NASA Astrophysics Data System (ADS)
Guan, Rui; Xu, Wei; Yang, Zhaohui; Huang, Nuo; Wang, Jin-Yuan; Chen, Ming
2017-11-01
In this paper, we propose a subcarrier-index modulation-based asymmetrically clipped optical orthogonal frequency division multiplexing (SACO-OFDM) scheme for optical wireless communication (OWC) systems, which benefits from the subcarrier-index modulation (SIM) and asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) techniques. SACO-OFDM conveys additional information via the subcarrier indexing, and the error rate of the bit transmitted by the subcarrier indexing is much lower than that of the conventional M-ary modulation scheme. On the other hand, as the signal constellation in M-ary modulation is relieved, SACO-OFDM has simple transceiver structure and low detection complexity. Moreover, considering the spectral, an enhanced SACO-OFDM (ESACO-OFDM) using even subcarriers is proposed. In this technique, the odd subcarriers are activated for SACO-OFDM, and the imaginary part of even subcarriers are activated for pulse-amplitude-modulated discrete multitone (PAM-DMT). Clearly, ESACO-OFDM achieves better spectral efficiency than the conventional optical OFDM, since all subcarriers are used for data transmission. Simulation results verify the significant bit error rate (BER) and peak-to-average power ratio (PAPR) improvement by the proposed ESACO-OFDM, especially for the medium-to-high signal-to-noise ratio (SNR) regime.
NASA Astrophysics Data System (ADS)
Zhang, Hang; Mao, Yu; Huang, Duan; Li, Jiawei; Zhang, Ling; Guo, Ying
2018-05-01
We introduce a reliable scheme for continuous-variable quantum key distribution (CV-QKD) by using orthogonal frequency division multiplexing (OFDM). As a spectrally efficient multiplexing technique, OFDM allows a large number of closely spaced orthogonal subcarrier signals used to carry data on several parallel data streams or channels. We place emphasis on modulator impairments which would inevitably arise in the OFDM system and analyze how these impairments affect the OFDM-based CV-QKD system. Moreover, we also evaluate the security in the asymptotic limit and the Pirandola-Laurenza-Ottaviani-Banchi upper bound. Results indicate that although the emergence of imperfect modulation would bring about a slight decrease in the secret key bit rate of each subcarrier, the multiplexing technique combined with CV-QKD results in a desirable improvement on the total secret key bit rate which can raise the numerical value about an order of magnitude.
Colorless ONU implementation for WDM-PON using direct-detection optical OFDM
NASA Astrophysics Data System (ADS)
Feng, Min; Luo, Qing-long; Bai, Cheng-lin
2013-03-01
A novel architecture for the colorless optical network unit (ONU) is proposed and experimentally demonstrated with direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM). In this architecture, polarization-division multiplexing is used to reduce the cost at ONU. In optical line terminal (OLT), quadrature amplitude modulation (QAM) intensity-modulated OFDM signal with x-polarization at 10 Gbit/s is transmitted as downstream. At each ONU, the optical OFDM signal is demodulated with direct detection, and γ-polarization signal is modulated for upstream on-off keying (OOK) data at 5 Gbit/s. Simulation results show that the power penalty is negligible for both optical OFDM downstream and the on-off keying upstream signals after over 50 km single-mode fiber (SMF) transmission.
Blind Equalization and Fading Channel Signal Recovery of OFDM Modulation
2011-03-01
Square LTI Linear Time Invariant MIMO Multiple-Input Multiple-Output OFDM Orthogonal Frequency-Division Multiplexing QPSK Quadrature Phase-Shift...AND FADING CHANNEL SIGNAL RECOVERY OF OFDM MODULATION by Anthony G. Stranges March 2011 Thesis Co-Advisors: Roberto Cristi Frank Kragh...Master’s Thesis 4. TITLE AND SUBTITLE Blind Equalization and Fading Channel Signal Recovery of OFDM Modulation 6. AUTHOR(S) Anthony G. Stranges
High-speed real-time OFDM transmission based on FPGA
NASA Astrophysics Data System (ADS)
Xiao, Xin; Li, Fan; Yu, Jianjun
2016-02-01
In this paper, we review our recent research progresses on real-time orthogonal frequency division multiplexing (OFDM) transmission based on FPGA. We successfully demonstrated four-channel wavelength-division multiplexing (WDM) 256.51Gb/s 16-ary quadrature amplitude modulation (16QAM)-OFDM signal transmission system for short-reach optical amplifier free inter-connection with real-time reception. Four optical carriers are modulated by four different 16QAM-OFDM signals via 10G-class direct modulation lasers (DMLs). We achieved highest capacity real-time reception optical OFDM signal transmission over 2.4-km SMF with the bit-error ratio (BER) under soft-decision forward error correction (SD-FEC) limitation of 2.4×10-2. In order to achieve higher spectrum efficiency (SE), we demonstrate 4-channel high level QAM-OFDM transmission over 20-km SMF-28 with real-time reception. 58.72-Gb/s 256QAM-OFDM and 56.4-Gb/s 128QAM-OFDM signal transmission within 25-GHz grid is achieved with the BER under 2.4×10-2 and real-time reception.
Zhou, Ji; Qiao, Yaojun
2015-09-01
In this Letter, we propose a discrete Hartley transform (DHT)-spread asymmetrically clipped optical orthogonal frequency-division multiplexing (DHT-S-ACO-OFDM) uplink transmission scheme in which the multiplexing/demultiplexing process also uses the DHT algorithm. By designing a simple encoding structure, the computational complexity of the transmitter can be reduced from O(Nlog(2)(N)) to O(N). At the probability of 10(-3), the peak-to-average power ratio (PAPR) of 2-ary pulse amplitude modulation (2-PAM)-modulated DHT-S-ACO-OFDM is approximately 9.7 dB lower than that of 2-PAM-modulated conventional ACO-OFDM. To verify the feasibility of the proposed scheme, a 4-Gbit/s DHT-S-ACO-OFDM uplink transmission scheme with a 1∶64 way split has been experimentally implemented using 100-km standard single-mode fiber (SSMF) for a long-reach passive optical network (LR-PON).
Optimization of coherent optical OFDM transmitter using DP-IQ modulator with nonlinear response
NASA Astrophysics Data System (ADS)
Chang, Sun Hyok; Kang, Hun-Sik; Moon, Sang-Rok; Lee, Joon Ki
2016-07-01
In this paper, we investigate the performance of dual polarization orthogonal frequency division multiplexing (DP-OFDM) signal generation when the signal is generated by a DP-IQ optical modulator. The DP-IQ optical modulator is made of four parallel Mach-Zehnder modulators (MZMs) which have nonlinear responses and limited extinction ratios. We analyze the effects of the MZM in the DP-OFDM signal generation by numerical simulation. The operating conditions of the DP-IQ modulator are optimized to have the best performance of the DP-OFDM signal.
Analysis of secured Optical Orthogonal Frequency Division Multiplexed System
NASA Astrophysics Data System (ADS)
Gill, Harsimranjit Singh; Bhatia, Kamaljit Singh; Gill, Sandeep Singh
2017-05-01
In this paper, security issues for optical orthogonal frequency division multiplexed (OFDM) systems are emphasized. The encryption has been done on the data of coded OFDM symbols using data encryption standard (DES) algorithm before transmitting through the fiber. The results obtained justify that the DES provides better security to the input data without further bandwidth requirement. The data is transmitted to a distance of 1,000 km in a single-mode fiber with 16-quadrature amplitude modulation. The peak-to-average power ratio and optical signal-to-noise ratio of secure coded OFDM signal is fairly better than the conventional OFDM signal.
Improving performance of channel equalization in RSOA-based WDM-PON by QR decomposition.
Li, Xiang; Zhong, Wen-De; Alphones, Arokiaswami; Yu, Changyuan; Xu, Zhaowen
2015-10-19
In reflective semiconductor optical amplifier (RSOA)-based wavelength division multiplexed passive optical network (WDM-PON), the bit rate is limited by low modulation bandwidth of RSOAs. To overcome the limitation, we apply QR decomposition in channel equalizer (QR-CE) to achieve successive interference cancellation (SIC) for discrete Fourier transform spreading orthogonal frequency division multiplexing (DFT-S OFDM) signal. Using an RSOA with a 3-dB modulation bandwidth of only ~800 MHz, we experimentally demonstrate a 15.5-Gb/s over 20-km SSMF DFT-S OFDM transmission with QR-CE. The experimental results show that DFTS-OFDM with QR-CE attains much better BER performance than DFTS-OFDM and OFDM with conventional channel equalizers. The impacts of several parameters on QR-CE are investigated. It is found that 2 sub-bands in one OFDM symbol and 1 pilot in each sub-band are sufficient to achieve optimal performance and maintain the high spectral efficiency.
Optimized OFDM Transmission of Encrypted Image Over Fading Channel
NASA Astrophysics Data System (ADS)
Eldin, Salwa M. Serag
2014-11-01
This paper compares the quality of diffusion-based and permutation-based encrypted image transmission using orthogonal frequency division multiplexing (OFDM) over wireless fading channel. Sensitivity to carrier frequency offsets (CFOs) is one of the limitations in OFDM transmission that was compensated here. Different OFDM diffusions are investigated to study encrypted image transmission optimization. Peak signal-to-noise ratio between the original image and the decrypted image is used to evaluate the received image quality. Chaotic encrypted image modulated with CFOs compensated FFT-OFDM was found to give outstanding performance against other encryption and modulation techniques.
Power-efficient method for IM-DD optical transmission of multiple OFDM signals.
Effenberger, Frank; Liu, Xiang
2015-05-18
We propose a power-efficient method for transmitting multiple frequency-division multiplexed (FDM) orthogonal frequency-division multiplexing (OFDM) signals in intensity-modulation direct-detection (IM-DD) optical systems. This method is based on quadratic soft clipping in combination with odd-only channel mapping. We show, both analytically and experimentally, that the proposed approach is capable of improving the power efficiency by about 3 dB as compared to conventional FDM OFDM signals under practical bias conditions, making it a viable solution in applications such as optical fiber-wireless integrated systems where both IM-DD optical transmission and OFDM signaling are important.
NASA Astrophysics Data System (ADS)
Wang, Kaihui; Li, Xinying; Yu, Jianjun
2017-09-01
DFT-S-orthogonal frequency division multiplexing (OFDM) and single-carrier (SC) modulation are two typical modulation formats in radio-over-fiber (RoF) systems. They may have respective advantages and disadvantages in different scenarios. Therefore, bit error ratio comparison results of these two modulation formats will be useful for designing and optimizing the practical RoF system. We experimentally compare these two modulation formats in a long wireless distance RoF system at W-band. It can be concluded that DFT-S-OFDM and SC modulation have similar performances in a RoF system with transmission distance over 80-km fiber and 224-m wireless link.
2013-03-01
intermediate frequency LFM linear frequency modulation MAP maximum a posteriori MATLAB® matrix laboratory ML maximun likelihood OFDM orthogonal frequency...spectrum, frequency hopping, and orthogonal frequency division multiplexing ( OFDM ) modulations. Feature analysis would be a good research thrust to...determine feature relevance and decide if removing any features improves performance. Also, extending the system for simulations using a MIMO receiver or
Potential of OFDM for next generation optical access
NASA Astrophysics Data System (ADS)
Fritzsche, Daniel; Weis, Erik; Breuer, Dirk
2011-01-01
This paper shows the requirements for next generation optical access (NGOA) networks and analyzes the potential of OFDM (orthogonal frequency division multiplexing) for the use in such network scenarios. First, we show the motivation for NGOA systems based on the future requirements on FTTH access systems and list the advantages of OFDM in such scenarios. In the next part, the basics of OFDM and different methods to generate and detect optical OFDM signals are explained and analyzed. At the transmitter side the options include intensity modulation and the more advanced field modulation of the optical OFDM signal. At the receiver there is the choice between direct detection and coherent detection. As the result of this discussion we show our vision of the future use of OFDM in optical access networks.
Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC.
Yeh, Chien-Hung; Chen, Hsing-Yu; Chow, Chi-Wai; Liu, Yen-Liang
2015-01-26
To increase the traffic rate in phosphor-LED visible light communication (VLC), a multi-band orthogonal frequency division multiplexed (OFDM) modulation is first proposed and demonstrated. In the measurement, we do not utilize optical blue filter to increase modulation bandwidth of phosphor-LED in the VLC system. In this proposed scheme, different bands of OFDM signals are applied to different LED chips in a LED lamp, this can avoid the power fading and nonlinearity issue by applying the same OFDM signal to all the LED chips in a LED lamp. Here, the maximum increase percentages of traffic rates are 41.1%, 17.8% and 17.8% under received illuminations of 200, 500 and 1000 Lux, respectively, when the proposed three-band OFDM modulation is used in the VLC system. In addition, the analysis and verification by experiments are also performed.
Lin, Chi-Hsiang; Lin, Chun-Ting; Huang, Hou-Tzu; Zeng, Wei-Siang; Chiang, Shou-Chih; Chang, Hsi-Yu
2015-05-04
This paper proposes a 2x2 MIMO OFDM Radio-over-Fiber scheme based on optical subcarrier multiplexing and 60-GHz MIMO wireless transmission. We also schematically investigated the principle of optical subcarrier multiplexing, which is based on a dual-parallel Mach-Zehnder modulator (DP-MZM). In our simulation result, combining two MIMO OFDM signals to drive DP-MZM gives rise to the PAPR augmentation of less than 0.4 dB, which mitigates nonlinear distortion. Moreover, we applied a Levin-Campello bit-loading algorithm to compensate for the uneven frequency responses in the V-band. The resulting system achieves OFDM signal rates of 61.5-Gbits/s with BER of 10(-3) over 25-km SMF transmission followed by 3-m wireless transmission.
NASA Astrophysics Data System (ADS)
Chen, Ming; Peng, Miao; Zhou, Hui; Zheng, Zhiwei; Tang, Xionggui; Maivan, Lap
2017-12-01
To further improve receiver sensitivity of spectrally-efficient guard-band direct-detection optical orthogonal frequency-division multiplexing (OFDM) with twin single-side-band (SSB) modulation technique, an optical IQ modulator (IQM) is employed to optimize optical carrier-to-signal power ratio (CSPR). The CSPRs for the guard-band twin-SSB-OFDM signal generated by using dual-drive Mach-Zehnder modulator (DD-MZM) and optical IQM are theoretically analyzed and supported by simulations. The optimal CSPR for the two types of guard-band twin-SSB-OFDM are identified. The simulations exhibit that the error vector magnitude (EVM) performance of the IQM-enabled guard-band twin-SSB-OFDM is improved by more than 4-dB compared to that of the twin-SSB-OFDM enabled by DD-MZM after 80-km single-mode fiber (SMF) transmission. In addition, more than 3-dB and 10 dB receiver sensitivity improvements in terms of received optical power (ROP) and optical signal-to-noise ratio (OSNR) are also achieved, respectively.
NASA Astrophysics Data System (ADS)
Nguyen, HoangViet
2015-03-01
We have investigated and demonstrated a novel scheme to generate 2.5 Gbit/s 64 QAM orthogonal frequency division multiplexing (OFDM) signals for Radio Over Fiber (ROF) systems. We employ Fiber Bragg Grating (FBG) because the repetitive frequency of the RF source and the bandwidth of the optical modulator are largely reduced and the architecture of the ROF system is simpler. Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) has been considered as a promising solution for future broadband access networks. Principle of WDM-PON access network compatible with OFDM-ROF systems is investigated. This novel scheme which has multiple double-frequency technique to generate mm-wave signal to carry OFDM signals is a practical scheme to be applied for future broadband access networks.
Study of dual-polarization OQAM-OFDM PON with direct detection
NASA Astrophysics Data System (ADS)
Luo, Qing-long; Feng, Min; Bai, Cheng-lin; Hu, Wei-sheng
2016-01-01
An offset quadrature amplitude modulation orthogonal frequency-division multiplexing (OQAM-OFDM) passive optical network (PON) architecture with direct detection is brought up to increase the transmission range and improve the system performance. In optical line terminal (OLT), OQAM-OFDM signals at 40 Gbit/s are transmitted as downstream. At each optical network unit (ONU), the optical OQAM-OFDM signal is demodulated with direct detection. The results show that the transmission distance can exceed 20 km with negligible penalty under the experimental conditions.
Golay sequences coded coherent optical OFDM for long-haul transmission
NASA Astrophysics Data System (ADS)
Qin, Cui; Ma, Xiangrong; Hua, Tao; Zhao, Jing; Yu, Huilong; Zhang, Jian
2017-09-01
We propose to use binary Golay sequences in coherent optical orthogonal frequency division multiplexing (CO-OFDM) to improve the long-haul transmission performance. The Golay sequences are generated by binary Reed-Muller codes, which have low peak-to-average power ratio and certain error correction capability. A low-complexity decoding algorithm for the Golay sequences is then proposed to recover the signal. Under same spectral efficiency, the QPSK modulated OFDM with binary Golay sequences coding with and without discrete Fourier transform (DFT) spreading (DFTS-QPSK-GOFDM and QPSK-GOFDM) are compared with the normal BPSK modulated OFDM with and without DFT spreading (DFTS-BPSK-OFDM and BPSK-OFDM) after long-haul transmission. At a 7% forward error correction code threshold (Q2 factor of 8.5 dB), it is shown that DFTS-QPSK-GOFDM outperforms DFTS-BPSK-OFDM by extending the transmission distance by 29% and 18%, in non-dispersion managed and dispersion managed links, respectively.
Sun, Tengfen; Liu, Minwen; Li, Yingchun; Wang, Min
2017-10-16
In this paper, we experimentally investigate the performance of crosstalk mitigation for 16-ary quadrature amplitude modulation orthogonal frequency division multiplexing (16QAM-OFDM) signals carrying orbital angular momentum (OAM) multiplexed free-space-optical communication (FSO) links using the pilot assisted Least Square (LS) algorithm. At the demodulating spatial light modulators (SLMs), we launch the distorted phase holograms which have the information of atmospheric turbulence obeying the modified Hill spectrum. And crosstalk can be introduced by these holograms with the experimental verification. The pilot assisted LS algorithm can efficiently improve the quality of system performance, the points of constellations get closer to the reference points and around two orders of magnitude improvement of bit-error rate (BER) is obtained.
Shieh, W; Yang, Q; Ma, Y
2008-04-28
Coherent optical OFDM (CO-OFDM) has emerged as an attractive modulation format for the forthcoming 100 Gb/s Ethernet. However, even the spectral-efficient implementation of CO-OFDM requires digital-to-analog converters (DAC) and analog-to-digital converters (ADC) to operate at the bandwidth which may not be available today or may not be cost-effective. In order to resolve the electronic bandwidth bottleneck associated with DAC/ADC devices, we propose and elucidate the principle of orthogonal-band-multiplexed OFDM (OBM-OFDM) to subdivide the entire OFDM spectrum into multiple orthogonal bands. With this scheme, the DAC/ADCs do not need to operate at extremely high sampling rate. The corresponding mapping to the mixed-signal integrated circuit (IC) design is also revealed. Additionally, we show the proof-of-concept transmission experiment through optical realization of OBM-OFDM. To the best of our knowledge, we present the first experimental demonstration of 107 Gb/s QPSK-encoded CO-OFDM signal transmission over 1000 km standard-single- mode-fiber (SSMF) without optical dispersion compensation and without Raman amplification. The demonstrated system employs 2x2 MIMO-OFDM signal processing and achieves high electrical spectral efficiency with direct-conversion at both transmitter and receiver.
622-Mbps Orthogonal Frequency Division Multiplexing (OFDM) Digital Modem Implemented
NASA Technical Reports Server (NTRS)
Kifle, Muli; Bizon, Thomas P.; Nguyen, Nam T.; Tran, Quang K.; Mortensen, Dale J.
2002-01-01
Future generation space communications systems feature significantly higher data rates and relatively smaller frequency spectrum allocations than systems currently deployed. This requires the application of bandwidth- and power-efficient signal transmission techniques. There are a number of approaches to implementing such techniques, including analog, digital, mixed-signal, single-channel, or multichannel systems. In general, the digital implementations offer more advantages; however, a fully digital implementation is very difficult because of the very high clock speeds required. Multichannel techniques are used to reduce the sampling rate. One such technique, multicarrier modulation, divides the data into a number of low-rate channels that are stacked in frequency. Orthogonal frequency division multiplexing (OFDM), a form of multicarrier modulation, is being proposed for numerous systems, including mobile wireless and digital subscriber link communication systems. In response to this challenge, NASA Glenn Research Center's Communication Technology Division has developed an OFDM digital modem (modulator and demodulator) with an aggregate information throughput of 622 Mbps. The basic OFDM waveform is constructed by dividing an incoming data stream into four channels, each using either 16- ary quadrature amplitude modulation (16-QAM) or 8-phase shift keying (8-PSK). An efficient implementation for an OFDM architecture is being achieved using the combination of a discrete Fourier transform (DFT) at the transmitter to digitally stack the individual carriers, inverse DFT at the receiver to perform the frequency translations, and a polyphase filter to facilitate the pulse shaping.
A new precoding scheme for spectral efficient optical OFDM systems
NASA Astrophysics Data System (ADS)
Hardan, Saad Mshhain; Bayat, Oguz; Abdulkafi, Ayad Atiyah
2018-07-01
Achieving high spectral efficiency is the key requirement of 5G and optical wireless communication systems and has recently attracted much attention, aiming to satisfy the ever increasing demand for high data rates in communications systems. In this paper, we propose a new precoding/decoding algorithm for spectral efficient optical orthogonal frequency division multiplexing (OFDM) scheme based visible light communication (VLC) systems. The proposed coded modulated optical (CMO) based OFDM system can be applied for both single input single output (SISO) and multiple input multiple-output (MIMO) architectures. Firstly, the real OFDM time domain signal is obtained through invoking the precoding/decoding algorithm without the Hermitian symmetry. After that, the positive signal is achieved either by adding a DC-bias or by using the spatial multiplexing technique. The proposed CMO-OFDM scheme efficiently improves the spectral efficiency of the VLC system as it does not require the Hermitian symmetry constraint to yield real signals. A comparison of the performance improvement of the proposed scheme with other OFDM approaches is also presented in this work. Simulation results show that the proposed CMO-OFDM scheme can not only enhance the spectral efficiency of OFDM-based VLC systems but also improve bit error rate (BER) performance compared with other optical OFDM schemes.
Data-Dependent Fingerprints for Wireless Device Authentication
2014-05-20
enhanced when using a modulation based on orthogonal frequency division multiplexing ( OFDM ) that has a large range of signal levels. However, in...at 70 MHz. The radios use OFDM with 64-point FFT block sizes for transmission so that the bandwidth is divided into Nd = 64 data and Nc = 5 cyclic...τℓTs) (1) where Ts is the OFDM symbol period (and therefore discrete-time sampling period) and L is the number of multipaths in the channel with
Performance of MIMO-OFDM using convolution codes with QAM modulation
NASA Astrophysics Data System (ADS)
Astawa, I. Gede Puja; Moegiharto, Yoedy; Zainudin, Ahmad; Salim, Imam Dui Agus; Anggraeni, Nur Annisa
2014-04-01
Performance of Orthogonal Frequency Division Multiplexing (OFDM) system can be improved by adding channel coding (error correction code) to detect and correct errors that occur during data transmission. One can use the convolution code. This paper present performance of OFDM using Space Time Block Codes (STBC) diversity technique use QAM modulation with code rate ½. The evaluation is done by analyzing the value of Bit Error Rate (BER) vs Energy per Bit to Noise Power Spectral Density Ratio (Eb/No). This scheme is conducted 256 subcarrier which transmits Rayleigh multipath fading channel in OFDM system. To achieve a BER of 10-3 is required 10dB SNR in SISO-OFDM scheme. For 2×2 MIMO-OFDM scheme requires 10 dB to achieve a BER of 10-3. For 4×4 MIMO-OFDM scheme requires 5 dB while adding convolution in a 4x4 MIMO-OFDM can improve performance up to 0 dB to achieve the same BER. This proves the existence of saving power by 3 dB of 4×4 MIMO-OFDM system without coding, power saving 7 dB of 2×2 MIMO-OFDM and significant power savings from SISO-OFDM system.
NASA Astrophysics Data System (ADS)
Choudhury, Pallab K.
2018-05-01
Spectrally shaped orthogonal frequency division multiplexing (OFDM) signal for symmetric 10 Gb/s cross-wavelength reuse reflective semiconductor optical amplifier (RSOA) based colorless wavelength division multiplexed passive optical network (WDM-PON) is proposed and further analyzed to support broadband services of next generation high speed optical access networks. The generated OFDM signal has subcarriers in separate frequency ranges for downstream and upstream, such that the re-modulation noise can be effectively minimized in upstream data receiver. Moreover, the cross wavelength reuse approach improves the tolerance against Rayleigh backscattering noise due to the propagation of different wavelengths in the same feeder fiber. The proposed WDM-PON is successfully demonstrated for 25 km fiber with 16-QAM (quadrature amplitude modulation) OFDM signal having bandwidth of 2.5 GHz for 10 Gb/s operation and subcarrier frequencies in 3-5.5 GHz and DC-2.5 GHz for downstream (DS) and upstream (US) transmission respectively. The result shows that the proposed scheme maintains a good bit error rate (BER) performance below the forward error correction (FEC) limit of 3.8 × 10-3 at acceptable receiver sensitivity and provides a high resilience against re-modulation and Rayleigh backscattering noises as well as chromatic dispersion.
A ROF transport system using phase & polarization modulation based on OFDM technique
NASA Astrophysics Data System (ADS)
Mallick, Khaleda; Patra, Ardhendu Sekhar
2018-05-01
A radio-over-fiber (ROF) transport system using phase and polarization modulator based on orthogonal frequency division multiplexing (OFDM) technique has been proposed and demonstrated, to transmit 2.5 Gbps at 7.5 GHz over 40 km single mode fiber (SMF). The transmission performance is observed by proper bit error rate and clear eye diagram. Our proposed system become a prominent alternative, as it has advantages of communication link for greater bandwidth and data rates.
NASA Astrophysics Data System (ADS)
Gou, Pengqi; Wang, Kaihui; Qin, Chaoyi; Yu, Jianjun
2017-03-01
We experimentally demonstrate a 16-ary quadrature amplitude modulation (16QAM) DFT-spread optical orthogonal frequency division multiplexing (OFDM) transmission system utilizing a cost-effective directly modulated laser (DML) and direct detection. For 20-Gbaud 16QAM-OFDM signal, with the aid of nonlinear equalization (NLE) algorithm, we respectively provide 6.2-dB and 5.2-dB receiver sensitivity improvement under the hard-decision forward-error-correction (HD-FEC) threshold of 3.8×10-3 for the back-to-back (BTB) case and after transmission over 10-km standard single mode fiber (SSMF) case, related to only adopt post-equalization scheme. To our knowledge, this is the first time to use dynamic nonlinear equalizer (NLE) based on the summation of the square of the difference between samples in one IM/DD OFDM system with DML to mitigate nonlinear distortion.
Atmospheric free-space coherent optical communications with adaptive optics
NASA Astrophysics Data System (ADS)
Ting, Chueh; Zhang, Chengyu; Yang, Zikai
2017-02-01
Free-space coherent optical communications have a potential application to offer last mile bottleneck solution in future local area networks (LAN) because of their information carrier, information security and license-free status. Coherent optical communication systems using orthogonal frequency division multiplexing (OFDM) digital modulation are successfully demonstrated in a long-haul tens Giga bits via optical fiber, but they are not yet available in free space due to atmospheric turbulence-induced channel fading. Adaptive optics is recognized as a promising technology to mitigate the effects of atmospheric turbulence in free-space optics. In this paper, a free-space coherent optical communication system using an OFDM digital modulation scheme and adaptive optics (FSO OFDM AO) is proposed, a Gamma-Gamma distribution statistical channel fading model for the FSO OFDM AO system is examined, and FSO OFDM AO system performance is evaluated in terms of bit error rate (BER) versus various propagation distances.
Circle-16QAM for a zero-guard-interval CO-OFDM system
NASA Astrophysics Data System (ADS)
Kong, Lingyu; Yang, Aiying; Guo, Peng; Lu, Yueming; Qiao, Yaojun
2018-01-01
In this paper, we introduce circle 16 quadrature amplitude modulation (C-16QAM) modulation format in a high spectral efficiency zero-guard-interval (ZGI) coherent optical (CO) orthogonal frequency-division multiplexing (OFDM) system. At transmitter, the C-16QAM has advantages over the conventional square 16QAM in terms of transmission distance and tolerance to laser linewidth and fiber nonlinearities. ZGI CO-OFDM enables to take away the cyclic prefix (CP), so it has the benefit of higher spectral efficiency compared with the conventional CO-OFDM system. At receiver, in order to compensate chromatic dispersion (CD) and phase noise in a single channel ZGI CO-OFDM system, we studied the overlapped frequency domain equalizer (OFDE) and two carrier phase recovery (CPR) algorithms. We simulate the above systems and the results demonstrate that with the C-16QAM, a 28GBaud ZGI CO-OFDM system can have the longer transmission distance, the higher tolerance to laser linewidth and fiber nonlinearities with contrast to the conventional square 16QAM.
Analysis of different sub-carrier allocation of M-ary QAM-OFDM downlink in RoF system
NASA Astrophysics Data System (ADS)
Shao, Yu-feng; Chen, Luo; Wang, An-rong; Zhao, Yun-jie; Long, Ying; Ji, Xing-ping
2018-01-01
In this paper, the performance of a 60 GHz radio over fiber (RoF) system with 4/16/64 quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) downstream signals is studied. Delivery of 10 Gbit/s M-ary QAM (MQAM) OFDM signals through the 20-km-long single-mode fiber (SMF) is complicated in terms of intensity modulation and direct detection (IM/DD). Using self-homodyne method, the beating of two independent light waves generating the millimeter-wave at the photodetector can be down-converted to baseband in the electrical domain. Meanwhile, three kinds of sub-carrier arrangement schemes are compared and discussed, and the simulation results show that lower peak-to-average power ratio ( PAPR) can be obtained adopting the adjacent scheme. At bit error rate ( BER) of 10-3, the receiver sensitivity using 4QAM-OFDM sub-carrier signal is almost enhanced by 4 dB and 9 dB compared with those of 16QAM-OFDM signal and 64QAM-OFDM signal.
Experimental research of adaptive OFDM and OCT precoding with a high SE for VLLC system
NASA Astrophysics Data System (ADS)
Liu, Shuang-ao; He, Jing; Chen, Qinghui; Deng, Rui; Zhou, Zhihua; Chen, Shenghai; Chen, Lin
2017-09-01
In this paper, an adaptive orthogonal frequency division multiplexing (OFDM) modulation scheme with 128/64/32/16-quadrature amplitude modulation (QAM) and orthogonal circulant matrix transform (OCT) precoding is proposed and experimentally demonstrated for a visible laser light communication (VLLC) system with a cost-effective 450-nm blue-light laser diode (LD). The performance of OCT precoding is compared with conventional the adaptive Discrete Fourier Transform-spread (DFT-spread) OFDM scheme, 32 QAM OCT precoding OFDM scheme, 64 QAM OCT precoding OFDM scheme and adaptive OCT precoding OFDM scheme. The experimental results show that OCT precoding can achieve a relatively flat signal-to-noise ratio (SNR) curve, and it can provide performance improvement in bit error rate (BER). Furthermore, the BER of the proposed OFDM signal with a raw bit rate 5.04 Gb/s after 5-m free space transmission is less than 20% of soft-decision forward error correlation (SD-FEC) threshold of 2.4 × 10-2, and the spectral efficiency (SE) of 4.2 bit/s/Hz can be successfully achieved.
Adaptively loaded IM/DD optical OFDM based on set-partitioned QAM formats.
Zhao, Jian; Chen, Lian-Kuan
2017-04-17
We investigate the constellation design and symbol error rate (SER) of set-partitioned (SP) quadrature amplitude modulation (QAM) formats. Based on the SER analysis, we derive the adaptive bit and power loading algorithm for SP QAM based intensity-modulation direct-detection (IM/DD) orthogonal frequency division multiplexing (OFDM). We experimentally show that the proposed system significantly outperforms the conventional adaptively-loaded IM/DD OFDM and can increase the data rate from 36 Gbit/s to 42 Gbit/s in the presence of severe dispersion-induced spectral nulls after 40-km single-mode fiber. It is also shown that the adaptive algorithm greatly enhances the tolerance to fiber nonlinearity and allows for more power budget.
Adaptively loaded SP-offset-QAM OFDM for IM/DD communication systems.
Zhao, Jian; Chan, Chun-Kit
2017-09-04
In this paper, we propose adaptively loaded set-partitioned offset quadrature amplitude modulation (SP-offset-QAM) orthogonal frequency division multiplexing (OFDM) for low-cost intensity-modulation direct-detection (IM/DD) communication systems. We compare this scheme with multi-band carrier-less amplitude phase modulation (CAP) and conventional OFDM, and demonstrate >40 Gbit/s transmission over 50-km single-mode fiber. It is shown that the use of SP-QAM formats, together with the adaptive loading algorithm specifically designed to this group of formats, results in significant performance improvement for all these three schemes. SP-offset-QAM OFDM exhibits greatly reduced complexity compared to SP-QAM based multi-band CAP, via parallelized implementation and minimized memory length for spectral shaping. On the other hand, this scheme shows better performance than SP-QAM based conventional OFDM at both back-to-back and after transmission. We also characterize the proposed scheme in terms of enhanced tolerance to fiber intra-channel nonlinearity and the potential to increase the communication security. The studies show that adaptive SP-offset-QAM OFDM is a promising IM/DD solution for medium- and long-reach optical access networks and data center connections.
On-the-field performance of quintuple-play long-reach OFDM-based WDM-PON optical access networks.
Llorente, Roberto; Morant, Maria; Pellicer, Eloy; Herman, Milan; Nagy, Zsolt; Alves, Tiago; Cartaxo, Adolfo; Herrera, Javier; Correcher, Jose; Quinlan, Terence; Walker, Stuart; Rodrigues, Cláudio; Cluzeaud, Pierre; Schmidt, Axel; Piesiewicz, Radoslaw; Sambaraju, Rakesh
2014-03-24
In this paper the on-the-field performance of a WDM-PON optical access providing quintuple-play services using orthogonal frequency division multiplexing (OFDM) modulation is evaluated in a real fiber-to-the-home (FTTH) network deployed by Towercom operator in Bratislava (Slovakia). A bundle of quintuple-play services comprising full-standard OFDM-based signals (LTE, WiMAX, UWB and DVB-T) and an ad-hoc OFDM-GbE signal is transmitted in coexistence per single user. Both downstream and upstream transmission performances are evaluated in different on-the-field long-reach optical link distance configurations. Four wavelength multi-user transmission of quintuple-play OFDM services is demonstrated exceeding 60.8 km reach in standard single mode fiber.
Giacoumidis, E; Jarajreh, M A; Sygletos, S; Le, S T; Farjady, F; Tsokanos, A; Hamié, A; Pincemin, E; Jaouën, Y; Ellis, A D; Doran, N J
2014-05-05
A number of critical issues for dual-polarization single- and multi-band optical orthogonal-frequency division multiplexing (DP-SB/MB-OFDM) signals are analyzed in dispersion compensation fiber (DCF)-free long-haul links. For the first time, different DP crosstalk removal techniques are compared, the maximum transmission-reach is investigated, and the impact of subcarrier number and high-level modulation formats are explored thoroughly. It is shown, for a bit-error-rate (BER) of 10(-3), 2000 km of quaternary phase-shift keying (QPSK) DP-MB-OFDM transmission is feasible. At high launched optical powers (LOP), maximum-likelihood decoding can extend the LOP of 40 Gb/s QPSK DP-SB-OFDM at 2000 km by 1.5 dB compared to zero-forcing. For a 100 Gb/s DP-MB-OFDM system, a high number of subcarriers contribute to improved BER but at the cost of digital signal processing computational complexity, whilst by adapting the cyclic prefix length the BER can be improved for a low number of subcarriers. In addition, when 16-quadrature amplitude modulation (16QAM) is employed the digital-to-analogue/analogue-to-digital converter (DAC/ADC) bandwidth is relaxed with a degraded BER; while the 'circular' 8QAM is slightly superior to its 'rectangular' form. Finally, the transmission of wavelength-division multiplexing DP-MB-OFDM and single-carrier DP-QPSK is experimentally compared for up to 500 Gb/s showing great potential and similar performance at 1000 km DCF-free G.652 line.
A full-duplex optical access system with hybrid 64/16/4QAM-OFDM downlink
NASA Astrophysics Data System (ADS)
He, Chao; Tan, Ze-fu; Shao, Yu-feng; Cai, Li; Pu, He-sheng; Zhu, Yun-le; Huang, Si-si; Liu, Yu
2016-09-01
A full-duplex optical passive access scheme is proposed and verified by simulation, in which hybrid 64/16/4-quadrature amplitude modulation (64/16/4QAM) orthogonal frequency division multiplexing (OFDM) optical signal is for downstream transmission and non-return-to-zero (NRZ) optical signal is for upstream transmission. In view of the transmitting and receiving process for downlink optical signal, in-phase/quadrature-phase (I/Q) modulation based on Mach-Zehnder modulator (MZM) and homodyne coherent detection technology are employed, respectively. The simulation results show that the bit error ratio ( BER) less than hardware decision forward error correction (HD-FEC) threshold is successfully obtained over transmission path with 20-km-long standard single mode fiber (SSMF) for hybrid downlink modulation OFDM optical signal. In addition, by dividing the system bandwidth into several subchannels consisting of some continuous subcarriers, it is convenient for users to select different channels depending on requirements of communication.
NASA Astrophysics Data System (ADS)
He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu
2015-01-01
To improve the transmission performance of multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over optical fiber, a pre-coding scheme based on low-density parity-check (LDPC) is adopted and experimentally demonstrated in the intensity-modulation and direct-detection MB-OFDM UWB over fiber system. Meanwhile, a symbol synchronization and pilot-aided channel estimation scheme is implemented on the receiver of the MB-OFDM UWB over fiber system. The experimental results show that the LDPC pre-coding scheme can work effectively in the MB-OFDM UWB over fiber system. After 70 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1 × 10-3, the receiver sensitivities are improved about 4 dB when the LDPC code rate is 75%.
Statistical characterization of the nonlinear noise in 2.8 Tbit/s PDM-16QAM CO-OFDM system.
Wang, Zhe; Qiao, Yaojun; Xu, Yanfei; Ji, Yuefeng
2013-07-29
We show for the first time through comprehensive simulations under both uncompensated transmission (UT) and dispersion managed transmission (DMT) systems that the statistical distribution of the nonlinear interference (NLI) within the polarization multiplexed 16-state quadrature amplitude modulation (PM-16QAM) Coherent Optical OFDM (CO-OFDM) system deviates from Gaussian distribution in the absence of amplified spontaneous emission (ASE) noise. We also observe that the dependences of the variance of the NLI noise on both the launch power and the transmission distance (logrithm) seem to be in a simple linear way.
NASA Astrophysics Data System (ADS)
Johnson, Stanley
An increasing adoption of digital signal processing (DSP) in optical fiber telecommunication has brought to the fore several interesting DSP enabled modulation formats. One such format is orthogonal frequency division multiplexing (OFDM), which has seen great success in wireless and wired RF applications, and is being actively investigated by several research groups for use in optical fiber telecom. In this dissertation, I present three implementations of OFDM for elastic optical networking and distributed network control. The first is a field programmable gate array (FPGA) based real-time implementation of a version of OFDM conventionally known as intensity modulation and direct detection (IMDD) OFDM. I experimentally demonstrate the ability of this transmission system to dynamically adjust bandwidth and modulation format to meet networking constraints in an automated manner. To the best of my knowledge, this is the first real-time software defined networking (SDN) based control of an OFDM system. In the second OFDM implementation, I experimentally demonstrate a novel OFDM transmission scheme that supports both direct detection and coherent detection receivers simultaneously using the same OFDM transmitter. This interchangeable receiver solution enables a trade-off between bit rate and equipment cost in network deployment and upgrades. I show that the proposed transmission scheme can provide a receiver sensitivity improvement of up to 1.73 dB as compared to IMDD OFDM. I also present two novel polarization analyzer based detection schemes, and study their performance using experiment and simulation. In the third implementation, I present an OFDM pilot-tone based scheme for distributed network control. The first instance of an SDN-based OFDM elastic optical network with pilot-tone assisted distributed control is demonstrated. An improvement in spectral efficiency and a fast reconfiguration time of 30 ms have been achieved in this experiment. Finally, I experimentally demonstrate optical re-timing of a 10.7 Gb/s data stream utilizing the property of bound soliton pairs (or "soliton molecules") to relax to an equilibrium temporal separation after propagation through a nonlinear dispersion alternating fiber span. Pulses offset up to 16 ps from bit center are successfully re-timed. The optical re-timing scheme studied here is a good example of signal processing in the optical domain and such a technique can overcome the bandwidth bottleneck present in DSP. An enhanced version of this re-timing scheme is analyzed using numerical simulations.
Wu, Jiadi; Cheng, Jingchi; Tang, Ming; Deng, Lei; Songnian, Fu; Shum, Perry Ping; Liu, Deming
2014-05-15
In this Letter, we demonstrate that the interplay between Raman pump relative intensity noise and cross-phase modulation leads to a relative phase noise (RPN) that brings non-negligible performance degradation to coherent optical orthogonal frequency-division multiplexing (CO-OFDM) transmission systems with co-pumped Raman amplification. By theoretical analysis and numerical simulation, we proved that RPN brings more system impairment in terms of Q-factor penalty than the single carrier system, and relatively larger walk-off between pump and signal helps to suppress the RPN induced impairment. A higher-order modulated signal is less tolerant to RPN than a lower-order signal. With the same spectral efficiency, the quadrature-amplitude modulation format shows better tolerance to RPN than phase-shift keying. The reported findings will be useful for the design and optimization of Raman amplified CO-OFDM multi-carrier transmission systems.
NASA Astrophysics Data System (ADS)
Fang, Wei Jin; Huang, Xu Guang; Yang, Kai; Zhang, Xiao Min
2012-09-01
We propose and demonstrate a full duplex dense-wavelength-division-multiplexing radio-over-fiber (DWDM-ROF) system for transmitting 75-GHz W-band frequency multiple-input multiple-output orthogonal-frequency-division-multiplexing (MIMO-OFDM) signals with 12 Gbps downstream and 6 Gbps upstream. The downstream transmitting terminal is based on a three-channels sextupling-frequency scheme using an external modulation of a distributed feedback laser diode (DFB-LD) and dual drive Mach-Zehnder modulator (DD-MZM) for carrying downstream signals. MIMO-OFDM algorithms effectively compensate for impairments in the wireless link. Without using costly W-band components in the transmitter, a 12 Gbps downstream transmission system operation at 75 GHz is experimentally validated. For the downstream transmission, a power penalty of less than 3 dB was observed after a 50 km single mode fiber (SMF) and 4 m wireless transmission at a bit error rate (BER) of 3.8×10-3. For the upstream transmission, we use a commercially available 1.5 GHz bandwidth reflective semiconductor optical amplifier (RSOA) to achieve 6 Gbps upstream traffic for 16 QAM-OFDM signals. A power penalty of 3 dB was observed after a 50 km SMF transmission at a BER of 3.8×10-3. The frequency of the local oscillator is reduced due to the frequency sextupling scheme. The cost of the proposed system is largely reduced.
NASA Astrophysics Data System (ADS)
Tamilarasan, Ilavarasan; Saminathan, Brindha; Murugappan, Meenakshi
2016-04-01
The past decade has seen the phenomenal usage of orthogonal frequency division multiplexing (OFDM) in the wired as well as wireless communication domains, and it is also proposed in the literature as a future proof technique for the implementation of flexible resource allocation in cognitive optical networks. Fiber impairment assessment and adaptive compensation becomes critical in such implementations. A comprehensive analytical model for impairments in OFDM-based fiber links is developed. The proposed model includes the combined impact of laser phase fluctuations, fiber dispersion, self phase modulation, cross phase modulation, four-wave mixing, the nonlinear phase noise due to the interaction of amplified spontaneous emission with fiber nonlinearities, and the photodetector noises. The bit error rate expression for the proposed model is derived based on error vector magnitude estimation. The performance analysis of the proposed model is presented and compared for dispersion compensated and uncompensated backbone/backhaul links. The results suggest that OFDM would perform better for uncompensated links than the compensated links due to the negligible FWM effects and there is a need for flexible compensation. The proposed model can be employed in cognitive optical networks for accurate assessment of fiber-related impairments.
NASA Astrophysics Data System (ADS)
Jacobsen, Gunnar; Xu, Tianhua; Popov, Sergei; Sergeyev, Sergey; Zhang, Yimo
2012-12-01
We present a study of the influence of dispersion induced phase noise for CO-OFDM systems using FFT multiplexing/IFFT demultiplexing techniques (software based). The software based system provides a method for a rigorous evaluation of the phase noise variance caused by Common Phase Error (CPE) and Inter-Carrier Interference (ICI) including - for the first time to our knowledge - in explicit form the effect of equalization enhanced phase noise (EEPN). This, in turns, leads to an analytic BER specification. Numerical results focus on a CO-OFDM system with 10-25 GS/s QPSK channel modulation. A worst case constellation configuration is identified for the phase noise influence and the resulting BER is compared to the BER of a conventional single channel QPSK system with the same capacity as the CO-OFDM implementation. Results are evaluated as a function of transmission distance. For both types of systems, the phase noise variance increases significantly with increasing transmission distance. For a total capacity of 400 (1000) Gbit/s, the transmission distance to have the BER < 10-2 for the worst case CO-OFDM design is less than 800 and 460 km, respectively, whereas for a single channel QPSK system it is less than 1400 and 560 km.
A Chaos MIMO-OFDM Scheme for Mobile Communication with Physical-Layer Security
NASA Astrophysics Data System (ADS)
Okamoto, Eiji
Chaos communications enable a physical-layer security, which can enhance the transmission security in combining with upper-layer encryption techniques, or can omit the upper-layer secure protocol and enlarges the transmission efficiency. However, the chaos communication usually degrades the error rate performance compared to unencrypted digital modulations. To achieve both physical-layer security and channel coding gain, we have proposed a chaos multiple-input multiple-output (MIMO) scheme in which a rate-one chaos convolution is applied to MIMO multiplexing. However, in the conventional study only flat fading is considered. To apply this scheme to practical mobile environments, i.e., multipath fading channels, we propose a chaos MIMO-orthogonal frequency division multi-plexing (OFDM) scheme and show its effectiveness through computer simulations.
2004-03-01
Data Communication , http://www.iec.org/, last accessed December 2003. 13. Klaus Witrisal, “Orthogonal Frequency Division Multiplexing (OFDM) for...http://ieeexplore.ieee.org, last accessed 26 February 2003. 12. The International Engineering Consortium, Web Forum Tutorials, OFDM for Mobile
NASA Astrophysics Data System (ADS)
Geng, Yong; Huang, Xiatao; Cui, Wenwen; Ling, Yun; Xu, Bo; Zhang, Jin; Yi, Xingwen; Wu, Baojian; Huang, Shu-Wei; Qiu, Kun; Wong, Chee Wei; Zhou, Heng
2018-05-01
We demonstrate seamless channel multiplexing and high bitrate superchannel transmission of coherent optical orthogonal-frequency-division-multiplexing (CO-OFDM) data signals utilizing a dissipative Kerr soliton (DKS) frequency comb generated in an on-chip microcavity. Aided by comb line multiplication through Nyquist pulse modulation, the high stability and mutual coherence among mode-locked Kerr comb lines are exploited for the first time to eliminate the guard intervals between communication channels and achieve full spectral density bandwidth utilization. Spectral efficiency as high as 2.625 bit/Hz/s is obtained for 180 CO-OFDM bands encoded with 12.75 Gbaud 8-QAM data, adding up to total bitrate of 6.885 Tb/s within 2.295 THz frequency comb bandwidth. Our study confirms that high coherence is the key superiority of Kerr soliton frequency combs over independent laser diodes, as a multi-spectral coherent laser source for high-bandwidth high-spectral-density transmission networks.
Analysis of blocking probability for OFDM-based variable bandwidth optical network
NASA Astrophysics Data System (ADS)
Gong, Lei; Zhang, Jie; Zhao, Yongli; Lin, Xuefeng; Wu, Yuyao; Gu, Wanyi
2011-12-01
Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique. For optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments, optical OFDM is much more flexible compared to traditional WDM systems, enabling elastic bandwidth transmissions, and optical networking is the future trend of development. In OFDM-based optical network the research of blocking rate has very important significance for network assessment. Current research for WDM network is basically based on a fixed bandwidth, in order to accommodate the future business and the fast-changing development of optical network, our study is based on variable bandwidth OFDM-based optical networks. We apply the mathematical analysis and theoretical derivation, based on the existing theory and algorithms, research blocking probability of the variable bandwidth of optical network, and then we will build a model for blocking probability.
All-optical VPN utilizing DSP-based digital orthogonal filters access for PONs
NASA Astrophysics Data System (ADS)
Zhang, Xiaoling; Zhang, Chongfu; Chen, Chen; Jin, Wei; Qiu, Kun
2018-04-01
Utilizing digital filtering-enabled signal multiplexing and de-multiplexing, a cost-effective all-optical virtual private network (VPN) system is proposed, for the first time to our best knowledge, in digital filter multiple access passive optical networks (DFMA-PONs). Based on the DFMA technology, the proposed system can be easily designed to meet the requirements of next generation network's flexibility, elasticity, adaptability and compatibility. Through dynamic digital filter allocation and recycling, the proposed all-optical VPN system can provide dynamic establishments and cancellations of multiple VPN communications with arbitrary traffic volumes. More importantly, due to the employment of DFMA technology, the system is not limited to a fixed signal format and different signal formats such as pulse amplitude modulation (PAM), quadrature amplitude modulation (QAM) and orthogonal frequency division multiplexing (OFDM) can be used. Moreover, one transceiver is sufficient to simultaneously transmit upstream (US)/VPN data to optical line terminal (OLT) or other VPN optical network units (ONUs), thus leading to great reduction in network constructions and operation expenditures. The proposed all-optical VPN system is demonstrated with the transceiver incorporating the formats of QAM and OFDM, which can be made transparent to downstream (DS), US and VPN communications. The bit error rates (BERs) of DS, US and VPN for OFDM signals are below the forward-error-correction (FEC) limit of 3 . 8 × 10-3 when the received optical powers are about -16.8 dBm, -14.5 dBm and -15.7 dBm, respectively.
Joint Channel and Phase Noise Estimation in MIMO-OFDM Systems
NASA Astrophysics Data System (ADS)
Ngebani, I. M.; Chuma, J. M.; Zibani, I.; Matlotse, E.; Tsamaase, K.
2017-05-01
The combination of multiple-input multiple-output (MIMO) techniques with orthogonal frequency division multiplexing (OFDM), MIMO-OFDM, is a promising way of achieving high spectral efficiency in wireless communication systems. However, the performance of MIMO-ODFM systems is highly degraded by radio frequency (RF) impairments such as phase noise. Similar to the single-input single-output (SISO) case, phase noise in MIMO-OFDM systems results in a common phase error (CPE) and inter carrier interference (ICI). In this paper the problem of joint channel and phase noise estimation in a system with multiple transmit and receive antennas where each antenna is equipped with its own independent oscillator is tackled. The technique employed makes use of a novel placement of pilot carriers in the preamble and data portion of the MIMO-OFDM frame. Numerical results using a 16 and 64 quadrature amplitude modulation QAM schemes are provided to illustrate the effectiveness of the proposed scheme for MIMO-OFDM systems.
NASA Astrophysics Data System (ADS)
Li, Yupeng; Ding, Ding
2017-09-01
Benefiting from the high spectral efficiency and low peak-to-average power ratio, constant envelope orthogonal frequency division multiplexing (OFDM) is a promising technique in coherent optical communication. Polarization-division multiplexing (PDM) has been employed as an effective way to double the transmission capacity in the commercial 100 Gb/s PDM-QPSK system. We investigated constant envelope OFDM together with PDM. Simulation results show that the acceptable maximum launch power into the fiber improves 10 and 6 dB for 80- and 320-km transmission, respectively (compared with the conventional PDM OFDM system). The maximum reachable distance of the constant envelope OFDM system is able to reach 800 km, and even 1200 km is reachable if an ideal erbium doped fiber amplifier is employed.
Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems.
Li, Jianfeng; Huang, Zhitong; Liu, Xiaoshuang; Ji, Yuefeng
2015-01-12
A novel hybrid time-frequency domain equalization scheme is proposed and experimentally demonstrated to mitigate the white light emitting diode (LED) nonlinearity in visible light communication (VLC) systems based on orthogonal frequency division multiplexing (OFDM). We handle the linear and nonlinear distortion separately in a nonlinear OFDM system. The linear part is equalized in frequency domain and the nonlinear part is compensated by an adaptive nonlinear time domain equalizer (N-TDE). The experimental results show that with only a small number of parameters the nonlinear equalizer can efficiently mitigate the LED nonlinearity. With the N-TDE the modulation index (MI) and BER performance can be significantly enhanced.
Custom instruction set NIOS-based OFDM processor for FPGAs
NASA Astrophysics Data System (ADS)
Meyer-Bäse, Uwe; Sunkara, Divya; Castillo, Encarnacion; Garcia, Antonio
2006-05-01
Orthogonal Frequency division multiplexing (OFDM) spread spectrum technique, sometimes also called multi-carrier or discrete multi-tone modulation, are used in bandwidth-efficient communication systems in the presence of channel distortion. The benefits of OFDM are high spectral efficiency, resiliency to RF interference, and lower multi-path distortion. OFDM is the basis for the European digital audio broadcasting (DAB) standard, the global asymmetric digital subscriber line (ADSL) standard, in the IEEE 802.11 5.8 GHz band standard, and ongoing development in wireless local area networks. The modulator and demodulator in an OFDM system can be implemented by use of a parallel bank of filters based on the discrete Fourier transform (DFT), in case the number of subchannels is large (e.g. K > 25), the OFDM system are efficiently implemented by use of the fast Fourier transform (FFT) to compute the DFT. We have developed a custom FPGA-based Altera NIOS system to increase the performance, programmability, and low power in mobil wireless systems. The overall gain observed for a 1024-point FFT ranges depending on the multiplier used by the NIOS processor between a factor of 3 and 16. A careful optimization described in the appendix yield a performance gain of up to 77% when compared with our preliminary results.
Multifrequency OFDM SAR in Presence of Deception Jamming
NASA Astrophysics Data System (ADS)
Schuerger, Jonathan; Garmatyuk, Dmitriy
2010-12-01
Orthogonal frequency division multiplexing (OFDM) is considered in this paper from the perspective of usage in imaging radar scenarios with deception jamming. OFDM radar signals are inherently multifrequency waveforms, composed of a number of subbands which are orthogonal to each other. While being employed extensively in communications, OFDM has not found comparatively wide use in radar, and, particularly, in synthetic aperture radar (SAR) applications. In this paper, we aim to show the advantages of OFDM-coded radar signals with random subband composition when used in deception jamming scenarios. Two approaches to create a radar signal by the jammer are considered: instantaneous frequency (IF) estimator and digital-RF-memory- (DRFM-) based reproducer. In both cases, the jammer aims to create a copy of a valid target image via resending the radar signal at prescribed time intervals. Jammer signals are derived and used in SAR simulations with three types of signal models: OFDM, linear frequency modulated (LFM), and frequency-hopped (FH). Presented results include simulated peak side lobe (PSL) and peak cross-correlation values for random OFDM signals, as well as simulated SAR imagery with IF and DRFM jammers'-induced false targets.
Opportunistic Access in Frequency Hopping Cognitive Radio Networks
2014-03-27
thresholding MA multiple access MFSK M-ary frequency shift keying MIMO multiple-input/multiple-output OFDM orthogonal frequency-division multiplexing x...adaptive BER performance as a function of ISR with orthogonal frequency-division multiplexing ( OFDM ) interference present. . . . . . . . . . 41 4.15 Non...adaptive BER performance as a function of EB/N0 with OFDM interfer- ence present
Performance analysis of a finite radon transform in OFDM system under different channel models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawood, Sameer A.; Anuar, M. S.; Fayadh, Rashid A.
In this paper, a class of discrete Radon transforms namely Finite Radon Transform (FRAT) was proposed as a modulation technique in the realization of Orthogonal Frequency Division Multiplexing (OFDM). The proposed FRAT operates as a data mapper in the OFDM transceiver instead of the conventional phase shift mapping and quadrature amplitude mapping that are usually used with the standard OFDM based on Fast Fourier Transform (FFT), by the way that ensure increasing the orthogonality of the system. The Fourier domain approach was found here to be the more suitable way for obtaining the forward and inverse FRAT. This structure resultedmore » in a more suitable realization of conventional FFT- OFDM. It was shown that this application increases the orthogonality significantly in this case due to the use of Inverse Fast Fourier Transform (IFFT) twice, namely, in the data mapping and in the sub-carrier modulation also due to the use of an efficient algorithm in determining the FRAT coefficients called the optimal ordering method. The proposed approach was tested and compared with conventional OFDM, for additive white Gaussian noise (AWGN) channel, flat fading channel, and multi-path frequency selective fading channel. The obtained results showed that the proposed system has improved the bit error rate (BER) performance by reducing inter-symbol interference (ISI) and inter-carrier interference (ICI), comparing with conventional OFDM system.« less
Performance analysis of a finite radon transform in OFDM system under different channel models
NASA Astrophysics Data System (ADS)
Dawood, Sameer A.; Malek, F.; Anuar, M. S.; Fayadh, Rashid A.; Abdullah, Farrah Salwani
2015-05-01
In this paper, a class of discrete Radon transforms namely Finite Radon Transform (FRAT) was proposed as a modulation technique in the realization of Orthogonal Frequency Division Multiplexing (OFDM). The proposed FRAT operates as a data mapper in the OFDM transceiver instead of the conventional phase shift mapping and quadrature amplitude mapping that are usually used with the standard OFDM based on Fast Fourier Transform (FFT), by the way that ensure increasing the orthogonality of the system. The Fourier domain approach was found here to be the more suitable way for obtaining the forward and inverse FRAT. This structure resulted in a more suitable realization of conventional FFT- OFDM. It was shown that this application increases the orthogonality significantly in this case due to the use of Inverse Fast Fourier Transform (IFFT) twice, namely, in the data mapping and in the sub-carrier modulation also due to the use of an efficient algorithm in determining the FRAT coefficients called the optimal ordering method. The proposed approach was tested and compared with conventional OFDM, for additive white Gaussian noise (AWGN) channel, flat fading channel, and multi-path frequency selective fading channel. The obtained results showed that the proposed system has improved the bit error rate (BER) performance by reducing inter-symbol interference (ISI) and inter-carrier interference (ICI), comparing with conventional OFDM system.
NASA Astrophysics Data System (ADS)
Jin, Wei; Zhang, Chongfu; Yuan, Weicheng
2016-02-01
We propose a physically enhanced secure scheme for direct detection-orthogonal frequency division multiplexing-passive optical network (DD-OFDM-PON) and long reach coherent detection-orthogonal frequency division multiplexing-passive optical network (LRCO-OFDM-PON), by employing noise-based encryption and channel/phase estimation. The noise data generated by chaos mapping are used to substitute training sequences in preamble to realize channel estimation and frame synchronization, and also to be embedded on variable number of key-selected randomly spaced pilot subcarriers to implement phase estimation. Consequently, the information used for signal recovery is totally hidden as unpredictable noise information in OFDM frames to mask useful information and to prevent illegal users from correctly realizing OFDM demodulation, and thereby enhancing resistance to attackers. The levels of illegal-decryption complexity and implementation complexity are theoretically discussed. Through extensive simulations, the performances of the proposed channel/phase estimation and the security introduced by encrypted pilot carriers have been investigated in both DD-OFDM and LRCO-OFDM systems. In addition, in the proposed secure DD-OFDM/LRCO-OFDM PON models, both legal and illegal receiving scenarios have been considered. These results show that, by utilizing the proposed scheme, the resistance to attackers can be significantly enhanced in DD-OFDM-PON and LRCO-OFDM-PON systems without performance degradations.
NASA Astrophysics Data System (ADS)
Wang, Jianping; Zhang, Peiran; Lu, Huimin; Feng, LiFang
2017-06-01
An orthogonal frequency division multiplexing (OFDM) technique called flipped OFDM (flip-OFDM) is apposite for a visible light communication system that needs the transmitted signal to be real and positive. Flip-OFDM uses two consecutive OFDM subframes to transmit the positive and negative parts of the signal. However, peak-to-average power ratio (PAPR) for flip-OFDM is increased tremendously due to the low value of total average power that arises from many zero values in both the positive and flipped frames. We first analyze the performance of flip-OFDM and perform a comparison with the conventional DC-biased OFDM (DCO-OFDM); then we propose a flip-OFDM scheme combined with μ-law mapping to reduce the high PAPR. The simulation results show that the PAPR of the system is reduced about 17.2 and 5.9 dB when compared with the normal flip-OFDM and DCO-OFDM signals, respectively.
Lightweight multi-carrier modulation for IoT
NASA Astrophysics Data System (ADS)
Hussein, Ahmed F.; Elgala, Hany
2018-01-01
Visible light communications (VLC) based on intensity-modulation with direct-detection (IM/DD) is a promising technology to offer broadband wireless Internet access. A VLC system based on the well-known multi-carrier orthogonal frequency-division multiplexing (OFDM) modulation has the potential to coexist with radio frequency (RF) technologies such as WiFi. Recently, the VLC technology is considered to enable wireless connectivity of resource limited devices, thus enabling the Internet-of-Things (IoT) vision. This paper presents a novel concept for modulating multiple light sources to realize a lightweight version of OFDM communication chain suitable for resource limited IoT devices. In such proposed system, different sinusoidal streams from an array of light sources are carrying the encoded OFDM time-domain samples, thus enabling the realization of the Fourier transformation in the optical domain. Accordingly, the fast Fourier transform (FFT) operation required for the demodulation at the receiver side is eliminated, which is crucial for resource limited IoT devices. In addition, the proposed concept, (1) offers the same spectral efficiency as the well-known asymmetrically clipped optical OFDM (ACO-OFDM), (2) reduces the bandwidth requirement from individual light sources, (3) reduces the peak-to-average power ratio (PAPR) of the signal formed and transmitted over the optical channel, and (4) supports simultaneous sensing applications using the different sinusoidal streams that are acting as unique beaconing signals. The proposed concept is numerically evaluated and compared with ACO-OFDM. The obtained results reveal a clear reduction in the PAPR with ˜ 5dB at a complementary cumulative distribution function (CCDF) of 10-2 and remarkable enhancement in bit-error performance.
71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation.
Sun, Xiaobin; Zhang, Zhenyu; Chaaban, Anas; Ng, Tien Khee; Shen, Chao; Chen, Rui; Yan, Jianchang; Sun, Haiding; Li, Xiaohang; Wang, Junxi; Li, Jinmin; Alouini, Mohamed-Slim; Ooi, Boon S
2017-09-18
A demonstration of ultraviolet-B (UVB) communication link is implemented utilizing quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM). The demonstration is based on a 294-nm UVB-light-emitting-diode (UVB-LED) with a full-width at half-maximum (FWHM) of 9 nm and light output power of 190 μW, at 7 V, with a special silica gel lens on top of it. A -3-dB bandwidth of 29 MHz was measured and a high-speed near-solar-blind communication link with a data rate of 71 Mbit/s was achieved using 8-QAM-OFDM at perfect alignment. 23.6 Mbit/s using 2-QAM-OFDM when the angle subtended by the pointing directions of the UVB-LED and photodetector (PD) is 12 degrees, thus establishing a diffuse-line-of-sight (LOS) link. The measured bit-error rate (BER) of 2.8 ×10 -4 and 2.4 ×10 -4 , respectively, are well below the forward error correction (FEC) criterion of 3.8 ×10 -3 . The demonstrated high data-rate OFDM-based UVB communication link paves the way for realizing high-speed non-line-of-sight free-space optical communications.
Performance of adaptive DD-OFDM multicore fiber links and its relation with intercore crosstalk.
Alves, Tiago M F; Luís, Ruben S; Puttnam, Benjamin J; Cartaxo, Adolfo V T; Awaji, Yoshinari; Wada, Naoya
2017-07-10
Adaptive direct-detection (DD) orthogonal frequency-division multiplexing (OFDM) is proposed to guarantee signal quality over time in weakly-coupled homogenous multicore fiber (MCFs) links impaired by stochastic intercore crosstalk (ICXT). For the first time, the received electrical power of the ICXT and the performance of the adaptive DD-OFDM MCF link are experimentally monitored quasi-simultaneously over a 210 hour period. Experimental results show that the time evolution of the error vector magnitude due to the ICXT can be suitably estimated from the normalized power of the detected crosstalk. The detected crosstalk results from the beating between the carrier in the test core and ICXT originating from the carrier and modulated signal from interfering core. The results show that the operation of DD-OFDM systems employing fixed modulation can be severely impaired by the presence of ICXT that may unpredictable vary in both power and frequency. The system may suffer from deleterious impact of moderate ICXT levels over a time duration of several hours or from peak ICXT levels occurring over a number of minutes. Such power fluctuations can lead to large variations in bit error ratio (BER) for static modulation schemes. Here, we show that BER fluctuations may be minimized by the use of adaptive modulation techniques and that in particular, the adaptive OFDM is a viable solution to guarantee link quality in MCF-based systems. An experimental model of an adaptive DD-OFDM MCF link shows an average throughput of 12 Gb/s that represents a reduction of only 9% compared to the maximum throughput measured without ICXT and an improvement of 23% relative to throughput obtained with static modulation.
Cheng, Min-Chi; Chi, Yu-Chieh; Li, Yi-Cheng; Tsai, Cheng-Ting; Lin, Gong-Ru
2014-06-30
By up-shifting the relaxation oscillation peak and suppressing its relative intensity noise in a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) under intense injection-locking, the directly modulated transmission of optical 16 quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data-stream is demonstrated. The total bit rate of up to 20 Gbit/s within 5-GHz bandwidth is achieved by using the OFDM subcarrier pre-leveling technique. With increasing the injection-locking power from -12 to -3 dBm, the effective reduction on threshold current of the WRC-FPLD significantly shifts its relaxation oscillation frequency from 5 to 7.5 GHz. This concurrently induces an up-shift of the peak relative intensity noise (RIN) of the WRC-FPLD, and effectively suppresses the background RIN level to -104 dBc/Hz within the OFDM band between 3 and 6 GHz. The enhanced signal-to-noise ratio from 16 to 20 dB leads to a significant reduction of bit-error-rate (BER) of the back-to-back transmitted 16-QAM-OFDM data from 1.3 × 10(-3) to 5 × 10(-5), which slightly degrades to 1.1 × 10(-4) after 25-km single-mode fiber (SMF) transmission. However, the enlarged injection-locking power from -12 to -3 dBm inevitably declines the modulation throughput and increases its negative throughput slope from -0.8 to -1.9 dBm/GHz. After pre-leveling the peak amplitude of the OFDM subcarriers to compensate the throughput degradation of the directly modulated WRC-FPLD, the BER under 25-km SMF transmission can be further improved to 3 × 10(-5) under a receiving power of -3 dBm.
He, Jiale; Li, Borui; Deng, Lei; Tang, Ming; Gan, Lin; Fu, Songnian; Shum, Perry Ping; Liu, Deming
2016-06-13
In this paper, the feasibility of space division multiplexing for optical wireless fronthaul systems is experimentally demonstrated by implementing high speed MIMO-OFDM/OQAM radio signals over 20km 7-core fiber and 0.4m wireless link. Moreover, the impact of optical inter-core crosstalk in multicore fibers on the proposed MIMO-OFDM/OQAM radio over fiber system is experimentally evaluated in both SISO and MIMO configurations for comparison. The experimental results show that the inter-core crosstalk tolerance of the proposed radio over fiber system can be relaxed to -10 dB by using the proposed MIMO-OFDM/OQAM processing. These results could guide high density multicore fiber design to support a large number of antenna modules and a higher density of radio-access points for potential applications in 5G cellular system.
20-Gbps optical LiFi transport system.
Ying, Cheng-Ling; Lu, Hai-Han; Li, Chung-Yi; Cheng, Chun-Jen; Peng, Peng-Chun; Ho, Wen-Jeng
2015-07-15
A 20-Gbps optical light-based WiFi (LiFi) transport system employing vertical-cavity surface-emitting laser (VCSEL) and external light injection technique with 16-quadrature amplitude modulation (QAM)-orthogonal frequency-division multiplexing (OFDM) modulating signal is proposed. Good bit error rate (BER) performance and clear constellation map are achieved in our proposed optical LiFi transport systems. An optical LiFi transport system, delivering 16-QAM-OFDM signal over a 6-m free-space link, with a data rate of 20 Gbps, is successfully demonstrated. Such a 20-Gbps optical LiFi transport system provides the advantage of a free-space communication link for high data rates, which can accelerate the visible laser light communication (VLLC) deployment.
Evaluation of multiple-channel OFDM based airborne ultrasonic communications.
Jiang, Wentao; Wright, William M D
2016-09-01
Orthogonal frequency division multiplexing (OFDM) modulation has been extensively used in both wired and wireless communication systems. The use of OFDM technology allows very high spectral efficiency data transmission without using complex equalizers to correct the effect of a frequency-selective channel. This work investigated OFDM methods in an airborne ultrasonic communication system, using commercially available capacitive ultrasonic transducers operating at 50kHz to transmit information through the air. Conventional modulation schemes such as binary phase shift keying (BPSK) and quadrature amplitude modulation (QAM) were used to modulate sub-carrier signals, and the performances were evaluated in an indoor laboratory environment. Line-of-sight (LOS) transmission range up to 11m with no measurable errors was achieved using BPSK at a data rate of 45kb/s and a spectral efficiency of 1b/s/Hz. By implementing a higher order modulation scheme (16-QAM), the system data transfer rate was increased to 180kb/s with a spectral efficiency of 4b/s/Hz at attainable transmission distances up to 6m. Diffraction effects were incorporated into a model of the ultrasonic channel that also accounted for beam spread and attenuation in air. The simulations were a good match to the measured signals and non-LOS signals could be demodulated successfully. The effects of multipath interference were also studied in this work. By adding cyclic prefix (CP) to the OFDM symbols, the bit error rate (BER) performance was significantly improved in a multipath environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Decision-aided ICI mitigation with time-domain average approximation in CO-OFDM
NASA Astrophysics Data System (ADS)
Ren, Hongliang; Cai, Jiaxing; Ye, Xin; Lu, Jin; Cao, Quanjun; Guo, Shuqin; Xue, Lin-lin; Qin, Yali; Hu, Weisheng
2015-07-01
We introduce and investigate the feasibility of a novel iterative blind phase noise inter-carrier interference (ICI) mitigation scheme for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The ICI mitigation scheme is performed through the combination of frequency-domain symbol decision-aided estimation and the ICI phase noise time-average approximation. An additional initial decision process with suitable threshold is introduced in order to suppress the decision error symbols. Our proposed ICI mitigation scheme is proved to be effective in removing the ICI for a simulated CO-OFDM with 16-QAM modulation format. With the slightly high computational complexity, it outperforms the time-domain average blind ICI (Avg-BL-ICI) algorithm at a relatively wide laser line-width and high OSNR.
Security scheme in IMDD-OFDM-PON system with the chaotic pilot interval and scrambling
NASA Astrophysics Data System (ADS)
Chen, Qianghua; Bi, Meihua; Fu, Xiaosong; Lu, Yang; Zeng, Ran; Yang, Guowei; Yang, Xuelin; Xiao, Shilin
2018-01-01
In this paper, a random chaotic pilot interval and permutations scheme without any requirement of redundant sideband information is firstly proposed for the physical layer security-enhanced intensity modulation direct detection orthogonal frequency division multiplexing passive optical network (IMDD-OFDM-PON) system. With the help of the position feature of inserting the pilot, a simple logistic chaos map is used to generate the random pilot interval and scramble the chaotic subcarrier allocation of each column pilot data for improving the physical layer confidentiality. Due to the dynamic chaotic permutations of pilot data, the enhanced key space of ∼103303 is achieved in OFDM-PON. Moreover, the transmission experiment of 10-Gb/s 16-QAM encrypted OFDM data is successfully demonstrated over 20-km single-mode fiber, which indicates that the proposed scheme not only improves the system security, but also can achieve the same performance as in the common IMDD-OFDM-PON system without encryption scheme.
NASA Astrophysics Data System (ADS)
Wang, Zhongpeng; Chen, Fangni; Qiu, Weiwei; Chen, Shoufa; Ren, Dongxiao
2018-03-01
In this paper, a two-layer image encryption scheme for a discrete cosine transform (DCT) precoded orthogonal frequency division multiplexing (OFDM) visible light communication (VLC) system is proposed. Firstly, in the proposed scheme the transmitted image is first encrypted by a chaos scrambling sequence,which is generated from the hybrid 4-D hyper- and Arnold map in the upper-layer. After that, the encrypted image is converted into digital QAM modulation signal, which is re-encrypted by chaos scrambling sequence based on Arnold map in physical layer to further enhance the security of the transmitted image. Moreover, DCT precoding is employed to improve BER performance of the proposed system and reduce the PAPR of OFDM signal. The BER and PAPR performances of the proposed system are evaluated by simulation experiments. The experiment results show that the proposed two-layer chaos scrambling schemes achieve image secure transmission for image-based OFDM VLC. Furthermore, DCT precoding can reduce the PAPR and improve the BER performance of OFDM-based VLC.
NASA Astrophysics Data System (ADS)
Guo, Lei; Liu, Yejun; Zhou, Yufang; Wei, Xuetao; Liu, Yuying
2018-07-01
The exponential growth of the demand for broadband services has imposed great challenges on the design of spectrum-efficient optical transmission system in Passive Optical Network (PON). Recently, an innovative Orthogonal Frequency Division Multiplexing (OFDM) scheme, called Polar-OFDM (P-OFDM), has emerged as a promising solution to boost the spectral efficiency of optical transmission in PON. However, the traditional P-OFDM does not yet perform best in spectral efficiency as it only uses half of the total subcarriers. In this paper, we verify a promising complementation between Polarization Multiplexing (POLMUX) and P-OFDM aiming at higher spectral efficiency. We then propose the full-subcarriers P-OFDM by loading data on the even-indexed subcarriers of X polarization and the odd-indexed subcarriers of Y polarization, respectively. Thus, all of the subcarriers will be utilized for effective data transmission, which can double the spectral efficiency. More importantly, because the subcarriers are interlaced on different polarizations, the cross-polarization interference can be significantly mitigated, which enables the independent channel estimation and equalization at the receiver to recover the data carried on each polarization. Our evaluation results demonstrate that the proposed system realizes the double spectral efficiency of the traditional P-OFDM with reasonable Bit Error Rate (BER) performance loss.
Lin, Chun-Ting; Ho, Chun-Hung; Huang, Hou-Tzu; Cheng, Yu-Hsuan
2014-03-15
This article proposes and experimentally demonstrates a radio-over-fiber system employing single-sideband single-carrier (SSB-SC) modulation at 60 GHz. SSB-SC modulation has a lower peak-to-average-power ratio than orthogonal frequency division multiplex (OFDM) modulation; therefore, the SSB-SC signals provide superior nonlinear tolerance, compared to OFDM signals. Moreover, multiple-input multiple-output (MIMO) technology was used extensively to enhance spectral efficiency. A least-mean-square-based equalizer was implemented, including MIMO channel estimation, frequency response equalization, and I/Q imbalance compensation to recover the MIMO signals. Thus, using 2×2 MIMO technology and 64-QAM SSB-SC signals, we achieved the highest data rate of 84 Gbps with 12 bit/s/Hz spectral efficiency using the 7-GHz license-free band at 60 GHz.
Deng, Lei; Pang, Xiaodan; Zhao, Ying; Othman, M B; Jensen, Jesper Bevensee; Zibar, Darko; Yu, Xianbin; Liu, Deming; Monroy, Idelfonso Tafur
2012-02-13
We propose a spectral efficient radio over wavelength division multiplexed passive optical network (WDM-PON) system by combining optical polarization division multiplexing (PDM) and wireless multiple input multiple output (MIMO) spatial multiplexing techniques. In our experiment, a training-based zero forcing (ZF) channel estimation algorithm is designed to compensate the polarization rotation and wireless multipath fading. A 797 Mb/s net data rate QPSK-OFDM signal with error free (<1 × 10(5)) performance and a 1.59 Gb/s net data rate 16QAM-OFDM signal with BER performance of 1.2 × 10(2) are achieved after transmission of 22.8 km single mode fiber followed by 3 m and 1 m air distances, respectively.
Simultaneous chromatic dispersion and PMD compensation by using coded-OFDM and girth-10 LDPC codes.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2008-07-07
Low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) is studied as an efficient coded modulation scheme suitable for simultaneous chromatic dispersion and polarization mode dispersion (PMD) compensation. We show that, for aggregate rate of 10 Gb/s, accumulated dispersion over 6500 km of SMF and differential group delay of 100 ps can be simultaneously compensated with penalty within 1.5 dB (with respect to the back-to-back configuration) when training sequence based channel estimation and girth-10 LDPC codes of rate 0.8 are employed.
15 Gb/s OFDM-based VLC using direct modulation of 450 GaN laser diode
NASA Astrophysics Data System (ADS)
Viola, Shaun; Islim, Mohamed Sufyan; Watson, Scott; Videv, Stefan; Haas, Harald; Kelly, Anthony E.
2017-10-01
A record data rate for visible light communications (VLC) using a transistor outline (TO) packaged Gallium Nitride (GaN) laser diode is reported. Using a system 3 dB bandwidth of 1.4 GHz data transmission at 15 Gb/s is reported. This is achieved due to the use of orthogonal frequency division multiplexing (OFDM) in combination with a high system signal to noise ratio (SNR) and adaptive bit loading extending the effective bandwidth to 2.5 GHz. To the best of authors knowledge this is the highest reported data rate for single channel VLC.
NASA Astrophysics Data System (ADS)
Liu, Chong-xin; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Tian, Qing-hua; Tian, Feng; Wang, Yong-jun; Rao, Lan; Mao, Yaya; Li, Deng-ao
2018-01-01
During the last decade, the orthogonal frequency division multiplexing radio-over-fiber (OFDM-ROF) system with adaptive modulation technology is of great interest due to its capability of raising the spectral efficiency dramatically, reducing the effects of fiber link or wireless channel, and improving the communication quality. In this study, according to theoretical analysis of nonlinear distortion and frequency selective fading on the transmitted signal, a low-complexity adaptive modulation algorithm is proposed in combination with sub-carrier grouping technology. This algorithm achieves the optimal performance of the system by calculating the average combined signal-to-noise ratio of each group and dynamically adjusting the origination modulation format according to the preset threshold and user's requirements. At the same time, this algorithm takes the sub-carrier group as the smallest unit in the initial bit allocation and the subsequent bit adjustment. So, the algorithm complexity is only 1 /M (M is the number of sub-carriers in each group) of Fischer algorithm, which is much smaller than many classic adaptive modulation algorithms, such as Hughes-Hartogs algorithm, Chow algorithm, and is in line with the development direction of green and high speed communication. Simulation results show that the performance of OFDM-ROF system with the improved algorithm is much better than those without adaptive modulation, and the BER of the former achieves 10e1 to 10e2 times lower than the latter when SNR values gets larger. We can obtain that this low complexity adaptive modulation algorithm is extremely useful for the OFDM-ROF system.
Srinivasa, Narayan; Zhang, Deying; Grigorian, Beayna
2014-03-01
This paper describes a novel architecture for enabling robust and efficient neuromorphic communication. The architecture combines two concepts: 1) synaptic time multiplexing (STM) that trades space for speed of processing to create an intragroup communication approach that is firing rate independent and offers more flexibility in connectivity than cross-bar architectures and 2) a wired multiple input multiple output (MIMO) communication with orthogonal frequency division multiplexing (OFDM) techniques to enable a robust and efficient intergroup communication for neuromorphic systems. The MIMO-OFDM concept for the proposed architecture was analyzed by simulating large-scale spiking neural network architecture. Analysis shows that the neuromorphic system with MIMO-OFDM exhibits robust and efficient communication while operating in real time with a high bit rate. Through combining STM with MIMO-OFDM techniques, the resulting system offers a flexible and scalable connectivity as well as a power and area efficient solution for the implementation of very large-scale spiking neural architectures in hardware.
On the capacity of MIMO-OFDM based diversity and spatial multiplexing in Radio-over-Fiber system
NASA Astrophysics Data System (ADS)
El Yahyaoui, Moussa; El Moussati, Ali; El Zein, Ghaïs
2017-11-01
This paper proposes a realistic and global simulation to predict the behavior of a Radio over Fiber (RoF) system before its realization. In this work we consider a 2 × 2 Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) RoF system at 60 GHz. This system is based on Spatial Diversity (SD) which increases reliability (decreases probability of error) and Spatial Multiplexing (SMX) which increases data rate, but not necessarily reliability. The 60 GHz MIMO channel model employed in this work based on a lot of measured data and statistical analysis named Triple-S and Valenzuela (TSV) model. To the authors best knowledge; it is the first time that this type of TSV channel model has been employed for 60 GHz MIMO-RoF system. We have evaluated and compared the performance of this system according to the diversity technique, modulation schemes, and channel coding rate for Line-Of-Sight (LOS) desktop environment. The SMX coded is proposed as an intermediate system to improve the Signal to Noise Ratio (SNR) and the data rate. The resulting 2 × 2 MIMO-OFDM SMX system achieves a higher data rate up to 70 Gb/s with 64QAM and Forward Error Correction (FEC) limit of 10-3 over 25-km fiber transmission followed by 3-m wireless transmission using 7 GHz bandwidth of millimeter wave band.
NASA Astrophysics Data System (ADS)
Kim, Sung-Man; Kwon, Ki-Keun
2017-07-01
The relatively unsatisfactory performance of optical wireless communication (OWC) with respect to WiFi and millimeter-wave communications has formed a key issue preventing its commercialization. We experimentally demonstrate an OWC technology using a combination of positive real-valued orthogonal frequency-division multiplexing (OFDM) and optical beamforming (OB). Due to the intensity-modulation and direct-detection aspects of OWC systems, a positive real-valued OFDM signal can be suitably utilized to maximize the OWC data rate. Further, the OB technique, which can focus laser light on a desired target, can be utilized to increase the OWC data rate and transmission distance. Our experimental results show that the received optical signal power and electrical signal increase by up to 42 and 25 dB, respectively. Further, the data rate increases by a factor of 200 with OB over the conventional approach.
PHY-DLL dialogue: cross-layer design for optical-wireless OFDM downlink transmission
NASA Astrophysics Data System (ADS)
Wang, Xuguo; Li, Lee
2005-11-01
The use of radio over fiber to provide radio access has a number of advantages including the ability to deploy small, low-cost remote antenna units and ease of upgrade. And due to the great potential for increasing the capacity and quality of service, the combination of Orthogonal Frequency Division Multiplexing (OFDM) modulation and the sub-carrier multiplexed optical transmission is one of the best solutions for the future millimeter-wave mobile communication. And this makes the optimum utility of valuable radio resources essential. This paper devises a cross-layer adaptive algorithm for optical-wireless OFDM system, which takes into consideration not only transmission power limitation in the physical layer, but also traffic scheduling and user fairness at the data-link layer. According to proportional fairness principle and water-pouring theorem, we put forward the complete description of this cross-layer adaptive downlink transmission 6-step algorithm. Simulation results show that the proposed cross-layer algorithm outperforms the mere physical layer adaptive algorithm markedly. The novel scheme is able to improve performance of the packet success rate per time chip and average packet delay, support added active users.
Experimental demonstration of PAM-DWMT for passive optical network
NASA Astrophysics Data System (ADS)
Lin, Bangjiang; Zhang, Kaiwei; Tang, Xuan; Ghassemlooy, Zabih; Lin, Chun; Zhou, Zhenlei
2018-07-01
We experimentally demonstrate a discrete wavelet multitone (DWMT) modulation scheme based on pulse amplitude modulation (PAM) for next generation passive optical network (PON), which offers high tolerance against chromatic dispersion, high spectral efficiency, low peak to average power ratio (PAPR) and low side lobes. The experimental results show the chromatic dispersion induced power penalties are negligible after 20km fiber transmission. Compared with orthogonal frequency division multiplexing (OFDM), DWMT offers a better receiver sensitivity.
ML Frame Synchronization for OFDM Systems Using a Known Pilot and Cyclic Prefixes
NASA Astrophysics Data System (ADS)
Huh, Heon
Orthogonal frequency-division multiplexing (OFDM) is a popular air interface technology that is adopted as a standard modulation scheme for 4G communication systems owing to its excellent spectral efficiency. For OFDM systems, synchronization problems have received much attention along with peak-to-average power ratio (PAPR) reduction. In addition to frequency offset estimation, frame synchronization is a challenging problem that must be solved to achieve optimal system performance. In this paper, we present a maximum likelihood (ML) frame synchronizer for OFDM systems. The synchronizer exploits a synchronization word and cyclic prefixes together to improve the synchronization performance. Numerical results show that the performance of the proposed frame synchronizer is better than that of conventional schemes. The proposed synchronizer can be used as a reference for evaluating the performance of other suboptimal frame synchronizers. We also modify the proposed frame synchronizer to reduce the implementation complexity and propose a near-ML synchronizer for time-varying fading channels.
Giddings, R P; Hugues-Salas, E; Tang, J M
2012-08-27
Record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM (OOFDM) transmission is experimentally demonstrated, for the first time, in a simple electro-absorption modulated laser (EML)-based 25 km standard SMF system using intensity modulation and direct detection (IMDD). Adaptively modulated baseband (0-2GHz) and passband (6.125 ± 2GHz) OFDM RF sub-bands, supporting line rates of 10 Gb/s and 9.125 Gb/s respectively, are independently generated and detected with FPGA-based DSP clocked at only 100 MHz and DACs/ADCs operating at sampling speeds as low as 4GS/s. The two OFDM sub-bands are electrically frequency-division-multiplexed (FDM) for intensity modulation of a single optical carrier by an EML. To maximize and balance the signal transmission performance of each sub-band, on-line adaptive features and on-line performance monitoring is fully exploited to optimize key OOFDM transceiver and system parameters, which includes subcarrier characteristics within each individual OFDM sub-band, total and relative sub-band power as well as EML operating conditions. The achieved 19.125 Gb/s over 25 km SMF OOFDM transmission system has an optical power budget of 13.5 dB, and shows almost identical bit error rate (BER) performances for both the baseband and passband signals. In addition, experimental investigations also indicate that the maximum achievable transmission capacity of the present system is mainly determined by the EML frequency chirp-enhanced chromatic dispersion effect, and the passband BER performance is not affected by the two sub-band-induced intermixing effect, which, however, gives a 1.2dB optical power penalty to the baseband signal transmission.
Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications
NASA Astrophysics Data System (ADS)
Qian, Xuewen; Deng, Honggui; He, Hailang
2017-10-01
Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.
Derivation of GFDM Based on OFDM Principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussein Moradi; Behrouz Farhang-Boroujeny
2015-06-01
This paper starts with discussing the principle based on which the celebrated orthogonal frequency division multiplexing (OFDM) signals are constructed. It then extends the same principle to construct the newly introduced generalized frequency division multiplexing (GFDM) signals. This novel derivation sheds light on some interesting properties of GFDM. In particular, our derivation seamlessly leads to an implementation of GFDM transmitter which has significantly lower complexity than what has been reported so far. Our derivation also facilitates a trivial understanding of how GFDM (similar to OFDM) can be applied in MIMO channels.
Qin, Youxiang; Zhang, Junjie
2017-07-10
A novel low complexity and energy-efficient scheme by controlling the toggle-rate of ONU with time-domain amplitude identification is proposed for a heavy load downlink in an intensity-modulation and direct-detection orthogonal frequency division multiplexing passive optical network (IM-DD OFDM-PON). In a conventional OFDM-PON downlink, all ONUs have to perform demodulation for all the OFDM frames in a broadcast way no matter whether the frames are targeted to or not, which causes a huge energy waste. However, in our scheme, the optical network unit (ONU) logical link identifications (LLIDs) are inserted into each downlink OFDM frame in time-domain at the optical line terminal (OLT) side. At the ONU side, the LLID is obtained with a low complexity and high precision amplitude identification method. The ONU sets the toggle-rate of demodulation module to zero when the frames are not targeted to, which avoids unnecessary digital signal processing (DSP) energy consumption. Compared with the sleep-mode methods consisting of clock recovery and synchronization, toggle-rate shows its advantage in fast changing, which is more suitable for the heavy load scenarios. Moreover, for the first time to our knowledge, the characteristics of the proposed scheme are investigated in a real-time IM-DD OFDM system, which performs well at the received optical power as low as -21dBm. The experimental results show that 25.1% energy consumption can be saved in the receiver compared to the conventional configurations.
Time domain reshuffling for OFDM based indoor visible light communication systems.
You, Xiaodi; Chen, Jian; Yu, Changyuan; Zheng, Huanhuan
2017-05-15
For orthogonal frequency division multiplexing (OFDM) based indoor visible light communication (VLC) systems, partial non-ideal transmission conditions such as insufficient guard intervals and a dispersive channel can result in severe inter-symbol crosstalk (ISC). By deriving from the inverse Fourier transform, we present a novel time domain reshuffling (TDR) concept for both DC-biased optical (DCO-) and asymmetrically clipped optical (ACO-) OFDM VLC systems. By using only simple operations in the frequency domain, potential high peaks can be relocated within each OFDM symbol to alleviate ISC. To simplify the system, we also propose an effective unified design of the TDR schemes for both DCO- and ACO-OFDM. Based on Monte-Carlo simulations, we demonstrate the statistical distribution of the signal high peak values and the complementary cumulative distribution function of the peak-to-average power ratio under different cases for comparison. Simulation results indicate improved bit error rate (BER) performance by adopting TDR to counteract ISC deterioration. For example, for binary phase shift keying at a BER of 10 -3 , the signal to noise ratio gains are ~1.6 dB and ~6.6 dB for DCO- and ACO-OFDM, respectively, with ISC of 1/64. We also show a reliable transmission by adopting TDR for rectangle 8-quadrature amplitude modulation with ISC of < 1/64.
All-optical virtual private network and ONUs communication in optical OFDM-based PON system.
Zhang, Chongfu; Huang, Jian; Chen, Chen; Qiu, Kun
2011-11-21
We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN) and all-optical optical network units (ONUs) inter-communications in optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system using the subcarrier bands allocation for the first time (to our knowledge). We consider the intra-VPN and inter-VPN communications which correspond to two different cases: VPN communication among ONUs in one group and in different groups. The proposed scheme can provide the enhanced security and a more flexible configuration for VPN users compared to the VPN in WDM-PON or TDM-PON systems. The all-optical VPN and inter-ONU communications at 10-Gbit/s with 16 quadrature amplitude modulation (16 QAM) for the proposed optical OFDM-PON system are demonstrated. These results verify that the proposed scheme is feasible. © 2011 Optical Society of America
UGV Interoperability Profile (IOP) Communications Profile, Version 0
2011-12-21
some UGV systems employ Orthogonal Frequency Division Multiplexing ( OFDM ) or Coded Orthogonal Frequency Division Multiplexing (COFDM) waveforms which...other portions of the IOP. Attribute Paragraph Title Values Waveform 3.3 Air Interface/ Waveform OFDM , COFDM, DDL, CDL, None OCU to Platform...Sight MANET Mobile Ad-hoc Network Mbps Megabits per second MC/PM Master Controller/ Payload Manager MHz Megahertz MIMO Multiple Input Multiple
Passive Multistatic Radar Imaging using an OFDM Based Signal of Opportunity
2012-03-22
PASSIVE MULTISTATIC RADAR IMAGING USING AN OFDM BASED SIGNAL OF OPPORTUNITY THESIS Matthew B.P. Rapson, Flight Lieutenant, Royal Australian Air Force...PASSIVE MULTISTATIC RADAR IMAGING USING AN OFDM BASED SIGNAL OF OPPORTUNITY THESIS Presented to the Faculty Department of Electrical and Computer...for use in radar ap- plications such as synthetic aperture radar (SAR). The orthogonal frequency divi- sion multiplexing ( OFDM ) specific Worldwide
A channel estimation scheme for MIMO-OFDM systems
NASA Astrophysics Data System (ADS)
He, Chunlong; Tian, Chu; Li, Xingquan; Zhang, Ce; Zhang, Shiqi; Liu, Chaowen
2017-08-01
In view of the contradiction of the time-domain least squares (LS) channel estimation performance and the practical realization complexity, a reduced complexity channel estimation method for multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) based on pilot is obtained. This approach can transform the complexity of MIMO-OFDM channel estimation problem into a simple single input single output-orthogonal frequency division multiplexing (SISO-OFDM) channel estimation problem and therefore there is no need for large matrix pseudo-inverse, which greatly reduces the complexity of algorithms. Simulation results show that the bit error rate (BER) performance of the obtained method with time orthogonal training sequences and linear minimum mean square error (LMMSE) criteria is better than that of time-domain LS estimator and nearly optimal performance.
Experimental research of UWB over fiber system employing 128-QAM and ISFA-optimized scheme
NASA Astrophysics Data System (ADS)
He, Jing; Xiang, Changqing; Long, Fengting; Chen, Zuo
2018-05-01
In this paper, an optimized intra-symbol frequency-domain averaging (ISFA) scheme is proposed and experimentally demonstrated in intensity-modulation and direct-detection (IMDD) multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system. According to the channel responses of three MB-OFDM UWB sub-bands, the optimal ISFA window size for each sub-band is investigated. After 60-km standard single mode fiber (SSMF) transmission, the experimental results show that, at the bit error rate (BER) of 3.8 × 10-3, the receiver sensitivity of 128-quadrature amplitude modulation (QAM) can be improved by 1.9 dB using the proposed enhanced ISFA combined with training sequence (TS)-based channel estimation scheme, compared with the conventional TS-based channel estimation. Moreover, the spectral efficiency (SE) is up to 5.39 bit/s/Hz.
450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM.
Chi, Yu-Chieh; Hsieh, Dan-Hua; Tsai, Cheng-Ting; Chen, Hsiang-Yu; Kuo, Hao-Chung; Lin, Gong-Ru
2015-05-18
A TO-38-can packaged Gallium nitride (GaN) blue laser diode (LD) based free-space visible light communication (VLC) with 64-quadrature amplitude modulation (QAM) and 32-subcarrier orthogonal frequency division multiplexing (OFDM) transmission at 9 Gbps is preliminarily demonstrated over a 5-m free-space link. The 3-dB analog modulation bandwidth of the TO-38-can packaged GaN blue LD biased at 65 mA and controlled at 25°C is only 900 MHz, which can be extended to 1.5 GHz for OFDM encoding after throughput intensity optimization. When delivering the 4-Gbps 16-QAM OFDM data within 1-GHz bandwidth, the error vector magnitude (EVM), signal-to-noise ratio (SNR) and bit-error-rate (BER) of the received data are observed as 8.4%, 22.4 dB and 3.5 × 10(-8), respectively. By increasing the encoded bandwidth to 1.5 GHz, the TO-38-can packaged GaN blue LD enlarges its transmission capacity to 6 Gbps but degrades its transmitted BER to 1.7 × 10(-3). The same transmission capacity of 6 Gbps can also be achieved with a BER of 1 × 10(-6) by encoding 64-QAM OFDM data within 1-GHz bandwidth. Using the 1.5-GHz full bandwidth of the TO-38-can packaged GaN blue LD provides the 64-QAM OFDM transmission up to 9 Gbps, which successfully delivers data with an EVM of 5.1%, an SNR of 22 dB and a BER of 3.6 × 10(-3) passed the forward error correction (FEC) criterion.
NASA Astrophysics Data System (ADS)
He, Jing; Shi, Jin; Deng, Rui; Chen, Lin
2017-08-01
Recently, visible light communication (VLC) based on light-emitting diodes (LEDs) is considered as a candidate technology for fifth-generation (5G) communications, VLC is free of electromagnetic interference and it can simplify the integration of VLC into heterogeneous wireless networks. Due to the data rates of VLC system limited by the low pumping efficiency, small output power and narrow modulation bandwidth, visible laser light communication (VLLC) system with laser diode (LD) has paid more attention. In addition, orthogonal frequency division multiplexing/offset quadrature amplitude modulation (OFDM/OQAM) is currently attracting attention in optical communications. Due to the non-requirement of cyclic prefix (CP) and time-frequency domain well-localized pulse shapes, it can achieve high spectral efficiency. Moreover, OFDM/OQAM has lower out-of-band power leakage so that it increases the system robustness against inter-carrier interference (ICI) and frequency offset. In this paper, a Discrete Fourier Transform (DFT)-based channel estimation scheme combined with the interference approximation method (IAM) is proposed and experimentally demonstrated for VLLC OFDM/OQAM system. The performance of VLLC OFDM/OQAM system with and without DFT-based channel estimation is investigated. Moreover, the proposed DFT-based channel estimation scheme and the intra-symbol frequency-domain averaging (ISFA)-based method are also compared for the VLLC OFDM/OQAM system. The experimental results show that, the performance of EVM using the DFT-based channel estimation scheme is improved about 3dB compared with the conventional IAM method. In addition, the DFT-based channel estimation scheme can resist the channel noise effectively than that of the ISFA-based method.
Lu, Guo-Wei; Bo, Tianwai; Sakamoto, Takahide; Yamamoto, Naokatsu; Chan, Calvin Chun-Kit
2016-10-03
Recently the ever-growing demand for dynamic and high-capacity services in optical networks has resulted in new challenges that require improved network agility and flexibility in order for network resources to become more "consumable" and dynamic, or elastic, in response to requests from higher network layers. Flexible and scalable wavelength conversion or multicast is one of the most important technologies needed for developing agility in the physical layer. This paper will investigate how, using a reconfigurable coherent multi-carrier as a pump, the multicast scalability and the flexibility in wavelength allocation of the converted signals can be effectively improved. Moreover, the coherence in the multiple carriers prevents the phase noise transformation from the local pump to the converted signals, which is imperative for the phase-noise-sensitive multi-level single- or multi-carrier modulated signal. To verify the feasibility of the proposed scheme, we experimentally demonstrate the wavelength multicast of coherent optical orthogonal frequency division multiplexing (CO-OFDM) signals using a reconfigurable coherent multi-carrier pump, showing flexibility in wavelength allocation, scalability in multicast, and tolerance against pump phase noise. Less than 0.5 dB and 1.8 dB power penalties at a bit-error rate (BER) of 10-3 are obtained for the converted CO-OFDM-quadrature phase-shift keying (QPSK) and CO-OFDM-16-ary quadrature amplitude modulation (16QAM) signals, respectively, even when using a distributed feedback laser (DFB) as a pump source. In contrast, with a free-running pumping scheme, the phase noise from DFB pumps severely deteriorates the CO-OFDM signals, resulting in a visible error-floor at a BER of 10-2 in the converted CO-OFDM-16QAM signals.
Experimental demonstration of MIMO-OFDM underwater wireless optical communication
NASA Astrophysics Data System (ADS)
Song, Yuhang; Lu, Weichao; Sun, Bin; Hong, Yang; Qu, Fengzhong; Han, Jun; Zhang, Wei; Xu, Jing
2017-11-01
In this paper, we propose and experimentally demonstrate a multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) underwater wireless optical communication (UWOC) system, with a gross bit rate of 33.691 Mb/s over a 2-m water channel using low-cost blue light-emitting-diodes (LEDs) and 10-MHz PIN photodiodes. The system is capable of realizing robust data transmission within a relatively large reception area, leading to relaxed alignment requirement for UWOC. In addition, we have compared the system performance of repetition coding OFDM (RC-OFDM), Alamouti-OFDM and multiple-input single-output OFDM (MISO-OFDM) in turbid water. Results show that the Alamouti-OFDM UWOC is more resistant to delay than the RC-OFDM-based system.
IQ imbalance tolerable parallel-channel DMT transmission for coherent optical OFDMA access network
NASA Astrophysics Data System (ADS)
Jung, Sang-Min; Mun, Kyoung-Hak; Jung, Sun-Young; Han, Sang-Kook
2016-12-01
Phase diversity of coherent optical communication provides spectrally efficient higher-order modulation for optical communications. However, in-phase/quadrature (IQ) imbalance in coherent optical communication degrades transmission performance by introducing unwanted signal distortions. In a coherent optical orthogonal frequency division multiple access (OFDMA) passive optical network (PON), IQ imbalance-induced signal distortions degrade transmission performance by interferences of mirror subcarriers, inter-symbol interference (ISI), and inter-channel interference (ICI). We propose parallel-channel discrete multitone (DMT) transmission to mitigate transceiver IQ imbalance-induced signal distortions in coherent orthogonal frequency division multiplexing (OFDM) transmissions. We experimentally demonstrate the effectiveness of parallel-channel DMT transmission compared with that of OFDM transmission in the presence of IQ imbalance.
NASA Astrophysics Data System (ADS)
Miki, Nobuhiko; Kishiyama, Yoshihisa; Higuchi, Kenichi; Sawahashi, Mamoru; Nakagawa, Masao
In the Evolved UTRA (UMTS Terrestrial Radio Access) downlink, Orthogonal Frequency Division Multiplexing (OFDM) based radio access was adopted because of its inherent immunity to multipath interference and flexible accommodation of different spectrum arrangements. This paper presents the optimum adaptive modulation and channel coding (AMC) scheme when resource blocks (RBs) is simultaneously assigned to the same user when frequency and time domain channel-dependent scheduling is assumed in the downlink OFDMA radio access with single-antenna transmission. We start by presenting selection methods for the modulation and coding scheme (MCS) employing mutual information both for RB-common and RB-dependent modulation schemes. Simulation results show that, irrespective of the application of power adaptation to RB-dependent modulation, the improvement in the achievable throughput of the RB-dependent modulation scheme compared to that for the RB-common modulation scheme is slight, i.e., 4 to 5%. In addition, the number of required control signaling bits in the RB-dependent modulation scheme becomes greater than that for the RB-common modulation scheme. Therefore, we conclude that the RB-common modulation and channel coding rate scheme is preferred, when multiple RBs of the same coded stream are assigned to one user in the case of single-antenna transmission.
The potential of FBMC over OFDM for the future 5G mobile communication technology
NASA Astrophysics Data System (ADS)
Ibrahim, A. N.; Abdullah, M. F. L.
2017-09-01
Fifth Generation (5G) is the new evolution of mobile communication technology and will be launched soon in many countries. The researchers and designers of mobile communication technology have been facing the increasing demand of the mobile consumers, high data rates and mobility requirements needed by new wireless applications. Most of the countries have started research on 5G mobile communication technology that is predictable to be launched on 2020 in conjunction with the Olympic Games in Tokyo. Filterbank Multicarrier (FBMC) is one of the modulation techniques for the future 5G mobile communication technology. It uses the multicarrier techniques that are immune to fading caused by transmission of more than one path at a time and also immune to intersymbol interference besides able to function effectively compared to Orthogonal Frequency Division Multiplexing (OFDM) which is used in Fourth Generation (4G) mobile communications technology. This paper discusses the performance of FBMC over OFDM based on the previous journals that were investigated by researchers.
Effects of HPA-nonlinearity on a 4-DPSK/OFDM-signal for a digital sound broadcasting signal
NASA Astrophysics Data System (ADS)
Rapp, Christoph
1991-10-01
Orthogonal Frequency Division Multiplexing (OFDM) in conjunction with a 4 Differential Phase Shift Keying (DPSK) modulation format has been proposed for the future Digital Audio Broadcasting system (DAB), that should provide compact disk sound quality in portable, vehicular and fixed receivers. With properly chosen parameters, this system should be appropriate for both terrestrial and satellite transmission. The influence of the nonlinear distorsions introduced by the High Power Amplifier (HPA) of the transmitter is examined. In particular, the degradations in power efficiency due to intermodulation effects and backoff operating, as well as spectral degradations are investigated. It is shown for three different kinds of limiting amplifier models, that even with an output backoff in the region of 5 to 6 dB, the degradation of, for example a 512 carrier 4 DPSK/OFDM system relative to the linear case is below 1.7 dB (Pb = 0.0001), while the regenerated sidelobes of the transmitted spectrum are kept below -20 dB.
Joint Symbol Timing and CFO Estimation for OFDM/OQAM Systems in Multipath Channels
NASA Astrophysics Data System (ADS)
Fusco, Tilde; Petrella, Angelo; Tanda, Mario
2009-12-01
The problem of data-aided synchronization for orthogonal frequency division multiplexing (OFDM) systems based on offset quadrature amplitude modulation (OQAM) in multipath channels is considered. In particular, the joint maximum-likelihood (ML) estimator for carrier-frequency offset (CFO), amplitudes, phases, and delays, exploiting a short known preamble, is derived. The ML estimators for phases and amplitudes are in closed form. Moreover, under the assumption that the CFO is sufficiently small, a closed form approximate ML (AML) CFO estimator is obtained. By exploiting the obtained closed form solutions a cost function whose peaks provide an estimate of the delays is derived. In particular, the symbol timing (i.e., the delay of the first multipath component) is obtained by considering the smallest estimated delay. The performance of the proposed joint AML estimator is assessed via computer simulations and compared with that achieved by the joint AML estimator designed for AWGN channel and that achieved by a previously derived joint estimator for OFDM systems.
NASA Astrophysics Data System (ADS)
Jung, Sang-Min; Won, Yong-Yuk; Han, Sang-Kook
2013-12-01
A Novel technique for reducing the OBI noise in optical OFDMA-PON uplink is presented. OFDMA is a multipleaccess/ multiplexing scheme that can provide multiplexing operation of user data streams onto the downlink sub-channels and uplink multiple access by means of dividing OFDM subcarriers as sub-channels. The main issue of high-speed, single-wavelength upstream OFDMA-PON arises from optical beating interference noise. Because the sub-channels are allocated dynamically to multiple access users over same nominal wavelength, it generates the optical beating interference among upstream signals. In this paper, we proposed a novel scheme using self-homodyne balanced detection in the optical line terminal (OLT) to reduce OBI noise which is generated in the uplink transmission of OFDMA-PON system. When multiple OFDMA sub-channels over the same nominal wavelength are received at the same time in the proposed architecture, OBI noises can be removed using balanced detection. Using discrete multitone modulation (DMT) to generate real valued OFDM signals, the proposed technique is verified through experimental demonstration.
NASA Astrophysics Data System (ADS)
Wang, Zhongpeng; Zhang, Shaozhong; Chen, Fangni; Wu, Ming-Wei; Qiu, Weiwei
2017-11-01
A physical encryption scheme for orthogonal frequency-division multiplexing (OFDM) visible light communication (VLC) systems using chaotic discrete cosine transform (DCT) is proposed. In the scheme, the row of the DCT matrix is permutated by a scrambling sequence generated by a three-dimensional (3-D) Arnold chaos map. Furthermore, two scrambling sequences, which are also generated from a 3-D Arnold map, are employed to encrypt the real and imaginary parts of the transmitted OFDM signal before the chaotic DCT operation. The proposed scheme enhances the physical layer security and improves the bit error rate (BER) performance for OFDM-based VLC. The simulation results prove the efficiency of the proposed encryption method. The experimental results show that the proposed security scheme not only protects image data from eavesdroppers but also keeps the good BER and peak-to-average power ratio performances for image-based OFDM-VLC systems.
NASA Astrophysics Data System (ADS)
Li, Xiang; Luo, Ming; Qiu, Ying; Alphones, Arokiaswami; Zhong, Wen-De; Yu, Changyuan; Yang, Qi
2018-02-01
In this paper, channel equalization techniques for coherent optical fiber transmission systems based on independent component analysis (ICA) are reviewed. The principle of ICA for blind source separation is introduced. The ICA based channel equalization after both single-mode fiber and few-mode fiber transmission for single-carrier and orthogonal frequency division multiplexing (OFDM) modulation formats are investigated, respectively. The performance comparisons with conventional channel equalization techniques are discussed.
NASA Astrophysics Data System (ADS)
Yeh, C. H.; Chen, H. Y.; Liu, Y. L.; Chow, C. W.
2015-01-01
We propose and experimentally demonstrate a 380 (2×190) Mbps phosphor-light-emitting-diode (LED) based visible light communication (VLC) system by using 2×2 polarization-multiplexing design for in-building access applications. To the best of our knowledge, this is the first time of employing polarization-multiplexing to achieve a high VLC transmission capacity by using phosphor-based white-LED without optical blue filter. Besides, utilizing the optimum resistor-inductor-capacity (RLC) bias-tee design, it can not only perform the function of combining the direct-current (DC) and the electrical data signal, but also act as a simple LED-Tx circuit. No optical blue filter and complicated post-equalization are required at the Rx. Here, the orthogonal-frequency-division-multiplexing (OFDM) quadrature-amplitude-modulation (QAM) with bit-loading is employed to enhance the transmission data rate.
Yen, Chih-Ta; Chen, Wen-Bin
2016-01-01
Chromatic dispersion from optical fiber is the most important problem that produces temporal skews and destroys the rectangular structure of code patterns in the spectra-amplitude-coding-based optical code-division multiple-access (SAC-OCDMA) system. Thus, the balance detection scheme does not work perfectly to cancel multiple access interference (MAI) and the system performance will be degraded. Orthogonal frequency-division multiplexing (OFDM) is the fastest developing technology in the academic and industrial fields of wireless transmission. In this study, the radio-over-fiber system is realized by integrating OFDM and OCDMA via polarization multiplexing scheme. The electronic dispersion compensation (EDC) equalizer element of OFDM integrated with the dispersion compensation fiber (DCF) is used in the proposed radio-over-fiber (RoF) system, which can efficiently suppress the chromatic dispersion influence in long-haul transmitted distance. A set of length differences for 10 km-long single-mode fiber (SMF) and 4 km-long DCF is to verify the compensation scheme by relative equalizer algorithms and constellation diagrams. In the simulation result, the proposed dispersion mechanism successfully compensates the dispersion from SMF and the system performance with dispersion equalizer is highly improved. PMID:27618042
Performance Bounds on Micro-Doppler Estimation and Adaptive Waveform Design Using OFDM Signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Satyabrata; Barhen, Jacob; Glover, Charles Wayne
We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute themore » Cram er-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.« less
System for Processing Coded OFDM Under Doppler and Fading
NASA Technical Reports Server (NTRS)
Tsou, Haiping; Darden, Scott; Lee, Dennis; Yan, Tsun-Yee
2005-01-01
An advanced communication system has been proposed for transmitting and receiving coded digital data conveyed as a form of quadrature amplitude modulation (QAM) on orthogonal frequency-division multiplexing (OFDM) signals in the presence of such adverse propagation-channel effects as large dynamic Doppler shifts and frequency-selective multipath fading. Such adverse channel effects are typical of data communications between mobile units or between mobile and stationary units (e.g., telemetric transmissions from aircraft to ground stations). The proposed system incorporates novel signal processing techniques intended to reduce the losses associated with adverse channel effects while maintaining compatibility with the high-speed physical layer specifications defined for wireless local area networks (LANs) as the standard 802.11a of the Institute of Electrical and Electronics Engineers (IEEE 802.11a). OFDM is a multi-carrier modulation technique that is widely used for wireless transmission of data in LANs and in metropolitan area networks (MANs). OFDM has been adopted in IEEE 802.11a and some other industry standards because it affords robust performance under frequency-selective fading. However, its intrinsic frequency-diversity feature is highly sensitive to synchronization errors; this sensitivity poses a challenge to preserve coherence between the component subcarriers of an OFDM system in order to avoid intercarrier interference in the presence of large dynamic Doppler shifts as well as frequency-selective fading. As a result, heretofore, the use of OFDM has been limited primarily to applications involving small or zero Doppler shifts. The proposed system includes a digital coherent OFDM communication system that would utilize enhanced 802.1la-compatible signal-processing algorithms to overcome effects of frequency-selective fading and large dynamic Doppler shifts. The overall transceiver design would implement a two-frequency-channel architecture (see figure) that would afford frequency diversity for reducing the adverse effects of multipath fading. By using parallel concatenated convolutional codes (also known as Turbo codes) across the dual-channel and advanced OFDM signal processing within each channel, the proposed system is intended to achieve at least an order of magnitude improvement in received signal-to-noise ratio under adverse channel effects while preserving spectral efficiency.
NASA Astrophysics Data System (ADS)
Ma, Qian; Liu, Yu; Xiang, Yuanjiang
2018-07-01
Due to its merits of flexible bandwidth allocation and robustness towards fiber transmission impairments, coherent optical orthogonal frequency division multiplexing (CO-OFDM) technology draws a lot of attention for passive optical networks (PON). However, a CO-OFDM system is vulnerable to frequency offsets between modulated optical signals and optical local oscillators (OLO). This is particularly serious for low cost PONs where low cost lasers are used. Thus, it is of great interest to develop efficient algorithms for frequency synchronization in CO-OFDM systems. Usually frequency synchronization proposed in CO-OFDM systems are done by detecting the phase shift in time domain. In such a way, there is a trade-off between estimation accuracy and range. Considering that the integer frequency offset (IFO) contributes to the major frequency offset, a more efficient method to estimate IFO is of demand. By detecting IFO induced circular channel rotation (CCR), the frequency offset can be directly estimated after fast Fourier transforming (FFT). In this paper, circular acquisition offset frequency and timing synchronization (CAO-FTS) scheme is proposed. A specially-designed frequency domain pseudo noise (PN) sequence is used for CCR detection and timing synchronization. Full-range frequency offset compensation and non-plateau timing synchronization are experimentally demonstrated in presence of fiber dispersion. Based on CAO-FTS, 16.9 Gb/s CO-OFDM signal is successfully delivered over a span of 80-km single mode fiber.
NASA Astrophysics Data System (ADS)
Wang, Zhongpeng; Chen, Shoufa
2016-07-01
A physical encryption scheme for discrete Hartley transform (DHT) precoded orthogonal frequency division multiplexing (OFDM) visible-light communication (VLC) systems using frequency domain chaos scrambling is proposed. In the scheme, the chaos scrambling, which is generated by a modified logistic mapping, is utilized to enhance the physical layer of security, and the DHT precoding is employed to reduce of OFDM signal for OFDM-based VLC. The influence of chaos scrambling on peak-to-average power ratio (PAPR) and bit error rate (BER) of systems is studied. The experimental simulation results prove the efficiency of the proposed encryption method for DHT-precoded, OFDM-based VLC systems. Furthermore, the influence of the proposed encryption to the PAPR and BER of systems is evaluated. The experimental results show that the proposed security scheme can protect the DHT-precoded, OFDM-based VLC from eavesdroppers, while keeping the good BER performance of DHT-precoded systems. The BER performance of the encrypted and DHT-precoded system is almost the same as that of the conventional DHT-precoded system without encryption.
NASA Astrophysics Data System (ADS)
Kuai, Xiao-yan; Sun, Hai-xin; Qi, Jie; Cheng, En; Xu, Xiao-ka; Guo, Yu-hui; Chen, You-gan
2014-06-01
In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of large feedback overhead for channel state information (CSI) in every subcarrier. A novel CSI feedback scheme is proposed based on the theory of compressed sensing (CS). We propose a feedback from the receiver that only feedback the sparse channel parameters. Additionally, prediction of the channel state is proposed every several symbols to realize the AM in practice. We describe a linear channel prediction algorithm which is used in adaptive transmission. This system has been tested in the real underwater acoustic channel. The linear channel prediction makes the AM transmission techniques more feasible for acoustic channel communications. The simulation and experiment show that significant improvements can be obtained both in bit error rate (BER) and throughput in the AM scheme compared with the fixed Quadrature Phase Shift Keying (QPSK) modulation scheme. Moreover, the performance with standard CS outperforms the Discrete Cosine Transform (DCT) method.
Ocean Variability Effects on Underwater Acoustic Communications
2012-09-30
2000. [2] B. Li, J. Huang, S. Zhou, K. Ball, M. Stojanovic, L. Freitag, and P. Willett. MIMO - OFDM for high rate underwater acoustic...alternative to orthogonal frequency-division multiplexing ( OFDM ) [2], we developed a multiband transceiver, where a wide frequency band is divided into...multiple separated sub-bands. These sub- bands are several kilohertz in width, much wider than OFDM sub-carriers used in underwater channels
NASA Astrophysics Data System (ADS)
Patel, Dhananjay; Dalal, U. D.
2017-05-01
A novel m-QAM Orthogonal Frequency Division Multiplexing (OFDM) Single Sideband (SSB) architecture is proposed for centralized light source (CLS) bidirectional Radio over Fiber (RoF) - Wavelength Division Multiplexing (WDM) - Passive Optical Network (PON). In bidirectional transmission with carrier reuse over the single fiber, the Rayleigh Backscattering (RB) noise and reflection (RE) interferences from optical components can seriously deteriorate the transmission performance of the fiber optic systems. These interferometric noises can be mitigated by utilizing the optical modulation schemes at the Optical Line Terminal (OLT) and Optical Network Unit (ONU) such that the spectral overlap between the optical data spectrum and the RB and RE noise is minimum. A mathematical model is developed for the proposed architecture to accurately measure the performance of the transmission system and also to analyze the effect of interferometric noise caused by the RB and RE. The model takes into the account the different modulation schemes employed at the OLT and the ONU using a Mach Zehnder Modulator (MZM), the optical launch power and the bit-rates of the downstream and upstream signals, the gain of the amplifiers at the OLT and the ONU, the RB-RE noise, chromatic dispersion of the single mode fiber and optical filter responses. In addition, the model analyzes all the components of the RB-RE noise such as carrier RB, signal RB, carrier RE and signal RE, thus providing the complete representation of all the physical phenomena involved. An optical m-QAM OFDM SSB signal acts as a test signal to validate the model which provides excellent agreement with simulation results. The SSB modulation technique using the MZM at the OLT and the ONU differs in the data transmission technique that takes place through the first-order higher and the lower optical sideband respectively. This spectral gap between the downstream and upstream signals reduces the effect of Rayleigh backscattering and discrete reflections.
NASA Astrophysics Data System (ADS)
Serpa-Imbett, C. M.; Marín-Alfonso, J.; Gómez-Santamaría, C.; Betancur-Agudelo, L.; Amaya-Fernández, F.
2013-12-01
Space division multiplexing in multicore fibers is one of the most promise technologies in order to support transmissions of next-generation peta-to-exaflop-scale supercomputers and mega data centers, owing to advantages in terms of costs and space saving of the new optical fibers with multiple cores. Additionally, multicore fibers allow photonic signal processing in optical communication systems, taking advantage of the mode coupling phenomena. In this work, we numerically have simulated an optical MIMO-OFDM (multiple-input multiple-output orthogonal frequency division multiplexing) by using the coded Alamouti to be transmitted through a twin-core fiber with low coupling. Furthermore, an optical OFDM is transmitted through a core of a singlemode fiber, using pilot-aided channel estimation. We compare the transmission performance in the twin-core fiber and in the singlemode fiber taking into account numerical results of the bit-error rate, considering linear propagation, and Gaussian noise through an optical fiber link. We carry out an optical fiber transmission of OFDM frames using 8 PSK and 16 QAM, with bit rates values of 130 Gb/s and 170 Gb/s, respectively. We obtain a penalty around 4 dB for the 8 PSK transmissions, after 100 km of linear fiber optic propagation for both singlemode and twin core fiber. We obtain a penalty around 6 dB for the 16 QAM transmissions, with linear propagation after 100 km of optical fiber. The transmission in a two-core fiber by using Alamouti coded OFDM-MIMO exhibits a better performance, offering a good alternative in the mitigation of fiber impairments, allowing to expand Alamouti coded in multichannel systems spatially multiplexed in multicore fibers.
NASA Astrophysics Data System (ADS)
Zhang, Haoyuan; Ma, Xiurong; Li, Pengru
2018-04-01
In this paper, we develop a novel pilot structure to suppress transmitter in-phase and quadrature (Tx IQ) imbalance, phase noise and channel distortion for polarization division multiplexed (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. Compared with the conventional approach, our method not only significantly improves the system tolerance of IQ imbalance as well as phase noise, but also provides higher transmission speed. Numerical simulations of PDM CO-OFDM system is used to validate the theoretical analysis under the simulation conditions: the amplitude mismatch 3 dB, the phase mismatch 15°, the transmission bit rate 100 Gb/s and 560 km standard signal-mode fiber transmission. Moreover, the proposed method is 63% less complex than the compared method.
Design and performance investigation of LDPC-coded upstream transmission systems in IM/DD OFDM-PONs
NASA Astrophysics Data System (ADS)
Gong, Xiaoxue; Guo, Lei; Wu, Jingjing; Ning, Zhaolong
2016-12-01
In Intensity-Modulation Direct-Detection (IM/DD) Orthogonal Frequency Division Multiplexing Passive Optical Networks (OFDM-PONs), aside from Subcarrier-to-Subcarrier Intermixing Interferences (SSII) induced by square-law detection, the same laser frequency for data sending from Optical Network Units (ONUs) results in ONU-to-ONU Beating Interferences (OOBI) at the receiver. To mitigate those interferences, we design a Low-Density Parity Check (LDPC)-coded and spectrum-efficient upstream transmission system. A theoretical channel model is also derived, in order to analyze the detrimental factors influencing system performances. Simulation results demonstrate that the receiver sensitivity is improved 3.4 dB and 2.5 dB under QPSK and 8QAM, respectively, after 100 km Standard Single-Mode Fiber (SSMF) transmission. Furthermore, the spectrum efficiency can be improved by about 50%.
NASA Astrophysics Data System (ADS)
Shima, Tomoyuki; Tomeba, Hiromichi; Adachi, Fumiyuki
Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of time-domain spreading and orthogonal frequency division multiplexing (OFDM). In orthogonal MC DS-CDMA, the frequency diversity gain can be obtained by applying frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion to a block of OFDM symbols and can improve the bit error rate (BER) performance in a severe frequency-selective fading channel. FDE requires an accurate estimate of the channel gain. The channel gain can be estimated by removing the pilot modulation in the frequency domain. In this paper, we propose a pilot-assisted channel estimation suitable for orthogonal MC DS-CDMA with FDE and evaluate, by computer simulation, the BER performance in a frequency-selective Rayleigh fading channel.
NASA Astrophysics Data System (ADS)
Passas, Georgios; Freear, Steven; Fawcett, Darren
2010-08-01
Orthogonal frequency division multiplexing (OFDM)-based feed-forward space-time trellis code (FFSTTC) encoders can be synthesised as very high speed integrated circuit hardware description language (VHDL) designs. Evaluation of their FPGA implementation can lead to conclusions that help a designer to decide the optimum implementation, given the encoder structural parameters. VLSI architectures based on 1-bit multipliers and look-up tables (LUTs) are compared in terms of FPGA slices and block RAMs (area), as well as in terms of minimum clock period (speed). Area and speed graphs versus encoder memory order are provided for quadrature phase shift keying (QPSK) and 8 phase shift keying (8-PSK) modulation and two transmit antennas, revealing best implementation under these conditions. The effect of number of modulation bits and transmit antennas on the encoder implementation complexity is also investigated.
Wang, Huai-Yung; Chi, Yu-Chieh; Lin, Gong-Ru
2016-08-08
A novel millimeter-wave radio over fiber (MMW-RoF) link at carrier frequency of 35-GHz is proposed with the use of remotely beating MMW generation from reference master and injected slave colorless laser diode (LD) carriers at orthogonally polarized dual-wavelength injection-locking. The slave colorless LD supports lasing one of the dual-wavelength master modes with orthogonal polarizations, which facilitates the single-mode direct modulation of the quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data. Such an injected single-carrier encoding and coupled dual-carrier transmission with orthogonal polarization effectively suppresses the cross-heterodyne mode-beating intensity noise, the nonlinear modulation (NLM) and four-wave mixing (FWM) sidemodes during injection locking and fiber transmission. In 25-km single-mode fiber (SMF) based wireline system, the dual-carrier under single-mode encoding provides baseband 24-Gbit/s 64-QAM OFDM transmission with an error vector magnitude (EVM) of 8.8%, a bit error rate (BER) of 3.7 × 10-3, a power penalty of <1.5 dB. After remotely self-beating for wireless transmission, the beat MMW carrier at 35 GHz can deliver the passband 16-QAM OFDM at 4 Gbit/s to show corresponding EVM and BER of 15.5% and 1.4 × 10-3, respectively, after 25-km SMF and 1.6-m free-space transmission.
2007-04-01
for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data...Control Organization NRL Navy Research Laboratory nrtPS Non-real- time Polling Services OFDM Orthogonal frequency division multiplex OFDMA...Routeur IDentifier RTG RTO Task Group RTO Research & Technology Organization rtPS Real- time Polling Services SC Single-carrier modulation
MIMO-OFDM System's Performance Using LDPC Codes for a Mobile Robot
NASA Astrophysics Data System (ADS)
Daoud, Omar; Alani, Omar
This work deals with the performance of a Sniffer Mobile Robot (SNFRbot)-based spatial multiplexed wireless Orthogonal Frequency Division Multiplexing (OFDM) transmission technology. The use of Multi-Input Multi-Output (MIMO)-OFDM technology increases the wireless transmission rate without increasing transmission power or bandwidth. A generic multilayer architecture of the SNFRbot is proposed with low power and low cost. Some experimental results are presented and show the efficiency of sniffing deadly gazes, sensing high temperatures and sending live videos of the monitored situation. Moreover, simulation results show the achieved performance by tackling the Peak-to-Average Power Ratio (PAPR) problem of the used technology using Low Density Parity Check (LDPC) codes; and the effect of combating the PAPR on the bit error rate (BER) and the signal to noise ratio (SNR) over a Doppler spread channel.
Duan, X; Giddings, R P; Bolea, M; Ling, Y; Cao, B; Mansoor, S; Tang, J M
2014-08-11
Real-time optical OFDM (OOFDM) transceivers with on-line software-controllable channel reconfigurability and transmission performance adaptability are experimentally demonstrated, for the first time, utilizing Hilbert-pair-based 32-tap digital orthogonal filters implemented in FPGAs. By making use of an 8-bit DAC/ADC operating at 2GS/s, an oversampling factor of 2 and an EML intensity modulator, the demonstrated RF conversion-free transceiver supports end-to-end real-time simultaneous adaptive transmissions, within a 1GHz signal spectrum region, of a 2.03Gb/s in-phase OOFDM channel and a 1.41Gb/s quadrature-phase OOFDM channel over a 25km SSMF IMDD system. In addition, detailed experimental explorations are also undertaken of key physical mechanisms limiting the maximum achievable transmission performance, impacts of transceiver's channel multiplexing/demultiplexing operations on the system BER performance, and the feasibility of utilizing adaptive modulation to combat impairments associated with low-complexity digital filter designs. Furthermore, experimental results indicate that the transceiver incorporating a fixed digital orthogonal filter DSP architecture can be made transparent to various signal modulation formats up to 64-QAM.
Li, Borui; Feng, Zhenhua; Tang, Ming; Xu, Zhilin; Fu, Songnian; Wu, Qiong; Deng, Lei; Tong, Weijun; Liu, Shuang; Shum, Perry Ping
2015-05-04
Towards the next generation optical access network supporting large capacity data transmission to enormous number of users covering a wider area, we proposed a hybrid wavelength-space division multiplexing (WSDM) optical access network architecture utilizing multicore fibers with advanced modulation formats. As a proof of concept, we experimentally demonstrated a WSDM optical access network with duplex transmission using our developed and fabricated multicore (7-core) fibers with 58.7km distance. As a cost-effective modulation scheme for access network, the optical OFDM-QPSK signal has been intensity modulated on the downstream transmission in the optical line terminal (OLT) and it was directly detected in the optical network unit (ONU) after MCF transmission. 10 wavelengths with 25GHz channel spacing from an optical comb generator are employed and each wavelength is loaded with 5Gb/s OFDM-QPSK signal. After amplification, power splitting, and fan-in multiplexer, 10-wavelength downstream signal was injected into six outer layer cores simultaneously and the aggregation downstream capacity reaches 300 Gb/s. -16 dBm sensitivity has been achieved for 3.8 × 10-3 bit error ratio (BER) with 7% Forward Error Correction (FEC) limit for all wavelengths in every core. Upstream signal from ONU side has also been generated and the bidirectional transmission in the same core causes negligible performance degradation to the downstream signal. As a universal platform for wired/wireless data access, our proposed architecture provides additional dimension for high speed mobile signal transmission and we hence demonstrated an upstream delivery of 20Gb/s per wavelength with QPSK modulation formats using the inner core of MCF emulating a mobile backhaul service. The IQ modulated data was coherently detected in the OLT side. -19 dBm sensitivity has been achieved under the FEC limit and more than 18 dB power budget is guaranteed.
High performance and cost effective CO-OFDM system aided by polar code.
Liu, Ling; Xiao, Shilin; Fang, Jiafei; Zhang, Lu; Zhang, Yunhao; Bi, Meihua; Hu, Weisheng
2017-02-06
A novel polar coded coherent optical orthogonal frequency division multiplexing (CO-OFDM) system is proposed and demonstrated through experiment for the first time. The principle of a polar coded CO-OFDM signal is illustrated theoretically and the suitable polar decoding method is discussed. Results show that the polar coded CO-OFDM signal achieves a net coding gain (NCG) of more than 10 dB at bit error rate (BER) of 10-3 over 25-Gb/s 480-km transmission in comparison with conventional CO-OFDM. Also, compared to the 25-Gb/s low-density parity-check (LDPC) coded CO-OFDM 160-km system, the polar code provides a NCG of 0.88 dB @BER = 10-3. Moreover, the polar code can relieve the laser linewidth requirement massively to get a more cost-effective CO-OFDM system.
Constant envelope OFDM scheme for 6PolSK-QPSK
NASA Astrophysics Data System (ADS)
Li, Yupeng; Ding, Ding
2018-03-01
A constant envelope OFDM scheme with phase modulator (PM-CE-OFDM) for 6PolSK-QPSK modulation was demonstrated. Performance under large fiber launch power is measured to check its advantages in counteracting fiber nonlinear impairments. In our simulation, PM-CE-OFDM, RF-assisted constant envelope OFDM (RF-CE-OFDM) and conventional OFDM (Con-OFDM) are transmitted through 80 km standard single mode fiber (SSMF) single channel and WDM system. Simulation results confirm that PM-CE-OFDM has best performance in resisting fiber nonlinearity. In addition, benefiting from the simple system structure, the complexity and cost of PM-CE-OFDM system could be reduced effectively.
Blue Laser Diode Enables Underwater Communication at 12.4 Gbps
Wu, Tsai-Chen; Chi, Yu-Chieh; Wang, Huai-Yung; Tsai, Cheng-Ting; Lin, Gong-Ru
2017-01-01
To enable high-speed underwater wireless optical communication (UWOC) in tap-water and seawater environments over long distances, a 450-nm blue GaN laser diode (LD) directly modulated by pre-leveled 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data was employed to implement its maximal transmission capacity of up to 10 Gbps. The proposed UWOC in tap water provided a maximal allowable communication bit rate increase from 5.2 to 12.4 Gbps with the corresponding underwater transmission distance significantly reduced from 10.2 to 1.7 m, exhibiting a bit rate/distance decaying slope of −0.847 Gbps/m. When conducting the same type of UWOC in seawater, light scattering induced by impurities attenuated the blue laser power, thereby degrading the transmission with a slightly higher decay ratio of 0.941 Gbps/m. The blue LD based UWOC enables a 16-QAM OFDM bit rate of up to 7.2 Gbps for transmission in seawater more than 6.8 m. PMID:28094309
Pre-compensation combined with TS-aided and ISFA-enhanced scheme for UWB system
NASA Astrophysics Data System (ADS)
He, Jing; Xiang, Changqing; Long, Fengting; Wu, Kaiquan; Chen, Lin
2017-08-01
In this paper, a pre-compensation combined with training sequence (TS)-aided and intra-symbol frequency-domain averaging (ISFA)-enhanced scheme is proposed to improve the transmission performance in 64-quadrature amplitude modulation multiband orthogonal-frequency-division-multiplexing ultra-wide band over fiber (64QAM MB-OFDM UWBoF) system. We theoretically analyze and experimentally demonstrate that the proposed scheme is suitable for the 64QAM MB-OFDM UWBoF system in contrast with two other cases: (I) only pilot-aided channel estimation and (II) pilot-aided and pre-compensation combined with ISFA-enhanced channel estimation. The experimental results demonstrate that the performance of system with the proposed scheme can be improved by about 1.25 dB and 0.37 dB compared with the case I and the case II, respectively, at the BER of 3.8×10-3 after 70 km transmission in standard single mode fiber (SSMF).
NASA Astrophysics Data System (ADS)
Kumar Singh, Vinay; Dalal, U. D.
2017-06-01
To inhibit the effect of non-linearity of the LEDs leading to a significant increase in the peak to average power ratio (PAPR) of the OFDM signals in the Visible light communication (VLC) we propose a frequency modulated constant envelope OFDM (FM CE-OFDM) technique. The abrupt amplitude variations in the OFDM signal are frequency modulated before being applied to the LED for electro-optical conversion resulting in a constant envelope signal. The LED is maintained in the linear region of operation by this constant envelope signal at sufficient DC bias. The proposed technique reduces the PAPR to the least possible value ≈0 dB. We theoretically analyze and perform numerical simulations to assess the enhancement of the proposed system. The optimal modulation index is found to be 0.3. The metrics pertaining to the evaluation of the phase discontinuity is derived and is found to be lesser for the FM CE-OFDM as compared to the phase modulated (PM) CE-OFDM. The receiver sensitivity is improved by 1.6 dB for a transmission distance of 2 m for the FM CE-OFDM as compared to the PM CE-OFDM at the FEC threshold. We compare the BER performance of the ideal OFDM (without the non linearity of LED), power back-off OFDM, PM CE-OFDM and FM CE-OFDM in an optical wireless channel (OWC) scenario. The FM CE-OFDM has an improvement of 2.1 dB SNR at the FEC threshold as compared to the PM CE-OFDM. It also shows an improvement of 11 dB when compared with the power back-off technique used in the VLC systems for 10 dB power back-off.
NASA Technical Reports Server (NTRS)
Xiong, Fuqin; Andro, Monty
2001-01-01
This paper first shows that the Doppler frequency shift affects the frequencies of the RF carrier, subcarriers, envelope, and symbol timing by the same percentage in an Orthogonal Frequency Division Multiplexing (OFDM) signal or any other modulated signals. Then the SNR degradation of an OFDM system due to Doppler frequency shift, frequency offset of the local oscillators and phase noise is analyzed. Expressions are given and values for 4-, 16-, 64-, and 256-QAM OFDM systems are calculated and plotted. The calculations show that the Doppler shift of the D3 project is about 305 kHz, and the degradation due to it is about 0.01 to 0.04 dB, which is negligible. The degradation due to frequency offset and phase noise of local oscillators will be the main source of degradation. To keep the SNR degradation under 0.1 dB, the relative frequency offset due to local oscillators must be below 0.01 for the 16 QAM-OFDM. This translates to an offset of 1.55 MHz (0.01 x 155 MHz) or a stability of 77.5 ppm (0.01 x 155 MHz/20 GHz) for the DI project. To keep the SNR degradation under 0.1 dB, the relative linewidth (0) due to phase noise of the local oscillators must be below 0.0004 for the 16 QAM-OFDM. This translates to a linewidth of 0.062 MHz (0.0004 x 155 MHz) of the 20 GHz RIF carrier. For a degradation of 1 dB, beta = 0.04, and the linewidth can be relaxed to 6.2 MHz.
Chow, C W; Yeh, C H; Sung, J Y; Hsu, C W
2014-12-15
We propose and demonstrate the feasibility of using all-optical orthogonal frequency division multiplexing (AO-OFDM) for the convergent optical wired and wireless access networks. AO-OFDM relies on all-optically generated orthogonal subcarriers; hence, high data rate (> 100 Gb/s) can be easily achieved without hitting the speed limit of electronic digital-to-analog and analog-to-digital converters (DAC/ADC). A proof-of-concept convergent access network using AO-OFDM super-channel (SC) is demonstrated supporting 40 - 100 Gb/s wired and gigabit/s 100 GHz millimeter-wave (MMW) ROF transmissions.
Chaos-based CAZAC scheme for secure transmission in OFDM-PON
NASA Astrophysics Data System (ADS)
Fu, Xiaosong; Bi, Meihua; Zhou, Xuefang; Yang, Guowei; Lu, Yang; Hu, Miao
2018-01-01
To effectively resist malicious eavesdropping and performance deterioration, a novel chaos-based secure transmission scheme is proposed to enhance the physical layer security and reduce peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing passive optical network (OFDM-PON). By the randomly extracting operation of common CAZAC values, the specially-designed constant amplitude zero autocorrelation (CAZAC) is created for system encryption and PAPR reduction enhancing the transmission security. This method is verified in {10-Gb/s encrypted OFDM-PON with 20-km fiber transmission. Results show that, compared to common OFDM-PON, our scheme achieves {3-dB PAPR reduction and {1-dB receiver sensitivity improvement.
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Xiao, Nengwu; Chen, Chen; Yuan, Weicheng; Qiu, Kun
2016-02-01
We propose an energy-efficient orthogonal frequency division multiplexing-based passive optical network (OFDM-PON) using adaptive sleep-mode control and dynamic bandwidth allocation. In this scheme, a bidirectional-centralized algorithm named the receiver and transmitter accurate sleep control and dynamic bandwidth allocation (RTASC-DBA), which has an overall bandwidth scheduling policy, is employed to enhance the energy efficiency of the OFDM-PON. The RTASC-DBA algorithm is used in an optical line terminal (OLT) to control the sleep mode of an optical network unit (ONU) sleep and guarantee the quality of service of different services of the OFDM-PON. The obtained results show that, by using the proposed scheme, the average power consumption of the ONU is reduced by ˜40% when the normalized ONU load is less than 80%, compared with the average power consumption without using the proposed scheme.
Integration of frequency modulated constant envelope technique with ADO-OFDM to impede PAPR in VLC
NASA Astrophysics Data System (ADS)
Singh, Vinay Kumar; Dalal, U. D.
2018-07-01
A novel technique of combating the effects of high peak to average power ratio (PAPR) arising due to the non-linearity of the LED in a typical optical-OFDM (O-OFDM) for visible light communication (VLC) systems used in optical wireless channel (OWC) is proposed in this research work. The concept of constant envelope (CE) using frequency modulation (FM) for a composite O-OFDM system formed by uniting Asymmetrically Clipped Optical OFDM (ACO-OFDM) and Direct Current biased Optical OFDM (DCO-OFDM) termed as ADO-OFDM is mathematically presented with its numerical simulation results. The proposed system FM-CE-ADO-OFDM shows improvement in the PAPR with narrowing down to the least possible 0 dB theoretically. The analysis is extended to be compared with the phase modulation (PM) technique of CE-OFDM. The magnitude of phase discontinuity in the two systems is evaluated in the form of metrics yielding favorable results for the proposed system. This system is as spectrally efficient as the DCO-OFDM and as power efficient as the ACO-OFDM with the added advantage of major reduction in the effects due to PAPR arising as a result of the nonlinearity of the LED . The so formed FM-CE-ADO-OFDM is fed to the LED biased in the linear most region of its operation for simulation purpose. We also evaluate the depth of modulation required to obtain least bit error rate (BER). The frequency modulation at 30% depth has been observed to give suitable performance. The entire system is evaluated for an OWC length of 2m resembling the indoor illumination scenario. The receiver sensitivity shows an improvement of 1.2 dB at the FEC threshold for the proposed system.
MURI: Impact of Oceanographic Variability on Acoustic Communications
2011-09-01
multiplexing ( OFDM ), multiple- input/multiple-output ( MIMO ) transmissions, and multi-user single-input/multiple-output (SIMO) communications. Lastly... MIMO - OFDM communications: Receiver design for Doppler distorted underwater acoustic channels,” Proc. Asilomar Conf. on Signals, Systems, and... MIMO ) will be of particular interest. Validating experimental data will be obtained during the ONR acoustic communications experiment in summer 2008
NASA Astrophysics Data System (ADS)
Bai, Cheng-lin; Cheng, Zhi-hui
2016-09-01
In order to further improve the carrier synchronization estimation range and accuracy at low signal-to-noise ratio ( SNR), this paper proposes a code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check (NB-LDPC) codes to study the polarization-division-multiplexing coherent optical orthogonal frequency division multiplexing (PDM-CO-OFDM) system performance in the cases of quadrature phase shift keying (QPSK) and 16 quadrature amplitude modulation (16-QAM) modes. The simulation results indicate that this algorithm can enlarge frequency and phase offset estimation ranges and enhance accuracy of the system greatly, and the bit error rate ( BER) performance of the system is improved effectively compared with that of the system employing traditional NB-LDPC code-aided carrier synchronization algorithm.
NASA Astrophysics Data System (ADS)
Lyu, WeiChao; Wang, Andong; Xie, Dequan; Zhu, Long; Guan, Xun; Wang, Jian; Xu, Jing
2018-05-01
We propose a novel architecture for wavelength-division-multiplexed passive optical network (WDM-PON) that can simultaneously circumvent both remodulation crosstalk and Rayleigh noise, based on self-homodyne detection and optical orthogonal frequency-division multiplexing (OFDM) remodulation. The proposed self-homodyne detection at optical network unit (ONU) requires neither frequency offset compensation nor phase noise compensation, and thus can significantly reduce system complexity and power consumption. Bidirectional transmission of 12.5 Gb/s down- and up-stream signals, via single 25 km single-mode fiber without dispersion compensation, is demonstrated in a proof-of-concept experiment.
Modulation selection for visible light communications using lighting LEDs
NASA Astrophysics Data System (ADS)
Siuzdak, Jerzy
2015-09-01
The paper analyzes suitability of various spectrally efficient modulations (PAM, CAP, OFDM/DMT) in a VLC system using lighting LEDs as a transmitter. Although under ideal conditions all modulation have similar efficiency i.e. they produce similar throughputs with a given BER, their practical performances are different. For example, the level of nonlinear distortions generated by each modulation is the least for PAM and by far the greatest for OFDM/DMT locating CAP in the middle. The suitability of various OFDM/DMT variants in a VLC LED link was also analyzed proving that the asymmetrically clipped (ACO) OFDM has a worse performance as compared with DC biased (DCO) OFDM.
MIMO-OFDM signal optimization for SAR imaging radar
NASA Astrophysics Data System (ADS)
Baudais, J.-Y.; Méric, S.; Riché, V.; Pottier, É.
2016-12-01
This paper investigates the optimization of the coded orthogonal frequency division multiplexing (OFDM) transmitted signal in a synthetic aperture radar (SAR) context. We propose to design OFDM signals to achieve range ambiguity mitigation. Indeed, range ambiguities are well known to be a limitation for SAR systems which operates with pulsed transmitted signal. The ambiguous reflected signal corresponding to one pulse is then detected when the radar has already transmitted the next pulse. In this paper, we demonstrate that the range ambiguity mitigation is possible by using orthogonal transmitted wave as OFDM pulses. The coded OFDM signal is optimized through genetic optimization procedures based on radar image quality parameters. Moreover, we propose to design a multiple-input multiple-output (MIMO) configuration to enhance the noise robustness of a radar system and this configuration is mainly efficient in the case of using orthogonal waves as OFDM pulses. The results we obtain show that OFDM signals outperform conventional radar chirps for range ambiguity suppression and for robustness enhancement in 2 ×2 MIMO configuration.
Liu, Lei; Peng, Wei-Ren; Casellas, Ramon; Tsuritani, Takehiro; Morita, Itsuro; Martínez, Ricardo; Muñoz, Raül; Yoo, S J B
2014-01-13
Optical Orthogonal Frequency Division Multiplexing (O-OFDM), which transmits high speed optical signals using multiple spectrally overlapped lower-speed subcarriers, is a promising candidate for supporting future elastic optical networks. In contrast to previous works which focus on Coherent Optical OFDM (CO-OFDM), in this paper, we consider the direct-detection optical OFDM (DDO-OFDM) as the transport technique, which leads to simpler hardware and software realizations, potentially offering a low-cost solution for elastic optical networks, especially in metro networks, and short or medium distance core networks. Based on this network scenario, we design and deploy a software-defined networking (SDN) control plane enabled by extending OpenFlow, detailing the network architecture, the routing and spectrum assignment algorithm, OpenFlow protocol extensions and the experimental validation. To the best of our knowledge, it is the first time that an OpenFlow-based control plane is reported and its performance is quantitatively measured in an elastic optical network with DDO-OFDM transmission.
MURI: Impact of Oceanographic Variability on Acoustic Communications
2012-09-30
ACSSC.2010.5757934 (2010). [published] [50] K. Tu, T.M. Duman, J.G. Proakis, and M. Stojanovic, “Cooperative MIMO - OFDM communications: Receiver...considered across bands of frequencies in the range 1-50 kHz. Multiple source and receiver cases ( MIMO ) will be of particular interest. Validating...Parabolic Equation (PE) acoustic models. Communication receiver design has included processors for orthogonal frequency division multiplexing ( OFDM
Accurate measurement of RF exposure from emerging wireless communication systems
NASA Astrophysics Data System (ADS)
Letertre, Thierry; Monebhurrun, Vikass; Toffano, Zeno
2013-04-01
Isotropic broadband probes or spectrum analyzers (SAs) may be used for the measurement of rapidly varying electromagnetic fields generated by emerging wireless communication systems. In this paper this problematic is investigated by comparing the responses measured by two different isotropic broadband probes typically used to perform electric field (E-field) evaluations. The broadband probes are submitted to signals with variable duty cycles (DC) and crest factors (CF) either with or without Orthogonal Frequency Division Multiplexing (OFDM) modulation but with the same root-mean-square (RMS) power. The two probes do not provide accurate enough results for deterministic signals such as Worldwide Interoperability for Microwave Access (WIMAX) or Long Term Evolution (LTE) as well as for non-deterministic signals such as Wireless Fidelity (WiFi). The legacy measurement protocols should be adapted to cope for the emerging wireless communication technologies based on the OFDM modulation scheme. This is not easily achieved except when the statistics of the RF emission are well known. In this case the measurement errors are shown to be systematic and a correction factor or calibration can be applied to obtain a good approximation of the total RMS power.
Zhang, Lu; Pang, Xiaodan; Ozolins, Oskars; Udalcovs, Aleksejs; Popov, Sergei; Xiao, Shilin; Hu, Weisheng; Chen, Jiajia
2018-04-01
We propose a spectrally efficient digitized radio-over-fiber (D-RoF) system by grouping highly correlated neighboring samples of the analog signals into multidimensional vectors, where the k-means clustering algorithm is adopted for adaptive quantization. A 30 Gbit/s D-RoF system is experimentally demonstrated to validate the proposed scheme, reporting a carrier aggregation of up to 40 100 MHz orthogonal frequency division multiplexing (OFDM) channels with quadrate amplitude modulation (QAM) order of 4 and an aggregation of 10 100 MHz OFDM channels with a QAM order of 16384. The equivalent common public radio interface rates from 37 to 150 Gbit/s are supported. Besides, the error vector magnitude (EVM) of 8% is achieved with the number of quantization bits of 4, and the EVM can be further reduced to 1% by increasing the number of quantization bits to 7. Compared with conventional pulse coding modulation-based D-RoF systems, the proposed D-RoF system improves the signal-to-noise-ratio up to ∼9 dB and greatly reduces the EVM, given the same number of quantization bits.
Data-aided adaptive weighted channel equalizer for coherent optical OFDM.
Mousa-Pasandi, Mohammad E; Plant, David V
2010-02-15
We report an adaptive weighted channel equalizer (AWCE) for orthogonal frequency division multiplexing (OFDM) and study its performance for long-haul coherent optical OFDM (CO-OFDM) transmission systems. This equalizer updates the equalization parameters on a symbol-by-symbol basis thus can track slight drifts of the optical channel. This is suitable to combat polarization mode dispersion (PMD) degradation while increasing the periodicity of pilot symbols which can be translated into a significant overhead reduction. Furthermore, AWCE can increase the precision of RF-pilot enabled phase noise estimation in the presence of noise, using data-aided phase noise estimation. Simulation results corroborate the capability of AWCE in both overhead reduction and improving the quality of the phase noise compensation (PNC).
PMD compensation in fiber-optic communication systems with direct detection using LDPC-coded OFDM.
Djordjevic, Ivan B
2007-04-02
The possibility of polarization-mode dispersion (PMD) compensation in fiber-optic communication systems with direct detection using a simple channel estimation technique and low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) is demonstrated. It is shown that even for differential group delay (DGD) of 4/BW (BW is the OFDM signal bandwidth), the degradation due to the first-order PMD can be completely compensated for. Two classes of LDPC codes designed based on two different combinatorial objects (difference systems and product of combinatorial designs) suitable for use in PMD compensation are introduced.
Energy reduction using multi-channels optical wireless communication based OFDM
NASA Astrophysics Data System (ADS)
Darwesh, Laialy; Arnon, Shlomi
2017-10-01
In recent years, an increasing number of data center networks (DCNs) have been built to provide various cloud applications. Major challenges in the design of next generation DC networks include reduction of the energy consumption, high flexibility and scalability, high data rates, minimum latency and high cyber security. Use of optical wireless communication (OWC) to augment the DC network could help to confront some of these challenges. In this paper we present an OWC multi channels communication method that could lead to significant energy reduction of the communication equipment. The method is to convert a high speed serial data stream to many slower and parallel streams and vies versa at the receiver. We implement this concept of multi channels using optical orthogonal frequency division multiplexing (O-OFDM) method. In our scheme, we use asymmetrically clipped optical OFDM (ACO-OFDM). Our results show that the realization of multi channels OFDM (ACO-OFDM) methods reduces the total energy consumption exponentially, as the number of channels transmitted through them rises.
NASA Astrophysics Data System (ADS)
Liu, Jianfei; Wei, Ying; Zeng, Xiangye; Lu, Jia; Zhang, Shuangxi; Wang, Mengjun
2018-03-01
A joint timing and frequency synchronization method has been proposed for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) system in this paper. The timing offset (TO), integer frequency offset (FO) and the fractional FO can be realized by only one training symbol, which consists of two linear frequency modulation (LFM) signals with opposite chirp rates. By detecting the peak of LFM signals after Radon-Wigner transform (RWT), the TO and the integer FO can be estimated at the same time, moreover, the fractional FO can be acquired correspondingly through the self-correlation characteristic of the same training symbol. Simulation results show that the proposed method can give a more accurate TO estimation than the existing methods, especially at poor OSNR conditions; for the FO estimation, both the fractional and the integer FO can be estimated through the proposed training symbol with no extra overhead, a more accurate estimation and a large FO estimation range of [ - 5 GHz, 5GHz] can be acquired.
PAPR reduction based on tone reservation scheme for DCO-OFDM indoor visible light communications.
Bai, Jurong; Li, Yong; Yi, Yang; Cheng, Wei; Du, Huimin
2017-10-02
High peak-to-average power ratio (PAPR) leads to out-of-band power and in-band distortion in the direct current-biased optical orthogonal frequency division multiplexing (DCO-OFDM) systems. In order to effectively reduce the PAPR with faster convergence and lower complexity, this paper proposes a tone reservation based scheme, which is the combination of the signal-to-clipping noise ratio (SCR) procedure and the least squares approximation (LSA) procedure. In the proposed scheme, the transmitter of the DCO-OFDM indoor visible light communication (VLC) system is designed to transform the PAPR reduced signal into real-valued positive OFDM signal without doubling the transmission bandwidth. Moreover, the communication distance and the light emitting diode (LED) irradiance angle are taking into consideration in the evaluation of the system bit error rate (BER). The PAPR reduction efficiency of the proposed scheme is remarkable for DCO-OFDM indoor VLC systems.
Yeh, C H; Chow, C W; Chen, H Y; Chen, J; Liu, Y L
2014-04-21
We propose and experimentally demonstrate a white-light phosphor-LED visible light communication (VLC) system with an adaptive 84.44 to 190 Mbit/s 16 quadrature-amplitude-modulation (QAM) orthogonal-frequency-division-multiplexing (OFDM) signal utilizing bit-loading method. Here, the optimal analogy pre-equalization design is performed at LED transmitter (Tx) side and no blue filter is used at the Rx side. Hence, the ~1 MHz modulation bandwidth of phosphor-LED could be extended to 30 MHz. In addition, the measured bit error rates (BERs) of < 3.8 × 10(-3) [forward error correction (FEC) threshold] at different measured data rates can be achieved at practical transmission distances of 0.75 to 2 m.
All optical OFDM transmission for passive optical networks
NASA Astrophysics Data System (ADS)
Kachare, Nitin; Ashik T., J.; Bai, K. Kalyani; Kumar, D. Sriram
2017-06-01
This paper demonstrates the idea of data transmission at a very higher rate (Tbits/s) through optical fibers in a passive optical network using the most efficient data transmission technique widely used in wireless communication that is orthogonal frequency division multiplexing. With an increase in internet users, data traffic has also increased significantly and the current dense wavelength division multiplexing (DWDM) systems may not support the next generation passive optical networks (PONs) requirements. The approach discussed in this paper allows to increase the downstream data rate per user and extend the standard single-mode fiber reach for future long-haul applications. All-optical OFDM is a promising solution for terabit per second capable single wavelength transmission, with high spectral efficiency and high tolerance to chromatic dispersion.
A chaotic modified-DFT encryption scheme for physical layer security and PAPR reduction in OFDM-PON
NASA Astrophysics Data System (ADS)
Fu, Xiaosong; Bi, Meihua; Zhou, Xuefang; Yang, Guowei; Li, Qiliang; Zhou, Zhao; Yang, Xuelin
2018-05-01
This letter proposes a modified discrete Fourier transform (DFT) encryption scheme with multi-dimensional chaos for the physical layer security and peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing passive optical network (OFDM-PON) system. This multiple-fold encryption algorithm is mainly composed by using the column vectors permutation and the random phase encryption in the standard DFT matrix, which can create ∼10551 key space. The transmission of ∼10 Gb/s encrypted OFDM signal is verified over 20-km standard single mode fiber (SMF). Moreover, experimental results show that, the proposed scheme can achieve ∼2.6-dB PAPR reduction and ∼1-dB improvement of receiver sensitivity if compared with the common OFDM-PON.
NASA Astrophysics Data System (ADS)
Kim, Chang-Hun; Jung, Sang-Min; Kang, Su-Min; Han, Sang-Kook
2015-01-01
We propose an all-optical virtual private network (VPN) system in an orthogonal frequency division multiplexing (OFDM) based long reach PON (LR-PON). In the optical access network field, technologies based on fundamental upstream (U/S) and downstream (D/S) have been actively researched to accommodate explosion of data capacity. However, data transmission among the end users which is arisen from cloud computing, file-sharing and interactive game takes a large weight inside of internet traffic. Moreover, this traffic is predicted to increase more if Internet of Things (IoT) services are activated. In a conventional PON, VPN data is transmitted through ONU-OLT-ONU via U/S and D/S carriers. It leads to waste of bandwidth and energy due to O-E-O conversion in the OLT and round-trip propagation between OLT and remote node (RN). Also, it causes inevitable load to the OLT for electrical buffer, scheduling and routing. The network inefficiency becomes more critical in a LR-PON which has been researched as an effort to reduce CAPEX and OPEX through metro-access consolidation. In the proposed system, the VPN data is separated from conventional U/S and re-modulated on the D/S carrier by using RSOA in the ONUs to avoid bandwidth consumption of U/S and D/S unlike in previously reported system. Moreover, the transmitted VPN data is re-directed to the ONUs by wavelength selective reflector device in the RN without passing through the OLT. Experimental demonstration for the VPN communication system in an OFDM based LR-PON has been verified.
OLT-centralized sampling frequency offset compensation scheme for OFDM-PON.
Chen, Ming; Zhou, Hui; Zheng, Zhiwei; Deng, Rui; Chen, Qinghui; Peng, Miao; Liu, Cuiwei; He, Jing; Chen, Lin; Tang, Xionggui
2017-08-07
We propose an optical line terminal (OLT)-centralized sampling frequency offset (SFO) compensation scheme for adaptively-modulated OFDM-PON systems. By using the proposed SFO scheme, the phase rotation and inter-symbol interference (ISI) caused by SFOs between OLT and multiple optical network units (ONUs) can be centrally compensated in the OLT, which reduces the complexity of ONUs. Firstly, the optimal fast Fourier transform (FFT) size is identified in the intensity-modulated and direct-detection (IMDD) OFDM system in the presence of SFO. Then, the proposed SFO compensation scheme including phase rotation modulation (PRM) and length-adaptive OFDM frame has been experimentally demonstrated in the downlink transmission of an adaptively modulated optical OFDM with the optimal FFT size. The experimental results show that up to ± 300 ppm SFO can be successfully compensated without introducing any receiver performance penalties.
NASA Astrophysics Data System (ADS)
Taoka, Hidekazu; Higuchi, Kenichi; Sawahashi, Mamoru
This paper presents experimental results in real propagation channel environments of real-time 1-Gbps packet transmission using antenna-dependent adaptive modulation and channel coding (AMC) with 4-by-4 MIMO multiplexing in the downlink Orthogonal Frequency Division Multiplexing (OFDM) radio access. In the experiment, Maximum Likelihood Detection employing QR decomposition and the M-algorithm (QRM-MLD) with adaptive selection of the surviving symbol replica candidates (ASESS) is employed to achieve such a high data rate at a lower received signal-to-interference plus background noise power ratio (SINR). The field experiments, which are conducted at the average moving speed of 30km/h, show that real-time packet transmission of greater than 1Gbps in a 100-MHz channel bandwidth (i.e., 10bits/second/Hz) is achieved at the average received SINR of approximately 13.5dB using 16QAM modulation and turbo coding with the coding rate of 8/9. Furthermore, we show that the measured throughput of greater than 1Gbps is achieved at the probability of approximately 98% in a measurement course, where the maximum distance from the cell site was approximately 300m with the respective transmitter and receiver antenna separation of 1.5m and 40cm with the total transmission power of 10W. The results also clarify that the minimum required receiver antenna spacing is approximately 10cm (1.5 carrier wave length) to suppress the loss in the required received SINR at 1-Gbps throughput to within 1dB compared to that assuming the fading correlation between antennas of zero both under non-line-of-sight (NLOS) and line-of-sight (LOS) conditions.
LDPC coded OFDM over the atmospheric turbulence channel.
Djordjevic, Ivan B; Vasic, Bane; Neifeld, Mark A
2007-05-14
Low-density parity-check (LDPC) coded optical orthogonal frequency division multiplexing (OFDM) is shown to significantly outperform LDPC coded on-off keying (OOK) over the atmospheric turbulence channel in terms of both coding gain and spectral efficiency. In the regime of strong turbulence at a bit-error rate of 10(-5), the coding gain improvement of the LDPC coded single-side band unclipped-OFDM system with 64 sub-carriers is larger than the coding gain of the LDPC coded OOK system by 20.2 dB for quadrature-phase-shift keying (QPSK) and by 23.4 dB for binary-phase-shift keying (BPSK).
Yeom, Jeong Seon; Jung, Bang Chul; Jin, Hu
2018-01-01
In this paper, we propose a novel low-complexity multi-user superposition transmission (MUST) technique for 5G downlink networks, which allows multiple cell-edge users to be multiplexed with a single cell-center user. We call the proposed technique diversity-controlled MUST technique since the cell-center user enjoys the frequency diversity effect via signal repetition over multiple orthogonal frequency division multiplexing (OFDM) sub-carriers. We assume that a base station is equipped with a single antenna but users are equipped with multiple antennas. In addition, we assume that the quadrature phase shift keying (QPSK) modulation is used for users. We mathematically analyze the bit error rate (BER) of both cell-edge users and cell-center users, which is the first theoretical result in the literature to the best of our knowledge. The mathematical analysis is validated through extensive link-level simulations. PMID:29439413
Yeom, Jeong Seon; Chu, Eunmi; Jung, Bang Chul; Jin, Hu
2018-02-10
In this paper, we propose a novel low-complexity multi-user superposition transmission (MUST) technique for 5G downlink networks, which allows multiple cell-edge users to be multiplexed with a single cell-center user. We call the proposed technique diversity-controlled MUST technique since the cell-center user enjoys the frequency diversity effect via signal repetition over multiple orthogonal frequency division multiplexing (OFDM) sub-carriers. We assume that a base station is equipped with a single antenna but users are equipped with multiple antennas. In addition, we assume that the quadrature phase shift keying (QPSK) modulation is used for users. We mathematically analyze the bit error rate (BER) of both cell-edge users and cell-center users, which is the first theoretical result in the literature to the best of our knowledge. The mathematical analysis is validated through extensive link-level simulations.
Du, Jing; Wang, Jian
2017-11-27
Here we design and fabricate a hybrid surface plasmon polarities (SPP) waveguide on the silicon-on-insulator (SOI) photonics platform. The designed hybrid SPP waveguide is composed of a metal ridge, an air gap, and a silicon ridge. We simulate the mode characteristics in the structure and design the waveguide with a wide air gap that can simplify the fabrication process and maintain the advantages of the hybrid SPP mode. The performance of ultrahigh-bandwidth data transmission through the proposed waveguide is then investigated using 161 wavelength-division multiplexing (WDM) channels, each carrying a 11.2-Gbit/s orthogonal frequency-division multiplexing (OFDM) 16-ary quadrature amplitude modulation (16-QAM) signal. The bit-error rates (BERs) of all 161 channels are less than 1e-3. The favorable results show the prospect of on-chip optical interconnection using the proposed hybrid SPP waveguide.
On the Application of Time-Reversed Space-Time Block Code to Aeronautical Telemetry
2014-06-01
Keying (SOQPSK), bit error rate (BER), Orthogonal Frequency Division Multiplexing ( OFDM ), Generalized time-reversed space-time block codes (GTR-STBC) 16...Alamouti code [4]) is optimum [2]. Although OFDM is generally applied on a per subcarrier basis in frequency selective fading, it is not a viable...Calderbank, “Finite-length MIMO decision feedback equal- ization for space-time block-coded signals over multipath-fading channels,” IEEE Transac- tions on
2 × 2 MIMO OFDM/OQAM radio signals over an elliptical core few-mode fiber.
Mo, Qi; He, Jiale; Yu, Dawei; Deng, Lei; Fu, Songnian; Tang, Ming; Liu, Deming
2016-10-01
We experimentally demonstrate a 4.46 Gb/s2×2 multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM)/OQAM radio signal over a 2 km elliptical core 3-mode fiber, together with 0.4 m wireless transmission. Meanwhile, to cope with differential channel delay (DCD) among involved MIMO channels, we propose a time-offset crosstalk cancellation algorithm to extend the DCD tolerance from 10 to 60 ns without using a circle prefix (CP), leading to an 18.7% improvement of spectral efficiency. For the purpose of comparison, we also examine the transmission performance of CP-OFDM signals with different lengths of CPs, under the same system configuration. The proposed algorithm is also effective for the DCD compensation of a radio signal over a 2 km 7-core fiber. These results not only demonstrate the feasibility of space division multiplexing for RoF application but also validate that the elliptical core few-mode fiber can provide the same independent channels as the multicore fiber.
Shieh, W; Yi, X; Ma, Y; Tang, Y
2007-08-06
In this paper, we conduct theoretical and experimental study on the PMD-supported transmission with coherent optical orthogonal frequency-division multiplexing (CO-OFDM). We first present the model for the optical fiber communication channel in the presence of the polarization effects. It shows that the optical fiber channel model can be treated as a special kind of multiple-input multiple-output (MIMO) model, namely, a two-input two-output (TITO) model which is intrinsically represented by a two-element Jones vector familiar to the optical communications community. The detailed discussions on various coherent optical MIMO-OFDM (CO-MIMO-OFDM) models are presented. Furthermore, we show the first experiment of polarization-diversity detection in CO-OFDM systems. In particular, a CO-OFDM signal at 10.7 Gb/s is successfully recovered after 900 ps differential-group-delay (DGD) and 1000-km transmission through SSMF fiber without optical dispersion compensation. The transmission experiment with higher-order PMD further confirms the immunity of the CO-OFDM signal to PMD in the transmission fiber. The nonlinearity performance of PMD-supported transmission is also reported. For the first time, nonlinear phase noise mitigation based on receiver digital signal processing is experimentally demonstrated for CO-OFDM transmission.
NASA Astrophysics Data System (ADS)
Nehra, Monika; Kedia, Deepak
2018-04-01
A CO-OFDM system combines the advantages of both coherent detection and OFDM modulation for future high speed fiber transmission. In this paper, we propose an I/Q modulation technique using dual-drive MZMs for high rate 10 Gb/s CO-OFDM system. The proposed modulator provides 10.63 dBm improved optical spectra compared to a single dual-drive MZM. The simulation results in terms of BER and Q factor are quite satisfactory upto a transmission reach of 3,000 km and that to without making use of any dispersion compensation. A BER of about 8.03×10-10 and 15.06 dB Q factor have been achieved at -10.43 dBm received optical power.
Receiver IQ mismatch estimation in PDM CO-OFDM system using training symbol
NASA Astrophysics Data System (ADS)
Peng, Dandan; Ma, Xiurong; Yao, Xin; Zhang, Haoyuan
2017-07-01
Receiver in-phase/quadrature (IQ) mismatch is hard to mitigate at the receiver via using conventional method in polarization division multiplexed (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. In this paper, a novel training symbol structure is proposed to estimate IQ mismatch and channel distortion. Combined this structure with Gram Schmidt orthogonalization procedure (GSOP) algorithm, we can get lower bit error rate (BER). Meanwhile, based on this structure one estimation method is deduced in frequency domain which can achieve the estimation of IQ mismatch and channel distortion independently and improve the system performance obviously. Numerical simulation shows that the proposed two methods have better performance than compared method at 100 Gb/s after 480 km fiber transmission. Besides, the calculation complexity is also analyzed.
All-optical OFDM network coding scheme for all-optical virtual private communication in PON
NASA Astrophysics Data System (ADS)
Li, Lijun; Gu, Rentao; Ji, Yuefeng; Bai, Lin; Huang, Zhitong
2014-03-01
A novel optical orthogonal frequency division multiplexing (OFDM) network coding scheme is proposed over passive optical network (PON) system. The proposed scheme for all-optical virtual private network (VPN) does not only improve transmission efficiency, but also realize full-duplex communication mode in a single fiber. Compared with the traditional all-optical VPN architectures, the all-optical OFDM network coding scheme can support higher speed, more flexible bandwidth allocation, and higher spectrum efficiency. In order to reduce the difficulty of alignment for encoding operation between inter-communication traffic, the width of OFDM subcarrier pulse is stretched in our proposed scheme. The feasibility of all-optical OFDM network coding scheme for VPN is verified, and the relevant simulation results show that the full-duplex inter-communication traffic stream can be transmitted successfully. Furthermore, the tolerance of misalignment existing in inter-ONUs traffic is investigated and analyzed for all-optical encoding operation, and the difficulty of pulse alignment is proved to be lower.
NASA Astrophysics Data System (ADS)
Patel, Dhananjay; Singh, Vinay Kumar; Dalal, U. D.
2016-07-01
This work addresses the analytical and numerical investigations of the transmission performance of an optical Single Sideband (SSB) modulation technique generated by a Mach Zehnder Modulator (MZM) with a 90° and 120° hybrid coupler. It takes into account the problem of chromatic dispersion in single mode fibers in Passive Optical Networks (PON), which severely degrades the performance of the system. Considering the transmission length of the fiber, the SSB modulation generated by maintaining a phase shift of π/2 between the two electrodes of the MZM provides better receiver sensitivity. However, the power of higher-order harmonics generated due to the nonlinearity of the MZM is directly proportional to the modulation index, making the SSB look like a quasi-double sideband (DSB) and causing power fading due to chromatic dispersion. To eliminate one of the second-order harmonics, the SSB signal based on an MZM with a 120° hybrid coupler is simulated. An analytical model of conventional SSB using 90° and 120° hybrid couplers is established. The latter suppresses unwanted (upper/lower) first-order and second-order (lower/upper) sidebands. For the analysis, a varying quadrature amplitude modulation (QAM) Orthogonal Frequency Division Multiplexing (OFDM) signal with a data rate of 5 Gb/s is upconverted using both of the SSB techniques and is transmitted over a distance of 75 km in Single Mode Fiber (SMF). The simulation results show that the SSB with 120° hybrid coupler proves to be more immune to chromatic dispersion as compared to the conventional SSB technique. This is in tandem with the theoretical analysis presented in the article.
NASA Astrophysics Data System (ADS)
Zhao, Lei; Xu, Hengying; Bai, Chenglin
2018-03-01
In orthogonal frequency division multiplexing (OFDM)-based elastic optical networking (EON), it is imperative to identify unknown parameters of OFDM-based EON signals quickly, intelligently and robustly. Because the number of sub-carriers determines the size of the sub-carriers spacing and then affects the symbol period of the OFDM and the anti-dispersion capability of the system, the identification of the number of sub-carriers has a profound effect on the identification of other key parameters of the system. In this paper, we proposed a method of number identification for sub-carriers of OFDM-based EON signals with help of high-order cyclic cumulant. The specific fourth-order cyclic cumulant exists only at the location of its sub-carriers frequencies. So the identification of the number of sub-carriers can be implemented by detecting the cyclic-frequencies. The proposed scheme in our study can be divided into three sub-stages, i.e. estimating the spectral range, calculating the high-order cyclic cumulant and identifying the number of sub-carriers. When the optical signal-to-noise ratios (OSNR) varied from 16dB to 22dB, the number of sub-carriers (64-512) was successfully identified in the experiment, and from the statistical point of view, the average identification absolute accuracy (IAAs) exceeded 94%.
Reducing the PAPR in FBMC-OQAM systems with low-latency trellis-based SLM technique
NASA Astrophysics Data System (ADS)
Bulusu, S. S. Krishna Chaitanya; Shaiek, Hmaied; Roviras, Daniel
2016-12-01
Filter-bank multi-carrier (FBMC) modulations, and more specifically FBMC-offset quadrature amplitude modulation (OQAM), are seen as an interesting alternative to orthogonal frequency division multiplexing (OFDM) for the 5th generation radio access technology. In this paper, we investigate the problem of peak-to-average power ratio (PAPR) reduction for FBMC-OQAM signals. Recently, it has been shown that FBMC-OQAM with trellis-based selected mapping (TSLM) scheme not only is superior to any scheme based on symbol-by-symbol approach but also outperforms that of the OFDM with classical SLM scheme. This paper is an extension of that work, where we analyze the TSLM in terms of computational complexity, required hardware memory, and latency issues. We have proposed an improvement to the TSLM, which requires very less hardware memory, compared to the originally proposed TSLM, and also have low latency. Additionally, the impact of the time duration of partial PAPR on the performance of TSLM is studied, and its lower bound has been identified by proposing a suitable time duration. Also, a thorough and fair comparison of performance has been done with an existing trellis-based scheme proposed in literature. The simulation results show that the proposed low-latency TSLM yields better PAPR reduction performance with relatively less hardware memory requirements.
Feng, Zhenhua; Xu, Liang; Wu, Qiong; Tang, Ming; Fu, Songnian; Tong, Weijun; Shum, Perry Ping; Liu, Deming
2017-03-20
Towards 100G beyond large-capacity optical access networks, wavelength division multiplexing (WDM) techniques incorporating with space division multiplexing (SDM) and affordable spectrally efficient advanced modulation formats are indispensable. In this paper, we proposed and experimentally demonstrated a cost-efficient multicore fiber (MCF) based hybrid WDM-SDM optical access network with self-homodyne coherent detection (SHCD) based downstream (DS) and direct detection optical filter bank multi carrier (DDO-FBMC) based upstream (US). In the DS experiments, the inner core of the 7-core fiber is used as a dedicated channel to deliver the local oscillator (LO) lights while the other 6 outer cores are used to transmit 4 channels of wavelength multiplexed 200-Gb/s PDM-16QAM-OFDM signals. For US transmission, 4 wavelengths with channel spacing of 100 GHz are intensity modulated with 30 Gb/s 32-QAM-FBMC and directly detected by a ~7 GHz bandwidth receiver after transmission along one of the outer core. The results show that a 4 × 6 × 200-Gb/s DS transmission can be realized over 37 km 7-core fiber without carrier frequency offset (CFO) and phase noise (PN) compensation even using 10 MHz linewidth DFB lasers. The SHCD based on MCF provides a compromise and cost efficient scheme between conventional intradyne coherent detection and intensity modulation and direct detection (IM/DD) schemes. Both US and DS have acceptable BER performance and high spectral efficiency.
Investigating effects of communications modulation technique on targeting performance
NASA Astrophysics Data System (ADS)
Blasch, Erik; Eusebio, Gerald; Huling, Edward
2006-05-01
One of the key challenges facing the global war on terrorism (GWOT) and urban operations is the increased need for rapid and diverse information from distributed sources. For users to get adequate information on target types and movements, they would need reliable data. In order to facilitate reliable computational intelligence, we seek to explore the communication modulation tradeoffs affecting information distribution and accumulation. In this analysis, we explore the modulation techniques of Orthogonal Frequency Division Multiplexing (OFDM), Direct Sequence Spread Spectrum (DSSS), and statistical time-division multiple access (TDMA) as a function of the bit error rate and jitter that affect targeting performance. In the analysis, we simulate a Link 16 with a simple bandpass frequency shift keying (PSK) technique using different Signal-to-Noise ratios. The communications transfer delay and accuracy tradeoffs are assessed as to the effects incurred in targeting performance.
NASA Astrophysics Data System (ADS)
Kang, Soo-Min; Kim, Chang-Hun; Han, Sang-Kook
2016-02-01
In passive optical network (PON), orthogonal frequency division multiplexing (OFDM) has been studied actively due to its advantages such as high spectra efficiency (SE), dynamic resource allocation in time or frequency domain, and dispersion robustness. However, orthogonal frequency division multiple access (OFDMA)-PON requires tight synchronization among multiple access signals. If not, frequency orthogonality could not be maintained. Also its sidelobe causes inter-channel interference (ICI) to adjacent channel. To prevent ICI caused by high sidelobes, guard band (GB) is usually used which degrades SE. Thus, OFDMA-PON is not suitable for asynchronous uplink transmission in optical access network. In this paper, we propose intensity modulation/direct detection (IM/DD) based universal filtered multi-carrier (UFMC) PON for asynchronous multiple access. The UFMC uses subband filtering to subsets of subcarriers. Since it reduces sidelobe of each subband by applying subband filtering, it could achieve better performance compared to OFDM. For the experimental demonstration, different sample delay was applied to subbands to implement asynchronous transmission condition. As a result, time synchronization robustness of UFMC was verified in asynchronous multiple access system.
NASA Astrophysics Data System (ADS)
Ma, Jianxin; Wang, Zhao; Zheng, Guoli
2014-04-01
A novel lightwave centralized full-duplex WDM-PON access network based on single sideband optical orthogonal frequency-division multiplexing (SSB-OOFDM) is proposed for providing wired and 60-GHz band wireless accesses alternately. At the OLT, the multi-channels with 10-Gb/s 4-QAM-RF-OFDM signals are SSB modulated on the optical local oscillators (OLOs). At the RN, one OOFDM signal along with two OLOs is abstracted and switched to the corresponding HONU, where the signal can be downconverted to the 10-GHz or 60-GHz band RF-OFDM signal by one OLO for wired or wireless access, while the other one is used to bear the uplink signal. Since the HONU is free from the light sources, the system complexity and cost are reduced. Full duplex transmission over 25 km fiber have been demonstrated that the error vector magnitude (EVM) of the down- and up-link signals are much below the FEC limit for both the wired and 60-GHz band wireless access services.
An Improved Mathematical Scheme for LTE-Advanced Coexistence with FM Broadcasting Service
Al-hetar, Abdulaziz M.
2016-01-01
Power spectral density (PSD) overlapping analysis is considered the surest approach to evaluate feasibility of compatibility between wireless communication systems. In this paper, a new closed-form for the Interference Signal Power Attenuation (ISPA) is mathematically derived to evaluate interference caused from Orthogonal Frequency Division Multiplexing (OFDM)-based Long Term Evolution (LTE)-Advanced into Frequency Modulation (FM) broadcasting service. In this scheme, ISPA loss due to PSD overlapping of both OFDM-based LTE-Advanced and FM broadcasting service is computed. The proposed model can estimate power attenuation loss more precisely than the Advanced Minimum Coupling Loss (A-MCL) and approximate-ISPA methods. Numerical results demonstrate that the interference power is less than that obtained using the A-MCL and approximate ISPA methods by 2.8 and 1.5 dB at the co-channel and by 5.2 and 2.2 dB at the adjacent channel with null guard band, respectively. The outperformance of this scheme over the other methods leads to more diminishing in the required physical distance between the two systems which ultimately supports efficient use of the radio frequency spectrum. PMID:27855216
An Improved Mathematical Scheme for LTE-Advanced Coexistence with FM Broadcasting Service.
Shamsan, Zaid Ahmed; Al-Hetar, Abdulaziz M
2016-01-01
Power spectral density (PSD) overlapping analysis is considered the surest approach to evaluate feasibility of compatibility between wireless communication systems. In this paper, a new closed-form for the Interference Signal Power Attenuation (ISPA) is mathematically derived to evaluate interference caused from Orthogonal Frequency Division Multiplexing (OFDM)-based Long Term Evolution (LTE)-Advanced into Frequency Modulation (FM) broadcasting service. In this scheme, ISPA loss due to PSD overlapping of both OFDM-based LTE-Advanced and FM broadcasting service is computed. The proposed model can estimate power attenuation loss more precisely than the Advanced Minimum Coupling Loss (A-MCL) and approximate-ISPA methods. Numerical results demonstrate that the interference power is less than that obtained using the A-MCL and approximate ISPA methods by 2.8 and 1.5 dB at the co-channel and by 5.2 and 2.2 dB at the adjacent channel with null guard band, respectively. The outperformance of this scheme over the other methods leads to more diminishing in the required physical distance between the two systems which ultimately supports efficient use of the radio frequency spectrum.
Chaotic reconfigurable ZCMT precoder for OFDM data encryption and PAPR reduction
NASA Astrophysics Data System (ADS)
Chen, Han; Yang, Xuelin; Hu, Weisheng
2017-12-01
A secure orthogonal frequency division multiplexing (OFDM) transmission scheme precoded by chaotic Zadoff-Chu matrix transform (ZCMT) is proposed and demonstrated. It is proved that the reconfigurable ZCMT matrices after row/column permutations can be applied as an alternative precoder for peak-to-average power ratio (PAPR) reduction. The permutations and the reconfigurable parameters in ZCMT matrix are generated by a hyper digital chaos, in which a huge key space of ∼ 10800 is created for physical-layer OFDM data encryption. An encrypted data transmission of 8.9 Gb/s optical OFDM signals is successfully demonstrated over 20 km standard single-mode fiber (SSMF) for 16-QAM. The BER performance of the encrypted signals is improved by ∼ 2 dB (BER@ 10-3), which is mainly attributed to the effective reduction of PAPR via chaotic ZCMT precoding. Moreover, the chaotic ZCMT precoding scheme requires no sideband information, thus the spectrum efficiency is enhanced during transmission.
Analysis of OFDMA receiver with carrier frequency offset and common carrier frequency offset (CCFO)
NASA Astrophysics Data System (ADS)
Gauni, Sabitha; Kumar, R.
2013-01-01
The technique of Orthogonal frequency multiplexing (OFDM) is used to mitigate the multipath effects and to achieve better data rate. When these systems are extended to enable multiple access wireless multimedia communications they are more beneficial. The performance of the OFDM systems degrades with frequency offset and phase offset. The OFDM multiple access (OFDMA) technology allots groups of the OFDM subcarriers allocated to different users for transmission. In this paper we study the interference effects of the individual subcarriers with the neighbouring subcarriers which also plays a role in the system degradation is termed as Multiuser Interference (MUI). The effect of Carrier frequency offset (CFO) on these systems is also taken in account. There are conventional CFO compensation methods for OFDMA systems the CFOs are usually compensated by directly eliminating the intercarrier interference (ICI) caused by the residual CFOs for individual users.
Massive MIMO-OFDM indoor visible light communication system downlink architecture design
NASA Astrophysics Data System (ADS)
Lang, Tian; Li, Zening; Chen, Gang
2014-10-01
Multiple-input multiple-output (MIMO) technique is now used in most new broadband communication system, and orthogonal frequency division multiplexing (OFDM) is also utilized within current 4th generation (4G) of mobile telecommunication technology. With MIMO and OFDM combined, visible light communication (VLC) system's diversity gain is increase, yet system capacity for dispersive channels is also enhanced. Moreover, with the emerging massive MIMO-OFDM VLC system, there are significant advantages than smaller systems' such as channel hardening, further increasing of energy efficiency (EE) and spectral efficiency (SE) based on law of large number. This paper addresses one of the major technological challenges, system architecture design, which was solved by semispherical beehive structure (SBS) receiver and so that diversity gain can be identified and applied in Massive MIMO VLC system. Simulation results shows that the proposed design clearly presents a spatial diversity over conventional VLC systems.
Performance Evaluation of High Speed Multicarrier System for Optical Wireless Communication
NASA Astrophysics Data System (ADS)
Mathur, Harshita; Deepa, T.; Bartalwar, Sophiya
2018-04-01
Optical wireless communication (OWC) in the infrared and visible range is quite impressive solution, especially where radio communication face challenges. Visible light communication (VLC) uses visible light over a range of 400 and 800 THz and is a subdivision of OWC technologies. With an increasing demand for use of wireless communications, wireless access via Wi-Fi is facing many challenges especially in terms of capacity, availability, security and efficiency. VLC uses intensity modulation and direct detection (IM/DD) techniques and hence they require the signals to certainly be real valued positive sequences. These constraints pose limitation on digital modulation techniques. These limitations result in spectrum-efficiency or power-efficiency losses. In this paper, we investigate an amplitude shift keying (ASK) based orthogonal frequency division multiplexing (OFDM) signal transmission scheme using LabVIEW for VLC technology.
Adaptive OFDM Radar Waveform Design for Improved Micro-Doppler Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Satyabrata
Here we analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a rotating target having multiple scattering centers. The use of a frequency-diverse OFDM signal enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. We characterize the accuracy of micro-Doppler frequency estimation by computing the Cramer-Rao bound (CRB) on the angular-velocity estimate of the target. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to themore » OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations with respect to the signal-to-noise ratios, number of temporal samples, and number of OFDM subcarriers. We also analysed numerically the improvement in estimation accuracy due to the adaptive waveform design. A grid-based maximum likelihood estimation technique is applied to evaluate the corresponding mean-squared error performance.« less
Generation of optical OFDM signals using 21.4 GS/s real time digital signal processing.
Benlachtar, Yannis; Watts, Philip M; Bouziane, Rachid; Milder, Peter; Rangaraj, Deepak; Cartolano, Anthony; Koutsoyannis, Robert; Hoe, James C; Püschel, Markus; Glick, Madeleine; Killey, Robert I
2009-09-28
We demonstrate a field programmable gate array (FPGA) based optical orthogonal frequency division multiplexing (OFDM) transmitter implementing real time digital signal processing at a sample rate of 21.4 GS/s. The QPSK-OFDM signal is generated using an 8 bit, 128 point inverse fast Fourier transform (IFFT) core, performing one transform per clock cycle at a clock speed of 167.2 MHz and can be deployed with either a direct-detection or a coherent receiver. The hardware design and the main digital signal processing functions are described, and we show that the main performance limitation is due to the low (4-bit) resolution of the digital-to-analog converter (DAC) and the 8-bit resolution of the IFFT core used. We analyze the back-to-back performance of the transmitter generating an 8.36 Gb/s optical single sideband (SSB) OFDM signal using digital up-conversion, suitable for direct-detection. Additionally, we use the device to transmit 8.36 Gb/s SSB OFDM signals over 200 km of uncompensated standard single mode fiber achieving an overall BER<10(-3).
Physical-enhanced secure strategy in an OFDM-PON.
Zhang, Lijia; Xin, Xiangjun; Liu, Bo; Yu, Jianjun
2012-01-30
The physical layer of optical access network is vulnerable to various attacks. As the dramatic increase of users and network capacity, the issue of physical-layer security becomes more and more important. This paper proposes a physical-enhanced secure strategy for orthogonal frequency division multiplexing passive optical network (OFDM-PON) by employing frequency domain chaos scrambling. The Logistic map is adopted for the chaos mapping. The chaos scrambling strategy can dynamically allocate the scrambling matrices for different OFDM frames according to the initial condition, which enhance the confidentiality of the physical layer. A mathematical model of this secure system is derived firstly, which achieves a secure transmission at physical layer in OFDM-PON. The results from experimental implementation using Logistic mapped chaos scrambling are also given to further demonstrate the efficiency of this secure strategy. An 10.125 Gb/s 64QAM-OFDM data with Logistic mapped chaos scrambling are successfully transmitted over 25-km single mode fiber (SMF), and the experimental results show that proposed security scheme can protect the system from eavesdropper and attacker, while keep a good performance for the legal ONU.
2011-09-30
channel interference mitigation for underwater acoustic MIMO - OFDM . 3) Turbo equalization for OFDM modulated physical layer network coding. 4) Blind CFO...Underwater Acoustic MIMO - OFDM . MIMO - OFDM has been actively studied for high data rate communications over the bandwidthlimited underwater acoustic...with the cochannel interference (CCI) due to parallel transmissions in MIMO - OFDM . Our proposed receiver has the following components: 1
Single-shot distributed Brillouin optical time domain analyzer.
Fang, Jian; Xu, Pengbai; Dong, Yongkang; Shieh, William
2017-06-26
We demonstrate a novel single-shot distributed Brillouin optical time domain analyzer (SS-BOTDA). In our method, dual-polarization probe with orthogonal frequency-division multiplexing (OFDM) modulation is used to acquire the distributed Brillouin gain spectra, and coherent detection is used to enhance the signal-to-noise ratio (SNR) drastically. Distributed temperature sensing is demonstrated over a 1.08 km standard single-mode fiber (SSMF) with 20.48 m spatial resolution and 0.59 °C temperature accuracy. Neither frequency scanning, nor polarization scrambling, nor averaging is required in our scheme. All the data are obtained through only one-shot measurement, indicating that the sensing speed is only limited by the length of fiber.
10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication.
Kong, Meiwei; Lv, Weichao; Ali, Tariq; Sarwar, Rohail; Yu, Chuying; Qiu, Yang; Qu, Fengzhong; Xu, Zhiwei; Han, Jun; Xu, Jing
2017-08-21
The availability of the underwater wireless optical communication (UWOC) based on red (R), green (G) and blue (B) lights makes the realization of the RGB wavelength division multiplexing (WDM) UWOC system possible. By properly mixing RGB lights to form white light, the WDM UWOC system has prominent potentiality for simultaneous underwater illumination and high-speed communication. In this work, for the first time, we experimentally demonstrate a 9.51-Gb/s WDM UWOC system using a red-emitting laser diode (LD), a single-mode pigtailed green-emitting LD and a multi-mode pigtailed blue-emitting LD. By employing 32-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) modulation in the demonstration, the red-light, the green-light and the blue-light LDs successfully transmit signals with the data rates of 4.17 Gb/s, 4.17 Gb/s and 1.17 Gb/s, respectively, over a 10-m underwater channel. The corresponding bit error rates (BERs) are 2.2 × 10 -3 , 2.0 × 10 -3 and 2.3 × 10 -3 , respectively, which are below the forward error correction (FEC) threshold of 3.8 × 10 -3 .
Chen, Ming; He, Jing; Tang, Jin; Wu, Xian; Chen, Lin
2014-07-28
In this paper, a FPGAs-based real-time adaptively modulated 256/64/16QAM-encoded base-band OFDM transceiver with a high spectral efficiency up to 5.76bit/s/Hz is successfully developed, and experimentally demonstrated in a simple intensity-modulated direct-detection optical communication system. Experimental results show that it is feasible to transmit a raw signal bit rate of 7.19Gbps adaptively modulated real-time optical OFDM signal over 20km and 50km single mode fibers (SMFs). The performance comparison between real-time and off-line digital signal processing is performed, and the results show that there is a negligible power penalty. In addition, to obtain the best transmission performance, direct-current (DC) bias voltage for MZM and launch power into optical fiber links are explored in the real-time optical OFDM systems.
A time and frequency synchronization method for CO-OFDM based on CMA equalizers
NASA Astrophysics Data System (ADS)
Ren, Kaixuan; Li, Xiang; Huang, Tianye; Cheng, Zhuo; Chen, Bingwei; Wu, Xu; Fu, Songnian; Ping, Perry Shum
2018-06-01
In this paper, an efficient time and frequency synchronization method based on a new training symbol structure is proposed for polarization division multiplexing (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The coarse timing synchronization is achieved by exploiting the correlation property of the first training symbol, and the fine timing synchronization is accomplished by using the time-domain symmetric conjugate of the second training symbol. Furthermore, based on these training symbols, a constant modulus algorithm (CMA) is proposed for carrier frequency offset (CFO) estimation. Theoretical analysis and simulation results indicate that the algorithm has the advantages of robustness to poor optical signal-to-noise ratio (OSNR) and chromatic dispersion (CD). The frequency offset estimation range can achieve [ -Nsc/2 ΔfN , + Nsc/2 ΔfN ] GHz with the mean normalized estimation error below 12 × 10-3 even under the condition of OSNR as low as 10 dB.
Distributed polar-coded OFDM based on Plotkin's construction for half duplex wireless communication
NASA Astrophysics Data System (ADS)
Umar, Rahim; Yang, Fengfan; Mughal, Shoaib; Xu, HongJun
2018-07-01
A Plotkin-based polar-coded orthogonal frequency division multiplexing (P-PC-OFDM) scheme is proposed and its bit error rate (BER) performance over additive white gaussian noise (AWGN), frequency selective Rayleigh, Rician and Nakagami-m fading channels has been evaluated. The considered Plotkin's construction possesses a parallel split in its structure, which motivated us to extend the proposed P-PC-OFDM scheme in a coded cooperative scenario. As the relay's effective collaboration has always been pivotal in the design of cooperative communication therefore, an efficient selection criterion for choosing the information bits has been inculcated at the relay node. To assess the BER performance of the proposed cooperative scheme, we have also upgraded conventional polar-coded cooperative scheme in the context of OFDM as an appropriate bench marker. The Monte Carlo simulated results revealed that the proposed Plotkin-based polar-coded cooperative OFDM scheme convincingly outperforms the conventional polar-coded cooperative OFDM scheme by 0.5 0.6 dBs over AWGN channel. This prominent gain in BER performance is made possible due to the bit-selection criteria and the joint successive cancellation decoding adopted at the relay and the destination nodes, respectively. Furthermore, the proposed coded cooperative schemes outperform their corresponding non-cooperative schemes by a gain of 1 dB under an identical condition.
PAPR-Constrained Pareto-Optimal Waveform Design for OFDM-STAP Radar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Satyabrata
We propose a peak-to-average power ratio (PAPR) constrained Pareto-optimal waveform design approach for an orthogonal frequency division multiplexing (OFDM) radar signal to detect a target using the space-time adaptive processing (STAP) technique. The use of an OFDM signal does not only increase the frequency diversity of our system, but also enables us to adaptively design the OFDM coefficients in order to further improve the system performance. First, we develop a parametric OFDM-STAP measurement model by considering the effects of signaldependent clutter and colored noise. Then, we observe that the resulting STAP-performance can be improved by maximizing the output signal-to-interference-plus-noise ratiomore » (SINR) with respect to the signal parameters. However, in practical scenarios, the computation of output SINR depends on the estimated values of the spatial and temporal frequencies and target scattering responses. Therefore, we formulate a PAPR-constrained multi-objective optimization (MOO) problem to design the OFDM spectral parameters by simultaneously optimizing four objective functions: maximizing the output SINR, minimizing two separate Cramer-Rao bounds (CRBs) on the normalized spatial and temporal frequencies, and minimizing the trace of CRB matrix on the target scattering coefficients estimations. We present several numerical examples to demonstrate the achieved performance improvement due to the adaptive waveform design.« less
A joint swarm intelligence algorithm for multi-user detection in MIMO-OFDM system
NASA Astrophysics Data System (ADS)
Hu, Fengye; Du, Dakun; Zhang, Peng; Wang, Zhijun
2014-11-01
In the multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) system, traditional multi-user detection (MUD) algorithms that usually used to suppress multiple access interference are difficult to balance system detection performance and the complexity of the algorithm. To solve this problem, this paper proposes a joint swarm intelligence algorithm called Ant Colony and Particle Swarm Optimisation (AC-PSO) by integrating particle swarm optimisation (PSO) and ant colony optimisation (ACO) algorithms. According to simulation results, it has been shown that, with low computational complexity, the MUD for the MIMO-OFDM system based on AC-PSO algorithm gains comparable MUD performance with maximum likelihood algorithm. Thus, the proposed AC-PSO algorithm provides a satisfactory trade-off between computational complexity and detection performance.
PAPR reduction in CO-OFDM systems using IPTS and modified clipping and filtering
NASA Astrophysics Data System (ADS)
Tong, Zheng-rong; Hu, Ya-nong; Zhang, Wei-hua
2018-05-01
Aiming at the problem of the peak to average power ratio ( PAPR) in coherent optical orthogonal frequency division multiplexing (CO-OFDM), a hybrid PAPR reduction technique of the CO-OFDM system by combining iterative partial transmit sequence (IPTS) scheme with modified clipping and filtering (MCF) is proposed. The simulation results show that at the complementary cumulative distribution function ( CCDF) of 10-4, the PAPR of proposed scheme is optimized by 1.86 dB and 2.13 dB compared with those of IPTS and CF schemes, respectively. Meanwhile, when the bit error rate ( BER) is 10-3, the optical signal to noise ratio ( OSNR) are optimized by 1.57 dB and 0.66 dB compared with those of CF and IPTS-CF schemes, respectively.
NASA Astrophysics Data System (ADS)
Fan, Tong-liang; Wen, Yu-cang; Kadri, Chaibou
Orthogonal frequency-division multiplexing (OFDM) is robust against frequency selective fading because of the increase of the symbol duration. However, the time-varying nature of the channel causes inter-carrier interference (ICI) which destroys the orthogonal of sub-carriers and degrades the system performance severely. To alleviate the detrimental effect of ICI, there is a need for ICI mitigation within one OFDM symbol. We propose an iterative Inter-Carrier Interference (ICI) estimation and cancellation technique for OFDM systems based on regularized constrained total least squares. In the proposed scheme, ICI aren't treated as additional additive white Gaussian noise (AWGN). The effect of Inter-Carrier Interference (ICI) and inter-symbol interference (ISI) on channel estimation is regarded as perturbation of channel. We propose a novel algorithm for channel estimation o based on regularized constrained total least squares. Computer simulations show that significant improvement can be obtained by the proposed scheme in fast fading channels.
Mousa-Pasandi, Mohammad E; Zhuge, Qunbi; Xu, Xian; Osman, Mohamed M; El-Sahn, Ziad A; Chagnon, Mathieu; Plant, David V
2012-07-02
We experimentally investigate the performance of a low-complexity non-iterative phase noise induced inter-carrier interference (ICI) compensation algorithm in reduced-guard-interval dual-polarization coherent-optical orthogonal-frequency-division-multiplexing (RGI-DP-CO-OFDM) transport systems. This interpolation-based ICI compensator estimates the time-domain phase noise samples by a linear interpolation between the CPE estimates of the consecutive OFDM symbols. We experimentally study the performance of this scheme for a 28 Gbaud QPSK RGI-DP-CO-OFDM employing a low cost distributed feedback (DFB) laser. Experimental results using a DFB laser with the linewidth of 2.6 MHz demonstrate 24% and 13% improvement in transmission reach with respect to the conventional equalizer (CE) in presence of weak and strong dispersion-enhanced-phase-noise (DEPN), respectively. A brief analysis of the computational complexity of this scheme in terms of the number of required complex multiplications is provided. This practical approach does not suffer from error propagation while enjoying low computational complexity.
NASA Astrophysics Data System (ADS)
He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin
2015-09-01
In this paper, a Golay complementary training sequence (TS)-based symbol synchronization scheme is proposed and experimentally demonstrated in multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system with a variable rate low-density parity-check (LDPC) code. Meanwhile, the coding gain and spectral efficiency in the variable rate LDPC-coded MB-OFDM UWBoF system are investigated. By utilizing the non-periodic auto-correlation property of the Golay complementary pair, the start point of LDPC-coded MB-OFDM UWB signal can be estimated accurately. After 100 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1×10-3, the experimental results show that the short block length 64QAM-LDPC coding provides a coding gain of 4.5 dB, 3.8 dB and 2.9 dB for a code rate of 62.5%, 75% and 87.5%, respectively.
NASA Astrophysics Data System (ADS)
Li, Changping; Yi, Ying; Lee, Kyujin; Lee, Kyesan
2014-08-01
Visible light communication (VLC) applied in an intelligent transportation system (ITS) has attracted growing attentions, but it also faces challenges, for example deep path loss and optical multi-path dispersion. In this work, we modelled an actual outdoor optical channel as a Rician channel and further proposed space-time block coding (STBC) orthogonal frequency-division multiplexing (OFDM) technology to reduce the influence of severe optical multi-path dispersion associated with such a mock channel for achieving the effective BER of 10-6 even at a low signal-to-noise ratio (SNR). In this case, the optical signals transmission distance can be extended as long as possible. Through the simulation results of STBC-OFDM and single-input-single-output (SISO) counterparts in bit error rate (BER) performance comparison, we can distinctly observe that the VLC-ITS system using STBC-OFDM technique can obtain a strongly improved BER performance due to multi-path dispersion alleviation.
NASA Astrophysics Data System (ADS)
Mohammed, H. A.; Sibley, M. J. N.; Mather, P. J.
2012-05-01
The merging of Orthogonal Frequency Division Multiplexing (OFDM) with Multiple-input multiple-output (MIMO) is a promising mobile air interface solution for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. This paper details the design of a highly robust and efficient OFDM-MIMO system to support permanent accessibility and higher data rates to users moving at high speeds, such as users travelling on trains. It has high relevance for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. The paper begins with a comprehensive literature review focused on both technologies. This is followed by the modelling of the OFDM-MIMO physical layer based on Simulink/Matlab that takes into consideration high vehicular mobility. Then the entire system is simulated and analysed under different encoding and channel estimation algorithms. The use of High Altitude Platform system (HAPs) technology is considered and analysed.
CFO compensation method using optical feedback path for coherent optical OFDM system
NASA Astrophysics Data System (ADS)
Moon, Sang-Rok; Hwang, In-Ki; Kang, Hun-Sik; Chang, Sun Hyok; Lee, Seung-Woo; Lee, Joon Ki
2017-07-01
We investigate feasibility of carrier frequency offset (CFO) compensation method using optical feedback path for coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. Recently proposed CFO compensation algorithms provide wide CFO estimation range in electrical domain. However, their practical compensation range is limited by sampling rate of an analog-to-digital converter (ADC). This limitation has not drawn attention, since the ADC sampling rate was high enough comparing to the data bandwidth and CFO in the wireless OFDM system. For CO-OFDM, the limitation is becoming visible because of increased data bandwidth, laser instability (i.e. large CFO) and insufficient ADC sampling rate owing to high cost. To solve the problem and extend practical CFO compensation range, we propose a CFO compensation method having optical feedback path. By adding simple wavelength control for local oscillator, the practical CFO compensation range can be extended to the sampling frequency range. The feasibility of the proposed method is experimentally investigated.
Mousa-Pasandi, Mohammad E; Plant, David V
2010-09-27
We report and investigate the feasibility of zero-overhead laser phase noise compensation (PNC) for long-haul coherent optical orthogonal frequency division multiplexing (CO-OFDM) transmission systems, using the decision-directed phase equalizer (DDPE). DDPE updates the equalization parameters on a symbol-by-symbol basis after an initial decision making stage and retrieves an estimation of the phase noise value by extracting and averaging the phase drift of all OFDM sub-channels. Subsequently, a second equalization is performed by using the estimated phase noise value which is followed by a final decision making stage. We numerically compare the performance of DDPE and the CO-OFDM conventional equalizer (CE) for different laser linewidth values after transmission over 2000 km of uncompensated single-mode fiber (SMF) at 40 Gb/s and investigate the effect of fiber nonlinearity and amplified spontaneous emission (ASE) noise on the received signal quality. Furthermore, we analytically analyze the complexity of DDPE versus CE in terms of the number of required complex multiplications per bit.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Yang, Heming; Zhao, Difu; Qiu, Kun
2016-07-01
We introduce digital coherent superposition (DCS) into optical access network and propose a DCS-OFDM-PON upstream transmission scheme using intensity modulator and collective self-coherent detection. The generated OFDM signal is real based on Hermitian symmetry, which can be used to estimate the common phase error (CPE) by complex conjugate subcarrier pairs without any pilots. In simulation, we transmit an aggregated 40 Gb/s optical OFDM signal from two ONUs. The transmission performance with DCS is slightly better after 25 km transmission without relative transmission time delay. The fiber distance for different ONUs to RN are not same in general and there is relative transmission time delay between ONUs, which causes inter-carrier-interference (ICI) power increasing and degrades the transmission performance. The DCS can mitigate the ICI power and the DCS-OFDM-PON upstream transmission outperforms the conventional OFDM-PON. The CPE estimation is by using two pairs of complex conjugate subcarriers without redundancy. The power variation can be 9 dB in DCS-OFDM-PON, which is enough to tolerate several kilometers fiber length difference between the ONUs.
Digital chaos-masked optical encryption scheme enhanced by two-dimensional key space
NASA Astrophysics Data System (ADS)
Liu, Ling; Xiao, Shilin; Zhang, Lu; Bi, Meihua; Zhang, Yunhao; Fang, Jiafei; Hu, Weisheng
2017-09-01
A digital chaos-masked optical encryption scheme is proposed and demonstrated. The transmitted signal is completely masked by interference chaotic noise in both bandwidth and amplitude with analog method via dual-drive Mach-Zehnder modulator (DDMZM), making the encrypted signal analog, noise-like and unrecoverable by post-processing techniques. The decryption process requires precise matches of both the amplitude and phase between the cancellation and interference chaotic noises, which provide a large two-dimensional key space with the help of optical interference cancellation technology. For 10-Gb/s 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) signal over the maximum transmission distance of 80 km without dispersion compensation or inline amplifier, the tolerable mismatch ranges of amplitude and phase/delay at the forward error correction (FEC) threshold of 3.8×10-3 are 0.44 dB and 0.08 ns respectively.
High-speed phosphor-LED wireless communication system utilizing no blue filter
NASA Astrophysics Data System (ADS)
Yeh, C. H.; Chow, C. W.; Chen, H. Y.; Chen, J.; Liu, Y. L.; Wu, Y. F.
2014-09-01
In this paper, we propose and investigate an adaptively 84.44 to 190 Mb/s phosphor-LED visible light communication (VLC) system at a practical transmission distance. Here, we utilize the orthogonal-frequency-division-multiplexing quadrature-amplitude-modulation (OFDM-QAM) modulation with power/bit-loading algorithm in proposed VLC system. In the experiment, the optimal analogy pre-equalization design is also performed at LED-Tx side and no blue filter is used at the Rx side for extending the modulation bandwidth from 1 MHz to 30 MHz. In addition, the corresponding free space transmission lengths are between 75 cm and 2 m under various data rates of proposed VLC. And the measured bit error rates (BERs) of < 3.8×10-3 [forward error correction (FEC) limit] at different transmission lengths and measured data rates can be also obtained. Finally, we believe that our proposed scheme could be another alternative VLC implementation in practical distance, supporting < 100 Mb/s, using commercially available LED and PD (without optical blue filtering) and compact size.
Coherent optical OFDM: theory and design.
Shieh, W; Bao, H; Tang, Y
2008-01-21
Coherent optical OFDM (CO-OFDM) has recently been proposed and the proof-of-concept transmission experiments have shown its extreme robustness against chromatic dispersion and polarization mode dispersion. In this paper, we first review the theoretical fundamentals for CO-OFDM and its channel model in a 2x2 MIMO-OFDM representation. We then present various design choices for CO-OFDM systems and perform the nonlinearity analysis for RF-to-optical up-converter. We also show the receiver-based digital signal processing to mitigate self-phase-modulation (SPM) and Gordon-Mollenauer phase noise, which is equivalent to the midspan phase conjugation.
A hybrid CATV/16-QAM-OFDM visible laser light communication system
NASA Astrophysics Data System (ADS)
Lin, Chun-Yu; Li, Chung-Yi; Lu, Hai-Han; Chen, Chia-Yi; Jhang, Tai-Wei; Ruan, Sheng-Siang; Wu, Kuan-Hung
2014-10-01
A visible laser light communication (VLLC) system employing a vertical cavity surface emitting laser and spatial light modulator with hybrid CATV/16-QAM-OFDM modulating signals over a 5 m free-space link is proposed and demonstrated. With the assistance of a push-pull scheme, low-noise amplifier, and equalizer, good performances of composite second-order and composite triple beat are obtained, accompanied by an acceptable carrier-to-noise ratio performance for a CATV signal, and a low bit error rate value and clear constellation map are achieved for a 16-QAM-OFDM signal. Such a hybrid CATV/16-QAM-OFDM VLLC system would be attractive for providing services including CATV, Internet and telecommunication services.
FBMC receiver for multi-user asynchronous transmission on fragmented spectrum
NASA Astrophysics Data System (ADS)
Doré, Jean-Baptiste; Berg, Vincent; Cassiau, Nicolas; Kténas, Dimitri
2014-12-01
Relaxed synchronization and access to fragmented spectrum are considered for future generations of wireless networks. Frequency division multiple access for filter bank multicarrier (FBMC) modulation provides promising performance without strict synchronization requirements contrary to conventional orthogonal frequency division multiplexing (OFDM). The architecture of a FBMC receiver suitable for this scenario is considered. Carrier frequency offset (CFO) compensation is combined with intercarrier interference (ICI) cancellation and performs well under very large frequency offsets. Channel estimation and interpolation had to be adapted and proved effective even for heavily fragmented spectrum usage. Channel equalization can sustain large delay spread. Because all the receiver baseband signal processing functionalities are proposed in the frequency domain, the overall architecture is suitable for multiuser asynchronous transmission on fragmented spectrum.
Kang, Taehyuk; Song, H C; Hodgkiss, W S; Soo Kim, Jea
2010-12-01
Long-range orthogonal frequency division multiplexing (OFDM) acoustic communications is demonstrated using data from the Kauai Acomms MURI 2008 (KAM08) experiment carried out in about 106 m deep shallow water west of Kauai, HI, in June 2008. The source bandwidth was 8 kHz (12-20 kHz), and the data were received by a 16-element vertical array at a distance of 8 km. Iterative sparse channel estimation is applied in conjunction with low-density parity-check decoding. In addition, the impact of diversity combining in a highly inhomogeneous underwater environment is investigated. Error-free transmission using 16-quadtrative amplitude modulation is achieved at a data rate of 10 kb/s.
Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber.
Al Amin, Abdullah; Li, An; Chen, Simin; Chen, Xi; Gao, Guanjun; Shieh, William
2011-08-15
We report successful transmission of dual-LP(11) mode (LP(11a) and LP(11b)), dual polarization coherent optical orthogonal frequency-division multiplexing (CO-OFDM) signals over two-mode fibers (TMF) using all-fiber mode converters. Mode converters based on mechanically induced long-period grating with better than 20 dB extinction ratios are realized and used for interfacing single-mode fiber transmitter and receivers to the TMF. We demonstrate that by using 4×4 MIMO-OFDM processing, the random coupling of the two LP(11) spatial modes can be successfully tracked and equalized with a one-tap frequency-domain equalizer. We achieve successful transmission of 35.3 Gb/s over 26-km two-mode fiber with less than 3 dB penalty. © 2011 Optical Society of America
Optical ranging and communication method based on all-phase FFT
NASA Astrophysics Data System (ADS)
Li, Zening; Chen, Gang
2014-10-01
This paper describes an optical ranging and communication method based on all-phase fast fourier transform (FFT). This kind of system is mainly designed for vehicle safety application. Particularly, the phase shift of the reflecting orthogonal frequency division multiplexing (OFDM) symbol is measured to determine the signal time of flight. Then the distance is calculated according to the time of flight. Several key factors affecting the phase measurement accuracy are studied. The all-phase FFT, which can reduce the effects of frequency offset, phase noise and the inter-carrier interference (ICI), is applied to measure the OFDM symbol phase shift.
Augmenting the spectral efficiency of enhanced PAM-DMT-based optical wireless communications.
Islim, Mohamed Sufyan; Haas, Harald
2016-05-30
The energy efficiency of pulse-amplitude-modulated discrete multitone modulation (PAM-DMT) decreases as the modulation order of M-PAM modulation increases. Enhanced PAM-DMT (ePAM-DMT) was proposed as a solution to the reduced energy efficiency of PAM-DMT. This was achieved by allowing multiple streams of PAM-DMT to be superimposed and successively demodulated at the receiver side. In order to maintain a distortion-free unipolar ePAM-DMT system, the multiple time-domain PAM-DMT streams are required to be aligned. However, aligning the antisymmetry in ePAM-DMT is complex and results in efficiency losses. In this paper, a novel simplified method to apply the superposition modulation on M-PAM modulated discrete multitone (DMT) is introduced. Contrary to ePAM-DMT, the signal generation of the proposed system, termed augmented spectral efficiency discrete multitone (ASE-DMT), occurs in the frequency domain. This results in an improved spectral and energy efficiency. The analytical bit error rate (BER) performance bound of the proposed system is derived and compared with Monte-Carlo simulations. The system performance is shown to offer significant electrical and optical energy savings compared with ePAM-DMT and DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM).
NASA Astrophysics Data System (ADS)
Wang, Hongyan
2017-04-01
This paper addresses the waveform optimization problem for improving the detection performance of multi-input multioutput (MIMO) orthogonal frequency division multiplexing (OFDM) radar-based space-time adaptive processing (STAP) in the complex environment. By maximizing the output signal-to-interference-and-noise-ratio (SINR) criterion, the waveform optimization problem for improving the detection performance of STAP, which is subjected to the constant modulus constraint, is derived. To tackle the resultant nonlinear and complicated optimization issue, a diagonal loading-based method is proposed to reformulate the issue as a semidefinite programming one; thereby, this problem can be solved very efficiently. In what follows, the optimized waveform can be obtained to maximize the output SINR of MIMO-OFDM such that the detection performance of STAP can be improved. The simulation results show that the proposed method can improve the output SINR detection performance considerably as compared with that of uncorrelated waveforms and the existing MIMO-based STAP method.
A polarization-division multiplexing SSB-OFDM system with beat interference cancellation receivers
NASA Astrophysics Data System (ADS)
Yang, Peiling; Ma, Jianxin; Zhang, Junyi
2018-06-01
In this paper, we have proposed a polarization-division multiplexing (PDM) single-sideband optical orthogonal frequency division multiplexing (SSB-OOFDM) scheme with signal-signal beat interference cancellation receivers with balanced detection (ICRBD). This system can double channel capacity and improve spectrum efficiency (SE) with the reduced guard band (GB) due to the PDM. Multiple input multiple output (MIMO) technique is used to solve polarization mode dispersion (PMD) associated with channel estimation and equalization. By simulation, we demonstrate the efficacy of the proposed technique for a 2 ×40 Gbit/s 16-QAM SSB-PDM-OOFDM system according to the error vector magnitude (EVM) and the constellation diagrams.
Demodulation Algorithms for the Ofdm Signals in the Time- and Frequency-Scattering Channels
NASA Astrophysics Data System (ADS)
Bochkov, G. N.; Gorokhov, K. V.; Kolobkov, A. V.
2016-06-01
We consider a method based on the generalized maximum-likelihood rule for solving the problem of reception of the signals with orthogonal frequency division multiplexing of their harmonic components (OFDM signals) in the time- and frequency-scattering channels. The coherent and incoherent demodulators effectively using the time scattering due to the fast fading of the signal are developed. Using computer simulation, we performed comparative analysis of the proposed algorithms and well-known signal-reception algorithms with equalizers. The proposed symbolby-symbol detector with decision feedback and restriction of the number of searched variants is shown to have the best bit-error-rate performance. It is shown that under conditions of the limited accuracy of estimating the communication-channel parameters, the incoherent OFDMsignal detectors with differential phase-shift keying can ensure a better bit-error-rate performance compared with the coherent OFDM-signal detectors with absolute phase-shift keying.
Quantification of MDL-induced signal degradation in MIMO-OFDM mode-division multiplexing systems.
Tian, Yu; Li, Juhao; Zhu, Paikun; Wu, Zhongying; Chen, Yuanxiang; He, Yongqi; Chen, Zhangyuan
2016-08-22
Mode-division multiplexing (MDM) transmission over few-mode optical fiber has emerged as a promising technology to enhance transmission capacity, in which multiple-input-multiple-output (MIMO) digital signal processing (DSP) after coherent detection is used to demultiplex the signals. Compared with conventional single-mode systems, MIMO-MDM systems suffer non-recoverable signal degradation induced by mode-dependent loss (MDL). In this paper, the MDL-induced signal degradation in orthogonal-frequency-division-multiplexing (OFDM) MDM systems is theoretically quantified in terms of mode-average error vector magnitude (EVM) through frequency domain norm analysis. A novel scalar MDL metric is proposed considering the probability distribution of the practical MDM input signals, and a closed-form expression for EVM measured after zero-force (ZF) MIMO equalization is derived. Simulation results show that the EVM estimations utilizing the novel MDL metric remain unbiased for unrepeated links. For a 6 × 100 km 20-mode MDM transmission system, the estimation accuracy is improved by more than 90% compared with that utilizing traditional condition number (CN) based MDL metric. The proposed MDL metric can be used to predict the MDL-induced SNR penalty in a theoretical manner, which will be beneficial for the design of practical MIMO-MDM systems.
André, Nuno Sequeira; Louchet, Hadrien; Filsinger, Volker; Hansen, Erik; Richter, André
2016-05-30
We compare OFDM and PAM for 400G Ethernet based on a 3-bit high baudrate IM/DD interface at 1550nm. We demonstrate 27Gb/s and 32Gb/s transmission over 10km SSMF using OFDM and PAM respectively. We show that capacity can be improved through adaptation/equalization to achieve 42Gb/s and 64Gb/s for OFDM and PAM respectively. Experimental results are used to create realistic simulations to extrapolate the performance of both modulation formats under varied conditions. For the considered interface we found that PAM has the best performance, OFDM is impaired by quantization noise. When the resolution limitation is relaxed, OFDM shows better performance.
An ICA based MIMO-OFDM VLC scheme
NASA Astrophysics Data System (ADS)
Jiang, Fangqing; Deng, Honggui; Xiao, Wei; Tao, Shaohua; Zhu, Kaicheng
2015-07-01
In this paper, we propose a novel ICA based MIMO-OFDM VLC scheme, where ICA is applied to convert the MIMO-OFDM channel into several SISO-OFDM channels to reduce computational complexity in channel estimation, without any spectral overhead. Besides, the FM is first investigated to further modulate the OFDM symbols to eliminate the correlation of the signals, so as to improve the separation performance of the ICA algorithm. In the 4×4MIMO-OFDM VLC simulation experiment, LOS path and NLOS paths are both considered, each transmitting signal at 100 Mb/s. Simulation results show that the BER of the proposed scheme reaches the 10-5 level at SNR=20 dB, which is a large improvement compared to the traditional schemes.
MIMO-OFDM WDM PON with DM-VCSEL for femtocells application.
Othman, M B; Deng, Lei; Pang, Xiaodan; Caminos, J; Kozuch, W; Prince, K; Yu, Xianbin; Jensen, Jesper Bevensee; Monroy, I Tafur
2011-12-12
We report on experimental demonstration of 2x2 MIMO-OFDM 5.6-GHz radio over fiber signaling over 20 km WDM-PON with directly modulated (DM) VCSELs for femtocells application. MIMO-OFDM algorithms effectively compensate for impairments in the wireless link. Error-free signal demodulation of 64 subcarrier 4-QAM signals modulated at 198.5 Mb/s net data rate is achieved after fiber and 2 m indoor wireless transmission. We report BER of 7x10(-3) at the receiver for 16-QAM signals modulated at 397 Mb/s after 1 m of wireless transmission. Performance dependence on different wireless transmission path lengths, antenna separation, and number of subcarriers have been investigated. © 2011 Optical Society of America
Kumaravel, Rasadurai; Narayanaswamy, Kumaratharan
2015-01-01
Multi carrier code division multiple access (MC-CDMA) system is a promising multi carrier modulation (MCM) technique for high data rate wireless communication over frequency selective fading channels. MC-CDMA system is a combination of code division multiple access (CDMA) and orthogonal frequency division multiplexing (OFDM). The OFDM parts reduce multipath fading and inter symbol interference (ISI) and the CDMA part increases spectrum utilization. Advantages of this technique are its robustness in case of multipath propagation and improve security with the minimize ISI. Nevertheless, due to the loss of orthogonality at the receiver in a mobile environment, the multiple access interference (MAI) appears. The MAI is one of the factors that degrade the bit error rate (BER) performance of MC-CDMA system. The multiuser detection (MUD) and turbo coding are the two dominant techniques for enhancing the performance of the MC-CDMA systems in terms of BER as a solution of overcome to MAI effects. In this paper a low complexity iterative soft sensitive bits algorithm (SBA) aided logarithmic-Maximum a-Posteriori algorithm (Log MAP) based turbo MUD is proposed. Simulation results show that the proposed method provides better BER performance with low complexity decoding, by mitigating the detrimental effects of MAI. PMID:25714917
NASA Astrophysics Data System (ADS)
Taoka, Hidekazu; Kishiyama, Yoshihisa; Higuchi, Kenichi; Sawahashi, Mamoru
This paper presents comparisons between common and dedicated reference signals (RSs) for channel estimation in MIMO multiplexing using codebook-based precoding for orthogonal frequency division multiplexing (OFDM) radio access in the Evolved UTRA downlink with frequency division duplexing (FDD). We clarify the best RS structure for precoding-based MIMO multiplexing based on comparisons of the structures in terms of the achievable throughput taking into account the overhead of the common and dedicated RSs and the precoding matrix indication (PMI) signal. Based on extensive simulations on the throughput in 2-by-2 and 4-by-4 MIMO multiplexing with precoding, we clarify that channel estimation based on common RSs multiplied with the precoding matrix indicated by the PMI signal achieves higher throughput compared to that using dedicated RSs irrespective of the number of spatial multiplexing streams when the number of available precoding matrices, i.e., the codebook size, is less than approximately 16 and 32 for 2-by-2 and 4-by-4 MIMO multiplexing, respectively.
Kim, Byung Gon; Bae, Sung Hyun; Kim, Hoon; Chung, Yun C
2017-05-29
We propose and demonstrate a simple composite second-order (CSO) cancellation technique based on the digital signal processing (DSP) for the radio-over-fiber (RoF) transmission system implemented by using directly modulated lasers (DMLs). When the RoF transmission system is implemented by using DMLs, its performance could be limited by the CSO distortions caused by the interplay between the DML's chirp and fiber's chromatic dispersion. We present the theoretical analysis of these nonlinear distortions and show that they can be suppressed at the receiver by using a simple DSP. To verify the effectiveness of the proposed technique, we demonstrate the transmission of twenty-four 100-MHz filtered orthogonal frequency-division multiplexing (f-OFDM) signals in 64 quadrature amplitude modulation (QAM) format over 20 km of the standard single-mode fiber (SSMF). The results show that, by using the proposed technique, we can suppress the CSO distortion components by >10 dB and achieve the error-vector magnitude performance better than 6% even after the 20-km long SSMF transmission.
Adaptive OFDM Waveform Design for Spatio-Temporal-Sparsity Exploited STAP Radar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Satyabrata
In this chapter, we describe a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly moving target using an orthogonal frequency division multiplexing (OFDM) radar. The motivation of employing an OFDM signal is that it improves the target-detectability from the interfering signals by increasing the frequency diversity of the system. However, due to the addition of one extra dimension in terms of frequency, the adaptive degrees-of-freedom in an OFDM-STAP also increases. Therefore, to avoid the construction a fully adaptive OFDM-STAP, we develop a sparsity-based STAP algorithm. We observe that the interference spectrum is inherently sparse in the spatio-temporal domain,more » as the clutter responses occupy only a diagonal ridge on the spatio-temporal plane and the jammer signals interfere only from a few spatial directions. Hence, we exploit that sparsity to develop an efficient STAP technique that utilizes considerably lesser number of secondary data compared to the other existing STAP techniques, and produces nearly optimum STAP performance. In addition to designing the STAP filter, we optimally design the transmit OFDM signals by maximizing the output signal-to-interference-plus-noise ratio (SINR) in order to improve the STAP performance. The computation of output SINR depends on the estimated value of the interference covariance matrix, which we obtain by applying the sparse recovery algorithm. Therefore, we analytically assess the effects of the synthesized OFDM coefficients on the sparse recovery of the interference covariance matrix by computing the coherence measure of the sparse measurement matrix. Our numerical examples demonstrate the achieved STAP-performance due to sparsity-based technique and adaptive waveform design.« less
Low-cost coherent receiver for long-reach optical access network using single-ended detection.
Zhang, Xuebing; Li, Zhaohui; Li, Jianping; Yu, Changyuan; Lau, Alan Pak Tao; Lu, Chao
2014-09-15
A low-cost coherent receiver using two 2×3 optical hybrids and single-ended detection is proposed for long-reach optical access network. This structure can detect the two polarization components of polarization division multiplexing (PDM) signals. Polarization de-multiplexing and signal-to-signal beat interference (SSBI) cancellation are realized by using only three photodiodes. Simulation results for 40 Gb/s PDM-OFDM transmissions indicate that the low-cost coherent receiver has 3.2 dB optical signal-to-noise ratio difference compared with the theoretical value.
2015-03-01
62 5.13 Probabilty of correct SC modulation detection for 95 OFDM bursts using sixth order cumulants during interference techniques...0.9 1 Tx Node RF Gain P c m o d u la ti o n Figure 5.13: Probabilty of correct SC modulation detection for 95 OFDM bursts using sixth order
Channel Acquisition for Massive MIMO-OFDM With Adjustable Phase Shift Pilots
NASA Astrophysics Data System (ADS)
You, Li; Gao, Xiqi; Swindlehurst, A. Lee; Zhong, Wen
2016-03-01
We propose adjustable phase shift pilots (APSPs) for channel acquisition in wideband massive multiple-input multiple-output (MIMO) systems employing orthogonal frequency division multiplexing (OFDM) to reduce the pilot overhead. Based on a physically motivated channel model, we first establish a relationship between channel space-frequency correlations and the channel power angle-delay spectrum in the massive antenna array regime, which reveals the channel sparsity in massive MIMO-OFDM. With this channel model, we then investigate channel acquisition, including channel estimation and channel prediction, for massive MIMO-OFDM with APSPs. We show that channel acquisition performance in terms of sum mean square error can be minimized if the user terminals' channel power distributions in the angle-delay domain can be made non-overlapping with proper phase shift scheduling. A simplified pilot phase shift scheduling algorithm is developed based on this optimal channel acquisition condition. The performance of APSPs is investigated for both one symbol and multiple symbol data models. Simulations demonstrate that the proposed APSP approach can provide substantial performance gains in terms of achievable spectral efficiency over the conventional phase shift orthogonal pilot approach in typical mobility scenarios.
Demi, Libertario; Viti, Jacopo; Kusters, Lieneke; Guidi, Francesco; Tortoli, Piero; Mischi, Massimo
2013-11-01
The speed of sound in the human body limits the achievable data acquisition rate of pulsed ultrasound scanners. To overcome this limitation, parallel beamforming techniques are used in ultrasound 2-D and 3-D imaging systems. Different parallel beamforming approaches have been proposed. They may be grouped into two major categories: parallel beamforming in reception and parallel beamforming in transmission. The first category is not optimal for harmonic imaging; the second category may be more easily applied to harmonic imaging. However, inter-beam interference represents an issue. To overcome these shortcomings and exploit the benefit of combining harmonic imaging and high data acquisition rate, a new approach has been recently presented which relies on orthogonal frequency division multiplexing (OFDM) to perform parallel beamforming in transmission. In this paper, parallel transmit beamforming using OFDM is implemented for the first time on an ultrasound scanner. An advanced open platform for ultrasound research is used to investigate the axial resolution and interbeam interference achievable with parallel transmit beamforming using OFDM. Both fundamental and second-harmonic imaging modalities have been considered. Results show that, for fundamental imaging, axial resolution in the order of 2 mm can be achieved in combination with interbeam interference in the order of -30 dB. For second-harmonic imaging, axial resolution in the order of 1 mm can be achieved in combination with interbeam interference in the order of -35 dB.
NASA Astrophysics Data System (ADS)
Sivadas, Namitha Arackal; Mohammed, Sameer Saheerudeen
2017-02-01
In non-contiguous orthogonal frequency division multiplexing (NC-OFDM)-based interweave cognitive radio networks, the sidelobe power of secondary users (SUs) must be strictly controlled to avoid the interference between the SUs and the primary users (PUs) of the adjacent bands. Similarly, the inherent issue of high peak-to-average power ratio (PAPR) of the OFDM signal is another drawback of the cognitive radio communication system based on the NC-OFDM technology. A few methods are available in the literature to solve either of these problems individually, while in this paper, we propose a new method for the joint minimisation of sidelobe power and PAPR in NC-OFDM-based cognitive radio networks using Zadoff-Chu (ZC) sequence. In this method, the sidelobe power suppression of SUs is benefited by PUs and the PAPR is reduced for SUs. We modelled a new optimisation problem for minimising the sidelobe power with a constraint on the maximum tolerable PAPR and sidelobe power. The proper selection of ZC sequence, which is crucial for minimising both the issues simultaneously, is achieved by solving the proposed optimisation problem. The proposed technique is shown to provide 7 dB and 20 dB reduction in PAPR and sidelobe power, respectively, without causing any signal distortion along with the improvement in bit error rate (BER) performance.
Kim, SangYun; Samadpoor Rikan, Behnam; Pu, YoungGun; Yoo, Sang-Sun; Lee, Minjae; Yang, Youngoo; Lee, Kang-Yoon
2018-01-01
In this paper, a high noise immunity, 28 × 16-channel finger touch sensing IC for an orthogonal frequency division multiplexing (OFDM) touch sensing scheme is presented. In order to increase the signal-to-noise ratio (SNR), the OFDM sensing scheme is proposed. The transmitter (TX) transmits the orthogonal signal to each channels of the panel. The receiver (RX) detects the magnitude of the orthogonal frequency to be transmitted from the TX. Due to the orthogonal characteristics, it is robust to narrowband interference and noise. Therefore, the SNR can be improved. In order to reduce the noise effect of low frequencies, a mixer and high-pass filter are proposed as well. After the noise is filtered, the touch SNR attained is 60 dB, from 20 dB before the noise is filtered. The advantage of the proposed OFDM sensing scheme is its ability to detect channels of the panel simultaneously with the use of multiple carriers. To satisfy the linearity of the signal in the OFDM system, a high-linearity mixer and a rail-to-rail amplifier in the TX driver are designed. The proposed design is implemented in 90 nm CMOS process. The SNR is approximately 60 dB. The area is 13.6 mm2, and the power consumption is 62.4 mW. PMID:29883435
Secure Image Transmission over DFT-precoded OFDM-VLC systems based on Chebyshev Chaos scrambling
NASA Astrophysics Data System (ADS)
Wang, Zhongpeng; Qiu, Weiwei
2017-08-01
This paper proposes a physical layer image secure transmission scheme for discrete Fourier transform (DFT) precoded OFDM-based visible light communication systems by using Chebyshev chaos maps. In the proposed scheme, 256 subcarriers and QPSK modulation are employed. The transmitted digital signal of the image is encrypted with a Chebyshev chaos sequence. The encrypted signal is then transformed by a DFT precoding matrix to reduce the PAPR of the OFDM signal. After that, the encrypted and DFT-precoded OFDM are transmitted over a VLC channel. The simulation results show that the proposed image security transmission scheme can not only protect the DFT-precoded OFDM-based VLC from eavesdroppers but also improve BER performance.
Dispersion and nonlinear effects in OFDM-RoF system
NASA Astrophysics Data System (ADS)
Alhasson, Bader H.; Bloul, Albe M.; Matin, M.
2010-08-01
The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.
Performance Investigation of FSO-OFDM Communication Systems under the Heavy Rain Weather
NASA Astrophysics Data System (ADS)
Rashidi, Florence; He, Jing; Chen, Lin
2017-12-01
The challenge in the free-space optical (FSO) communication is the propagation of optical signal through different atmospheric conditions such as rain, snow and fog. In this paper, an orthogonal frequency-division multiplexing technique (OFDM) is proposed in the FSO communication system. Meanwhile, considering the rain attenuation models based on Marshal & Palmer and Carbonneau models, the performance of FSO communication system based on the OFDM is evaluated under the heavy-rain condition in Changsha, China. The simulation results show that, under a heavy-rainfall condition of 106.18 mm/h, with an attenuation factor of 7 dB/km based on the Marshal & Palmer model, the bit rate of 2.5 and 4.0 Gbps data can be transmitted over the FSO channels of 1.6 and 1.3 km, respectively, and the bit error rate of less than 1E - 4 can be achieved. In addition, the effect on rain attenuation over the FSO communication system based on the Marshal & Palmer model is less than that of the Carbonneau model.
Forward and correctional OFDM-based visible light positioning
NASA Astrophysics Data System (ADS)
Li, Wei; Huang, Zhitong; Zhao, Runmei; He, Peixuan; Ji, Yuefeng
2017-09-01
Visible light positioning (VLP) has attracted much attention in both academic and industrial areas due to the extensive deployment of light-emitting diodes (LEDs) as next-generation green lighting. Generally, the coverage of a single LED lamp is limited, so LED arrays are always utilized to achieve uniform illumination within the large-scale indoor environment. However, in such dense LED deployment scenario, the superposition of the light signals becomes an important challenge for accurate VLP. To solve this problem, we propose a forward and correctional orthogonal frequency division multiplexing (OFDM)-based VLP (FCO-VLP) scheme with low complexity in generating and processing of signals. In the first forward procedure of FCO-VLP, an initial position is obtained by the trilateration method based on OFDM-subcarriers. The positioning accuracy will be further improved in the second correctional procedure based on the database of reference points. As demonstrated in our experiments, our approach yields an improved average positioning error of 4.65 cm and an enhanced positioning accuracy by 24.2% compared with trilateration method.
NASA Astrophysics Data System (ADS)
Ishihara, Koichi; Asai, Yusuke; Kudo, Riichi; Ichikawa, Takeo; Takatori, Yasushi; Mizoguchi, Masato
2013-12-01
Multiuser multiple-input multiple-output (MU-MIMO) has been proposed as a means to improve spectrum efficiency for various future wireless communication systems. This paper reports indoor experimental results obtained for a newly developed and implemented downlink (DL) MU-MIMO orthogonal frequency division multiplexing (OFDM) transceiver for gigabit wireless local area network systems in the microwave band. In the transceiver, the channel state information (CSI) is estimated at each user and fed back to an access point (AP) on a real-time basis. At the AP, the estimated CSI is used to calculate the transmit beamforming weight for DL MU-MIMO transmission. This paper also proposes a recursive inverse matrix computation scheme for computing the transmit weight in real time. Experiments with the developed transceiver demonstrate its feasibility in a number of indoor scenarios. The experimental results clarify that DL MU-MIMO-OFDM transmission can achieve a 972-Mbit/s transmission data rate with simple digital signal processing of single-antenna users in an indoor environment.
Orthogonal Chirp-Based Ultrasonic Positioning
Khyam, Mohammad Omar; Ge, Shuzhi Sam; Li, Xinde; Pickering, Mark
2017-01-01
This paper presents a chirp based ultrasonic positioning system (UPS) using orthogonal chirp waveforms. In the proposed method, multiple transmitters can simultaneously transmit chirp signals, as a result, it can efficiently utilize the entire available frequency spectrum. The fundamental idea behind the proposed multiple access scheme is to utilize the oversampling methodology of orthogonal frequency-division multiplexing (OFDM) modulation and orthogonality of the discrete frequency components of a chirp waveform. In addition, the proposed orthogonal chirp waveforms also have all the advantages of a classical chirp waveform. Firstly, the performance of the waveforms is investigated through correlation analysis and then, in an indoor environment, evaluated through simulations and experiments for ultrasonic (US) positioning. For an operational range of approximately 1000 mm, the positioning root-mean-square-errors (RMSEs) &90% error were 4.54 mm and 6.68 mm respectively. PMID:28448454
Orthogonal Chirp-Based Ultrasonic Positioning.
Khyam, Mohammad Omar; Ge, Shuzhi Sam; Li, Xinde; Pickering, Mark
2017-04-27
This paper presents a chirp based ultrasonic positioning system (UPS) using orthogonal chirp waveforms. In the proposed method, multiple transmitters can simultaneously transmit chirp signals, as a result, it can efficiently utilize the entire available frequency spectrum. The fundamental idea behind the proposed multiple access scheme is to utilize the oversampling methodology of orthogonal frequency-division multiplexing (OFDM) modulation and orthogonality of the discrete frequency components of a chirp waveform. In addition, the proposed orthogonal chirp waveforms also have all the advantages of a classical chirp waveform. Firstly, the performance of the waveforms is investigated through correlation analysis and then, in an indoor environment, evaluated through simulations and experiments for ultrasonic (US) positioning. For an operational range of approximately 1000 mm, the positioning root-mean-square-errors (RMSEs) &90% error were 4.54 mm and 6.68 mm respectively.
Experimental demonstration of spectrum-sliced elastic optical path network (SLICE).
Kozicki, Bartłomiej; Takara, Hidehiko; Tsukishima, Yukio; Yoshimatsu, Toshihide; Yonenaga, Kazushige; Jinno, Masahiko
2010-10-11
We describe experimental demonstration of spectrum-sliced elastic optical path network (SLICE) architecture. We employ optical orthogonal frequency-division multiplexing (OFDM) modulation format and bandwidth-variable optical cross-connects (OXC) to generate, transmit and receive optical paths with bandwidths of up to 1 Tb/s. We experimentally demonstrate elastic optical path setup and spectrally-efficient transmission of multiple channels with bit rates ranging from 40 to 140 Gb/s between six nodes of a mesh network. We show dynamic bandwidth scalability for optical paths with bit rates of 40 to 440 Gb/s. Moreover, we demonstrate multihop transmission of a 1 Tb/s optical path over 400 km of standard single-mode fiber (SMF). Finally, we investigate the filtering properties and the required guard band width for spectrally-efficient allocation of optical paths in SLICE.
Transmission analysis for OFDM signals over hybrid RF-optical high-throughput satellite.
Kolev, Dimitar R; Toyoshima, Morio
2018-02-19
In this paper, a theoretical investigation of the performance of a communication scenario where a geostationary-orbit satellite provides radio-frequency broadband access to the users through orthogonal-frequency-division multiplexing technology and has an optical feeder link is presented. The interface between the radio frequency and the optical parts is achieved by using radio-on-fiber technology for optical-electro and electro-optical conversion onboard and no further signal processing is required. The proposed scheme has significant potential, but presents limitations related to the noise. The noise in both forward and reverse links is described, and the system performance for an example scenario with 1280 MHz bandwidth for QPSK, 16QAM, and 64QAM subcarrier modulation is estimated. The obtained results show that under certain conditions regarding link budget and components choice, the proposed solution is feasible.
Modulation and multiplexing in ultra-broadband photonic internet: Part II
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2011-06-01
In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.
Modulation and multiplexing in ultra-broadband photonic internet: Part I
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2011-06-01
In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.
Li, Yi-Cheng; Chi, Yu-Chieh; Cheng, Min-Chi; Lu, I-Cheng; Chen, Jason; Lin, Gong-Ru
2013-07-15
The coherent injection-locking and directly modulation of a long-cavity colorless laser diode with 1% end-facet reflectance and weak-resonant longitudinal modes is employed as an universal optical transmitter to demonstrated for optical 16-QAM OFDM transmission at 12 Gbit/s over 25 km in a DWDM-PON system. The optimized bias current of 30 mA (~1.5Ith) with corresponding extinction ratio (ER) of 6 dB and the external injection power of -9 dBm is (are) required for such a wavelength-locked universal transmitter to carry the 16-QAM and 122-subcarrier formatted OFDM and data-stream. By increasing external injection-locking from -9 dBm to 0 dBm, the peak-to-peak chirp of the OFDM data stream reduces from 7.7 to 5.4 GHz. The side mode suppression ratio (SMSR) of up to 50 dB is achieved with wider detuning range between -0.5 nm to 2.0 nm under an injection power of 0 dBm. By modulating such a colorless laser diode with an OFDM data stream of 122 subcarriers at a central carrier frequency of 1.5625 GHz and a total bandwidth of 3 GHz, the transmission data rate of up to 12 Gbit/s in standard single-mode fiber over 25 km is demonstrated to achieve an error vector magnitude (EVM) of 5.435%. Such a universal colorless DWDM-PON transmitter can deliver the optical OFDM data-stream at 12 Gbit/s QAM-OFDM data after 25-km transmission with a receiving power sensitivity of -7 dBm at BER of 3.6 × 10(-7) when pre-amplifying the OFDM data by 5 dB.
Collaborative video caching scheme over OFDM-based long-reach passive optical networks
NASA Astrophysics Data System (ADS)
Li, Yan; Dai, Shifang; Chang, Xiangmao
2018-07-01
Long-reach passive optical networks (LR-PONs) are now considered as a desirable access solution for cost-efficiently delivering broadband services by integrating metro network with access network, among which orthogonal frequency division multiplexing (OFDM)-based LR-PONs gain greater research interests due to their good robustness and high spectrum efficiency. In such attractive OFDM-based LR-PONs, however, it is still challenging to effectively provide video service, which is one of the most popular and profitable broadband services, for end users. Given that more video requesters (i.e., end users) far away from optical line terminal (OLT) are served in OFDM-based LR-PONs, it is efficiency-prohibitive to use traditional video delivery model, which relies on the OLT to transmit videos to requesters, for providing video service, due to the model will incur not only larger video playback delay but also higher downstream bandwidth consumption. In this paper, we propose a novel video caching scheme that to collaboratively cache videos on distributed optical network units (ONUs) which are closer to end users, and thus to timely and cost-efficiently provide videos for requesters by ONUs over OFDM-based LR-PONs. We firstly construct an OFDM-based LR-PON architecture to enable the cooperation among ONUs while caching videos. Given a limited storage capacity of each ONU, we then propose collaborative approaches to cache videos on ONUs with the aim to maximize the local video hit ratio (LVHR), i.e., the proportion of video requests that can be directly satisfied by ONUs, under diverse resources requirements and requests distributions of videos. Simulations are finally conducted to evaluate the efficiency of our proposed scheme.
Demi, Libertario; Ramalli, Alessandro; Giannini, Gabriele; Mischi, Massimo
2015-01-01
In classic pulse-echo ultrasound imaging, the data acquisition rate is limited by the speed of sound. To overcome this, parallel beamforming techniques in transmit (PBT) and in receive (PBR) mode have been proposed. In particular, PBT techniques, based on the transmission of focused beams, are more suitable for harmonic imaging because they are capable of generating stronger harmonics. Recently, orthogonal frequency division multiplexing (OFDM) has been investigated as a means to obtain parallel beamformed tissue harmonic images. To date, only numerical studies and experiments in water have been performed, hence neglecting the effect of frequencydependent absorption. Here we present the first in vitro and in vivo tissue harmonic images obtained with PBT by means of OFDM, and we compare the results with classic B-mode tissue harmonic imaging. The resulting contrast-to-noise ratio, here used as a performance metric, is comparable. A reduction by 2 dB is observed for the case in which three parallel lines are reconstructed. In conclusion, the applicability of this technique to ultrasonography as a means to improve the data acquisition rate is confirmed.
NASA Astrophysics Data System (ADS)
Wang, Fumin; Shi, Meng; Chi, Nan
2016-10-01
Visible light communication (VLC) is one of the hottest research directions in wireless communication. It is safe, fast and free of electromagnetic interference. We carry out the visible light communication using DFTS-OFDM modulation mode through the headset port to and take equalization technique to compensate the channel. In this paper, we first test the feasibility of the DFTS-OFDM modulated VLC system by analyzing the constellation and the transmission error rate via the headset interface of the smartphone. Then we change the peak value of the signal generated by the AWG as well as the static current to find the best working point. We tested the effect of changing the up-sample number on the BER performance of the communication system, and compared the BER performance of 16QAM and 8QAM modulation in different equalization method. We also do experiment to find how distance affect the performance of the communication and the maximum communication rate that can be achieved. We successfully demonstrated a visible light communication system detected by a headset port of a smart phone for a 32QAM DFTS-OFDM modulated signal of 27.5kb/s over a 3-meter free space transmission. The light source is traditional phosphorescent white LED. This result, as far as we know, is the highest data rate of VLC system via headset port detection.
NASA Astrophysics Data System (ADS)
Miki, Nobuhiko; Atarashi, Hiroyuki; Higuchi, Kenichi; Sawahashi, Mamoru; Nakagawa, Masao
This paper presents experimental evaluations of the effect of time diversity obtained by hybrid automatic repeat request (HARQ) with soft combining in space and path diversity schemes on orthogonal frequency division multiplexing (OFDM)-based packet radio access in a downlink broadband multipath fading channel. The effect of HARQ is analyzed through laboratory experiments employing fading simulators and field experiments conducted in downtown Yokosuka near Tokyo. After confirming the validity of experimental results based on numerical analysis of the time diversity gain in HARQ, we show by the experimental results that, for a fixed modulation and channel coding scheme (MCS), time diversity obtained by HARQ is effective in reducing the required received signal-to-interference plus noise power ratio (SINR) according to an increase in the number of transmissions, K, up to 10, even when the diversity effects are obtained through two-branch antenna diversity reception and path diversity using a number of multipaths greater than 12 observed in a real fading channel. Meanwhile, in combined use with the adaptive modulation and channel coding (AMC) scheme associated with space and path diversity, we clarify that the gain obtained by time diversity is almost saturated at the maximum number of transmissions in HARQ, K' = 4 in Chase combining and K' = 2 in Incremental redundancy, since the improvement in the residual packet error rate (PER) obtained through time diversity becomes small owing to the low PER in the initial packet transmission arising from appropriately selecting the optimum MCS in AMC. However, the experimental results elucidate that the time diversity in HARQ with soft combining associated with antenna diversity reception is effective in improving the throughput even in a broadband multipath channel with sufficient path diversity.
Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung
2016-05-01
We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Ge, Jian-Hua
2012-12-01
Single-carrier (SC) transmission with frequency-domain equalization (FDE) is today recognized as an attractive alternative to orthogonal frequency-division multiplexing (OFDM) for communication application with the inter-symbol interference (ISI) caused by multi-path propagation, especially in shallow water channel. In this paper, we investigate an iterative receiver based on minimum mean square error (MMSE) decision feedback equalizer (DFE) with symbol rate and fractional rate samplings in the frequency domain (FD) and serially concatenated trellis coded modulation (SCTCM) decoder. Based on sound speed profiles (SSP) measured in the lake and finite-element ray tracking (Bellhop) method, the shallow water channel is constructed to evaluate the performance of the proposed iterative receiver. Performance results show that the proposed iterative receiver can significantly improve the performance and obtain better data transmission than FD linear and adaptive decision feedback equalizers, especially in adopting fractional rate sampling.
Experimental Evaluation of Adaptive Modulation and Coding in MIMO WiMAX with Limited Feedback
NASA Astrophysics Data System (ADS)
Mehlführer, Christian; Caban, Sebastian; Rupp, Markus
2007-12-01
We evaluate the throughput performance of an OFDM WiMAX (IEEE 802.16-2004, Section 8.3) transmission system with adaptive modulation and coding (AMC) by outdoor measurements. The standard compliant AMC utilizes a 3-bit feedback for SISO and Alamouti coded MIMO transmissions. By applying a 6-bit feedback and spatial multiplexing with individual AMC on the two transmit antennas, the data throughput can be increased significantly for large SNR values. Our measurements show that at small SNR values, a single antenna transmission often outperforms an Alamouti transmission. We found that this effect is caused by the asymmetric behavior of the wireless channel and by poor channel knowledge in the two-transmit-antenna case. Our performance evaluation is based on a measurement campaign employing the Vienna MIMO testbed. The measurement scenarios include typical outdoor-to-indoor NLOS, outdoor-to-outdoor NLOS, as well as outdoor-to-indoor LOS connections. We found that in all these scenarios, the measured throughput is far from its achievable maximum; the loss is mainly caused by a too simple convolutional coding.
NASA Astrophysics Data System (ADS)
Shaat, Musbah; Bader, Faouzi
2010-12-01
Cognitive Radio (CR) systems have been proposed to increase the spectrum utilization by opportunistically access the unused spectrum. Multicarrier communication systems are promising candidates for CR systems. Due to its high spectral efficiency, filter bank multicarrier (FBMC) can be considered as an alternative to conventional orthogonal frequency division multiplexing (OFDM) for transmission over the CR networks. This paper addresses the problem of resource allocation in multicarrier-based CR networks. The objective is to maximize the downlink capacity of the network under both total power and interference introduced to the primary users (PUs) constraints. The optimal solution has high computational complexity which makes it unsuitable for practical applications and hence a low complexity suboptimal solution is proposed. The proposed algorithm utilizes the spectrum holes in PUs bands as well as active PU bands. The performance of the proposed algorithm is investigated for OFDM and FBMC based CR systems. Simulation results illustrate that the proposed resource allocation algorithm with low computational complexity achieves near optimal performance and proves the efficiency of using FBMC in CR context.
Reduction of PAPR in coded OFDM using fast Reed-Solomon codes over prime Galois fields
NASA Astrophysics Data System (ADS)
Motazedi, Mohammad Reza; Dianat, Reza
2017-02-01
In this work, two new techniques using Reed-Solomon (RS) codes over GF(257) and GF(65,537) are proposed for peak-to-average power ratio (PAPR) reduction in coded orthogonal frequency division multiplexing (OFDM) systems. The lengths of these codes are well-matched to the length of OFDM frames. Over these fields, the block lengths of codes are powers of two and we fully exploit the radix-2 fast Fourier transform algorithms. Multiplications and additions are simple modulus operations. These codes provide desirable randomness with a small perturbation in information symbols that is essential for generation of different statistically independent candidates. Our simulations show that the PAPR reduction ability of RS codes is the same as that of conventional selected mapping (SLM), but contrary to SLM, we can get error correction capability. Also for the second proposed technique, the transmission of side information is not needed. To the best of our knowledge, this is the first work using RS codes for PAPR reduction in single-input single-output systems.
MB-OFDM-UWB Based Wireless Multimedia Sensor Networks for Underground Coalmine: A Survey.
Han, Ruisong; Yang, Wei; You, Kaiming
2016-12-16
Safety production of coalmines is a task of top priority which plays an important role in guaranteeing, supporting and promoting the continuous development of the coal industry. Since traditional wireless sensor networks (WSNs) cannot fully meet the requirements of comprehensive environment monitoring of underground coalmines, wireless multimedia sensor networks (WMSNs), enabling the retrieval of multimedia information, are introduced to realize fine-grained and precise environment surveillance. In this paper, a framework for designing underground coalmine WMSNs based on Multi-Band Orthogonal Frequency-Division Multiplexing Ultra-wide Band (MB-OFDM-UWB) is presented. The selection of MB-OFDM-UWB wireless transmission solution is based on the characteristics of underground coalmines. Network structure and design challenges are analyzed first, which is the foundation for further discussion. Then, key supporting technologies and open research areas in different layers are surveyed, and we provide a detailed literature review of the state of the art strategies, algorithms and general solutions in these issues. Finally, other research issues like localization, information processing, and network management are discussed.
MB-OFDM-UWB Based Wireless Multimedia Sensor Networks for Underground Coalmine: A Survey
Han, Ruisong; Yang, Wei; You, Kaiming
2016-01-01
Safety production of coalmines is a task of top priority which plays an important role in guaranteeing, supporting and promoting the continuous development of the coal industry. Since traditional wireless sensor networks (WSNs) cannot fully meet the requirements of comprehensive environment monitoring of underground coalmines, wireless multimedia sensor networks (WMSNs), enabling the retrieval of multimedia information, are introduced to realize fine-grained and precise environment surveillance. In this paper, a framework for designing underground coalmine WMSNs based on Multi-Band Orthogonal Frequency-Division Multiplexing Ultra-wide Band (MB-OFDM-UWB) is presented. The selection of MB-OFDM-UWB wireless transmission solution is based on the characteristics of underground coalmines. Network structure and design challenges are analyzed first, which is the foundation for further discussion. Then, key supporting technologies and open research areas in different layers are surveyed, and we provide a detailed literature review of the state of the art strategies, algorithms and general solutions in these issues. Finally, other research issues like localization, information processing, and network management are discussed. PMID:27999258
PAPR reduction in FBMC using an ACE-based linear programming optimization
NASA Astrophysics Data System (ADS)
van der Neut, Nuan; Maharaj, Bodhaswar TJ; de Lange, Frederick; González, Gustavo J.; Gregorio, Fernando; Cousseau, Juan
2014-12-01
This paper presents four novel techniques for peak-to-average power ratio (PAPR) reduction in filter bank multicarrier (FBMC) modulation systems. The approach extends on current PAPR reduction active constellation extension (ACE) methods, as used in orthogonal frequency division multiplexing (OFDM), to an FBMC implementation as the main contribution. The four techniques introduced can be split up into two: linear programming optimization ACE-based techniques and smart gradient-project (SGP) ACE techniques. The linear programming (LP)-based techniques compensate for the symbol overlaps by utilizing a frame-based approach and provide a theoretical upper bound on achievable performance for the overlapping ACE techniques. The overlapping ACE techniques on the other hand can handle symbol by symbol processing. Furthermore, as a result of FBMC properties, the proposed techniques do not require side information transmission. The PAPR performance of the techniques is shown to match, or in some cases improve, on current PAPR techniques for FBMC. Initial analysis of the computational complexity of the SGP techniques indicates that the complexity issues with PAPR reduction in FBMC implementations can be addressed. The out-of-band interference introduced by the techniques is investigated. As a result, it is shown that the interference can be compensated for, whilst still maintaining decent PAPR performance. Additional results are also provided by means of a study of the PAPR reduction of the proposed techniques at a fixed clipping probability. The bit error rate (BER) degradation is investigated to ensure that the trade-off in terms of BER degradation is not too severe. As illustrated by exhaustive simulations, the SGP ACE-based technique proposed are ideal candidates for practical implementation in systems employing the low-complexity polyphase implementation of FBMC modulators. The methods are shown to offer significant PAPR reduction and increase the feasibility of FBMC as a replacement modulation system for OFDM.
Dang, Juntao; Yi, Xingwen; Zhang, Jing; Ye, Taiping; Xu, Bo; Qiu, Kun
2016-07-25
While optical OFDM has been demonstrated for superior transmission performance, its analogue waveform in the time domain challenges many conventional all-optical wavelength converters (AOWC) that are needed for future flexible optical networks. There only exist a few reports on AOWC of OFDM signals, which are mainly based on the low-efficient four-wave mixing. In this paper, we propose an AOWC for OFDM signals by using two-mode injection-locking in a low-cost Fabry-Pérot laser. The control signal and the probe signal at a milliwatt power level are combined and injected into the FP laser. By a proper control, they can be injection-locked to two longitudinal modes in the FP laser and subsequently, the transmission of the probe signal is conditioned by the control signal. We conduct an experimental study on various aspects of this AOWC. Despite a vendor-specified electrical-to-optical (E/O) modulation bandwidth of 2.5 GHz, we find that the optical-to-optical (O/O) modulation bandwidth of AOWC is free from this limit and can be much wider. We examine the linear transfer curve of the AOWC by simply using the OFDM waveforms as the stimulus. The performance tolerance to the wavelength detuning and injected power ratio is also measured. The proposed AOWC can provide a linear transfer function from the control signal to the probe signal to support the random-fluctuated OFDM waveform. We also investigate the maximum capacity of the AOWC by using the adaptive bit-loading OFDM. Finally, we measure the power penalty after the AOWC at two different bit rates to show the tradeoff between the penalty and capacity.
NASA Astrophysics Data System (ADS)
Sabir, Zeeshan; Babar, M. Inayatullah; Shah, Syed Waqar
2012-12-01
Mobile adhoc network (MANET) refers to an arrangement of wireless mobile nodes that have the tendency of dynamically and freely self-organizing into temporary and arbitrary network topologies. Orthogonal frequency division multiplexing (OFDM) is the foremost choice for MANET system designers at the Physical Layer due to its inherent property of high data rate transmission that corresponds to its lofty spectrum efficiency. The downside of OFDM includes its sensitivity to synchronization errors (frequency offsets and symbol time). Most of the present day techniques employing OFDM for data transmission support mobility as one of the primary features. This mobility causes small frequency offsets due to the production of Doppler frequencies. It results in intercarrier interference (ICI) which degrades the signal quality due to a crosstalk between the subcarriers of OFDM symbol. An efficient frequency-domain block-type pilot-assisted ICI mitigation scheme is proposed in this article which nullifies the effect of channel frequency offsets from the received OFDM symbols. Second problem addressed in this article is the noise effect induced by different sources into the received symbol increasing its bit error rate and making it unsuitable for many applications. Forward-error-correcting turbo codes have been employed into the proposed model which adds redundant bits into the system which are later used for error detection and correction purpose. At the receiver end, maximum a posteriori (MAP) decoding algorithm is implemented using two component MAP decoders. These decoders tend to exchange interleaved extrinsic soft information among each other in the form of log likelihood ratio improving the previous estimate regarding the decoded bit in each iteration.
Hardware Development and Error Characterization for the AFIT RAIL SAR System
This research is focused on updating the Air Force Institute of Technology (AFIT) Radar Instrumentation Lab (RAIL)Synthetic Aperture Radar ( SAR ...collections from a receiver in motion. Secondly, orthogonal frequency-division multiplexing (OFDM) signals are used to form ( SAR ) images in multiple...experimental and simulation configurations. This research analyses, characterizes and attempts compensation of relevant SAR image error sources, such as Doppler
NASA Astrophysics Data System (ADS)
Shao, Yufeng
2016-03-01
In this letter, we present the generation, the peak-to average power ratio (PAPR) reduction, the heterodyne detection, the self-mixing reception, and the transmission performance evaluation of 16QAM-OFDM signals in 60 GHz radio over fiber (RoF) system using Discrete multitone (DMT) modulation and Better Than Nyquist pulse shaping (BTN-PS) technique. DMT modulation is introduced in the RoF system, in-phase and quadrature (IQ) will not be required using BTN-PS method, and the computation complexity is much lower than other published techniques for reduced PAPR in the RoF system. In the experiment, 5 Gb/s 16QAM-OFDM downlink signals are transmitted over 42 km SMF-28 and a 0.4 m wireless channel. The experimental results show that the receiver sensitivity is effectively enhanced using this method. Therefore, the introduced BTN-PS technique and its application is a competitive scheme for reducing PAPR, and enhancing the receiver sensitivity in future RoF system.
Yang, Qi; Al Amin, Abdullah; Chen, Xi; Ma, Yiran; Chen, Simin; Shieh, William
2010-08-02
High-order modulation formats and advanced error correcting codes (ECC) are two promising techniques for improving the performance of ultrahigh-speed optical transport networks. In this paper, we present record receiver sensitivity for 107 Gb/s CO-OFDM transmission via constellation expansion to 16-QAM and rate-1/2 LDPC coding. We also show the single-channel transmission of a 428-Gb/s CO-OFDM signal over 960-km standard-single-mode-fiber (SSMF) without Raman amplification.
Image Transmission through OFDM System under the Influence of AWGN Channel
NASA Astrophysics Data System (ADS)
Krishna, Dharavathu; Anuradha, M. S., Dr.
2017-08-01
OFDM system is one among the modern techniques which is most abundantly used in next generation wireless communication networks for transmitting many forms of digital data in efficient manner than compared with other existing traditional techniques. In this paper, one such kind of a digital data corresponding to a two dimensional (2D) gray-scale image is used to evaluate the functionality and overall performance of an OFDM system under the influence of modeled AWGN channel in MATLAB simulation environment. Within the OFDM system, different configurations of notable modulation techniques such as M-PSK and M-QAM are considered for evaluation of the system and necessary valid conclusions are made from the comparison of several observed MATLAB simulation results.
Liu, Chang; Deng, Lei; He, Jiale; Li, Di; Fu, Songnian; Tang, Ming; Cheng, Mengfan; Liu, Deming
2017-07-24
In this paper, 4 × 4 multiple-input multiple-output (MIMO) radio over 7-core fiber system based on sparse code multiple access (SCMA) and OFDM/OQAM techniques is proposed. No cyclic prefix (CP) is required by properly designing the prototype filters in OFDM/OQAM modulator, and non-orthogonally overlaid codewords by using SCMA is help to serve more users simultaneously under the condition of using equal number of time and frequency resources compared with OFDMA, resulting in the increase of spectral efficiency (SE) and system capacity. In our experiment, 11.04 Gb/s 4 × 4 MIMO SCMA-OFDM/OQAM signal is successfully transmitted over 20 km 7-core fiber and 0.4 m air distance in both uplink and downlink. As a comparison, 6.681 Gb/s traditional MIMO-OFDM signal with the same occupied bandwidth has been evaluated for both uplink and downlink transmission. The experimental results show that SE could be increased by 65.2% with no bit error rate (BER) performance degradation compared with the traditional MIMO-OFDM technique.
2009-03-01
P Hwang . Introduction to Random Signals and Applied Kalman Filtering. John Wiley & Sons, New York, 1997. ISBN 0-471-12839-2. 4. Burr, A. “The...communication signals, the need for the ref- erence receiver is reduced or possibly removed entirely. This research uses a Kalman Filter (KF) to optimally...15 2.5 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5.1 State Propogation
All-optical wavelength conversion for mode division multiplexed superchannels.
Gong, Jiaxin; Xu, Jing; Luo, Ming; Li, Xiang; Qiu, Ying; Yang, Qi; Zhang, Xinliang; Yu, Shaohua
2016-04-18
We report in this work the first all-optical wavelength conversion (AOWC) of a mode division multiplexed (MDM) superchannel consisting of 2N modes by dividing the superchannel into N single-mode (SM) tributaries, wavelength converting N SM signals using well developed SM-AOWC techniques, and finally combining the N SM tributaries back to an MDM superchannel at the converted wavelength, inspired by the idea of using SM filtering techniques to filter multimode signals in astronomy. The conversions between multimode and SM are realized by 3D laser-writing photonic lanterns and SM-AOWCs are realized based on polarization insensitive four wave mixing (FWM) configuration in N semiconductor optical amplifiers (SOAs). As a proof of concept demonstration, the conversion of a 6-mode MDM superchannel with each mode modulated with orthogonal frequency division multiplexed (OFDM) quadrature phase-shift keying (QPSK)/16 quadrature amplitude modulation (QAM) signals is demonstrated in this work, indicating that the scheme is transparent to data format, polarization and compatible with multi-carrier signals. Data integrity of the converted superchannel has been verified by using coherent detection and digital signal processing (DSP). Bit error rates (BERs) below the forward error correction (FEC) hard limit (3.8 × 10-3) have been obtained for QPSK modulation at a net bitrate of 104.2 Gbit/s and BERs below the soft decision FEC threshold (1.98 × 10-2) have been achieved for 16-QAM format, giving a total aggregate bit rate of 185.8 Gbit/s when taking 20% coding overhead into account. Add and drop functionalities that usually come along with wavelength conversion in flexible network nodes have also been demonstrated. The working conditions of the SOAs, especially the pump and signal power levels, are critical for the quality of the converted signal and have been thoroughly discussed. The impact of imbalanced FWM conversion efficiency among different SM tributaries has also been analyzed. This work illustrates a promising way to perform all-optical signal processing for MDM superchannels.
Multi-carrier transmission for hybrid radio frequency with optical wireless communications
NASA Astrophysics Data System (ADS)
Wang, Gang; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik; Nguyen, Tien M.
2015-05-01
Radio frequency (RF) wireless communication is reaching its capacity to support large data rate transmissions due to hardware constraints (e.g., silicon processes), software strategies (e.g., information theory), and consumer desire for timely large file exchanges (e.g., big data and mobile cloud computing). A high transmission rate performance must keep pace with the generated huge volumes of data for real-time processing. Integrated RF and optical wireless communications (RF/OWC) could be the next generation transmission technology to satisfy both the increased data rate exchange and the communications constraints. However, with the promising benefits of RF/OWC, challenges remain to fully develop hybrid RF with wireless optical communications such as uniform waveform design for information transmission and detection. In this paper, an orthogonal frequency division multiplexing (OFDM) transmission scheme, which widely employed in RF communications, is developed for optical communications. The traditional high peak-to-average power ratio (PAPR) in OFDM is reduced to improve system performance. The proposed multi-carrier waveform is evaluated with a frequency-selective fading channel. The results demonstrate that bit error rate (BER) performance of our proposed optical OFDM transmission technique outperforms the traditional OWC on-off keying (OOK) transmission scheme.
Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks
Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng
2017-01-01
In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement. PMID:28677636
Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks.
Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng
2017-07-04
In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement.
Differential pulse amplitude modulation for multiple-input single-output OWVLC
NASA Astrophysics Data System (ADS)
Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.
2015-01-01
White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.
Bayesian sparse channel estimation
NASA Astrophysics Data System (ADS)
Chen, Chulong; Zoltowski, Michael D.
2012-05-01
In Orthogonal Frequency Division Multiplexing (OFDM) systems, the technique used to estimate and track the time-varying multipath channel is critical to ensure reliable, high data rate communications. It is recognized that wireless channels often exhibit a sparse structure, especially for wideband and ultra-wideband systems. In order to exploit this sparse structure to reduce the number of pilot tones and increase the channel estimation quality, the application of compressed sensing to channel estimation is proposed. In this article, to make the compressed channel estimation more feasible for practical applications, it is investigated from a perspective of Bayesian learning. Under the Bayesian learning framework, the large-scale compressed sensing problem, as well as large time delay for the estimation of the doubly selective channel over multiple consecutive OFDM symbols, can be avoided. Simulation studies show a significant improvement in channel estimation MSE and less computing time compared to the conventional compressed channel estimation techniques.
Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization
NASA Astrophysics Data System (ADS)
Tanaka, Ken; Tomeba, Hiromichi; Adachi, Fumiyuki
Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of orthogonal frequency division multiplexing (OFDM) and time-domain spreading, while multi-carrier code division multiple access (MC-CDMA) is a combination of OFDM and frequency-domain spreading. In MC-CDMA, a good bit error rate (BER) performance can be achieved by using frequency-domain equalization (FDE), since the frequency diversity gain is obtained. On the other hand, the conventional orthogonal MC DS-CDMA fails to achieve any frequency diversity gain. In this paper, we propose a new orthogonal MC DS-CDMA that can obtain the frequency diversity gain by applying FDE. The conditional BER analysis is presented. The theoretical average BER performance in a frequency-selective Rayleigh fading channel is evaluated by the Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation of the orthogonal MC DS-CDMA signal transmission.
Underwater wireless optical communication using a lens-free solar panel receiver
NASA Astrophysics Data System (ADS)
Kong, Meiwei; Sun, Bin; Sarwar, Rohail; Shen, Jiannan; Chen, Yifei; Qu, Fengzhong; Han, Jun; Chen, Jiawang; Qin, Huawei; Xu, Jing
2018-11-01
In this paper, we first propose that self-powered solar panels featuring large receiving area and lens-free operation have great application prospect in underwater vehicles or underwater wireless sensor networks (UWSNs) for data collection. It is envisioned to solve the problem of link alignment. The low-cost solar panel used in the experiment has a large receiving area of 5 cm2 and a receiving angle of 20°. Over a 1-m air channel, a 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) signal at a data rate of 20.02 Mb/s is successfully transmitted within the receiving angle of 20°. Over a 7-m tap water channel, we achieve data rates of 20.02 Mb/s using 16-QAM, 18.80 Mb/s using 32-QAM and 22.56 Mb/s using 64-QAM, respectively. By adding different quantities of Mg(OH)2 powders into the water, the impact of water turbidity on the solar panel-based underwater wireless optical communication (UWOC) is also investigated.
Zhang, Lu; Ouyang, Xing; Shao, Xiaopeng; Zhao, Jian
2016-06-27
Performance degradation induced by the DC components at the output of real-time analogue-to-digital converter (ADC) is experimentally investigated for optical fast-OFDM receiver. To compensate this degradation, register transfer level (RTL) circuits for real-time digital DC blocker with 20GS/s throughput are proposed and implemented in field programmable gate array (FPGA). The performance of the proposed real-time digital DC blocker is experimentally investigated in a 15Gb/s optical fast-OFDM system with intensity modulation and direct detection over 40 km standard single-mode fibre. The results show that the fixed-point DC blocker has negligible performance penalty compared to the offline floating point one, and can overcome the error floor of the fast OFDM receiver caused by the DC components from the real-time ADC output.
Compressive Channel Estimation and Tracking for Large Arrays in mm Wave Picocells
2014-01-01
abling sophisticated adaptation, including frequency-selective spatiotemporal processing (e.g., per subcarrier beamforming in OFDM systems). This approach...subarrays are certainly required for more advanced functionalities such as multiuser MIMO [17], spatial multiplexing [18], [19], [20], [21], [22], and...case, a regu- larly spaced 2D array), an estimate of the N2t,1D × N2r,1D MIMO channel matrix H can be efficiently arrived at by estimating the spatial
NASA Astrophysics Data System (ADS)
Zhang, Junwei; Hong, Xuezhi; Liu, Jie; Guo, Changjian
2018-04-01
In this work, we investigate and experimentally demonstrate an orthogonal frequency division multiplexing (OFDM) based high speed wavelength-division multiplexed (WDM) visible light communication (VLC) system using an inter-block data precoding and superimposed pilots (DP-SP) based channel estimation (CE) scheme. The residual signal-to-pilot interference (SPI) can be eliminated by using inter-block data precoding, resulting in a significant improvement in estimated accuracy and the overall system performance compared with uncoded SP based CE scheme. We also study the power allocation/overhead problem of the training for DP-SP, uncoded SP and conventional preamble based CE schemes, from which we obtain the optimum signal-to-pilot power ratio (SPR)/overhead percentage for all above cases. Intra-symbol frequency-domain averaging (ISFA) is also adopted to further enhance the accuracy of CE. By using the DP-SP based CE scheme, aggregate data rates of 1.87-Gbit/s and 1.57-Gbit/s are experimentally demonstrated over 0.8-m and 2-m indoor free space transmission, respectively, using a commercially available red, green and blue (RGB) light emitting diode (LED) with WDM. Experimental results show that the DP-SP based CE scheme is comparable to the conventional preamble based CE scheme in term of received Q factor and data rate while entailing a much smaller overhead-size.
Low-mobility channel tracking for MIMO-OFDM communication systems
NASA Astrophysics Data System (ADS)
Pagadarai, Srikanth; Wyglinski, Alexander M.; Anderson, Christopher R.
2013-12-01
It is now well understood that by exploiting the available additional spatial dimensions, multiple-input multiple-output (MIMO) communication systems provide capacity gains, compared to a single-input single-output systems without increasing the overall transmit power or requiring additional bandwidth. However, these large capacity gains are feasible only when the perfect knowledge of the channel is available to the receiver. Consequently, when the channel knowledge is imperfect, as is common in practical settings, the impact of the achievable capacity needs to be evaluated. In this study, we begin with a general MIMO framework at the outset and specialize it to the case of orthogonal frequency division multiplexing (OFDM) systems by decoupling channel estimation from data detection. Cyclic-prefixed OFDM systems have attracted widespread interest due to several appealing characteristics not least of which is the fact that a single-tap frequency-domain equalizer per subcarrier is sufficient due to the circulant structure of the resulting channel matrix. We consider a low-mobility wireless channel which exhibits inter-block channel variations and apply Kalman tracking when MIMO-OFDM communication is performed. Furthermore, we consider the signal transmission to contain a stream of training and information symbols followed by information symbols alone. By relying on predicted channel states when training symbols are absent, we aim to understand how the improvements in channel capacity are affected by imperfect channel knowledge. We show that the Kalman recursion procedure can be simplified by the optimal minimum mean square error training design. Using the simplified recursion, we derive capacity upper and lower bounds to evaluate the performance of the system.
Interference-Assisted Techniques for Transmission and Multiple Access in Optical Communications
NASA Astrophysics Data System (ADS)
Guan, Xun
Optical communications can be in wired or wireless form. Fiber optics communication (FOC) connects transmitters and receivers with optical fiber. Benefiting from its high bandwidth, low cost per volume and stability, it gains a significant market share in long-haul networks, access networks and data centers. Meanwhile, optical wireless communication (OWC) is also emerging as a crucial player in the communication market. In OWC, free-space optical communication (FSO) and visible light communication (VLC) are being studied and commercially deployed extensively. Interference is a common phenomenon in multi-user communication systems. In both FOC and OWC, interference has long been treated as a detrimental effect. However, it could also be beneficial to system applications. The effort of harnessing interference has spurred numerous innovations. Interesting examples are physical-layer network coding (PNC) and non-orthogonal multiple access (NOMA). The first part of this thesis in on the topic of PNC. PNC was firstly proposed in wireless communication to improve the throughput of a two-way relay network (TWRN). As a variation of network coding (NC), PNC turns the common channel interference (CCI) as a natural network coding operation. In this thesis, PNC is introduced into optical communication. Three schemes are proposed in different scenarios. Firstly, PNC is applied to a coherent optical orthogonal frequency division multiplexing (CO-OFDM) system so as to improve the throughput of the multicast network. The optical signal to noise ratio (OSNR) penalty is quite low. Secondly, we investigate the application of PNC in an OFDM passive optical network (OFDM-PON) supporting heterogeneous services. It is found that only minor receiver power penalties are observed to realize PNC-based virtual private networks (VPN), both in the wired service part and the wireless service part in an OFDM-PON with heterogeneous services. Thirdly, we innovate relay-based visible light communication (VLC) by adopting PNC, with a newly proposed phase-aligning method. PNC could improve the throughput at the bottlenecking relay node in a VLC system, and the proposed phase aligning method can improve the BER performance. The second part of this thesis discusses another interference-assisted technology in communication, that is, non-orthogonal multiple access (NOMA). NOMA multiplexes signals from multiple users in another dimension: power domain, with a non-orthogonal multiplexing in other dimensions such as time, frequency and code. Three schemes are proposed in this part. The first and the second schemes both realize NOMA in VLC, with different multiuser detection (MUD) techniques and a proposed phase pre-distortion method. Although both can decrease the system BER compared to conventional NOMA, the scheme using joint detection (JD) outperforms the one using successive interference cancellation (SIC). The third scheme investigated in this part is a combination of NOMA and a multicarrier precoding (MP) technology based on an orthogonal circulant transform matrix (OCT). This combination can avoid the complicated adaptive bit loading or electronic equalization, making NOMA more attractive in a practical system.
Compact MEMS external cavity tunable laser with ultra-narrow linewidth for coherent detection.
Zhang, Di; Zhao, Jianyi; Yang, Qi; Liu, Wen; Fu, Yanfeng; Li, Chao; Luo, Ming; Hu, Shenglei; Hu, Qianggao; Wang, Lei
2012-08-27
A compact and ultra-narrow linewidth tunable laser with an external cavity based on a simple single-axis-MEMS mirror is presented in this paper. We discuss the simulation of this tunable laser using a two-step hybrid analysis method to obtain an optimal design of the device. A wide wavelength tuning range about 40 nm in C-band with a narrow linewidth of less than 50 kHz and wavelength accuracy of ± 1 GHz over the entire tuning range can be achieved experimentally. We also conduct several experiments under different conditions to test the tunable laser. This device shows an excellent performance in both single-carrier polarization-multiplexed quadrature phase-shift keying (PM-QPSK) and multi-carrier orthogonal frequency division multiplexing (OFDM) coherent systems.
Dong, Ze; Yu, Jianjun; Chien, Hung-Chang; Chi, Nan; Chen, Lin; Chang, Gee-Kung
2011-06-06
We introduce an "ultra-dense" concept into next-generation WDM-PON systems, which transmits a Nyquist-WDM uplink with centralized uplink optical carriers and digital coherent detection for the future access network requiring both high capacity and high spectral efficiency. 80-km standard single mode fiber (SSMF) transmission of Nyquist-WDM signal with 13 coherent 25-GHz spaced wavelength shaped optical carriers individually carrying 100-Gbit/s polarization-multiplexing quadrature phase-shift keying (PM-QPSK) upstream data has been experimentally demonstrated with negligible transmission penalty. The 13 frequency-locked wavelengths with a uniform optical power level of -10 dBm and OSNR of more than 50 dB are generated from a single lightwave via a multi-carrier generator consists of an optical phase modulator (PM), a Mach-Zehnder modulator (MZM), and a WSS. Following spacing the carriers at the baud rate, sub-carriers are individually spectral shaped to form Nyquist-WDM. The Nyquist-WDM channels have less than 1-dB crosstalk penalty of optical signal-to-noise ratio (OSNR) at 2 × 10(-3) bit-error rate (BER). Performance of a traditional coherent optical OFDM scheme and its restrictions on symbol synchronization and power difference are also experimentally compared and studied.
Wang, Ruijia; Chen, Jie; Wang, Xing; Sun, Bing
2017-01-09
Retransmission deception jamming seriously degrades the Synthetic Aperture Radar (SAR) detection efficiency and can mislead SAR image interpretation by forming false targets. In order to suppress retransmission deception jamming, this paper proposes a novel multiple input and multiple output (MIMO) SAR structure range direction MIMO SAR, whose multiple channel antennas are vertical to the azimuth. First, based on the multiple channels of range direction MIMO SAR, the orthogonal frequency division multiplexing (OFDM) linear frequency modulation (LFM) signal was adopted as the transmission signal of each channel, which is defined as a sub-band signal. This sub-band signal corresponds to the transmission channel. Then, all of the sub-band signals are modulated with random initial phases and concurrently transmitted. The signal form is more complex and difficult to intercept. Next, the echoes of the sub-band signal are utilized to synthesize a wide band signal after preprocessing. The proposed method will increase the signal to interference ratio and peak amplitude ratio of the signal to resist retransmission deception jamming. Finally, well-focused SAR imagery is obtained using a conventional imaging method where the retransmission deception jamming strength is degraded and defocused. Simulations demonstrated the effectiveness of the proposed method.
Wang, Ruijia; Chen, Jie; Wang, Xing; Sun, Bing
2017-01-01
Retransmission deception jamming seriously degrades the Synthetic Aperture Radar (SAR) detection efficiency and can mislead SAR image interpretation by forming false targets. In order to suppress retransmission deception jamming, this paper proposes a novel multiple input and multiple output (MIMO) SAR structure range direction MIMO SAR, whose multiple channel antennas are vertical to the azimuth. First, based on the multiple channels of range direction MIMO SAR, the orthogonal frequency division multiplexing (OFDM) linear frequency modulation (LFM) signal was adopted as the transmission signal of each channel, which is defined as a sub-band signal. This sub-band signal corresponds to the transmission channel. Then, all of the sub-band signals are modulated with random initial phases and concurrently transmitted. The signal form is more complex and difficult to intercept. Next, the echoes of the sub-band signal are utilized to synthesize a wide band signal after preprocessing. The proposed method will increase the signal to interference ratio and peak amplitude ratio of the signal to resist retransmission deception jamming. Finally, well-focused SAR imagery is obtained using a conventional imaging method where the retransmission deception jamming strength is degraded and defocused. Simulations demonstrated the effectiveness of the proposed method. PMID:28075367
Demonstration of flexible multicasting and aggregation functionality for TWDM-PON
NASA Astrophysics Data System (ADS)
Chen, Yuanxiang; Li, Juhao; Zhu, Paikun; Zhu, Jinglong; Tian, Yu; Wu, Zhongying; Peng, Huangfa; Xu, Yongchi; Chen, Jingbiao; He, Yongqi; Chen, Zhangyuan
2017-06-01
The time- and wavelength-division multiplexed passive optical network (TWDM-PON) has been recognized as an attractive solution to provide broadband access for the next-generation networks. In this paper, we propose flexible service multicasting and aggregation functionality for TWDM-PON utilizing multiple-pump four-wave-mixing (FWM) and cyclic arrayed waveguide grating (AWG). With the proposed scheme, multiple TWDM-PON links share a single optical line terminal (OLT), which can greatly reduce the network deployment expense and achieve efficient network resource utilization by load balancing among different optical distribution networks (ODNs). The proposed scheme is compatible with existing TDM-PON infrastructure with fixed-wavelength OLT transmitter, thus smooth service upgrade can be achieved. Utilizing the proposed scheme, we demonstrate a proof-of-concept experiment with 10-Gb/s OOK and 10-Gb/s QPSK orthogonal frequency division multiplexing (OFDM) signal multicasting and aggregating to seven PON links. Compared with back-to-back (BTB) channel, the newly generated multicasting OOK signal and OFDM signal have power penalty of 1.6 dB and 2 dB at the BER of 10-3, respectively. For the aggregation of multiple channels, no obvious power penalty is observed. What is more, to verify the flexibility of the proposed scheme, we reconfigure the wavelength selective switch (WSS) and adjust the number of pumps to realize flexible multicasting functionality. One to three, one to seven, one to thirteen and one to twenty-one multicasting are achieved without modifying OLT structure.
Adaptive reconfigurable V-BLAST type equalizer for cognitive MIMO-OFDM radios
NASA Astrophysics Data System (ADS)
Ozden, Mehmet Tahir
2015-12-01
An adaptive channel shortening equalizer design for multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) radio receivers is considered in this presentation. The proposed receiver has desirable features for cognitive and software defined radio implementations. It consists of two sections: MIMO decision feedback equalizer (MIMO-DFE) and adaptive multiple Viterbi detection. In MIMO-DFE section, a complete modified Gram-Schmidt orthogonalization of multichannel input data is accomplished using sequential processing multichannel Givens lattice stages, so that a Vertical Bell Laboratories Layered Space Time (V-BLAST) type MIMO-DFE is realized at the front-end section of the channel shortening equalizer. Matrix operations, a major bottleneck for receiver operations, are accordingly avoided, and only scalar operations are used. A highly modular and regular radio receiver architecture that has a suitable structure for digital signal processing (DSP) chip and field programable gate array (FPGA) implementations, which are important for software defined radio realizations, is achieved. The MIMO-DFE section of the proposed receiver can also be reconfigured for spectrum sensing and positioning functions, which are important tasks for cognitive radio applications. In connection with adaptive multiple Viterbi detection section, a systolic array implementation for each channel is performed so that a receiver architecture with high computational concurrency is attained. The total computational complexity is given in terms of equalizer and desired response filter lengths, alphabet size, and number of antennas. The performance of the proposed receiver is presented for two-channel case by means of mean squared error (MSE) and probability of error evaluations, which are conducted for time-invariant and time-variant channel conditions, orthogonal and nonorthogonal transmissions, and two different modulation schemes.
New Approaches to Coding Information using Inverse Scattering Transform
NASA Astrophysics Data System (ADS)
Frumin, L. L.; Gelash, A. A.; Turitsyn, S. K.
2017-06-01
Remarkable mathematical properties of the integrable nonlinear Schrödinger equation (NLSE) can offer advanced solutions for the mitigation of nonlinear signal distortions in optical fiber links. Fundamental optical soliton, continuous, and discrete eigenvalues of the nonlinear spectrum have already been considered for the transmission of information in fiber-optic channels. Here, we propose to apply signal modulation to the kernel of the Gelfand-Levitan-Marchenko equations that offers the advantage of a relatively simple decoder design. First, we describe an approach based on exploiting the general N -soliton solution of the NLSE for simultaneous coding of N symbols involving 4 ×N coding parameters. As a specific elegant subclass of the general schemes, we introduce a soliton orthogonal frequency division multiplexing (SOFDM) method. This method is based on the choice of identical imaginary parts of the N -soliton solution eigenvalues, corresponding to equidistant soliton frequencies, making it similar to the conventional OFDM scheme, thus, allowing for the use of the efficient fast Fourier transform algorithm to recover the data. Then, we demonstrate how to use this new approach to control signal parameters in the case of the continuous spectrum.
Evaluation of Clipping Based Iterative PAPR Reduction Techniques for FBMC Systems
Kollár, Zsolt
2014-01-01
This paper investigates filter bankmulticarrier (FBMC), a multicarrier modulation technique exhibiting an extremely low adjacent channel leakage ratio (ACLR) compared to conventional orthogonal frequency division multiplexing (OFDM) technique. The low ACLR of the transmitted FBMC signal makes it especially favorable in cognitive radio applications, where strict requirements are posed on out-of-band radiation. Large dynamic range resulting in high peak-to-average power ratio (PAPR) is characteristic of all sorts of multicarrier signals. The advantageous spectral properties of the high-PAPR FBMC signal are significantly degraded if nonlinearities are present in the transceiver chain. Spectral regrowth may appear, causing harmful interference in the neighboring frequency bands. This paper presents novel clipping based PAPR reduction techniques, evaluated and compared by simulations and measurements, with an emphasis on spectral aspects. The paper gives an overall comparison of PAPR reduction techniques, focusing on the reduction of the dynamic range of FBMC signals without increasing out-of-band radiation. An overview is presented on transmitter oriented techniques employing baseband clipping, which can maintain the system performance with a desired bit error rate (BER). PMID:24558338
NASA Astrophysics Data System (ADS)
Nadal, Laia; Svaluto Moreolo, Michela; Fàbrega, Josep M.; Vílchez, F. Javier
2017-07-01
In this paper, we propose an advanced programmable sliceable-bandwidth variable transceiver (S-BVT) with polarization division multiplexing (PDM) capability as a key enabler to fulfill the requirements for future 5G networks. Thanks to its cost-effective optoelectronic front-end based on orthogonal frequency division multiplexing (OFDM) technology and direct-detection (DD), the proposed S-BVT becomes suitable for next generation highly flexible and scalable metro networks. Polarization beam splitters (PBSs) and controllers (PCs), available on-demand, are included at the transceivers and at the network nodes, further enhancing the system flexibility and promoting an efficient use of the spectrum. 40G-100G PDM transmission has been experimentally demonstrated, within a 4-node photonic mesh network (ADRENALINE testbed), implementing a simplified equalization process.
NASA Astrophysics Data System (ADS)
Singh, Vinay Kumar; Dalal, U. D.
2017-10-01
In this research literature we present a unique optical OFDM system for Visible Light Communication (VLC) intended for indoor application which uses a non conventional transform-Fast Hartley Transform and an effective method to reduce the peak to average power ratio (PAPR) of the OFDM signal based on frequency modulation leading to a constant envelope (CE) signal. The proposed system is analyzed by a complete mathematical model and verified by the concurrent simulations results. The use of the non conventional transform makes the system computationally more desirable as it does not require the Hermitian symmetry constraint to yield real signals. The frequency modulation of the baseband signal converge random peaks into a CE signal. This leads to alleviation of the non linearity effects of the LED used in the link for electrical to optical conversion. The PAPR is reduced to 2 dB by this technique in this work. The impact of the modulation index on the performance of the system is also investigated. An optimum modulation depth of 30% gives better results. The additional phase discontinuity incurring on the demodulated signal at the receiver is also significantly reduced. A comparison of the improvement in phase discontinuity of the proposed technique of combating the PAPR with the previously known phase modulation technique is also presented in this work. Based on the channel metrics we evaluate the system performance and report an improvement of 1.2 dB at the FEC threshold. The proposed system is simple in design and computationally efficient and this can be incorporated into the present VLC system without much alteration thereby making it a cost effective solution.
OFDM inspired waveforms for 5G
Farhang-Boroujeny, Behrouz; Moradi, Hussein
2016-05-12
As the standardization activities are being formed to lay the foundation of 5G wireless networks, there is a common consensus on the need to replace the celebrated OFDM by a more effective air interface that better serves the challenging needs of 5G. The main reason that has made OFDM popular in the past is related to the fact that information symbols are carried over a number of pure tones/sinusoidal signals. Moreover, with the use of cyclic prefix (CP), it is assured that the information carrying tones are only affected by the channel (complex) gains at the respective frequencies. Accordingly, themore » channel effect can be trivially compensated for (equalized) in the frequency domain through a single complex tap per subcarrier. However, as network air interfaces become more complex and the demand for multiuser services grows, OFDM is found to be incapable of handling the inevitable loss of synchronization among users. In the recent past, two novel waveforms (namely, GFDM and C-FBMC) have been discussed in the literature to overcome this and other drawbacks of OFDM. Interestingly, and at the same time not surprising, these methods share a common fundamental property with OFDM: each data packet is made up of a number of tones that are modulated by information symbols. In this tutorial article, we build a common framework based on the said OFDM principle and derive GFDM and C-FBMC waveforms from this point of view. This derivation provides a new prospective that facilitates straightforward understanding of channel equalization and the application of these new waveforms to MIMO channels. As a result, it also facilitates derivation of new structures for more efficient synthesis/analysis of these waveforms than those that have been reported in the literature.« less
Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa
2015-01-01
In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20-28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20-30%.
Phase noise suppression for coherent optical block transmission systems: a unified framework.
Yang, Chuanchuan; Yang, Feng; Wang, Ziyu
2011-08-29
A unified framework for phase noise suppression is proposed in this paper, which could be applied in any coherent optical block transmission systems, including coherent optical orthogonal frequency-division multiplexing (CO-OFDM), coherent optical single-carrier frequency-domain equalization block transmission (CO-SCFDE), etc. Based on adaptive modeling of phase noise, unified observation equations for different coherent optical block transmission systems are constructed, which lead to unified phase noise estimation and suppression. Numerical results demonstrate that the proposal is powerful in mitigating laser phase noise.
NASA Astrophysics Data System (ADS)
Gregorio, Fernando; Cousseau, Juan; Werner, Stefan; Riihonen, Taneli; Wichman, Risto
2011-12-01
The design of predistortion techniques for broadband multiple input multiple output-OFDM (MIMO-OFDM) systems raises several implementation challenges. First, the large bandwidth of the OFDM signal requires the introduction of memory effects in the PD model. In addition, it is usual to consider an imbalanced in-phase and quadrature (IQ) modulator to translate the predistorted baseband signal to RF. Furthermore, the coupling effects, which occur when the MIMO paths are implemented in the same reduced size chipset, cannot be avoided in MIMO transceivers structures. This study proposes a MIMO-PD system that linearizes the power amplifier response and compensates nonlinear crosstalk and IQ imbalance effects for each branch of the multiantenna system. Efficient recursive algorithms are presented to estimate the complete MIMO-PD coefficients. The algorithms avoid the high computational complexity in previous solutions based on least squares estimation. The performance of the proposed MIMO-PD structure is validated by simulations using a two-transmitter antenna MIMO system. Error vector magnitude and adjacent channel power ratio are evaluated showing significant improvement compared with conventional MIMO-PD systems.
An improved scheme for Flip-OFDM based on Hartley transform in short-range IM/DD systems.
Zhou, Ji; Qiao, Yaojun; Cai, Zhuo; Ji, Yuefeng
2014-08-25
In this paper, an improved Flip-OFDM scheme is proposed for IM/DD optical systems, where the modulation/demodulation processing takes advantage of the fast Hartley transform (FHT) algorithm. We realize the improved scheme in one symbol period while conventional Flip-OFDM scheme based on fast Fourier transform (FFT) in two consecutive symbol periods. So the complexity of many operations in improved scheme is half of that in conventional scheme, such as CP operation, polarity inversion and symbol delay. Compared to FFT with complex input constellation, the complexity of FHT with real input constellation is halved. The transmission experiment over 50-km SSMF has been realized to verify the feasibility of improved scheme. In conclusion, the improved scheme has the same BER performance with conventional scheme, but great superiority on complexity.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2008-09-15
We present two PMD compensation schemes suitable for use in multilevel (M>or=2) block-coded modulation schemes with coherent detection. The first scheme is based on a BLAST-type polarization-interference cancellation scheme, and the second scheme is based on iterative polarization cancellation. Both schemes use the LDPC codes as channel codes. The proposed PMD compensations schemes are evaluated by employing coded-OFDM and coherent detection. When used in combination with girth-10 LDPC codes those schemes outperform polarization-time coding based OFDM by 1 dB at BER of 10(-9), and provide two times higher spectral efficiency. The proposed schemes perform comparable and are able to compensate even 1200 ps of differential group delay with negligible penalty.
NASA Astrophysics Data System (ADS)
Chaudhary, Sushank; Amphawan, Angela
2017-11-01
In an attempt to meet the goal of distributing millimeter-wave (mm-wave) signals, recent years have witnessed significant relevance being given to combining radio frequency with optical fiber technologies. The future of radio-over-free-space-optics technology aims to build a universal platform for distributing millimeter waves for wireless local area networks without using expensive optical fibers. This work is focused on simultaneous transmission of four independent OFDM-based channels, each carrying 20 Gbps to 40 GHz data, by mode-division multiplexing of Laguerre-Gaussian mode with vortex lens and Hermite-Gaussian mode to realize a total transmission of 80 Gbps to 160 GHz data over 50-km free-space optical link. Moreover, the performance of the proposed system is also evaluated under the influence of various atmospheric turbulences, such as light fog, thin fog, and thick fog.
Transmission over UWB channels with OFDM system using LDPC coding
NASA Astrophysics Data System (ADS)
Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech
2009-06-01
Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.
NASA Astrophysics Data System (ADS)
Li, Dong-xia; Ye, Qian-wen
Out-of-band radiation suppression algorithm must be used efficiently for broadband aeronautical communication system in order not to interfere the operation of the existing systems in aviation L-Band. Based on the simple introduction of the broadband aeronautical multi-carrier communication (B-AMC) system model, several sidelobe suppression techniques in orthogonal frequency multiplexing (OFDM) system are presented and analyzed so as to find a suitable algorithm for B-AMC system in this paper. Simulation results show that raise-cosine function windowing can suppress the out-of-band radiation of B-AMC system effectively.
Constraints on drivers for visible light communications emitters based on energy efficiency.
Del Campo-Jimenez, Guillermo; Perez-Jimenez, Rafael; Lopez-Hernandez, Francisco Jose
2016-05-02
In this work we analyze the energy efficiency constraints on drivers for Visible light communication (VLC) emitters. This is the main reason why LED is becoming the main source of illumination. We study the effect of the waveform shape and the modulation techniques on the overall energy efficiency of an LED lamp. For a similar level of illumination, we calculate the emitter energy efficiency ratio η (PLED/PTOTAL) for different signals. We compare switched and sinusoidal signals and analyze the effect of both OOK and OFDM modulation techniques depending on the power supply adjustment, level of illumination and signal amplitude distortion. Switched and OOK signals present higher energy efficiency behaviors (0.86≤η≤0.95) than sinusoidal and OFDM signals (0.53≤η≤0.79).
Manimegalai, C T; Gauni, Sabitha; Kalimuthu, K
2017-12-04
Wireless body area network (WBAN) is a breakthrough technology in healthcare areas such as hospital and telemedicine. The human body has a complex mixture of different tissues. It is expected that the nature of propagation of electromagnetic signals is distinct in each of these tissues. This forms the base for the WBAN, which is different from other environments. In this paper, the knowledge of Ultra Wide Band (UWB) channel is explored in the WBAN (IEEE 802.15.6) system. The measurements of parameters in frequency range from 3.1-10.6 GHz are taken. The proposed system, transmits data up to 480 Mbps by using LDPC coded APSK Modulated Differential Space-Time-Frequency Coded MB-OFDM to increase the throughput and power efficiency.
Optical wireless communications: Theory and applications
NASA Astrophysics Data System (ADS)
Aminikashani, Mohammadreza
This dissertation focuses on optical communications having recently attracted sig- nificant attentions as a promising complementary technique for radio frequency (RF) in both short- and long-range communications. These systems offer signifi- cant technical and operational advantages such as higher capacity, virtually unlim- ited reuse, unregulated spectrum and robustness to electromagnetic interference. Optical wireless communication (OWC) can be used both indoors and outdoors. Part of the dissertation contains novel results on terrestrial free-space optical (FSO) communications. FSO communication is a line-of sight technique that uses lasers for high rate wireless communication over distances up to several kilometers. In comparison to RF counterparts, a FSO link has a very high optical bandwidth available, allowing aggregate data rates on the order of Tera bits per second (1 Tera bits per second is 1000 Giga bites per second). However, FSO suffers limitations. The major limitation of the terrestrial FSO communication systems is the atmo- spheric turbulence, which produces fluctuations in the irradiance of the transmitted optical beam, as a result of random variations in the refractive index through the link. The existence of atmospheric-induced turbulence degrades the performance of FSO links particularly with a transmission distance longer than 1 kilometer. The identification of a tractable probability density function (pdf) to describe at- mospheric turbulence under all irradiance fluctuation regimes is crucial in order to study the reliability of a terrestrial FSO system. This dissertation addresses this daunting problem and proposes a novel statistical model that accurately de- scribes turbulence-induced fading under all irradiance conditions and unifies most of the proposed statistical models derived until now in the literature. The proposed model is important for the research community working on FSO communications because it allows them to fully capitalize on the potentials of currently used FSO systems. Furthermore, utilizing this new statistical channel model, closed-form expressions for the diversity gain and the error rate performance of FSO links with spatial diversity are derived. In addition to addressing ways to improve outdoor FSO communication sys- tems, this dissertation addresses some major challenges in indoor visible light communication (VLC). VLC is an advantageous technique that is proposed for wireless indoor communications. In VLC systems, the existence of multiple paths between the transmitter and receiver causes multipath distortion, particularly in links using non-directional transmitters and receivers, or in links relying upon non-line of-sight propagation. This multipath distortion can lead to intersymbol interference (ISI) at high bit rates. Multicarrier modulation usually implemented by orthogonal frequency division multiplexing (OFDM) can be used to mitigate ISI and multipath dispersion. Nevertheless, the performance of VLC systems employing OFDM modulation is significantly affected by nonlinear characteristic of light-emitting diode (LED) due to the large peak-to-average power ratio (PAPR) of OFDM signal. In other words, signal amplitudes below the LED turn-on-voltage and above the LED saturation point are clipped. This dissertation targets these important issues and successfully addresses them by developing some techniques to reduce high PAPR of optical OFDM signal and determining the optimum operating characteristics of LEDs for combined lighting and communications applications. VLC can also provide a practical solution for indoor positioning as global po- sitioning system (GPS) does not provide an accurate and rapid indoor positioning since GPS radio signals are attenuated and scattered by walls of large buildings and other objects. A practical VLC system would be likely to deploy the same configuration for both positioning and communication purposes where high speed data rates are desired. This dissertation also proposes a novel OFDM VLC system that provides a high data rate transmission and can be used for both indoor positioning and communications where the multipath reflections are taken into account. Description of an experimental demonstration is also part of the dissertation where a software defined radio (SDR) was employed as the primary hardware and software interface to verify some of the results of the topics discussed earlier.
Du, Guanyao; Yu, Jianjun
2016-01-01
This paper investigates the system achievable rate for the multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system with an energy harvesting (EH) relay. Firstly we propose two protocols, time switching-based decode-and-forward relaying (TSDFR) and a flexible power splitting-based DF relaying (PSDFR) protocol by considering two practical receiver architectures, to enable the simultaneous information processing and energy harvesting at the relay. In PSDFR protocol, we introduce a temporal parameter to describe the time division pattern between the two phases which makes the protocol more flexible and general. In order to explore the system performance limit, we discuss the system achievable rate theoretically and formulate two optimization problems for the proposed protocols to maximize the system achievable rate. Since the problems are non-convex and difficult to solve, we first analyze them theoretically and get some explicit results, then design an augmented Lagrangian penalty function (ALPF) based algorithm for them. Numerical results are provided to validate the accuracy of our analytical results and the effectiveness of the proposed ALPF algorithm. It is shown that, PSDFR outperforms TSDFR to achieve higher achievable rate in such a MIMO-OFDM relaying system. Besides, we also investigate the impacts of the relay location, the number of antennas and the number of subcarriers on the system performance. Specifically, it is shown that, the relay position greatly affects the system performance of both protocols, and relatively worse achievable rate is achieved when the relay is placed in the middle of the source and the destination. This is different from the MIMO-OFDM DF relaying system without EH. Moreover, the optimal factor which indicates the time division pattern between the two phases in the PSDFR protocol is always above 0.8, which means that, the common division of the total transmission time into two equal phases in previous work applying PS-based receiver is not optimal.
NASA Astrophysics Data System (ADS)
Azim, Ali W.; Le Guennec, Yannis; Maury, Ghislaine
2018-05-01
Optical-orthogonal frequency division multiplexing (O-OFDM) is an effective scheme for visible light communications (VLC), offering a candid extension to multiple access (MA) scenarios, i.e., O-OFDMA. However, O-OFDMA exhibits high peak-to-average power ratio (PAPR), which exacerbates the non-linear distortions from the light emitting diode (LED). To overcome high PAPR while sustaining MA, optical-single-carrier frequency-division multiple access (O-SCFDMA) is used. For both O-OFDMA and O-SCFDMA, Hermitian symmetry (HS) constraint is imposed in frequency-domain (FD) to obtain a real-valued time-domain (TD) signal for intensity modulation-direct detection (IM-DD) implementation of VLC. Howbeit, HS results in an increase of PAPR for O-SCFDMA. In this regard, we propose HS free (HSF) O-SCFDMA (HSFO-SCFDMA). We compare HSFO-SCFDMA with several approaches in key parameters, such as, bit error rate (BER), optical power penalty, PAPR, quantization, electrical power efficiency and system complexity. BER performance and optical power penalty is evaluated considering multipath VLC channel and taking into account the bandwidth limitation of LED in combination with its optimized driver. It is illustrated that HSFO-SCFDMA outperforms other alternatives.
Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication
Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He, Jr-Hau; Ooi, Boon; DenBaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru
2015-01-01
An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10−3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems. PMID:26687289
Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication
NASA Astrophysics Data System (ADS)
Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He-Hau, Jr.; Ooi, Boon; Denbaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru
2015-12-01
An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10-3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems.
Wei, J L; Hugues-Salas, E; Giddings, R P; Jin, X Q; Zheng, X; Mansoor, S; Tang, J M
2010-05-10
Detailed numerical investigations are undertaken of wavelength reused bidirectional transmission of adaptively modulated optical OFDM (AMOOFDM) signals over a single SMF in a colorless WDM-PON incorporating a semiconductor optical amplifier (SOA) intensity modulator and a reflective SOA (RSOA) intensity modulator in the optical line termination and optical network unit, respectively. A comprehensive theoretical model describing the performance of such network scenarios is, for the first time, developed, taking into account dynamic optical characteristics of SOA and RSOA intensity modulators as well as the effects of Rayleigh backscattering (RB) and residual downstream signal-induced crosstalk. The developed model is rigorously verified experimentally in RSOA-based real-time end-to-end OOFDM systems at 7.5 Gb/s. It is shown that the RB noise and crosstalk effects are dominant factors limiting the maximum achievable downstream and upstream transmission performance. Under optimum SOA and RSOA operating conditions as well as practical downstream and upstream optical launch powers, 10 Gb/s downstream and 6 Gb/s upstream over 40 km SMF transmissions of conventional double sideband AMOOFDM signals are feasible without utilizing in-line optical amplification and chromatic dispersion compensation. In particular, the aforementioned transmission performance can be improved to 23 Gb/s downstream and 8 Gb/s upstream over 40 km SMFs when single sideband subcarrier modulation is adopted in the downstream systems. (c) 2010 Optical Society of America.
On MIMO-UFMC in the Presence of Phase Noise and Antenna Mutual Coupling
NASA Astrophysics Data System (ADS)
Chen, Xiaoming; Zhang, Shuai; Zhang, Anxue
2017-11-01
The universal filtered multicarrier (UFMC) technique has been proposed as a waveform candidate for the fifth generation (5G) communications and beyond 5G. Compared with conventional orthogonal frequency division multiplexing (OFDM), UFMC has lower out-of-band emission and is also compatible with the multiple-input multiple-output (MIMO) technique. However, like other multicarrier waveforms, it suffers from phase noise of imperfect oscillator. In contrast to the rich literature on phase noise effect on MIMO-OFDM (where the antenna mutual coupling effect is usually omitted though), there is little work investigating the phase noise effect on MIMO-UFMC. In this paper, we study the MIMO-UFMC systems in the presence of phase noise and with/without mutual coupling effect. A phase noise mitigation scheme for MIMO-UFMC systems is presented. The scheme does not require detailed knowledge of the phase noise statistics and can effectively mitigate the phase noise within each UFMC symbol. Moreover, it is shown that at small antenna separations, the performance of the MIMO-UFMC system taking the mutual coupling effect into account is better than that when the mutual coupling effect is overlooked.
Energy efficient lighting and communications
NASA Astrophysics Data System (ADS)
Zhou, Z.; Kavehrad, M.; Deng, P.
2012-01-01
As Light-Emitting Diode (LED)'s increasingly displace incandescent lighting over the next few years, general applications of Visible Light Communication (VLC) technology are expected to include wireless internet access, vehicle-to-vehicle communications, broadcast from LED signage, and machine-to-machine communications. An objective in this paper is to reveal the influence of system parameters on the power distribution and communication quality, in a general plural sources VLC system. It is demonstrated that sources' Half-Power Angles (HPA), receivers' Field-Of Views (FOV), sources layout and the power distribution among sources are significant impact factors. Based on our findings, we developed a method to adaptively change working status of each LED respectively according to users' locations. The program minimizes total power emitted while simultaneously ensuring sufficient light intensity and communication quality for each user. The paper also compares Orthogonal Frequency-Division Multiplexing (OFDM) and On-Off Keying (OOK) signals performance in indoor optical wireless communications. The simulation is carried out for different locations where different impulse response distortions are experienced. OFDM seems a better choice than prevalent OOK for indoor VLC due to its high resistance to multi-path effect and delay spread. However, the peak-to-average power limitations of the method must be investigated for lighting LEDs.
Ma, Yongtao; Zhou, Liuji; Liu, Kaihua
2013-01-01
The paper presents a joint subcarrier-pair based resource allocation algorithm in order to improve the efficiency and fairness of cooperative multiuser orthogonal frequency division multiplexing (MU-OFDM) cognitive radio (CR) systems. A communication model where one source node communicates with one destination node assisted by one half-duplex decode-and-forward (DF) relay is considered in the paper. An interference-limited environment is considered, with the constraint of transmitted sum-power over all channels and aggregate average interference towards multiple primary users (PUs). The proposed resource allocation algorithm is capable of maximizing both the system transmission efficiency and fairness among secondary users (SUs). Besides, the proposed algorithm can also keep the interference introduced to the PU bands below a threshold. A proportional fairness constraint is used to assure that each SU can achieve a required data rate, with quality of service guarantees. Moreover, we extend the analysis to the scenario where each cooperative SU has no channel state information (CSI) about non-adjacent links. We analyzed the throughput and fairness tradeoff in CR system. A detailed analysis of the performance of the proposed algorithm is presented with the simulation results. PMID:23939586
An introduction to digital modulation and OFDM techniques
NASA Astrophysics Data System (ADS)
Maddocks, M. C. D.
This report differs from most BBC Research Department reports in that it does not contain details of a specific project undertaken at Kingswood Warren. While there has been a continuing development of aspects of digital modulation systems by BBC research engineers over many years, the purpose of this report is to be tutorial. That is, digital transmission techniques need to be explained in a general way if full advantage is to be obtained from other reports concerning digital broadcasting transmission systems. There are, however, references to other specialized publications if particular details are required. The text of this report is based on a paper which was prepared for an Institution of Electrical Engineers' vacation school on new broadcast standards and systems. It discusses, at a general level, the various issues and trade-offs that must be considered in the design of a digital modulation system for broadcast use. It particularly concentrates on giving a simple description of the use and benefits of OFDM systems. The particular issues can be applied to various future broadcast systems which are under development at the BBC and as part of collaborative work in international projects.
Advanced Code-Division Multiplexers for Superconducting Detector Arrays
NASA Astrophysics Data System (ADS)
Irwin, K. D.; Cho, H. M.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Niemack, M. D.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Vale, L. R.
2012-06-01
Multiplexers based on the modulation of superconducting quantum interference devices are now regularly used in multi-kilopixel arrays of superconducting detectors for astrophysics, cosmology, and materials analysis. Over the next decade, much larger arrays will be needed. These larger arrays require new modulation techniques and compact multiplexer elements that fit within each pixel. We present a new in-focal-plane code-division multiplexer that provides multiplexing elements with the required scalability. This code-division multiplexer uses compact lithographic modulation elements that simultaneously multiplex both signal outputs and superconducting transition-edge sensor (TES) detector bias voltages. It eliminates the shunt resistor used to voltage bias TES detectors, greatly reduces power dissipation, allows different dc bias voltages for each TES, and makes all elements sufficiently compact to fit inside the detector pixel area. These in-focal plane code-division multiplexers can be combined with multi-GHz readout based on superconducting microresonators to scale to even larger arrays.
NASA Astrophysics Data System (ADS)
He, Jing; Dai, Min; Chen, Qinghui; Deng, Rui; Xiang, Changqing; Chen, Lin
2017-07-01
In this paper, an effective bit-loading combined with adaptive LDPC code rate algorithm is proposed and investigated in software reconfigurable multiband UWB over fiber system. To compensate the power fading and chromatic dispersion for the high frequency of multiband OFDM UWB signal transmission over standard single mode fiber (SSMF), a Mach-Zehnder modulator (MZM) with negative chirp parameter is utilized. In addition, the negative power penalty of -1 dB for 128 QAM multiband OFDM UWB signal are measured at the hard-decision forward error correction (HD-FEC) limitation of 3.8 × 10-3 after 50 km SSMF transmission. The experimental results show that, compared to the fixed coding scheme with the code rate of 75%, the signal-to-noise (SNR) is improved by 2.79 dB for 128 QAM multiband OFDM UWB system after 100 km SSMF transmission using ALCR algorithm. Moreover, by employing bit-loading combined with ALCR algorithm, the bit error rate (BER) performance of system can be further promoted effectively. The simulation results present that, at the HD-FEC limitation, the value of Q factor is improved by 3.93 dB at the SNR of 19.5 dB over 100 km SSMF transmission, compared to the fixed modulation with uncoded scheme at the same spectrum efficiency (SE).
Demi, Libertario; Verweij, Martin D; Van Dongen, Koen W A
2012-11-01
Real-time 2-D or 3-D ultrasound imaging systems are currently used for medical diagnosis. To achieve the required data acquisition rate, these systems rely on parallel beamforming, i.e., a single wide-angled beam is used for transmission and several narrow parallel beams are used for reception. When applied to harmonic imaging, the demand for high-amplitude pressure wave fields, necessary to generate the harmonic components, conflicts with the use of a wide-angled beam in transmission because this results in a large spatial decay of the acoustic pressure. To enhance the amplitude of the harmonics, it is preferable to do the reverse: transmit several narrow parallel beams and use a wide-angled beam in reception. Here, this concept is investigated to determine whether it can be used for harmonic imaging. The method proposed in this paper relies on orthogonal frequency division multiplexing (OFDM), which is used to create distinctive parallel beams in transmission. To test the proposed method, a numerical study has been performed, in which the transmit, receive, and combined beam profiles generated by a linear array have been simulated for the second-harmonic component. Compared with standard parallel beamforming, application of the proposed technique results in a gain of 12 dB for the main beam and in a reduction of the side lobes. Experimental verification in water has also been performed. Measurements obtained with a single-element emitting transducer and a hydrophone receiver confirm the possibility of exciting a practical ultrasound transducer with multiple Gaussian modulated pulses, each having a different center frequency, and the capability to generate distinguishable second-harmonic components.
Energy Efficiency Maximization of Practical Wireless Communication Systems
NASA Astrophysics Data System (ADS)
Eraslan, Eren
Energy consumption of the modern wireless communication systems is rapidly growing due to the ever-increasing data demand and the advanced solutions employed in order to address this demand, such as multiple-input multiple-output (MIMO) and orthogonal frequency division multiplexing (OFDM) techniques. These MIMO systems are power hungry, however, they are capable of changing the transmission parameters, such as number of spatial streams, number of transmitter/receiver antennas, modulation, code rate, and transmit power. They can thus choose the best mode out of possibly thousands of modes in order to optimize an objective function. This problem is referred to as the link adaptation problem. In this work, we focus on the link adaptation for energy efficiency maximization problem, which is defined as choosing the optimal transmission mode to maximize the number of successfully transmitted bits per unit energy consumed by the link. We model the energy consumption and throughput performances of a MIMO-OFDM link and develop a practical link adaptation protocol, which senses the channel conditions and changes its transmission mode in real-time. It turns out that the brute force search, which is usually assumed in previous works, is prohibitively complex, especially when there are large numbers of transmit power levels to choose from. We analyze the relationship between the energy efficiency and transmit power, and prove that energy efficiency of a link is a single-peaked quasiconcave function of transmit power. This leads us to develop a low-complexity algorithm that finds a near-optimal transmit power and take this dimension out of the search space. We further prune the search space by analyzing the singular value decomposition of the channel and excluding the modes that use higher number of spatial streams than the channel can support. These algorithms and our novel formulations provide simpler computations and limit the search space into a much smaller set; hence reducing the computational complexity by orders of magnitude without sacrificing the performance. The result of this work is a highly practical link adaptation protocol for maximizing the energy efficiency of modern wireless communication systems. Simulation results show orders of magnitude gain in the energy efficiency of the link. We also implemented the link adaptation protocol on real-time MIMO-OFDM radios and we report on the experimental results. To the best of our knowledge, this is the first reported testbed that is capable of performing energy-efficient fast link adaptation using PHY layer information.
Batshon, Hussam G; Djordjevic, Ivan; Schmidt, Ted
2010-09-13
We propose a subcarrier-multiplexed four-dimensional LDPC bit-interleaved coded modulation scheme that is capable of achieving beyond 480 Gb/s single-channel transmission rate over optical channels. Subcarrier-multiplexed four-dimensional LDPC coded modulation scheme outperforms the corresponding dual polarization schemes by up to 4.6 dB in OSNR at BER 10(-8).
Zhou, Xian; Zhong, Kangping; Gao, Yuliang; Sui, Qi; Dong, Zhenghua; Yuan, Jinhui; Wang, Liang; Long, Keping; Lau, Alan Pak Tao; Lu, Chao
2015-04-06
Discrete multi-tone (DMT) modulation is an attractive modulation format for short-reach applications to achieve the best use of available channel bandwidth and signal noise ratio (SNR). In order to realize polarization-multiplexed DMT modulation with direct detection, we derive an analytical transmission model for dual polarizations with intensity modulation and direct diction (IM-DD) in this paper. Based on the model, we propose a novel polarization-interleave-multiplexed DMT modulation with direct diction (PIM-DMT-DD) transmission system, where the polarization de-multiplexing can be achieved by using a simple multiple-input-multiple-output (MIMO) equalizer and the transmission performance is optimized over two distinct received polarization states to eliminate the singularity issue of MIMO demultiplexing algorithms. The feasibility and effectiveness of the proposed PIM-DMT-DD system are investigated via theoretical analyses and simulation studies.
Multicarrier orthogonal spread-spectrum (MOSS) data communications
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2008-01-01
Systems and methods are described for multicarrier orthogonal spread-spectrum (MOSS) data communication. A method includes individually spread-spectrum modulating at least two of a set of orthogonal frequency division multiplexed carriers, wherein the resulting individually spread-spectrum modulated at least two of a set of orthogonal frequency division multiplexed carriers are substantially mutually orthogonal with respect to both frequency division multiplexing and spread-spectrum modulation.
Underwater Acoustic Propagation and Communications: A Coupled Research Program
2015-06-15
coding technique suitable for both SIMO and MIMO systems. 4. an adaptive OFDM modulation technique, whereby the transmitter acts in response to...timate based adaptation for SIMO and MIMO systems in a interactive turbo-equalization framework were developed and analyzed. MIMO and SISO
Multicarrier airborne ultrasound transmission with piezoelectric transducers.
Ens, Alexander; Reindl, Leonhard M
2015-05-01
In decentralized localization systems, the received signal has to be assigned to the sender. Therefore, longrange airborne ultrasound communication enables the transmission of an identifier of the sender within the ultrasound signal to the receiver. Further, in areas with high electromagnetic noise or electromagnetic free areas, ultrasound communication is an alternative. Using code division multiple access (CDMA) to transmit data is ineffective in rooms due to high echo amplitudes. Further, piezoelectric transducers generate a narrow-band ultrasound signal, which limits the data rate. This work shows the use of multiple carrier frequencies in orthogonal frequency division multiplex (OFDM) and differential quadrature phase shift keying modulation with narrowband piezoelectric devices to achieve a packet length of 2.1 ms. Moreover, the adapted channel coding increases data rate by correcting transmission errors. As a result, a 2-carrier ultrasound transmission system on an embedded system achieves a data rate of approximately 5.7 kBaud. Within the presented work, a transmission range up to 18 m with a packet error rate (PER) of 13% at 10-V supply voltage is reported. In addition, the transmission works up to 22 m with a PER of 85%. Moreover, this paper shows the accuracy of the frame synchronization over the distance. Consequently, the system achieves a standard deviation of 14 μs for ranges up to 10 m.
NASA Astrophysics Data System (ADS)
Zhong, Ke; Lei, Xia; Li, Shaoqian
2013-12-01
Statistics-based intercarrier interference (ICI) mitigation algorithm is proposed for orthogonal frequency division multiplexing systems in presence of both nonstationary and stationary phase noises. By utilizing the statistics of phase noise, which can be obtained from measurements or data sheets, a Wiener filter preprocessing algorithm for ICI mitigation is proposed. The proposed algorithm can be regarded as a performance-improving technique for the previous researches on phase noise cancelation. Simulation results show that the proposed algorithm can effectively mitigate ICI and lower the error floor, and therefore significantly improve the performances of previous researches on phase noise cancelation, especially in the presence of severe phase noise.
Network based management for multiplexed electric vehicle charging
Gadh, Rajit; Chung, Ching Yen; Qui, Li
2017-04-11
A system for multiplexing charging of electric vehicles, comprising a server coupled to a plurality of charging control modules over a network. Each of said charging modules being connected to a voltage source such that each charging control module is configured to regulate distribution of voltage from the voltage source to an electric vehicle coupled to the charging control module. Data collection and control software is provided on the server for identifying a plurality of electric vehicles coupled to the plurality of charging control modules and selectively distributing charging of the plurality of charging control modules to multiplex distribution of voltage to the plurality of electric vehicles.
Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki
2014-01-01
Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics.
Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki
2014-01-01
Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics. PMID:25089286
NASA Astrophysics Data System (ADS)
Medjahdi, Yahia; Terré, Michel; Ruyet, Didier Le; Roviras, Daniel
2014-12-01
In this paper, we investigate the impact of timing asynchronism on the performance of multicarrier techniques in a spectrum coexistence context. Two multicarrier schemes are considered: cyclic prefix-based orthogonal frequency division multiplexing (CP-OFDM) with a rectangular pulse shape and filter bank-based multicarrier (FBMC) with physical layer for dynamic spectrum access and cognitive radio (PHYDYAS) and isotropic orthogonal transform algorithm (IOTA) waveforms. First, we present the general concept of the so-called power spectral density (PSD)-based interference tables which are commonly used for multicarrier interference characterization in spectrum sharing context. After highlighting the limits of this approach, we propose a new family of interference tables called `instantaneous interference tables'. The proposed tables give the interference power caused by a given interfering subcarrier on a victim one, not only as a function of the spectral distance separating both subcarriers but also with respect to the timing misalignment between the subcarrier holders. In contrast to the PSD-based interference tables, the accuracy of the proposed tables has been validated through different simulation results. Furthermore, due to the better frequency localization of both PHYDYAS and IOTA waveforms, FBMC technique is demonstrated to be more robust to timing asynchronism compared to OFDM one. Such a result makes FBMC a potential candidate for the physical layer of future cognitive radio systems.
An OFDM System Using Polyphase Filter and DFT Architecture for Very High Data Rate Applications
NASA Technical Reports Server (NTRS)
Kifle, Muli; Andro, Monty; Vanderaar, Mark J.
2001-01-01
This paper presents a conceptual architectural design of a four-channel Orthogonal Frequency Division Multiplexing (OFDM) system with an aggregate information throughput of 622 megabits per second (Mbps). Primary emphasis is placed on the generation and detection of the composite waveform using polyphase filter and Discrete Fourier Transform (DFT) approaches to digitally stack and bandlimit the individual carriers. The four-channel approach enables the implementation of a system that can be both power and bandwidth efficient, yet enough parallelism exists to meet higher data rate goals. It also enables a DC power efficient transmitter that is suitable for on-board satellite systems, and a moderately complex receiver that is suitable for low-cost ground terminals. The major advantage of the system as compared to a single channel system is lower complexity and DC power consumption. This is because the highest sample rate is half that of the single channel system and synchronization can occur at most, depending on the synchronization technique, a quarter of the rate of a single channel system. The major disadvantage is the increased peak-to-average power ratio over the single channel system. Simulation results in a form of bit-error-rate (BER) curves are presented in this paper.
Coexistencia e integracion de comunicaciones inalambricas en sistemas de transmision opticos
NASA Astrophysics Data System (ADS)
Perez Soler, Joaquin
Current network and telecommunication systems are required to provide higher data rates in access networks to an increasing number of users. This fact is mainly due to the increase in the Internet traffic data, which is related with the higher demand of online videogames and software, the increased complexity in the content of web pages, the joint distribution of audio-visual and added-value online content, and the introduction of high-definition services and contents such as video on demand, as a result of a society increasingly more interconnected. In order to satisfy these higher data rates requirements, new techniques for the joint distribution of several wireless communication systems are proposed in this Thesis. The aim of these techniques is to facilitate the deployment of an integrated access network at the customer premises, enabling the integration of optical transmission over an optical access network and radio-frequency transmission in the same infrastructure. Two main wireless communication systems are considered in this Thesis, WiMAX (Worldwide Interoperability for Microwave Access) and UWB (Ultra-Wide Band) according to WiMedia Alliance recommendation. Comparing the bit rate and expected range, WiMAX and UWB are complementary radio technologies expected to coexist in a near future in integrated access networks. The optical access network considered in this Thesis can be regarded as a FTTH network (Fibre-to-the-Home). The wireless signals are natively transmitted over optical network, that is, without frequency upconversion and remodulation stages, over one or several optical carriers. This technology, which is known as Radio-over-Fibre (RoF), is well suited for integrated access networks. First, the requirements for the wireless convergence of services based on Multi-Band Orthogonal-Frequency Division-Multiplexing UWB (MB-OFDM UWB) and WiMAX 802.16e in Wireless Personal Area Networks (WPAN) are stated. The aim of this study is to provide relevant protection margins in order to ensure the coexistence between both technologies. The obtained protection margins are of great interest for the development of advanced interference mitigation techniques such as DAA (Detect-and-Avoid), in the framework of future cognitive radio technologies. In a second step, the wireless coexistence of MB-OFDM UWB and WiMAX technologies is analyzed from the point of view of access networks based on RoF systems. Two experimental field trials are here carried out. In the first one, the wireless convergence is evaluated in a multi-mode fibre RoF system, whereas in the second one, the RoF system is based on a standard single-mode fibre. These experimental results provide relevant fibre link transmission distances to enable the deployment of RoF networks. Moreover, a new optical transmission technique based on polarization division multiplexing is proposed and experimentally evaluated in order to ensure the wireless coexistence in RoF systems. Finally, the impact of the electro-optical Mach-Zehnder modulator is analyzed, since the dynamic range of this device limits the performance of the RoF system. Moreover, a new optical linearization technique for Mach-Zehnder modulators is proposed and evaluated in order to overcome this limitation.
Active Cooperation Between Primary Users and Cognitive Radio Users in Heterogeneous Ad-Hoc Networks
2012-04-01
processing to wireless communications and networking, including space-time coding and modulation for MIMO wireless communications, MIMO - OFDM systems, and...multiinput-multioutput ( MIMO ) system that can significantly increase the link capacity and realize a new form of spatial diversity which has been termed
NASA Astrophysics Data System (ADS)
Liu, Yan; Deng, Honggui; Ren, Shuang; Tang, Chengying; Qian, Xuewen
2018-01-01
We propose an efficient partial transmit sequence technique based on genetic algorithm and peak-value optimization algorithm (GAPOA) to reduce high peak-to-average power ratio (PAPR) in visible light communication systems based on orthogonal frequency division multiplexing (VLC-OFDM). By analysis of hill-climbing algorithm's pros and cons, we propose the POA with excellent local search ability to further process the signals whose PAPR is still over the threshold after processed by genetic algorithm (GA). To verify the effectiveness of the proposed technique and algorithm, we evaluate the PAPR performance and the bit error rate (BER) performance and compare them with partial transmit sequence (PTS) technique based on GA (GA-PTS), PTS technique based on genetic and hill-climbing algorithm (GH-PTS), and PTS based on shuffled frog leaping algorithm and hill-climbing algorithm (SFLAHC-PTS). The results show that our technique and algorithm have not only better PAPR performance but also lower computational complexity and BER than GA-PTS, GH-PTS, and SFLAHC-PTS technique.
NASA Astrophysics Data System (ADS)
Raptis, Nikos; Pikasis, Evangelos; Syvridis, Dimitris
2016-10-01
For several years, it has been examined if the attributes of the wavelengths in C band of the Ultraviolet (UV) spectrum that lie between 200 and 280 nm can be exploited in order to set up short range covert links of low rate in a Non-Line-of-Sight (NLOS) regime. In the present work, it is experimentally investigated and verified that using this band, short range and low rate NLOS links using the same transmitter/receiver pair under different atmospheric conditions without applying extreme power levels can be implemented rather effectively. The transmitter was composed of four Light Emitting Diodes. At the receiving side, an optical filter was followed by a Photo-Multiplier Tube. Initially, we measured the power losses of the channels with and without fog (artificially generated) for ranges up to 20 meters and several transmitters/receiver configurations. Secondly, the performance of Fourth-order Pulse Position Modulation (4-PPM) and Flip Orthogonal Frequency Division Multiplexing (Flip-OFDM) was evaluated for such channels and 10 Kbit/s rate. Applying emissions at 265 nm, NLOS links can operate efficiently especially in harsh environments, as the power losses were lowered when fog appeared. In terms of the modulation formats, 4-PPM performed better in most cases. Better results were obtained for both schemes when the medium became thicker due to the presence of fog. Finally, some initial measurements were realized with a Silicon Carbide PiN photodiode for the same rate but low elevation angles. The performance was exactly the opposite compared to a receiver with inherent gain when the atmosphere thickened.
Indoor Airborne Ultrasonic Wireless Communication Using OFDM Methods.
Jiang, Wentao; Wright, William M D
2017-09-01
Concerns still exist over the safety of prolonged exposure to radio frequency (RF) wireless transmissions and there are also potential data security issues due to remote signal interception techniques such as Bluesniping. Airborne ultrasound may be used as an alternative to RF for indoor wireless communication systems for securely transmitting data over short ranges, as signals are difficult to intercept from outside the room. Two types of air-coupled capacitive ultrasonic transducer were used in the implementation of an indoor airborne wireless communication system. One was a commercially available SensComp series 600 ultrasonic transducer with a nominal frequency of 50 kHz, and the other was a prototype transducer with a high- k dielectric layer operating at higher frequencies from 200 to 400 kHz. Binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), and quadrature amplitude modulation (QAM)-based orthogonal frequency division multiplexing modulation methods were successfully implemented using multiple orthogonal subchannels. The modulated ultrasonic signal packets were synchronized using a wireless link, and a least-squares channel estimation algorithm was used to compensate the phase and amplitude distortion introduced by the air channel. By sending and receiving the ultrasonic signals using the SensComp transducers, the achieved maximum system data rate was up to 180 kb/s using 16-QAM with ultrasonic channels from 55 to 99 kHz, over a line-of-sight transmission distance of 6 m with no detectable errors. The transmission range could be extended to 9 and 11 m using QPSK and BPSK modulation schemes, respectively. The achieved data rates for the QPSK and BPSK schemes were 90 and 45 kb/s using the same bandwidth. For the high- k ultrasonic transducers, a maximum data rate up to 800 kb/s with no measurable errors was achieved up to a range of 0.7 m. The attainable transmission ranges were increased to 1.1 and 1.2 m with data rates of 400 and 200 kb/s using QPSK and BPSK, respectively.
An efficient multiplexing approach for adaptive aircraft communications via a relay satellite.
NASA Technical Reports Server (NTRS)
Devieux, C.; Bisaga, J. J.
1973-01-01
Description of a coherent wide-angle multiplexing approach which is 4 to 8 dB more efficient in the utilization of satellite power as compared to a multicarrier transmission accessing a single TWT amplifier transponder. The wide-angle multiplexing approach achieves this performance by efficiently trading the modulation power improvement against backoff at the satellite earth terminal phase modulator. A simple addition of an amplitude clipper at the modulator input is critical to the proper operation of the system.
Optical chirp z-transform processor with a simplified architecture.
Ngo, Nam Quoc
2014-12-29
Using a simplified chirp z-transform (CZT) algorithm based on the discrete-time convolution method, this paper presents the synthesis of a simplified architecture of a reconfigurable optical chirp z-transform (OCZT) processor based on the silica-based planar lightwave circuit (PLC) technology. In the simplified architecture of the reconfigurable OCZT, the required number of optical components is small and there are no waveguide crossings which make fabrication easy. The design of a novel type of optical discrete Fourier transform (ODFT) processor as a special case of the synthesized OCZT is then presented to demonstrate its effectiveness. The designed ODFT can be potentially used as an optical demultiplexer at the receiver of an optical fiber orthogonal frequency division multiplexing (OFDM) transmission system.
Experimental implant communication of high data rate video using an ultra wideband radio link.
Chávez-Santiago, Raúl; Balasingham, Ilangko; Bergsland, Jacob; Zahid, Wasim; Takizawa, Kenichi; Miura, Ryu; Li, Huan-Bang
2013-01-01
Ultra wideband (UWB) is one of the radio technologies adopted by the IEEE 802.15.6™-2012 standard for on-body communication in body area networks (BANs). However, a number of simulation-based studies suggest the feasibility of using UWB for high data rate implant communication too. This paper presents an experimental verification of said predictions. We carried out radio transmissions of H.264/1280×720 pixels video at 80 Mbps through a UWB multiband orthogonal frequency division multiplexing (MB-OFDM) interface in a porcine chirurgical model. The results demonstrated successful transmission up to a maximum depth of 30 mm in the abdomen and 33 mm in the thorax within the 4.2-4.8 GHz frequency band.
Variable length adjacent partitioning for PTS based PAPR reduction of OFDM signal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibraheem, Zeyid T.; Rahman, Md. Mijanur; Yaakob, S. N.
2015-05-15
Peak-to-Average power ratio (PAPR) is a major drawback in OFDM communication. It leads the power amplifier into nonlinear region operation resulting into loss of data integrity. As such, there is a strong motivation to find techniques to reduce PAPR. Partial Transmit Sequence (PTS) is an attractive scheme for this purpose. Judicious partitioning the OFDM data frame into disjoint subsets is a pivotal component of any PTS scheme. Out of the existing partitioning techniques, adjacent partitioning is characterized by an attractive trade-off between cost and performance. With an aim of determining effects of length variability of adjacent partitions, we performed anmore » investigation into the performances of a variable length adjacent partitioning (VL-AP) and fixed length adjacent partitioning in comparison with other partitioning schemes such as pseudorandom partitioning. Simulation results with different modulation and partitioning scenarios showed that fixed length adjacent partition had better performance compared to variable length adjacent partitioning. As expected, simulation results showed a slightly better performance of pseudorandom partitioning technique compared to fixed and variable adjacent partitioning schemes. However, as the pseudorandom technique incurs high computational complexities, adjacent partitioning schemes were still seen as favorable candidates for PAPR reduction.« less
Tricolor R/G/B Laser Diode Based Eye-Safe White Lighting Communication Beyond 8 Gbit/s.
Wu, Tsai-Chen; Chi, Yu-Chieh; Wang, Huai-Yung; Tsai, Cheng-Ting; Huang, Yu-Fang; Lin, Gong-Ru
2017-01-31
White light generation by mixing red, green, and blue laser diodes (RGB LDs) was demonstrated with Commission International de l'Eclairage coordinates of (0.2928, 0.2981), a correlated color temperature of 8382 K, and a color rendering index of 54.4 to provide a maximal illuminance of 7540 lux. All the white lights generated using RGB LDs were set within the risk group-1 criterion to avoid the blue-light hazard to human eyes. In addition, the RGB-LD mixed white light was diffused using a frosted glass to avoid optical aberration and to improve the performance of the lighting source. In addition, visible light communication (VLC) by using RGB-LD mixed white-light carriers and a point-to-point scheme over 1 m was performed in the directly modulated 16-QAM OFDM data format. In back-to-back transmission, the maximal allowable data rate at 10.8, 10.4, and 8 Gbps was determined for R, G, and B LDs, respectively. Moreover, the RGB-LD mixed white light-based indoor wavelength-division multiplexing (WDM)-VLC system yielded a total allowable transmission data rate of 8.8 Gbps over 0.5 m in free space. Such a high-speed RGB-LD mixed WDM-VLC system without any channel interference can be used to simultaneously provide data transmission and white lighting in an indoor environment.
Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks.
Chen, Yuanxiang; Li, Juhao; Zhu, Paikun; Wu, Zhongying; Zhou, Peng; Tian, Yu; Ren, Fang; Yu, Jinyi; Ge, Dawei; Chen, Jingbiao; He, Yongqi; Chen, Zhangyuan
2015-12-14
In this paper, we propose a cost-effective, energy-saving mode-division-multiplexing passive optical network (MDM-PON) scheme utilizing self-homodyne detection for high-speed/capacity access network based on low modal-crosstalk few-mode fiber (FMF) and all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). In the proposed scheme, one of the spatial modes is used to transmit a portion of signal carrier (namely pilot-tone) as the local oscillator (LO), while the others are used for signal-bearing channels. At the receiver, the pilot-tone and the signal can be separated without strong crosstalk and sent to the receiver for coherent detection. The spectral efficiency (SE) is significantly enhanced when multiple spatial channels are used. Meanwhile, the self-homodyne detection scheme can effectively suppress laser phase noise, which relaxes the requirement for the lasers line-width at the optical line terminal or optical network units (OLT/ONUs). The digital signal processing (DSP) at the receiver is also simplified since it removes the need for frequency offset compensation and complex phase correction, which reduces the computational complexity and energy consumption. Polarization division multiplexing (PDM) that offers doubled SE is also supported by the scheme. The proposed scheme is scalable to multi-wavelength application when wavelength MUX/DEMUX is utilized. Utilizing the proposed scheme, we demonstrate a proof of concept 4 × 40-Gb/s orthogonal frequency division multiplexing (OFDM) transmission over 55-km FMF using low modal-crosstalk two-mode FMF and MUX/DEMUX with error free operation. Compared with back to back case, less than 1-dB Q-factor penalty is observed after 55-km FMF of the four channels. Signal power and pilot-tone power are also optimized to achieve the optimal transmission performance.
A Hybrid OFDM-TDM Architecture with Decentralized Dynamic Bandwidth Allocation for PONs
Cevik, Taner
2013-01-01
One of the major challenges of passive optical networks is to achieve a fair arbitration mechanism that will prevent possible collisions from occurring at the upstream channel when multiple users attempt to access the common fiber at the same time. Therefore, in this study we mainly focus on fair bandwidth allocation among users, and present a hybrid Orthogonal Frequency Division Multiplexed/Time Division Multiplexed architecture with a dynamic bandwidth allocation scheme that provides satisfying service qualities to the users depending on their varying bandwidth requirements. Unnecessary delays in centralized schemes occurring during bandwidth assignment stage are eliminated by utilizing a decentralized approach. Instead of sending bandwidth demands to the optical line terminal (OLT) which is the only competent authority, each optical network unit (ONU) runs the same bandwidth demand determination algorithm. ONUs inform each other via signaling channel about the status of their queues. This information is fed to the bandwidth determination algorithm which is run by each ONU in a distributed manner. Furthermore, Light Load Penalty, which is a phenomenon in optical communications, is mitigated by limiting the amount of bandwidth that an ONU can demand. PMID:24194684
Status of the Direct Data Distribution (D(exp 3)) Experiment
NASA Technical Reports Server (NTRS)
Wald, Lawrence
2001-01-01
NASA Glenn Research Center's Direct Data Distribution (D3) project will demonstrate an advanced, high-performance communications system that transmits information from an advanced technology payload carried by a NASA spacecraft in low Earth orbit (LEO) to a small receiving terminal on Earth. The space-based communications package will utilize a solid-state, K-band phased-array antenna that electronically steers the radiated energy beam toward a low-cost, tracking ground terminal, thereby providing agile, vibration-free, electronic steering at reduced size and weight with increased reliability. The array-based link will also demonstrate new digital processing technology that will allow the transmission of substantially increased amounts of latency-tolerant data collected from the LEO spacecraft directly to NASA field centers, principal investigators, or into the commercial terrestrial communications network. The technologies demonstrated by D3 will facilitate NASA's transition from using Government-owned communication assets to using commercial communication services. The hardware for D3 will incorporate advanced technology components developed under the High Rate Data Delivery (HRDD) Thrust Area of NASA's Office of Aerospace Technology Space Base Program at Glenn's Communications Technology Division. The flight segment components will include the electrically steerable phased-array antenna, which is being built by the Raytheon System Corporation and utilizes monolithic microwave integrated circuit (MMIC) technology operating at 19.05 GHz; and the digital encoder/modulator chipset, which uses four-channel orthogonal frequency division multiplexing (OFDM). The encoder/modulator will use a chipset developed by SICOM, Inc., which is both bandwidth and power efficient. The ground segment components will include a low-cost, open-loop tracking ground terminal incorporating a cryoreceiver to minimize terminal size without compromising receiver capability. The project is planning to hold a critical design review in the second quarter of fiscal year 2002.
Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koopman, R P; Langlois, R G; Nasarabadi, S
2002-04-17
This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flowmore » cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.« less
LiFi: transforming fibre into wireless
NASA Astrophysics Data System (ADS)
Yin, Liang; Islim, Mohamed Sufyan; Haas, Harald
2017-01-01
Light-fidelity (LiFi) uses energy-efficient light-emitting diodes (LEDs) for high-speed wireless communication, and it has a great potential to be integrated with fibre communication for future gigabit networks. However, by making fibre communication wireless, multiuser interference arises. Traditional methods use orthogonal multiple access (OMA) for interference avoidance. In this paper, multiuser interference is exploited with the use of non-orthogonal multiple access (NOMA) relying on successive interference cancellation (SIC). The residual interference due to imperfect SIC in practical scenarios is characterized with a proportional model. Results show that NOMA offers 5 -10 dB gain on the equivalent signal-to-interference-plus-noise ratio (SINR) over OMA. The bit error rate (BER) performance of direct current optical orthogonal frequency division multiplexing (DCO-OFDM) is shown to be significantly improved when SIC is used.
Physical-layer network coding in coherent optical OFDM systems.
Guan, Xun; Chan, Chun-Kit
2015-04-20
We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.
2014-09-30
underwater acoustic communication technologies for autonomous distributed underwater networks , through innovative signal processing, coding, and...4. TITLE AND SUBTITLE Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and...coding: 3) OFDM modulated dynamic coded cooperation in underwater acoustic channels; 3 Localization, Networking , and Testbed: 4) On-demand
60-GHz Millimeter-wave Over Fiber with Directly Modulated Dual-mode Laser Diode
Tsai, Cheng-Ting; Lin, Chi-Hsiang; Lin, Chun-Ting; Chi, Yu-Chieh; Lin, Gong-Ru
2016-01-01
A directly modulated dual-mode laser diode (DMLD) with third-order intermodulation distortion (IMD3) suppression is proposed for a 60-GHz millimeter-wave over fiber (MMWoF) architecture, enabling new fiber-wireless communication access to cover 4-km single-mode-fiber (SMF) and 3-m wireless 16-QAM OFDM transmissions. By dual-mode injection-locking, the throughput degradation of the DMLD is mitigated with saturation effect to reduce its threshold, IMD3 power and relative intensity noise to 7.7 mA, −85 dBm and −110.4 dBc/Hz, respectively, providing huge spurious-free dynamic range of 85.8 dB/Hz2/3. This operation suppresses the noise floor of the DMLD carried QPSK-OFDM spectrum by 5 dB. The optical receiving power is optimized to restrict the power fading effect for improving the bit error rate to 1.9 × 10−3 and the receiving power penalty to 1.1 dB. Such DMLD based hybrid architecture for 60-GHz MMW fiber-wireless access can directly cover the current optical and wireless networks for next-generation indoor and short-reach mobile communications. PMID:27297267
NASA Astrophysics Data System (ADS)
Tsai, Wen-Shing; Lu, Hai-Han; Li, Chung-Yi; Chen, Bo-Rui; Lin, Hung-Hsien; Lin, Dai-Hua
2016-04-01
A hybrid lightwave transmission system based on light injection/optoelectronic feedback techniques and fiber-visible laser light communication (VLLC) integration is proposed and experimentally demonstrated. To be the first one of its kind in employing light injection and optoelectronic feedback techniques in a fiber-VLLC integration lightwave transmission system, the light is successfully directly modulated with Community Access Television (CATV), 16-QAM, and 16-QAM-OFDM signals. Over a 40 km SMF and a 10 m free-space VLLC transport, good performances of carrier-to-noise ratio (CNR)/composite second-order (CSO)/composite triple-beat (CTB)/bit error rate (BER) are achieved for CATV/16-QAM/16-QAM-OFDM signals transmission. Such a hybrid lightwave transmission system would be very useful since it can provide broadband integrated services including CATV, Internet, and telecommunication services over both distribute fiber and in-building networks.
NASA Astrophysics Data System (ADS)
Li, Yu; Li, Jiachen; Yu, Hongchen; Yu, Hai; Chen, Hongwei; Yang, Sigang; Chen, Minghua
2018-04-01
The explosive growth of data centers, cloud computing and various smart devices is limited by the current state of microelectronics, both in terms of speed and heat generation. Benefiting from the large bandwidth, promising low power consumption and passive calculation capability, experts believe that the integrated photonics-based signal processing and transmission technologies can break the bottleneck of microelectronics technology. In recent years, integrated photonics has become increasingly reliable and access to the advanced fabrication process has been offered by various foundries. In this paper, we review our recent works on the integrated optical signal processing system. We study three different kinds of on-chip signal processors and use these devices to build microsystems for the fields of microwave photonics, optical communications and spectrum sensing. The microwave photonics front receiver was demonstrated with a signal processing range of a full-band (L-band to W-band). A fully integrated microwave photonics transceiver without the on-chip laser was realized on silicon photonics covering the signal frequency of up 10 GHz. An all-optical orthogonal frequency division multiplexing (OFDM) de-multiplier was also demonstrated and used for an OFDM communication system with the rate of 64 Gbps. Finally, we show our work on the monolithic integrated spectrometer with a high resolution of about 20 pm at the central wavelength of 1550 nm. These proposed on-chip signal processing systems potential applications in the fields of radar, 5G wireless communication, wearable devices and optical access networks.
2012-09-30
Estimation Methods for Underwater OFDM 5) Two Iterative Receivers for Distributed MIMO - OFDM with Large Doppler Deviations. 6) Asynchronous Multiuser...multi-input multi-output ( MIMO ) OFDM is also pursued, where it is shown that the proposed hybrid initialization enables drastically improved receiver...are investigated. 5) Two Iterative Receivers for Distributed MIMO - OFDM with Large Doppler Deviations. This work studies a distributed system with
Development of 24GHz Rectenna for Receiving and Rectifying Modulated Waves
NASA Astrophysics Data System (ADS)
Shinohara, Naoki; Hatano, Ken
2014-11-01
In this paper, we show experimental results of RF-DC conversion with modulated 24GHz waves. We have already developed class-F MMIC rectenna with resonators for higher harmonics at no modulated 24GHz microwave for RF energy transfer. Dimensions of the MMIC rectifying circuit is 1 mm × 3 mm on GaAs. Maximum RF-DC conversion efficiency is measured 47.9% for a 210 mW microwave input of 24 GHz with a 120 Ω load. The class-F rectenna is based on a single shunt full-wave rectifier. For future application of a simultaneous energy and information transfer system or an energy harvesting from broadcasting waves, input microwave will be modulated. In this paper, we show an experimental result of RF-DC conversion of the class-F rectenna with 24GHz waves modulated by 16QAM as 1st modulation and OFDM as 2nd modulation.
NASA Astrophysics Data System (ADS)
Dikmese, Sener; Srinivasan, Sudharsan; Shaat, Musbah; Bader, Faouzi; Renfors, Markku
2014-12-01
Multicarrier waveforms have been commonly recognized as strong candidates for cognitive radio. In this paper, we study the dynamics of spectrum sensing and spectrum allocation functions in cognitive radio context using very practical signal models for the primary users (PUs), including the effects of power amplifier nonlinearities. We start by sensing the spectrum with energy detection-based wideband multichannel spectrum sensing algorithm and continue by investigating optimal resource allocation methods. Along the way, we examine the effects of spectral regrowth due to the inevitable power amplifier nonlinearities of the PU transmitters. The signal model includes frequency selective block-fading channel models for both secondary and primary transmissions. Filter bank-based wideband spectrum sensing techniques are applied for detecting spectral holes and filter bank-based multicarrier (FBMC) modulation is selected for transmission as an alternative multicarrier waveform to avoid the disadvantage of limited spectral containment of orthogonal frequency-division multiplexing (OFDM)-based multicarrier systems. The optimization technique used for the resource allocation approach considered in this study utilizes the information obtained through spectrum sensing and knowledge of spectrum leakage effects of the underlying waveforms, including a practical power amplifier model for the PU transmitter. This study utilizes a computationally efficient algorithm to maximize the SU link capacity with power and interference constraints. It is seen that the SU transmission capacity depends critically on the spectral containment of the PU waveform, and these effects are quantified in a case study using an 802.11-g WLAN scenario.
Multiplex gas chromatography for use in space craft
NASA Technical Reports Server (NTRS)
Valentin, J. R.
1985-01-01
Gas chromatography is a powerful technique for the analysis of gaseous mixtures. Some limitations in this technique still exist which can be alleviated with multiplex gas chromatography (MGC). In MGC, rapid multiple sample injections are made into the column without having to wait for one determination to be finished before taking a new sample. The resulting data must then be reduced using computational methods such as cross correlation. In order to efficiently perform multiplexgas chromatography, experiments in the laboratory and on board future space craft, skills, equipment, and computer software were developed. Three new techniques for modulating, i.e., changing, sample concentrations were demonstrated by using desorption, decomposition, and catalytic modulators. In all of them, the need for a separate gas stream as the carrier was avoided by placing the modulator at the head of the column to directly modulate a sample stream. Finally, the analysis of an environmental sample by multiplex chromatography was accomplished by employing silver oxide to catalytically modulate methane in ambient air.
Performance of Multiplexed XY Resistive Micromegas detectors in a high intensity beam
NASA Astrophysics Data System (ADS)
Banerjee, D.; Burtsev, V.; Chumakov, A.; Cooke, D.; Depero, E.; Dermenev, A. V.; Donskov, S. V.; Dubinin, F.; Dusaev, R. R.; Emmenegger, S.; Fabich, A.; Frolov, V. N.; Gardikiotis, A.; Gninenko, S. N.; Hösgen, M.; Karneyeu, A. E.; Ketzer, B.; Kirsanov, M. M.; Konorov, I. V.; Kramarenko, V. A.; Kuleshov, S. V.; Levchenko, E.; Lyubovitskij, V. E.; Lysan, V.; Mamon, S.; Matveev, V. A.; Mikhailov, Yu. V.; Myalkovskiy, V. V.; Peshekhonov, V. D.; Peshekhonov, D. V.; Polyakov, V. A.; Radics, B.; Rubbia, A.; Samoylenko, V. D.; Tikhomirov, V. O.; Tlisov, D. A.; Toropin, A. N.; Vasilishin, B.; Arenas, G. Vasquez; Ulloa, P.; Crivelli, P.
2018-02-01
We present the performance of multiplexed XY resistive Micromegas detectors tested in the CERN SPS 100 GeV/c electron beam at intensities up to 3 . 3 × 105e- /(s ṡcm2) . So far, all studies with multiplexed Micromegas have only been reported for tests with radioactive sources and cosmic rays. The use of multiplexed modules in high intensity environments was not explored due to the effect of ambiguities in the reconstruction of the hit point caused by the multiplexing feature. For the specific mapping and beam intensities analyzed in this work with a multiplexing factor of five, more than 50% level of ambiguity is introduced due to particle pile-up as well as fake clusters due to the mapping feature. Our results prove that by using the additional information of cluster size and integrated charge from the signal clusters induced on the XY strips, the ambiguities can be reduced to a level below 2%. The tested detectors are used in the CERN NA64 experiment for tracking the incoming particles bending in a magnetic field in order to reconstruct their momentum. The average hit detection efficiency of each module was found to be ∼96% at the highest beam intensities. By using four modules a tracking resolution of 1.1% was obtained with ∼85% combined tracking efficiency.
MAI-free performance of PMU-OFDM transceiver in time-variant environment
NASA Astrophysics Data System (ADS)
Tadjpour, Layla; Tsai, Shang-Ho; Kuo, C.-C. J.
2005-06-01
An approximately multi-user OFDM transceiver was introduced to reduce the multi-access interference (MAI ) due to the carrier frequency offset (CFO) to a negligible amount via precoding by Tsai, Lin and Kuo. In this work, we investigate the performance of this precoded multi-user (PMU) OFDM system in a time-variant channel environment. We analyze and compare the MAI effect caused by time-variant channels in the PMU-OFDM and the OFDMA systems. Generally speaking, the MAI effect consists of two parts. The first part is due to the loss of orthogonality among subchannels for all users while the second part is due to the CFO effect caused by the Doppler shift. Simulation results show that, although OFDMA outperforms the PMU-OFDM transceiver in a fast time-variant environment without CFO, PMU-OFDM outperforms OFDMA in a slow time-variant channel via the use of M/2 symmetric or anti-symmetric codewords of M Hadamard-Walsh codes.
3-D Image Encryption Based on Rubik's Cube and RC6 Algorithm
NASA Astrophysics Data System (ADS)
Helmy, Mai; El-Rabaie, El-Sayed M.; Eldokany, Ibrahim M.; El-Samie, Fathi E. Abd
2017-12-01
A novel encryption algorithm based on the 3-D Rubik's cube is proposed in this paper to achieve 3D encryption of a group of images. This proposed encryption algorithm begins with RC6 as a first step for encrypting multiple images, separately. After that, the obtained encrypted images are further encrypted with the 3-D Rubik's cube. The RC6 encrypted images are used as the faces of the Rubik's cube. From the concepts of image encryption, the RC6 algorithm adds a degree of diffusion, while the Rubik's cube algorithm adds a degree of permutation. The simulation results demonstrate that the proposed encryption algorithm is efficient, and it exhibits strong robustness and security. The encrypted images are further transmitted over wireless Orthogonal Frequency Division Multiplexing (OFDM) system and decrypted at the receiver side. Evaluation of the quality of the decrypted images at the receiver side reveals good results.
Frequency-Modulated Microwave Photonic Links with Direct Detection: Review and Theory
2010-12-15
create large amounts of signal distortion. Alternatives to MZIs have been pro- posed, including Fabry - Perot interferometers, ber Bragg gratings (FBGs...multiplexed, analog signals for applications in cable television distribution. Experimental results for a Fabry - Perot discriminated, FM subcarrier...multiplexed system were presented by [17]. An array of optical frequency modulated DFB lasers and a Fabry - Perot discriminator were used to transmit and
Optical sensors and multiplexing for aircraft engine control
NASA Astrophysics Data System (ADS)
Berkcan, Ertugrul
1993-02-01
Time division multiplexing of spectral modulation fiber optic sensors for aircraft engine control is presented. The paper addresses the architectural properties, the accuracy, the benefits and problems of different type of sources, the spectral stability and update times using these sources, the size, weight, and power issues, and finally the technology needs regarding FADEC mountability. The fiber optic sensors include temperature, pressure, and position spectral modulation sensors.
Software defined multi-OLT passive optical network for flexible traffic allocation
NASA Astrophysics Data System (ADS)
Zhang, Shizong; Gu, Rentao; Ji, Yuefeng; Zhang, Jiawei; Li, Hui
2016-10-01
With the rapid growth of 4G mobile network and vehicular network services mobile terminal users have increasing demand on data sharing among different radio remote units (RRUs) and roadside units (RSUs). Meanwhile, commercial video-streaming, video/voice conference applications delivered through peer-to-peer (P2P) technology are still keep on stimulating the sharp increment of bandwidth demand in both business and residential subscribers. However, a significant issue is that, although wavelength division multiplexing (WDM) and orthogonal frequency division multiplexing (OFDM) technology have been proposed to fulfil the ever-increasing bandwidth demand in access network, the bandwidth of optical fiber is not unlimited due to the restriction of optical component properties and modulation/demodulation technology, and blindly increase the wavelength cannot meet the cost-sensitive characteristic of the access network. In this paper, we propose a software defined multi-OLT PON architecture to support efficient scheduling of access network traffic. By introducing software defined networking technology and wavelength selective switch into TWDM PON system in central office, multiple OLTs can be considered as a bandwidth resource pool and support flexible traffic allocation for optical network units (ONUs). Moreover, under the configuration of the control plane, ONUs have the capability of changing affiliation between different OLTs under different traffic situations, thus the inter-OLT traffic can be localized and the data exchange pressure of the core network can be released. Considering this architecture is designed to be maximum following the TWDM PON specification, the existing optical distribution network (ODN) investment can be saved and conventional EPON/GPON equipment can be compatible with the proposed architecture. What's more, based on this architecture, we propose a dynamic wavelength scheduling algorithm, which can be deployed as an application on control plane and achieve effective scheduling OLT wavelength resources between different OLTs based on various traffic situation. Simulation results show that, by using the scheduling algorithm, network traffic between different OLTs can be optimized effectively, and the wavelength utilization of the multi-OLT system can be improved due to the flexible wavelength scheduling.
Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy
Klein, Alexander; Witzel, Oliver; Ebert, Volker
2014-01-01
We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 μm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer. PMID:25405508
Multiplexing of spatial modes in the mid-IR region
NASA Astrophysics Data System (ADS)
Gailele, Lucas; Maweza, Loyiso; Dudley, Angela; Ndagano, Bienvenu; Rosales-Guzman, Carmelo; Forbes, Andrew
2017-02-01
Traditional optical communication systems optimize multiplexing in polarization and wavelength both trans- mitted in fiber and free-space to attain high bandwidth data communication. Yet despite these technologies, we are expected to reach a bandwidth ceiling in the near future. Communications using orbital angular momentum (OAM) carrying modes offers infinite dimensional states, providing means to increase link capacity by multiplexing spatially overlapping modes in both the azimuthal and radial degrees of freedom. OAM modes are multiplexed and de-multiplexed by the use of spatial light modulators (SLM). Implementation of complex amplitude modulation is employed on laser beams phase and amplitude to generate Laguerre-Gaussian (LG) modes. Modal decomposition is employed to detect these modes due to their orthogonality as they propagate in space. We demonstrate data transfer by sending images as a proof-of concept in a lab-based scheme. We demonstrate the creation and detection of OAM modes in the mid-IR region as a precursor to a mid-IR free-space communication link.
Acceleration Recorder and Playback Module
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1996-01-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Acceleration recorder and playback module
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1994-11-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Acceleration recorder and playback module
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1992-09-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Acceleration recorder and playback module
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1994-01-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Development of a unit cell for a Ge:Ga detector array
NASA Technical Reports Server (NTRS)
1988-01-01
Two modules of gallium-doped germanium (Ge:Ga) infrared detectors with integrated multiplexing readouts and supporting drive electronics were designed and tested. This development investigated the feasibility of producing two-dimensional Ge:Ga arrays by stacking linear modules in a housing capable of providing uniaxial stress for enhanced long-wavelength response. Each module includes 8 detectors (1x1x2 mm) mounted to a sapphire board. The element spacing is 12 microns. The back faces of the detector elements are beveled with an 18 deg angle, which was proved to significantly enhance optical absorption. Each module includes a different silicon metal-oxide semiconductor field effect transistor (MOSFET) readout. The first circuit was built from discrete MOSFET components; the second incorporated devices taken from low-temperature integrated circuit multiplexers. The latter circuit exhibited much lower stray capacitance and improved stability. Using these switched-FET circuits, it was demonstrated that burst readout, with multiplexer active only during the readout period, could successfully be implemented at approximately 3.5 K.
NASA Astrophysics Data System (ADS)
Rablau, Corneliu; Bredthauer, Lance
2007-10-01
Aside from the more traditional data, voice and e-mail communications, new bandwidth intensive applications in the larger consumer markets, such as music, digital pictures and movies, have led to an explosive increase in the demand for transmission capacity for optical communications networks. This has resulted in a widespread deployment of Dense Wavelength Division Multiplexing (DWDM) as a means of increasing the communications capacity by multiplexing and transmitting signals of different wavelengths (establishing multiple communication channels) through a single strand of fiber. We report on the design, assembly and characterization of a 50-GHz, 80-channel Mux-Demux module for DWDM systems. The module has been assembled from two commercially available 100 GHz, 40-channel Array Waveguide Grating (AWG) modules and a 50-GHz to 100-GHz interleaver. Relevant performance parameters such as insertion loss, channel uniformity, next-channel isolation (crosstalk) and integrated cross-talk are presented and discussed in contrast with the performance of other competing technologies such as Thin-Film-Filter-based Mux-Demux devices.
Single-sideband modulator for frequency domain multiplexing of superconducting qubit readout
NASA Astrophysics Data System (ADS)
Chapman, Benjamin J.; Rosenthal, Eric I.; Kerckhoff, Joseph; Vale, Leila R.; Hilton, Gene C.; Lehnert, K. W.
2017-04-01
We introduce and experimentally characterize a superconducting single-sideband modulator compatible with cryogenic microwave circuits and propose its use for frequency domain multiplexing of superconducting qubit readout. The monolithic double-balanced modulators that comprise the device are formed with purely reactive elements (capacitors and Josephson junction inductors) and require no microwave-frequency control tones. Microwave signals in the 4 to 8 GHz band, with power up to -85 dBm, are converted up or down in frequency by as much as 120 MHz. Spurious harmonics in the device can be suppressed by up to 25 dB for select probe and modulation frequencies.
12-mode OFDM transmission using reduced-complexity maximum likelihood detection.
Lobato, Adriana; Chen, Yingkan; Jung, Yongmin; Chen, Haoshuo; Inan, Beril; Kuschnerov, Maxim; Fontaine, Nicolas K; Ryf, Roland; Spinnler, Bernhard; Lankl, Berthold
2015-02-01
We report the transmission of 163-Gb/s MDM-QPSK-OFDM and 245-Gb/s MDM-8QAM-OFDM transmission over 74 km of few-mode fiber supporting 12 spatial and polarization modes. A low-complexity maximum likelihood detector is employed to enhance the performance of a system impaired by mode-dependent loss.
Synchronization Analysis and Simulation of a Standard IEEE 802.11G OFDM Signal
2004-03-01
Figure 26 Convolutional Encoder Parameters. Figure 27 Puncturing Parameters. As per Table 3, the required code rate is 3 4r = which requires...to achieve the higher data rates required by the Standard 802.11b was accomplished by using packet binary convolutional coding (PBCC). Essentially...higher data rates are achieved by using convolutional coding combined with BPSK or QPSK modulation. The data is first encoded with a rate one-half
Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA.
Contestabile, G; Yoshida, Y; Maruta, A; Kitayama, K
2012-12-03
We report broadband, all-optical wavelength conversion over 100 nm span, in full S- and C-band, with positive conversion efficiency with low optical input power exploiting dual pump Four-Wave-Mixing in a Quantum Dot Semiconductor Optical Amplifier (QD-SOA). We also demonstrate by Error Vector Magnitude analysis the full transparency of the conversion scheme for coherent modulation formats (QPSK, 8-PSK, 16-QAM, OFDM-16QAM) in the whole C-band.
NASA Astrophysics Data System (ADS)
Zhang, Lu; Ming, Yi; Li, Jin
2017-11-01
Due to the unique phase noise (PN) characteristics in direct-detection optical OFDM (DDO-OFDM) systems, the design of PN compensator is considered as a difficult task. In this paper, a laser PN suppression scheme with low complexity for DDO-OFDM based on coherent superposition of data carrying subcarriers and their phase conjugates is proposed. Through theoretical derivation, the obvious PN suppression is observed. The effectiveness of this technique is demonstrated by simulation of a 4-QAM DDO-OFDM system over 1000 km transmission length at different laser line-width and subcarrier frequency spacing. The results show that the proposed scheme can significantly suppress both varied phase rotation term (PTR) and inter-carrier interference (ICI), and the laser line-width can be relaxed with up to 9 dB OSNR saving or even breakthrough of performance floor.
Yi, Xingwen; Xu, Bo; Zhang, Jing; Lin, Yun; Qiu, Kun
2014-12-15
Digital coherent superposition (DCS) of optical OFDM subcarrier pairs with Hermitian symmetry can reduce the inter-carrier-interference (ICI) noise resulted from phase noise. In this paper, we show two different implementations of DCS-OFDM that have the same performance in the presence of laser phase noise. We complete the theoretical calculation on ICI reduction by using the model of pure Wiener phase noise. By Taylor expansion of the ICI, we show that the ICI power is cancelled to the second order by DCS. The fourth order term is further derived out and only decided by the ratio of laser linewidth to OFDM subcarrier symbol rate, which can greatly simplify the system design. Finally, we verify our theoretical calculations in simulations and use the analytical results to predict the system performance. DCS-OFDM is expected to be beneficial to certain optical fiber transmissions.
Quaternary pulse position modulation electronics for free-space laser communications
NASA Technical Reports Server (NTRS)
Budinger, J. M.; Kerslake, S. D.; Nagy, L. A.; Shalkhauser, M. J.; Soni, N. J.; Cauley, M. A.; Mohamed, J. H.; Stover, J. B.; Romanofsky, R. R.; Lizanich, P. J.
1991-01-01
The development of a high data-rate communications electronic subsystem for future application in free-space, direct-detection laser communications is described. The dual channel subsystem uses quaternary pulse position modulation (GPPM) and operates at a throughput of 650 megabits per second. Transmitting functions described include source data multiplexing, channel data multiplexing, and QPPM symbol encoding. Implementation of a prototype version in discrete gallium arsenide logic, radiofrequency components, and microstrip circuitry is presented.
Quaternary pulse position modulation electronics for free-space laser communications
NASA Technical Reports Server (NTRS)
Budinger, J. M.; Kerslake, S. D.; Nagy, L. A.; Shalkhauser, M. J.; Soni, N. J.; Cauley, M. A.; Mohamed, J. H.; Stover, J. B.; Romanofsky, R. R.; Lizanich, P. J.
1991-01-01
The development of a high data-rate communications electronic subsystem for future application in free-space, direct-detection laser communications is described. The dual channel subsystem uses quaternary pulse position modulation (QPPM) and operates at a throughput of 650 megabits per second. Transmitting functions described include source data multiplexing, channel data multiplexing, and QPPM symbol encoding. Implementation of a prototype version in discrete gallium arsenide logic, radiofrequency components, and microstrip circuitry is presented.
IRCI-Free MIMO-OFDM SAR Using Circularly Shifted Zadoff-Chu Sequences
NASA Astrophysics Data System (ADS)
Cao, Yun-He; Xia, Xiang-Gen
2015-05-01
Cyclic prefix (CP) based MIMO-OFDM radar has been recently proposed for distributed transmit antennas, where there is no inter-range-cell interference (IRCI). It can collect full spatial diversity and each transmitter transmits signals with the same frequency band, i.e., the range resolution is not reduced. However, it needs to transmit multiple OFDM pulses consecutively to obtain range profiles for a single swath, which may be too long in time for a reasonable swath width. In this letter, we propose a CP based MIMO-OFDM synthetic aperture radar (SAR) system, where each transmitter transmits only a single OFDM pulse to obtain range profiles for a swath and has the same frequency band, thus the range resolution is not reduced. It is IRCI free and can collect the full spatial diversity if the transmit antennas are distributed. Our main idea is to use circularly shifted Zadoff-Chu sequences as the weighting coefficients in the OFDM pulses for different transmit antennas and apply spatial filters with multiple receive antennas to divide the whole swath into multiple subswaths, and then each subswath is reconstructed/imaged using our proposed IRCI free range reconstruction method.
A reconfigurable multicarrier demodulator architecture
NASA Technical Reports Server (NTRS)
Kwatra, S. C.; Jamali, M. M.
1991-01-01
An architecture based on parallel and pipline design approaches has been developed for the Frequency Division Multiple Access/Time Domain Multiplexed (FDMA/TDM) conversion system. The architecture has two main modules namely the transmultiplexer and the demodulator. The transmultiplexer has two pipelined modules. These are the shared multiplexed polyphase filter and the Fast Fourier Transform (FFT). The demodulator consists of carrier, clock, and data recovery modules which are interactive. Progress on the design of the MultiCarrier Demodulator (MCD) using commercially available chips and Application Specific Integrated Circuits (ASIC) and simulation studies using Viewlogic software will be presented at the conference.
Signal Classification in Fading Channels Using Cyclic Spectral Analysis
2009-07-01
Classifier Design The proposed classifier is designed to classify AM, BFSK, OFDM, DS - CDMA , 4-ASK, 8-ASK, BPSK, QPSK, 8-PSK, 16-PSK, 16-QAM, and 64-QAM...five independent neural networks, each trained to classify a signal as either AM, BFSK, DS - CDMA , or a linear modulation scheme with a real-valued...in an SOF image that resembles those of QAM and PSK signals. Additionally, the DS - CDMA scheme can be thought to look like a BPSK signal. However, due
CWDM for very-short-reach and optical-backplane interconnections
NASA Astrophysics Data System (ADS)
Laha, Michael J.
2002-06-01
Course Wavelength Division Multiplexing (CWDM) provides access to next generation optical interconnect data rates by utilizing conventional electro-optical components that are widely available in the market today. This is achieved through the use of CWDM multiplexers and demultiplexers that integrate commodity type active components, lasers and photodiodes, into small optical subassemblies. In contrast to dense wavelength division multiplexing (DWDM), in which multiple serial data streams are combined to create aggregate data pipes perhaps 100s of gigabits wide, CWDM uses multiple laser sources contained in one module to create a serial equivalent data stream. For example, four 2.5 Gb/s lasers are multiplexed to create a 10 Gb/s data pipe. The advantages of CWDM over traditional serial optical interconnects include lower module power consumption, smaller packaging, and a superior electrical interface. This discussion will detail the concept of CWDM and design parameters that are considered when productizing a CWDM module into an industry standard optical interconnect. Additionally, a scalable parallel CWDM hybrid architecture will be described that allows the transport of large amounts of data from rack to rack in an economical fashion. This particular solution is targeted at solving optical backplane bottleneck problems predicted for the next generation terabit and petabit routers.
Dobbs, M A; Lueker, M; Aird, K A; Bender, A N; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Cho, H-M; Clarke, J; Crawford, T M; Crites, A T; Flanigan, D I; de Haan, T; George, E M; Halverson, N W; Holzapfel, W L; Hrubes, J D; Johnson, B R; Joseph, J; Keisler, R; Kennedy, J; Kermish, Z; Lanting, T M; Lee, A T; Leitch, E M; Luong-Van, D; McMahon, J J; Mehl, J; Meyer, S S; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Richards, P L; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vanderlinde, K; Vieira, J D; Vu, C; Westbrook, B; Williamson, R
2012-07-01
A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.
NASA Astrophysics Data System (ADS)
Xu, Yuming; Yu, Jianjun; Li, Xinying
2017-03-01
We experimentally demonstrate 4 lanes up to 400 Gbps discrete multitone transmission using an electric absorption modulated laser (EML) at 1550-nm for dense wavelength division multiplexing (DWDM) intradata center connects. This is the first demonstration of 4×100 Gb/s transmission using EML at 1550-nm, and it is compatible with the DWDM system at C-band.
Demonstration of micro-projection enabled short-range communication system for 5G.
Chou, Hsi-Hsir; Tsai, Cheng-Yu
2016-06-13
A liquid crystal on silicon (LCoS) based polarization modulated image (PMI) system architecture using red-, green- and blue-based light-emitting diodes (LEDs), which offers simultaneous micro-projection and high-speed data transmission at nearly a gigabit, serving as an alternative short-range communication (SRC) approach for personal communication device (PCD) application in 5G, is proposed and experimentally demonstrated. In order to make the proposed system architecture transparent to the future possible wireless data modulation format, baseband modulation schemes such as multilevel pulse amplitude modulation (M-PAM), M-ary phase shift keying modulation (M-PSK) and M-ary quadrature amplitude modulation (M-QAM) which can be further employed by more advanced multicarrier modulation schemes (such as DMT, OFDM and CAP) were used to investigate the highest possible data transmission rate of the proposed system architecture. The results demonstrated that an aggregative data transmission rate of 892 Mb/s and 900 Mb/s at a BER of 10^(-3) can be achieved by using 16-QAM baseband modulation scheme when data transmission were performed with and without micro-projection simultaneously.
Thermally multiplexed polymerase chain reaction.
Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R
2015-07-01
Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel.
Chen, Hsiang-Yu; Chi, Yu-Chieh; Lin, Gong-Ru
2015-08-24
A remote heterodyne millimeter-wave (MMW) carrier at 47.7 GHz over fiber synthesized with the master-to-slave injected dual-mode colorless FPLD pair is proposed, which enables the future connection between the wired fiber-optic 64-QAM OFDM-PON at 24 Gb/s with the MMW 4-QAM OFDM wireless network at 2 Gb/s. Both the single- and dual-mode master-to-slave injection-locked colorless FPLD pairs are compared to optimize the proposed 64-QAM OFDM-PON. For the unamplified single-mode master, the slave colorless FPLD successfully performs the 64-QAM OFDM data at 24 Gb/s with EVM, SNR and BER of 8.5%, 21.5 dB and 2.9 × 10(-3), respectively. In contrast, the dual-mode master-to-slave injection-locked colorless FPLD pair with amplified and unfiltered master can transmit 64-QAM OFDM data at 18 Gb/s over 25-km SMF to provide EVM, SNR and BER of 8.2%, 21.8 dB and 2.2 × 10(-3), respectively. For the dual-mode master-to-slave injection-locked colorless FPLD pair, even though the modal dispersion occurred during 25-km SMF transmission makes it sacrifice the usable OFDM bandwidth by only 1 GHz, which guarantees the sufficient encoding bitrate for the optically generated MMW carrier to implement the fusion of MMW wireless LAN and DWDM-PON with cost-effective and compact architecture. As a result, the 47.7-GHz MMW carrier remotely beat from the dual-mode master-to-slave injection-locked colorless FPLD pair exhibits an extremely narrow bandwidth of only 0.48 MHz. After frequency down-conversion operation, the 47.7-GHz MMW carrier successfully delivers 4-QAM OFDM data up to 2 Gb/s with EVM, SNR and BER of 33.5%, 9.51 dB and 1.4 × 10(-3), respectively.
Characterization of highly multiplexed monolithic PET / gamma camera detector modules.
Pierce, L A; Pedemonte, S; DeWitt, D; MacDonald, L; Hunter, W C J; Van Leemput, K; Miyaoka, R
2018-03-29
PET detectors use signal multiplexing to reduce the total number of electronics channels needed to cover a given area. Using measured thin-beam calibration data, we tested a principal component based multiplexing scheme for scintillation detectors. The highly-multiplexed detector signal is no longer amenable to standard calibration methodologies. In this study we report results of a prototype multiplexing circuit, and present a new method for calibrating the detector module with multiplexed data. A [Formula: see text] mm 3 LYSO scintillation crystal was affixed to a position-sensitive photomultiplier tube with [Formula: see text] position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize the detector response. New methods are developed to reject scattered events and perform depth-estimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge of the crystal. The positioned events followed the expected Beer-Lambert depth distribution. The proposed calibration and positioning method exhibited a scattered photon rejection rate that was a 55% improvement over the summed signal energy-windowing method.
Three-Level De-Multiplexed Dual-Branch Complex Delta-Sigma Transmitter.
Arfi, Anis Ben; Elsayed, Fahmi; Aflaki, Pouya M; Morris, Brad; Ghannouchi, Fadhel M
2018-02-20
In this paper, a dual-branch topology driven by a Delta-Sigma Modulator (DSM) with a complex quantizer, also known as the Complex Delta Sigma Modulator (CxDSM), with a 3-level quantized output signal is proposed. By de-multiplexing the 3-level Delta-Sigma-quantized signal into two bi-level streams, an efficiency enhancement over the operational frequency range is achieved. The de-multiplexed signals drive a dual-branch amplification block composed of two switch-mode back-to-back power amplifiers working at peak power. A signal processing technique known as quantization noise reduction with In-band Filtering (QNRIF) is applied to each of the de-multiplexed streams to boost the overall performances; particularly the Adjacent Channel Leakage Ratio (ACLR). After amplification, the two branches are combined using a non-isolated combiner, preserving the efficiency of the transmitter. A comprehensive study on the operation of this topology and signal characteristics used to drive the dual-branch Switch-Mode Power Amplifiers (SMPAs) was established. Moreover, this work proposes a highly efficient design of the amplification block based on a back-to-back power topology performing a dynamic load modulation exploiting the non-overlapping properties of the de-multiplexed Complex DSM signal. For experimental validation, the proposed de-multiplexed 3-level Delta-Sigma topology was implemented on the BEEcube™ platform followed by the back-to-back Class-E switch-mode power amplification block. The full transceiver is assessed using a 4th-Generation mobile communications standard LTE (Long Term Evolution) standard 1.4 MHz signal with a peak to average power ratio (PAPR) of 8 dB. The dual-branch topology exhibited a good linearity and a coding efficiency of the transmitter chain higher than 72% across the band of frequency from 1.8 GHz to 2.7 GHz.
Nyachionjeka, Kumbirayi
2014-01-01
In this paper, the performance and feasibility of a hybrid wavelength division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) system with 128 optical network units (ONUs) is analysed. In this system, triple play services (video, voice and data) are successfully communicated through a distance of up to 28 km. Moreover, we analysed and compared the performance of various modulation formats for different distances in the proposed hybrid WDM/TDM PON. NRZ rectangular emerged as the most appropriate modulation format for triple play transmission in the proposed hybrid PON. PMID:27382633
Performance Analysis of OFDM in Frequency Selective, Slowly Fading Nakagami Channels
2001-12-01
starting with some background, then moving into how to generate an OFDM signal, and finally discussing the implementation of OFDM using one specific...application, the IEEE 802.11a standard. The application of some more general communications concepts such as the discrete Fourier transform (DFT...provide orthogonal cover to the sub-carriers, some may argue that the FFT’s complexity makes up for the loss of equalization complexity, however, as Ch
High resolution multiplexed functional imaging in live embryos (Conference Presentation)
NASA Astrophysics Data System (ADS)
Xu, Dongli; Zhou, Weibin; Peng, Leilei
2017-02-01
Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.
Eigenmode multiplexing with SLM for volume holographic data storage
NASA Astrophysics Data System (ADS)
Chen, Guanghao; Miller, Bo E.; Takashima, Yuzuru
2017-08-01
The cavity supports the orthogonal reference beam families as its eigenmodes while enhancing the reference beam power. Such orthogonal eigenmodes are used as additional degree of freedom to multiplex data pages, consequently increase storage densities for volume Holographic Data Storage Systems (HDSS) when the maximum number of multiplexed data page is limited by geometrical factor. Image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at multiple Bragg angles by using Liquid Crystal on Silicon (LCOS) spatial light modulators (SLMs) in reference arms. Total of nine holograms are recorded with three angular and three eigenmode.
Multiplexing 200 spatial modes with a single hologram
NASA Astrophysics Data System (ADS)
Rosales-Guzmán, Carmelo; Bhebhe, Nkosiphile; Mahonisi, Nyiku; Forbes, Andrew
2017-11-01
The on-demand tailoring of light's spatial shape is of great relevance in a wide variety of research areas. Computer-controlled devices, such as spatial light modulators (SLMs) or digital micromirror devices, offer a very accurate, flexible and fast holographic means to this end. Remarkably, digital holography affords the simultaneous generation of multiple beams (multiplexing), a tool with numerous applications in many fields. Here, we provide a self-contained tutorial on light beam multiplexing. Through the use of several examples, the readers will be guided step by step in the process of light beam shaping and multiplexing. Additionally, we provide a quantitative analysis on the multiplexing capabilities of SLMs to assess the maximum number of beams that can be multiplexed on a single SLM, showing approximately 200 modes on a single hologram.
Self-balanced modulation and magnetic rebalancing method for parallel multilevel inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; Shi, Yanjun
A self-balanced modulation method and a closed-loop magnetic flux rebalancing control method for parallel multilevel inverters. The combination of the two methods provides for balancing of the magnetic flux of the inter-cell transformers (ICTs) of the parallel multilevel inverters without deteriorating the quality of the output voltage. In various embodiments a parallel multi-level inverter modulator is provide including a multi-channel comparator to generate a multiplexed digitized ideal waveform for a parallel multi-level inverter and a finite state machine (FSM) module coupled to the parallel multi-channel comparator, the FSM module to receive the multiplexed digitized ideal waveform and to generate amore » pulse width modulated gate-drive signal for each switching device of the parallel multi-level inverter. The system and method provides for optimization of the output voltage spectrum without influence the magnetic balancing.« less
Joint Cross-Layer Design for Wireless QoS Content Delivery
NASA Astrophysics Data System (ADS)
Chen, Jie; Lv, Tiejun; Zheng, Haitao
2005-12-01
In this paper, we propose a joint cross-layer design for wireless quality-of-service (QoS) content delivery. Central to our proposed cross-layer design is the concept of adaptation. Adaptation represents the ability to adjust protocol stacks and applications to respond to channel variations. We focus our cross-layer design especially on the application, media access control (MAC), and physical layers. The network is designed based on our proposed fast frequency-hopping orthogonal frequency division multiplex (OFDM) technique. We also propose a QoS-awareness scheduler and a power adaptation transmission scheme operating at both the base station and mobile sides. The proposed MAC scheduler coordinates the transmissions of an IP base station and mobile nodes. The scheduler also selects appropriate transmission formats and packet priorities for individual users based on current channel conditions and the users' QoS requirements. The test results show that our cross-layer design provides an excellent framework for wireless QoS content delivery.
Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul.
Alavi, S E; Soltanian, M R K; Amiri, I S; Khalily, M; Supa'at, A S M; Ahmad, H
2016-01-27
5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.
Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul
Alavi, S. E.; Soltanian, M. R. K.; Amiri, I. S.; Khalily, M.; Supa’at, A. S. M.; Ahmad, H.
2016-01-01
5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated. PMID:26814621
Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul
NASA Astrophysics Data System (ADS)
Alavi, S. E.; Soltanian, M. R. K.; Amiri, I. S.; Khalily, M.; Supa'At, A. S. M.; Ahmad, H.
2016-01-01
5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.
Semiblind channel estimation for MIMO-OFDM systems
NASA Astrophysics Data System (ADS)
Chen, Yi-Sheng; Song, Jyu-Han
2012-12-01
This article proposes a semiblind channel estimation method for multiple-input multiple-output orthogonal frequency-division multiplexing systems based on circular precoding. Relying on the precoding scheme at the transmitters, the autocorrelation matrix of the received data induces a structure relating the outer product of the channel frequency response matrix and precoding coefficients. This structure makes it possible to extract information about channel product matrices, which can be used to form a Hermitian matrix whose positive eigenvalues and corresponding eigenvectors yield the channel impulse response matrix. This article also tests the resistance of the precoding design to finite-sample estimation errors, and explores the effects of the precoding scheme on channel equalization by performing pairwise error probability analysis. The proposed method is immune to channel zero locations, and is reasonably robust to channel order overestimation. The proposed method is applicable to the scenarios in which the number of transmitters exceeds that of the receivers. Simulation results demonstrate the performance of the proposed method and compare it with some existing methods.
Real-Time Distributed Implementation of Interference Alignment with Analog Feedback
2013-01-01
manner as in Figure 5(a). As such, six OFDM symbols are transmitted for our three user 2 × 2 MIMO system. The training does not experience precoding nor...pp. 159170, August 2009. [12] O. E. Ayach, S.W. Peters, and R.W. Heath Jr., ”The feasibility of interference alignment over measured MIMO - OFDM ...A Space-Time Receiver with Joint Synchronization and Interference Cancellation in Asynchronous MIMO - OFDM Systems,” IEEE Transactions on Vehicular
Wei, Chia-Chien
2012-11-05
This work theoretically studies the transmission performance of a DML-based OFDM system by small-signal approximation, and the model considers both the transient and adiabatic chirps. The dispersion-induced distortion is modeled as subcarrier-to-subcarrier intermixing interference (SSII), and the theoretical SSII agrees with the distortion obtained from large-signal simulation statistically and deterministically. The analysis shows that the presence of the adiabatic chirp will ease power fading or even provide gain, but will increase the SSII to deteriorate OFDM signals after dispersive transmission. Furthermore, this work also proposes a novel iterative equalization to eliminate the SSII. From the simulation, the distortion could be effectively mitigated by the proposed equalization such that the maximum transmission distance of the DML-based OFDM signal is significantly improved. For instance, the transmission distance of a 30-Gbps DML-based OFDM signal can be extended from 10 km to more than 100 km. Besides, since the dispersion-induced distortion could be effectively mitigated by the equalization, negative power penalties are observed at some distances due to chirp-induced power gain.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Chen, Xuemei; Deng, Mingliang; Zeng, Dengke; Yang, Heming; Qiu, Kun
2015-08-01
We propose a novel ICI cancellation using opposite weighting on symmetric subcarrier pairs to combat the linear phase noise of laser source and the nonlinear phase noise resulted from the fiber nonlinearity. We compare the proposed ICI cancellation scheme with conventional OFDM and the ICI self-cancellation at the same raw bit rate of 35.6 Gb/s. In simulations, the proposed ICI cancellation scheme shows better phase noise tolerance compared with conventional OFDM and has similar phase noise tolerance with the ICI self-cancellation. The laser linewidth is about 13 MHz at BER of 2 × 10-3 with ICI cancellation scheme while it is 5 MHz in conventional OFDM. We also study the nonlinearity tolerance and find that the proposed ICI cancellation scheme is better compared with the other two schemes which due to the first order nonlinearity mitigation. The launch power is 7 dBm for the proposed ICI cancellation scheme and its SNR improves by 4 dB or 3 dB compared with the ICI self-cancellation or conventional OFDM at BER of 1.1 × 10-3, respectively.
Electro-optic architecture (EOA) for sensors and actuators in aircraft propulsion systems
NASA Technical Reports Server (NTRS)
Glomb, W. L., Jr.
1989-01-01
Results of a study to design an optimal architecture for electro-optical sensing and control in advanced aircraft and space systems are described. The propulsion full authority digital Electronic Engine Control (EEC) was the focus for the study. The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors on the engine. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pair of optical fibers to common electro-optical interfaces. The architecture contains common, multiplex interfaces to seven sensor groups: (1) self luminous sensors; (2) high temperatures; (3) low temperatures; (4) speeds and flows; (5) vibration; (6) pressures; and (7) mechanical positions. Nine distinct fiber-optic sensor types were found to provide these sensing functions: (1) continuous wave (CW) intensity modulators; (2) time division multiplexing (TDM) digital optic codeplates; (3) time division multiplexing (TDM) analog self-referenced sensors; (4) wavelength division multiplexing (WDM) digital optic code plates; (5) wavelength division multiplexing (WDM) analog self-referenced intensity modulators; (6) analog optical spectral shifters; (7) self-luminous bodies; (8) coherent optical interferometers; and (9) remote electrical sensors. The report includes the results of a trade study including engine sensor requirements, environment, the basic sensor types, and relevant evaluation criteria. These figures of merit for the candidate interface types were calculated from the data supplied by leading manufacturers of fiber-optic sensors.
Flexible wavelength de-multiplexer for elastic optical networking.
Zhou, Rui; Gutierrez Pascual, M Deseada; Anandarajah, Prince M; Shao, Tong; Smyth, Frank; Barry, Liam P
2016-05-15
We report an injection locked flexible wavelength de-multiplexer (de-mux) that shows 24-h frequency stability of 1 kHz for optical comb-based elastic optical networking applications. We demonstrate 50 GHz, 87.5 GHz equal spacing and 6.25G-25G-50 GHz, 75G-50G-100 GHz unequal spacing for the de-multiplexer outputs. We also implement an unequally spaced (75G-50G-100 GHz), mixed symbol rate (12.5 GBaud and 40 GBaud) and modulation format (polarization division multiplexed quadrature phase shift keying and on-off keying) wavelength division multiplexed transmission system using the de-multiplexer outputs. The results show 0.6 dB receiver sensitivity penalty, at 7% hard decision forward error correction coding limit, of the 100 km transmitted de-mux outputs when compared to comb source seeding laser back-to-back.
Wang, Andong; Zhu, Long; Liu, Jun; Du, Cheng; Mo, Qi; Wang, Jian
2015-11-16
Mode-division multiplexing passive optical network (MDM-PON) is a promising scheme for next-generation access networks to further increase fiber transmission capacity. In this paper, we demonstrate the proof-of-concept experiment of hybrid mode-division multiplexing (MDM) and time-division multiplexing (TDM) PON architecture by exploiting orbital angular momentum (OAM) modes. Bidirectional transmissions with 2.5-Gbaud 4-level pulse amplitude modulation (PAM-4) downstream and 2-Gbaud on-off keying (OOK) upstream are demonstrated in the experiment. The observed optical signal-to-noise ratio (OSNR) penalties for downstream and upstream transmissions at a bit-error rate (BER) of 2 × 10(-3) are less than 2.0 dB and 3.0 dB, respectively.
NASA Astrophysics Data System (ADS)
Tang, Li-Chuan; Hu, Guang W.; Russell, Kendra L.; Chang, Chen S.; Chang, Chi Ching
2000-10-01
We propose a new holographic memory scheme based on random phase-encoded multiplexing in a photorefractive LiNbO3:Fe crystal. Experimental results show that rotating a diffuser placed as a random phase modulator in the path of the reference beam provides a simple yet effective method of increasing the holographic storage capabilities of the crystal. Combining this rotational multiplexing with angular multiplexing offers further advantages. Storage capabilities can be optimized by using a post-image random phase plate in the path of the object beam. The technique is applied to a triple phase-encoded optical security system that takes advantage of the high angular selectivity of the angular-rotational multiplexing components.
Study of the true performance limits of the Astrometric Multiplexing Area Scanner (AMAS)
NASA Technical Reports Server (NTRS)
Frederick, L. W.; Mcalister, H. A.
1975-01-01
The Astrometric Multiplexing Area Scanner (AMAS) is an instrument designed to perform photoelectric long focus astrometry of small fields. Modulation of a telescope focal plane with a rotating Ronchi ruling produces a frequency modulated signal from which relative positions and magnitudes can be extracted. Evaluation instrumental precision, accuracy and resolution characteristics with respect to a variety of instrumental and cosmical parameters indicates 1.5 micron precision and accuracy for single stars under specific conditions. This value decreases for increased number of field stars, particularly for fainter stars.
Characterization of highly multiplexed monolithic PET / gamma camera detector modules
NASA Astrophysics Data System (ADS)
Pierce, L. A.; Pedemonte, S.; DeWitt, D.; MacDonald, L.; Hunter, W. C. J.; Van Leemput, K.; Miyaoka, R.
2018-04-01
PET detectors use signal multiplexing to reduce the total number of electronics channels needed to cover a given area. Using measured thin-beam calibration data, we tested a principal component based multiplexing scheme for scintillation detectors. The highly-multiplexed detector signal is no longer amenable to standard calibration methodologies. In this study we report results of a prototype multiplexing circuit, and present a new method for calibrating the detector module with multiplexed data. A 50 × 50 × 10 mm3 LYSO scintillation crystal was affixed to a position-sensitive photomultiplier tube with 8 × 8 position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize the detector response. New methods are developed to reject scattered events and perform depth-estimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge of the crystal. The positioned events followed the expected Beer–Lambert depth distribution. The proposed calibration and positioning method exhibited a scattered photon rejection rate that was a 55% improvement over the summed signal energy-windowing method.
Development of ROACH firmware for microwave multiplexed X-ray TES microcalorimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madden, T. J.; Cecil, T. W.; Gades, L. M.
We are developing room temperature electronics based upon the ROACH platform for reading out microwave multiplexed X-ray TES. ROACH is an open-source hardware and software platform featuring a large Xilinx Field Programmable Gate Array (FPGA), Power PC processor, several 10GB Ethernet SFP+ interfaces, and a collection of daughter boards for analog signal generation and acquisition. The combination of a ROACH board, ADC/DAC conversion daughter boards, and hardware for RF mixing allows for the generation and capture of multiple RF tones for reading out microwave multiplexed x-ray TES microcalorimeters. The FPGA is used to generate multiple tones in base band, frommore » 10MHz to 250MHz, which are subsequently mixed to RF in the multiple GHz range and sent through the microwave multiplexer. The tones are generated in the FPGA by storing a large lookup table in Quad Data Rate (QDR) SRAM modules and playing out the waveform to a DAC board. Once the signal has been modulated to RF, passed through the microwave multiplexer, and has been modulated back to base band, the signal is digitized by an ADC board. The tones are modulated to 0Hz by using a FPGA circuit consisting of a polyphase filter bank, several Xilinx FFT blocks, Xilinx CORDIC blocks (for converting to magnitude and phase), and special phase accumulator circuit for mixing to exactly 0Hz. Upwards of 256 channels can be simultaneously captured and written into a bank of 256 First-In-First-Out (FIFO) memories, with each FIFO corresponding to a channel. Individual channel data can be further processed in the FPGA before being streamed through a 10GB Ethernet fiber-optic interface to a Linux system. The Linux system runs software written in Python and QT C++ for controlling the ROACH system, capturing data, and processing data.« less
A Versatile Multichannel Digital Signal Processing Module for Microcalorimeter Arrays
NASA Astrophysics Data System (ADS)
Tan, H.; Collins, J. W.; Walby, M.; Hennig, W.; Warburton, W. K.; Grudberg, P.
2012-06-01
Different techniques have been developed for reading out microcalorimeter sensor arrays: individual outputs for small arrays, and time-division or frequency-division or code-division multiplexing for large arrays. Typically, raw waveform data are first read out from the arrays using one of these techniques and then stored on computer hard drives for offline optimum filtering, leading not only to requirements for large storage space but also limitations on achievable count rate. Thus, a read-out module that is capable of processing microcalorimeter signals in real time will be highly desirable. We have developed multichannel digital signal processing electronics that are capable of on-board, real time processing of microcalorimeter sensor signals from multiplexed or individual pixel arrays. It is a 3U PXI module consisting of a standardized core processor board and a set of daughter boards. Each daughter board is designed to interface a specific type of microcalorimeter array to the core processor. The combination of the standardized core plus this set of easily designed and modified daughter boards results in a versatile data acquisition module that not only can easily expand to future detector systems, but is also low cost. In this paper, we first present the core processor/daughter board architecture, and then report the performance of an 8-channel daughter board, which digitizes individual pixel outputs at 1 MSPS with 16-bit precision. We will also introduce a time-division multiplexing type daughter board, which takes in time-division multiplexing signals through fiber-optic cables and then processes the digital signals to generate energy spectra in real time.
NASA Astrophysics Data System (ADS)
Drake, Tyler K.; Robles, Francisco E.; DeSoto, Michael; Henderson, Marcus H.; Katz, David F.; Wax, Adam P.
2009-02-01
Microbicide gels are topical products that have recently been developed to combat sexually transmitted diseases including HIV/AIDS. The extent of gel coverage, thickness, and structure are crucial factors in gel effectiveness. It is necessary to be able to monitor gel distribution and behavior under various circumstances, such as coatis, and over an extended time scale in vivo. We have developed a multiplexed, Fourier-domain low coherence interferometry (LCI) system as a practical method of measuring microbicide gel distribution, with precision and accuracy comparable to currently used fluorometric techniques techniques. The multiplexed system achieved a broad scanning area without the need for a mechanical scanning device, typical of OCT systems, by utilizing six parallel channels with simultaneous data collection. We now propose an imaging module which will allow the integration of the multiplexed LCI system into the current fluorescence system in conjunction with an endoscope. The LCI imaging module will meet several key criteria in order to be compatible with the current system. The fluorescent system features a 4-mm diameter rigid endsoscope enclosed in a 27-mm diameter polycarbonate tube, with a water immersion tip. Therefore, the LCI module must be low-profile as well as water-resistant to fit inside the current design. It also must fulfill its primary function of delivering light from each of the six channels to the gel and collecting backscattered light. The performance of the imaging module will be characterized by scanning a calibration socket which contains grooves of known depths, and comparing these measurements to the fluorometric results.
NASA Astrophysics Data System (ADS)
Garg, Amit Kumar; Madavi, Amresh Ashok; Janyani, Vijay
2017-02-01
A flexible hybrid wavelength division multiplexing-time division multiplexing passive optical network architecture that allows dual rate signals to be sent at 1 and 10 Gbps to each optical networking unit depending upon the traffic load is proposed. The proposed design allows dynamic wavelength allocation with pay-as-you-grow deployment capability. This architecture is capable of providing up to 40 Gbps of equal data rates to all optical distribution networks (ODNs) and up to 70 Gbps of a asymmetrical data rate to the specific ODN. The proposed design handles broadcasting capability with simultaneous point-to-point transmission, which further reduces energy consumption. In this architecture, each module sends a wavelength to each ODN, thus making the architecture fully flexible; this flexibility allows network providers to use only required OLT components and switch off others. The design is also reliable to any module or TRx failure and provides services without any service disruption. Dynamic wavelength allocation and pay-as-you-grow deployment support network extensibility and bandwidth scalability to handle future generation access networks.
Modified Dual Three-Pulse Modulation technique for single-phase inverter topology
NASA Astrophysics Data System (ADS)
Sree Harsha, N. R.; Anitha, G. S.; Sreedevi, A.
2016-01-01
In a recent paper, a new modulation technique called Dual Three Pulse Modulation (DTPM) was proposed to improve the efficiency of the power converters of the Electric/Hybrid/Fuel-cell vehicles. It was simulated in PSIM 9.0.4 and uses analog multiplexers to generate the modulating signals for the DC/DC converter and inverter. The circuit used is complex and many other simulation softwares do not support the analog multiplexers as well. Also, the DTPM technique produces modulating signals for the converter, which are essentially needed to produce the modulating signals for the inverter. Hence, it cannot be used efficiently to switch the valves of a stand-alone inverter. We propose a new method to generate the modulating signals to switch MOSFETs of a single phase Dual-Three pulse Modulation based stand-alone inverter. The circuits proposed are simulated in Multisim 12.0. We also show an alternate way to switch a DC/DC converter in a way depicted by DTPM technique both in simulation (MATLAB/Simulink) and hardware. The circuitry is relatively simple and can be used for the further investigations of DTPM technique.
Li, Xiaolei; Deng, Lei; Chen, Xiaoman; Cheng, Mengfan; Fu, Songnian; Tang, Ming; Liu, Deming
2017-04-17
A novel automatic bias control (ABC) method for optical in-phase and quadrature (IQ) modulator is proposed and experimentally demonstrated. In the proposed method, two different low frequency sine wave dither signals are generated and added on to the I/Q bias signal respectively. Instead of power monitoring of the harmonics of the dither signal, dither-correlation detection is proposed and used to adjust the bias voltages of the optical IQ modulator. By this way, not only frequency spectral analysis isn't required but also the directional bias adjustment could be realized, resulting in the decrease of algorithm complexity and the growth of convergence rate of ABC algorithm. The results show that the sensitivity of the proposed ABC method outperforms that of the traditional dither frequency monitoring method. Moreover, the proposed ABC method is proved to be modulation-format-free, and the transmission penalty caused by this method for both 10 Gb/s optical QPSK and 17.9 Gb/s optical 16QAM-OFDM signal transmission are negligible in our experiment.
NASA Astrophysics Data System (ADS)
Deng, Ning
In recent years, optical phase modulation has attracted much research attention in the field of fiber optic communications. Compared with the traditional optical intensity-modulated signal, one of the main merits of the optical phase-modulated signal is the better transmission performance. For optical phase modulation, in spite of the comprehensive study of its transmission performance, only a little research has been carried out in terms of its functions, applications and signal processing for future optical networks. These issues are systematically investigated in this thesis. The research findings suggest that optical phase modulation and its signal processing can greatly facilitate flexible network functions and high bandwidth which can be enjoyed by end users. In the thesis, the most important physical-layer technology, signal processing and multiplexing, are investigated with optical phase-modulated signals. Novel and advantageous signal processing and multiplexing approaches are proposed and studied. Experimental investigations are also reported and discussed in the thesis. Optical time-division multiplexing and demultiplexing. With the ever-increasing demand on communication bandwidth, optical time division multiplexing (OTDM) is an effective approach to upgrade the capacity of each wavelength channel in current optical systems. OTDM multiplexing can be simply realized, however, the demultiplexing requires relatively complicated signal processing and stringent timing control, and thus hinders its practicability. To tackle this problem, in this thesis a new OTDM scheme with hybrid DPSK and OOK signals is proposed. Experimental investigation shows this scheme can greatly enhance the demultiplexing timing misalignment and improve the demultiplexing performance, and thus make OTDM more practical and cost effective. All-optical signal processing. In current and future optical communication systems and networks, the data rate per wavelength has been approaching the speed limitation of electronics. Thus, all-optical signal processing techniques are highly desirable to support the necessary optical switching functionalities in future ultrahigh-speed optical packet-switching networks. To cope with the wide use of optical phase-modulated signals, in the thesis, an all-optical logic for DPSK or PSK input signals is developed, for the first time. Based on four-wave mixing in semiconductor optical amplifier, the structure of the logic gate is simple, compact, and capable of supporting ultrafast operation. In addition to the general logic processing, a simple label recognition scheme, as a specific signal processing function, is proposed for phase-modulated label signals. The proposed scheme can recognize any incoming label pattern according to the local pattern, and is potentially capable of handling variable-length label patterns. Optical access network with multicast overlay and centralized light sources. In the arena of optical access networks, wavelength division multiplexing passive optical network (WDM-PON) is a promising technology to deliver high-speed data traffic. However, most of proposed WDM-PONs only support conventional point-to-point service, and cannot meet the requirement of increasing demand on broadcast and multicast service. In this thesis, a simple network upgrade is proposed based on the traditional PON architecture to support both point-to-point and multicast service. In addition, the two service signals are modulated on the same lightwave carrier. The upstream signal is also remodulated on the same carrier at the optical network unit, which can significantly relax the requirement on wavelength management at the network unit.
Statistical physics inspired energy-efficient coded-modulation for optical communications.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2012-04-15
Because Shannon's entropy can be obtained by Stirling's approximation of thermodynamics entropy, the statistical physics energy minimization methods are directly applicable to the signal constellation design. We demonstrate that statistical physics inspired energy-efficient (EE) signal constellation designs, in combination with large-girth low-density parity-check (LDPC) codes, significantly outperform conventional LDPC-coded polarization-division multiplexed quadrature amplitude modulation schemes. We also describe an EE signal constellation design algorithm. Finally, we propose the discrete-time implementation of D-dimensional transceiver and corresponding EE polarization-division multiplexed system. © 2012 Optical Society of America
NASA Astrophysics Data System (ADS)
Xie, Chongjin; Möller, Lothar; Kilper, Daniel C.; Mollenauer, Linn F.
2003-12-01
Interchannel cross-phase-modulation-induced polarization scattering (XPMIPS) and its effect on the performance of optical polarization mode dispersion (PMD) compensation in wavelength-division-multiplexed (WDM) systems are studied. The level of XPMIPS in long-haul WDM transmission systems is theoretically quantified, and its effect on optical PMD compensation is evaluated with numerical simulations. We show that in 10-Gbit/s ultra-long-haul dense WDM systems XPMIPS could reduce the PMD compensation efficiency by 50%, whereas for 40-Gbit/s systems the effect of XPMIPS is smaller.
Chen, Guanyu; Yu, Yu; Zhang, Xinliang
2016-08-01
We propose and fabricate an on-chip mode division multiplexed (MDM) photonic interconnection system. Such a monolithically photonic integrated circuit (PIC) is composed of a grating coupler, two micro-ring modulators, mode multiplexer/demultiplexer, and two germanium photodetectors. The signals' generation, multiplexing, transmission, demultiplexing, and detection are successfully demonstrated on the same chip. Twenty Gb/s MDM signals are successfully processed with clear and open eye diagrams, validating the feasibility of the proposed circuit. The measured power penalties show a good performance of the MDM link. The proposed on-chip MDM system can be potentially used for large-capacity optical interconnection in future high-performance computers and big data centers.
Lin, Yu-Chih; Tu, Han-Yen; Wu, Xin-Ru; Lai, Xin-Ji; Cheng, Chau-Jern
2018-05-14
This paper proposes one-shot synthetic aperture digital holographic microscopy using a combination of angular-multiplexing and coherence gating. The proposed angular-multiplexing technique uses multiple noncoplanar incident beams into the synthetic aperture to create tight packed passbands so as to extend spatial frequency spectrum. Coherence gating is performed to prevent the self-interference among the multiple beams. Based on the design guideline proposed herein, a phase-only spatial light modulator is employed as an adjustable blazed grating to split multiple noncoplanar beams and perform angular-multiplexing, and then using coherence gating based on low-coherence-light, superresolution imaging is achieved after one-shot acquisition.
Photon nonlinear mixing in subcarrier multiplexed quantum key distribution systems.
Capmany, José
2009-04-13
We provide, for the first time to our knowledge, an analysis of the influence of nonlinear photon mixing on the end to end quantum bit error rate (QBER) performance of subcarrier multiplexed quantum key distribution systems. The results show that negligible impact is to be expected for modulation indexes in the range of 2%.
2017-07-01
Output Re-Constructor 1. General This standard defines the recommended multiplexer format for single-channel data recording on small-format (1/2 in...which is 1-based, is determined by the position of the channel’s module in the ARMOR system . The first input channel found in the ARMOR system is
The application of LDPC code in MIMO-OFDM system
NASA Astrophysics Data System (ADS)
Liu, Ruian; Zeng, Beibei; Chen, Tingting; Liu, Nan; Yin, Ninghao
2018-03-01
The combination of MIMO and OFDM technology has become one of the key technologies of the fourth generation mobile communication., which can overcome the frequency selective fading of wireless channel, increase the system capacity and improve the frequency utilization. Error correcting coding introduced into the system can further improve its performance. LDPC (low density parity check) code is a kind of error correcting code which can improve system reliability and anti-interference ability, and the decoding is simple and easy to operate. This paper mainly discusses the application of LDPC code in MIMO-OFDM system.
Pilot self-coding applied in optical OFDM systems
NASA Astrophysics Data System (ADS)
Li, Changping; Yi, Ying; Lee, Kyesan
2015-04-01
This paper studies the frequency offset correction technique which can be applied in optical OFDM systems. Through theoretical analysis and computer simulations, we can observe that our proposed scheme named pilot self-coding (PSC) has a distinct influence for rectifying the frequency offset, which could mitigate the OFDM performance deterioration because of inter-carrier interference and common phase error. The main approach is to assign a pilot subcarrier before data subcarriers and copy this subcarrier sequence to the symmetric side. The simulation results verify that our proposed PSC is indeed effective against the high degree of frequency offset.
A compact, smart Langmuir Probe control module for MAST-Upgrade
NASA Astrophysics Data System (ADS)
Lovell, J.; Stephen, R.; Bray, S.; Naylor, G.; Elmore, S.; Willett, H.; Peterka, M.; Dimitrova, M.; Havranek, A.; Hron, M.; Sharples, R.
2017-11-01
A new control module for the MAST-Upgrade Langmuir Probe system has been developed. It is based on a Xilinx Zynq FPGA, which allows for excellent configurability and ease of retrieving data. The module is capable of arbitrary bias voltage waveform generation, and digitises current and voltage readings from 16 probes. The probes are biased and measured one at a time in a time multiplexed fashion, with the multiplexing sequence completely configurable. In addition, simultaneous digitisation of the floating potential of all unbiased probes is possible. A suite of these modules, each coupled with a high voltage amplifier, enables biasing and digitisation of 640 Langmuir Probes in the MAST-Upgrade Super-X divertor. The system has been successfully tested on the York Linear Plasma Device and on the COMPASS tokamak. It will be installed on MAST-Upgrade ready for operations in 2018.
Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M
2010-02-01
In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.
Investigation of modulation parameters in multiplexing gas chromatography.
Trapp, Oliver
2010-10-22
Combination of information technology and separation sciences opens a new avenue to achieve high sample throughputs and therefore is of great interest to bypass bottlenecks in catalyst screening of parallelized reactors or using multitier well plates in reaction optimization. Multiplexing gas chromatography utilizes pseudo-random injection sequences derived from Hadamard matrices to perform rapid sample injections which gives a convoluted chromatogram containing the information of a single sample or of several samples with similar analyte composition. The conventional chromatogram is obtained by application of the Hadamard transform using the known injection sequence or in case of several samples an averaged transformed chromatogram is obtained which can be used in a Gauss-Jordan deconvolution procedure to obtain all single chromatograms of the individual samples. The performance of such a system depends on the modulation precision and on the parameters, e.g. the sequence length and modulation interval. Here we demonstrate the effects of the sequence length and modulation interval on the deconvoluted chromatogram, peak shapes and peak integration for sequences between 9-bit (511 elements) and 13-bit (8191 elements) and modulation intervals Δt between 5 s and 500 ms using a mixture of five components. It could be demonstrated that even for high-speed modulation at time intervals of 500 ms the chromatographic information is very well preserved and that the separation efficiency can be improved by very narrow sample injections. Furthermore this study shows that the relative peak areas in multiplexed chromatograms do not deviate from conventionally recorded chromatograms. Copyright © 2010 Elsevier B.V. All rights reserved.
Chow, C W; Lin, Y H
2012-04-09
To provide broadband services in a single and low cost perform, the convergent optical wired and wireless access network is promising. Here, we propose and demonstrate a convergent optical wired and wireless long-reach access networks based on orthogonal wavelength division multiplexing (WDM). Both the baseband signal and the radio-over-fiber (ROF) signal are multiplexed and de-multiplexed in optical domain, hence it is simple and the operation speed is not limited by the electronic bottleneck caused by the digital signal processing (DSP). Error-free de-multiplexing and down-conversion can be achieved for all the signals after 60 km (long-reach) fiber transmission. The scalability of the system for higher bit-rate (60 GHz) is also simulated and discussed.
Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Weiwei; Kaminski, Clemens F., E-mail: cfk23@cam.ac.uk
2014-04-14
We propose a multiplexed absorption tomography technique, which uses calibration-free wavelength modulation spectroscopy with tunable semiconductor lasers for the simultaneous imaging of temperature and species concentration in harsh combustion environments. Compared with the commonly used direct absorption spectroscopy (DAS) counterpart, the present variant enjoys better signal-to-noise ratios and requires no baseline fitting, a particularly desirable feature for high-pressure applications, where adjacent absorption features overlap and interfere severely. We present proof-of-concept numerical demonstrations of the technique using realistic phantom models of harsh combustion environments and prove that the proposed techniques outperform currently available tomography techniques based on DAS.
Link performance model for filter bank based multicarrier systems
NASA Astrophysics Data System (ADS)
Petrov, Dmitry; Oborina, Alexandra; Giupponi, Lorenza; Stitz, Tobias Hidalgo
2014-12-01
This paper presents a complete link level abstraction model for link quality estimation on the system level of filter bank multicarrier (FBMC)-based networks. The application of mean mutual information per coded bit (MMIB) approach is validated for the FBMC systems. The considered quality measure of the resource element for the FBMC transmission is the received signal-to-noise-plus-distortion ratio (SNDR). Simulation results of the proposed link abstraction model show that the proposed approach is capable of estimating the block error rate (BLER) accurately, even when the signal is propagated through the channels with deep and frequent fades, as it is the case for the 3GPP Hilly Terrain (3GPP-HT) and Enhanced Typical Urban (ETU) models. The FBMC-related results of link level simulations are compared with cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) analogs. Simulation results are also validated through the comparison to reference publicly available results. Finally, the steps of link level abstraction algorithm for FBMC are formulated and its application for system level simulation of a professional mobile radio (PMR) network is discussed.
Underwater fiber-wireless communication with a passive front end
NASA Astrophysics Data System (ADS)
Xu, Jing; Sun, Bin; Lyu, Weichao; Kong, Meiwei; Sarwar, Rohail; Han, Jun; Zhang, Wei; Deng, Ning
2017-11-01
We propose and experimentally demonstrate a novel concept on underwater fiber-wireless (Fi-Wi) communication system with a fully passive wireless front end. A low-cost step-index (SI) plastic optical fiber (POF) together with a passive collimating lens at the front end composes the underwater Fi-Wi architecture. We have achieved a 1.71-Gb/s transmission at a mean BER of 4.97 × 10-3 (1.30 × 10-3 when using power loading) over a 50-m SI-POF and 2-m underwater wireless channel using orthogonal frequency division multiplexing (OFDM). Although the wireless part is very short, it actually plays a crucial role in practical underwater implementation, especially in deep sea. Compared with the wired solution (e.g. using a 52-m POF cable without the UWOC part), the proposed underwater Fi-Wi scheme can save optical wet-mate connectors that are sophisticated, very expensive and difficult to install in deep ocean. By combining high-capacity robust POF with the mobility and ubiquity of underwater wireless optical communication (UWOC), the proposed underwater Fi-Wi technology will find wide application in ocean exploration.
System for producing chroma signals
NASA Technical Reports Server (NTRS)
Vorhaben, K. H.; Lipoma, P. C. (Inventor)
1977-01-01
A method for obtaining electronic chroma signals with a single scanning-type image device is described. A color multiplexed light signal is produced using an arrangement of dichroic filter stripes. In the particular system described, a two layer filter is used to color modulate external light which is then detected by an image pickup tube. The resulting time division multiplexed electronic signal from the pickup tube is converted by a decoder into a green color signal, and a single red-blue multiplexed signal, which is demultiplexed to produce red and blue color signals. The three primary color signals can be encoded as standard NTSC color signals.
Schorpp, Kenji; Rothenaigner, Ina; Maier, Julia; Traenkle, Bjoern; Rothbauer, Ulrich; Hadian, Kamyar
2016-10-01
Many screening hits show relatively poor quality regarding later efficacy and safety. Therefore, small-molecule screening efforts shift toward high-content analysis providing more detailed information. Here, we describe a novel screening approach to identify cell cycle modulators with low toxicity by combining the Cell Cycle Chromobody (CCC) technology with the CytoTox-Glo (CTG) cytotoxicity assay. The CCC technology employs intracellularly functional single-domain antibodies coupled to a fluorescent protein (chromobodies) to visualize the cell cycle-dependent redistribution of the proliferating cell nuclear antigen (PCNA) in living cells. This image-based cell cycle analysis was combined with determination of dead-cell protease activity in cell culture supernatants by the CTG assay. We adopted this multiplex approach to high-throughput format and screened 960 Food and Drug Administration (FDA)-approved drugs. By this, we identified nontoxic compounds, which modulate different cell cycle stages, and validated selected hits in diverse cell lines stably expressing CCC. Additionally, we independently validated these hits by flow cytometry as the current state-of-the-art format for cell cycle analysis. This study demonstrates that CCC imaging is a versatile high-content screening approach to identify cell cycle modulators, which can be multiplexed with cytotoxicity assays for early elimination of toxic compounds during screening. © 2016 Society for Laboratory Automation and Screening.
NASA Astrophysics Data System (ADS)
Lim, Kwon-Seob; Yu, Hong-Yeon; Park, Hyoung-Jun; Kang, Hyun Seo; Jang, Jae-Hyung
2016-06-01
Low-cost single-mode four-channel optical transmitter and receiver modules using the wavelength-division multiplexing (WDM) method have been developed for long-reach fiber optic applications. The single-mode four-channel WDM optical transmitter and receiver modules consist of two dual-wavelength optical transmitter and receiver submodules, respectively. The integration of two channels in a glass-sealed transistor outline-can package is an effective way to reduce cost and size and to extend the number of channels. The clear eye diagrams with more than about 6 dB of the extinction ratio and the minimum receiver sensitivity of lower than -16 dBm at a bit error rate of 10-12 have been obtained for the transmitter and receiver modules, respectively, at 5 Gbps/channel. The 4K ultrahigh definition contents have been transmitted over a 1-km-long single-mode fiber using a pair of proposed four-channel transmitter optical subassembly and receiver optical subassembly.
A new IPQAM modulator with high integrated degree for digital TV
NASA Astrophysics Data System (ADS)
He, Yejun; Liu, Deming; Zhu, Guangxi; Jiang, Tao; Sun, Gongxian
2008-12-01
As video on demand (VOD) services are deployed, cable operators will experience a fundamental shift in their business, moving from broadcast to unicast content delivery. Another significant change is the introduction of Gigabit Ethernet into their network, which is providing an unprecedented opportunity to turn the cable operator's infrastructure into a sustainable competitive advantage. However, Gigabit Ethernet is more than just transport; it's the foundation of the Next-Generation Digital Video Network. IPQAM modulator, which is a main equipment, aren't made in China so far. It is the first time that we did design IPQAM modulator and will apply it to interactive TV based on DWDM (dense wavelength-division multiplexing). This paper introduces the principle of IPQAM modulator and transmission approach. The differences between IPQAM and conventional QAM are analysed. Some key techniques such as scrambling, statistical multiplexing, Data over Cable Service Interface Specification (DOCSIS) 3.0, software defined radio as well as DVB simulcrypt are also studied.
Li, Xinying; Yu, Jianjun; Chi, Nan; Zhang, Junwen
2013-11-15
We propose and experimentally demonstrate an optical wireless integration system at the Q-band, in which up to 40 Gb/s polarization multiplexing multilevel quadrature amplitude/phase modulation (PM-QAM) signal can be first transmitted over 20 km single-mode fiber-28 (SMF-28), then delivered over a 2 m 2 × 2 multiple-input multiple-output wireless link, and finally transmitted over another 20 km SMF-28. The PM-QAM modulated wireless millimeter-wave (mm-wave) signal at 40 GHz is generated based on the remote heterodyning technique, and demodulated by the radio-frequency transparent photonic technique based on homodyne coherent detection and baseband digital signal processing. The classic constant modulus algorithm equalization is used at the receiver to realize polarization demultiplexing of the PM-QAM signal. For the first time, to the best of our knowledge, we realize the conversion of the PM-QAM modulated wireless mm-wave signal to the optical signal as well as 20 km fiber transmission of the converted optical signal.
NASA Astrophysics Data System (ADS)
Ghosh, Amal K.; Singha Roy, Souradip; Mandal, Sudipta; Basuray, Amitabha
Optoelectronic processors have already been developed with the strong potentiality of optics in information and data processing. Encoder, Decoder, Multiplexers and Demultiplexers are the most important components in modern system designs and in communications. We have implemented the same using trinary logic gates with signed magnitude defined as Modified Trinary Number (MTN). The Spatial Light Modulator (SLM) based optoelectronic circuit is suitable for high speed data processing and communications using photon as carrier. We also presented here a possible method of implementing the same using light with photon as carrier of information. The importance of the method is that all the basic gates needed may be fabricated based on basic building block.
Surface elastic wave detectors
NASA Technical Reports Server (NTRS)
Lawson, R. L.
1971-01-01
The potential applications of acoustic surface wave technology to multiplex communication systems such as data-bus, are examined. The goals are primarily to characterize certain aspects of surface wave trapped delay lines, surface wave modulation techniques, and surface wave applications that are relevant to the evaluation of surface wave devices in multiplex systems. The results indicate that there is a potential for the application of surface wave technology in data-bus type systems.
Filla, Robert T; Schrell, Adrian M; Coulton, John B; Edwards, James L; Roper, Michael G
2018-02-20
A method for multiplexed sample analysis by mass spectrometry without the need for chemical tagging is presented. In this new method, each sample is pulsed at unique frequencies, mixed, and delivered to the mass spectrometer while maintaining a constant total flow rate. Reconstructed ion currents are then a time-dependent signal consisting of the sum of the ion currents from the various samples. Spectral deconvolution of each reconstructed ion current reveals the identity of each sample, encoded by its unique frequency, and its concentration encoded by the peak height in the frequency domain. This technique is different from other approaches that have been described, which have used modulation techniques to increase the signal-to-noise ratio of a single sample. As proof of concept of this new method, two samples containing up to 9 analytes were multiplexed. The linear dynamic range of the calibration curve was increased with extended acquisition times of the experiment and longer oscillation periods of the samples. Because of the combination of the samples, salt had little effect on the ability of this method to achieve relative quantitation. Continued development of this method is expected to allow for increased numbers of samples that can be multiplexed.
NASA Astrophysics Data System (ADS)
Xi, Wenze; McKisson, J. E.; Weisenberger, Andrew G.; Zhang, Shukui; Zorn, Carl
2014-06-01
A new laser-based externally-modulated electro-optically coupled detector (EOCD) architecture is being developed to enable high-density readout for radiation detectors with accurate analog radiation pulse shape and timing preservation. Unlike digital conversion before electro-optical modulation, the EOCD implements complete analog optical signal modulation and multiplexing in its detector front-end. The result is a compact, high performance detector readout that can be both radiation tolerant and immune to magnetic fields. In this work, the feasibility of EOCD was explored by constructing a two-wavelength laser-based externally-modulated EOCD, and testing analog pulse shape preservation and wavelength-division multiplexing (WDM) crosstalk. Comparisons were first made between the corresponding initial pulses and the electro-optically coupled analog pulses. This confirmed an excellent analog pulse preservation over 29% of the modulator's switching voltage range. Optical spectrum analysis revealed less than -14 dB crosstalk with 1.2 nm WDM wavelength bandgap, and provided insight on experimental conditions that could lead to increased inter-wavelength crosstalk. Further discussions and previous research on the radiation tolerance and magnetic field immunity of the candidate materials were also given, and quantitative device testing is proposed in the future.
High-speed acoustic communication by multiplexing orbital angular momentum
Shi, Chengzhi; Dubois, Marc; Wang, Yuan
2017-01-01
Long-range acoustic communication is crucial to underwater applications such as collection of scientific data from benthic stations, ocean geology, and remote control of off-shore industrial activities. However, the transmission rate of acoustic communication is always limited by the narrow-frequency bandwidth of the acoustic waves because of the large attenuation for high-frequency sound in water. Here, we demonstrate a high-throughput communication approach using the orbital angular momentum (OAM) of acoustic vortex beams with one order enhancement of the data transmission rate at a single frequency. The topological charges of OAM provide intrinsically orthogonal channels, offering a unique ability to multiplex data transmission within a single acoustic beam generated by a transducer array, drastically increasing the information channels and capacity of acoustic communication. A high spectral efficiency of 8.0 ± 0.4 (bit/s)/Hz in acoustic communication has been achieved using topological charges between −4 and +4 without applying other communication modulation techniques. Such OAM is a completely independent degree of freedom which can be readily integrated with other state-of-the-art communication modulation techniques like quadrature amplitude modulation (QAM) and phase-shift keying (PSK). Information multiplexing through OAM opens a dimension for acoustic communication, providing a data transmission rate that is critical for underwater applications. PMID:28652341
NASA Astrophysics Data System (ADS)
Yu, Yajun; Sanchez, Nancy P.; Yi, Fan; Zheng, Chuantao; Ye, Weilin; Wu, Hongpeng; Griffin, Robert J.; Tittel, Frank K.
2017-05-01
A sensor system capable of simultaneous measurements of NO and NO2 was developed using a wavelength modulation-division multiplexing (WMDM) scheme and multi-pass absorption spectroscopy. A continuous wave (CW), distributed-feedback (DFB) quantum cascade laser (QCL) and a CW external-cavity (EC) QCL were employed for targeting a NO absorption doublet at 1900.075 cm-1 and a NO2 absorption line at 1630.33 cm-1, respectively. Simultaneous detection was realized by modulating both QCLs independently at different frequencies and demodulating the detector signals with LabView-programmed lock-in amplifiers. The sensor operated at a reduced pressure of 40 Torr and a data sampling rate of 1 Hz. An Allan-Werle deviation analysis indicated that the minimum detection limits of NO and NO2 can reach sub-ppbv concentration levels with averaging times of 100 and 200 s, respectively.
Precoded spatial multiplexing MIMO system with spatial component interleaver.
Gao, Xiang; Wu, Zhanji
In this paper, the performance of precoded bit-interleaved coded modulation (BICM) spatial multiplexing multiple-input multiple-output (MIMO) system with spatial component interleaver is investigated. For the ideal precoded spatial multiplexing MIMO system with spatial component interleaver based on singular value decomposition (SVD) of the MIMO channel, the average pairwise error probability (PEP) of coded bits is derived. Based on the PEP analysis, the optimum spatial Q-component interleaver design criterion is provided to achieve the minimum error probability. For the limited feedback precoded proposed scheme with linear zero forcing (ZF) receiver, in order to minimize a bound on the average probability of a symbol vector error, a novel effective signal-to-noise ratio (SNR)-based precoding matrix selection criterion and a simplified criterion are proposed. Based on the average mutual information (AMI)-maximization criterion, the optimal constellation rotation angles are investigated. Simulation results indicate that the optimized spatial multiplexing MIMO system with spatial component interleaver can achieve significant performance advantages compared to the conventional spatial multiplexing MIMO system.
NASA Astrophysics Data System (ADS)
Hasan, Mehedi; Hall, Trevor
2016-11-01
In the title paper, Li et al. have presented a scheme for filter-less photonic millimetre-wave (mm-wave) generation based on two polarization multiplexed parallel dual-parallel Mach-Zehnder modulators (DP-MZMs). For frequency octo-tupling, all the harmonics are suppressed except those of order 4l, where l is the integer. The carrier is then suppressed by the polarization multiplexing technique, which is the principal innovative step in their design. Frequency 12-tupling and 16-tupling is also described following a similar method. The two DP-MZM are similarly driven and provide identical outputs for the same RF modulation indices. Consequently, a demerit of their design is the requirement to apply two different RF signal modulation indexes in a particular range and set the polarizer to a precise angle which depends on the pair of modulation indices used in order to suppress the unwanted harmonics (e.g. the carrier) without simultaneously suppressing the wanted harmonics. The aim of this comment is to show that, an adjustment of the RF drive phases with a fixed polarizer angle with the design presented by Li, all harmonics can be suppressed except those of order4l, where l is an odd integer. Hence, a filter-less frequency octo-tupling can be generated whose performance is not limited by the careful adjustment of the RF drive signal, rather it can be operated for a wide range of modulation indexes (m 2.5 → 7.5). If the modulation index is adjusted to suppress 4th harmonics, then the design can be used to perform frequency 24-tupling. Since, the carrier is suppressed by design in the modified architecture, the strict requirement to adjust the RF drive (and polarizer angle) can be avoided without any significant change to the circuit complexity.
NASA Technical Reports Server (NTRS)
Tobey, G. L.
1978-01-01
Tests were performed to evaluate the operating characteristics of the interface between the Space Lab Bus Interface Unit (SL/BIU) and the Orbiter Multiplexer-Demultiplexer (MDM) serial data input-output (SIO) module. This volume contains the test equipment preparation procedures and a detailed description of the Nova/Input Output Processor Simulator (IOPS) software used during the data transfer tests to determine word error rates (WER).
Lab-on-a-chip for the isolation and characterization of circulating tumor cells.
Stakenborg, Tim; Liu, Chengxu; Henry, Olivier; O'Sullivan, Ciara K; Fermer, Christian; Roeser, Tina; Ritzi-Lehnert, Marion; Hauch, Sigfried; Borgen, Elin; Laddach, Nadja; Lagae, Liesbet
2010-01-01
A smart miniaturized system is being proposed for the isolation and characterization of circulating tumor cells (CTCs) directly from blood. Different microfluidic modules have been designed for cell enrichment and -counting, multiplex mRNA amplification as well as DNA detection. With the different modules at hand, future effort will focus on the integration of the modules in a fully automated, single platform.
Haldar, Raktim; Banik, Abhik D; Varshney, Shailendra K
2014-09-22
In this work, we propose and demonstrate the performance of silicon-on-insulator (SOI) off-axis microring resonator (MRR) as electro-optic modulator (EOM). Adding an extra off-axis inner-ring in conventional microring structure provides control to compensate thermal effects on EOM. It is shown that dynamically controlled bias-voltage applied to the outer ring has the potency to quell the thermal effects over a wide range of temperature. Thus, besides the appositely biased conventional microring, off-axis inner microring with pre-emphasized electrical input message signal enables our proposed structure suitable for high data-rate dense wavelength division multiplexing scheme of optical communication within a very compact device size.
Scalable modulation technology and the tradeoff of reach, spectral efficiency, and complexity
NASA Astrophysics Data System (ADS)
Bosco, Gabriella; Pilori, Dario; Poggiolini, Pierluigi; Carena, Andrea; Guiomar, Fernando
2017-01-01
Bandwidth and capacity demand in metro, regional, and long-haul networks is increasing at several tens of percent per year, driven by video streaming, cloud computing, social media and mobile applications. To sustain this traffic growth, an upgrade of the widely deployed 100-Gbit/s long-haul optical systems, based on polarization multiplexed quadrature phase-shift keying (PM-QPSK) modulation format associated with coherent detection and digital signal processing (DSP), is mandatory. In fact, optical transport techniques enabling a per-channel bit rate beyond 100 Gbit/s have recently been the object of intensive R and D activities, aimed at both improving the spectral efficiency and lowering the cost per bit in fiber transmission systems. In this invited contribution, we review the different available options to scale the per-channel bit-rate to 400 Gbit/s and beyond, i.e. symbol-rate increase, use of higher-order quadrature amplitude modulation (QAM) modulation formats and use of super-channels with DSP-enabled spectral shaping and advanced multiplexing technologies. In this analysis, trade-offs of system reach, spectral efficiency and transceiver complexity are addressed. Besides scalability, next generation optical networks will require a high degree of flexibility in the transponders, which should be able to dynamically adapt the transmission rate and bandwidth occupancy to the light path characteristics. In order to increase the flexibility of these transponders (often referred to as "flexponders"), several advanced modulation techniques have recently been proposed, among which sub-carrier multiplexing, hybrid formats (over time, frequency and polarization), and constellation shaping. We review these techniques, highlighting their limits and potential in terms of performance, complexity and flexibility.
1 λ × 1.44 Tb/s free-space IM-DD transmission employing OAM multiplexing and PDM.
Zhu, Yixiao; Zou, Kaiheng; Zheng, Zhennan; Zhang, Fan
2016-02-22
We report the experimental demonstration of single wavelength terabit free-space intensity modulation direct detection (IM-DD) system employing both orbital angular momentum (OAM) multiplexing and polarization division multiplexing (PDM). In our experiment, 12 OAM modes with two orthogonal polarization states are used to generate 24 channels for transmission. Each channel carries 30 Gbaud Nyquist PAM-4 signal. Therefore an aggregate gross capacity record of 1.44 Tb/s (12 × 2 × 30 × 2 Gb/s) is acheived with a modulation efficiency of 48 bits/symbol. After 0.8m free-space transmission, the bit error rates (BERs) of all the channels are below the 20% hard-decision forward error correction (HD-FEC) threshold of 1.5 × 10(-2). After applying the decision directed recursive least square (DD-RLS) based filter and post filter, the BERs of two polarizations can be reduced from 5.3 × 10(-3) and 7.3 × 10(-3) to 2.2 × 10(-3) and 3.4 × 10(-3), respectively.
Fiber optical parametric amplifiers in optical communication systems
Marhic (†), Michel E; Andrekson, Peter A; Petropoulos, Periklis; Radic, Stojan; Peucheret, Christophe; Jazayerifar, Mahmoud
2015-01-01
The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-division multiplexed formats. High-quality mid-span spectral inversion has been demonstrated at 0.64 Tb/s, avoiding electronic dispersion compensation. All-optical amplitude regeneration of amplitude-modulated signals has been performed, while PSAs have been used to demonstrate phase regeneration of phase-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512 Gb/s have been transmitted over 6,000 km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products in excess of 14,000 Tb/s × km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed. PMID:25866588
A new OTDR based on probe frequency multiplexing
NASA Astrophysics Data System (ADS)
Lu, Lidong; Liang, Yun; Li, Binglin; Guo, Jinghong; Zhang, Xuping
2013-12-01
Two signal multiplexing methods are proposed and experimentally demonstrated in optical time domain reflectometry (OTDR) for fault location of optical fiber transmission line to obtain high measurement efficiency. Probe signal multiplexing is individually obtained by phase modulation for generation of multi-frequency and time sequential frequency probe pulses. The backscattered Rayleigh light of the multiplexing probe signals is transferred to corresponding heterodyne intermediate frequency (IF) through heterodyning with the single frequency local oscillator (LO). Then the IFs are simultaneously acquired by use of a data acquisition card (DAQ) with sampling rate of 100Msps, and the obtained data are processed by digital band pass filtering (BPF), digital down conversion (DDC) and digital low pass filtering (BPF) procedure. For each probe frequency of the detected signals, the extraction of the time domain reflecting signal power is performed by parallel computing method. For a comprehensive performance comparison with conventional coherent OTDR on the probe frequency multiplexing methods, the potential for enhancement of dynamic range, spatial resolution and measurement time are analyzed and discussed. Experimental results show that by use of the probe frequency multiplexing method, the measurement efficiency of coherent OTDR can be enhanced by nearly 40 times.
Estevez, Claudio; Kailas, Aravind
2012-01-01
Millimeter-wave technology shows high potential for future wireless personal area networks, reaching over 1 Gbps transmissions using simple modulation techniques. Current specifications consider dividing the spectrum into effortlessly separable spectrum ranges. These low requirements open a research area in time and space multiplexing techniques for millimeter-waves. In this work a process-stacking multiplexing access algorithm is designed for single channel operation. The concept is intuitive, but its implementation is not trivial. The key to stacking single channel events is to operate while simultaneously obtaining and handling a-posteriori time-frame information of scheduled events. This information is used to shift a global time pointer that the wireless access point manages and uses to synchronize all serviced nodes. The performance of the proposed multiplexing access technique is lower bounded by the performance of legacy TDMA and can significantly improve the effective throughput. Work is validated by simulation results.
Multiplexed Holograms by Surface Plasmon Propagation and Polarized Scattering.
Chen, Ji; Li, Tao; Wang, Shuming; Zhu, Shining
2017-08-09
Thanks to the superiority in controlling the optical wave fronts, plasmonic nanostructures have led to various striking applications, among which metasurface holograms have been well developed and endowed with strong multiplexing capability. Here, we report a new design of multiplexed plasmonic hologram, which allows for reconstruction of multiple holographic images in free space by scatterings of surface plasmon polariton (SPP) waves in different propagation directions. Besides, the scattered polarization states can be further modulated by arranging the orientations of nanoscatterers. By incorporation of the SPP propagation and polarized scattering, a 4-fold hologram with low crosstalk is successfully demonstrated, which breaks the limitation of only two orthogonal states in conventional polarization multiplexers. Moreover, our design using the near-field SPP as reference wave holds the advantage for compact integration. This holographic approach is expected to inspire new photonic designs with enhanced information capacity and integratability.
Multiplexed aberration measurement for deep tissue imaging in vivo
Wang, Chen; Liu, Rui; Milkie, Daniel E.; Sun, Wenzhi; Tan, Zhongchao; Kerlin, Aaron; Chen, Tsai-Wen; Kim, Douglas S.; Ji, Na
2014-01-01
We describe a multiplexed aberration measurement method that modulates the intensity or phase of light rays at multiple pupil segments in parallel to determine their phase gradients. Applicable to fluorescent-protein-labeled structures of arbitrary complexity, it allows us to obtain diffraction-limited resolution in various samples in vivo. For the strongly scattering mouse brain, a single aberration correction improves structural and functional imaging of fine neuronal processes over a large imaging volume. PMID:25128976
Titus, Steven A; Southall, Noel; Marugan, Juan; Austin, Christopher P; Zheng, Wei
2012-01-01
A hallmark of Huntington’s disease is the presence of a large polyglutamine expansion in the first exon of the Huntingtin protein and the propensity of protein aggregation by the mutant proteins. Aberrant protein aggregation also occurs in other polyglutamine expansion disorders, as well as in other neurodegenerative diseases including Parkinson’s, Alzheimer’s, and prion diseases. However, the pathophysiological role of these aggregates in the cell death that characterizes the diseases remains unclear. Identification of small molecule probes that modulate protein aggregation and cytotoxicity caused by aggregated proteins may greatly facilitate the studies on pathogenesis of these diseases and potentially lead to development of new therapies. Based on a detergent insoluble property of the Huntingtin protein aggregates, we have developed a homogenous assay to rapidly quantitate the levels of protein aggregates in a cellular model of Huntington’s disease. The protein aggregation assay has also been multiplexed with a protease release assay for the measurement of cytotoxicity resulting from aggregated proteins in the same cells. Through a testing screen of a compound library, we have demonstrated that this multiplexed cytotoxicity and protein aggregation assay has ability to identify active compounds that prevent cell death and/or modulate protein aggregation in cells of the Huntington’s disease model. Therefore, this multiplexed screening approach is also useful for development of high-throughput screening assays for other neurodegenerative diseases involving protein aggregation. PMID:23346268
Marin-Kuan, Maricel; Fussell, Karma C; Riederer, Nicolas; Latado, Helia; Serrant, Patrick; Mollergues, Julie; Coulet, Myriam; Schilter, Benoit
2017-12-01
In vitro effect-based reporter assays are applied as biodetection tools designed to address nuclear receptor mediated-modulation. While such assays detect receptor modulating potential, cell viability needs to be addressed, preferably in the same well. Some assays circumvent this by co-transfecting a second constitutively-expressed marker gene or by multiplexing a cytotoxicity assay. Some assays, such as the CALUX®, lack this feature. The cytotoxic effects of unknown substances can confound in vitro assays, making the interpretation of results difficult and uncertain, particularly when assessing antagonistic activity. It's necessary to determine whether the cause of the reporter signal decrease is an antagonistic effect or a non-specific cytotoxic effect. To remedy this, we assessed the suitability of multiplexing a cell viability assay within the CALUX® transcriptional activation test for anti-androgenicity. Tests of both well-characterized anti-androgens and cytotoxic compounds demonstrated the suitability of this approach for discerning between the molecular mechanisms of action without altering the nuclear receptor assay; though some compounds were both cytotoxic and anti-androgenic. The optimized multiplexed assay was then applied to an uncharacterized set of polycyclic aromatic compounds. These results better characterized the mode of action and the classification of effects. Overall, the multiplexed protocol added value to CALUX test performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optical back propagation for fiber optic networks with hybrid EDFA Raman amplification.
Liang, Xiaojun; Kumar, Shiva
2017-03-06
We have investigated an optical back propagation (OBP) method to compensate for propagation impairments in fiber optic networks with lumped Erbium doped fiber amplifier (EDFA) and/or distributed Raman amplification. An OBP module consists of an optical phase conjugator (OPC), optical amplifiers and dispersion varying fibers (DVFs). We derived a semi-analytical expression that calculates the dispersion profile of DVF. The OBP module acts as a nonlinear filter that fully compensates for the nonlinear distortions due to signal propagation in a transmission fiber, and is applicable for fiber optic networks with reconfigurable optical add-drop multiplexers (ROADMs). We studied a wavelength division multiplexing (WDM) network with 3000 km transmission distance and 64-quadrature amplitude modulation (QAM) modulation. OBP brings 5.8 dB, 5.9 dB and 6.1 dB Q-factor gains over linear compensation for systems with full EDFA amplification, hybrid EDFA/Raman amplification, and full Raman amplification, respectively. In contrast, digital back propagation (DBP) or OPC-only systems provide only 0.8 ~ 1.5 dB Q-factor gains.
OFDM Coupled Compressive Sensing Algorithm for Stepped-Frequency Ground Penetrating Radar
2014-10-01
These frequencies are combined in such a way to achieve orthogonality between the carrier frequencies, while mitigating any interference between...in such a way to achieve orthogonality between the carrier frequencies, while mitigating any interference between said frequencies. In CS, a signal...frequency tones is mitigated . Orthogonality requires that the sub-bands are spaced at = is the OFDM symbol period, and k is any
Complexity Analysis and Algorithms for Optimal Resource Allocation in Wireless Networks
2012-09-01
independent orthogonal signaling such as OFDM . The general formulation will exploit the concept of ‘interference alignment’ which is known to provide...substantial rate gain over OFDM signalling for general interference channels. We have successfully analyzed the complexity to characterize the optimal...categories: PaperReceived Gennady Lyubeznik, Zhi-Quan Luo, Meisam Razaviyayn. On the degrees of freedom achievable through interference alignment in a MIMO
NASA Astrophysics Data System (ADS)
Ullah, Rahat; Liu, Bo; Zhang, Qi; Tian, Qinghua; Tian, Feng; Qu, Zhaowei; Yan, Cheng; Khan, Muhammad Saad; Ahmad, Ibrar; Xin, Xiangjun
2015-11-01
We propose a technique for the generation of optical frequency comb from a single source, which reduces the costs of optical access networks. Two Mach-Zehnder modulators are cascaded with one phase modulator driven by radiofrequency signals. With 10-GHz frequency spacing, the generated 40 optical multicarriers have good tone-to-noise ratio with least excursions in their comb lines. The laser array at the optical line terminal of the conventional wavelength division multiplexed passive optical network (WDM-PON) system has been replaced with optical frequency comb generator (OFCG), which may result in cost-effective optical line terminal (OLT) supporting a large-capacity WDM-PON system. Of 40 carriers generated, each carrier carries 10 Gbps data based on differential phase-shift keying. Four hundred Gbps multiplexed data from all channels are successfully transmitted through a fiber span of 25 km with negligible power penalties. Part of the downlink signal is used in uplink transmission at optical network unit where intensity-modulated on-off keying is deployed for remodulation. Theoretical analysis of the proposed WDM-PON system based on OFCG are in good agreement with simulation results. The metrics considered for the analysis of the proposed OFCG in a WDM-PON system are power penalties of the full-duplex transmission, eye diagrams, and bit error rate.
NASA Astrophysics Data System (ADS)
Karasawa, Yoshio; Kumagai, Taichi; Takemoto, Atsushi; Fujii, Takeo; Ito, Kenji; Suzuki, Noriyoshi
A novel timing synchronizing scheme is proposed for use in inter-vehicle communication (IVC) with an autonomous distributed intelligent transport system (ITS). The scheme determines the timing of packet signal transmission in the IVC network and employs the guard interval (GI) timing in the orthogonal frequency divisional multiplexing (OFDM) signal currently used for terrestrial broadcasts in the Japanese digital television system (ISDB-T). This signal is used because it is expected that the automotive market will demand the capability for cars to receive terrestrial digital TV broadcasts in the near future. The use of broadcasts by automobiles presupposes that the on-board receivers are capable of accurately detecting the GI timing data in an extremely low carrier-to-noise ratio (CNR) condition regardless of a severe multipath environment which will introduce broad scatter in signal arrival times. Therefore, we analyzed actual broadcast signals received in a moving vehicle in a field experiment and showed that the GI timing signal is detected with the desired accuracy even in the case of extremely low-CNR environments. Some considerations were also given about how to use these findings.
Ultra-broadband photonic internet
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2011-06-01
In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.
NASA Astrophysics Data System (ADS)
Villa, Carlos; Kumavor, Patrick; Donkor, Eric
2008-04-01
Photonics Analog-to-Digital Converters (ADCs) utilize a train of optical pulses to sample an electrical input waveform applied to an electrooptic modulator or a reverse biased photodiode. In the former, the resulting train of amplitude-modulated optical pulses is detected (converter to electrical) and quantized using a conversional electronics ADC- as at present there are no practical, cost-effective optical quantizers available with performance that rival electronic quantizers. In the latter, the electrical samples are directly quantized by the electronics ADC. In both cases however, the sampling rate is limited by the speed with which the electronics ADC can quantize the electrical samples. One way to increase the sampling rate by a factor N is by using the time-interleaved technique which consists of a parallel array of N electrical ADC converters, which have the same sampling rate but different sampling phase. Each operating at a quantization rate of fs/N where fs is the aggregated sampling rate. In a system with no real-time operation, the N channels digital outputs are stored in memory, and then aggregated (multiplexed) to obtain the digital representation of the analog input waveform. Alternatively, for real-time operation systems the reduction of storing time in the multiplexing process is desired to improve the time response of the ADC. The complete elimination of memories come expenses of concurrent timing and synchronization in the aggregation of the digital signal that became critical for a good digital representation of the analog signal waveform. In this paper we propose and demonstrate a novel optically synchronized encoder and multiplexer scheme for interleaved photonics ADCs that utilize the N optical signals used to sample different phases of an analog input signal to synchronize the multiplexing of the resulting N digital output channels in a single digital output port. As a proof of concept, four 320 Megasamples/sec 12-bit of resolution digital signals were multiplexed to form an aggregated 1.28 Gigasamples/sec single digital output signal.
Transceivers and receivers for quantum key distribution and methods pertaining thereto
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRose, Christopher; Sarovar, Mohan; Soh, Daniel B.S.
Various technologies for performing continuous-variable (CV) and discrete-variable (DV) quantum key distribution (QKD) with integrated electro-optical circuits are described herein. An integrated DV-QKD system uses Mach-Zehnder modulators to modulate a polarization of photons at a transmitter and select a photon polarization measurement basis at a receiver. An integrated CV-QKD system uses wavelength division multiplexing to send and receive amplitude-modulated and phase-modulated optical signals with a local oscillator signal while maintaining phase coherence between the modulated signals and the local oscillator signal.
Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator
NASA Astrophysics Data System (ADS)
Wang, Tao; Huang, Peng; Zhou, Yingming; Liu, Weiqi; Zeng, Guihua
2018-01-01
We propose a pilot-multiplexed continuous-variable quantum key distribution (CVQKD) scheme based on a local local oscillator (LLO). Our scheme utilizes time-multiplexing and polarization-multiplexing techniques to dramatically isolate the quantum signal from the pilot, employs two heterodyne detectors to separately detect the signal and the pilot, and adopts a phase compensation method to almost eliminate the multifrequency phase jitter. In order to analyze the performance of our scheme, a general LLO noise model is constructed. Besides the phase noise and the modulation noise, the photon-leakage noise from the reference path and the quantization noise due to the analog-to-digital converter (ADC) are also considered, which are first analyzed in the LLO regime. Under such general noise model, our scheme has a higher key rate and longer secure distance compared with the preexisting LLO schemes. Moreover, we also conduct an experiment to verify our pilot-multiplexed scheme. Results show that it maintains a low level of the phase noise and is expected to obtain a 554-Kbps secure key rate within a 15-km distance under the finite-size effect.
Development of a multiplexed readout with high position resolution for positron emission tomography
NASA Astrophysics Data System (ADS)
Lee, Sangwon; Choi, Yong; Kang, Jihoon; Jung, Jin Ho
2017-04-01
Detector signals for positron emission tomography (PET) are commonly multiplexed to reduce the number of digital processing channels so that the system can remain cost effective while also maintaining imaging performance. In this work, a multiplexed readout combining Anger position estimation algorithm and position decoder circuit (PDC) was developed to reduce the number of readout channels by a factor of 24, 96-to-4. The data acquisition module consisted of a TDC (50 ps resolution), 4-channel ADCs (12 bit, 105 MHz sampling rate), 2 GB SDRAM and USB3.0. The performance of the multiplexed readout was assessed with a high-resolution PET detector block composed of 2×3 detector modules, each consisting of an 8×8 array of 1.52×1.52×6 mm3 LYSO, a 4×4 array of 3×3 mm2 silicon photomultiplier (SiPM) and 13.4×13.4 mm2 light guide with 0.7 mm thickness. The acquired flood histogram showed that all 384 crystals could be resolved. The average energy resolution at 511 keV was 13.7±1.6% full-width-at-half-maximum (FWHM) and the peak-to-valley ratios of the flood histogram on the horizontal and vertical lines were 18.8±0.8 and 22.8±1.3, respectively. The coincidence resolving time of a pair of detector blocks was 6.2 ns FWHM. The reconstructed phantom image showed that rods down to a diameter of 1.6 mm could be resolved. The results of this study indicate that the multiplexed readout would be useful in developing a PET with a spatial resolution less than the pixel size of the photosensor, such as a SiPM array.
Polarization-insensitive PAM-4-carrying free-space orbital angular momentum (OAM) communications.
Liu, Jun; Wang, Jian
2016-02-22
We present a simple configuration incorporating single polarization-sensitive phase-only liquid crystal spatial light modulator (SLM) to facilitate polarization-insensitive free-space optical communications employing orbital angular momentum (OAM) modes. We experimentally demonstrate several polarization-insensitive optical communication subsystems by propagating a single OAM mode, multicasting 4 and 10 OAM modes, and multiplexing 8 OAM modes, respectively. Free-space polarization-insensitive optical communication links using OAM modes that carry four-level pulse-amplitude modulation (PAM-4) signal are demonstrated in the experiment. The observed optical signal-to-noise ratio (OSNR) penalties are less than 1 dB in both polarization-insensitive N-fold OAM modes multicasting and multiple OAM modes multiplexing at a bit-error rate (BER) of 2e-3 (enhanced forward-error correction (EFEC) threshold).
A multi-modal stereo microscope based on a spatial light modulator.
Lee, M P; Gibson, G M; Bowman, R; Bernet, S; Ritsch-Marte, M; Phillips, D B; Padgett, M J
2013-07-15
Spatial Light Modulators (SLMs) can emulate the classic microscopy techniques, including differential interference (DIC) contrast and (spiral) phase contrast. Their programmability entails the benefit of flexibility or the option to multiplex images, for single-shot quantitative imaging or for simultaneous multi-plane imaging (depth-of-field multiplexing). We report the development of a microscope sharing many of the previously demonstrated capabilities, within a holographic implementation of a stereo microscope. Furthermore, we use the SLM to combine stereo microscopy with a refocusing filter and with a darkfield filter. The instrument is built around a custom inverted microscope and equipped with an SLM which gives various imaging modes laterally displaced on the same camera chip. In addition, there is a wide angle camera for visualisation of a larger region of the sample.
NASA Astrophysics Data System (ADS)
Abdulghafoor, O. B.; Shaat, M. M. R.; Ismail, M.; Nordin, R.; Yuwono, T.; Alwahedy, O. N. A.
2017-05-01
In this paper, the problem of resource allocation in OFDM-based downlink cognitive radio (CR) networks has been proposed. The purpose of this research is to decrease the computational complexity of the resource allocation algorithm for downlink CR network while concerning the interference constraint of primary network. The objective has been secured by adopting pricing scheme to develop power allocation algorithm with the following concerns: (i) reducing the complexity of the proposed algorithm and (ii) providing firm power control to the interference introduced to primary users (PUs). The performance of the proposed algorithm is tested for OFDM- CRNs. The simulation results show that the performance of the proposed algorithm approached the performance of the optimal algorithm at a lower computational complexity, i.e., O(NlogN), which makes the proposed algorithm suitable for more practical applications.
Nygate, Yoav N; Singh, Gyanendra; Barnea, Itay; Shaked, Natan T
2018-06-01
We present a new technique for obtaining simultaneous multimodal quantitative phase and fluorescence microscopy of biological cells, providing both quantitative phase imaging and molecular specificity using a single camera. Our system is based on an interferometric multiplexing module, externally positioned at the exit of an optical microscope. In contrast to previous approaches, the presented technique allows conventional fluorescence imaging, rather than interferometric off-axis fluorescence imaging. We demonstrate the presented technique for imaging fluorescent beads and live biological cells.
Wavelength-multiplexed fiber optic position encoder for aircraft control systems
NASA Astrophysics Data System (ADS)
Beheim, Glenn; Krasowski, Michael J.; Sotomayor, Jorge L.; Fritsch, Klaus; Flatico, Joseph M.; Bathurst, Richard L.; Eustace, John G.; Anthan, Donald J.
1991-02-01
NASA Lewis together with John Carroll University has worked for the last several years to develop wavelength-multiplexed digital position transducers for use in aircraft control systems. A prototype rotary encoder is being built for a demonstration program involving the control of a commercial transport''s turbofan engine. This encoder has eight bits of resolution a 90 degree range and is powered by a single LED. A compact electro-optics module is being developed to withstand the extremely hostile gas turbine environment.
A TDM link with channel coding and digital voice.
NASA Technical Reports Server (NTRS)
Jones, M. W.; Tu, K.; Harton, P. L.
1972-01-01
The features of a TDM (time-division multiplexed) link model are described. A PCM telemetry sequence was coded for error correction and multiplexed with a digitized voice channel. An all-digital implementation of a variable-slope delta modulation algorithm was used to digitize the voice channel. The results of extensive testing are reported. The measured coding gain and the system performance over a Gaussian channel are compared with theoretical predictions and computer simulations. Word intelligibility scores are reported as a measure of voice channel performance.
Digitally synthesized beat frequency-multiplexed fluorescence lifetime spectroscopy
Chan, Jacky C. K.; Diebold, Eric D.; Buckley, Brandon W.; Mao, Sien; Akbari, Najva; Jalali, Bahram
2014-01-01
Frequency domain fluorescence lifetime imaging is a powerful technique that enables the observation of subtle changes in the molecular environment of a fluorescent probe. This technique works by measuring the phase delay between the optical emission and excitation of fluorophores as a function of modulation frequency. However, high-resolution measurements are time consuming, as the excitation modulation frequency must be swept, and faster low-resolution measurements at a single frequency are prone to large errors. Here, we present a low cost optical system for applications in real-time confocal lifetime imaging, which measures the phase vs. frequency spectrum without sweeping. Deemed Lifetime Imaging using Frequency-multiplexed Excitation (LIFE), this technique uses a digitally-synthesized radio frequency comb to drive an acousto-optic deflector, operated in a cat’s-eye configuration, to produce a single laser excitation beam modulated at multiple beat frequencies. We demonstrate simultaneous fluorescence lifetime measurements at 10 frequencies over a bandwidth of 48 MHz, enabling high speed frequency domain lifetime analysis of single- and multi-component sample mixtures. PMID:25574449
NASA Astrophysics Data System (ADS)
Bindhaiq, Salem; Supa'at, Abu Sahmah M.; Zulkifli, Nadiatulhuda; Shaddad, Redhwan Q.; Mataria, Abdallah
2014-07-01
A high data transmission rate is the main requirement for next-generation telecommunication networks. A design for a 40 Gb/s time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 is presented. The use of a modulated grating Y-branch (MG-Y) laser is proposed as an upstream tunable colorless laser source to upgrade the optical network unit. The electronically tuned MG-Y externally modulated laser with a 10 Gb/s modulation rate is applied to a TWDM-PON and presented across a 3.2-nm tuning range. The performance of the proposed laser is analyzed in terms of bit error rate, eye diagram, and optical signal-to-noise ratio. The proposed TWDM-PON achieved an aggregated data rate of 40 Gb/s along 40 km of bidirectional fiber at a 1:128 splitting ratio without amplification and dispersion compensation.
Performance investigation of optical multicast overlay system using orthogonal modulation format
NASA Astrophysics Data System (ADS)
Singh, Simranjit; Singh, Sukhbir; Kaur, Ramandeep; Kaler, R. S.
2015-03-01
We proposed a bandwidth efficient wavelength division multiplexed-passive optical network (WDM-PON) to simultaneously transmit 60 Gb/s unicast and 10 Gb/s multicast services with 10 Gb/s upstream. The differential phase shift keying (DPSK) multicast signal is superimposed onto multiplexed non-return to zero/polarization shift keying (NRZ/PolSK) orthogonal modulated data signals. Upstream amplitude shift keying (ASK) signals formed without use of any additional light source and superimposed onto received unicast NRZ/PolSK signal before being transmitted back to optical line terminal (OLT). We also investigated the proposed WDM-PON system for variable optical input power, transmission distance of single mode fiber in multicast enable and disable mode. The measured Quality factor for all unicast and multicast signal is in acceptable range (>6). The original contribution of this paper is to propose a bandwidth efficient WDM-PON system that could be projected even in high speed scenario at reduced channel spacing and expected to be more technical viable due to use of optical orthogonal modulation formats.
NASA Astrophysics Data System (ADS)
Liu, J. T. C.; Jeffries, J. B.; Hanson, R. K.
Multiplexed fiber-coupled diode lasers are used to probe second-harmonic line shapes of two near-infrared water absorption features, at 1343 nm and 1392 nm, in order to infer temperatures in gases containing water vapor, such as combustion flows. Wavelength modulation is performed at 170 kHz, and is superimposed on 1-kHz wavelength scans in order to recover full second-harmonic line shapes. Digital waveform generation and lock-in detection are performed using a data-acquisition card installed in a PC. An optimal selection of the modulation indices is shown to greatly simplify data interpretation over extended temperature ranges and to minimize the need for calibration when performing 2 f ratio thermometry. A theoretical discussion of this optimized strategy for 2 f ratio thermometry, as well as results from experimental validations in a heated cell, at pressures up to atmospheric, are presented in order to illustrate the utility of this technique for rapid temperature measurements in gaseous flow fields.
Parallel multiplex laser feedback interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Song; Tan, Yidong; Zhang, Shulian, E-mail: zsl-dpi@mail.tsinghua.edu.cn
2013-12-15
We present a parallel multiplex laser feedback interferometer based on spatial multiplexing which avoids the signal crosstalk in the former feedback interferometer. The interferometer outputs two close parallel laser beams, whose frequencies are shifted by two acousto-optic modulators by 2Ω simultaneously. A static reference mirror is inserted into one of the optical paths as the reference optical path. The other beam impinges on the target as the measurement optical path. Phase variations of the two feedback laser beams are simultaneously measured through heterodyne demodulation with two different detectors. Their subtraction accurately reflects the target displacement. Under typical room conditions, experimentalmore » results show a resolution of 1.6 nm and accuracy of 7.8 nm within the range of 100 μm.« less
Speckle noise suppression method in holographic display using time multiplexing
NASA Astrophysics Data System (ADS)
Liu, Su-Juan; Wang, Di; Li, Song-Jie; Wang, Qiong-Hua
2017-06-01
We propose a method to suppress the speckle noise in holographic display using time multiplexing. The diffractive optical elements (DOEs) and the subcomputer-generated holograms (sub-CGHs) are generated, respectively. The final image is reconstructed using time multiplexing of the subimages and the final subimages. Meanwhile, the speckle noise of the final image is suppressed by reducing the coherence of the reconstructed light and separating the adjacent image points in space. Compared with the pixel separation method, the experiments demonstrate that the proposed method suppresses the speckle noise effectively with less calculation burden and lower demand for frame rate of the spatial light modulator. In addition, with increases of the DOEs and the sub-CGHs, the speckle noise is further suppressed.
Link Correlation Based Transmit Sector Antenna Selection for Alamouti Coded OFDM
NASA Astrophysics Data System (ADS)
Ahn, Chang-Jun
In MIMO systems, the deployment of a multiple antenna technique can enhance the system performance. However, since the cost of RF transmitters is much higher than that of antennas, there is growing interest in techniques that use a larger number of antennas than the number of RF transmitters. These methods rely on selecting the optimal transmitter antennas and connecting them to the respective. In this case, feedback information (FBI) is required to select the optimal transmitter antenna elements. Since FBI is control overhead, the rate of the feedback is limited. This motivates the study of limited feedback techniques where only partial or quantized information from the receiver is conveyed back to the transmitter. However, in MIMO/OFDM systems, it is difficult to develop an effective FBI quantization method for choosing the space-time, space-frequency, or space-time-frequency processing due to the numerous subchannels. Moreover, MIMO/OFDM systems require antenna separation of 5 ∼ 10 wavelengths to keep the correlation coefficient below 0.7 to achieve a diversity gain. In this case, the base station requires a large space to set up multiple antennas. To reduce these problems, in this paper, we propose the link correlation based transmit sector antenna selection for Alamouti coded OFDM without FBI.
Linear, Low Noise Microwave Photonic Systems using Phase and Frequency Modulation
2012-05-11
modulation experiments 65 5.1 Review of FM lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.1 Fabry - Perot lasers...asymmetrical Mach Zehnder interferometers (a-MZI) [17, 34], Fabry - Perot filters [35], fiber Bragg gratings [36] and tunable integrated filters [37, 38...transmitting subcarrier-multiplexed, analog signals for applications in cable television distribution. Experimental results for a Fabry - Perot
Robustness of 40 Gb/s ASK modulation formats in the practical system infrastructure
NASA Astrophysics Data System (ADS)
Pincemin, Erwan; Tan, Antoine; Bezard, Aude; Tonello, Alessandro; Wabnitz, Stefano; Ania-Castañòn, Juan-Diego; Turitsyn, Sergei
2006-12-01
In this work, we theoretically and experimentally analyzed the resilience of 40 Gb/s amplitude shift keying modulation formats to transmission impairments in standard single-mode fiber lines as well as to optical filtering introduced by the optical add/drop multiplexer cascade. Our study is a pre-requisite to assess the implementation of cost-effective 40 Gb/s modulation technology in next generation high bit-rate robust optical transport networks.
NASA Astrophysics Data System (ADS)
Patel, Dhananjay; Singh, Vinay Kumar; Dalal, U. D.
2017-01-01
Single mode fibers (SMF) are typically used in Wide Area Networks (WAN), Metropolitan Area Networks (MAN) and also find applications in Radio over Fiber (RoF) architectures supporting data transmission in Fiber to the Home (FTTH), Remote Antenna Units (RAUs), in-building networks etc. Multi-mode fibers (MMFs) with low cost, ease of installation and low maintenance are predominantly (85-90%) deployed in-building networks providing data access in local area networks (LANs). The transmission of millimeter wave signals through the SMF in WAN and MAN, along with the reuse of MMF in-building networks will not levy fiber reinstallation cost. The transmission of the millimeter waves experiences signal impairments due to the transmitter non-linearity and modal dispersion of the MMF. The MMF exhibiting large modal dispersion limits the bandwidth-length product of the fiber. The second and higher-order harmonics present in the optical signal fall within the system bandwidth. This causes degradation in the received signal and an unwanted radiation of power at the RAU. The power of these harmonics is proportional to the non-linearity of the transmitter and the modal dispersion of the MMF and should be maintained below the standard values as per the international norms. In this paper, a mathematical model is developed for Second-order Harmonic Distortion (HD2) generated due to non-linearity of the transmitter and chromatic-modal dispersion of the SMF-MMF optic link. This is also verified using a software simulation. The model consists of a Mach Zehnder Modulator (MZM) that generates two m-QAM OFDM Single Sideband (SSB) signals based on phase shift of the hybrid coupler (90° and 120°). Our results show that the SSB signal with 120° hybrid coupler has suppresses the higher-order harmonics and makes the system more robust against the HD2 in the SMF-MMF optic link.
[A review of mixed gas detection system based on infrared spectroscopic technique].
Dang, Jing-Min; Fu, Li; Yan, Zi-Hui; Zheng, Chuan-Tao; Chang, Yu-Chun; Chen, Chen; Wang, Yi-Din
2014-10-01
In order to provide the experiences and references to the researchers who are working on infrared (IR) mixed gas detection field. The proposed manuscript reviews two sections of the aforementioned field, including optical multiplexing structure and detection method. At present, the coherent light sources whose representative are quantum cascade laser (QCL) and inter-band cascade laser(ICL) become the mainstream light source in IR mixed gas detection, which replace the traditional non-coherent light source, such as IR radiation source and IR light emitting diode. In addition, the photon detector which has a super high detectivity and very short response time is gradually beyond thermal infrared detector, dominant in the field of infrared detector. The optical multiplexing structure is the key factor of IR mixed gas detection system, which consists of single light source multi-plexing detection structure and multi light source multiplexing detection structure. Particularly, single light source multiplexing detection structure is advantages of small volume and high integration, which make it a plausible candidate for the portable mixed gas detection system; Meanwhile, multi light source multiplexing detection structure is embodiment of time division multiplex, frequency division multiplexing and wavelength division multiplexing, and become the leading structure of the mixed gas detection system because of its wider spectral range, higher spectral resolution, etc. The detection method applied to IR mixed gas detection includes non-dispersive infrared (NDIR) spectroscopy, wavelength and frequency-modulation spectroscopy, cavity-enhanced spectroscopy and photoacoustic spectroscopy, etc. The IR mixed gas detection system designed by researchers after recognizing the whole sections of the proposed system, which play a significant role in industrial and agricultural production, environmental monitoring, and life science, etc.
Frequency Domain Multiplexing for Use With NaI[Tl] Detectors
NASA Astrophysics Data System (ADS)
Belling, Samuel; Coherent Collaboration
2017-09-01
A process used in many forms of signal communication known as multiplexing is adapted for the purpose of combining signals from NaI[Tl] detectors so that fewer digitizer channels can be used to process the signal information from large experiments within the COHERENT collaboration. Each signal is passed through a ringing circuit to modulate it with a characteristic frequency. Information about the signal can be extracted from its amplitude, frequency, and phase. Simulations in LTSpice show that an operational amplifier circuit with a parallel LRC feedback loop can serve as the modulating circuit. Several such circuits can be constructed and housed compactly in a unit, and fed to an inverting, summing amplifier with tunable gain, such that the signals are carried by one cable. The signals are analyzed based on a Fourier transform after being digitized. The results show that the energy, channel, and time of the original interaction can be recovered by this process. In some cases it is possible through filtering and deconvolution to recover the shape of the original signal. The effort is ongoing, but with the design presented it is possible to multiplex 10 detectors into a single digitizer channel. NSF REU Program at Duke University.
Schrell, Adrian M.; Roper, Michael G.
2014-01-01
A frequency-modulated fluorescence encoding method was used as a means to increase the number of fluorophores monitored during infrared-mediated polymerase chain reaction. Laser lines at 488-nm and 561-nm were modulated at 73- and 137-Hz, respectively, exciting fluorescence from the dsDNA intercalating dye, EvaGreen, and the temperature insensitive dye, ROX. Emission was collected in a color-blind manner using a single photomultiplier tube for detection and demodulated by frequency analysis. The resulting frequency domain signal resolved the contribution from the two fluorophores as well as the background from the IR lamp. The detection method was successfully used to measure amplification of DNA samples containing 104 – 107 starting copies of template producing an amplification efficiency of 96%. The utility of this methodology was further demonstrated by simultaneous amplification of two genes from human genomic DNA using different color TaqMan probes. This method of multiplexing fluorescence detection with IR-qPCR is ideally suited as it allowed isolation of the signals of interest from the background in the frequency domain and is expected to further reduce the complexity of multiplexed microfluidic IR-qPCR instrumentation. PMID:24448431
Frequency-division multiplexer and demultiplexer for terahertz wireless links.
Ma, Jianjun; Karl, Nicholas J; Bretin, Sara; Ducournau, Guillaume; Mittleman, Daniel M
2017-09-28
The development of components for terahertz wireless communications networks has become an active and growing research field. However, in most cases these components have been studied using a continuous or broadband-pulsed terahertz source, not using a modulated data stream. This limitation may mask important aspects of the performance of the device in a realistic system configuration. We report the characterization of one such device, a frequency multiplexer, using modulated data at rates up to 10 gigabits per second. We also demonstrate simultaneous error-free transmission of two signals at different carrier frequencies, with an aggregate data rate of 50 gigabits per second. We observe that the far-field spatial variation of the bit error rate is different from that of the emitted power, due to a small nonuniformity in the angular detection sensitivity. This is likely to be a common feature of any terahertz communication system in which signals propagate as diffracting beams not omnidirectional broadcasts.There is growing interest in the development of components to facilitate wireless communications in the terahertz but the characterization of these systems involve an unmodulated input. Here the authors demonstrate multiplexing and demultiplexing of data streams in the terahertz range using a real data link.
Adaptive and Cognitive Ground and Wall Penetrating Radar System
2015-04-24
biosensing and active entangled photon radar. The concept behind the nonlinear biosensing is to the use the AC-GWPRS as a probe to measure the...the UVM campus that are willing to collaborate on this line of research. The active entangled photon radar concept centers around recent...Figure 44 Typical OFDM radar test results: a. Time domain OFDM signal with top trace original signal in time domain from Matlab , and bottom trace
Optimal Data Transmission on MIMO OFDM Channels
2008-12-01
Channel State Information dB decibel DFT Discrete Fourier Transform DWTS Digital Wideband Transmission System ETSI European Telecommunications...me facultaram durante a minha infância e juventude , que em conjunto com seu permanente apoio e amor me permitiram sonhar e voar tão alto. Agradeço...transmitter, it is far simpler to build such a system using an IDFT chip, generate the overall OFDM signal in baseband and digital format, and finally
An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication
MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa
2016-01-01
We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically. PMID:27057558
An approach enabling adaptive FEC for OFDM in fiber-VLLC system
NASA Astrophysics Data System (ADS)
Wei, Yiran; He, Jing; Deng, Rui; Shi, Jin; Chen, Shenghai; Chen, Lin
2017-12-01
In this paper, we propose an orthogonal circulant matrix transform (OCT)-based adaptive frame-level-forward error correction (FEC) scheme for fiber-visible laser light communication (VLLC) system and experimentally demonstrate by Reed-Solomon (RS) Code. In this method, no extra bits are spent for adaptive message, except training sequence (TS), which is simultaneously used for synchronization and channel estimation. Therefore, RS-coding can be adaptively performed frames by frames via the last received codeword-error-rate (CER) feedback estimated by the TSs of the previous few OFDM frames. In addition, the experimental results exhibit that over 20 km standard single-mode fiber (SSMF) and 8 m visible light transmission, the costs of RS codewords are at most 14.12% lower than those of conventional adaptive subcarrier-RS-code based 16-QAM OFDM at bit error rate (BER) of 10-5.
MIMO to LS-MIMO: A road to realization of 5G
NASA Astrophysics Data System (ADS)
Koppati, Naveena; Pavani, K.; Sharma, Dinesh; Sharma, Purnima K.
2017-07-01
MIMO means multiple inputs multiple outputs. As it refers MIMO is a RF technology used in many new technologies these days to increase link capacity and spectral efficiency. MIMO is used in Wi-Fi, LTE, 4G, 5G and other wireless technologies. This paper describes the earlier history of MIMO-OFDM and the antenna beam forming development in MIMO and types of MIMO. Also this treatise describes several decoding algorithms. The MIMO combined with OFDM increases the channel capacity. But the main problem is in estimating the transmitted signal from the received signal. So the channel knowledge is to be known in estimating the channel capacity. The advancement in MIMO-OFDM is Massive MIMO which is beneficial in providing additional data capacity in the increased traffic environment is described. In this memoir various application scenarios of LS-MIMO which increases the capacity are discussed.
Reconfigurable WDM-PON empowered by a low-cost 8-channel directly modulated laser module
NASA Astrophysics Data System (ADS)
Zhang, Yi-ming; Liu, Yu; Zhang, Zhi-ke; Zhao, Ze-ping; Tian, Ye; Zhu, Ning-hua
2017-11-01
A 10 Gbit/s 16-km-long reconfigurable wavelength-division-multiplexing passive optical network (WDM-PON) is presented empowered by a low-cost multi-channel directly modulated laser (DML) module. Compared with the case using discrete devices in conventional scheme, the proposed DML module provides a cost-effective solution with reduced complexity. The clear eye diagram and the bit error rate ( BER) of less than 2×10-7 with a sensitivity of -7 dBm are obtained. Due to the special packaging design, the crosstalk between channels under condition of simultaneous operation can be negligible.
NASA Technical Reports Server (NTRS)
Bohning, O. D.; Becker, F. J.
1980-01-01
Design, fabrication and test of partially populated prototype recorder using 100 kilobit serial chips is described. Electrical interface, operating modes, and mechanical design of several module configurations are discussed. Fabrication and test of the module demonstrated the practicality of multiplexing resulting in lower power, weight, and volume. This effort resulted in the completion of a module consisting of a fully engineered printed circuit storage board populated with 5 of 8 possible cells and a wire wrapped electronics board. Interface of the module is 16 bits parallel at a maximum of 1.33 megabits per second data rate on either of two interface buses.
Ganther, Jr., Kenneth R.; Snapp, Lowell D.
2002-01-01
Architecture for frequency multiplexing multiple flux locked loops in a system comprising an array of DC SQUID sensors. The architecture involves dividing the traditional flux locked loop into multiple unshared components and a single shared component which, in operation, form a complete flux locked loop relative to each DC SQUID sensor. Each unshared flux locked loop component operates on a different flux modulation frequency. The architecture of the present invention allows a reduction from 2N to N+1 in the number of connections between the cryogenic DC SQUID sensors and their associated room temperature flux locked loops. Furthermore, the 1.times.N architecture of the present invention can be paralleled to form an M.times.N array architecture without increasing the required number of flux modulation frequencies.
Multiplexed Oversampling Digitizer in 65 nm CMOS for Column-Parallel CCD Readout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grace, Carl; Walder, Jean-Pierre; von der Lippe, Henrik
2012-04-10
A digitizer designed to read out column-parallel charge-coupled devices (CCDs) used for high-speed X-ray imaging is presented. The digitizer is included as part of the High-Speed Image Preprocessor with Oversampling (HIPPO) integrated circuit. The digitizer module comprises a multiplexed, oversampling, 12-bit, 80 MS/s pipelined Analog-to-Digital Converter (ADC) and a bank of four fast-settling sample-and-hold amplifiers to instrument four analog channels. The ADC multiplexes and oversamples to reduce its area to allow integration that is pitch-matched to the columns of the CCD. Novel design techniques are used to enable oversampling and multiplexing with a reduced power penalty. The ADC exhibits 188more » ?V-rms noise which is less than 1 LSB at a 12-bit level. The prototype is implemented in a commercially available 65 nm CMOS process. The digitizer will lead to a proof-of-principle 2D 10 Gigapixel/s X-ray detector.« less
NASA Astrophysics Data System (ADS)
Wegner, M.; Karcher, N.; Krömer, O.; Richter, D.; Ahrens, F.; Sander, O.; Kempf, S.; Weber, M.; Enss, C.
2018-02-01
To our present best knowledge, microwave SQUID multiplexing (μ MUXing) is the most suitable technique for reading out large-scale low-temperature microcalorimeter arrays that consist of hundreds or thousands of individual pixels which require a large readout bandwidth per pixel. For this reason, the present readout strategy for metallic magnetic calorimeter (MMC) arrays combining an intrinsic fast signal rise time, an excellent energy resolution, a large energy dynamic range, a quantum efficiency close to 100% as well as a highly linear detector response is based on μ MUXing. Within this paper, we summarize the state of the art in MMC μ MUXing and discuss the most recent results. This particularly includes the discussion of the performance of a 64-pixel detector array with integrated, on-chip microwave SQUID multiplexer, the progress in flux ramp modulation of MMCs as well as the status of the development of a software-defined radio-based room-temperature electronics which is specifically optimized for MMC readout.
Qu, Zhen; Djordjevic, Ivan B
2017-04-03
A high-speed four-state continuous-variable quantum key distribution (CV-QKD) system, enabled by wavelength-division multiplexing, polarization multiplexing, and orbital angular momentum (OAM) multiplexing, is studied in the presence of atmospheric turbulence. The atmospheric turbulence channel is emulated by two spatial light modulators (SLMs) on which two randomly generated azimuthal phase patterns yielding Andrews' spectrum are recorded. The phase noise is mitigated by the phase noise cancellation (PNC) stage, and channel transmittance can be monitored directly by the D.C. level in our PNC stage. After the system calibration, a total SKR of >1.68 Gbit/s can be reached in the ideal system, featured with lossless channel and free of excess noise. In our experiment, based on commercial photodetectors, the minimum transmittances of 0.21 and 0.29 are required for OAM states of 2 (or -2) and 6 (or -6), respectively, to guarantee the secure transmission, while a total SKR of 120 Mbit/s can be obtained in case of mean transmittances.
Data acquisition and analysis in the DOE/NASA Wind Energy Program
NASA Technical Reports Server (NTRS)
Neustadter, H. E.
1980-01-01
Four categories of data systems, each responding to a distinct information need are presented. The categories are: control, technology, engineering and performance. The focus is on the technology data system which consists of the following elements: sensors which measure critical parameters such as wind speed and direction, output power, blade loads and strains, and tower vibrations; remote multiplexing units (RMU) mounted on each wind turbine which frequency modulate, multiplex and transmit sensor outputs; the instrumentation available to record, process and display these signals; and centralized computer analysis of data. The RMU characteristics and multiplexing techniques are presented. Data processing is illustrated by following a typical signal through instruments such as the analog tape recorder, analog to digital converter, data compressor, digital tape recorder, video (CRT) display, and strip chart recorder.
Sinclair, Neil; Saglamyurek, Erhan; Mallahzadeh, Hassan; Slater, Joshua A; George, Mathew; Ricken, Raimund; Hedges, Morgan P; Oblak, Daniel; Simon, Christoph; Sohler, Wolfgang; Tittel, Wolfgang
2014-08-01
Future multiphoton applications of quantum optics and quantum information science require quantum memories that simultaneously store many photon states, each encoded into a different optical mode, and enable one to select the mapping between any input and a specific retrieved mode during storage. Here we show, with the example of a quantum repeater, how to employ spectrally multiplexed states and memories with fixed storage times that allow such mapping between spectral modes. Furthermore, using a Ti:Tm:LiNbO_{3} waveguide cooled to 3 K, a phase modulator, and a spectral filter, we demonstrate storage followed by the required feed-forward-controlled frequency manipulation with time-bin qubits encoded into up to 26 multiplexed spectral modes and 97% fidelity.
Modified PTS-based PAPR Reduction for FBMC-OQAM Systems
NASA Astrophysics Data System (ADS)
Deng, Honggui; Ren, Shuang; Liu, Yan; Tang, Chengying
2017-10-01
The filter bank multicarrier with offset quadrature amplitude modulation (FBMC-OQAM) has been raised great concern in the 5G communication research. However FBMC-OQAM has also the inherent drawback of high peak-to-average power ratio (PAPR) that should be addressed. Due to the overlapping structure of FBMC-OQAM signals, it is proven that directly employing conventional partial transmit sequence (PTS) scheme proposed for OFDM to FBMC-OQAM is ineffective. In this paper, we propose a modified PTS-based scheme by employing phase rotation factors to optimize only the phase of the sparse peak signals, called as sparse PTS (S-PTS) scheme. Theoretical analysis and simulation results show that the proposed S-PTS scheme provides a significant PAPR reduction performance with lower computational complexity.
On Optimum Power Allocation for Multi-Antenna Wideband Helicopter-to-Ground Communications
2014-03-01
optimum [1]. In frequency selective fading, the general approach is to use OFDM and apply these techniques on a per subcarrier basis. This work was...Contracting Office under contract W900KK-09-C-0016. Given the constraints described above, OFDM is often of limited interest in helicopter-to-ground...Naguib, and R. Calderbank, “Finite-length MIMO decision feedback equalization for space-time block-coded signals over multipath-fading channels,” IEEE
2013-06-01
Miridakis and D. D. Vergados, “A survey on the successive interference cancellation performance for single-antenna and multiple-antenna OFDM ...in this thesis. Follow on work that focuses on SIC for multi-carrier and MIMO systems would be most beneficial. Other estimation methods exist that...antenna and multiple-antenna OFDM systems,” IEEE Comms. Surveys & Tutorials, vol.15, no. 1, pp. 312–335, 2013. [2] J. G. Andrews, “Interference
NASA Astrophysics Data System (ADS)
Sinkin, Oleg V.; Grigoryan, Vladimir S.; Menyuk, Curtis R.
2006-12-01
We introduce a fully deterministic, computationally efficient method for characterizing the effect of nonlinearity in optical fiber transmission systems that utilize wavelength-division multiplexing and return-to-zero modulation. The method accurately accounts for bit-pattern-dependent nonlinear distortion due to collision-induced timing jitter and for amplifier noise. We apply this method to calculate the error probability as a function of channel spacing in a prototypical multichannel return-to-zero undersea system.
Liu, Jun; Wang, Jian
2015-07-06
We present a simple configuration incorporating a single polarization-sensitive phase-only liquid crystal spatial light modulator (LC-SLM) to facilitate polarization-insensitive spatial light modulation. The polarization-insensitive configuration is formed by a polarization beam splitter (PBS), a polarization-sensitive phase-only LC-SLM, a half-wave plate (HWP), and a mirror in a loop structure. We experimentally demonstrate polarization-insensitive spatial light modulations for incident linearly polarized beams with different polarization states and polarization-multiplexed beams. Polarization-insensitive spatial light modulations generating orbital angular momentum (OAM) beams are demonstrated in the experiment. The designed polarization-insensitive configuration may find promising applications in spatial light modulations accommodating diverse incident polarizations.
Performance analysis of cooperative virtual MIMO systems for wireless sensor networks.
Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan
2013-05-28
Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs.
Performance Analysis of Cooperative Virtual MIMO Systems for Wireless Sensor Networks
Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan
2013-01-01
Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs. PMID:23760087
André, Nuno Sequeira; Habel, Kai; Louchet, Hadrien; Richter, André
2013-11-04
We report experimental validations of an adaptive 2nd order Volterra equalization scheme for cost effective IMDD OFDM systems. This equalization scheme was applied to both uplink and downlink transmission. Downlink settings were optimized for maximum bitrate where we achieved 34 Gb/s over 10 km of SSMF using an EML with 10 GHz bandwidth. For the uplink, maximum reach was optimized achieving 14 Gb/s using a low-cost DML with 2.5 GHz bandwidth.
2018-01-01
Medium Access Control (MAC) delay which occurs between the anchor node’s transmissions is one of the error sources in underwater localization. In particular, in AUV localization, the MAC delay significantly degrades the ranging accuracy. The Cramer-Rao Low Bound (CRLB) definition theoretically proves that the MAC delay significantly degrades the localization performance. This paper proposes underwater localization combined with multiple access technology to decouple the localization performance from the MAC delay. Towards this goal, we adopt hyperbolic frequency modulation (HFM) signal that provides multiplexing based on its good property, high-temporal correlation. Owing to the multiplexing ability of the HFM signal, the anchor nodes can transmit packets without MAC delay, i.e., simultaneous transmission is possible. In addition, the simulation results show that the simultaneous transmission is not an optional communication scheme, but essential for the localization of mobile object in underwater. PMID:29373518
Kim, Sungryul; Yoo, Younghwan
2018-01-26
Medium Access Control (MAC) delay which occurs between the anchor node's transmissions is one of the error sources in underwater localization. In particular, in AUV localization, the MAC delay significantly degrades the ranging accuracy. The Cramer-Rao Low Bound (CRLB) definition theoretically proves that the MAC delay significantly degrades the localization performance. This paper proposes underwater localization combined with multiple access technology to decouple the localization performance from the MAC delay. Towards this goal, we adopt hyperbolic frequency modulation (HFM) signal that provides multiplexing based on its good property, high-temporal correlation. Owing to the multiplexing ability of the HFM signal, the anchor nodes can transmit packets without MAC delay, i.e., simultaneous transmission is possible. In addition, the simulation results show that the simultaneous transmission is not an optional communication scheme, but essential for the localization of mobile object in underwater.
A long-reach WDM passive optical network enabling broadcasting service with centralized light source
NASA Astrophysics Data System (ADS)
Liu, D.; Tang, M.; Fu, S.; Liu, D.; Shum, P.
2012-02-01
We propose a long-reach wavelength-division-multiplexed (WDM) passive optical network (PON) to provide conventional point-to-point (P2P) data and downstream broadcasting service simultaneously by superimposing, for each WDM channel, the differential-phase-shift-keying (DPSK) broadcasting signal with the subcarrier multiplexing (SCM) modulated downstream P2P signal, at the optical line terminal (OLT). In the optical network units (ONUs), by re-modulating part of the downstream signal with a reflective semiconductor optical amplifier (RSOA), we realize color-less ONUs for upstream data transmission. The proposed scheme is numerically verified with a 5 Gb/s downstream P2P signal and broadcasting services, as well as 2.5 Gb/s upstream data through a 60 km bidirectional fiber link. In particular, the influence of the downstream lightwave's optical carrier-subcarrier ratio (OCSR) on the system performance is also investigated.
Single SOA based simultaneous amplitude regeneration for WDM-PDM RZ-PSK signals.
Wu, Wenhan; Yu, Yu; Zou, Bingrong; Yang, Weili; Zhang, Xinliang
2013-03-25
We propose and demonstrate all-optical amplitude regeneration for the wavelength division multiplexing and polarization division multiplexing (WDM-PDM) return-to-zero phase shift keying (RZ-PSK) signals using a single semiconductor optical amplifier (SOA) and subsequent filtering. The regeneration is based on the cross phase modulation (XPM) effect in the saturated SOA and the subsequent narrow filtering. The spectrum of the distorted signal can be broadened due to the phase modulation induced by the synchronous optical clock signal. A narrow band pass filter is utilized to extract part of the broadened spectrum and remove the amplitude noise, while preserving the phase information. The working principle for multi-channel and polarization orthogonality preserving is analyzed. 4-channel dual polarization signals can be simultaneously amplitude regenerated without introducing wavelength and polarization demultiplexing. An average power penalty improvement of 1.75dB can be achieved for the WDM-PDM signals.
NASA Astrophysics Data System (ADS)
Kachhatiya, Vivek; Prince, Shanthi
2016-12-01
In this paper, we have proposed and simulated optical time division multiplexed passive optical network (TDM-PON) using delayed optical amplitude modulation (AM). Eight upstream wavelengths are demonstrated to show optical time wavelength division multiplexed (TWDM) by combining optical network units (ONU) users data at the remote node (RN). Each ONU generates 2.5 Gb/s user data, and it is modulated using novel return to zero (RZ) delayed AM. Optical TDM aggregates 10 Gb/s data per wavelength from four 2.5 Gb/s upstream user data, which facilitates four different ONU data on the same wavelength as 10 Gb/s per upstream wavelength and, simplify the laser requirements (2.5 Gb/s) at each optical network unit (ONU) transmitter. Upstream optical TWDM-PON is investigated for eight wavelengths with wavelength spacing of 100 GHz. Novel optical TDM for upstream increased the number of the simultaneous user to fourfold from conventional TWDM-PON using delayed AM with a high-quality-factor of received signal. Despite performance degradation due to different fiber reach and dispersion compensation technique, Optical TWDM link shows significant improvement regarding receiver sensitivity when compared with common TWDM link. Hence, it offers optimistic thinking to show optical TDM at this phase as one of the future direction, where complex digital signal processing (DSP) and coherent optical communication are frequently demonstrated to serve the access network. Downstream side conventional TWDM eight wavelengths are multiplexed at the OLT and sent downstream to serve distributed tunable ONU receivers through an optical distribution network (ODN). Each downstream wavelengths are modulated at the peak rate of 10 Gb/s using non-return to zero external modulation (NRZ-EM). The proposed architecture is cost efficient and supports high data rates as well as ;pay as you grow; network for both service providers and the users perspectives. Users are classified into two categories viz home-user and business-user, with an option for easy up-gradation. Proposed architecture operates on next generation passive optical network stage 2 (NG-PON2) wavelength plan, with symmetrical data rate. Downstream performance is investigated by comparing, high power laser source with a conventional laser source and the L-band Erbium-doped fiber amplifier (EDFA) of gain 10 dB and 20 dB. Downstream eight wavelengths perform error-free up to 40 Km fiber reach and 1024 splitting points. Power budget of the proposed architecture incorporates the N1, N2, E1 and E2 optical path loss class.
All-optical regenerator of multi-channel signals.
Li, Lu; Patki, Pallavi G; Kwon, Young B; Stelmakh, Veronika; Campbell, Brandon D; Annamalai, Muthiah; Lakoba, Taras I; Vasilyev, Michael
2017-10-12
One of the main reasons why nonlinear-optical signal processing (regeneration, logic, etc.) has not yet become a practical alternative to electronic processing is that the all-optical elements with nonlinear input-output relationship have remained inherently single-channel devices (just like their electronic counterparts) and, hence, cannot fully utilise the parallel processing potential of optical fibres and amplifiers. The nonlinear input-output transfer function requires strong optical nonlinearity, e.g. self-phase modulation, which, for fundamental reasons, is always accompanied by cross-phase modulation and four-wave mixing. In processing multiple wavelength-division-multiplexing channels, large cross-phase modulation and four-wave mixing crosstalks among the channels destroy signal quality. Here we describe a solution to this problem: an optical signal processor employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without such nonlinear crosstalk. We demonstrate, for the first time to our knowledge, simultaneous all-optical regeneration of up to 16 wavelength-division-multiplexing channels by one device. This multi-channel concept can be extended to other nonlinear-optical processing schemes.Nonlinear optical processing devices are not yet fully practical as they are single channel. Here the authors demonstrate all-optical regeneration of up to 16 channels by one device, employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without nonlinear inter-channel crosstalk.
NASA Astrophysics Data System (ADS)
Ullah, Rahat; Liu, Bo; Zhang, Qi; Saad Khan, Muhammad; Ahmad, Ibrar; Ali, Amjad; Khan, Razaullah; Tian, Qinghua; Yan, Cheng; Xin, Xiangjun
2016-09-01
An architecture for flattened and broad spectrum multicarriers is presented by generating 60 comb lines from pulsed laser driven by user-defined bit stream in cascade with three modulators. The proposed scheme is a cost-effective architecture for optical line terminal (OLT) in wavelength division multiplexed passive optical network (WDM-PON) system. The optical frequency comb generator consists of a pulsed laser in cascade with a phase modulator and two Mach-Zehnder modulators driven by an RF source incorporating no phase shifter, filter, or electrical amplifier. Optical frequency comb generation is deployed in the simulation environment at OLT in WDM-PON system supports 1.2-Tbps data rate. With 10-GHz frequency spacing, each frequency tone carries data signal of 20 Gbps-based differential quadrature phase shift keying (DQPSK) in downlink transmission. We adopt DQPSK-based modulation technique in the downlink transmission because it supports 2 bits per symbol, which increases the data rate in WDM-PON system. Furthermore, DQPSK format is tolerant to different types of dispersions and has a high spectral efficiency with less complex configurations. Part of the downlink power is utilized in the uplink transmission; the uplink transmission is based on intensity modulated on-off keying. Minimum power penalties have been observed with excellent eye diagrams and other transmission performances at specified bit error rates.
A Scalable Framework for CSI Feedback in FDD Massive MIMO via DL Path Aligning
NASA Astrophysics Data System (ADS)
Luo, Xiliang; Cai, Penghao; Zhang, Xiaoyu; Hu, Die; Shen, Cong
2017-09-01
Unlike the time-division duplexing (TDD) systems, the downlink (DL) and uplink (UL) channels are not reciprocal anymore in the case of frequency-division duplexing (FDD). However, some long-term parameters, e.g. the time delays and angles of arrival (AoAs) of the channel paths, still enjoy reciprocity. In this paper, by efficiently exploiting the aforementioned limited reciprocity, we address the DL channel state information (CSI) feedback in a practical wideband massive multiple-input multiple-output (MIMO) system operating in the FDD mode. With orthogonal frequency-division multiplexing (OFDM) waveform and assuming frequency-selective fading channels, we propose a scalable framework for the DL pilots design, DL CSI acquisition, and the corresponding CSI feedback in the UL. In particular, the base station (BS) can transmit the FFT-based pilots with the carefully-selected phase shifts. Then the user can rely on the so-called time-domain aggregate channel (TAC) to derive the feedback of reduced imensionality according to either its own knowledge about the statistics of the DL channels or the instruction from the serving BS. We demonstrate that each user can just feed back one scalar number per DL channel path for the BS to recover the DL CSIs. Comprehensive numerical results further corroborate our designs.
Liu, Jun; Wang, Jian
2015-01-01
We present a simple configuration incorporating a single polarization-sensitive phase-only liquid crystal spatial light modulator (LC-SLM) to facilitate polarization-insensitive spatial light modulation. The polarization-insensitive configuration is formed by a polarization beam splitter (PBS), a polarization-sensitive phase-only LC-SLM, a half-wave plate (HWP), and a mirror in a loop structure. We experimentally demonstrate polarization-insensitive spatial light modulations for incident linearly polarized beams with different polarization states and polarization-multiplexed beams. Polarization-insensitive spatial light modulations generating orbital angular momentum (OAM) beams are demonstrated in the experiment. The designed polarization-insensitive configuration may find promising applications in spatial light modulations accommodating diverse incident polarizations. PMID:26146032
Spacelab interface development test, volume 1, sections 1-6
NASA Technical Reports Server (NTRS)
Harris, L. H.
1979-01-01
Data recorded during the following tests is presented: pulse coded modulator master unit to Spacelab (S/L) interface, master timing unit to S/L interface, multiplexer-demultiplexer/serial input-output to S/L interface, and special tests.
Integrated Photonic Orbital Angular Momentum Multiplexing and Demultiplexing on Chip
2014-10-31
OAM free space coherent communication link testbed. ECL: external cavity laser . EDFA: erbium-doped fiber amplifier. PC: polarization controller. ATT...wave (cw) laser centered at 1540 nm, followed by an erbium-doped fiber amplifier (EDFA), an I/Q modulator, and another EDFA. The I/Q modulator was...communication link testbed. ECL: external cavity laser . EDFA: erbium-doped fiber amplifier. PC: polarization controller. ATT: attenuator. BPF: bandpass filter
NASA Technical Reports Server (NTRS)
Tacina, Robert; Mao, Chien-Pei; Wey, Changlie
2004-01-01
A low-NOx emissions combustor concept has been demonstrated in flame-tube tests. A lean-direct injection (LDI) concept was used where the fuel is injected directly into the flame zone and the overall equivalence ratio of the mixture is lean. The LDI concept described in this report is a multiplex fuel injector module containing multipoint fuel injection tips and multi-burning zones. The injector module comprises 25 equally spaced injection tips within a 76 by 76 mm area that fits into the flame-tube duct. The air swirlers were made from a concave plate on the axis of the fuel injector using drilled holes at an angle to the axis of the fuel injector. The NOx levels were quite low and are greater than 70 percent lower than the 1996 ICAO standard. At an inlet temperature of 810 K, inlet pressure of 2760 kPa, pressure drop of 4 percent and a flame temperature of 1900 K with JP8 fuel, the NOx emission index was 9. The 25-point injector module exhibited the most uniform radial distribution of fuel-air mixture and NOx emissions in the flame tube when compared to other multipoint injection devices. A correlation is developed relating the NOx emissions to inlet temperature, inlet pressure, equivalence ratio and pressure drop.