected with order-level primers accounted for >77.2% of the PCR-amplified 16S rRNA genes detected using an Archaea-specific primer. The archaeal communities typically consisted of 2 to 7 known methanogen genera within the Methanobacteriales, Methanomicrobiales, and Methanosarcinales and displayed population dynamic and spatial distributions in anaerobic reactor operations. Principal component analysis of the HOPE data further showed that the methanogen communities could be clustered into 3 distinctive groups, in accordance with the distribution of the Methanosaeta, Methanolinea, and Methanomethylovorans, respectively. This finding suggested that in addition to acetotrophic and hydrogenotrophic methanogens, the methylotrophic methanogens might play a key role in the anaerobic treatment of industrial wastewater. Overall, the results demonstrated that the HOPE approach is a specific, rapid, and multiplexing platform to determine the relative abundances of targeted methanogens in PCR-amplified 16S rRNA gene products. PMID:24077716

  2. Reducing multiplexing artifacts in multi-pinhole SPECT with a stacked silicon-germanium system: a simulation study.

    PubMed

    Johnson, Lindsay C; Shokouhi, Sepideh; Peterson, Todd E

    2014-12-01

    In pinhole single photon emission computed tomography (SPECT), multi-pinhole collimators can increase sensitivity but may lead to projection overlap, or multiplexing, which can cause image artifacts. In this work, we explore whether a stacked-detector configuration with a germanium and a silicon detector, used with 123I (27-32, 159 keV), where little multiplexing occurs in the Si projections, can reduce image artifacts caused by highly-multiplexed Ge projections. Simulations are first used to determine a reconstruction method that combines the Si and Ge projections to maximize image quality. Next, simulations of different pinhole configurations (varying projection multiplexing) in conjunction with digital phantoms are used to examine whether additional Si projections mitigate artifacts from the multiplexing in the Ge projections. Reconstructed images using both Si and Ge data are compared to those using Ge data alone. Normalized mean-square error and normalized standard deviation provide a quantitative evaluation of reconstructed images' error and noise, respectively, and are used to evaluate the impact of the additional nonmultiplexed data on image quality. For a qualitative comparison, the differential point response function is used to examine multiplexing artifacts. Results show that in cases of highly-multiplexed Ge projections, the addition of low-multiplexed Si projections helps to reduce image artifacts both quantitatively and qualitatively.

  3. A multiplex (m)RNA-profiling system for the forensic identification of body fluids and contact traces.

    PubMed

    Lindenbergh, Alexander; de Pagter, Mirjam; Ramdayal, Geeta; Visser, Mijke; Zubakov, Dmitry; Kayser, Manfred; Sijen, Titia

    2012-09-01

    In current forensic practice, information about the possible biological origin of forensic traces is mostly determined using protein-based presumptive testing. Recently, messenger RNA-profiling has emerged as an alternative strategy to examine the biological origin. Here we describe the development of a single multiplex mRNA-based system for the discrimination of the most common forensic body fluids as well as skin cells. A DNA/RNA co-isolation protocol was established that results in DNA yields equivalent to our standard in-house validated DNA extraction procedure which uses silica-based columns. An endpoint RT-PCR assay was developed that simultaneously amplifies 19 (m)RNA markers. This multiplex assay analyses three housekeeping, three blood, two saliva, two semen, two menstrual secretion, two vaginal mucosa, three general mucosa and two skin markers. The assay has good sensitivity as full RNA profiles for blood, semen and saliva were obtained when using ≥0.05 μL body fluid starting material whereas full DNA profiles were obtained with ≥0.1 μL. We investigated the specificity of the markers by analysing 15 different sets of each type of body fluid and skin with each set consisting of 8 individuals. Since skin markers have not been incorporated in multiplex endpoint PCR assays previously, we analysed these markers in more detail. Interestingly, both skin markers gave a positive result in samplings of the hands, feet, back and lips but negative in tongue samplings. Positive identification (regarding both DNA- and RNA-profiling) was obtained for specimens stored for many years, e.g. blood (28 years-old), semen (28 years-old), saliva (6 years-old), skin (10 years-old) and menstrual secretion (4 years-old). The described approach of combined DNA- and RNA-profiling of body fluids and contact traces assists in the interpretation of forensic stains by providing information about not only the donor(s) that contributed to the stain but also by indicating which cell

  4. Detection of Mycobacterium chelonae, Mycobacterium abscessus Group, and Mycobacterium fortuitum Complex by a Multiplex Real-Time PCR Directly from Clinical Samples Using the BD MAX System.

    PubMed

    Rocchetti, Talita T; Silbert, Suzane; Gostnell, Alicia; Kubasek, Carly; Campos Pignatari, Antonio C; Widen, Raymond

    2017-03-01

    A new multiplex PCR test was designed to detect Mycobacterium chelonae, Mycobacterium abscessus group, and Mycobacterium fortuitum complex on the BD MAX System. A total of 197 clinical samples previously submitted for mycobacterial culture were tested using the new protocol. Samples were first treated with proteinase K, and then each sample was inoculated into the BD MAX Sample Buffer Tube. Extraction and multiplex PCR were performed by the BD MAX System, using the BD MAX ExK TNA-3 extraction kit and BD TNA Master Mix, along with specific in-house designed primers and probes for each target. The limit of detection of each target, as well as specificity, was evaluated. Of 197 clinical samples included in this study, 133 were positive and 60 were negative for mycobacteria by culture, and another 4 negative samples were spiked with M. chelonae ATCC 35752. The new multiplex PCR on the BD MAX had 97% concordant results with culture for M. abscessus group detection, 99% for M. chelonae, and 100% for M. fortuitum complex. The new multiplex PCR test performed on the BD MAX System proved to be a sensitive and specific test to detect M. chelonae, M. abscessus group, and M. fortuitum complex by real-time PCR on an automated sample-in results-out platform.

  5. Raman-based microarray readout: a review.

    PubMed

    Haisch, Christoph

    2016-07-01

    For a quarter of a century, microarrays have been part of the routine analytical toolbox. Label-based fluorescence detection is still the commonest optical readout strategy. Since the 1990s, a continuously increasing number of label-based as well as label-free experiments on Raman-based microarray readout concepts have been reported. This review summarizes the possible concepts and methods and their advantages and challenges. A common label-based strategy is based on the binding of selective receptors as well as Raman reporter molecules to plasmonic nanoparticles in a sandwich immunoassay, which results in surface-enhanced Raman scattering signals of the reporter molecule. Alternatively, capture of the analytes can be performed by receptors on a microarray surface. Addition of plasmonic nanoparticles again leads to a surface-enhanced Raman scattering signal, not of a label but directly of the analyte. This approach is mostly proposed for bacteria and cell detection. However, although many promising readout strategies have been discussed in numerous publications, rarely have any of them made the step from proof of concept to a practical application, let alone routine use. Graphical Abstract Possible realization of a SERS (Surface-Enhanced Raman Scattering) system for microarray readout.

  6. PANDA straw tube detectors and readout

    NASA Astrophysics Data System (ADS)

    Strzempek, P.

    2016-07-01

    PANDA is a detector under construction dedicated to studies of production and interaction of particles in the charmonium mass range using antiproton beams in the momentum range of 1.5 - 15 GeV/c at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt. PANDA consists of two spectrometers: a Target Spectrometer with a superconducting solenoid and a Forward Spectrometer using a large dipole magnet and covering the most forward angles (Θ < 10 °). In both spectrometers, the particle's trajectories in the magnetic field are measured using self-supporting straw tube detectors. The expected high count rates, reaching up to 1 MHz/straw, are one of the main challenges for the detectors and associated readout electronics. The paper presents the readout chain of the tracking system and the results of tests performed with realistic prototype setups. The readout chain consists of a newly developed ASIC chip (PASTTREC < PANDASTTReadoutChip >) with amplification, signal shaping, tail cancellation, discriminator stages and Time Readout Boards as digitizer boards.

  7. Navigability of multiplex temporal network

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Song, Qiao-Zhen

    2017-01-01

    Real world complex systems have multiple levels of relationships and in many cases, they need to be modeled as multiplex networks where the same nodes can interact with each other in different layers, such as social networks. However, social relationships only appear at prescribed times so the temporal structures of edge activations can also affect the dynamical processes located above them. To consider both factors are simultaneously, we introduce multiplex temporal networks and propose three different walk strategies to investigate the concurrent dynamics of random walks and the temporal structure of multiplex networks. Thus, we derive analytical results for the multiplex centrality and coverage function in multiplex temporal networks. By comparing them with the numerical results, we show how the underlying topology of the layers and the walk strategy affect the efficiency when exploring the networks. In particular, the most interesting result is the emergence of a super-diffusion process, where the time scale of the multiplex is faster than that of both layers acting separately.

  8. Breakup of loosely bound nuclei at intermediate energies for nuclear astrophysics and the development of a position sensitive microstrip detector system and its readout electronics using ASICs technologies

    SciTech Connect

    Bertulani, Carlos A.

    2016-01-12

    The work performed under this grant has led to the development of a detection system that will be used to measure reaction rates for proton or neutron capture reactions at stellar energies on radioactive ions far from stability. The reaction rates are needed to better understand the physics of nucleosynthesis in explosive stellar processes such as supernovae and x-ray burst events. The radioactive ions will be produced at the Radioactive Ion Beam Facility (RIBF) at RIKEN near Tokyo, Japan. During the course of this work, the group involved in this project has expanded by several institutions in Europe and Japan and now involves collaborators from the U.S., Japan, Hungary, Romania, Germany, Spain, Italy, China, and South Korea. As part of the project, a novel design based on large-area silicon detectors has been built and tested. The work has involved mechanical construction of a special purpose vacuum chamber, with a precision mounting system for the silicon detectors, development of a new ASICs readout system that has applications with a wide variety of silicon detector systems, and the development of a data acquisition system that is integrated into the computer system being used at RIBF. The parts noted above that are needed to carry out the research program are completed and ready for installation. Several approved experiments that will use this system will be carried out in the near future. The experimental work has been delayed due to a large increase in the cost and availability of electrical power for RIBF that occurred following the massive earthquake and tsunami that hit Japan in the spring of 2011. Another component of the research carried out with this grant involved developing the theoretical tools that are required to extract the information from the experiments that is needed to determine the stellar reaction rates. The tools developed through this part of the work will be made freely available for general use.

  9. Efficient exploration of multiplex networks

    NASA Astrophysics Data System (ADS)

    Battiston, Federico; Nicosia, Vincenzo; Latora, Vito

    2016-04-01

    Efficient techniques to navigate networks with local information are fundamental to sample large-scale online social systems and to retrieve resources in peer-to-peer systems. Biased random walks, i.e. walks whose motion is biased on properties of neighbouring nodes, have been largely exploited to design smart local strategies to explore a network, for instance by constructing maximally mixing trajectories or by allowing an almost uniform sampling of the nodes. Here we introduce and study biased random walks on multiplex networks, graphs where the nodes are related through different types of links organised in distinct and interacting layers, and we provide analytical solutions for their long-time properties, including the stationary occupation probability distribution and the entropy rate. We focus on degree-biased random walks and distinguish between two classes of walks, namely those whose transition probability depends on a number of parameters which is extensive in the number of layers, and those whose motion depends on intrinsically multiplex properties of the neighbouring nodes. We analyse the effect of the structure of the multiplex network on the steady-state behaviour of the walkers, and we find that heterogeneous degree distributions as well as the presence of inter-layer degree correlations and edge overlap determine the extent to which a multiplex can be efficiently explored by a biased walk. Finally we show that, in real-world multiplex transportation networks, the trade-off between efficient navigation and resilience to link failure has resulted into systems whose diffusion properties are qualitatively different from those of appropriately randomised multiplex graphs. This fact suggests that multiplexity is an important ingredient to include in the modelling of real-world systems.

  10. Multi-channel detector readout method and integrated circuit

    DOEpatents

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2004-05-18

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  11. Multi-channel detector readout method and integrated circuit

    SciTech Connect

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2006-12-12

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  12. A low-cost, multiplexed μECoG system for high-density recordings in freely-moving rodents

    PubMed Central

    Wang, Charles; Chiang, Chia-Han; Woods, Virginia; Palopoli-Trojani, Kay; Bossi, Silvia; Froemke, Robert C.; Viventi, Jonathan

    2016-01-01

    Objective Micro-electrocorticography (μECoG) offers a minimally invasive neural interface with high spatial resolution over large areas of cortex. However, electrode arrays with many contacts that are individually wired to external recording systems are cumbersome and make recordings in freely-behaving rodents challenging. We report a novel high-density 60-electrode system for μECoG recording in freely-moving rats. Approach Multiplexed headstages overcome the problem of wiring complexity by combining signals from many electrodes to a smaller number of connections We have developed a low-cost, multiplexed recording system with 60 contacts at 406 μm spacing. We characterized the quality of the electrode signals using multiple metrics that tracked spatial variation, evoked-response detectability, and decoding value. Performance of the system was validated both in anesthetized animals and freely-moving awake animals. Main results We recorded μECoG signals over the primary auditory cortex, measuring responses to acoustic stimuli across all channels. Single-trial responses had high signal-to-noise ratios (up to 25 dB under anesthesia), and were used to rapidly measure network topography within ~10 seconds by constructing all single-channel receptive fields in parallel. We characterized evoked potential amplitudes and spatial correlations across the array in the anesthetized and awake animals. Recording quality in awake animals was stable for at least 30 days. Finally, we used these responses to accurately decode auditory stimuli on single trials. Significance This study introduces (1) a μECoG recording system based on practical hardware design and (2) a rigorous analytical method for characterizing the signal characteristics of μECoG electrode arrays. This methodology can be applied to evaluate the fidelity and lifetime of any μECoG electrode array. Our μECoG-based recording system is accessible and will be useful for studies of perception and decision-making in

  13. A low-cost, multiplexed μECoG system for high-density recordings in freely moving rodents

    NASA Astrophysics Data System (ADS)

    Insanally, Michele; Trumpis, Michael; Wang, Charles; Chiang, Chia-Han; Woods, Virginia; Palopoli-Trojani, Kay; Bossi, Silvia; Froemke, Robert C.; Viventi, Jonathan

    2016-04-01

    Objective. Micro-electrocorticography (μECoG) offers a minimally invasive neural interface with high spatial resolution over large areas of cortex. However, electrode arrays with many contacts that are individually wired to external recording systems are cumbersome and make recordings in freely behaving rodents challenging. We report a novel high-density 60-electrode system for μECoG recording in freely moving rats. Approach. Multiplexed headstages overcome the problem of wiring complexity by combining signals from many electrodes to a smaller number of connections. We have developed a low-cost, multiplexed recording system with 60 contacts at 406 μm spacing. We characterized the quality of the electrode signals using multiple metrics that tracked spatial variation, evoked-response detectability, and decoding value. Performance of the system was validated both in anesthetized animals and freely moving awake animals. Main results. We recorded μECoG signals over the primary auditory cortex, measuring responses to acoustic stimuli across all channels. Single-trial responses had high signal-to-noise ratios (SNR) (up to 25 dB under anesthesia), and were used to rapidly measure network topography within ∼10 s by constructing all single-channel receptive fields in parallel. We characterized evoked potential amplitudes and spatial correlations across the array in the anesthetized and awake animals. Recording quality in awake animals was stable for at least 30 days. Finally, we used these responses to accurately decode auditory stimuli on single trials. Significance. This study introduces (1) a μECoG recording system based on practical hardware design and (2) a rigorous analytical method for characterizing the signal characteristics of μECoG electrode arrays. This methodology can be applied to evaluate the fidelity and lifetime of any μECoG electrode array. Our μECoG-based recording system is accessible and will be useful for studies of perception and decision

  14. System performance analysis of time-division-multiplexing passive optical network using directly modulated lasers or colorless optical network units

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoxue; Guo, Lei; Liu, Yejun; Zhou, Yufang

    2015-05-01

    As a promising technology for broadband communication, passive optical network (PON) has been deployed to support the last-mile broadband access network. In particular, time-division-multiplexing PON (TDM-PON) has been widely used owing to its mature technology and low cost. To practically implement TDM-PONs, the combination of intensity modulation and direct detection is a very promising technique because it achieves cost reduction in system installation and maintenance. However, the current intensity-modulation and direct-detection TDM-PON still suffers from some problems, which mainly include a high-power penalty, detrimental Brillouin backscattering (BB), and so on. Thus, using directly modulated lasers (DMLs) and colorless optical network units (ONUs), respectively, two intensity-modulation and direct-detection TDM-PON architectures are proposed. Using VPI (an optical simulation software developed by VPIphotonics company) simulators, we first analyze the influences on DML-based intensity-modulation and direct-detection TDM-PON (system 1) performances, which mainly include bit error rate (BER) and power penalty. Next, the BB effect on the BER of the intensity-modulation and direct-detection TDM-PON that uses colorless ONUs (system 2) is also investigated. The simulation results show that: (1) a low-power penalty is achieved without degrading the BER of system 1, and (2) the BB can be effectively reduced using phase modulation of the optical carrier in system 2.

  15. A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants.

    PubMed

    Ma, Xingliang; Zhang, Qunyu; Zhu, Qinlong; Liu, Wei; Chen, Yan; Qiu, Rong; Wang, Bin; Yang, Zhongfang; Li, Heying; Lin, Yuru; Xie, Yongyao; Shen, Rongxin; Chen, Shuifu; Wang, Zhi; Chen, Yuanling; Guo, Jingxin; Chen, Letian; Zhao, Xiucai; Dong, Zhicheng; Liu, Yao-Guang

    2015-08-01

    CRISPR/Cas9 genome targeting systems have been applied to a variety of species. However, most CRISPR/Cas9 systems reported for plants can only modify one or a few target sites. Here, we report a robust CRISPR/Cas9 vector system, utilizing a plant codon optimized Cas9 gene, for convenient and high-efficiency multiplex genome editing in monocot and dicot plants. We designed PCR-based procedures to rapidly generate multiple sgRNA expression cassettes, which can be assembled into the binary CRISPR/Cas9 vectors in one round of cloning by Golden Gate ligation or Gibson Assembly. With this system, we edited 46 target sites in rice with an average 85.4% rate of mutation, mostly in biallelic and homozygous status. We reasoned that about 16% of the homozygous mutations in rice were generated through the non-homologous end-joining mechanism followed by homologous recombination-based repair. We also obtained uniform biallelic, heterozygous, homozygous, and chimeric mutations in Arabidopsis T1 plants. The targeted mutations in both rice and Arabidopsis were heritable. We provide examples of loss-of-function gene mutations in T0 rice and T1 Arabidopsis plants by simultaneous targeting of multiple (up to eight) members of a gene family, multiple genes in a biosynthetic pathway, or multiple sites in a single gene. This system has provided a versatile toolbox for studying functions of multiple genes and gene families in plants for basic research and genetic improvement.

  16. Design of a 12-bit 1 MS/s SAR-ADC for front-end readout of 32-channel CZT detector imaging system

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wei, Tingcun; Li, Bo; Guo, Panjie; Hu, Yongcai

    2015-06-01

    A 12-bit 1MS/s SAR-ADC for the front-end readout of a 32-channel CZT detector imaging system is presented. In order to improve the performances of the ADC, several techniques are proposed. First, a novel offset cancellation method for comparator is proposed, in which no any capacitor is introduced in the signal pathway, thus it has faster operation speed than traditional one. Second, the architecture of unit capacitor array is adopted in the charge-redistribution DAC to reduce the capacitor mismatch. Third, the radiation-hardened ability is enhanced through circuit and layout design. The prototype chip was fabricated using a TSMC 0.35 um 2P4M CMOS process. At a 3.3/5 V power supply, the proposed SAR-ADC achieves 67.64 dB SINAD at 1MS/s, consumes 10 mW power and occupies a core area of 1180×1080 um2.

  17. Measuring and modeling correlations in multiplex networks

    NASA Astrophysics Data System (ADS)

    Nicosia, Vincenzo; Latora, Vito

    2015-09-01

    The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance.

  18. MEMS Terahertz Focal Plane Array With Optical Readout

    DTIC Science & Technology

    2016-06-01

    THz sensing can be achieved by integrating a metamaterial absorber with bi-material legs to form a sensor . Moveable mirror- like surfaces on the...optical readout system. In this thesis, the construction of the optical readout system for characterization of sensor pixels as well as THz imaging is...THz sensing can be achieved by integrating a metamaterial absorber with bi-material legs to form a sensor . Moveable mirror-like surfaces on the

  19. Characterization of Silicon Detector Readout Electronics

    SciTech Connect

    Jones, M.

    2015-07-22

    Configuration and calibration of the front-end electronics typical of many silicon detector configurations were investigated in a lab activity based on a pair of strip sensors interfaced with FSSR2 read-out chips and an FPGA. This simple hardware configuration, originally developed for a telescope at the Fermilab Test Beam Facility, was used to measure thresholds and noise on individual readout channels and to study the influence that different configurations of the front-end electronics had on the observed levels of noise in the system. An understanding of the calibration and operation of this small detector system provided an opportunity to explore the architecture of larger systems such as those currently in use at LHC experiments.

  20. Impact of tunable laser wavelength drift in a base-band and sub-carrier multiplexed system

    NASA Astrophysics Data System (ADS)

    Connolly, E.; Kaszubowska-Anandarajah, A.; Perry, P.; Barry, L. P.

    2008-08-01

    The potential use of very densely spaced wavelengths in FTTx systems to carry modest bit rate broadband connections can be implemented either with conventional base-band (BB) intensity modulation or using sub-carrier multiplexing (SCM) using Radio carriers. Such systems will typically use a long time frame time-sharing system to share a transmitting laser between a number of users. The impact of the adjacent channel interference due to wavelength drift of a tunable laser (TL) in such a system has been characterised for both the BB and SCM approaches. In the experiments described, a laser operating on a fixed wavelength represents the desired channel and an interferer is produced by using a TL that switches periodically between two other channels, one of which is adjacent to the desired channel. Although the TL output is blanked during the main switching transient, some wavelength drift occurs after the end of the blanking period which can cause interference to the adjacent channel. The BER measurements on the desired channel show that SCM is more resistant to this interference, allowing for closer channel spacing. For the TL tested, the BB data shows an error floor >1e-4 while the SCM data gave error free performance with a power penalty of ˜1.2 dB at 1e-9 in comparison to the back-to-back case.

  1. Structural measures for multiplex networks

    NASA Astrophysics Data System (ADS)

    Battiston, Federico; Nicosia, Vincenzo; Latora, Vito

    2014-03-01

    Many real-world complex systems consist of a set of elementary units connected by relationships of different kinds. All such systems are better described in terms of multiplex networks, where the links at each layer represent a different type of interaction between the same set of nodes rather than in terms of (single-layer) networks. In this paper we present a general framework to describe and study multiplex networks, whose links are either unweighted or weighted. In particular, we propose a series of measures to characterize the multiplexicity of the systems in terms of (i) basic node and link properties such as the node degree, and the edge overlap and reinforcement, (ii) local properties such as the clustering coefficient and the transitivity, and (iii) global properties related to the navigability of the multiplex across the different layers. The measures we introduce are validated on a genuinely multiplex data set of Indonesian terrorists, where information among 78 individuals are recorded with respect to mutual trust, common operations, exchanged communications, and business relationships.

  2. A THIN-LAYER LIF THERMOLUMINESCENCE DOSEMETER SYSTEM WITH FAST READOUT FOR THE USE IN PERSONAL DOSIMETRY SERVICES.

    PubMed

    Walbersloh, J; Busch, F

    2016-09-01

    A newly developed thermoluminescence dosemeter system is presented that is suitable for application in fields where personal monitoring of a large number of users is required. The system presented here is intended to be used as the upcoming main dosemeter for whole body dosimetry at the dosimetry service of the MPA NRW (Germany) with ∼110,000 evaluations per month.

  3. Equivalence of time-multiplexed and frequency-multiplexed signals in digital communications.

    NASA Technical Reports Server (NTRS)

    Timor, U.

    1972-01-01

    In comparing different techniques for multiplexing N binary data signals into a single channel, time-division multiplexing (TDM) is known to have a theoretic efficiency of 100 percent (neglecting sync power) and thus seems to outperform frequency-division multiplexing systems (FDM). By considering more general FDM systems, we will show that both TDM and FDM are equivalent and have an efficiency of 100 percent. The difference between the systems is in the multiplexing and demultiplexing subsystems, but not in the performance or in the generated waveforms.

  4. Effects of using the GlobalFiler™ multiplex system on parent-child analyses of cases with single locus inconsistency.

    PubMed

    Ochiai, Eriko; Osawa, Motoki; Tamura, Tomonori; Minaguchi, Kiyoshi; Miyashita, Keiko; Matsushima, Yutaka; Kakimoto, Yu; Satoh, Fumiko

    2016-01-01

    Parent-child analyses sometimes reveal inconsistency of shared alleles at only one locus. This is conventionally called "single locus exclusion", which results from mutational events and the presence of null alleles. Here, in parent-child analyses of the Japanese population, we detected exclusions by using the GlobalFiler™ system comprising 21 short tandem repeat loci. One- or two-step mutations resulting from strand slippage causing gain or loss were observed in seven of 221 parent-child transmissions. The incidences of single locus inconsistency of alleles were 5.88×10(-2) and 8.40×10(-3) for paternal and maternal relationships, respectively. With calculation using a set of 15 loci in the Identifiler® multiplex system, the combined likelihood ratio (CLR) values were limited to less than 100 in all five cases accompanied by single inconsistency. The addition of six loci recovered the CLR values to over 10,000 in three cases. Application of this advanced system may increase the detected occurrence of mutational events, but it should be beneficial for inference in parent-child analyses, particularly in cases accompanied by genetic inconsistency.

  5. Modeling interchannel four-wave mixing for 8-Ary modulated dense wavelength division multiplexing systems over dispersion map

    NASA Astrophysics Data System (ADS)

    Du, Jianxin; Shen, Ninghang; Xu, Yue

    2016-08-01

    Semianalytic models are developed to deterministically calculate the variances of degenerate and nondegenerate four-wave mixing (FWM) noises for dispersion-managed dense wavelength division multiplexing (DWDM) systems with 8-Ary modulations [i.e., 8-level amplitude- and differential phase-shift keying (8APSK) and constant-amplitude optical differential 8-level phase-shift keying (D8PSK)]. The semianalytic models include various important propagation effects for exact numerical results. A 5.28-Tb/s (40-Gs/s/ch) 100-GHz-spaced 33-channel DWDM system with a dispersion map is then numerically analyzed by using the newly derived semianalytic models. It is numerically validated that FWM impacts coming from 8APSK pump channels are more severe than those coming from D8PSK ones, where pump channels denote the channels whose energies are transferred to a probe channel through the FWM process. The numerical results show that although FWM tolerance of a central channel with 8APSK is worse than that with D8PSK, a central channel with 8APSK is still superior to that with D8PSK when some linear noises and FWM noise are simultaneously taken into account for our given system conditions, which is mainly attributed to a relatively larger minimum Euclidean distance for the 8APSK constellation than the D8PSK one.

  6. Dual Common Planes for Time Multiplexing of Dual-Color QWIPs

    NASA Technical Reports Server (NTRS)

    Rafol, Sir B.; Gunapala, Srath; Bandara, Sumith; Liu, John; Mumolo, Jason

    2006-01-01

    A proposed improved method of externally controlled time multiplexing of the readouts of focal-plane arrays of pairs of stacked quantum-well infrared photodetectors (QWIPs) that operate in different wavelength bands is based on a dual-detector-common-plane circuit configuration. The method would be implemented in a QWIP integrated-circuit chip hybridized with a readout integrated-circuit (ROIC) chip.

  7. Control System for Readout Electronics of Multi-Channel Magnetocardiographs Using High-Temperature DC Superconducting Quantum Interference Devices

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Suzuki, Daisuke; Tsukamoto, Akira; Kumagai, Yukio; Miyashita, Tsuyoshi; Ogata, Kuniomi; Seki, Yusuke; Yokosawa, Koichi; Tsukada, Keiji

    2005-09-01

    We aimed to develop a control system for multichannel magnetocardiography (MCG) based on a high-temperature DC superconducting quantum interference device (high-Tc SQUID). To create this system, we used one oscillator as an AC bias controller to operate a multichannel high-Tc SQUID. To optimize the SQUID parameters (such as the AC bias, offset voltage), two new control sequences based on a cross-correlation method and a fast Fourier transform method were developed. Using the AC bias controller and the sequences, the typical white noise level of the SQUID was about 50--60 fT Hz-1/2 around 100 Hz. Multichannel MCG signals were detected clearly in the system with the SQUIDs. We conclude that our control system with one oscillator and new protocols can reliably operate a multichannel SQUID.

  8. Development of a Position Sensitive Microstrip Detector System and its Readout Electronics Using ASICs Technologies for SAMURAI

    NASA Astrophysics Data System (ADS)

    Saastamoinen, A.; Baba, H.; Blackmon, J. C.; Elson, J.; Kurokawa, M.; McCleskey, M.; Otsu, H.; Rasco, B. C.; Roeder, B. T.; Sobotka, L. G.; Trache, L.; Tribble, R. E.; Yoneda, K.; Zenihiro, J.

    We are building a Si detector tracker system for the SAMURAI spectrometer. Characterizing the behavior of the detectors and associated electronics is essential for properly analyzing the future experimental results. We have performed test experiments to study the detector system response to heavy ion and proton beams of various energies. In this contribution we present some of the results and give an outlook of the future plans.

  9. Thermally multiplexed polymerase chain reaction

    PubMed Central

    Phaneuf, Christopher R.; Pak, Nikita; Saunders, D. Curtis; Holst, Gregory L.; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L.; Jerris, Robert; Forest, Craig R.

    2015-01-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously—each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel. PMID:26339317

  10. Low-jitter single flux quantum signal readout from superconducting single photon detector.

    PubMed

    Terai, Hirotaka; Yamashita, Taro; Miki, Shigehito; Makise, Kazumasa; Wang, Zhen

    2012-08-27

    We developed a single-flux-quantum (SFQ) readout technology for superconducting single-photon detectors (SSPDs) to achieve low-jitter signal readout. By optimizing circuit parameters of the SFQ readout circuit, the input current sensitivity was improved below 10 μA, which is smaller than a typical critical current of SSPD. The experiment using a pulse-pattern generator as an input pulse source revealed that the measured jitter of the SFQ readout circuit is well below the system jitter of our measurement setup for the input current level above 15 μA. The measured jitter of the SSPD connected to the SFQ readout circuit was 37 ps full width at half maximum (FWHM) for an SSPD bias current of around 18 μA, which is a significant improvement on 67 ps FWHM jitter observed in conventional readout without an SFQ readout circuit.

  11. High-speed multiplexing of keyboard data inputs

    NASA Technical Reports Server (NTRS)

    Anderson, T. O. (Inventor)

    1981-01-01

    A high speed multiplexing system is described in which keyboard entered data is sequentially and automatically sampled by the multiplexing system for input to a computer. A sequencer is provided which sequentially and automatically controls the multiplexer to sample each keyboard input in accordance with a predetermined sampling sequence. Whenever keyboard entered data appears on input lines to the multiplexer, the system inputs the keyboard data to the computer during a brief time interval in which the multiplexer remains at the particular keyboard address or port. Thus, a high speed sampling circuit is provided whereby the only operator action required is data entry through a keyboard. Priority or interrupt systems are not required.

  12. FDM Readout Assembly with Flexible, Superconducting Connection to Cryogenic kilo-Pixel TES Detectors

    NASA Astrophysics Data System (ADS)

    Bruijn, M. P.; van der Linden, A. J.; Ridder, M. L.; van Weers, H. J.

    2016-07-01

    We describe a new fabrication process for a superconducting, flexible, and demountable connector to a kilo-pixel transition edge sensor. The demountable part contains planar coils for inductive coupling, in particular suited for AC-biased frequency domain multiplexed readout. A fixed connection to a chip with superconducting LC filters and SQUID readout is made by gold bump bonding with a connection resistance of 1.1 {× } 10^{-4} Ω . The Nb-based connecting lines on the flexible part show a superconducting transition around 7 K, which enables testing of connectors and LC filters in a simple L-He setup.

  13. Complexity-reduced digital predistortion for subcarrier multiplexed radio over fiber systems transmitting sparse multi-band RF signals.

    PubMed

    Pei, Yinqing; Xu, Kun; Li, Jianqiang; Zhang, Anxu; Dai, Yitang; Ji, Yuefeng; Lin, Jintong

    2013-02-11

    A novel multi-band digital predistortion (DPD) technique is proposed to linearize the subcarrier multiplexed radio-over-fiber (SCM-RoF) system transmitting sparse multi-band RF signal with large blank spectra between the constituent RF bands. DPD performs on the baseband signal of each individual RF band before up-conversion and RF combination. By disregarding the blank spectra, the processing bandwidth of the proposed DPD technique is greatly reduced, which is only determined by the baseband signal bandwidth of each individual RF band, rather than the entire bandwidth of the combined multi-band RF signal. Experimental demonstration is performed in a directly modulated SCM-RoF system transmitting two 64QAM modulated OFDM signals on 2.4GHz band and 3.6GHz band. Results show that the adjacent channel power (ACP) is suppressed by 15dB leading to significant improvement of the EVM performances of the signals on both of the two bands.

  14. The genotyping of infectious bronchitis virus in Taiwan by a multiplex amplification refractory mutation system reverse transcription polymerase chain reaction.

    PubMed

    Huang, Shr-Wei; Ho, Chia-Fang; Chan, Kun-Wei; Cheng, Min-Chung; Shien, Jui-Hung; Liu, Hung-Jen; Wang, Chi-Young

    2014-11-01

    Infectious bronchitis virus (IBV; Avian coronavirus) causes acute respiratory and reproductive and urogenital diseases in chickens. Following sequence alignment of IBV strains, a combination of selective primer sets was designed to individually amplify the IBV wild-type and vaccine strains using a multiplex amplification refractory mutation system reverse transcription polymerase chain reaction (ARMS RT-PCR) approach. This system was shown to discriminate the IBV wild-type and vaccine strains. Moreover, an ARMS real-time RT-PCR (ARMS qRT-PCR) was combined with a high-resolution analysis (HRMA) to establish a melt curve analysis program. The specificity of the ARMS RT-PCR and the ARMS qRT-PCR was verified using unrelated avian viruses. Different melting temperatures and distinct normalized and shifted melting curve patterns for the IBV Mass, IBV H120, IBV TW-I, and IBV TW-II strains were detected. The new assays were used on samples of lung and trachea as well as virus from allantoic fluid and cell culture. In addition to being able to detect the presence of IBV vaccine and wild-type strains by ARMS RT-PCR, the IBV Mass, IBV H120, IBV TW-I, and IBV TW-II strains were distinguished using ARMS qRT-PCR by their melting temperatures and by HRMA. These approaches have acceptable sensitivities and specificities and therefore should be able to serve as options when carrying out differential diagnosis of IBV in Taiwan and China.

  15. A preliminary assessment of the ForenSeq™ FGx System: next generation sequencing of an STR and SNP multiplex.

    PubMed

    Silvia, Ashley L; Shugarts, Nathan; Smith, Jenifer

    2017-01-01

    The ForenSeq™ FGx System (Illumina, San Diego, CA) was initially evaluated in concordance with SWGDAM guidelines for internal validation to determine the quality of the system's components: the ForenSeq™ DNA Signature Prep Kit reagents, the MiSeq FGx™ instrument, and the ForenSeq™ Universal Analysis Software, for the analysis of targeted, forensically informative single nucleotide polymorphisms (SNPs) and short tandem repeats (STRs). This multiplex consisted of STRs (autosomal, X, and Y) and SNPs (identity, ancestry, and phenotypic) that were run using one preparation process. Overall, the ForenSeq™ FGx System performed as well as the traditional capillary electrophoresis-based method in producing usable profile information, along with additional information that could aid in investigative leads. The MiSeq FGx™ System was validated using DNA samples in studies testing reproducibility, repeatability, concordance, sensitivity, and mock case single donor samples. Overall, genotyping results for STRs and SNPs were concordant with the profiles generated from conventional STR analysis using Identifiler and SNPs typed by 23andMe analysis. Genotypes of the ForenSeq™ aSNPs were used to evaluate biogeographical ancestry estimations using ForenSeq™ Universal Analysis Software, FROG-kb database (KIDD aiSNP 55 panel), and 23andMe. The system was shown to provide reproducible genotypes and reliable results were obtained at levels as low as 50 pg. All mock case samples were concordant with the donor profile. The results support consideration of the ForenSeq™ FGx System as an acceptable alternative to current STR and SNP analysis, pending formal developmental and internal validation studies.

  16. Research and development for a free-running readout system for the ATLAS LAr Calorimeters at the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Hils, Maximilian

    2016-07-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034 cm-2 s-1. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of 3000 fb-1. In the HL-LHC phase, the increased radiation levels and an improved ATLAS trigger system require a replacement of the Front-end (FE) and Back-end (BE) electronics of the LAr Calorimeters. Results from research and development of individual components and their radiation qualification as well as the overall system design will be presented.

  17. Development of frequency domain multiplexing for the X-ray Integral Field unit (X-IFU) on the Athena

    NASA Astrophysics Data System (ADS)

    Akamatsu, Hiroki; Gottardi, Luciano; van der Kuur, Jan; de Vries, Cor P.; Ravensberg, Kevin; Adams, Joseph S.; Bandler, Simon R.; Bruijn, Marcel P.; Chervenak, James A.; Kilbourne, Caroline A.; Kiviranta, Mikko; van der Linden, A. J.; Jackson, Brian D.; Smith, Stephen J.

    2016-07-01

    We are developing the frequency domain multiplexing (FDM) read-out of transition-edge sensor (TES) microcalorimeters for the X-ray Integral Field Unit (X-IFU) instrument on board of the future European X-Ray observatory Athena. The X-IFU instrument consists of an array of 3840 TESs with a high quantum efficiency (>90 %) and spectral resolution ΔE=2.5 eV @ 7 keV (E/ ΔE 2800). FDM is currently the baseline readout system for the X-IFU instrument. Using high quality factor LC filters and room temperature electronics developed at SRON and low-noise two stage SQUID amplifiers provided by VTT, we have recently demonstrated good performance with the FDM readout of Mo/Au TES calorimeters with Au/Bi absorbers. An integrated noise equivalent power resolution of about 2.0 eV at 1.7 MHz has been demonstrated with a pixel from a new TES array from NASA/Goddard (GSFC-A2). We have achieved X-ray energy resolutions 2.5 eV at AC bias frequency at 1.7 MHz in the single pixel read-out. We have also demonstrated for the first time an X-ray energy resolution around 3.0 eV in a 6 pixel FDM read-out with TES array (GSFC-A1). In this paper we report on the single pixel performance of these microcalorimeters under MHz AC bias, and further results of the performance of these pixels under FDM.

  18. Breakup of loosely bound nuclei at intermediate energies for nuclear astrophysics and the development of a position sensitive microstrip detector system and its readout electronics using ASICs technologies

    SciTech Connect

    Tribble, Robert E.; Sobotka, Lee G.; Blackmon, Jeff C.; Bertulani, Carlos A.

    2015-12-29

    The work performed under this grant has led to the development of a detection system that will be used to measure reaction rates for proton or neutron capture reactions at stellar energies on radioactive ions far from stability. The reaction rates are needed to better understand the physics of nucleosynthesis in explosive stellar processes such as supernovae and x-ray burst events. The radioactive ions will be produced at the Radioactive Ion Beam Facility (RIBF) at RIKEN near Tokyo, Japan. During the course of this work, the group involved in this project has expanded by several institutions in Europe and Japan and now involves collaborators from the U.S., Japan, Hungary, Romania, Germany, Spain, Italy, China, and South Korea. As part of the project, a novel design based on large-area silicon detectors has been built and tested and the performance characterized in a series of tests using particle beams with a variety of atomic numbers at the Cyclotron Institute of Texas A&M University and the Heavy Ion Medical Accelerator in Chiba facility (HIMAC) in Chiba, Japan. The work has involved mechanical construction of a special purpose vacuum chamber, with a precision mounting system for the silicon detectors, development of a new ASICs readout system that has applications with a wide variety of silicon detector systems, and the development of a data acquisition system that is integrated into the computer system being used at RIBF. The parts noted above that are needed to carry out the research program are completed and ready for installation. Several approved experiments that will use this system will be carried out in the near future. The experimental work has been delayed due to a large increase in the cost and availability of electrical power for RIBF that occurred following the massive earthquake and tsunami that hit Japan in the spring of 2011. Another component of the research carried out with this grant involved developing the theoretical tools that are required

  19. PAUCam readout electronics assembly, integration and test (AIT)

    NASA Astrophysics Data System (ADS)

    Jiménez, Jorge; Illa, José M.; Cardiel-Sas, Laia; de Vicente, Juan; Castilla, Javier; Casas, Ricard

    2014-08-01

    The PAUCam is an optical camera with an array of 18 CCDs (Hamamatsu Photonics K.K.) and up to 45 narrow and broad band filters. The camera will be installed on the William Herschel Telescope (WHT) in the Canary Islands, Spain. In order to fulfill with the specifications for the camera readout system, it was necessary to test the different readout electronics subsystems individually before to integrate the final readout work package, which is composed of 4 MONSOON (NOAO) front-ends, 6 fan out boards (MIX), each one driving up to 5 CCDs signals and a pre-amplification stage (PREAMP) located inside the cryostat. To get the subsystems integration, it was built a small camera prototype using the same technology as used in the main camera: a carbon fiber cryostat refrigerated by a cryotiger cooling system but with capacity to allocate just 2 CCDs, which were readout and re-characterized to measure the electronics performance as conversion factor or gain, readout noise, stability, linearity, etc. while the cross-talk was measured by using a spot-light. The aim of this paper is to review the whole process of assembly, integration and test (AIT) of the readout electronics work package and present the main results to demonstrate the viability of the proposed systems to be use with the PAUCam camera.

  20. VCSELs for interferometric readout of MEMS sensors

    NASA Astrophysics Data System (ADS)

    Serkland, Darwin K.; Geib, Kent M.; Peake, Gregory M.; Keeler, Gordon A.; Shaw, Michael J.; Baker, Michael S.; Okandan, Murat

    2016-03-01

    We report on the development of single-frequency VCSELs (vertical-cavity surface-emitting lasers) for sensing the position of a moving MEMS (micro-electro-mechanical system) object with resolution much less than 1nm. Position measurement is the basis of many different types of MEMS sensors, including accelerometers, gyroscopes, and pressure sensors. Typically, by switching from a traditional capacitive electronic readout to an interferometric optical readout, the resolution can be improved by an order of magnitude with a corresponding improvement in MEMS sensor performance. Because the VCSEL wavelength determines the scale of the position measurement, laser wavelength (frequency) stability is desirable. This paper discusses the impact of VCSEL amplitude and frequency noise on the position measurement.

  1. A lab-on-a-chip system integrating tissue sample preparation and multiplex RT-qPCR for gene expression analysis in point-of-care hepatotoxicity assessment.

    PubMed

    Lim, Geok Soon; Chang, Joseph S; Lei, Zhang; Wu, Ruige; Wang, Zhiping; Cui, Kemi; Wong, Stephen

    2015-10-21

    A truly practical lab-on-a-chip (LOC) system for point-of-care testing (POCT) hepatotoxicity assessment necessitates the embodiment of full-automation, ease-of-use and "sample-in-answer-out" diagnostic capabilities. To date, the reported microfluidic devices for POCT hepatotoxicity assessment remain rudimentary as they largely embody only semi-quantitative or single sample/gene detection capabilities. In this paper, we describe, for the first time, an integrated LOC system that is somewhat close to a practical POCT hepatotoxicity assessment device - it embodies both tissue sample preparation and multiplex real-time RT-PCR. It features semi-automation, is relatively easy to use, and has "sample-in-answer-out" capabilities for multiplex gene expression analysis. Our tissue sample preparation module incorporating both a microhomogenizer and surface-treated paramagnetic microbeads yielded high purity mRNA extracts, considerably better than manual means of extraction. A primer preloading surface treatment procedure and the single-loading inlet on our multiplex real-time RT-PCR module simplify off-chip handling procedures for ease-of-use. To demonstrate the efficacy of our LOC system for POCT hepatotoxicity assessment, we perform a preclinical animal study with the administration of cyclophosphamide, followed by gene expression analysis of two critical protein biomarkers for liver function tests, aspartate transaminase (AST) and alanine transaminase (ALT). Our experimental results depict normalized fold changes of 1.62 and 1.31 for AST and ALT, respectively, illustrating up-regulations in their expression levels and hence validating their selection as critical genes of interest. In short, we illustrate the feasibility of multiplex gene expression analysis in an integrated LOC system as a viable POCT means for hepatotoxicity assessment.

  2. In vivo mutagenesis of miRNA gene families using a scalable multiplexed CRISPR/Cas9 nuclease system

    PubMed Central

    Narayanan, Anand; Hill-Teran, Guillermina; Moro, Albertomaria; Ristori, Emma; Kasper, Dionna M.; A. Roden, Christine; Lu, Jun; Nicoli, Stefania

    2016-01-01

    A large number of microRNAs (miRNAs) are grouped into families derived from the same phylogenetic ancestors. miRNAs within a family often share the same physiological functions despite differences in their primary sequences, secondary structures, or chromosomal locations. Consequently, the generation of animal models to analyze the activity of miRNA families is extremely challenging. Using zebrafish as a model system, we successfully provide experimental evidence that a large number of miRNAs can be simultaneously mutated to abrogate the activity of an entire miRNA family. We show that injection of the Cas9 nuclease and two, four, ten, and up to twenty-four multiplexed single guide RNAs (sgRNAs) can induce mutations in 90% of the miRNA genomic sequences analyzed. We performed a survey of these 45 mutations in 10 miRNA genes, analyzing the impact of our mutagenesis strategy on the processing of each miRNA both computationally and in vivo. Our results offer an effective approach to mutate and study the activity of miRNA families and pave the way for further analysis on the function of complex miRNA families in higher multicellular organisms. PMID:27572667

  3. Environmental monitoring for biological threat agents using the autonomous pathogen detection system with multiplexed polymerase chain reaction.

    PubMed

    Regan, John F; Makarewicz, Anthony J; Hindson, Benjamin J; Metz, Thomas R; Gutierrez, Dora M; Corzett, Todd H; Hadley, Dean R; Mahnke, Ryan C; Henderer, Bruce D; Breneman, John W; Weisgraber, Todd H; Dzenitis, John M

    2008-10-01

    We have developed and field-tested a now operational civilian biodefense capability that continuously monitors the air in high-risk locations for biological threat agents. This stand-alone instrument, called the Autonomous Pathogen Detection System (APDS), collects and selectively concentrates particles from the air into liquid samples and analyzes the samples using multiplexed PCR amplification coupled with microsphere array detection. During laboratory testing, we evaluated the APDS instrument's response to Bacillus anthracis and Yersinia pestis by spiking the liquid sample stream with viable spores and cells, bead-beaten lysates, and purified DNA extracts. APDS results were also compared to a manual real-time PCR method. Field data acquired during 74 days of continuous operation at a mass-transit subway station are presented to demonstrate the specificity and reliability of the APDS. The U.S. Department of Homeland Security recently selected the APDS reported herein as the first autonomous detector component of their BioWatch antiterrorism program. This sophisticated field-deployed surveillance capability now generates actionable data in one-tenth the time of manual filter collection and analysis.

  4. Development of a single multiplex amplification refractory mutation system PCR for the detection of rifampin-resistant Mycobacterium tuberculosis.

    PubMed

    Shi, Xiaodan; Zhang, Chen; Shi, Ming; Yang, Mengjie; Zhang, Yi; Wang, Ji; Shen, Hongwei; Zhao, Gang; Ma, Xuejun

    2013-11-01

    A rapid and simple method for the detection of drug-resistant Mycobacterium tuberculosis is critical for the efficient treatment and control of this pathogen in developing country. Here we developed a single multiplex amplification refractory mutation system (M-ARMS) PCR, in which chimeric-primer and temperature switch PCR (TSP) strategy were included. Using this method, we detected rifampin resistance-associated mutations at codons 511, 516, 526 and 531 in the rifampin resistance-determining region of rpoB gene. The performance of M-ARMS-PCR assay was evaluated with 135 cultured isolates of M. tuberculosis. The sensitivity and specificity were 94.2% and 100%, respectively, compared with direct DNA sequencing, and 86.67% and 89.71%, respectively, compared with culture-based phenotypic drug susceptibility testing. Therefore, this newly-developed M-ARMS-PCR method is useful and efficient with an intended application in provincial Centers for Disease Control and Prevention for rapid detection of rifampin resistance-associated mutations.

  5. Frequency and sensitivity tunable microresonator array for high-speed quantum processor readout

    NASA Astrophysics Data System (ADS)

    Hoskinson, Emile; Whittaker, J. D.; Swenson, L. J.; Volkmann, M. H.; Spear, P.; Altomare, F.; Berkley, A. J.; Bumble, B.; Bunyk, P.; Day, P. K.; Eom, B. H.; Harris, R.; Hilton, J. P.; Johnson, M. W.; Kleinsasser, A.; Ladizinsky, E.; Lanting, T.; Oh, T.; Perminov, I.; Tolkacheva, E.; Yao, J.

    Frequency multiplexed arrays of superconducting microresonators have been used as detectors in a variety of applications. The degree of multiplexing achievable is limited by fabrication variation causing non-uniform shifts in resonator frequencies. We have designed, implemented and characterized a superconducting microresonator readout that incorporates two tunable inductances per detector, allowing independent control of each detector frequency and sensitivity. The tunable inductances are adjusted using on-chip programmable digital-to-analog flux converters, which are programmed with a scalable addressing scheme that requires few external lines.

  6. Performance analysis of hybrid WDM-OTDM optical multicast overlay system employing 120 Gbps polarization and subcarrier multiplexed unicast signal with 40 Gbps multicast signal

    NASA Astrophysics Data System (ADS)

    Singh, Sukhbir; Singh, Surinder

    2017-02-01

    In this paper, we have propose and investigated the performance of hybrid WDM-OTDM optical multicast overlay system which employs 120 Gbps unicast and 40 Gbps multicast data operating over SMF+DCF and amplifier link in C-band. The polarization and subcarrier multiplexed modulation formats are used to obtain 120 Gbps unicast data and DPSK (differential phase shift keying) modulation format for 40 Gbps multicast data transmission. In multicast operation, DPSK data is superimposed on to multiplexed unicast data channels. The impact of extinction ratio, input power and transmission distance on the performance of proposed system in terms of output optical power, BER and Q-factor has been investigated for both unicast and multicast data. We have also concluded that polarization and subcarrier multiplexed modulation formats are promising option to increase per channel capacity and less vulnerable to CD and PMD. In addition, the proposed system using hybrid modulation techniques offers higher bandwidth utilization efficiency at higher per channel data rate than conventional modulation formats.

  7. Folded orthogonal frequency division multiplexing.

    PubMed

    Corcoran, Bill; Zhu, Chen; Song, Binhuang; Lowery, Arthur J

    2016-12-26

    We propose and demonstrate a new sub-carrier multiplexing scheme, utilizing orthogonal, periodic-sinc-shaped sub-carrier spectra. This 'folded' OFDM allows for multi-carrier bands to be generated with the precise, rectangular frequency definition of Nyquist WDM. We show that this scheme can be implemented with 10 GHz sub-bands, showing a 0.5-dB implementation penalty and successful transmission over 4160-km. We further investigate 40-GHz bands in an add/drop multiplexing scenario on a 50-GHz WDM grid, and show that folded OFDM can provided advantages over conventional OFDM in bandwidth-limited systems.

  8. A cryo-amplifier working in a double loop-flux locked loop scheme for SQUID readout of TES detectors

    NASA Astrophysics Data System (ADS)

    Torrioli, Guido; Bastia, Paolo; Piro, Luigi; Macculi, Claudio; Colasanti, Luca

    2010-07-01

    In this paper we report on a novel SQUID readout scheme, called Double Loop-Flux Locked loop (DL-FLL), that we are investigating in the frame of ASI and ESA technological development contracts. This scheme is based on the realization of a cryogenic amplifier which is used in order to readout TES detectors in the Frequency Division Multiplexing technique, where high loop-gain is required up to few MHz. Loop-gain in feedback systems is, usually, limited by the propagation delay of the signals traveling in the loop because of the distance between the feedback loop elements. This problem is particularly evident in the case of SQUID systems, where the elements of the feedback loop are placed both at cryogenic and room temperature. To solve this issue we propose a low power dissipation cryo-amplifier capable to work at cryogenic temperatures so that it can be placed close to the SQUID realizing a local cryogenic loop. The adoption of the DL-FLL scheme allows to simplify considerably the cryo-amplifier which, being AC-coupled, don't require the features of a precision DC-coupled amplifier and can be made with a limited number of electronic components and with a consequent reduction of power dissipation.

  9. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection

    PubMed Central

    Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana

    2016-01-01

    The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets. PMID:27739510

  10. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection

    NASA Astrophysics Data System (ADS)

    Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana

    2016-10-01

    The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets.

  11. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection.

    PubMed

    Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana

    2016-10-14

    The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets.

  12. Design and performance of the new cathode readout proportional chambers in LASS

    SciTech Connect

    Aiken, G.; Aston, D.; Dunwoodie, W.

    1980-10-01

    The design and construction of a new proportional chamber system for the LASS spectrometer are discussed. This system consists of planar and cylindrical chambers employing anode wire and cathode strip readout techniques. The good timing characteristics of anode readout combine with the excellent spatial resolution of cathode readout to provide powerful and compact detectors. Preliminary resolution data are presented along with operating characteristics of the various devices.

  13. Genetic Fingerprinting Using Microsatellite Markers in a Multiplex PCR Reaction: A Compilation of Methodological Approaches from Primer Design to Detection Systems.

    PubMed

    Krüger, Jacqueline; Schleinitz, Dorit

    2017-01-01

    Microsatellites are polymorphic DNA loci comprising repeated sequence motifs of two to five base pairs which are dispersed throughout the genome. Genotyping of microsatellites is a widely accepted tool for diagnostic and research purposes such as forensic investigations and parentage testing, but also in clinics (e.g. monitoring of bone marrow transplantation), as well as for the agriculture and food industries. The co-amplification of several short tandem repeat (STR) systems in a multiplex reaction with simultaneous detection helps to obtain more information from a DNA sample where its availability may be limited. Here, we introduce and describe this commonly used genotyping technique, providing an overview on available resources on STRs, multiplex design, and analysis.

  14. Cryogenic readout techniques for germanium detectors

    SciTech Connect

    Benato, G.; Cattadori, C.; Di Vacri, A.; Ferri, E.

    2015-07-01

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN - Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)

  15. XAMPS Detectors Readout ASIC for LCLS

    SciTech Connect

    Dragone, A; Pratte, J.F.; Rehak, P.; Carini, G.A.; Herbst, R.; O'Connor, P.; Siddons, D.P.; /BNL, NSLS

    2008-12-18

    An ASIC for the readout of signals from X-ray Active Matrix Pixel Sensor (XAMPS) detectors to be used at the Linac Coherent Light Source (LCLS) is presented. The X-ray Pump Probe (XPP) instrument, for which the ASIC has been designed, requires a large input dynamic range on the order of 104 photons at 8 keV with a resolution of half a photon FWHM. Due to the size of the pixel and the length of the readout line, large input capacitance is expected, leading to stringent requirement on the noise optimization. Furthermore, the large number of pixels needed for a good position resolution and the fixed LCLS beam period impose limitations on the time available for the single pixel readout. Considering the periodic nature of the LCLS beam, the ASIC developed for this application is a time-variant system providing low-noise charge integration, filtering and correlated double sampling. In order to cope with the large input dynamic range a charge pump scheme implementing a zero-balance measurement method has been introduced. It provides an on chip 3-bit coarse digital conversion of the integrated charge. The residual charge is sampled using correlated double sampling into analog memory and measured with the required resolution. The first 64 channel prototype of the ASIC has been fabricated in TSMC CMOS 0.25 {micro}m technology. In this paper, the ASIC architecture and performances are presented.

  16. Novel secure and bandwidth efficient optical code division multiplexed system for future access networks

    NASA Astrophysics Data System (ADS)

    Singh, Simranjit

    2016-12-01

    In this paper, a spectrally coded optical code division multiple access (OCDMA) system using a hybrid modulation scheme has been investigated. The idea is to propose an effective approach for simultaneous improvement of the system capacity and security. Data formats, NRZ (non-return to zero), DQPSK (differential quadrature phase shift keying), and PoISk (polarisation shift keying) are used to get the orthogonal modulated signal. It is observed that the proposed hybrid modulation provides efficient utilisation of bandwidth, increases the data capacity and enhances the data confidentiality over existing OCDMA systems. Further, the proposed system performance is compared with the current state-of-the-art OCDMA schemes.

  17. Development and evaluation of a rapid multiplex-PCR based system for Mycobacterium tuberculosis diagnosis using sputum samples.

    PubMed

    Mutingwende, Isaac; Vermeulen, Urban; Steyn, Faans; Viljoen, Hendrik; Grobler, Anne

    2015-09-01

    Global tuberculosis (TB) control and eradication is hampered by the unavailability of simple, rapid and affordable diagnostic tests deployable at low infrastructure microscopy centers. We have developed and evaluated the performance of a nucleic acid amplification test for detection of Mycobacterium tuberculosis (MTB), the NWU-TB test, in clinical sputum specimens from 306 patients with suspected pulmonary tuberculosis. The test involves sputum sample processing using a Lyser device within 7 min, followed by rapid multiplex-PCR on a fast thermal cycler within 25 min, and amplicon resolution on agarose gel electrophoresis. Samples were also examined for presence of MTB using smear microscopy, GeneXpert and MGIT culture. Results were assessed in comparison to a MGIT culture as gold standard. Of the 306 patients, 174 had a previous TB history or already on treatment, and 132 were TB naïve cases. The NWU-TB system was found to have an overall sensitivity and specificity of 80.8% (95% CI: 75-85.7) and 75.6% (95% CI: 64.9-84.4) respectively, in comparison to 85.3% (95% CI: 79.9-89.6) and 73.2% (95% CI: 62.2-82.4) respectively for GeneXpert; and 62.1% (95% CI: 55.3-68.4) and 56.1% (95% CI: 44.7-67) respectively for smear microscopy. The study has shown that the NWU-TB system allows detection of TB in less than two hours and can be utilized at low infrastructure sites to provide quick and accurate diagnosis at a very low cost.

  18. Turbulence mitigation scheme based on multiple-user detection in an orbital-angular-momentum multiplexed system

    NASA Astrophysics Data System (ADS)

    Zou, Li; Wang, Le; Zhao, Sheng-Mei; Chen, Han-Wu

    2016-11-01

    Atmospheric turbulence (AT) induced crosstalk can significantly impair the performance of a free-space optical (FSO) communication link using orbital angular momentum (OAM) multiplexing. In this paper, we propose a multiple-user detection (MUD) turbulence mitigation scheme in an OAM-multiplexed FSO communication link. First, we present a MUD equivalent communication model for an OAM-multiplexed FSO communication link under AT. In the equivalent model, each input bit stream represents one user’s information. The deformed OAM spatial modes caused by AT, instead of the pure OAM spatial modes, are used as information carriers, and the overlapping between the deformed OAM spatial modes are computed as the correlation coefficients between the users. Then, we present a turbulence mitigation scheme based on MUD idea to enhance AT tolerance of the OAM-multiplexed FSO communication link. In the proposed scheme, the crosstalk caused by AT is used as a useful component to deduce users’ information. The numerical results show that the performance of the OAM-multiplexed communication link has greatly improved by the proposed scheme. When the turbulence strength is 1 × 10-15 m-2/3, the transmission distance is 1000 m and the channel signal-to-noise ratio (SNR) is 26 dB, the bit-error-rate (BER) performance of four spatial multiplexed OAM modes lm = +1,+2,+3,+4 are all close to 10-5, and there is a 2-3 fold increase in the BER performance in comparison with those results without the proposed scheme. In addition, the proposed scheme is more effective for an OAM-multiplexed FSO communication link with a larger OAM mode topological charge interval. The proposed scheme is a promising direction for compensating the interference caused by AT in the OAM-multiplexed FSO communication link. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network

  19. Retroreflective systems for remote readout

    DOEpatents

    Deason, V.A.; Colwell, F.S.; Ricks, K.L.

    1998-10-13

    A sensing device is described for sensing an environmental factor. The device includes a retroreflective layer disposed in a parallel, facing relationship with a sensing layer. The sensing layer has an initial optical absorption capacity for (1) sensing a presence of an environmental factor, (2) experiencing a change in optical absorption capacity responsive to said environmental factor, and (3) transmitting and attenuating light. A first portion of the sensing layer is sealed off from exposure to the environment while a second portion remains exposed to the environment such that, when the environmental factor is present, the first portion of the sensing layer is prevented from experiencing a change in optical absorption capacity responsive to said environmental factor. Well-collimated light beams are passed through the sensing layer and are reflected back from the retroreflective layer for processing. When the environmental factor is present, the beams which pass through the second portion are attenuated responsive to an increase in optical absorption capacity and are compared with the non-attenuated beams passing through the first portion to calculate the presence and quantity of the environmental factor. 7 figs.

  20. Retroreflective systems for remote readout

    DOEpatents

    Deason, Vance A.; Colwell, Frederick S.; Ricks, Kirk L.

    1998-01-01

    A sensing device for sensing an environmental factor. The device includes a retroreflective layer disposed in a parallel, facing relationship with a sensing layer. The sensing layer has an initial optical absorption capacity for (i) sensing a presence of an environmental factor, (ii) experiencing a change in optical absorption capacity responsive to said environmental factor, and (iii) transmitting and attenuating light. A first portion of the sensing layer is sealed off from exposure to the environment while a second portion remains exposed to the environment such that, when the environmental factor is present, the first portion of the sensing layer is prevented from experiencing a change in optical absorption capacity responsive to said environmental factor. Well-collimated light beams are passed through the sensing layer and are reflected back from the retroreflective layer for processing. When the environmental factor is present, the beams which pass through the second portion are attenuated responsive to an increase in optical absorption capacity and are compared with the non-attenuated beams passing through the first portion to calculate the presence and quantity of the environmental factor.