Laboratory Directed Research and Development annual report, fiscal year 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-03-01
The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through themore » appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.« less
Report on Computing and Networking in the Space Science Laboratory by the SSL Computer Committee
NASA Technical Reports Server (NTRS)
Gallagher, D. L. (Editor)
1993-01-01
The Space Science Laboratory (SSL) at Marshall Space Flight Center is a multiprogram facility. Scientific research is conducted in four discipline areas: earth science and applications, solar-terrestrial physics, astrophysics, and microgravity science and applications. Representatives from each of these discipline areas participate in a Laboratory computer requirements committee, which developed this document. The purpose is to establish and discuss Laboratory objectives for computing and networking in support of science. The purpose is also to lay the foundation for a collective, multiprogram approach to providing these services. Special recognition is given to the importance of the national and international efforts of our research communities toward the development of interoperable, network-based computer applications.
A woman like you: Women scientists and engineers at Brookhaven National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita
1991-01-01
This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Departmentmore » of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-31
This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Departmentmore » of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.« less
2001-09-01
Development ( LDRD ) program, which formalized a long-standing policy of allowing its multi-program national laboratories discretion to conduct self...initiated, independent research and development (R&D). DOE requires that LDRD work must focus on the advanced study of scientific or technical problems...
Towards a controlled-phase gate using Rydberg-dressed atoms
NASA Astrophysics Data System (ADS)
Hankin, Aaron; Jau, Yuan-Yu; Biedermann, Grant
2014-05-01
We are implementing a controlled-phase gate based on singly trapped neutral atoms whose coupling is mediated by the dipole-dipole interaction of Rydberg states. An off-resonant laser field dresses ground state cesium atoms in a manner conditional on the Rydberg blockade mechanism, providing the required entangling interaction. We will present our progress toward implementing the controlled-phase gate with an analysis of possible sources of decoherence such as RF radiation from wireless communication devices. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Advanced ion trap structures with integrated tools for qubit manipulation
NASA Astrophysics Data System (ADS)
Sterk, J. D.; Benito, F.; Clark, C. R.; Haltli, R.; Highstrete, C.; Nordquist, C. D.; Scott, S.; Stevens, J. E.; Tabakov, B. P.; Tigges, C. P.; Moehring, D. L.; Stick, D.; Blain, M. G.
2012-06-01
We survey the ion trap fabrication technologies available at Sandia National Laboratories. These include four metal layers, precision backside etching, and low profile wirebonds. We demonstrate loading of ions in a variety of ion traps that utilize these technologies. Additionally, we present progress towards integration of on-board filtering with trench capacitors, photon collection via an optical cavity, and integrated microwave electrodes for localized hyperfine qubit control and magnetic field gradient quantum gates. [4pt] This work was supported by Sandia's Laboratory Directed Research and Development (LDRD) Program and the Intelligence Advanced Research Projects Activity (IARPA). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Determining the phase diagram of lithium via ab initio calculation and ramp compression
NASA Astrophysics Data System (ADS)
Shulenburger, Luke; Seagle, Chris; Haill, Thomas; Harding, Eric
2015-06-01
Diamond anvil cell experiments have shown elemental lithium to have an extraordinarily complex phase diagram under pressure exhibiting numerous solid phases at pressures below 1 Mbar, as well as a complicated melting behavior. We explore this phase diagram utilizing a combination of quantum mechanical calculations and ramp compression experiments performed on Sandia National Laboratories' Z-machine. We aim to extend our knowledge of the high pressure behavior to moderate temperatures at pressures above 50 GPa with a specific focus on the melt line above 70 GPa. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Dept of Energy's Natl. Nuclear Security Administration under Contract DE-AC04-94AL85000.
Interagency Federal Laboratory Review Final Report
1995-05-15
technology. DOE labs have made unique contributions to national security since the days of the Manhattan Project , in designing, developing, and...Weapons Responsibility Most of DOE’s large multi-program laboratories had their origin in the Manhattan Project , to develop nuclear weapons during and
DOE Office of Scientific and Technical Information (OSTI.GOV)
McWhorter, S.
2014-03-07
This report demonstrates the execution of our LDRD program within the objectives and guidelines outlined by the Department of Energy (DOE) through the DOE Order 413.2b. The projects described within the report align purposefully with SRNL’s strategic vision and provide great value to the DOE. The diversity exhibited in the research and development projects underscores the DOE Office of Environmental Management (DOE-EM) mission and enhances that mission by developing the technical capabilities and human capital necessary to support future DOE-EM national needs. As a multiprogram national laboratory, SRNL is applying those capabilities to achieve tangible results for the nation inmore » National Security, Environmental Stewardship, Clean Energy and Nuclear Materials Management.« less
Design considerations for multielectron double quantum dot qubits in silicon
NASA Astrophysics Data System (ADS)
Nielsen, Erik; Barnes, Edwin; Kestner, Jason
2014-03-01
Solid state double quantum dot (DQD) spin qubits can be created by confining two electrons to a DQD potential. We present results showing the viability and potential advantages of creating a DQD spin qubit with greater than two electrons, and which suggest that silicon devices which could realize these advantages are experimentally possible. Our analysis of a six-electron DQD uses full configuration interaction methods and shows an isolated qubit space in regimes which 3D quantum device simulations indicate are accessible experimentally. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Multi-electron double quantum dot spin qubits
NASA Astrophysics Data System (ADS)
Nielsen, Erik; Kestner, Jason; Barnes, Edwin; Das Sarma, Sankar
2013-03-01
Double quantum dot (DQD) spin quits in a solid state environment typically consist of two electron spins confined to a DQD potential. We analyze the viability and potential advantages of DQD qubits which use greater then two electrons, and present results for six-electron qubits using full configuration interaction methods. The principal results of this work are that such six electron DQDs can retain an isolated low-energy qubit space that is more robust to charge noise due to screening. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BROOKHAVEN NATIONAL LABORATORY
Brookhaven National Laboratory (BNL) is a multi-program national laboratory operated by Brookhaven Science Associates for the U.S. Department of Energy (DOE) and is located on a 5,265-acre site in Suffolk County, Long Island, New York. BNL has a comprehensive Environmental Management System (EMS) in place, which meets the requirements of the International Organization for Standardization 14001 EMS Standard, as described in the BNL EMS Manual. BNL's extensive environmental monitoring program is one component of the EMS, and the BNL Environmental Monitoring Plan (EMP) describes this program in detail. The data derived from systematically monitoring the various environmental media on sitemore » enable BNL to make informed decisions concerning the protection of human health and the environment and to be responsive to community concerns.« less
Electronic Structure of Energetic Molecules and Crystals Under Compression
NASA Astrophysics Data System (ADS)
Kay, Jeffrey
Understanding how the electronic structure of energetic materials change under compression is important to elucidating mechanisms of shock-induced reactions and detonation. In this presentation, the electronic structure of prototypical energetic crystals are examined under high degrees of compression using ab initio quantum chemical calculations. The effects of compression on and interactions between the constituent molecules are examined in particular. The insights these results provide into previous experimental observations and theoretical predictions of energetic materials under high pressure are discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Capsule review of the DOE research and development and field facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-09-01
A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses,more » and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)« less
Laboratory Directed Research and Development Annual Report FY 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Kelly O.
A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate upmore » to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.« less
Laboratory Directed Research and Development Annual Report FY 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Kelly O.
A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate upmore » to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.« less
Experimental demonstration of cheap and accurate phase estimation
NASA Astrophysics Data System (ADS)
Rudinger, Kenneth; Kimmel, Shelby; Lobser, Daniel; Maunz, Peter
We demonstrate experimental implementation of robust phase estimation (RPE) to learn the phases of X and Y rotations on a trapped Yb+ ion qubit.. Unlike many other phase estimation protocols, RPE does not require ancillae nor near-perfect state preparation and measurement operations. Additionally, its computational requirements are minimal. Via RPE, using only 352 experimental samples per phase, we estimate phases of implemented gates with errors as small as 10-4 radians, as validated using gate set tomography. We also demonstrate that these estimates exhibit Heisenberg scaling in accuracy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Site Environmental Report for 2011, Volumes 1& 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baskin, David; Bauters, Tim; Borglin, Ned
2012-09-12
The Site Environmental Report for 2011 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year (CY) 2011. Throughout this report, “Berkeley Lab” or “LBNL” refers both to (1) the multiprogram scientific facility the UC manages and operates on the 202-acre university-owned site located in the hills above the UC Berkeley campus, and the site itself, and (2) the UC as managing and operating contractor for Ernest Orlando Lawrence Berkeley National Laboratory. The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters that includemore » an overview of LBNL, a discussion of its Environmental Management System (EMS), the status of environmental programs, summarized results from surveillance and monitoring activities, and quality assurance (QA) measures. Volume II contains individual data results from surveillance and monitoring activities.« less
Simulations of Bubble Motion in an Oscillating Liquid
NASA Astrophysics Data System (ADS)
Kraynik, A. M.; Romero, L. A.; Torczynski, J. R.
2010-11-01
Finite-element simulations are used to investigate the motion of a gas bubble in a liquid undergoing vertical vibration. The effect of bubble compressibility is studied by comparing "compressible" bubbles that obey the ideal gas law with "incompressible" bubbles that are taken to have constant volume. Compressible bubbles exhibit a net downward motion away from the free surface that does not exist for incompressible bubbles. Net (rectified) velocities are extracted from the simulations and compared with theoretical predictions. The dependence of the rectified velocity on ambient gas pressure, bubble diameter, and bubble depth are in agreement with the theory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Sandia technology engineering and science accomplishments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-03-01
Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. Selected unclassified technical activities and accomplishments are reported here. Topics include advanced manufacturing technologies, intelligent machines, computationalmore » simulation, sensors and instrumentation, information management, energy and environment, and weapons technology.« less
Integrated Cavity QED in a linear Ion Trap Chip for Enhanced Light Collection
NASA Astrophysics Data System (ADS)
Benito, Francisco; Jonathan, Sterk; Boyan, Tabakov; Haltli, Raymond; Tigges, Chris; Stick, Daniel; Balin, Matthew; Moehring, David
2012-06-01
Realizing a scalable trapped-ion quantum information processor may require integration of tools to manipulate qubits into trapping devices. We present efforts towards integrating a 1 mm optical cavity into a microfabricated surface ion trap to efficiently connect nodes in a quantum network. The cavity is formed by a concave mirror and a flat coated silicon mirror around a linear trap where ytterbium ions can be shuttled in and out of the cavity mode. By utilizing the Purcell effect to increase the rate of spontaneous emission into the cavity mode, we expect to collect up to 13% of the emitted photons. This work was supported by Sandia's Laboratory Directed Research and Development (LDRD) and the Intelligence Advanced Research Projects Activity (IARPA). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DSMC Studies of the Richtmyer-Meshkov Instability
NASA Astrophysics Data System (ADS)
Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.
2014-11-01
A new exascale-capable Direct Simulation Monte Carlo (DSMC) code, SPARTA, developed to be highly efficient on massively parallel computers, has extended the applicability of DSMC to challenging, transient three-dimensional problems in the continuum regime. Because DSMC inherently accounts for compressibility, viscosity, and diffusivity, it has the potential to improve the understanding of the mechanisms responsible for hydrodynamic instabilities. Here, the Richtmyer-Meshkov instability at the interface between two gases was studied parametrically using SPARTA. Simulations performed on Sequoia, an IBM Blue Gene/Q supercomputer at Lawrence Livermore National Laboratory, are used to investigate various Atwood numbers (0.33-0.94) and Mach numbers (1.2-12.0) for two-dimensional and three-dimensional perturbations. Comparisons with theoretical predictions demonstrate that DSMC accurately predicts the early-time growth of the instability. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Single-Axis Three-Beam Amplitude Monopulse Antenna-Signal Processing Issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin W.; Bickel, Douglas L.
2015-05-01
Typically, when three or more antenna beams along a single axis are required, the answer has been multiple antenna phase-centers, essentially a phase-monopulse system. Such systems and their design parameters are well-reported in the literature. Less appreciated is that three or more antenna beams can also be generated in an amplitude-monopulse fashion. Consequently, design guidelines and performance analysis of such antennas is somewhat under-reported in the literature. We provide discussion herein of three beams arrayed in a single axis with an amplitude-monopulse configuration. Acknowledgements The preparation of this report is the result of an unfunded research and development activity. Sandiamore » National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administ ration under contract DE-AC04-94AL85000.« less
Correlation between heavy-hole and light-hole Mahan Excitons in a two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Paul, J.; Dey, P.; Stevens, C. E.; Tokumoto, T.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.; D. J. Hilton Collaboration; J. L. Reno Collaboration
2015-03-01
We present the coherent two-dimensional Fourier transform (2DFT) spectra of Mahan Excitons associated with the heavy-hole and light-hole resonances observed in a modulation doped GaAs/AlGaAs single quantum well. These resonances are observed to be strongly coupled through many-body interactions. The 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations and reveal striking differences. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NSF, Division of Materials Research under Grant Number: DMR-1409473.
Suprathermal Ion Populations in ICF Plasmas - Implications for Diagnostics and Ignition
NASA Astrophysics Data System (ADS)
Knapp, Patrick; Schmit, Paul; Sinars, Daniel
2013-10-01
We report on investigations into the effects of suprathermal ion populations on neutron production in Inertial Confinement and Magneto-Inertial Fusion plasmas. In a recent article we showed that a suprathermal population taking the form of a power-law in energy will significantly modify the shape and width of the neutron spectrum and can dramatically increase the fusion reactivity compared to the Maxwellian case. Specific diagnostic signatures are discussed in detail. We build on this work to include the effect of an applied magnetic field on the neutron spectra, isotropy and production rate. Finally, the impact that these modifications have on the ability to reach high fusion yields and ignition is discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration.
Thermal Conductivity within Nanoparticle Powder Beds
NASA Astrophysics Data System (ADS)
Wilson, Mark; Chandross, Michael
Non-equilibrium molecular dynamics is utilized to compute thermal transport properties within nanoparticle powder beds. In the realm of additive manufacturing of metals, the electronic contribution to thermal conduction is critical. To this end, our simulations incorporate the two temperature model, coupling a continuum representation of the electronic thermal contribution and the atomic phonon system. The direct method is used for conductivity determination, wherein thermal gradients between two different temperature heat flux reservoirs are calculated. The approach is demonstrated on several example cases including 304L stainless steel. The results from size distribution variations of mono/poly-disperse systems are extrapolated to predict values at the micron length scale, along with bulk properties at infinite system sizes. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.; Jones, Reese; Ward, Donald; Spataru, Catalin; Shulenburger, Luke; Benedict, Lorin X.
2015-06-01
Window materials are ubiquitous in shock physics and with high energy density drivers capable of reaching multi-Mbar pressures the use of LiF is increasing. Velocimetry and temperature measurements of a sample through a window are both influenced by the assumed index of refraction and thermal conductivity, respectively. We report on calculations of index of refraction using the many-body theory GW and thermal ionic conductivity using linear response theory and model potentials. The results are expected to increase the accuracy of a broad range of high-pressure shock- and ramp compression experiments. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ENVIRONMENT AND WASTE MANAGMENT SERVICES DIVISION; ET AL.
Each year, Brookhaven National Laboratory (BNL), a multi-program national laboratory, prepares an annual Site Environmental Report (SER) in accordance with Order 231.1A, Environment, Safety and Health Reporting, of the U.S. Department of Energy (DOE). The SER is written to inform outside regulators, the public, and Laboratory employees of BNL's environmental performance during the calendar year in review, and to summarize BNL's on-site environmental data; environmental management performance; compliance with applicable DOE, Environmental Protection Agency (EPA), state, and local regulations; and environmental, restoration, and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of itsmore » environmental history since the Laboratory's inception in 1947. This report is intended to be a technical document. It is available in print and as a downloadable file on the BNL web page at http://www.bnl.ser.htm. A summary of the SER is also prepared each year to provide a general overview, and is distributed with a CD version of the full-length SER. The summary supports BNL's educational and community outreach program.« less
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.; Townsend, Joshua P.; Shulenburger, Luke; Seagle, Christopher T.; Furnish, Michael D.; Fei, Yingwei
2017-06-01
For the past seven years, the Z Fundamental Science program has fostered collaboration between scientists at the national laboratories and academic research groups to utilize the Z-machine to explore properties of matter in extreme conditions. A recent example of this involves a collaboration between the Carnegie institution of Washington and Sandia to determine the properties of warm dense MgSiO3 by performing shock experiments using the Z-machine. To reach the higher densities desired, bridgmanite samples are being fabricated at Carnegie using multi-anvil presses. We will describe the preparations under way for these experiments, including pre-shot ab-initio calculations of the Hugoniot and the deployment of dual-layer flyer plates that allow for the measurement of sound velocities along the Hugoniot. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Microscopic modeling of nitride intersubband absorbance
NASA Astrophysics Data System (ADS)
Montano, Ines; Allerman, A. A.; Wierer, J. J.; Moseley, M.; Skogen, E. J.; Tauke-Pedretti, A.; Vawter, G. A.
III-nitride intersubband structures have recently attracted much interest because of their potential for a wide variety of applications ranging from electro-optical modulators to terahertz quantum cascade lasers. To overcome present simulation limitations we have developed a microscopic absorbance simulator for nitride intersubband devices. Our simulator calculates the band structure of nitride intersubband systems using a fully coupled 8x8 k.p Hamiltonian and determines the material response of a single period in a density-matrix-formalism by solving the Heisenberg equation including many-body and dephasing contributions. After calculating the polarization due to intersubband transitions in a single period, the resulting absorbance of a superlattice structure including radiative coupling between the different periods is determined using a non-local Green's-function formalism. As a result our simulator allows us to predict intersubband absorbance of superlattice structures with microscopically determined lineshapes and linewidths accounting for both many-body and correlation contributions. This work is funded by Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin.
Forsterite and Enstatite Shock Temperatures: Implications for Planetary Impact Melting
NASA Astrophysics Data System (ADS)
Davies, Erik; Root, Seth; Kraus, Rick; Spaulding, Dylan; Stewart, Sarah; Jacobsen, Stein; Mattsson, Thomas; Lemke, Ray
2017-06-01
We present experimental results on enstatite and forsterite to probe extreme conditions in the laboratory in order to examine melting and vaporization of rocky planet mantles upon shock and release. Flyer plate impact experiments are carried out on the Z-Machine at Sandia National Laboratory. Planar, supported shock waves are generated in single crystal samples, permitting observation of both compressed and released states. Shock velocity of the sample is measured using laser interferometry, and the pressure and particle velocity are derived through impedance matching to the aluminum flyer. Temperature of the shocked state is measured with a streaked visible spectrum and calibrated with a quartz standard, mounted downrange from the sample. Preliminary analysis shows that current equation of state models underestimate the entropy gain, which suggests that for shock pressures above 250 GPa, a higher degree of impact vaporization will be reached. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation for the U.S. DOE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Instrumentation, Control, and Intelligent Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2005-09-01
Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a majormore » center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.« less
Dynamic Shock Compression of Copper to Multi-Megabar Pressure
NASA Astrophysics Data System (ADS)
Haill, T. A.; Furnish, M. D.; Twyeffort, L. L.; Arrington, C. L.; Lemke, R. W.; Knudson, M. D.; Davis, J.-P.
2015-11-01
Copper is an important material for a variety of shock and high energy density applications and experiments. Copper is used as a standard reference material to determine the EOS properties of other materials. The high conductivity of copper makes it useful as an MHD driver layer in high current dynamic materials experiments on Sandia National Laboratories Z machine. Composite aluminum/copper flyer plates increase the dwell time in plate impact experiments by taking advantage of the slower wave speeds in copper. This presentation reports on recent efforts to reinstate a composite Al/Cu flyer capability on Z and to extend the range of equation-of-state shock compression data through the use of hyper-velocity composite flyers and symmetric planar impact with copper targets. We will present results from multi-dimensional ALEGRA MHD simulations, as well as experimental designs and methods of composite flyer fabrication. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Townsend, Joshua; Shulenburger, Luke
2017-06-01
To date there have been thousands of planets discovered outside our solar system. Forsterite, the magnesium end-member of olivine, ((Mg , Fe) 2SiO4) is abundant in the Earth's mantle, and is likely a common planetary building block throughout the galaxy. Despite extensive investigation under terrestrial pressure and temperature regimes, the behavior of the Mg2SiO4 system at higher pressures and temperatures (P>100 GPa, T>4000 K) remains poorly understood. To better understand the behavior of planetary impact processes and the structure of massive planets we investigated the high pressure and high temperature properties of Mg2SiO4 using combined shock compression experiments on the Z-machine at Sandia National Laboratories, and ab-initio molecular dynamics simulations. We compare our results to other recent experiments on shocked forsterite. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. SAND2017-1987 C.
Adiabatically-controlled two-qubit gates using quantum dot hybrid qubits
NASA Astrophysics Data System (ADS)
Frees, Adam; Gamble, John King; Friesen, Mark; Coppersmith, S. N.
With its recent success in experimentally performing single-qubit gates, the quantum dot hybrid qubit is an excellent candidate for two-qubit gating. Here, we propose an operational scheme which exploits the electrostatic properties of such qubits to yield a tunable effective coupling in a system with a static capacitive coupling between the dots. We then use numerically calculated fidelities to demonstrate the effect of charge noise on single- and two-qubit gates with this scheme. Finally, we show steps towards optimizing the gates fidelities, and discuss ways that the scheme could be further improved. This work was supported in part by ARO (W911NF-12-0607) (W911NF-12-R-0012), NSF (PHY-1104660), ONR (N00014-15-1-0029). The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
University Research Consortium annual review meeting program
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators.
Accurate quantum Z rotations with less magic
NASA Astrophysics Data System (ADS)
Landahl, Andrew; Cesare, Chris
2013-03-01
We present quantum protocols for executing arbitrarily accurate π /2k rotations of a qubit about its Z axis. Unlike reduced instruction set computing (RISC) protocols which use a two-step process of synthesizing high-fidelity ``magic'' states from which T = Z (π / 4) gates can be teleported and then compiling a sequence of adaptive stabilizer operations and T gates to approximate Z (π /2k) , our complex instruction set computing (CISC) protocol distills magic states for the Z (π /2k) gates directly. Replacing this two-step process with a single step results in substantial reductions in the number of gates needed. The key to our construction is a family of shortened quantum Reed-Muller codes of length 2 k + 2 - 1 , whose distillation threshold shrinks with k but is greater than 0.85% for k <= 6 . AJL and CC were supported in part by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Photon extraction and conversion for scalable ion-trap quantum computing
NASA Astrophysics Data System (ADS)
Clark, Susan; Benito, Francisco; McGuinness, Hayden; Stick, Daniel
2014-03-01
Trapped ions represent one of the most mature and promising systems for quantum information processing. They have high-fidelity one- and two-qubit gates, long coherence times, and their qubit states can be reliably prepared and detected. Taking advantage of these inherent qualities in a system with many ions requires a means of entangling spatially separated ion qubits. One architecture achieves this entanglement through the use of emitted photons to distribute quantum information - a favorable strategy if photon extraction can be made efficient and reliable. Here I present results for photon extraction from an ion in a cavity formed by integrated optics on a surface trap, as well as results in frequency converting extracted photons for long distance transmission or interfering with photons from other types of optically active qubits. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Pan, W.; Klem, J. F.; Kim, J. K.; Thalakulam, M.; Cich, M. J.; Lyo, S. K.
2013-03-01
We present here our recent quantum transport results around the charge neutrality point (CNP) in a type-II InAs/GaSb field-effect transistor. At zero magnetic field, a conductance minimum close to 4e2 / h develops at the CNP and it follows semi-logarithmic temperature dependence. In quantized magnetic (B) fields and at low temperatures, well developed integer quantum Hall states are observed in the electron as well as hole regimes. Electron transport shows noisy behavior around the CNP at extremely high B fields. When the diagonal conductivity σxx is plotted against the Hall conductivity σxy, a conductivity circle law is discovered, suggesting a chaotic quantum transport behavior. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Controlling Rayleigh-Taylor instabilities in solid liner implosions with rotating magnetic fields
NASA Astrophysics Data System (ADS)
Schmit, P. F.; McBride, R. D.; Robertson, G. K.; Velikovich, A. L.
2016-10-01
We report calculations demonstrating that a remarkable reduction in the growth of the magneto-Rayleigh-Taylor instability (MRTI) in initially solid, cylindrical metal shells can be achieved by applying a magnetic drive with a tilted, dynamic polarization, forming a solid-liner dynamic screw pinch (SLDSP). Using a self-consistent analytic framework, we demonstrate that MRTI growth factors of the most detrimental modes may be reduced by up to two orders of magnitude relative to conventional z-pinch implosions. One key application of this technique is to enable increasingly stable, higher performance liner implosions to achieve fusion. We weigh the potentially dramatic benefits of the SLDSP against the practical tradeoffs required to achieve the desired drive field history and identify promising target designs for future experimental and computational investigations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
True Triaxial Failure of Granite: Implications for Deep Borehole Waste Disposal
NASA Astrophysics Data System (ADS)
Williams, M.; Ingraham, M. D.; Cheung, C.; Haimson, B. C.
2016-12-01
A series of tests have been completed to determine the failure of Sierra White Granite under a range of true triaxial stress conditions ranging from axisymmetric compression to axisymmetric extension. Tests were performed under constant mean stress conditions. Results show a significant difference in failure due to the intermediate principal stress. Borehole breakout, a significant issue for deep borehole disposal, occurs in line with the least principal stress, which in the United States at great depth is almost certainly a horizontal stress. This means that any attempt to dispose of waste in deep boreholes will have to overcome this phenomenon. This work seeks to determine the full 3D failure surface for granite such that it can be applied to determining the likelihood of borehole breakout occurring under different stress conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Impact Response of Thermally Sprayed Metal Deposits
NASA Astrophysics Data System (ADS)
Wise, J. L.; Hall, A. C.; Moore, N. W.; Pautz, S. D.; Franke, B. C.; Scherzinger, W. M.; Brown, D. W.
2017-06-01
Gas-gun experiments have probed the impact response of tantalum specimens that were additively manufactured using a controlled thermal spray deposition process. Velocity interferometer (VISAR) diagnostics provided time-resolved measurements of sample response under one-dimensional (i . e . , uniaxial strain) shock compression to peak stresses ranging between 1 and 4 GPa. The acquired wave-profile data have been analyzed to determine the Hugoniot Elastic Limit (HEL), Hugoniot equation of state, and high-pressure yield strength of the thermally deposited samples for comparison to published baseline results for conventionally wrought tantalum. The effects of composition, porosity, and microstructure (e . g . , grain/splat size and morphology) are assessed to explain differences in the dynamic mechanical behavior of spray-deposited versus conventional material. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Use of Digital Volume Correlation to Measure Deformation of Shale Using Natural Markers
NASA Astrophysics Data System (ADS)
Dewers, T. A.; Quintana, E.; Ingraham, M. D.; Jacques, C. L.
2016-12-01
We apply digital volume correlation (DVC) to interpreting deformation as influenced by shale heterogeneity. An extension of digital image correlation, DVC uses 3D images (CT Scans) of a sample before, during and after loading to determine deformation in terms of a 3D strain map. The technology tracks the deformation of high and low density regions within the sample to determine full field 3D strains within the sample. High pyrite shales (Woodford and Marcellus in this study) are being used as the high density pyrite serves as an excellent point to track in the volume correlation. Preliminary results indicate that this technology is promising for measuring true volume strains, strain localization, and strain portioning by microlithofacies within specimens during testing. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Quantum Monte Carlo Simulation of condensed van der Waals Systems
NASA Astrophysics Data System (ADS)
Benali, Anouar; Shulenburger, Luke; Romero, Nichols A.; Kim, Jeongnim; Anatole von Lilienfeld, O.
2012-02-01
Van der Waals forces are as ubiquitous as infamous. While post-Hartree-Fock methods enable accurate estimates of these forces in molecules and clusters, they remain elusive for dealing with many-electron condensed phase systems. We present Quantum Monte Carlo [1,2] results for condensed van der Waals systems. Interatomic many-body contributions to cohesive energies and bulk modulus will be discussed. Numerical evidence is presented for crystals of rare gas atoms, and compared to experiments and methods [3]. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.[4pt] [1] J. Kim, K. Esler, J. McMinis and D. Ceperley, SciDAC 2010, J. of Physics: Conference series, Chattanooga, Tennessee, July 11 2011 [0pt] [2] QMCPACK simulation suite, http://qmcpack.cmscc.org (unpublished)[0pt] [3] O. A. von Lillienfeld and A. Tkatchenko, J. Chem. Phys. 132 234109 (2010)
Near-Failure Detonation Behavior of Vapor-Deposited Hexanitrostilbene (HNS) Films
NASA Astrophysics Data System (ADS)
Knepper, Robert; Wixom, Ryan; Tappan, Alexander
2015-06-01
Physical vapor deposition is an attractive method to produce sub-millimeter explosive samples for studying detonation behavior at near-failure conditions. In this work, we examine hexanitrostilbene (HNS) films deposited onto polycarbonate substrates using vacuum thermal sublimation. Deposition conditions are varied in order to alter porosity in the films, and the resulting microstructures are quantified by analyzing ion-polished cross-sections using scanning electron microscopy. The effects of these changes in microstructure on detonation velocity and the critical thickness needed to sustain detonation are determined. The polycarbonate substrates can act as recording plates for detonation experiments, and films near the critical thickness display distinct patterns in the dent tracks that indicate instabilities in the detonation front when approaching failure conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Ingraham, M. D.; Dewers, T. A.; Heath, J. E.
2016-12-01
Utilizing the localization conditions laid out in Rudnicki 2002, the failure of a series of tests performed on Mancos shale has been analyzed. Shale specimens were tested under constant mean stress conditions in an axisymmetric stress state, with specimens cored both parallel and perpendicular to bedding. Failure data indicates that for the range of pressures tested the failure surface is well represented by a Mohr- Coulomb failure surface with a friction angle of 34.4 for specimens cored parallel to bedding, and 26.5 for specimens cored perpendicular to bedding. There is no evidence of a yield cap up to 200 MPa mean stress. Comparison with the theory shows that the best agreement in terms of band angles comes from assuming normality of the plastic strain increment. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Mattsson, Ann E.; Wills, John M.
2013-03-01
The inability to computationally describe the physics governing the properties of actinides and their alloys is the poster child of failure of existing Density Functional Theory exchange-correlation functionals. The intricate competition between localization and delocalization of the electrons, present in these materials, exposes the limitations of functionals only designed to properly describe one or the other situation. We will discuss the manifestation of this competition in real materials and propositions on how to construct a functional able to accurately describe properties of these materials. I addition we will discuss both the importance of using the Dirac equation to describe the relativistic effects in these materials, and the connection to the physics of transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Radiation characteristics of Al wire arrays on Z*
NASA Astrophysics Data System (ADS)
Coverdale, C. A.; Ampleford, D. J.; Jones, B.; Cuneo, M. E.; Hansen, S.; Jennings, C. A.; Moore, N.; Jones, S. C.; Deeney, C.
2011-10-01
Analysis of mixed material nested wire array experiments at Z have shown that the inner wire array dominates the hottest regions of the stagnated z pinch. In those experiments, substantial free-bound continuum radiation was observed when Al was fielded on the inner wire array. Experiments with Al (5% Mg) on both wire arrays have also been fielded, with variations in the free-bound continuum observed. These variations appear to be tied to the initial mass and diameter of the wire array. The results presented here will investigate the trends in the measured emission (Al and Mg K-shell and free-bound continuum) and will compare the measured output to more recent Al wire array experimental results on the refurbished Z accelerator. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. +current address: NNSA/DOE Headquarters, Washington D.C.
Quantum Monte Carlo Studies of Bulk and Few- or Single-Layer Black Phosphorus
NASA Astrophysics Data System (ADS)
Shulenburger, Luke; Baczewski, Andrew; Zhu, Zhen; Guan, Jie; Tomanek, David
2015-03-01
The electronic and optical properties of phosphorus depend strongly on the structural properties of the material. Given the limited experimental information on the structure of phosphorene, it is natural to turn to electronic structure calculations to provide this information. Unfortunately, given phosphorus' propensity to form layered structures bound by van der Waals interactions, standard density functional theory methods provide results of uncertain accuracy. Recently, it has been demonstrated that Quantum Monte Carlo (QMC) methods achieve high accuracy when applied to solids in which van der Waals forces play a significant role. In this talk, we will present QMC results from our recent calculations on black phosphorus, focusing on the structural and energetic properties of monolayers, bilayers and bulk structures. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
X-Ray Thomson Scattering Without the Chihara Decomposition
NASA Astrophysics Data System (ADS)
Magyar, Rudolph; Baczewski, Andrew; Shulenburger, Luke; Hansen, Stephanie B.; Desjarlais, Michael P.; Sandia National Laboratories Collaboration
X-Ray Thomson Scattering is an important experimental technique used in dynamic compression experiments to measure the properties of warm dense matter. The fundamental property probed in these experiments is the electronic dynamic structure factor that is typically modeled using an empirical three-term decomposition (Chihara, J. Phys. F, 1987). One of the crucial assumptions of this decomposition is that the system's electrons can be either classified as bound to ions or free. This decomposition may not be accurate for materials in the warm dense regime. We present unambiguous first principles calculations of the dynamic structure factor independent of the Chihara decomposition that can be used to benchmark these assumptions. Results are generated using a finite-temperature real-time time-dependent density functional theory applied for the first time in these conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Gardiner, Thomas
2013-10-01
Anisotropic thermal diffusion in magnetized plasmas is an important physical phenomena for a diverse set of physical conditions ranging from astrophysical plasmas to MFE and ICF. Yet numerically simulating this phenomenon accurately poses significant challenges when the computational mesh is misaligned with respect to the magnetic field. Particularly when the temperature gradients are unresolved, one frequently finds entropy violating solutions with heat flowing from cold to hot zones for χ∥ /χ⊥ >=102 which is substantially smaller than the range of interest which can reach 1010 or higher. In this talk we present a new implicit algorithm for solving the anisotropic thermal diffusion equations and demonstrate its characteristics on what has become a fairly standard set of test problems in the literature. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-5687A.
Spectroscopy of Al wire array stagnation on Z
NASA Astrophysics Data System (ADS)
Jones, B.; Jennings, C. A.; Hansen, S. B.; Bailey, J. E.; Rochau, G. A.; Coverdale, C. A.; Yu, E. P.; Ampleford, D. J.; Cuneo, M. E.; Maron, Y.; Fisher, V. I.; Bernshtam, V.; Starobinets, A.; Weingarten, L.; Pinhas, S.
2011-10-01
In this work, we present analysis of time-gated spectra of ~2 keV K-shell emissions from Al (5% Mg) wire arrays on Z to provide details of the plasma conditions and dynamics at the onset of stagnation. The plasma is modeled as concentric radial zones, and collisional-radiative modeling with self-consistent radiation transport is used to constrain the temperatures and densities in these regions. A hot ~2 keV plasma core bearing a few percent of the total mass forms at the foot of the x-ray pulse, with participating mass increasing toward peak x-ray power as material arrives on axis with ~50 cm/ μs implosion velocity. The atomic modeling accounts for K-shell line opacity and Doppler effects, and is compared to 3D MHD simulations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under contract DE-AC04-94AL85000.
Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to sharemore » its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.« less
Context Switching with Multiple Register Windows: A RISC Performance Study
NASA Technical Reports Server (NTRS)
Konsek, Marion B.; Reed, Daniel A.; Watcharawittayakul, Wittaya
1987-01-01
Although previous studies have shown that a large file of overlapping register windows can greatly reduce procedure call/return overhead, the effects of register windows in a multiprogramming environment are poorly understood. This paper investigates the performance of multiprogrammed, reduced instruction set computers (RISCs) as a function of window management strategy. Using an analytic model that reflects context switch and procedure call overheads, we analyze the performance of simple, linearly self-recursive programs. For more complex programs, we present the results of a simulation study. These studies show that a simple strategy that saves all windows prior to a context switch, but restores only a single window following a context switch, performs near optimally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjoreen, Terrence P
The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects thatmore » were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjoreen, Terrence P
The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects thatmore » were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at
Matrix Management in DoD: An Annotated Bibliography
1984-04-01
ADDRESS 10 PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS ACSC/EDCC, MAXWELL AFB AL 36112 1 1. CONTROLLING OFFICE NAME AND ADDRESS 12 ...completes their message that matrix orga- nization is the likely format of the multiprogram Program Office. 12 The text’s discussion of matrix is...manager, and functional specialist are of vital importance to the effective operation of the matrix .... Matrix management will not achieve its
Towards optimizing two-qubit operations in three-electron double quantum dots
NASA Astrophysics Data System (ADS)
Frees, Adam; Gamble, John King; Mehl, Sebastian; Friesen, Mark; Coppersmith, S. N.
The successful implementation of single-qubit gates in the quantum dot hybrid qubit motivates our interest in developing a high fidelity two-qubit gate protocol. Recently, extensive work has been done to characterize the theoretical limitations and advantages in performing two-qubit operations at an operation point located in the charge transition region. Additionally, there is evidence to support that single-qubit gate fidelities improve while operating in the so-called ``far-detuned'' region, away from the charge transition. Here we explore the possibility of performing two-qubit gates in this region, considering the challenges and the benefits that may present themselves while implementing such an operational paradigm. This work was supported in part by ARO (W911NF-12-0607) (W911NF-12-R-0012), NSF (PHY-1104660), ONR (N00014-15-1-0029). The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
Measurements of spin life time of an antimony-bound electron in silicon
NASA Astrophysics Data System (ADS)
Lu, T. M.; Bishop, N. C.; Tracy, L. A.; Blume-Kohout, R.; Pluym, T.; Wendt, J. R.; Dominguez, J.; Lilly, M. P.; Carroll, M. S.
2013-03-01
We report our measurements of spin life time of an antimony-bound electron in silicon. The device is a double-top-gated silicon quantum dot with antimony atoms implanted near the quantum dot region. A donor charge transition is identified by observing a charge offset in the transport characteristics of the quantum dot. The tunnel rates on/off the donor are first characterized and a three-level pulse sequence is then used to measure the spin populations at different load-and-wait times in the presence of a fixed magnetic field. The spin life time is extracted from the exponential time dependence of the spin populations. A spin life time of 1.27 seconds is observed at B = 3.25 T. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
First principles-based moiré model for incommensurate graphene on BN
NASA Astrophysics Data System (ADS)
Spataru, Catalin; Thurmer, Konrad
Various properties of supported graphene films depend strongly on the exact positions of carbon atoms with respect to the underlying substrate. While density functional theory (DFT) can predict atom position in many systems, it cannot be applied straightforwardly to systems that are incommensurate or have large unit cells, such as graphene on a BN surface. We address these limitations by developing a simple moiré model with parameters derived from DFT calculations for systems strained into commensurate structures with manageable unit cell sizes. Our moiré model, which takes into account the flexural rigidity of graphene and includes the influence of the substrate, is able to reproduce the DFT-relaxed carbon positions with an accuracy of <0.01 Å. We then apply this model to the unstrained C/BN system and predict how structure and energy vary with azimuthal orientation of the graphene sheet with respect to the BN substrate. Work supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the U.S. DOE under Contract DE-AC04-94AL85000.
Predicting the valley physics of silicon quantum dots directly from a device layout
NASA Astrophysics Data System (ADS)
Gamble, John King; Harvey-Collard, Patrick; Jacobson, N. Tobias; Bacewski, Andrew D.; Nielsen, Erik; Montaño, Inès; Rudolph, Martin; Carroll, Malcolm S.; Muller, Richard P.
Qubits made from electrostatically-defined quantum dots in Si-based systems are excellent candidates for quantum information processing applications. However, the multi-valley structure of silicon's band structure provides additional challenges for the few-electron physics critical to qubit manipulation. Here, we present a theory for valley physics that is predictive, in that we take as input the real physical device geometry and experimental voltage operation schedule, and with minimal approximation compute the resulting valley physics. We present both effective mass theory and atomistic tight-binding calculations for two distinct metal-oxide-semiconductor (MOS) quantum dot systems, directly comparing them to experimental measurements of the valley splitting. We conclude by assessing these detailed simulations' utility for engineering desired valley physics in future devices. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program.
Statistical benchmarking for orthogonal electrostatic quantum dot qubit devices
NASA Astrophysics Data System (ADS)
Gamble, John; Frees, Adam; Friesen, Mark; Coppersmith, S. N.
2014-03-01
Quantum dots in semiconductor systems have emerged as attractive candidates for the implementation of quantum information processors because of the promise of scalability, manipulability, and integration with existing classical electronics. A limitation in current devices is that the electrostatic gates used for qubit manipulation exhibit strong cross-capacitance, presenting a barrier for practical scale-up. Here, we introduce a statistical framework for making precise the notion of orthogonality. We apply our method to analyze recently implemented designs at the University of Wisconsin-Madison that exhibit much increased orthogonal control than was previously possible. We then use our statistical modeling to future device designs, providing practical guidelines for devices to have robust control properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy Nuclear Security Administration under contract DE-AC04-94AL85000. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. This work was supported in part by the Laboratory Directed Research and Development program at Sandia National Laboratories, by ARO (W911NF-12-0607), and by the United States Department of Defense.
Multiprogramming performance degradation - Case study on a shared memory multiprocessor
NASA Technical Reports Server (NTRS)
Dimpsey, R. T.; Iyer, R. K.
1989-01-01
The performance degradation due to multiprogramming overhead is quantified for a parallel-processing machine. Measurements of real workloads were taken, and it was found that there is a moderate correlation between the completion time of a program and the amount of system overhead measured during program execution. Experiments in controlled environments were then conducted to calculate a lower bound on the performance degradation of parallel jobs caused by multiprogramming overhead. The results show that the multiprogramming overhead of parallel jobs consumes at least 4 percent of the processor time. When two or more serial jobs are introduced into the system, this amount increases to 5.3 percent
Controlling qubit drift by recycling error correction syndromes
NASA Astrophysics Data System (ADS)
Blume-Kohout, Robin
2015-03-01
Physical qubits are susceptible to systematic drift, above and beyond the stochastic Markovian noise that motivates quantum error correction. This parameter drift must be compensated - if it is ignored, error rates will rise to intolerable levels - but compensation requires knowing the parameters' current value, which appears to require halting experimental work to recalibrate (e.g. via quantum tomography). Fortunately, this is untrue. I show how to perform on-the-fly recalibration on the physical qubits in an error correcting code, using only information from the error correction syndromes. The algorithm for detecting and compensating drift is very simple - yet, remarkably, when used to compensate Brownian drift in the qubit Hamiltonian, it achieves a stabilized error rate very close to the theoretical lower bound. Against 1/f noise, it is less effective only because 1/f noise is (like white noise) dominated by high-frequency fluctuations that are uncompensatable. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE
NASA Astrophysics Data System (ADS)
Mattsson, Ann E.; Wixom, Ryan R.; Mattsson, Thomas R.
2011-06-01
Density Functional Theory (DFT) has become a crucial tool for understanding the behavior of matter. The ability to perform high-fidelity calculations is most important for cases where experiments are impossible, dangerous, and/or prohibitively expensive to perform. For molecular crystals, successful use of DFT has been hampered by an inability to correctly describe the van der Waals' dominated equilibrium state. We have explored a way of bypassing this problem by using the Armiento-Mattsson 2005 (AM05) exchange-correlation functional. This functional is highly accurate for a wide range of solids, in particular in compression. Another advantage is that AM05 does not include any van der Waals' attraction. We will demonstrate the method on the PETN Hugoniot, and discuss our confidence in the results and ongoing research aimed at improvement. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Optical Response of Warm Dense Matter Using Real-Time Electron Dynamics
NASA Astrophysics Data System (ADS)
Baczewski, Andrew; Shulenburger, Luke; Desjarlais, Michael; Magyar, Rudolph
2014-03-01
The extreme temperatures and solid-like densities in warm dense matter present a unique challenge for theory, wherein neither conventional models from condensed matter nor plasma physics capture all of the relevant phenomenology. While Kubo-Greenwood DFT calculations have proven capable of reproducing optical properties of WDM, they require a significant number of virtual orbitals to reach convergence due to their perturbative nature. Real-time TDDFT presents a complementary framework with a number of computationally favorable properties, including reduced cost complexity and better scalability, and has been used to reproduce the optical response of finite and ordered extended systems. We will describe the use of Ehrenfest-TDDFT to evolve coupled electron-nuclear dynamics in WDM systems, and the subsequent evaluation of optical response functions from the real-time electron dynamics. The advantages and disadvantages of this approach will be discussed relative to the current state-of-the-art. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.
ANFO Response to Low-Stress Planar Impacts
NASA Astrophysics Data System (ADS)
Cooper, Marcia; Trott, Wayne; Schmitt, Robert; Short, Mark; Jackson, Scott
2011-06-01
Ammonium Nitrate plus Fuel Oil (ANFO) is a non-ideal explosive where the mixing behavior of the mm-diameter prills with the absorbed fuel oil is of critical importance for chemical energy release. The large-scale heterogeneity of ANFO establishes conditions uniquely suitable for observation using the spatially- and temporally-resolved line-imaging ORVIS (optically recording velocity interferometer system) diagnostic. The first demonstration of transmitted wave profiles in ANFO from low-stress planar impacts using a single-stage gas gun is reported. The experimental stresses simulate the compressive wave conditions preceding detonation providing insight into dominant mesoscale processes. Distributions of particle velocity as related to mean prill diameters and observations of between-prill jetting are reported. Use of the measured distributions of particle velocity for collaboration with mesoscale model development and the statistically-averaged values for contribution to continuum model development is discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Nonlinear Dynamics of a Spring-Supported Piston in a Vibrated Liquid-Filled Housing: II. Experiments
NASA Astrophysics Data System (ADS)
O'Hern, T. J.; Torczynski, J. R.; Clausen, J. R.
2016-11-01
The nonlinear dynamics of a piston supported by a spring in a vibrated liquid-filled housing is investigated experimentally. The housing containing the piston and the liquid is subjected to vibrations along its axis. A post fixed to the housing penetrates a hole through the piston and produces a flow resistance that depends on piston position. Flexible bellows attached to the housing ends enable the piston, liquid, and bellows to execute a collective motion that forces little liquid through the flow resistance. The low damping of this motion leads to a resonance, at which the flow-resistance nonlinearity produces a net force on the piston that can cause it to compress its spring. Experiments are performed to investigate the nonlinear dynamics of this system, and these results are compared to theoretical and numerical results. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Automated Generation of Tabular Equations of State with Uncertainty Information
NASA Astrophysics Data System (ADS)
Carpenter, John H.; Robinson, Allen C.; Debusschere, Bert J.; Mattsson, Ann E.
2015-06-01
As computational science pushes toward higher fidelity prediction, understanding the uncertainty associated with closure models, such as the equation of state (EOS), has become a key focus. Traditional EOS development often involves a fair amount of art, where expert modelers may appear as magicians, providing what is felt to be the closest possible representation of the truth. Automation of the development process gives a means by which one may demystify the art of EOS, while simultaneously obtaining uncertainty information in a manner that is both quantifiable and reproducible. We describe our progress on the implementation of such a system to provide tabular EOS tables with uncertainty information to hydrocodes. Key challenges include encoding the artistic expert opinion into an algorithmic form and preserving the analytic models and uncertainty information in a manner that is both accurate and computationally efficient. Results are demonstrated on a multi-phase aluminum model. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Geomechanical Considerations for the Deep Borehole Field Test
NASA Astrophysics Data System (ADS)
Park, B. Y.
2015-12-01
Deep borehole disposal of high-level radioactive waste is under consideration as a potential alternative to shallower mined repositories. The disposal concept consists of drilling a borehole into crystalline basement rocks to a depth of 5 km, emplacement of canisters containing solid waste in the lower 2 km, and plugging and sealing the upper 3 km of the borehole. Crystalline rocks such as granites are particularly attractive for borehole emplacement because of their low permeability and porosity at depth, and high mechanical strength to resist borehole deformation. In addition, high overburden pressures contribute to sealing of some of the fractures that provide transport pathways. We present geomechanical considerations during construction (e.g., borehole breakouts, disturbed rock zone development, and creep closure), relevant to both the smaller-diameter characterization borehole (8.5") and the larger-diameter field test borehole (17"). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Scalable planar fabrication processes for chalcogenide-based topological insulators
NASA Astrophysics Data System (ADS)
Sharma, Peter; Henry, M. David; Douglas, Erica; Wiwi, Michael; Lima Sharma, Ana; Lewis, Rupert; Sugar, Joshua; Salehi, Maryam; Koirala, Nikesh; Oh, Seongshik
Surface currents in topological insulators are expected to have long spin diffusion lengths, which could lead to numerous applications. Experiments that show promising transport properties were conducted on exfoliated flakes from bulk material, thin films on substrates of limited dimensions, or bulk material, with limited yield. A planar thin film-based technology is needed to make topological insulator devices at scale and could also lead to new device designs. We address two problems related to fabricating chalcogenide-based topological insulator devices on 3'' wafers in the Sandia Microfabrication Facility using Bi2Te3 films. (2) Implantation damage and its subsequent mitigation through annealing is characterized. (2) The degradation in dielectric layers used to manipulate surface potential for elucidating topological surface state transport is characterized under different processing conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. Funded by the Office of Naval Research (N0001416IP00098-0).
Thermal Runaway in Jammed Networks
NASA Astrophysics Data System (ADS)
Lechman, Jeremy; Yarrington, Cole; Bolintineanu, Dan
2017-06-01
The study of thermal explosion has a long history. Names such as Semenov and Frank-Kamenetskii are associated with classical model descriptions under particular assumptions. In this talk we revisit this problem with particular focus on the latter's model for conduction dominated thermal transport and Arrenhius-type reaction chemistry. We extend this description to the case of inhomogeneous microstructure generated by packing mono-sized spheres via a well-defined ``Jamming'' protocol. With these material structures in hand, we recast the Frank-Kamenetskii problem into a reduced-order network form for conduction in particle packs. With this model we can efficiently investigate the variability of the time to ignition due to the random microstructure. Additionally, we propose a modal decomposition and stability analysis of the model akin to stability of linear systems. We highlight the physical insights this approach can give with respect to questions of material dependent performance variability. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Jensen, Daniel; Wasserman, Adam; Baczewski, Andrew
The construction of approximations to the exchange-correlation potential for warm dense matter (WDM) is a topic of significant recent interest. In this work, we study the inverse problem of Kohn-Sham (KS) DFT as a means of guiding functional design at zero temperature and in WDM. Whereas the forward problem solves the KS equations to produce a density from a specified exchange-correlation potential, the inverse problem seeks to construct the exchange-correlation potential from specified densities. These two problems require different computational methods and convergence criteria despite sharing the same mathematical equations. We present two new inversion methods based on constrained variational and PDE-constrained optimization methods. We adapt these methods to finite temperature calculations to reveal the exchange-correlation potential's temperature dependence in WDM-relevant conditions. The different inversion methods presented are applied to both non-interacting and interacting model systems for comparison. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94.
Understanding Radionuclide Interactions with Layered Materials
NASA Astrophysics Data System (ADS)
Wang, Y.
2015-12-01
Layered materials play an important role in nuclear waste management and environmental cleanup. Better understanding of radionuclide interactions with those materials is critical for engineering high-performance materials for various applications. This presentation will provide an overview on radionuclide interactions with two general categories of layered materials - cationic clays and anionic clays - from a perspective of nanopore confinement. Nanopores are widely present in layered materials, either as the interlayers or as inter-particle space. Nanopore confinement can significantly modify chemical reactions in those materials. This effect may cause the preferential enrichment of radionuclides in nanopores and therefore directly impact the mobility of the radionuclides. This effect also implies that conventional sorption measurements using disaggregated samples may not represent chemical conditions in actual systems. The control of material structures on ion exchange, surface complexation, and diffusion in layered materials will be systematically examined, and the related modeling approaches will be discussed. This work was performed at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE under contract DE-AC04-94AL8500.
Dynamically corrected gates for singlet-triplet spin qubits with control-dependent errors
NASA Astrophysics Data System (ADS)
Jacobson, N. Tobias; Witzel, Wayne M.; Nielsen, Erik; Carroll, Malcolm S.
2013-03-01
Magnetic field inhomogeneity due to random polarization of quasi-static local magnetic impurities is a major source of environmentally induced error for singlet-triplet double quantum dot (DQD) spin qubits. Moreover, for singlet-triplet qubits this error may depend on the applied controls. This effect is significant when a static magnetic field gradient is applied to enable full qubit control. Through a configuration interaction analysis, we observe that the dependence of the field inhomogeneity-induced error on the DQD bias voltage can vary systematically as a function of the controls for certain experimentally relevant operating regimes. To account for this effect, we have developed a straightforward prescription for adapting dynamically corrected gate sequences that assume control-independent errors into sequences that compensate for systematic control-dependent errors. We show that accounting for such errors may lead to a substantial increase in gate fidelities. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Hammering Yucca Flat, Part One: P-Wave Velocity
NASA Astrophysics Data System (ADS)
Tang, D. G.; Abbott, R. E.; Preston, L. A.; Hampshire, J. B., II
2015-12-01
Explosion-source phenomenology is best studied when competing signals (such as instrument, site, and propagation effects), are well understood. The second phase of the Source Physics Experiments (SPE), is moving from granite geology to alluvium geology at Yucca Flat, Nevada National Security Site. To improve subsurface characterization of Yucca Flat (and therefore better understand propagation and site effects), an active-source seismic survey was conducted using a novel 13,000-kg impulsive hammer source. The source points, spaced 200 m apart, covered a N-S transect spanning 18 km. Three component, 2-Hz geophones were used to record useable signals out to 10 km. We inverted for P-wave velocity by computing travel times using a finite-difference 3D eikonal solver, and then compared that to the picked travel times using a linearized iterative inversion scheme. Preliminary results from traditional reflection processing methods are also presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Achieving accuracy in first-principles calculations for EOS: basis completeness at high temperatures
NASA Astrophysics Data System (ADS)
Wills, John; Mattsson, Ann
2013-06-01
First-principles electronic structure calculations can provide EOS data in regimes of pressure and temperature where accurate experimental data is difficult or impossible to obtain. This lack, however, also precludes validation of calculations in those regimes. Factors that influence the accuracy of first-principles data include (1) theoretical approximations and (2) computational approximations used in implementing and solving the underlying equations. In the first category are the approximate exchange/correlation functionals and approximate wave equations approximating the Dirac equation; in the second are basis completeness, series convergence, and truncation errors. We are using two rather different electronic structure methods (VASP and RSPt) to make definitive the requirements for accuracy of the second type, common to both. In this talk, we discuss requirements for converged calculation at high temperature and moderated pressure. At convergence we show that both methods give identical results. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Achieving accuracy in first-principles calculations at extreme temperature and pressure
NASA Astrophysics Data System (ADS)
Mattsson, Ann; Wills, John
2013-06-01
First-principles calculations are increasingly used to provide EOS data at pressures and temperatures where experimental data is difficult or impossible to obtain. The lack of experimental data, however, also precludes validation of the calculations in those regimes. Factors influencing the accuracy of first-principles data include theoretical approximations, and computational approximations used in implementing and solving the underlying equations. The first category includes approximate exchange-correlation functionals and wave equations simplifying the Dirac equation. In the second category are, e.g., basis completeness and pseudo-potentials. While the first category is extremely hard to assess without experimental data, inaccuracies of the second type should be well controlled. We are using two rather different electronic structure methods (VASP and RSPt) to make explicit the requirements for accuracy of the second type. We will discuss the VASP Projector Augmented Wave potentials, with examples for Li and Mo. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Highly Accurate Calculations of the Phase Diagram of Cold Lithium
NASA Astrophysics Data System (ADS)
Shulenburger, Luke; Baczewski, Andrew
The phase diagram of lithium is particularly complicated, exhibiting many different solid phases under the modest application of pressure. Experimental efforts to identify these phases using diamond anvil cells have been complemented by ab initio theory, primarily using density functional theory (DFT). Due to the multiplicity of crystal structures whose enthalpy is nearly degenerate and the uncertainty introduced by density functional approximations, we apply the highly accurate many-body diffusion Monte Carlo (DMC) method to the study of the solid phases at low temperature. These calculations span many different phases, including several with low symmetry, demonstrating the viability of DMC as a method for calculating phase diagrams for complex solids. Our results can be used as a benchmark to test the accuracy of various density functionals. This can strengthen confidence in DFT based predictions of more complex phenomena such as the anomalous melting behavior predicted for lithium at high pressures. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Ethane-xenon mixtures under shock conditions
NASA Astrophysics Data System (ADS)
Flicker, Dawn; Magyar, Rudolph; Root, Seth; Cochrane, Kyle; Mattsson, Thomas
2015-06-01
Mixtures of light and heavy elements arise in inertial confinement fusion and planetary science. We present results on the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT/QMD) at elevated-temperature and pressure is used to obtain the properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate the QMD simulations, we performed high-precision shock compression experiments using Sandia's Z-Machine. A bond tracking analysis of the simulations correlates the sharp rise in the Hugoniot curve with completion of dissociation in ethane. DFT-based simulation results compare well with experimental data and are used to provide insight into the dissociation as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for ethane, Xe-ethane, polymethyl-pentene, and polystyrene, suggesting that a limiting compression exists for C-C bonded systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, Security Administration under contract DE-AC04-94AL85000.
Scheduling: A guide for program managers
NASA Technical Reports Server (NTRS)
1994-01-01
The following topics are discussed concerning scheduling: (1) milestone scheduling; (2) network scheduling; (3) program evaluation and review technique; (4) critical path method; (5) developing a network; (6) converting an ugly duckling to a swan; (7) network scheduling problem; (8) (9) network scheduling when resources are limited; (10) multi-program considerations; (11) influence on program performance; (12) line-of-balance technique; (13) time management; (14) recapitulization; and (15) analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1995-02-01
Sandia is a multiprogram engineering and science laboratory operated for the Department of Energy with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. It has major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. The principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. This publication gives a brief overview of the multifaceted research programs conductedmore » by the laboratory.« less
Studying Si/SiGe disordered alloys within effective mass theory
NASA Astrophysics Data System (ADS)
Gamble, John; Montaño, Inès; Carroll, Malcolm S.; Muller, Richard P.
Si/SiGe is an attractive material system for electrostatically-defined quantum dot qubits due to its high-quality crystalline quantum well interface. Modeling the properties of single-electron quantum dots in this system is complicated by the presence of alloy disorder, which typically requires atomistic techniques in order to treat properly. Here, we use the NEMO-3D empirical tight binding code to calibrate a multi-valley effective mass theory (MVEMT) to properly handle alloy disorder. The resulting MVEMT simulations give good insight into the essential physics of alloy disorder, while being extremely computationally efficient and well-suited to determining statistical properties. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
1983-12-01
4 Multiuser Support ...... .......... 11-5 User Interface . .. .. ................ .. 11- 7 Inter -user Communications ................ 11- 7 Memory...user will greatly help facilitate the learning process. Inter -User Communication The inter -user communications of the operating system can be done using... inter -user communications would be met by using one or both of them. AMemory and File Management Memory and file management is concerned with four basic
Performance Evaluation and Modeling Techniques for Parallel Processors. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Dimpsey, Robert Tod
1992-01-01
In practice, the performance evaluation of supercomputers is still substantially driven by singlepoint estimates of metrics (e.g., MFLOPS) obtained by running characteristic benchmarks or workloads. With the rapid increase in the use of time-shared multiprogramming in these systems, such measurements are clearly inadequate. This is because multiprogramming and system overhead, as well as other degradations in performance due to time varying characteristics of workloads, are not taken into account. In multiprogrammed environments, multiple jobs and users can dramatically increase the amount of system overhead and degrade the performance of the machine. Performance techniques, such as benchmarking, which characterize performance on a dedicated machine ignore this major component of true computer performance. Due to the complexity of analysis, there has been little work done in analyzing, modeling, and predicting the performance of applications in multiprogrammed environments. This is especially true for parallel processors, where the costs and benefits of multi-user workloads are exacerbated. While some may claim that the issue of multiprogramming is not a viable one in the supercomputer market, experience shows otherwise. Even in recent massively parallel machines, multiprogramming is a key component. It has even been claimed that a partial cause of the demise of the CM2 was the fact that it did not efficiently support time-sharing. In the same paper, Gordon Bell postulates that, multicomputers will evolve to multiprocessors in order to support efficient multiprogramming. Therefore, it is clear that parallel processors of the future will be required to offer the user a time-shared environment with reasonable response times for the applications. In this type of environment, the most important performance metric is the completion of response time of a given application. However, there are a few evaluation efforts addressing this issue.
Quantum Monte Carlo simulations of Ti4 O7 Magnéli phase
NASA Astrophysics Data System (ADS)
Benali, Anouar; Shulenburger, Luke; Krogel, Jaron; Zhong, Xiaoliang; Kent, Paul; Heinonen, Olle
2015-03-01
Ti4O7 is ubiquitous in Ti-oxides. It has been extensively studied, both experimentally and theoretically in the past decades using multiple levels of theories, resulting in multiple diverse results. The latest DFT +SIC methods and state of the art HSE06 hybrid functionals even propose a new anti-ferromagnetic state at low temperature. Using Quantum Monte Carlo (QMC), as implemented in the QMCPACK simulation package, we investigated the electronic and magnetic properties of Ti4O7 at low (120K) and high (298K) temperatures and at different magnetic states. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. L.S, J.K and P.K were supported through Predictive Theory and Modeling for Materials and Chemical Science program by the Office of Basic Energy Sciences (BES), Department of Energy (DOE) Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Simpson, Sean; Renk, Timothy; Johnston, Mark; Mazarakis, Mike; Patel, Sonal
2015-11-01
The RITS-6 inductive voltage adder (IVA) accelerator (3.5-8.5 MeV) at Sandia National Laboratories produces high-power (TW) focused electron beams (<3mm diameter) for flash x-ray radiography applications. The Self-Magnetic Pinch (SMP) diode utilizes a hollowed metal cathode to produce a pinched focus onto a high-Z metal anode converter. There is not a clear understanding as to the effects various contaminants such as C, CO, H, H2O, HmCn, O2, and N2, on the anode surface or in the bulk may have on impedance dynamics, beam stability, beam spot size, and reproducibility. Heating pure Ta anodes with and without a thin Al coating have been investigated using temperatures ranging from 400 °C to 1000 °C. Initial experiments indicate a significant reduction in H and C as seen in high-speed spectral analysis of plasmas at the converter and a reduction in the back-streaming proton current. Experiments are ongoing, and latest results will be reported. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Stewart, Sarah
2017-06-01
Shock-induced vaporization was a common process during the end stages of terrestrial planet formation and transient features in extra-solar systems are attributed to recent giant impacts. At the Sandia Z Machine, my collaborators and I are conducting experiments to study the shock Hugoniot and release to the liquid-vapor phase boundary of major minerals in rocky planets. Current work on forsterite, enstatite and bronzite and previous results on silica, iron and periclase demonstrate that shock-induced vaporization played a larger role during planet formation than previously thought. I will provide an overview of the experimental results and describe how the data have changed our views of planetary impact events in our solar system and beyond. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work is supported by the Z Fundamental Science Program at Sandia National Laboratories, DOE-NNSA Grant DE- NA0002937, NASA Grant # NNX15AH54G, and UC Multicampus-National Lab Collaborative Research and Training Grant #LFR-17-449059.
Permanent Disposal of Nuclear Waste in Salt
NASA Astrophysics Data System (ADS)
Hansen, F. D.
2016-12-01
Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories
A microcomputer system for clinical bacteriology: experience of 12 months' trial.
Courcol, R J; Roussel-Delvallez, M; Martin, G R
1982-01-01
A data processing system using microcomputers was developed in a hospital bacteriology laboratory processing more than 60 000 specimens yearly. The purchase price of the hardware was frs 200 000 (17 500 pounds) and the software was written by the authors. The system has been running since May 1980 without general breakdown. The present configuration allows the processing of specimens, enquiries, scientific and administrative tasks but multiprogramming and cumulative reports are not possible. PMID:7107962
Planning and the Energy-Water Nexus
NASA Astrophysics Data System (ADS)
Tidwell, V. C.; Bailey, M.; Zemlick, K.; Moreland, B.
2015-12-01
While thermoelectric power generation accounts for only 3-5% of the nation's consumptive use of freshwater, its future potential to exert pressure on limited water supplies is of concern given projected growth in electric power generation. The corresponding thermoelectric water footprint could look significantly different depending on decisions concerning the mix of fuel type, cooling type, location, and capacity, which are influenced by such factors as fuel costs, technology evolution, demand growth, policies, and climate change. The complex interplay among these disparate factors makes it difficult to identify where water could limit siting choices for thermoelectric generation or alternatively, thermoelectric development could limit growth in other water use sectors. These arguments point to the need for joint coordination, analysis and planning between energy and water managers. Here we report on results from a variety of planning exercises spanning scales from the national, interconnection, to the utility. Results will highlight: lessons learned from the integrated planning exercises; the broad range in potential thermoelectric water use futures; regional differences in the thermoelectric-water nexus; and, opportunities for non-traditional waters to ease competition over limited freshwater supplies and to harden thermoelectric generation against drought vulnerability. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Shock Waves and Defects in Energetic Materials, a Match Made in MD Heaven
NASA Astrophysics Data System (ADS)
Wood, Mitchell; Kittell, David; Yarrington, Cole; Thompson, Aidan
2017-06-01
Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. In this talk the shock response of Hexanitrostilbene (HNS) is studied through large scale reactive molecular dynamics (RMD) simulations. These RMD simulations provide a unique opportunity to elucidate mechanisms of viscoplastic pore collapse which are often neglected in larger scale hydrodynamic models. A discussion of the macroscopic effects of this viscoplastic material response, such as its role in hot spot formation and eventual initiation, will be provided. Through this work we have been able to map a transition from purely viscoplastic to fluid-like pore collapse that is a function of shock strength, pore size and material strength. In addition, these findings are important reference data for the validation of future multi-scale modeling efforts of the shock response of heterogeneous materials. Examples of how these RMD results are translated into mesoscale models will also be addressed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US DOE NNSA under Contract No. DE- AC04-94AL85000.
Simple intrinsic defects in GaP and InP
NASA Astrophysics Data System (ADS)
Schultz, Peter A.
2012-02-01
To faithfully simulate evolution of defect chemistry and electrical response in irradiated semiconductor devices requires accurate defect reaction energies and energy levels. In III-Vs, good data is scarce, theory hampered by band gap and supercell problems. I apply density functional theory (DFT) to intrinsic defects in GaP and InP, predicting stable charge states, ground state configurations, defect energy levels, and identifying mobile species. The SeqQuest calculations incorporate rigorous charge boundary conditions removing supercell artifacts, demonstrated converged to the infinite limit. Computed defect levels are not limited by a band gap problem, despite Kohn-Sham gaps much smaller than the experimental gap. As in GaAs, [P.A. Schultz and O.A. von Lilienfeld, Modeling Simul. Mater. Sci. Eng. 17, 084007 (2009)], defects in GaP and InP exhibit great complexity---multitudes of charge states, bistabilities, and negative U systems---but show similarities to each other (and to GaAs). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
U.S. Department of Energy Isotope Program
None
2018-01-16
The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. PNNLâs Isotope Program operates in a multi-program category-2 nuclear facility, the Radiochemical Processing Laboratory (RPL), that contains 16 hot cells and 20 gloveboxes. As part of the DOE Isotope Program, the Pacific Northwest National Laboratory dispenses strontium-90, neptunium-237, radium-223, and thorium-227. PNNLâs Isotope Program uses a dedicated hot-cell for strontium-90 dispensing and a dedicated glovebox for radium-223 and thorium-227 dispensing. PNNLâs Isotope Program has access to state of the art analytical equipment in the RPL to support their research and production activities. DOE Isotope Program funded research at PNNL has advanced the application of automated radiochemistry for isotope such as zirconium-89 and astatine-211 in partnership with the University of Washington.
NASA Astrophysics Data System (ADS)
Robbins, Joshua; Voth, Thomas
2011-06-01
Material response to dynamic loading is often dominated by microstructure such as grain topology, porosity, inclusions, and defects; however, many models rely on assumptions of homogeneity. We use the probabilistic finite element method (WK Liu, IJNME, 1986) to introduce local uncertainty to account for material heterogeneity. The PFEM uses statistical information about the local material response (i.e., its expectation, coefficient of variation, and autocorrelation) drawn from knowledge of the microstructure, single crystal behavior, and direct numerical simulation (DNS) to determine the expectation and covariance of the system response (velocity, strain, stress, etc). This approach is compared to resolved grain-scale simulations of the equivalent system. The microstructures used for the DNS are produced using Monte Carlo simulations of grain growth, and a sufficient number of realizations are computed to ensure a meaningful comparison. Finally, comments are made regarding the suitability of one-dimensional PFEM for modeling material heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Impact Vaporization of Planetesimal Cores
NASA Astrophysics Data System (ADS)
Kraus, R. G.; Root, S.; Lemke, R. W.; Stewart, S. T.; Jacobsen, S. B.; Mattsson, T. R.
2013-12-01
The degree of mixing and chemical equilibration between the iron cores of planetesimals and the mantle of the growing Earth has important consequences for understanding the end stages of Earth's formation and planet formation in general. At the Sandia Z machine, we developed a new shock-and-release technique to determine the density on the liquid-vapor dome of iron, the entropy on the iron shock Hugoniot, and the criteria for shock-induced vaporization of iron. We find that the critical shock pressure to vaporize iron is 507(+65,-85) GPa and show that decompression from a 15 km/s impact will initiate vaporization of iron cores, which is a velocity that is readily achieved at the end stages of planet formation. Vaporization of the iron cores increases dispersal of planetesimal cores, enables more complete chemical equilibration of the planetesimal cores with Earth's mantle, and reduces the highly siderophile element abundance on the Moon relative to Earth due to the expanding iron vapor exceeding the Moon's escape velocity. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.
Requirements for Predictive Density Functional Theory Methods for Heavy Materials Equation of State
NASA Astrophysics Data System (ADS)
Mattsson, Ann E.; Wills, John M.
2012-02-01
The difficulties in experimentally determining the Equation of State of actinide and lanthanide materials has driven the development of many computational approaches with varying degree of empiricism and predictive power. While Density Functional Theory (DFT) based on the Schr"odinger Equation (possibly with relativistic corrections including the scalar relativistic approach) combined with local and semi-local functionals has proven to be a successful and predictive approach for many materials, it is not giving enough accuracy, or even is a complete failure, for the actinides. To remedy this failure both an improved fundamental description based on the Dirac Equation (DE) and improved functionals are needed. Based on results obtained using the appropriate fundamental approach of DFT based on the DE we discuss the performance of available semi-local functionals, the requirements for improved functionals for actinide/lanthanide materials, and the similarities in how functionals behave in transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Wills, John M.; Mattsson, Ann E.
2012-02-01
Density functional theory (DFT) provides a formally predictive base for equation of state properties. Available approximations to the exchange/correlation functional provide accurate predictions for many materials in the periodic table. For heavy materials however, DFT calculations, using available functionals, fail to provide quantitative predictions, and often fail to be even qualitative. This deficiency is due both to the lack of the appropriate confinement physics in the exchange/correlation functional and to approximations used to evaluate the underlying equations. In order to assess and develop accurate functionals, it is essential to eliminate all other sources of error. In this talk we describe an efficient first-principles electronic structure method based on the Dirac equation and compare the results obtained with this method with other methods generally used. Implications for high-pressure equation of state of relativistic materials are demonstrated in application to Ce and the light actinides. Sandia National Laboratories is a multi-program laboratory managed andoperated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Enhanced Stress Relaxation and Reduced Cure Stress in Thermosets with Ferrocene-Based Crosslinkers
NASA Astrophysics Data System (ADS)
Jones, Brad; Wheeler, David; Stavig, Mark; Black, Hayden; Sawyer, Patricia; Giron, Nicholas; Celina, Mathias; Alam, Todd
Organometallic sandwich compounds are characterized by facile isomerization among a variety of unique states. For example, ferrocene exhibits an extraordinarily low barrier to rotation of its cyclopentadienyl (Cp) ligands about the metal-Cp axis. We propose that this phenomenon can be exploited to enhance stress relaxation of polymers containing organometallic sandwich backbone moieties. Here, we describe the synthesis and characterization of several thermosets that employ ferrocene derivatives as crosslinkers. In particular, we compare a ferrocene diamine to several conventional diamines in the crosslinking of epoxy resin. Stress relaxation and dynamic mechanical analyses reveal that the ferrocene-based thermosets are distinguished from conventional thermosets by their capacity for physical relaxation. More importantly, these materials exhibit markedly different residual stress evolution during cure. For example, the cure stress in ferrocene-based thermosets drops precipitously with decreasing crosslink density. Our results highlight the unique role organometallic chemistry can play for stress management of thermosets and, more broadly, in manipulating their structure-property relationships. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Heath, J. E.; Dewers, T. A.; Yoon, H.; Mozley, P.
2016-12-01
Heterogeneity from the nanometer to core and larger length scales is a major challenge to understanding coupled processes in shale. To develop methods to address this challenge, we present application of high throughput multi-beam scanning electron microscopy (mSEM) and nano-to-micro-scale mechanics to the Mancos Shale. We use a 61-beam mSEM to collect 6 nm resolution SEM images at the scale of several square millimeters. These images are analyzed for pore size and shape characteristics including spatial correlation and structure. Nano-indentation, micropillar compression, and axisymmetric testing at multiple length scales allows for examining the influence of sampling size on mechanical response. The combined data set is used to: investigate representative elementary volumes (and areas for the 2D images) for the Mancos Shale; determine if scale separation occurs; and determine if transport and mechanical properties at a given length scale can be statistically defined. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Tunnel coupling tuning of a QD-donor S-T qubit
NASA Astrophysics Data System (ADS)
Jock, R. M.; Rudolph, M.; Harvey-Collard, P.; Jacobson, T.; Wendt, J.; Pluym, T.; Dominguez, J.; Manginell, R.; Lilly, M. P.; Carroll, M. S.
Coherent coupling between an electrostatic quantum dot (QD) and an implanted 31P donor has been recently demonstrated in a singlet-triplet qubit design. Controlling the tunnel coupling between the QD and donor is a key design challenge. We demonstrate the ability to voltage-tune the tunnel coupling between a QD and a donor in a new, implanted, MOS-QD design. The tunnel coupling is extracted from the frequency dependence of coherent singlet-triplet oscillations on detuning. By tailoring the electrostatic tuning of the QD, we observe a near-order-of-magnitude change in QD-donor tunnel coupling. Independent control of the QD-lead tunnel rates is also demonstrated. This new MOS foundry compatible QD-donor design shows promise for substantially relaxing fabrication requirements for donor based qubits. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Ostrander, Joshua; Knepper, Robert; Tappan, Alexander; Kay, Jeffery; Zanni, Martin; Farrow, Darcie
2017-06-01
Pentaerythritol tetranitrate (PETN) is a common secondary explosive and has been used extensively to study shock initiation and energy propagation in energetic materials. We report 2D IR measurements of PETN thin films that resolve vibrational energy transfer and relaxation mechanisms. Ultrafast anisotropy measurements reveal a sub-500 fs reorientation of transition dipoles in thin films of vapor-deposited PETN that is absent in solution measurements, consistent with intermolecular energy transfer. The anisotropy is frequency dependent, suggesting spectrally heterogeneous vibrational relaxation. Cross peaks are observed in 2D IR spectra that resolve a specific energy transfer pathway with a 2 ps time scale. Measurements of the transition dipole strength indicate that these vibrational modes are coherently delocalized over at least 15-30 molecules. We discuss the implications of vibrational relaxation between coherently delocalized eigenstates for mechanisms relevant to explosives. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Universal Adiabatic Quantum Computing using Double Quantum Dot Charge Qubits
NASA Astrophysics Data System (ADS)
Ryan-Anderson, Ciaran; Jacobson, N. Tobias; Landahl, Andrew
Adiabatic quantum computation (AQC) provides one path to achieving universal quantum computing in experiment. Computation in the AQC model occurs by starting with an easy to prepare groundstate of some simple Hamiltonian and then adiabatically evolving the Hamiltonian to obtain the groundstate of a final, more complex Hamiltonian. It has been shown that the circuit model can be mapped to AQC Hamiltonians and, thus, AQC can be made universal. Further, these Hamiltonians can be made planar and two-local. We propose using double quantum dot charge qubits (DQDs) to implement such universal AQC Hamiltonians. However, the geometry and restricted set of interactions of DQDs make the application of even these 2-local planar Hamiltonians non-trivial. We present a construction tailored to DQDs to overcome the geometric and interaction contraints and allow for universal AQC. These constraints are dealt with in this construction by making use of perturbation gadgets, which introduce ancillary qubits to mediate interactions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Linking Microstructural Evolution and Tribology in Metallic Contacts
NASA Astrophysics Data System (ADS)
Chandross, Michael; Cheng, Shengfeng; Argibay, Nicolas
Tribologists rely on phenomenological models to describe the seemingly disjointed steady-state regimes of metal wear. Pure metals such as gold - frequently used in electrical contacts - exhibit high friction and wear. In contrast, nanocrystalline metals often show much lower friction and wear. The engineering community has generally used a phenomenological connection between hardness and friction/wear to explain this macroscale response and guide designs. We present results of recent simulations and experiments that demonstrate a general framework for connecting materials properties (i.e. microstructural evolution) to tribological response. We present evidence that competition between grain refinement (from cold working), grain coarsening (from stress-induced grain growth), and wear (delamination and plowing) can be used to describe transient and steady state tribological behavior of metals, alloys and composites. We explore the seemingly disjointed steady-state friction regimes of metals and alloys, with a goal of elucidating the structure-property relationships, allowing for the engineering of tribological materials and contacts based on the kinetics of grain boundary motion. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Emissivity corrected pyrometry of reactive multilayers
NASA Astrophysics Data System (ADS)
Farrow, Darcie; Abere, Michael; Rupper, Stephen; Conwell, Thomas; Tappan, Alexander; Adams, David
2017-06-01
Ignition of sputter deposited nano-laminates results in rapid, self-propagating reactions. Due to high (10's of m/s) reaction front velocities, temperatures in the 1,000's of °K, and rapid phase changes occurring during reaction, direct measurement of temperature has proven difficult. This work presents a pyrometry technique with sub-microsecond time resolution, 10-6 m spatial resolution, and real time calculation of emissivity. By modulating a laser at 100 kHz and then Fourier processing the summed signal of emission and modulated reflectance, this emissivity corrected pyrometer overcomes the traditional limitations of two-color pyrometery for samples that do not follow the grey body approximation. The instrument has allowed for the direct measurement of temperature in NiAl and AlPt flame fronts, which allows for a determination of heat loss from an adiabatic condition. Further, a bilayer thickness dependence study has shown the relationship between front propagation velocity and flame temperature. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Modine, Normand; Wright, Alan; Lee, Stephen
2015-03-01
Carrier recombination due to defects can have a major impact on device performance. The rate of defect-induced recombination is determined by both defect levels and carrier capture cross-sections. Density functional theory (DFT) has been widely and successfully used to predict defect levels, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry worked out the fundamental theory of carrier-capture by multiphonon emission in the 1970s and showed that, above the Debye temperature, carrier-capture cross-sections differ between defects primarily due to differences in their carrier capture activation energies. We present an approach to using DFT to calculate carrier capture activation energies that does not depend on an assumed configuration coordinate and that fully accounts for anharmonic effects, which can substantially modify carrier activation energies. We demonstrate our approach for the -3/-2 level of the Ga vacancy in wurtzite GaN. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Modine, N. A.; Wright, A. F.; Lee, S. R.
The rate of defect-induced carrier recombination is determined by both defect levels and carrier capture cross-sections. Density functional theory (DFT) has been widely and successfully used to predict defect levels, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry developed the theory of carrier-capture by multiphonon emission in the 1970s and showed that carrier-capture cross-sections differ between defects primarily due to differences in their carrier capture activation energies. We present an approach to using DFT to calculate carrier capture activation energies that does not depend on an assumed configuration coordinate and that fully accounts for anharmonic effects, which can substantially modify carrier activation energies. We demonstrate our approach for intrinisic defects in GaAs and GaN and discuss how our results depend on the choice of exchange-correlation functional and the treatment of spin polarization. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Numerical Investigation of Fracture Propagation in Geomaterials
NASA Astrophysics Data System (ADS)
Newell, P.; Borowski, E.; Major, J. R.; Eichhubl, P.
2015-12-01
Fracture in geomaterials is a critical behavior that affects the long-term structural response of geosystems. The processes involving fracture initiation and growth in rocks often span broad time scales and size scales, contributing to the complexity of these problems. To better understand fracture behavior, the authors propose an initial investigation comparing the fracture testing techniques of notched three-point bending (N3PB), short rod (SR), and double torsion (DT) on geomaterials using computational analysis. Linear softening cohesive fracture modeling (LCFM) was applied using ABAQUS to computationally simulate the three experimental set-ups. By applying material properties obtained experimentally, these simulations are intended to predict single-trace fracture growth. The advantages and limitations of the three testing techniques were considered for application to subcritical fracture propagation taking into account the accuracy of constraints, load applications, and modes of fracture. This work is supported as part of the Geomechanics of CO2 Reservoir Seals, a DOE-NETL funded under Award Number DE-FOA-0001037. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Time-Dependent Density Functional Theory for Extreme Environments
NASA Astrophysics Data System (ADS)
Baczewski, Andrew; Magyar, Rudolph; Shulenburger, Luke
2013-10-01
In recent years, DFT-MD has been shown to be a powerful tool for calculating the equation of state and constitutive properties of warm dense matter (WDM). These studies are validated through a number of experiments, including recently developed X-Ray Thomson Scattering (XRTS) techniques. Here, electronic temperatures and densities of WDM are accessible through x-ray scattering data, which is related to the system's dynamic structure factor (DSF)-a quantity that is accessible through DFT-MD calculations. Previous studies predict the DSF within the Born-Oppenheimer approximation, with the electronic state computed using Mermin DFT. A capability for including more general coupled electron-ion dynamics is desirable, to study both the effect on XRTS observables and the broader problem of electron-ion energy transfer in extreme WDM conditions. Progress towards such a capability will be presented, in the form of an Ehrenfest MD framework using TDDFT. Computational challenges and open theoretical questions will be discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Schultz, Peter
To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.; Cochrane, Kyle R.; Root, Seth; Carpenter, John H.
2013-10-01
Density Functional Theory (DFT) has proven remarkably accurate in predicting properties of matter under shock compression into the dense plasma regime. Materials where chemistry plays a role are of interest for many applications, including planetary science and inertial confinement fusion (ICF). As examples of systems where chemical reactions are important, and demonstration of the high fidelity possible for these both structurally and chemically complex systems, we will discuss shock- and re-shock of liquid carbon dioxide (CO2) in the range 100 to 800 GPa and shock compression of hydrocarbon polymers, including GDP (glow discharge polymer) which is used as an ablator in laser ICF experiments. Experimental results from Sandia's Z machine validate the DFT simulations at extreme conditions and the combination of experiment and DFT provide reliable data for evaluating existing and constructing future wide-range equations of state models for molecular compounds. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Simulation of Initiation in Hexanitrostilbene
NASA Astrophysics Data System (ADS)
Thompson, Aidan; Shan, Tzu-Ray; Yarrington, Cole; Wixom, Ryan
We report on the effect of isolated voids and pairs of nearby voids on hot spot formation, growth and chemical reaction initiation in hexanitrostilbene (HNS) crystals subjected to shock loading. Large-scale, reactive molecular dynamics simulations are performed using the reactive force field (ReaxFF) as implemented in the LAMMPS software. The ReaxFF force field description for HNS has been validated previously by comparing the isothermal equation of state to available diamond anvil cell (DAC) measurements and density function theory (DFT) calculations. Micron-scale molecular dynamics simulations of a supported shockwave propagating in HNS crystal along the [010] orientation are performed (up = 1.25 km/s, Us =4.0 km/s, P = 11GPa.) We compare the effect on hot spot formation and growth rate of isolated cylindrical voids up to 0.1 µm in size with that of two 50nm voids set 100nm apart. Results from the micron-scale atomistic simulations are compared with hydrodynamics simulations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lock- heed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Diffusion Monte Carlo calculations of Xenon and Krypton at High Pressure
NASA Astrophysics Data System (ADS)
Shulenburger, Luke; Mattsson, Thomas R.
2011-06-01
Ab initio calculations based on density functional theory (DFT) have proven a valuable tool in understanding the properties of materials at extreme conditions. However, there are entire classes of materials where the current limitations of DFT cast doubt upon the predictive power of the method. These include so called strongly correlated systems and materials where van der Waals forces are important. Diffusion Monte Carlo (DMC) can treat materials with a different class of approximations that have generally proven to be more accurate. The use of DMC together with DFT may therefore improve the predictive capability of the ab initio calculation of materials at extreme conditions. We present two examples of this approach. In the first we use DMC total energies to address the discrepancy between DFT and diamond anvil cell melt curves of Xe. In the second, DMC is used to address the choice of density functional used in calculations of the Kr hugoniot. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. Belonoshko et al. PRB 74, 054114 (2006).
The Liquid Krypton Hugoniot at Megabar Pressures
NASA Astrophysics Data System (ADS)
Root, Seth; Magyar, Rudy J.; Mattsson, Ann E.; Hanson, David L.; Mattsson, Thomas R.
2011-06-01
Krypton is an ideal candidate to study multi-Mbar pressure effects on elements with filled-shell electron configurations. Few experimental data on Kr at high pressures exist, however, with prior Hugoniot data limited to below 1 Mbar. Similar to liquid xenon, the current Kr equation of state (EOS) models agree with the data and each other below 1 Mbar, but diverge with increasing pressure. We examine the liquid Kr Hugoniot up to 8 Mbar by using density functional theory (DFT) methods and by performing shock compression experiments on the Sandia Z - accelerator. Our initial DFT Kr Hugoniot calculations indicated the standard PAW potential is inadequate at the high pressures and temperatures occurring under strong shock compression. A new Kr PAW potential was constructed giving improved scattering properties of the atom at high energies. The Z Hugoniot measurements above 1 Mbar validated the DFT results and the pseudo-potential. The DFT and Z results suggest that the current EOS models require some modifications. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
U.S. Department of Energy Isotope Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. PNNL’s Isotope Program operates in a multi-program category-2 nuclear facility, the Radiochemical Processing Laboratory (RPL), that contains 16 hot cells and 20 gloveboxes. As part of the DOE Isotope Program, the Pacific Northwestmore » National Laboratory dispenses strontium-90, neptunium-237, radium-223, and thorium-227. PNNL’s Isotope Program uses a dedicated hot-cell for strontium-90 dispensing and a dedicated glovebox for radium-223 and thorium-227 dispensing. PNNL’s Isotope Program has access to state of the art analytical equipment in the RPL to support their research and production activities. DOE Isotope Program funded research at PNNL has advanced the application of automated radiochemistry for isotope such as zirconium-89 and astatine-211 in partnership with the University of Washington.« less
Regional Analysis of Energy, Water, Land and Climate Interactions
NASA Astrophysics Data System (ADS)
Tidwell, V. C.; Averyt, K.; Harriss, R. C.; Hibbard, K. A.; Newmark, R. L.; Rose, S. K.; Shevliakova, E.; Wilson, T.
2014-12-01
Energy, water, and land systems interact in many ways and are impacted by management and climate change. These systems and their interactions often differ in significant ways from region-to-region. To explore the coupled energy-water-land system and its relation to climate change and management a simple conceptual model of demand, endowment and technology (DET) is proposed. A consistent and comparable analysis framework is needed as climate change and resource management practices have the potential to impact each DET element, resource, and region differently. These linkages are further complicated by policy and trade agreements where endowments of one region are used to meet demands in another. This paper reviews the unique DET characteristics of land, energy and water resources across the United States. Analyses are conducted according to the eight geographic regions defined in the 2014 National Climate Assessment. Evident from the analyses are regional differences in resources endowments in land (strong East-West gradient in forest, cropland and desert), water (similar East-West gradient), and energy. Demands likewise vary regionally reflecting differences in population density and endowment (e.g., higher water use in West reflecting insufficient precipitation to support dryland farming). The effect of technology and policy are particularly evident in differences in the energy portfolios across the eight regions. Integrated analyses that account for the various spatial and temporal differences in regional energy, water and land systems are critical to informing effective policy requirements for future energy, climate and resource management. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Bridging simulations and experiment in shock and ramp induced phenomena
NASA Astrophysics Data System (ADS)
Flicker, Dawn
2014-03-01
The high pressure materials physics program at Sandia's Z facility includes strong collaboration between theory, simulations and experiments. This multi-disciplinary approach has led to new insights in many cases. Several examples will be discussed to illustrate the benefits of bridging simulations and experiments. Results will be chosen from recent work on the xenon equation of state, phase change in MgO, shock induced chemistry in CO2 and tantalum strength. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Electron shuttling in phosphorus donor qubit systems
NASA Astrophysics Data System (ADS)
Jacobson, N. Tobias; Gamble, John King; Nielsen, Erik; Muller, Richard P.; Witzel, Wayne M.; Montano, Ines; Carroll, Malcolm S.
2014-03-01
Phosphorus donors in silicon are a promising qubit architecture, due in large part to their long nuclear coherence times and the recent development of atomically precise fabrication methods. Here, we investigate issues related to implementing qubits with phosphorus donors in silicon, employing an effective mass theory that non-phenomenologically takes into account inter-valley coupling. We estimate the significant sources of decoherence and control errors in this system to compute the fidelity of primitive gates and gate timescales. We include the effects of valley repopulation during the process of shuttling an electron between a donor and nearby interface or between neighboring donors, evaluating the control requirements for ensuring adiabaticity with respect to the valley sector. This work was supported in part by the LDRD program at Sandia National Labs, a multi-program laboratory managed and operated by Sandia Corp, a wholly owned subsidiary of Lockheed Martin Corp, for the U.S. DOE NNSA under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Johnston, Mark; Patel, Sonal; Kiefer, Mark; Biswas, S.; Doron, R.; Stambulchik, E.; Bernshtam, V.; Maron, Yitzhak
2016-10-01
The RITS accelerator (5-11MV, 100-200kA) at Sandia National Laboratories is being used to evaluate the Self-Magnetic Pinch (SMP) diode as a potential flash x-ray radiography source. This diode consists of a small, hollowed metal cathode and a planar, high atomic mass anode, with a small vacuum gap of approximately one centimeter. The electron beam is focused, due to its self-field, to a few millimeters at the target, generating bremsstrahlung x-rays. During this process, plasmas form on the electrode surfaces and propagate into the vacuum gap, with a velocity of a 1-10 cm's/microseconds. These plasmas are measured spectroscopically using a Czerny-Turner spectrometer with a gated, ICCD detector, and input optical fiber array. Local magnetic and electric fields of several Tesla and several MV/cm were measured through Zeeman splitting and Stark shifting of spectral lines. Specific transitions susceptible to quantum magnetic and electric field effects were utilized through the application of dopants. Data was analyzed using detailed, time-dependent, collisional-radiative (CR) and radiation transport modeling. Recent results will be presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Phase Transitions in Aluminum Under Shockless Compression at the Z Machine
NASA Astrophysics Data System (ADS)
Davis, Jean-Paul; Brown, Justin; Shulenburger, Luke; Knudson, Marcus
2017-06-01
Aluminum 6061 alloy has been used extensively as an electrode material in shockless ramp-wave experiments at the Z Machine. Previous theoretical work suggests that the principal quasi-isentrope in aluminum should pass through two phase transitions at multi-megabar pressures, first from the ambient fcc phase to hcp at around 200 GPa, then to bcc at around 320 GPa. Previous static measurements in a diamond-anvil cell have detected the hcp phase above 200 GPa along the room-temperature isentherm. Recent laser-based dynamic compression experiments have observed both the hcp and bcc phases using X-ray diffraction. Here we present high-accuracy velocity waveform data taken on pure and alloy aluminum materials at the Z Machine under shockless compression with 200-ns rise-time to 400 GPa using copper electrodes and lithium-fluoride windows. These are compared to recent EOS tables developed at Los Alamos National Laboratory, to our own results from diffusion quantum Monte-Carlo calculations, and to multi-phase EOS models with phase-transition kinetics. We find clear evidence of a fast transition around 200 GPa as expected, and a possible suggestion of a slower transition at higher pressure. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE AC04-94AL85000.
Shock and Release Data on Forsterite (Mg2SiO4) Single Crystals
NASA Astrophysics Data System (ADS)
Root, S.; Townsend, J. P.; Shulenburger, L.; Davies, E.; Kraus, R. G.; Spaulding, D.; Stewart, S. T.; Jacobsen, S. B.; Mattsson, T. R.
2016-12-01
The Kepler mission has discovered numerous extra-solar rocky planets with sizes ranging from Earth-size to the super-Earths with masses 40 times larger than Earth. The solid solution series of (Mg, Fe)2SiO4 (olivine) is a major component in the mantle of Earth and likely these extra-solar rocky planets. However, understanding how the (Mg, Fe)2SiO4 system behaves at Earth like and super-Earth like pressures is still unknown. Using Sandia's Z machine facility, we shock compress single crystal forsterite, the Mg end-member of the olivine series. Solid aluminum flyers are accelerated up to 28 km/s to generate steady shock states up to 950 GPa. Release states from the Hugoniot are determined as well. In addition to experiments, we perform density functional theory (DFT) calculations to examine the potential phases along the Mg2SiO4 Hugoniot. We compare our results to other recent shock experiments on forsterite. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Multiscale Multiphysics Caprock Seal Analysis: A Case Study of the Farnsworth Unit, Texas, USA
NASA Astrophysics Data System (ADS)
Heath, J. E.; Dewers, T. A.; Mozley, P.
2015-12-01
Caprock sealing behavior depends on coupled processes that operate over a variety of length and time scales. Capillary sealing behavior depends on nanoscale pore throats and interfacial fluid properties. Larger-scale sedimentary architecture, fractures, and faults may govern properties of potential "seal-bypass" systems. We present the multiscale multiphysics investigation of sealing integrity of the caprock system that overlies the Morrow Sandstone reservoir, Farnsworth Unit, Texas. The Morrow Sandstone is the target injection unit for an on-going combined enhanced oil recovery-CO2 storage project by the Southwest Regional Partnership on Carbon Sequestration (SWP). Methods include small-to-large scale measurement techniques, including: focused ion beam-scanning electron microscopy; laser scanning confocal microscopy; electron and optical petrography; core examinations of sedimentary architecture and fractures; geomechanical testing; and a noble gas profile through sealing lithologies into the reservoir, as preserved from fresh core. The combined data set is used as part of a performance assessment methodology. The authors gratefully acknowledge the U.S. Department of Energy's (DOE) National Energy Technology Laboratory for sponsoring this project through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Impedance Dynamics in the Self-Magnetic Pinch (SMP) Diode on the RITS-6 Accelerator
NASA Astrophysics Data System (ADS)
Renk, Timothy; Johnston, Mark; Leckbee, Joshua; Webb, Timothy; Mazarakis, Michael; Kiefer, Mark; Bennett, Nichelle
2014-10-01
The RITS-6 inductive voltage adder (IVA) accelerator (3.5-8.5 MeV) at Sandia National Laboratories produces high-power (TW) focused electron beams (<3 mm diameter) for flash x-ray radiography applications. The Self-Magnetic Pinch (SMP) diode utilizes a hollowed metal cathode to produce a pinched focus onto a high Z metal converter. The electron flow from the IVA driver into the load region complicates understanding of diode evolution. There is growing evidence that reducing cathode size below some ``optimum'' value in order to achieve desired spot size reduction results in pinch instabilities leading to either reduced dose-rate, early radiation power termination, or both. We are studying evolving pinch dynamics with current and x-ray monitors, optical diagnostics, and spectroscopy, as well as with LSP [1] code simulations. We are also planning changes to anode-cathode materials as well as changes to the diode aspect ratio in an attempt to mitigate the above trends and improve pinch stability while achieving simultaneous spot size reduction. Experiments are ongoing, and latest results will be reported [1]. LSP is a software product of ATK Mission Research, Albuquerque, NM. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Adminis-tration under Contract DE-AC04-94AL85000.
Gate Set Tomography on a trapped ion qubit
NASA Astrophysics Data System (ADS)
Nielsen, Erik; Blume-Kohout, Robin; Gamble, John; Rundinger, Kenneth; Mizrahi, Jonathan; Sterk, Johathan; Maunz, Peter
2015-03-01
We present enhancements to gate-set tomography (GST), which is a framework in which an entire set of quantum logic gates (including preparation and measurement) can be fully characterized without need for pre-calibrated operations. Our new method, ``extended Linear GST'' (eLGST) uses fast, reliable analysis of structured long gate sequences to deliver tomographic precision at the Heisenberg limit with GST's calibration-free framework. We demonstrate this precision on a trapped-ion qubit, and show significant (orders of magnitude) advantage over both standard process tomography and randomized benchmarking. This work was supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in amore » DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.« less
NASA Astrophysics Data System (ADS)
Jones, K. R.; Arrowsmith, S.
2013-12-01
The Southwest U.S. Seismo-Acoustic Network (SUSSAN) is a collaborative project designed to produce infrasound event detection bulletins for the infrasound community for research purposes. We are aggregating a large, unique, near real-time data set with available ground truth information from seismo-acoustic arrays across New Mexico, Utah, Nevada, California, Texas and Hawaii. The data are processed in near real-time (~ every 20 minutes) with detections being made on individual arrays and locations determined for networks of arrays. The detection and location data are then combined with any available ground truth information and compiled into a bulletin that will be released to the general public directly and eventually through the IRIS infrasound event bulletin. We use the open source Earthworm seismic data aggregation software to acquire waveform data either directly from the station operator or via the Incorporated Research Institutions for Seismology Data Management Center (IRIS DMC), if available. The data are processed using InfraMonitor, a powerful infrasound event detection and localization software program developed by Stephen Arrowsmith at Los Alamos National Laboratory (LANL). Our goal with this program is to provide the infrasound community with an event database that can be used collaboratively to study various natural and man-made sources. We encourage participation in this program directly or by making infrasound array data available through the IRIS DMC or other means. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. R&A 5317326
Probing bulk physics in the 5/2 fractional quantum Hall effect using the Corbino geometry
NASA Astrophysics Data System (ADS)
Schmidt, Benjamin; Bennaceur, Keyan; Bilodeau, Simon; Gaucher, Samuel; Lilly, Michael; Reno, John; Pfeiffer, Loren; West, Ken; Reulet, Bertrand; Gervais, Guillaume
We present two- and four-point Corbino geometry transport measurements in the second Landau level in GaAs/AlGaAs heterostructures. By avoiding edge transport, we are able to directly probe the physics of the bulk quasiparticles in fractional quantum Hall (FQH) states including 5/2. Our highest-quality sample shows stripe and bubble phases in high Landau levels, and most importantly well-resolved FQH minima in the second Landau level. We report Arrhenius-type fits to the activated conductance, and find that σ0 agrees well with theory and existing Hall geometry data in the first Landau level, but not in the second Landau level. We will discuss the advantages the Corbino geometry could bring to various experiments designed to detect the non-Abelian entropy at 5/2, and our progress towards realizing those schemes. The results of these experiments could complement interferometry and other edge-based measurements by providing direct evidence for non-Abelian behaviour of the bulk quasiparticles. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.
NASA Astrophysics Data System (ADS)
Desilets, D.
2012-12-01
Secondary cosmic-ray neutrons are attenuated strongly by water in either solid or liquid form, suggesting a method for measuring snow water equivalent that has several advantages over alternative technologies. The cosmic-ray attenuation method is passive, portable, highly adaptable, and operates over an exceptionally large range of snow pack thicknesses. But despite promising initial observations made in the 1970s, the technique today remains practically unknown to snow hydrologists. Side-by-side measurements performed over the past several years with a snow pillow and a submerged cosmic-ray probe demonstrate that the cosmic-ray attenuation method merits consideration for a wide range of applications—especially those where alternative methods are made problematic by dense vegetation, rough terrain, deep snowpack or a lack of vehicular access. During the snow-free season, the instrumentation can be used to monitor soil moisture, thus providing another widely sought field measurement. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, C.A., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
NASA Astrophysics Data System (ADS)
Ohta, Taisuke; Robinson, Jeremy; Feibelman, Peter; Beechem, Thomas; Diaconescu, Bogdan; Bostwick, Aaron; Rotenberg, Eli; Kellogg, Gary
2013-03-01
A worldwide effort is underway to learn how to build devices that take advantage of the remarkable electronic properties of graphene and other two-dimensional crystals. An outstanding question is how stacking two or a few such crystals affects their joint electronic behavior. Our talk concerns ``twisted bilayer graphene (TBG),'' that is, two graphene layers azimuthally misoriented. Applying angle-resolved photoemission spectroscopy and density functional theory, we have found van Hove singularities (vHs) and associated mini-gaps in the TBG electronic spectrum, which represent unambiguous proof that the layers interact. Of particular interest is that the measured and calculated electronic dispersion manifests the periodicity of the moiré superlattice formed by the twist. Thus, there are vHs not just where the Dirac cones of the two layers overlap, but also at the boundaries of the moiré superlattice Brillouin zone. Moirés, ubiquitous in hybrid solids based on two-dimensional crystals, accordingly present themselves as tools for manipulating the electronic behavior. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Prediction of Shock-Induced Cavitation in Water
NASA Astrophysics Data System (ADS)
Brundage, Aaron
2013-06-01
Fluid-structure interaction problems that require estimating the response of thin structures within fluids to shock loading has wide applicability. For example, these problems may include underwater explosions and the dynamic response of ships and submarines; and biological applications such as Traumatic Brain Injury (TBI) and wound ballistics. In all of these applications the process of cavitation, where small cavities with dissolved gases or vapor are formed as the local pressure drops below the vapor pressure due to shock hydrodynamics, can cause significant damage to the surrounding thin structures or membranes if these bubbles collapse, generating additional shock loading. Hence, a two-phase equation of state (EOS) with three distinct regions of compression, expansion, and tension was developed to model shock-induced cavitation. This EOS was evaluated by comparing data from pressure and temperature shock Hugoniot measurements for water up to 400 kbar, and data from ultrasonic pressure measurements in tension to -0.3 kbar, to simulated responses from CTH, an Eulerian, finite volume shock code. The new EOS model showed significant improvement over pre-existing CTH models such as the SESAME EOS for capturing cavitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy/NNSA under contract DE-AC04-94AL85000.
Diffusion in jammed particle packs
NASA Astrophysics Data System (ADS)
Bolintineanu, Dan S.; Silbert, Leonardo E.; Grest, Gary S.; Lechman, Jeremy B.
2015-03-01
Diffusive transport in jammed particle packs is of interest for a number of applications, as well as being a potential indicator of structural properties near the jamming point. To this end, we report stochastic simulations of equilibrium diffusion through monodisperse sphere packs near the jamming point in the limit of a perfectly insulating surrounding medium. The time dependence of various diffusion properties is resolved over several orders of magnitude. Two time regimes of expected Fickian diffusion are observed, separated by an intermediate regime of anomalous diffusion. This intermediate regime grows as the particle volume fraction approaches the critical jamming transition. The diffusion behavior is fully controlled by the extent of the contacts between neighboring particles, which in turn depend on proximity to the jamming point. In particular, the mean first passage time associated with the escape of random walkers between neighboring particles is shown to control both the time to recover Fickian diffusion and the long time diffusivity. Scaling laws are established that relate these quantities to the difference between the actual and critical jamming volume fractions. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE- AC04-94AL85000.
Sub-scale Inverse Wind Turbine Blade Design Using Bound Circulation
NASA Astrophysics Data System (ADS)
Kelley, Christopher; Berg, Jonathan
2014-11-01
A goal of the National Rotor Testbed project at Sandia is to design a sub-scale wind turbine blade that has similitude to a modern, commercial size blade. However, a smaller diameter wind turbine operating at the same tip-speed-ratio exhibits a different range of operating Reynolds numbers across the blade span, thus changing the local lift and drag coefficients. Differences to load distribution also affect the wake dynamics and stability. An inverse wind turbine blade design tool has been implemented which uses a target, dimensionless circulation distribution from a full-scale blade to find the chord and twist along a sub-scale blade. In addition, airfoil polar data are interpolated from a few specified span stations leading to a smooth, manufacturable blade. The iterative process perturbs chord and twist, after running a blade element momentum theory code, to reduce the residual sum of the squares between the modeled sub-scale circulation and the target full-scale circulation. It is shown that the converged sub-scale design also leads to performance similarity in thrust and power coefficients. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy under Contract DE-AC04-94AL85000.
Hybrid Donor-Dot Devices made using Top-down Ion Implantation for Quantum Computing
NASA Astrophysics Data System (ADS)
Bielejec, Edward; Bishop, Nathan; Carroll, Malcolm
2012-02-01
We present progress towards fabricating hybrid donor -- quantum dots (QD) for quantum computing. These devices will exploit the long coherence time of the donor system and the surface state manipulation associated with a QD. Fabrication requires detection of single ions implanted with 10's of nanometer precision. We show in this talk, 100% detection efficiency for single ions using a single ion Geiger mode avalanche (SIGMA) detector integrated into a Si MOS QD process flow. The NanoImplanter (nI) a focused ion beam system is used for precision top-down placement of the implanted ion. This machine has a 10 nm resolution combined with a mass velocity filter, allowing for the use of multi-species liquid metal ion sources (LMIS) to implant P and Sb ions, and a fast blanking and chopping system for single ion implants. The combination of the nI and integration of the SIGMA with the MOS QD process flow establishes a path to fabricate hybrid single donor-dot devices. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Thompson, Aidan; Foiles, Stephen; Schultz, Peter; Swiler, Laura; Trott, Christian; Tucker, Garritt
2013-03-01
Molecular dynamics (MD) is a powerful condensed matter simulation tool for bridging between macroscopic continuum models and quantum models (QM) treating a few hundred atoms, but is limited by the accuracy of available interatomic potentials. Sound physical and chemical understanding of these interactions have resulted in a variety of concise potentials for certain systems, but it is difficult to extend them to new materials and properties. The growing availability of large QM data sets has made it possible to use more automated machine-learning approaches. Bartók et al. demonstrated that the bispectrum of the local neighbor density provides good regression surrogates for QM models. We adopt a similar bispectrum representation within a linear regression scheme. We have produced potentials for silicon and tantalum, and we are currently extending the method to III-V compounds. Results will be presented demonstrating the accuracy of these potentials relative to the training data, as well as their ability to accurately predict material properties not explicitly included in the training data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy Nat. Nuclear Security Admin. under Contract DE-AC04-94AL85000.
Nuclear-driven electron spin rotations in a coupled silicon quantum dot and single donor system
NASA Astrophysics Data System (ADS)
Harvey-Collard, Patrick; Jacobson, Noah Tobias; Rudolph, Martin; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Pioro-Ladrière, Michel; Carroll, Malcolm S.
Single donors in silicon are very good qubits. However, a central challenge is to couple them to one another. To achieve this, many proposals rely on using a nearby quantum dot (QD) to mediate an interaction. In this work, we demonstrate the coherent coupling of electron spins between a single 31P donor and an enriched 28Si metal-oxide-semiconductor few-electron QD. We show that the electron-nuclear spin interaction can drive coherent rotations between singlet and triplet electron spin states. Moreover, we are able to tune electrically the exchange interaction between the QD and donor electrons. The combination of single-nucleus-driven rotations and voltage-tunable exchange provides all elements for future all-electrical control of a spin qubit, and requires only a single dot and no additional magnetic field gradients. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Photoexcitation and Photochemical Stability of Organic Photovoltaic Materials from First Principles
NASA Astrophysics Data System (ADS)
Sai, Na; Leung, Kevin
2013-03-01
The development of high efficiency organic photovoltaics (OPV) has recently become enabled by the synthesis of new conjugated polymers with low band gap that allow light absorption over a broader range of the spectrum. Stability of these new polymers, a key requirement for commercialization, has not yet received sufficient attention. Here, we report first-principles theoretical modeling of photo-induced degradation of OPV polymers carried out using ab-initio density functional theory (DFT). We report photooxidation routes and reaction products for reactive species including superoxide oxygen anions and hydroxyl groups interacting with the standard workhorse OPV polymer, poly(3-hexyl-thiophene) (P3HT). We discuss theoretical issues and challenges affecting the modeling such reactions in OPV polymers. We also discuss the application of theoretical methods to low-band-gap polymers, and in particular, the effect of the chemical substitution on the photoexcitation properties of these new polymers. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deparment of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work is supported by the Energy Frontier Research Center funded by the U.S. DOE Office of Basic Energy Sciences under Award number DE-SC0001091.
Modeling artificial graphene in Si/SiGe hetrostructures
NASA Astrophysics Data System (ADS)
Maurer, Leon; Gamble, John King; Moussa, Jonathan; Tracy, Lisa; Huang, Shih-Hsien; Chuang, Yen; Li, Jiun-Yun; Liu, Chih-Wen; Lu, Tzu-Ming
Artificial graphene is a synthetic material made using a nanostructure with identical 2D potential wells arranged in a honeycomb lattice. Unlike normal graphene, the properties of artificial graphene can be controlled by changing the nanostructure geometry and adjusting applied voltages. We perform a theoretical study of artificial graphene formed from a 2D electron gas (2DEG) in Si/SiGe and Ge/SiGe heterostructures by a metal honeycomb gate and a global top gate. While many models of artificial graphene assume a simple form for the potential landscape in the 2DEG, we instead calculate the potential landscape for actual devices with a range of bias voltages and geometries. This allows us to find the resulting bandstructure and calculate transport parameters, which we compare directly to experimental results. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was funded by the Laboratory Directed Research and Development Program. The work at NTU was supported by the Ministry of Science and Technology (103-2622-E-002-031 and 103-2112-M- 002-002-MY3).
Characterization Efforts in a Deep Borehole Field Test
NASA Astrophysics Data System (ADS)
Kuhlman, K. L.; Sassani, D.; Freeze, G. A.; Hardin, E. L.; Brady, P. V.
2016-12-01
The US Department of Energy Office of Nuclear Energy is embarking on a Deep Borehole Field Test to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages, including incremental construction and loading and the enhanced natural barriers provided by deep continental crystalline basement. Site characterization activities will include geomechanical (i.e., hydrofracture stress measurements), geological (i.e., core and mud logging), hydrological (i.e., packer-based pulse and pumping tests), and chemical (i.e., fluids sampled in situ from packer intervals and extracted from cores) tests. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth and interpretation of material and system parameters relevant to numerical site simulation. We explore the effects fluid density and geothermal temperature gradients (i.e., thermohaline convection) have on characterization goals in light of expected downhole conditions, including a disturbed rock zone surrounding the borehole. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Transport Physics in Thin-Film Oxides: From Capacitors to Memristors1
NASA Astrophysics Data System (ADS)
Tierney, Brian; Hjalmarson, Harold; McLain, Michael; Hughart, David; Marinella, Matthew; Mamaluy, Denis; Gao, Xujiao
A physics-based model of transport mechanisms in metal-insulator-metal (M-I-M) systems is developed to explain transport through the metal-oxide interfaces and in the bulk of the insulating oxide. Interface tunneling, such as that between the metal to the conduction band or bound defect states, is accounted for by a WKB model. Our model also incorporates the evolution of the associated oxide defect chemistry. Continuum calculations are performed for both Ta2O5 M-I-M capacitors and TaOx-Based M-I-M memristors, as both devices are structurally similar and can be characterized by a common set of transport mechanisms. However, due to the electroforming process for which memristors are subjected, different transport mechanisms dominate for each type of device. Also, the effects of pulsed ionizing radiation from an external source are included in the model. It is shown that such radiation can be used to probe whether the M-I-M system is in a capacitive or memristive state. 1Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Giuliani, J. L.; Clark, R. W.; Mikitchuk, D.; Kroupp, E.; Maron, Y.; Fisher, A.; Schmit, P. F.
2014-10-01
Recent progress in developing the MagLIF approach to pulsed-power driven inertial confinement fusion has stimulated the interest in observation and mitigation of the magnetic Rayleigh-Taylor instability (MRTI) of liners and Z-pinches imploded in an axial magnetic field. Theoretical analysis of these issues is particularly important because direct numerical simulation of the MRTI development is challenging due to intrinsically 3D helical structure of the fastest-growing modes. We review the analytical small-amplitude theory of the MRTI perturbation development and the weakly nonlinear theory of MRTI mode interaction, emphasizing basic physics, opportunity for 3D code verification against exact analytical solutions, and stabilization criteria. The theory is compared to the experimental results obtained at Weizmann Institute with gas-puff Z pinches and on the Z facility at Sandia with solid liners imploded in an axial magnetic field. Work supported by the US DOE/NNSA, and by the US-Israel Binational Science Foundation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Micron-scale Reactive Atomistic Simulation of Void Collapse and Hotspot Growth in PETN
NASA Astrophysics Data System (ADS)
Thompson, Aidan; Shan, Tzu-Ray; Wixom, Ryan
2015-06-01
Material defects and other heterogeneities such as dislocations, micro-porosity, and grain boundaries play key roles in the shock-induced initiation of detonation in energetic materials. We performed non-equilibrium molecular dynamics simulations to explore the effect of nanoscale voids on hotspot growth and initiation in micron-scale pentaerythritol tetranitrate (PETN) crystals under weak shock loading (Up = 1.25 km/s; Us = 4.5 km/s). We used the ReaxFF potential implemented in LAMMPS. We built a pseudo-2D PETN crystal with dimensions 0.3 μm × 0.22 μm × 1.3 nm containing a 20 nm cylindrical void. Once the initial shockwave traversed the entire sample, the shock-front absorbing boundary condition was applied, allowing the simulation to continue beyond 1 nanosecond. Results show an exponentially increasing hotspot growth rate. The hotspot morphology is initially symmetric about the void axis, but strong asymmetry develops at later times, due to strong coupling between exothermic chemistry, temperature, and divergent secondary shockwaves emanating from the collapsing void. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Carrier recombination in mid-wave infrared InAs/InAsSb superlattices
NASA Astrophysics Data System (ADS)
Aytac, Yigit; Olson, Benjamin Varberg; Kim, Jin K.; Shaner, Eric A.; Hawkins, Sam D.; Klem, John F.; Flatté, Michael E.; Boggess, Thomas F.
2014-03-01
Measurements of carrier recombination rates using a temperature-dependent time-resolved differential transmission technique are reported for mid-wave infrared InAs / InAs1 - x Sbx type-2 superlattices (T2SLs). By engineering the layer widths and antimony compositions a 16K band-gap of ~ 238 meV was achieved for all five unintentionally doped T2SLs. Carrier recombination rates were determined for all five samples by fitting a rate equation model to the density and temperature dependent data. Minority-carrier lifetimes as long as 22 μs were measured at 14K, while lifetimes in excess of 2 μs were measured for all five samples at 200K. The minority-carrier lifetimes were observed to generally increase with increasing antimony content. While minority-carrier lifetimes are much longer than those observed in InAs/Ga(In)Sb T2SLs, Auger recombination processes were found to be more prominent in the Ga-free T2SLs. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This research was funded by the U.S. Government.
Testing the Feasibility of Fidelity Evaluation in a Multisite, Multiprogram Initiative
ERIC Educational Resources Information Center
Cornish, Disa Lubker; Losch, Mary E.; Avery, Mitchell
2016-01-01
Monitoring fidelity of implementation is a critical task when initiating evidence-based programs. This pilot study sought to identify best practices in a fidelity monitoring process and determine the feasibility of continuing a fidelity monitoring process with a multisite, multiprogram initiative. A fidelity log was created for each of 11…
Laboratory Directed Research and Development Program FY 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen
2007-03-08
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less
NASA Astrophysics Data System (ADS)
Feldman, J.; Dewers, T. A.; Heath, J. E.; Cather, M.; Mozley, P.
2016-12-01
Multiphase flow in clay-bearing sandstones of the Morrow Sandstone governs the efficiency of CO2 storage and enhanced oil recovery at the Farnsworth Unit, Texas. This formation is the target for enhanced oil recovery and injection of one million metric ton of anthropogenically-sourced CO2. The sandstone hosts eight major flow units that exhibit distinct microstructural characteristics due to diagenesis, including: "clean" macro-porosity; quartz overgrowths constricting some pores; ghost grains; intergranular porosity filled by microporous authigenic clay; and feldspar dissolution. We examine the microstructural controls on macroscale (core scale) relative permeability and capillary pressure behavior through: X-ray computed tomography, Robomet.3d, and focused ion beam-scanning electron microscopy imaging of the pore structure of the major flow units of the Morrow Sandstone; relative permeability and capillary pressure in the laboratory using CO2, brine, and oil at reservoir pressure and effective stress conditions. The combined data sets inform links between patterns of diagenesis and multiphase flow. These data support multiphase reservoir simulation and performance assessment by the Southwest Regional Partnership on Carbon Sequestration (SWP). Funding for this project is provided by the U.S. Department of Energy's National Energy Technology Laboratory through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Dewers, T. A.
2015-12-01
Multiphase flow in clay-rich sandstone reservoirs is important to enhanced oil recovery (EOR) and the geologic storage of CO2. Understanding geologic controls on pore structure allows for better identification of lithofacies that can contain, storage, and/or transmit hydrocarbons and CO2, and may result in better designs for EOR-CO2 storage. We examine three-dimensional pore structure and connectivity of sandstone samples from the Farnsworth Unit, Texas, the site of a combined EOR-CO2 storage project by the Southwest Regional Partnership on Carbon Sequestration (SWP). We employ a unique set of methods, including: robotic serial polishing and reflected-light imaging for digital pore-structure reconstruction; electron microscopy; laser scanning confocal microscopy; mercury intrusion-extrusion porosimetry; and relative permeability and capillary pressure measurements using CO2 and synthetic formation fluid. Our results link pore size distributions, topology of porosity and clay-rich phases, and spatial persistence of connected flow paths to multiphase flow behavior. The authors gratefully acknowledge the U.S. Department of Energy's National Energy Technology Laboratory for sponsoring this project through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-09-01
The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitatemore » existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.« less
Laboratory directed research and development program FY 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Todd; Levy, Karin
2000-03-08
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less
2010 Ecological Survey of the Pacific Northwest National Laboratory Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamness, Michele A.; Perry, Christopher; Downs, Janelle L.
The U.S. Department of Energy (DOE) Pacific Northwest Site Office (PNSO) oversees and manages the DOE contract for the Pacific Northwest National Laboratory (PNNL), a DOE Office of Science multi-program laboratory located in Richland, Washington. PNSO is responsible for ensuring that all activities conducted on the PNNL Site comply with applicable laws, policies, and DOE orders. The DOE Pacific Northwest Site Office Cultural and Biological Resources Management Plan (DOE/PNSO 2008) addresses the requirement for annual surveys and monitoring for species of concern and to identify and map invasive species. In addition to the requirement for an annual survey, proposed projectmore » activities must be reviewed to assess any potential environmental consequences of conducting the project. The assessment process requires a thorough understanding of the resources present, the potential impacts of a proposed action to those resources, and the ultimate consequences of those actions. The PNNL Site is situated on the southeastern corner of the DOE Hanford Site, located at the north end of the city of Richland in south-central Washington. The site is bordered on the east by the Columbia River, on the west by Stevens Drive, and on the north by the Hanford Site 300 Area (Figure 1). The environmental setting of the PNNL Site is described in Larson and Downs (2009). There are currently two facilities on the PNNL Site: the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), and the recently completed Physical Sciences Facility (PSF). This report describes the results of the annual survey of the biological resources found on the undeveloped portions of the PNNL Site in 2010. A brief description of the methods PNNL ecologists used to conduct the surveys and the results of the surveys are presented. Actions taken to fully delineate noxious weed populations discovered in 2009 and efforts in 2010 to control those weeds also are described. Appendix A provides a list of plant and animal species identified on the PNNL Site.« less
NASA Astrophysics Data System (ADS)
Na, S.; Sun, W.; Yoon, H.; Choo, J.
2016-12-01
Directional mechanical properties of layered geomaterials such as shale are important on evaluating the onset and growth of fracture for engineering applications such as hydraulic fracturing, geologic carbon storage, and geothermal recovery. In this study, a continuum phase field modeling is conducted to demonstrate the initiation and pattern of cracks in fluid-saturated porous media. The discontinuity of sharp cracks is formulated using diffusive crack phase field modeling and the anisotropic surface energy is incorporated to account for the directional fracture toughness. In particular, the orientation of bedding in geomaterials with respect to the loading direction is represented by the directional critical energy release rate. Interactions between solid skeleton and fluid are also included to analyze the mechanical behavior of fluid-saturated geologic materials through the coupled hydro-mechanical model. Based on the linear elastic phase field modeling, we also addressed how the plasticity in crack phase field influences the crack patterns by adopting the elasto-plastic model with Drucker-Prager yield criterion. Numerical examples exhibit the features of anisotropic surface energy, the interactions between solid and fluid and the effects of plasticity on crack propagations.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V.; Stafford, A.; Keim, S. F.; Petkov, E. E.; Lorance, M.; Chuvatin, A. S.; Coverdale, C. A.; Jones, B.
2013-10-01
The recent experiments at 1.5-1.7 MA on Zebra at UNR with larger sized planar wires arrays (compared to the wire loads at 1 MA current) have demonstrated higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions. Such multi-planar wire arrays had two outer wire planes from mid-Z material to create a global magnetic field (gmf) and mid-Z plasma flow between them. Also, they included a modified central plane with a few Al wires at the edges to influence gmf and to create Al plasma flow in the perpendicular direction. The stationary shock waves which existed over tens of ns on shadow images and the early x-ray emissions before the PCD peak on time-gated spectra were observed. The most recent experiments with similar loads but without the central wires demonstrated a very different regime of implosion with asymmetrical jets and no precursor formation. This work was supported by NNSA under DOE Cooperative Agreement DE-NA0001984 and in part by DE-FC52-06NA27616. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Adding Some Gas Can Completely Change How an Object in a Liquid-Filled Housing Responds to Vibration
NASA Astrophysics Data System (ADS)
Torczynski, J. R.; O'Hern, T. J.; Clausen, J. R.
2015-11-01
Adding a little gas can completely change the motion of an object in a liquid-filled housing during vibration. A common system exhibiting this behavior is a spring-supported piston in a liquid-filled cylinder, where the gaps between them are narrow and depend on the piston position. When gas is absent, the piston's vibrational response is highly overdamped due to forcing viscous liquid through narrow gaps. When a small amount of gas is added, Bjerknes forces cause some of the gas to migrate below the piston. The resulting two gas regions form a pneumatic spring that enables the liquid to move with the piston, with the result that very little liquid is forced through the narrow gaps. This ``Couette mode'' has low damping and thus has a strong resonance near the frequency given by the pneumatic spring constant and the piston mass. At this frequency, the piston response is large, and the nonlinearity from the gap geometry produces a net force on the piston. This ``rectified'' force can be many times the piston's weight and can cause the piston to compress its supporting spring. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Modeling shock-driven reaction in low density PMDI foam
NASA Astrophysics Data System (ADS)
Brundage, Aaron; Alexander, C. Scott; Reinhart, William; Peterson, David
Shock experiments on low density polyurethane foams reveal evidence of reaction at low impact pressures. However, these reaction thresholds are not evident over the low pressures reported for historical Hugoniot data of highly distended polyurethane at densities below 0.1 g/cc. To fill this gap, impact data given in a companion paper for polymethylene diisocyanate (PMDI) foam with a density of 0.087 g/cc were acquired for model validation. An equation of state (EOS) was developed to predict the shock response of these highly distended materials over the full range of impact conditions representing compaction of the inert material, low-pressure decomposition, and compression of the reaction products. A tabular SESAME EOS of the reaction products was generated using the JCZS database in the TIGER equilibrium code. In particular, the Arrhenius Burn EOS, a two-state model which transitions from an unreacted to a reacted state using single step Arrhenius kinetics, as implemented in the shock physics code CTH, was modified to include a statistical distribution of states. Hence, a single EOS is presented that predicts the onset to reaction due to shock loading in PMDI-based polyurethane foams. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.
Using Spectral Losses to Map a Damage Zone for the Source Physics Experiments (SPE)
NASA Astrophysics Data System (ADS)
Knox, H. A.; Abbott, R. E.; Bonal, N.; Preston, L. A.
2013-12-01
We performed a series of cross-borehole seismic experiments in support of the Source Physics Experiments (SPE). These surveys, which were conducted in a granitic body using a sparker source and hydrophone string, were designed to image the damage zone from two underground explosions (SPE2 and SPE3). We present results here from a total of six boreholes (the explosive shot emplacement hole and 5 satellite holes, 20-35 meters away) where we found a marked loss of high frequency energy in ray paths traversing the region near the SPE explosions. Specifically, the frequencies above ~400 Hz were lost in a region centered around 45 meters depth, coincident with SPE2 and SPE3 shots. We further quantified these spectral losses, developed a map of where they occur, and evaluated the attenuation effects of raypath length (i.e. source-receiver offset). We attribute this severe attenuation to the inelastic damage (i.e. cracking and pulverizing) caused by the large chemical explosions and propose that frequency attenuation of this magnitude provides yet another tool for detecting the damage due to large underground explosions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Back-streaming ion beam measurements in a Self Magnetic Insulated (SMP) electron diode
NASA Astrophysics Data System (ADS)
Mazarakis, Michael; Johnston, Mark; Kiefer, Mark; Leckbee, Josh; Webb, Timothy; Bennett, Nichelle; Droemer, Darryl; Welch, Dale; Nielsen, Dan; Ziska, Derek; Wilkins, Frank; Advance radiography department Team
2014-10-01
A self-magnetic pinch diode (SMP) is presently the electron diode of choice for high energy flash x-ray radiography utilizing pulsed power drivers. The Sandia National Laboratories RITS accelerator is presently fit with an SMP diode that generates very small electron beam spots. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulse of six 1.3 MV inductively insulated cavities. The diode's anode is made of high Z metal in order to produce copious and energetic flash x-rays for radiographic imaging of high areal density objects. In any high voltage inductive voltage adder (IVA) utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the anode-cathode (A-K) gap is problematic. This is even more difficult in an SMP diode where the A-K gap is very small (~1 cm) and the diode region very hostile. We are currently measuring the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip. We then are evaluating the A-K gap voltage by ion time of flight measurements supplemented with filtered Rogowski coils. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE- AC04-94AL850.
Detecting seismic waves using a binary hidden Markov model classifier
NASA Astrophysics Data System (ADS)
Ray, J.; Lefantzi, S.; Brogan, R. A.; Forrest, R.; Hansen, C. W.; Young, C. J.
2016-12-01
We explore the use of Hidden Markov Models (HMM) to detect the arrival of seismic waves using data captured by a seismogram. HMMs define the state of a station as a binary variable based on whether the station is receiving a signal or not. HMMs are simple and fast, allowing them to monitor multiple datastreams arising from a large distributed network of seismographs. In this study we examine the efficacy of HMM-based detectors with respect to their false positive and negative rates as well as the accuracy of the signal onset time as compared to the value determined by an expert analyst. The study uses 3 component International Monitoring System (IMS) data from a carefully analyzed 2 week period from May, 2010, for which our analyst tried to identify every signal. Part of this interval is used for training the HMM to recognize the transition between state from noise to signal, while the other is used for evaluating the effectiveness of our new detection algorithm. We compare our results with the STA/LTA detection processing applied by the IDC to assess potential for operational use. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Pressure-Directed Assembly: Nanostructures Made Easy
NASA Astrophysics Data System (ADS)
Fan, Hongyou
Precise control of structural parameters through nanoscale engineering to improve optical and electronic properties of functional nanomaterials continuously remains an outstanding challenge. Previous work has been conducted largely at ambient pressure and relies on specific chemical or physical interactions such as van der Waals interactions, dipole-dipole interactions, chemical reactions, ligand-receptor interactions, etc. In this presentation, I will introduce a new pressure-directed assembly method that uses mechanical compressive force applied to nanoparticle arrays to induce structural phase transition and to consolidate new nanomaterials with precisely controlled structures and tunable properties. By manipulating nanoparticle coupling through external pressure, instead of through chemistry, a reversible change in their assemblies and properties can be achieved and demonstrated. In addition, over a certain threshold, the external pressure will force these nanoparticles into contact, thereby allowing the formation and consolidation of one- to three-dimensional nanostructures. Through pressure induced nanoparticle assembly, materials engineering and synthesis become remarkably flexible without relying on traditional crystallization process where atoms/ions are locked in a specific crystal structure. Therefore, morphology or architecture can be readily tuned to produce desirable properties for practical applications. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Wise, J. L.; Adams, D. P.; Nishida, E. E.; Song, B.; Maguire, M. C.; Carroll, J.; Reedlunn, B.; Bishop, J. E.
2015-06-01
Gas-gun experiments have probed the compression and release behavior of impact-loaded 304L stainless steel specimens machined from additively manufactured (AM) blocks as well as baseline ingot-derived bar stock. The AM technology allows direct fabrication of metal parts. For the present study, a velocity interferometer (VISAR) measured the time-resolved motion of samples subjected to one-dimensional (i.e., uniaxial strain) shock compression to peak stresses ranging from 0.2 to 7.5 GPa. The acquired wave-profile data have been analyzed to determine the comparative Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of the AM and conventional materials. Observed differences in shock loading and unloading characteristics for the two 304L source variants have been correlated to complementary Kolsky bar results for compressive and tensile testing at lower strain rates. The effects of composition, porosity, microstructure (e.g., grain size and morphology), residual stress, and sample axis orientation relative to the additive manufacturing deposition trajectory have been assessed to explain differences between the AM and baseline 304L dynamic mechanical properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Optimization of Sensor Monitoring Strategies for Emissions
NASA Astrophysics Data System (ADS)
Klise, K. A.; Laird, C. D.; Downey, N.; Baker Hebert, L.; Blewitt, D.; Smith, G. R.
2016-12-01
Continuous or regularly scheduled monitoring has the potential to quickly identify changes in air quality. However, even with low-cost sensors, only a limited number of sensors can be placed to monitor airborne pollutants. The physical placement of these sensors and the sensor technology used can have a large impact on the performance of a monitoring strategy. Furthermore, sensors can be placed for different objectives, including maximum coverage, minimum time to detection or exposure, or to quantify emissions. Different objectives may require different monitoring strategies, which need to be evaluated by stakeholders before sensors are placed in the field. In this presentation, we outline methods to enhance ambient detection programs through optimal design of the monitoring strategy. These methods integrate atmospheric transport models with sensor characteristics, including fixed and mobile sensors, sensor cost and failure rate. The methods use site specific pre-computed scenarios which capture differences in meteorology, terrain, concentration averaging times, gas concentration, and emission characteristics. The pre-computed scenarios become input to a mixed-integer, stochastic programming problem that solves for sensor locations and types that maximize the effectiveness of the detection program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Dynamic Compression Experiments on Hydrogen and Deuterium in the Warm Dense Liquid.
NASA Astrophysics Data System (ADS)
Desjarlais, Michael; McCoy, Chad; Cochrane, Kyle; Mattsson, Thomas; Knudson, Marcus; Redmer, Ronald
2017-06-01
Recently a shock-ramp platform has been developed on the Z Accelerator to access off-Hugoniot states in liquids. The accelerator delivers a two-step current pulse; the first accelerates the electrode to a constant velocity, which upon impact with the sample cell creates a well-defined shock, the subsequent current rise produces ramp compression from the initially shocked state producing relatively cool (1-2 kK), high pressure (>300 GPa), high compression (10 to 15-fold compression) states. This technique allows experimental access to the region of phase space where hydrogen is predicted to undergo a first-order phase transition from an insulating molecular-like to a conducting atomic-like liquid. Here we discuss the experimental platform, survey various theoretical predictions for the liquid-liquid, insulator-to-metal transition in hydrogen, and present results of experiments on both deuterium and hydrogen that clearly show an abrupt transition to a metallic state. We also present results from recent experiments at higher temperatures (3-4 kK) and compare the observations to both first-principles theory and previous step-wise loading experiments that exhibited a minimum metallic conductivity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
SNAP: Automated Generation of High-Accuracy Interatomic Potentials using Quantum Data
NASA Astrophysics Data System (ADS)
Thompson, Aidan; Wood, Mitchell; Phillpot, Simon
Molecular dynamics simulation is a powerful computational method for bridging between macroscopic continuum models and quantum models treating a few hundred atoms, but it is limited by the accuracy of the interatomic potential. Sound physical and chemical understanding have led to good potentials for certain systems, but it is difficult to extend them to new materials and properties. The solution is obvious but challenging: develop more complex potentials that reproduce large quantum datasets. The growing availability of large data sets has made it possible to use automated machine-learning approaches for interatomic potential development. In the SNAP approach, the interatomic potential depends on a very general set of atomic neighborhood descriptors, based on the bispectrum components of the density projected onto the surface of the unit 3-sphere. Previously, this approach was demonstrated for tantalum, reproducing the screw dislocation Peierls barrier. In this talk, it will be shown that the SNAP method is capable of reproducing a wide range of energy landscapes relevant to diverse material science applications: i) point defects in indium phosphide, ii) stability of tungsten surfaces at high temperatures, and iii) formation of intrinsic defects in uranium. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energys National Nuclear Security Admin. under contract DE-AC04-94AL85000.
Observation and Simulation of Motion and Deformation for Impact-Loaded Metal Cylinders
NASA Astrophysics Data System (ADS)
Hickman, R. J.; Wise, J. L.; Smith, J. A.; Mersch, J. P.; Robino, C. V.; Arguello, J. G.
2015-06-01
Complementary gas-gun experiments and computational simulations have examined the time-resolved motion and post-mortem deformation of cylindrical metal samples subjected to impact loading. The effect of propagation distance on a compressive waveform generated in a sample by planar impact at one end was determined using a velocity interferometer to track the longitudinal motion of the opposing rear (i.e., free) surface. Samples (24 or 25.4-mm diameter) were fabricated from aluminum (types 6061 and 7075), copper, stainless steel (type 316), and cobalt alloy L-605 (AMS 5759). For each material, waveforms obtained for a short (2 mm) and a long (25.4 mm) cylinder corresponded, respectively, to one-dimensional (i.e., uniaxial) and two-dimensional strain at the measurement point. The wave-profile data have been analyzed to (i) establish key dynamic material modeling parameters, (ii) assess the functionality of the Sierra Solid Mechanics-Presto (SierraSM/Presto) code, and (iii) identify the need for additional testing, material modeling, and/or code development. The results of subsequent simulations have been compared to benchmark recovery experiments that showed the residual plastic deformation incurred by cylinders following end, side, and corner impacts. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Torrealba, V.; Karpyn, Z.; Yoon, H.; Hart, D. B.; Klise, K. A.
2013-12-01
The pore-scale dynamics that govern multiphase flow under variable stress conditions are not well understood. This lack of fundamental understanding limits our ability to quantitatively predict multiphase flow and fluid distributions in natural geologic systems. In this research, we focus on pore-scale, single and multiphase flow properties that impact displacement mechanisms and residual trapping of non-wetting phase under varying stress conditions. X-ray micro-tomography is used to image pore structures and distribution of wetting and non-wetting fluids in water-wet synthetic granular packs, under dynamic load. Micro-tomography images are also used to determine structural features such as medial axis, surface area, and pore body and throat distribution; while the corresponding transport properties are determined from Lattice-Boltzmann simulations performed on lattice replicas of the imaged specimens. Results are used to investigate how inter-granular deformation mechanisms affect fluid displacement and residual trapping at the pore-scale. This will improve our understanding of the dynamic interaction of mechanical deformation and fluid flow during enhanced oil recovery and geologic CO2 sequestration. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Interface effects on calculated defect levels for oxide defects
NASA Astrophysics Data System (ADS)
Edwards, Arthur; Barnaby, Hugh; Schultz, Peter; Pineda, Andrew
2014-03-01
Density functional theory (DFT) has had impressive recent success predicting defect levels in insulators and semiconductors [Schultz and von Lillienfeld, 2009]. Such success requires care in accounting for long-range electrostatic effects. Recently, Komsa and Pasquarello have started to address this problem in systems with interfaces. We report a multiscale technique for calculating electrostatic energies for charged defects in oxide of the metal-oxide-silicon (MOS) system, but where account is taken of substrate doping density, oxide thickness, and gate bias. We use device modeling to calculate electric fields for a point charge a fixed distance from the interface, and used the field to numerically calculate the long-range electrostatic interactions. We find, for example, that defect levels in the oxide do depend on both the magnitude and the polarity the substrate doping density. Furthermore, below 20 Å, oxide thickness also has significant effects. So, transferring results directly from bulk calculations leads to inaccuracies up to 0.5 eV- half of the silicon band gap. We will present trends in defect levels as a function of device parameters. We show that these results explain previous experimental results, and we comment on their potential impact on models for NBTI. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under co.
A diffuse interface model of grain boundary faceting
NASA Astrophysics Data System (ADS)
Abdeljawad, Fadi; Medlin, Douglas; Zimmerman, Jonathan; Hattar, Khalid; Foiles, Stephen
Incorporating anisotropy into thermodynamic treatments of interfaces dates back to over a century ago. For a given orientation of two abutting grains in a pure metal, depressions in the grain boundary (GB) energy may exist as a function of GB inclination, defined by the plane normal. Therefore, an initially flat GB may facet resulting in a hill-and-valley structure. Herein, we present a diffuse interface model of GB faceting that is capable of capturing anisotropic GB energies and mobilities, and accounting for the excess energy due to facet junctions and their non-local interactions. The hallmark of our approach is the ability to independently examine the role of each of the interface properties on the faceting behavior. As a demonstration, we consider the Σ 5 < 001 > tilt GB in iron, where faceting along the { 310 } and { 210 } planes was experimentally observed. Linear stability analysis and numerical examples highlight the role of junction energy and associated non-local interactions on the resulting facet length scales. On the whole, our modeling approach provides a general framework to examine the spatio-temporal evolution of highly anisotropic GBs in polycrystalline metals. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Atomistic Simulation of Initiation in Hexanitrostilbene
NASA Astrophysics Data System (ADS)
Shan, Tzu-Ray; Wixom, Ryan; Yarrington, Cole; Thompson, Aidan
2015-06-01
We report on the effect of cylindrical voids on hot spot formation, growth and chemical reaction initiation in hexanitrostilbene (HNS) crystals subjected to shock. Large-scale, reactive molecular dynamics simulations are performed using the reactive force field (ReaxFF) as implemented in the LAMMPS software. The ReaxFF force field description for HNS has been validated previously by comparing the isothermal equation of state to available diamond anvil cell (DAC) measurements and density function theory (DFT) calculations and by comparing the primary dissociation pathway to ab initio calculations. Micron-scale molecular dynamics simulations of a supported shockwave propagating through the HNS crystal along the [010] orientation are performed with an impact velocity (or particle velocity) of 1.25 km/s, resulting in shockwave propagation at 4.0 km/s in the bulk material and a bulk shock pressure of ~ 11GPa. The effect of cylindrical void sizes varying from 0.02 to 0.1 μm on hot spot formation and growth rate has been studied. Interaction between multiple voids in the HNS crystal and its effect on hot spot formation will also be addressed. Results from the micron-scale atomistic simulations are compared with hydrodynamics simulations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Diffusion Monte Carlo calculations of Xenon melting under pressure
NASA Astrophysics Data System (ADS)
Shulenburger, L.; Mattsson, T. R.
2011-03-01
The slope of the melting temperature as a function of pressure yields, via the Clausius-Clapeyron equation, important information regarding the changes in density, energy, and entropy. It is therefore crucial to resolve the long-standing differences in melt lines under pressure between Diamond Anvil Cell data (low/flat melt line) and other methods, including density functional theory (DFT) simulations 1 (high/steep melt line). The disagreement for Ta was recently resolved 2 and although a similar situation exists in the literature on Xe,3 the resolution may be quite different. For example, DFT with its lack of van der Waals forces is a prima facie less credible simulation method for Xe, although excellent agreement has been obtained between calculations of the Hugoniot of Xe and experiments.4 We investigate whether this theoretical shortcoming is significant for the melting transition by applying diffusion Monte Carlo. The energy differences obtained in this way are compared to the DFT results in order to address any systematic errors that may be present near the melting transition. 1 Taioli et al. PRB 75, 214103 (2007); 2 Dewaele et al. PRL 104, 255701 (2010); 3 Belonoshko el al. PRB 74, 054114 (2006); 4 Root et al. PRL 105, 085501 (2010) Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corp. for the US Dep. of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Compaction and High-Pressure Response of Granular Tantalum Oxide
NASA Astrophysics Data System (ADS)
Vogler, Tracy; Root, Seth; Knudson, Marcus; Thornhill, Tom; Reinhart, William
2015-06-01
The dynamic behavior of nearly fully-dense and porous tantalum oxide (Ta2O5) is studied. Two particle morphologies are used to obtain two distinct initial tap densities, which correspond to approximately 40% and 15% of crystalline density. The response is characterized from low pressures, which result in incomplete compaction, to very high pressures where the thermal component of the EOS dominates. Issues related to a possible phase transformation along the Hugoniot and to establishing reasonable error bars on the experimental data will be discussed. The suitability of continuum and mesoscale models to capture the experimental results will be examined. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Relating the defect band gap and the density functional band gap
NASA Astrophysics Data System (ADS)
Schultz, Peter; Edwards, Arthur
2014-03-01
Density functional theory (DFT) is an important tool to probe the physics of materials. The Kohn-Sham (KS) gap in DFT is typically (much) smaller than the observed band gap for materials in nature, the infamous ``band gap problem.'' Accurate prediction of defect energy levels is often claimed to be a casualty--the band gap defines the energy scale for defect levels. By applying rigorous control of boundary conditions in size-converged supercell calculations, however, we compute defect levels in Si and GaAs with accuracies of ~0.1 eV, across the full gap, unhampered by a band gap problem. Using GaAs as a theoretical laboratory, we show that the defect band gap--the span of computed defect levels--is insensitive to variations in the KS gap (with functional and pseudopotential), these KS gaps ranging from 0.1 to 1.1 eV. The defect gap matches the experimental 1.52 eV gap. The computed defect gaps for several other III-V, II-VI, I-VII, and other compounds also agree with the experimental gap, and show no correlation with the KS gap. Where, then, is the band gap problem? This talk presents these results, discusses why the defect gap and the KS gap are distinct, implying that current understanding of what the ``band gap problem'' means--and how to ``fix'' it--need to be rethought. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.
Electron-Scavenging Chemistry of Benzoquinone on TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A.; Shen, Mingmin
The chemistry of benzoquinone (BQ) on TiO2(110) was examined using temperature programmed desorption (TPD), electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES). BQ adsorbs mostly molecularly on the clean surface, although EELS demonstrates that electrons from surface Ti3+ sites at oxygen vacancy sites (VO) are readily oxidized by the high electron scavenging ability of the molecule. In contrast, when the surface is covered with water, subsequently adsorbed BQ molecules that scavenge surface electrons also abstract H from surface OHbr groups to form hydroquinone (HQ), which desorbs at ~450 K. This work was supported by the US Department ofmore » Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less
NASA Astrophysics Data System (ADS)
Thomas, M. A.
2016-12-01
The Waste Isolation Pilot Plant (WIPP) is the only deep geological repository for transuranic waste in the United States. As the Science Advisor for the WIPP, Sandia National Laboratories annually evaluates site data against trigger values (TVs), metrics whose violation is indicative of conditions that may impact long-term repository performance. This study focuses on a groundwater-quality dataset used to redesign a TV for the Culebra Dolomite Member (Culebra) of the Permian-age Rustler Formation. Prior to this study, a TV violation occurred if the concentration of a major ion fell outside a range defined as the mean +/- two standard deviations. The ranges were thought to denote conditions that 95% of future values would fall within. Groundwater-quality data used in evaluating compliance, however, are rarely normally distributed. To create a more robust Culebra groundwater-quality TV, this study employed the randomization test, a non-parametric permutation method. Recent groundwater compositions considered TV violations under the original ion concentration ranges are now interpreted as false positives in light of the insignificant p-values calculated with the randomization test. This work highlights that the normality assumption can weaken as the size of a groundwater-quality dataset grows over time. Non-parametric permutation methods are an attractive option because no assumption about the statistical distribution is required and calculating all combinations of the data is an increasingly tractable problem with modern workstations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy. SAND2016-7306A
NASA Astrophysics Data System (ADS)
Zeitler, T.; Kirchner, T. B.; Hammond, G. E.; Park, H.
2014-12-01
The Waste Isolation Pilot Plant (WIPP) has been developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. Containment of TRU waste at the WIPP is regulated by the U.S. Environmental Protection Agency (EPA). The DOE demonstrates compliance with the containment requirements by means of performance assessment (PA) calculations. WIPP PA calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment for a regulatory period of 10,000 years after facility closure. The long-term performance of the repository is assessed using a suite of sophisticated computational codes. In a broad modernization effort, the DOE has overseen the transfer of these codes to modern hardware and software platforms. Additionally, there is a current effort to establish new performance assessment capabilities through the further development of the PFLOTRAN software, a state-of-the-art massively parallel subsurface flow and reactive transport code. Improvements to the current computational environment will result in greater detail in the final models due to the parallelization afforded by the modern code. Parallelization will allow for relatively faster calculations, as well as a move from a two-dimensional calculation grid to a three-dimensional grid. The result of the modernization effort will be a state-of-the-art subsurface flow and transport capability that will serve WIPP PA into the future. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.
NASA Astrophysics Data System (ADS)
Magyar, Rudolph; Root, Seth; Mattsson, Thomas; Cochrane, Kyle
2012-02-01
The combination of ethane and xenon is one of the simplest binary mixtures in which bond breaking is expected to play a role under shock conditions. At cryogenic conditions, xenon is often understood to mix with alkanes such as Ethane as if it were also an alkane, but this model is expected to break down at higher temperatures and pressures. To investigate the breakdown, we have performed density functional theory (DFT) calculations on several xenon/ethane mixtures. Additionally, we have performed shock compression experiments on Xenon-Ethane using the Sandia Z - accelerator. The DFT and experimental results are compared to hydrodynamic simulations using different mixing models in the equation of state. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Silicon qubit performance in the presence of inhomogeneous strain
NASA Astrophysics Data System (ADS)
Jacobson, N. Tobias; Ward, Daniel R.; Baczewski, Andrew D.; Gamble, John K.; Montano, Ines; Rudolph, Martin; Nielsen, Erik; Carroll, Malcolm
While gate electrode voltages largely define the potential landscape experienced by electrons in quantum dot (QD) devices, mechanical strain also plays a role. Inhomogeneous strain established over the course of device fabrication, followed by mismatched contraction under cooling to cryogenic temperatures, may significantly perturb this potential. A recent investigation by Thorbeck & Zimmerman suggests that unintentional QDs may form as a result of the latter thermal contraction mismatch mechanism. In this work, we investigate the effects of inhomogeneous strain on QD tunnel barriers and other properties, from the perspective of QD and donor-based qubit performance. Through semiconductor process simulation, we estimate the relative magnitude of strain established during fabrication as compared with thermal expansion coefficient mismatch. Combining these predictions with multi-valley effective mass theory modeling of qubit characteristics, we identify whether strain effects may compel stricter than expected constraints on device dimensions. Finally, we investigate the degree to which strain and charge disorder effects may be distinguished. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Moussa, Jonathan; Ryan-Anderson, Ciaran
The canonical modern plan for universal quantum computation is a Clifford+T gate set implemented in a topological error-correcting code. This plan has the basic disparity that logical Clifford gates are natural for codes in two spatial dimensions while logical T gates are natural in three. Recent progress has reduced this disparity by proposing logical T gates in two dimensions with doubled, stacked, or gauge color codes, but these proposals lack an error threshold. An alternative universal gate set is Clifford+F, where a fusion (F) gate converts two logical qubits into a logical qudit. We show that logical F gates can be constructed by identifying compatible pairs of qubit and qudit codes that stabilize the same logical subspace, much like the original Bravyi-Kitaev construction of magic state distillation. The simplest example of high-distance compatible codes results in a proposal that is very similar to the stacked color code with the key improvement of retaining an error threshold. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corp, a wholly owned subsidiary of Lockheed Martin Corp, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Dynamics of Entangled Polymers: Role of Attractive Interactions
NASA Astrophysics Data System (ADS)
Grest, Gary S.; Koski, Jason
The coupled dynamics of entangled polymers, which span broad time and length scales, govern their unique viscoelastic properties. Numerical simulations of highly coarse grained models are often used to follow chain mobility from the intermediate Rouse and reptation regimes to the late time diffusive regime. In these models, purely repulsive interactions between monomers are typically used because it is less computationally expensive than including attractive interactions. The effect of including the attractive interaction on the local and macroscopic properties of entangled polymer melts is explored over a wide temperature range using large scale molecular dynamics simulations. Attractive interactions are shown to have little effect on the local packing for all temperatures T and chain mobility for T higher than about twice the glass transition Tg. For lower T, the attractive interactions play a significant role, reducing the chain mobility compared to the repulsive case. As T approaches Tg breakdown of time-temperature superposition for the stress autocorrelation function is observed. Sandia National Labs is a multiprogram laboratory managed and operated by Sandia Corporation, a Lockheed-Martin Company, for the U.S. Dept of Energy under Contract No. DEAC04-94AL85000.
NASA Astrophysics Data System (ADS)
Klise, G. T.; Tidwell, V. C.; Macknick, J.; Reno, M. D.; Moreland, B. D.; Zemlick, K. M.
2013-12-01
In the Southwestern United States, there are many large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities currently in operation, with even more under construction and planned for future development. These are locations with high solar insolation and access to large metropolitan areas and existing grid infrastructure. The Bureau of Land Management, under a reasonably foreseeable development scenario, projects a total of almost 32 GW of installed utility-scale solar project capacity in the Southwest by 2030. To determine the potential impacts to water resources and the potential limitations water resources may have on development, we utilized methods outlined by the Bureau of Land Management (BLM) to determine potential water use in designated solar energy zones (SEZs) for construction and operations & maintenance (O&M), which is then evaluated according to water availability in six Southwestern states. Our results indicate that PV facilities overall use less water, however water for construction is high compared to lifetime operational water needs. There is a transition underway from wet cooled to dry cooled CSP facilities and larger PV facilities due to water use concerns, though some water is still necessary for construction, operations, and maintenance. Overall, ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability. Understanding the location of potentially available water sources can help the solar industry determine locations that minimize impacts to existing water resources, and help understand potential costs when utilizing non-potable water sources or purchasing existing appropriated water. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
James, S. R.; Knox, H. A.; Ajo Franklin, J. B.; Johnson, T. C.; Morris, J.; Grubelich, M. C.; King, D. K.
2016-12-01
Knowledge of fracture systems, including locations, morphology, and evolution, is critical for groundwater management, contaminant transport, and energy applications such as reservoir development (i.e. tight shale and geothermal) and reservoir management (i.e. carbon sequestration and wastewater injection). It has long been understood that the presence of fractures reduces bulk seismic velocity, with waves traveling perpendicular to fracture planes experiencing the strongest velocity reduction. We present results from seismic interferometry using ambient seismic noise to detect velocity changes following fracture emplacement from two energetic stimulations. Distributed Acoustic Sensing (DAS) using fiber optic cables was used to record seismic arrivals at high spatial resolution ( 3 ft). Cables were grouted in the annulus of four cased monitoring boreholes surrounding the stimulation borehole at a radius of 4 feet. Ambient noise was recorded before and after each stimulation for 12-hour time periods. We used the Python package MSNoise to compute cross-correlations of all near-horizontal (less than 60°) channel pairs between boreholes and calculated the velocity change of each time period relative to initial conditions prior to stimulation. Results show an average velocity decrease of approximately 6% following the first fracturing event. Variations between channel pairs suggest some are more strongly affected than others, which is supported by evaluation of other geophysical data. These results show promise for locating fractures based on spatial variation in velocity changes. Unsurprisingly, results following the second stimulation are generally more scattered. Some velocities are further reduced compared to those after the first stimulation while others show a relative velocity increase. These results are roughly consistent with time-lapse seismic measurements conducted using active sources and classical sensors (e.g. hydrophones). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Data management system advanced development
NASA Technical Reports Server (NTRS)
Douglas, Katherine; Humphries, Terry
1990-01-01
The Data Management System (DMS) Advanced Development task provides for the development of concepts, new tools, DMS services, and for the testing of the Space Station DMS hardware and software. It also provides for the development of techniques capable of determining the effects of system changes/enhancements, additions of new technology, and/or hardware and software growth on system performance. This paper will address the built-in characteristics which will support network monitoring requirements in the design of the evolving DMS network implementation, functional and performance requirements for a real-time, multiprogramming, multiprocessor operating system, and the possible use of advanced development techniques such as expert systems and artificial intelligence tools in the DMS design.
Imaging a vertical shaft from a tunnel using muons
NASA Astrophysics Data System (ADS)
Bonal, N.; Preston, L. A.; Dorsey, D. J.; Schwellenbach, D.; Green, A.; Smalley, D.
2015-12-01
We use muon technology to image a vertical shaft from a tunnel. The density of the materials through which cosmic ray muons pass influences the flux of muons because muons are more attenuated by higher density material. Additionally, muons can travel several kilometers allowing measurements through deep rock. Density maps are generated from muon flux measurements to locate subsurface features like tunnel structures and ore bodies. Additionally, muon data can be jointly inverted with other data such as gravity and seismic to produce higher quality earth models than produced from a single method. We collected several weeks of data in a tunnel to image a vertical shaft. The minimum length of rock between the vertical shaft and the detector is 120 meters and the diameter of the vertical shaft is 4.6 meters. The rock the muons traveled through consists of Tertiary age volcanic tuff and steeply dipping, small-displacement faults. Results will be presented for muon flux in the tunnel and Monte-Carlo simulations of this experiment. Simulations from both GEANT4 (Geometry And Tracking version 4) and MCNP6 (Monte-Carlo N-Particle version 6) models will be compared. The tunnel overburden from muon measurements is also estimated and compared with actual the overburden. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
A 7.2 keV spherical crystal backlighter system for Sandia's Z Pulsed Power Facility
NASA Astrophysics Data System (ADS)
Schollmeier, M.; Knapp, P. F.; Ampleford, D. J.; Loisel, G. P.; Robertson, G.; Shores, J. E.; Smith, I. C.; Speas, C. S.; Porter, J. L.; McBride, R. D.
2016-10-01
Many experiments on Sandia's Z facility, a 30 MA, 100 ns rise-time, pulsed-power driver, use a monochromatic Quartz crystal imaging backlighter system at 1.865 keV (Si Heα) or 6.151 keV (Mn Heα) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array. The x-ray source is generated by the Z-Beamlet Laser (ZBL), which provides up to 4.5 kJ at 527 nm during a 6 ns window. Radiographs of an imploding thick-walled Beryllium liner at a convergence ratio of about 20 [CR =Rin . (0) /Rin . (t) ] were too opaque to identify the inner surface of the liner with high confidence, demonstrating the need for a higher-energy x-ray backlighter between 6 and 10 keV. We present the design, test and first application of a Ge (335) spherical crystal x-ray backlighter system using the 7.242 keV Co Heα resonance line. The system operates at an almost identical Bragg angle as the existing 1.865 and 6.151 keV backlighters, enhancing our capabilities such as two-color, two-frame radiography, without changing detector shielding hardware. SAND No: SAND2016-6724 A. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. DoE NNSA under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, J.D.
1995-11-01
The Federal Government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US Government. Pacific Northwest Laboratory (PNL) is one of four DOE national multiprogram laboratories that participate in themore » NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer; Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.« less
Mechanical Characterization of Mancos Shale
NASA Astrophysics Data System (ADS)
Broome, S.; Ingraham, M. D.; Dewers, T. A.
2015-12-01
A series of tests on Mancos shale have been undertaken to determine the failure surface and to characterize anisotropy. This work supports additional studies which are being performed on the same block of shale; fracture toughness, permeability, and chemical analysis. Mechanical tests are being conducted after specimens were conditioned for at least two weeks at 70% constant relative humidity conditions. Specimens are tested under drained conditions, with the constant relative humidity condition maintained on the downstream side of the specimen. The upstream is sealed. Anisotropy is determined through testing specimens that have been cored parallel and perpendicular to the bedding plane. Preliminary results show that when loaded parallel to bedding the shale is roughly 50% weaker. Test are run under constant mean stress conditions when possible (excepting indirect tension, unconfined compression, and hydrostatic). Tests are run in hydrostatic compaction to the desired mean stress, then differential stress is applied axially in displacement control to failure. The constant mean stress condition is maintained by decreasing the confining pressure by half of the increase in the axial stress. Results will be compared to typical failure criteria to investigate the effectiveness of capturing the behavior of the shale with traditional failure theory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6107 A.
NASA Astrophysics Data System (ADS)
Chong, Y. K.; Velikovich, A. L.; Thornhil, J. W.; Giuliani, J. L.; Knapp, P.; Jennings, C.
2013-10-01
Over the last few years, numerous 1D and 2D MHD simulation studies of deuterium (D) based double-shell gas-puff Z-pinch implosions driven by the Sandia ZR accelerator have been carried out to assess the Z-pinch as a pulsed thermal fusion neutron source. In these studies, an ad-hoc time-dependent shunt impedance model was used within the external driving circuit model in order to account for the unresolved current loss in the MITL and the load. In this study, we incorporate an improved ZR circuit model recently formulated based on the recent Sandia argon gas-puff experiment circuit data into the multi-material version of the Mach +DDTCRE RMHD code. We reinvestigate the effects of multidimensional structure and nonuniform gradients as well as the outer- and inner-shell material interaction on the implosion physics and dynamics of both D-on-D and argon-on-D Z-pinch loads using the model. Then, we characterize the neutron production performance of the Z-pinch loads as a function of total mass, mass ratio and/or radius toward their optimization as a pulsed thernonuclear neutron source. Work supported by DOE/NNSA. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's NNSA under contract DE-AC04-94AL85000.
Semi-analytic modeling and simulation of magnetized liner inertial fusion
NASA Astrophysics Data System (ADS)
McBride, R. D.; Slutz, S. A.; Hansen, S. B.
2013-10-01
Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) pre-heat of the fuel; (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, and internal magnetic pressure and heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) deuterium-deuterium and deuterium-tritium primary fusion reactions; and (9) magnetized alpha-particle heating. We will first show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper. We will then use this model to illustrate the MagLIF parameter space, energetics, and efficiencies, and to show the experimental challenges that we will likely be facing as we begin testing MagLIF using the infrastructure presently available at the Z facility. Finally, we will demonstrate how this scenario could likely change as various facility upgrades are made over the next three to five years and beyond. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Phase Transitions of MgO Along the Hugoniot (Invited)
NASA Astrophysics Data System (ADS)
Root, S.; Shulenburger, L.; Lemke, R. W.; Cochrane, K. R.; Mattsson, T. R.
2013-12-01
The formation of terrestrial planets and planetary structure has become of great interest because of recent exoplanet discoveries of super earths. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants such as Jupiter, and likely constitutes the interiors of many exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine single crystal MgO under shock compression utilizing experimental and density functional theory (DFT) methods to determine phase transformations along the Hugoniot. We perform plate impact experiments using Sandia's Z - facility on MgO up to 11.6 Mbar. The plate impact experiments generate highly accurate Hugoniot state data. The experimental results show the B1 - B2 solid - solid phase transition occurs near 4 Mbar on the Hugoniot. The solid - liquid transition is determined to be near 7 Mbar with a large region of B2-liquid coexistence. Using DFT methods, we also determine melt along the B1 and B2 solid phase boundaries as well as along the Hugoniot. The combined experimental and DFT results have determined the phase boundaries along the Hugoniot, which can be implemented into new planetary and EOS models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.
A New Wide-Range Equation of State for Xenon
NASA Astrophysics Data System (ADS)
Carpenter, John H.
2011-06-01
We describe the development of a new wide-range equation of state (EOS) for xenon. Three different prior EOS models predicted significant variations in behavior along the high pressure Hugoniot from an initial liquid state at 163.5 K and 2.97 g/cm3, which is near the triple point. Experimental measurements on Sandia's Z machine as well as density functional theory based molecular dynamics calculations both invalidate the prior EOS models in the pressure range from 200 to 840 GPa. The reason behind these EOS model disagreements is found to lie in the contribution from the thermal electronic models. A new EOS, based upon the standard separation of the Helmholtz free energy into ionic and electronic components, is constructed by combining the successful parts of prior models with a semi-empirical electronic model. Both the fluid and fcc solid phases are combined in a wide-range, multi-phase table. The new EOS is tabulated on a fine temperature and density grid, to preserve phase boundary information, and is available as table number 5191 in the LANL SESAME database. Improvements over prior EOS models are found not only along the Hugoniot, but also along the melting curve and in the region of the liquid-vapor critical point. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Optical properties of metal-dielectric based epsilon near zero metamaterials
NASA Astrophysics Data System (ADS)
Subramania, Ganapathi; Fischer, Arthur; Luk, Ting
2014-03-01
Epsilon(ɛ) near zero(ENZ) materials are metamaterials where the effective dielectric constant(ɛ) is close to zero for a range of wavelengths resulting in zero effective displacement field (D = ɛE) and displacement current. ENZ structures are of great interest in many application areas such as optical nanocircuits, supercoupling, cloaking, emission enhancement etc. Effective ENZ behavior has been demonstrated using cut-off frequency region in a metallic waveguide where the modal index vanishes. Here we demonstrate the fabrication of ENZ metamaterials operating at visible wavelengths (λ ~ 640nm) using an effective medium approach based on a metal-dielectric composites(App. Phys. Let.,101,241107(2012)) that can act as ``bulk'' ENZ material. The structure consists of a multilayer stack composite of alternating nanoscale thickness layers of Ag and TiO2. Optical spectroscopy shows transmission and absorption response is consistent with ENZ behavior and matches well with simulations. We will discuss the criteria necessary in the design and practical implementation of the composite that better approximates a homogenous effective medium including techniques to minimize the effect of optical losses to boost transmission. The potential for hosting gain media in the gratings to address losses and emission control will be discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Technical Reports Server (NTRS)
Miller, David N.
1989-01-01
The NASA Johnson Space Center's new Multiprogram Control Center (MPCC) addresses the control requirements of complex STS payloads as well as unmanned vehicles. An account is given of the relationship of the MPCC to the STS Mission Control Center, with a view to significant difficulties that may be encountered and solutions thus far devised for generic problems. Examples of MPCC workstation applications encompass telemetry decommutation, engineering unit conversion, data-base management, trajectory processing, and flight design.
Nanogeochemistry: Size-dependent mineral-fluid interface chemistry
NASA Astrophysics Data System (ADS)
Wang, Y.
2012-12-01
Nanostructures and nanometer mineral phases, both widely present in geologic materials, can potentially affect many geochemical processes. It is known that at nanometer scales a material tends to exhibit chemical properties distinct from the corresponding bulk phase. Understanding of this size-dependent property change will help us to bridge the existing knowledge gap between the molecular level understanding and the macro-scale laboratory/field observations of a geochemical process. In this presentation, I will review of the recent progresses in nanoscience and provide a perspective on how these progresses can potentially impact geochemical studies. My presentation will be focused the following areas: (1) the characterization of nanostructures in natural systems, (2) the study of fluids and chemical species in nanoconfinement, (3) the effects of nanopores on geochemical reaction and mass transfers, and (4) the use nanostructured materials for environmental management. I will demonstrate that the nanopore confinement can significantly modify geochemical reactions in porous geologic media. As the pore size is reduced to a few nanometers, the difference between surface acidity constants of a mineral (pK2 - pK1) decreases, giving rise to a higher surface charge density on a nanopore surface than that on an unconfined mineral-water interface. The change in surface acidity constants results in a shift of ion sorption edges and enhances ion sorption on nanopore surfaces. This effect causes preferential enrichment of trace elements in nanopores. I will then discuss the implications of this emergent nanometer-scale property to radionuclide transport and carbon dioxide storage in geologic media. This work was performed at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE under contract DE-AC04-94AL8500.
NASA Astrophysics Data System (ADS)
Trujillo, N. A.; Heath, J. E.; Mozley, P.; Dewers, T. A.; Cather, M.
2016-12-01
Assessment of caprock sealing behavior for secure CO2 storage is a multiscale endeavor. Sealing behavior arises from the nano-scale capillarity of pore throats, but sealing lithologies alone do not guarantee an effective seal since bypass systems, such as connected, conductive fractures can compromise the integrity of the seal. We apply pore-to-formation-scale data to characterize the multiscale caprock sealing behavior of the Morrow shale and Thirteen Finger Limestone. This work is part of the Southwest Regional Partnership on Carbon Sequestration's Phase III project at the Farnsworth Unit, Texas. The caprock formations overlie the Morrow sandstone, the target for enhanced oil recovery and injection of over one million metric tons of anthropogenically-sourced CO2. Methods include: focused ion beam-scanning electron microscopy; laser scanning confocal microscopy; electron and optical petrography; multi-stress path mechanical testing and constitutive modeling; core examinations of sedimentary structures and fractures; and a noble gas profile for formation-scale transport of the sealing lihologies and the reservoir. We develop relationships between diagenetic characteristics of lithofacies to mechanical and petrophysical measurements of the caprocks. The results are applied as part of a caprock sealing behavior performance assessment. Funding for this project is provided by the U.S. Department of Energy's National Energy Technology Laboratory through the Southwest Regional Partnership on Carbon Sequestration (SWP) under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Real-time noble gas release signaling rock deformation
NASA Astrophysics Data System (ADS)
Bauer, S. J.; Gardner, W. P.; Lee, H.
2016-12-01
We present empirical results/relationships of rock strain, microfracture density, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite and basalt. Noble gases are contained in most crustal rock at inter/intra granular sites, their release during natural and manmade stress and strain changes represents a signal of brittle/semi brittle deformation. The gas composition depends on lithology, geologic history and age, fluids present, and uranium, thorium and potassium-40 concentrations in the rocks that affect radiogenic noble gases (helium, argon) production. Noble gas emission and its relationship to crustal processes have been studied, including correlations to tectonic velocities and qualitative estimates of deep permeability from surface measurements, finger prints of nuclear weapon detonation, and as potential precursory signals to earthquakes attributed to gas release due to pre-seismic stress, dilatancy and/or rock fracturing. Helium emission has been shown as a precursor of volcanic activity. Real-time noble gas release is observed using an experimental system utilizing mass spectrometers to measure gases released during triaxial rock deformation. Noble gas release is shown to represent a sensitive precursor signal of rock deformation by relating real-time noble gas release to stress-strain state changes and acoustic emissions. We propose using noble gas release to also signal rock deformation in boreholes, mines and nuclear waste repositories. We postulate each rock exhibits a gas release signature which is microstructure, stress/strain state, and or permanent deformation dependent. Such relationships, when calibrated, may be used to sense rock deformation and then develop predictive models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the US Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7468 A
RoMi: Refraction Microtremor Using Rotational Seismometers
NASA Astrophysics Data System (ADS)
Clark, B.; Abbott, R. E.; Knox, H. A.; Eimer, M. O.; Hart, D. M.; Skaggs, J.; Denning, J. T.
2013-12-01
We present the results of a shallow shear-wave velocity study that utilized both traditional geophones and a newly developed rotational seismometer (Applied Technology Associates ARS-16). We used Refraction Microtremor (ReMi), a method developed by John N. Louie, during processing to determine both Rayleigh and Love wave dispersion curves using both vertical and horizontal sources. ReMi uses a distance-time (x-t) wavefield transformation technique to image the dispersion curve in slowness-frequency (p-f) space. In the course of the ReMi processing, unwanted P waves are transformed into p-f space. As rotational seismometers are insensitive to P waves, they should prove to be superior sensors for Love wave studies, as those P waves would not interfere with interpretation of the p-f wavefield. Our results show that despite having one-fifth the geophone signal-to-noise ratio in the distance-time wavefield, the ARS-16 produced superior results in the p-f wavefield. Specifically, we found increases of up to 50% in ReMi spectral ratio along the dispersion curve. This implies that as more quiet and sensitive rotational sensors are developed, deploying rotational seismometers instead of traditional sensors will yield significantly better results. This will ultimately improve shallow shear-wave velocity resolution, which is vital for calculating seismic hazard. This data was collected at Sandia National Laboratories' Facility for Analysis, Calibration, and Testing (FACT) located in Albuquerque, NM. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Advancing Materials Science using Neutrons at Oak Ridge National Laboratory
Carpenter, John
2018-02-14
Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.
Triangulating the source of tunneling resonances in a point contact with nanometer scale sensitivity
NASA Astrophysics Data System (ADS)
Bishop, N. C.; Boras Pinilla, C.; Stalford, H. L.; Young, R. W.; Ten Eyck, G. A.; Wendt, J. R.; Eng, K.; Lilly, M. P.; Carroll, M. S.
2011-03-01
We observe resonant tunneling in split gate point contacts defined in a double gate enhancement mode Si-MOS device structure. We determine the capacitances from the resonant feature to each of the conducting gates and the source/drain two dimensional electron gas regions. In our device, these capacitances provide information about the resonance location in three dimensions. Semi-classical electrostatic simulations of capacitance, already used to map quantum dot size and position [Stalford et al., IEEE Nanotechnology], identify a combination of location and confinement potential size that satisfy our experimental observations. The sensitivity of simulation to position and size allow us to triangulate possible locations of the resonant level with nanometer resolution. We discuss our results and how they may apply to resonant tunneling through a single donor. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Counted Sb donors in Si quantum dots
NASA Astrophysics Data System (ADS)
Singh, Meenakshi; Pacheco, Jose; Bielejec, Edward; Perry, Daniel; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael
2015-03-01
Deterministic control over the location and number of donors is critical for donor spin qubits in semiconductor based quantum computing. We have developed techniques using a focused ion beam and a diode detector integrated next to a silicon MOS single electron transistor to gain such control. With the diode detector operating in linear mode, the numbers of ions implanted have been counted and single ion implants have been detected. Poisson statistics in the number of ions implanted have been observed. Transport measurements performed on samples with counted number of implants have been performed and regular coulomb blockade and charge offsets observed. The capacitances to various gates are found to be in agreement with QCAD simulations for an electrostatically defined dot. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
Multitasking in a data acquisition system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, J.E.
1980-01-01
Microprocessors and microcomputers have been employed widely in data acquisition applications due to low cost and the ease of adapting the microcomputer to changing or altered requirements. Multitasking offers ways of getting more performance from a microcomputer and also a means of designing a system which by its nature is easily changed to meet new requirements. The term multitasking is used to include definitions of multitasking and multiprogramming: multitasking-performing various related functions of the same job, e.g. data acquisition and data logging (recording); multiprogramming-performing possibly unrelated jobs concurrently.
Performance Assessment of a Generic Repository in Bedded Salt for DOE-Managed Nuclear Waste
NASA Astrophysics Data System (ADS)
Stein, E. R.; Sevougian, S. D.; Hammond, G. E.; Frederick, J. M.; Mariner, P. E.
2016-12-01
A mined repository in salt is one of the concepts under consideration for disposal of DOE-managed defense-related spent nuclear fuel (SNF) and high level waste (HLW). Bedded salt is a favorable medium for disposal of nuclear waste due to its low permeability, high thermal conductivity, and ability to self-heal. Sandia's Generic Disposal System Analysis framework is used to assess the ability of a generic repository in bedded salt to isolate radionuclides from the biosphere. The performance assessment considers multiple waste types of varying thermal load and radionuclide inventory, the engineered barrier system comprising the waste packages, backfill, and emplacement drifts, and the natural barrier system formed by a bedded salt deposit and the overlying sedimentary sequence (including an aquifer). The model simulates disposal of nearly the entire inventory of DOE-managed, defense-related SNF (excluding Naval SNF) and HLW in a half-symmetry domain containing approximately 6 million grid cells. Grid refinement captures the detail of 25,200 individual waste packages in 180 disposal panels, associated access halls, and 4 shafts connecting the land surface to the repository. Equations describing coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel flow and transport code. Simulated processes include heat conduction and convection, waste package failure, waste form dissolution, radioactive decay and ingrowth, sorption, solubility limits, advection, dispersion, and diffusion. Simulations are run to 1 million years, and radionuclide concentrations are observed within an aquifer at a point approximately 4 kilometers downgradient of the repository. The software package DAKOTA is used to sample likely ranges of input parameters including waste form dissolution rates and properties of engineered and natural materials in order to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Comparison between initial Magnetized Liner Inertial Fusion experiments and integrated simulations
NASA Astrophysics Data System (ADS)
Sefkow, A. B.; Gomez, M. R.; Geissel, M.; Hahn, K. D.; Hansen, S. B.; Harding, E. C.; Peterson, K. J.; Slutz, S. A.; Koning, J. M.; Marinak, M. M.
2014-10-01
The Magnetized Liner Inertial Fusion (MagLIF) approach to ICF has obtained thermonuclear fusion yields using the Z facility. Integrated magnetohydrodynamic simulations provided the design for the first neutron-producing experiments using capabilities that presently exist, and the initial experiments measured stagnation radii rstag < 75 μm, temperatures around 3 keV, and isotropic neutron yields up to YnDD = 2 ×1012 from imploded liners reaching peak velocities around 70 km/s over an implosion time of about 60 ns. We present comparisons between the experimental observables and post-shot degraded integrated simulations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Comparing SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout
NASA Astrophysics Data System (ADS)
England, Troy; Curry, Matthew; Carr, Stephen; Mounce, Andrew; Jock, Ryan; Sharma, Peter; Bureau-Oxton, Chloe; Rudolph, Martin; Hardin, Terry; Carroll, Malcolm
Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will compare two amplifiers based on single-transistor circuits implemented with silicon germanium heterojunction bipolar transistors. Both amplifiers provide gain at low power levels, but the dynamics of each circuit vary significantly. We will explore the gain mechanisms, linearity, and noise of each circuit and explain the situations in which each amplifier is best used. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van der Eide, Edwin F.; Yang, Ping; Walter, Eric D.
Unlike the very labile, unobservable radical cations [{l_brace}CpM(CO){sub 3}{r_brace}{sub 2}]{sup {sm_bullet}+} (M = W, Mo), derivatives [{l_brace}CpM(CO){sub 2}(PMe{sub 3}){r_brace}{sub 2}]{sup {sm_bullet}+} are stable enough to be isolated and characterized. Experimental and theoretical studies show that the shortened M-M bonds are of order 1 1/2, and that they are not supported by bridging ligands. The unpaired electron is fully delocalized, with a spin density of ca. 45% on each metal atom. We thank the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences for support of this work. Pacific Northwestmore » National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The EPR and computational studies were performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. We thank Dr. Charles Windisch for access to his UV-Vis-NIR spectrometer.« less
FY2014 LBNL LDRD Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Darren
2015-06-01
Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nationmore » by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.« less
Surface diffusion of a carbon-adatom on Au(110) surfaces
NASA Astrophysics Data System (ADS)
Kim, E.; Safavi-Naini, A.; Hite, D. A.; McKay, K. S.; Pappas, D. P.; Weck, P. F.; Sadeghpour, H. R.
We have investigated the surface diffusion of carbon-adatom on gold surfaces using density functional theory and detailed scanning probe microscopy. The decoherence of trapped-ion quantum gates due to heating of their motional modes is a fundamental science and engineering problem. In an effort to understand heating at the trap-electrode surfaces, we investigate the possible source of noise by focusing on the diffusion of carbon-containing adsorbates onto the Au(110) surface. In this study, we show how the diffusive motion of carbon adatom on gold surface significantly affects the energy landscape and adatom dipole moment variation. A simple model for the diffusion noise, which varies quadratically with the variation of the dipole moment, qualitatively reproduces the measured noise spectrum, and the estimate of the noise spectral density is in accord with measured values. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's NNSA under Contract DE-AC04-94AL85000.
Designs and Plans for MAIZE: a 1 MA LTD-Driven Z-Pinch
NASA Astrophysics Data System (ADS)
Gilgenbach, R. M.; Gomez, M. R.; Zier, J.; Tang, W.; French, D. M.; Hoff, B. W.; Jordan, N.; Cruz, E.; Lau, Y. Y.; Fowler-Guzzardo, T.; Meisel, J.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.
2007-11-01
We present designs and experimental plans of the first 1 MA z-pinch in the USA to be driven by a Linear Transformer Driver (LTD). The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE), is based on the LTD developed at the Institute for High Current Electronics, utilizing 80 capacitors and 40 spark gap switches to deliver a 1 MA, 100 kV pulse with <100 ns risetime. Designs will be presented of a low-inductance MITL terminated in a wire-array z-pinch. Initial, planned experiments will evaluate the LTD driving time-changing inductance of imploding 4-16 wire-array z-pinches. Wire ablation dynamics, axial-correlations and instability development will be explored. *This work was supported by U. S. DoE through Sandia National Laboratories award number 240985 to the University of Michigan. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Nickel Complexes of a Binucleating Ligand Derived from an SCS Pincer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Sonja M.; Helm, Monte L.; Appel, Aaron M.
2015-01-01
A binucleating ligand has been prepared that contains an SCS pincer and three oxygen donor ligands in a partial crown ether loop. To enable metalation with Ni0, a bromoarene precursor was used and resulted in the formation of a nickel-bromide complex in the SCS pincer. Reaction of the nickel complex with a lithium salt yielded a heterobimetallic complex with bromide bridging the two metal centers. The solid-state structures were determined for this heterobimetallic complex and the nickel-bromide precursor, and the two complexes were characterized electrochemically to determine the influence of coordinating the second metal. This research was supported by themore » US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
NASA Astrophysics Data System (ADS)
Magyar, R. J.; Root, S.; Haill, T. A.; Schroen, D. G.; Mattsson, T. R.; Flicker, D. G.; Sandia National Laboratories Collaboration
2011-06-01
Mixtures of materials are expected to behave quite differently from their isolated constituents, particularly when the constituents atomic numbers differ significantly. To investigate the mixture behavior, we performed density functional theory (DFT) calculations on xenon/hydrogen, xenon/ethane, and platinum/hydrocarbon mixtures. In addition, we performed shock compression experiments on platinum-doped hydrocarbon foams up to 480 GPa using the Sandia Z-accelerator. Since the DFT simulations treat electrons and nuclei generically, simulations of pure and mix systems are expected to be of comparable accuracy. The DFT and experimental results are compared to hydrodynamic simulations using different mixing models in the equation of state. The role of de-mixing and the relative contributions of the enthalpy of mixing are explored. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Density Functional Methods for Shock Physics and High Energy Density Science
NASA Astrophysics Data System (ADS)
Desjarlais, Michael
2017-06-01
Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Recent research on stishovite: Hugoniot and partial release Z experiments and DFT EOS calculations
NASA Astrophysics Data System (ADS)
Furnish, Michael; Shulenburger, Luke; Desjarlais, Michael; Fei, Yingwei
2017-06-01
We have conducted a series of ride-along experiments on the Z facility to ascertain the Hugoniot of silica centered in the stishovite phase over a range 0.4 - 1.0 TPa, together with partial release states produced at the interface between the sample and a fused silica window. The stishovite samples were synthesized in a large-volume multi-anvil press at 15 GPa and 1773 K, with an initial density of 4.29 gm/cc. The new Z experiments on stishovite fill in a gap between gas gun experiments and NIF experiments. The states are compared with the Hugoniots of quartz and fused silica for inferences as to EOS. They are generally consistent with Sesame 7360 predictions. Sound speed constraints from these data are discussed. The new Hugoniot data cross over the melting curve of stishovite, providing insight into the properties of solid and liquid under extreme conditions in conjunction with predictions from density-functional theory modeling. These data are fundamentally important for understanding the interior of silicate-based super-Earths. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Ding, Jow; Alexander, C. Scott; Asay, James
2015-06-01
MAPS (Magnetically Applied Pressure Shear) is a new technique that has the potential to study material strength under mega-bar pressures. By applying a mixed-mode pressure-shear loading and measuring the resultant material responses, the technique provides explicit and direct information on material strength under high pressure. In order to apply sufficient shear traction to the test sample, the driver must have substantial strength. Molybdenum was selected for this reason along with its good electrical conductivity. In this work, the mechanical behavior of molybdenum under MAPS loading was studied. To understand the experimental data, a viscoplasticity model with tension-compression asymmetry was also developed. Through a combination of experimental characterization, model development, and numerical simulation, many unique insights were gained on the inelastic behavior of molybdenum such as the effects of strength on the interplay between longitudinal and shear stresses, potential interaction between the magnetic field and molybdenum strength, and the possible tension-compression asymmetry of the inelastic material response. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Knox, H. A.; Abbott, R. E.; Bonal, N. D.; Aldridge, D. F.; Preston, L. A.; Ober, C.
2012-12-01
In support of the Source Physics Experiment (SPE) at the Nevada National Security Site (NNSS), we have conducted two cross-borehole seismic experiments in the Climax Stock. The first experiment was conducted prior to the third shot in this multi-detonation program using two available boreholes and the shot hole, while the second experiment was conducted after the shot using four of the available boreholes. The first study focused on developing a well-characterized 2D pre-explosion Vp model including two VSPs and a seismic refraction survey, as well as quantifying baseline waveform similarity at reoccupied sites. This was accomplished by recording both "sparker" and accelerated weight drop sources on a hydrophone string and surface geophones. In total more than 18,500 unique source-receiver pairs were acquired during this testing. In the second experiment, we reacquired aproximately 8,800 source-receiver pairs and performed a cross-line survey allowing for a 3D post-explosion Vp model. The data acquired from the reoccupied sites was processed using cross-correlation methods and change detection methodologies, including comparison of the tomographic images. The survey design and subsequent processing provided an opportunity to investigate seismic wave propagation through damaged rock. We also performed full waveform forward modelling for a granitic body hosting a perched aquifer. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Combining DFT, Cluster Expansions, and KMC to Model Point Defects in Alloys
NASA Astrophysics Data System (ADS)
Modine, N. A.; Wright, A. F.; Lee, S. R.; Foiles, S. M.; Battaile, C. C.; Thomas, J. C.; van der Ven, A.
In an alloy, defect energies are sensitive to the occupations of nearby atomic sites, which leads to a distribution of defect properties. When radiation-induced defects diffuse from their initially non-equilibrium locations, this distribution becomes time-dependent. The defects can become trapped in energetically favorable regions of the alloy leading to a diffusion rate that slows dramatically with time. Density Functional Theory (DFT) allows the accurate determination of ground state and transition state energies for a defect in a particular alloy environment but requires thousands of processing hours for each such calculation. Kinetic Monte-Carlo (KMC) can be used to model defect diffusion and the changing distribution of defect properties but requires energy evaluations for millions of local environments. We have used the Cluster Expansion (CE) formalism to ``glue'' together these seemingly incompatible methods. The occupation of each alloy site is represented by an Ising-like variable, and products of these variables are used to expand quantities of interest. Once a CE is fit to a training set of DFT energies, it allows very rapid evaluation of the energy for an arbitrary configuration, while maintaining the accuracy of the underlying DFT calculations. These energy evaluations are then used to drive our KMC simulations. We will demonstrate the application of our DFT/MC/KMC approach to model thermal and carrier-induced diffusion of intrinsic point defects in III-V alloys. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE.
NASA Astrophysics Data System (ADS)
Leung, Kevin
2015-03-01
Electrochemical reactions at electrode/electrolyte interfaces are critically dependent on the total electrochemical potential or voltage. In this presentation, we briefly review ab initio molecular dynamics (AIMD)-based estimate of voltages on graphite basal and edge planes, and then apply similar concepts to solid-solid interfaces relevant to lithium ion and Li-air batteries. Thin solid films on electrode surfaces, whether naturally occuring during power cycling (e.g., undesirable lithium carbonate on Li-air cathodes) or are artificially introduced, can undergo electrochemical reactions as the applied voltage varies. Here the onset of oxidation of lithium carbonate and other oxide thin films on model gold electrode surfaces is correlated with the electronic structure in the presence/absence of solvent molecules. Our predictions help determine whether oxidation first occurs at the electrode-thin film or electrolyte-thin film interface. Finally, we will critically compare the voltage estimate methodology used in the fuel cell community with the lithium cohesive energy calibration method broadly applied in the battery community, and discuss why they may yield different predictions. This work was supported by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deparment of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Imaging Fracture Networks Using Angled Crosshole Seismic Logging and Change Detection Techniques
NASA Astrophysics Data System (ADS)
Knox, H. A.; Grubelich, M. C.; Preston, L. A.; Knox, J. M.; King, D. K.
2015-12-01
We present results from a SubTER funded series of cross borehole geophysical imaging efforts designed to characterize fracture zones generated with an alternative stimulation method, which is being developed for Enhanced Geothermal Systems (EGS). One important characteristic of this stimulation method is that each detonation will produce multiple fractures without damaging the wellbore. To date, we have collected six full data sets with ~30k source-receiver pairs each for the purposes of high-resolution cross borehole seismic tomographic imaging. The first set of data serves as the baseline measurement (i.e. un-stimulated), three sets evaluate material changes after fracture emplacement and/or enhancement, and two sets are used for evaluation of pick error and seismic velocity changes attributable to changing environmental factors (i.e. saturation due to rain/snowfall in the shallow subsurface). Each of the six datasets has been evaluated for data quality and first arrivals have been picked on nearly 200k waveforms in the target area. Each set of data is then inverted using a Vidale-Hole finite-difference 3-D eikonal solver in two ways: 1) allowing for iterative ray tracing and 2) with fixed ray paths determined from the test performed before the fracture stimulation of interest. Utilizing these two methods allows us to compare and contrast the results from two commonly used change detection techniques. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Experiences of an Engineer working in Reactor Safety and Emergency Response
NASA Astrophysics Data System (ADS)
Osborn, Douglas
2015-04-01
The U.S. Department of Energy's Federal Radiological Monitoring and Assessment Center Consequence Management Home Team (FRMAC/CMHT) Assessment Scientist's roles, responsibilities incorporate the FRMAC with other federal, state, and local agencies during a nuclear/radiological emergency. Before the Consequence Management Response Team arrives on-site, the FRMAC/CMHT provides technical and logistical support to the FRMAC and to state, local, and tribal authorities following a nuclear/radiological event. The FRMAC/CMHT support includes analyzing event data, evaluating hazards that relate to protection of the public, and providing event information and data products to protective action decision makers. The Assessment Scientist is the primary scientist responsible for performing calculations and analyses and communicating results to the field during any activation of the FRMAC/CMHT assets. As such, the FRMAC/CMHT Assessment Scientist has a number of different roles and responsibilities to fill depending upon the type of response that is required. Additionally, the Sandia National Laboratories (SNL) Consequence Assessment Team (CAT) Consequence Assessor roles, responsibilities involve hazardous materials operational emergency at SNL New Mexico facilities (SNL/NM) which include loss of control over radioactive, chemical, or explosive hazardous materials. When a hazardous materials operational emergency occurs, key decisions must be made in order to regain control over the hazards, protect personnel from the effects of the hazards, and mitigate impacts on operations, facilities, property, and the environment. Many of these decisions depend in whole or in part on the evaluation of potential consequences from a loss of control over the hazards. As such, the CAT has a number of different roles and responsibilities to fill depending upon the type of response that is required. Primary consequence-based decisions supported by the CAT during a hazardous materials operational emergency at SNL/NM include: (1) Onsite Protective Actions (2) Offsite Protective Action Recommendations (3) Event categorization (4) Event classification Other consequence-based decisions supported by the CAT include: (1) Response planning and operations (2) Event termination (3) Reentry planning and operations (4) Recovery planning and operations Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration.
2011 Annual Ecological Survey: Pacific Northwest National Laboratory Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, James M.; Chamness, Michele A.
The U.S. Department of Energy (DOE) Pacific Northwest Site Office (PNSO) oversees and manages the DOE contract for the Pacific Northwest National Laboratory (PNNL), a DOE Office of Science multi-program laboratory located in Richland, Washington. PNSO is responsible for ensuring that all activities conducted on the PNNL site comply with applicable laws, policies, and DOE Orders. The DOE Pacific Northwest Site Office Cultural and Biological Resources Management Plan (DOE/PNSO 2008) addresses the requirement for annual surveys and monitoring for species of concern and to identify and map invasive species. In addition to the requirement for an annual survey, proposed projectmore » activities must be reviewed to assess any potential environmental consequences of conducting the project. The assessment process requires a thorough understanding of the resources present, the potential impacts of a proposed action to those resources, and the ultimate consequences of those actions. The PNNL site is situated on the southeastern corner of the DOE Hanford Site, located at the north end of the city of Richland in south-central Washington. The site is bordered on the east by the Columbia River, on the west by Stevens Drive, and on the north by the Hanford Site 300 Area (Figure 1). The environmental setting of the PNNL site is described in Larson and Downs (2009). There are currently two facilities on the PNNL site: the William R. Wiley Environmental Molecular Sciences Laboratory and the Physical Sciences Facility. This report describes the annual survey of biological resources found on the undeveloped upland portions of the PNNL site. The annual survey is comprised of a series of individual field surveys conducted on various days in late May and throughout June 2011. A brief description of the methods PNNL ecologists used to conduct the baseline surveys and a summary of the results of the surveys are presented. Appendix A provides a list of plant and animal species identified in the upland areas of the PNNL site in 2011. Efforts in 2011 to control noxious weed populations (comprising plant species designated as Class B noxious weeds by the Washington State Noxious Weed Control Board) discovered in 2009 and initially treated with herbicides in 2010 are described in Appendix B.« less
Monitoring Seasonal Changes in Permafrost Using Seismic Interferometry
NASA Astrophysics Data System (ADS)
James, S. R.; Knox, H. A.; Abbott, R. E.
2015-12-01
The effects of climate change in polar regions and their incorporation in global climate models has recently become an area of great interest. Permafrost holds entrapped greenhouse gases, e.g. CO2 and CH4, which are released to the atmosphere upon thawing, creating a positive feedback mechanism. Knowledge of seasonal changes in active layer thickness as well as long term degradation of permafrost is critical to the management of high latitude infrastructures, hazard mitigation, and increasing the accuracy of climate predictions. Methods for effectively imaging the spatial extent, depth, thickness, and discontinuous nature of permafrost over large areas are needed. Furthermore, continuous monitoring of permafrost over annual time scales would provide valuable insight into permafrost degradation. Seismic interferometry using ambient seismic noise has proven effective for recording velocity changes within the subsurface for a variety of applications, but has yet to be applied to permafrost studies. To this end, we deployed 7 Nanometrics Trillium posthole broadband seismometers within Poker Flat Research Range, located 30 miles north of Fairbanks, Alaska in a zone of discontinuous permafrost. Approximately 2 years worth of nearly continuous ambient noise data was collected. Using the python package MSNoise, relative changes in velocity were calculated. Results show high amounts of variability throughout the study period. General trends of negative relative velocity shifts can be seen between August and October followed by a positive relative velocity shift between November and February. Differences in relative velocity changes with both frequency and spatial location are also observed, suggesting this technique is sensitive to permafrost variation with depth and extent. Overall, short and long term changes in shallow subsurface velocity can be recovered using this method proposing seismic interferometry is a promising new technique for permafrost monitoring. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Climate, Energy, Water, Land and the Spill-Over Effect (Invited)
NASA Astrophysics Data System (ADS)
Tidwell, V. C.; Backus, G.; Bier, A.; Brune, N.; Brown, T. J.
2013-12-01
Developing nations incur a greater risk to climate stress than the developed world due to poorly managed natural resources, unreliable infrastructure and brittle governing/economic institutions. When fragile states are stressed these vulnerabilities are often manifest in a 'domino effect' of reduced natural resource production-leading to economic hardship-followed by desperate emigration, social unrest, and humanitarian crises. The impact is not limited to a single nation or region but 'spills over' to adjoining areas with even broader impact on global markets and security. Toward this problem we are developing a model of climate aggravated spill-over that couples social, economic, infrastructure and resource dynamics and constraints. The model integrates system dynamics and agent based simulation to identify regions vulnerable to the spill-over effect and to explore potential mitigating and/or adaptive measures. At the heart of the analysis is human migration which is modeled by combining aspects of the Protection Motivation Theory and Theory of Planned Behavior within the mechanistic framework of Fick's first law of diffusion. Agents in the current model are distinguished at the country level by country of residence, country of origin, gender, education/skill, age, and rural/urban roots. The model of the environment in which the agents operate endogenously simulates economy, labor, population, disease, violence, energy, water, and food sectors. Various climate scenarios distinguished by differences in temperature, precipitation and extreme events, are simulated over a 50 year time horizon. Results allow exploration of the nexus between climate change, resource provisioning, especially energy, water and land, and the resultant adaptive response of the impacted population. Current modeling efforts are focused on the developing nations of West Africa. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Schematic of spill-over effects model.
Spin Measurements of an Electron Bound to a Single Phosphorous Donor in Silicon
NASA Astrophysics Data System (ADS)
Luhman, D. R.; Nguyen, K.; Tracy, L. A.; Carr, S. M.; Borchardt, J.; Bishop, N. C.; Ten Eyck, G. A.; Pluym, T.; Wendt, J.; Carroll, M. S.; Lilly, M. P.
2014-03-01
The spin of an electron bound to a single donor implanted in silicon is potentially useful for quantum information processing. We report on our efforts to measure and manipulate the spin of an electron bound to a single P donor in silicon. A low number of P donors are implanted using a self-aligned process into a silicon substrate in close proximity to a single-electron-transistor (SET) defined by lithographically patterned polysilicon gates. The SET is used to sense the occupancy of the electron on the donor and for spin read-out. An adjacent transmission line allows the application of microwave pulses to rotate the spin of the electron. We will present data from various experiments designed to exploit these capabilities. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yongjun; Tang, Pei; Zhou, Hu
A heterogeneous, inexpensive and environment-friendly carbon catalytic system was developed for the C-H bond arylation of benzene resulting in the subsequent formation of biaryl compounds. The oxygen-containing groups on these graphene oxide sheets play an essential role in the observed catalytic activity. The catalytic results of model compounds and DFT calculations show that these functional groups promote this reaction by stabilization and activation of K ions at the same time of facilitating the leaving of I. And further mechanisms studies show that it is the charge induced capabilities of oxygen groups connected to specific carbon skeleton together with the giantmore » π-reaction platform provided by the π-domain of graphene that played the vital roles in the observed excellent catalytic activity. D. Mei acknowledges the support from the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Robert K.
Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the naturemore » of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.« less
Gate Set Tomography on two qubits
NASA Astrophysics Data System (ADS)
Nielsen, Erik; Blume-Kohout, Robin; Gamble, John; Rudinger, Kenneth
Gate set tomography (GST) is a method for characterizing quantum gates that does not require pre-calibrated operations, and has been used to both certify and improve the operation of single qubits. We analyze the performance of GST applied to a simulated two-qubit system, and show that Heisenberg scaling is achieved in this case. We present a GST analysis of preliminary two-qubit experimental data, and draw comparisons with the simulated data case. Finally, we will discuss recent theoretical developments that have improved the efficiency of GST estimation procedures, and which are particularly beneficial when characterizing two qubit systems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjoreen, Terrence P
The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data andmore » an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel ideas with scientific and technological merit will be recognized and supported.« less
Utility of Characterizing and Monitoring Suspected Underground Nuclear Sites with VideoSAR
NASA Astrophysics Data System (ADS)
Dauphin, S. M.; Yocky, D. A.; Riley, R.; Calloway, T. M.; Wahl, D. E.
2016-12-01
Sandia National Laboratories proposed using airborne synthetic aperture RADAR (SAR) collected in VideoSAR mode to characterize the Underground Nuclear Explosion Signature Experiment (UNESE) test bed site at the Nevada National Security Site (NNSS). The SNL SAR collected airborne, Ku-band (16.8 GHz center frequency), 0.2032 meter ground resolution over NNSS in August 2014 and X-band (9.6 GHz), 0.1016 meter ground resolution fully-polarimetric SAR in April 2015. This paper reports the findings of processing and exploiting VideoSAR for creating digital elevation maps, detecting cultural artifacts and exploiting full-circle polarimetric signatures. VideoSAR collects a continuous circle of phase history data, therefore, imagery can be formed over the 360-degrees of the site. Since the Ku-band VideoSAR had two antennas suitable for interferometric digital elevation mapping (DEM), DEMs could be generated over numerous aspect angles, filling in holes created by targets with height by imaging from all sides. Also, since the X-band VideoSAR was fully-polarimetric, scattering signatures could be gleaned from all angles also. Both of these collections can be used to find man-made objects and changes in elevation that might indicate testing activities. VideoSAR provides a unique, coherent measure of ground objects allowing one to create accurate DEMS, locate man-made objects, and identify scattering signatures via polarimetric exploitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, for sponsoring this work. We would also like to thank the Underground Nuclear Explosion Signatures Experiment team, a multi-institutional and interdisciplinary group of scientists and engineers, for its technical contributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brock, Billy C.; Allen, Steven E.
The monopulse response of radar systems utilizing a short-focal-length offset-fed parabolic reflector can be compromised by depolarization of the signal by the target and by multipath scattering from nearby objects. The polarimetric behavior of this type of antenna is examined. The use of a shroud to reduce multipath interaction with nearby objects is also described. The mechanism through which man-made targets can introduce cross-polarization components into the scattered field is explained. Two kinds of polarization filters, suitable for linear polarization, are described for mitigating the effects of depolarization due to cross-polarization scattering. The benefit of the application of a polarizationmore » filter is demonstrated by modeling a monopulse radar system viewing a dihedral corner reflector. The model demonstrates dramatic performance improvement when the filter is used, showing that usable performance can be achieved even when the target depolarization is so severe that the cross-polarized signal is more than an order of magnitude stronger than the desired co-polarized signal. Relevant and useful reference material is also included in the form of appendices describing the relationship between different polarization representations and demonstrating the conditions under which Maxwell's equations can be considered to be scale-invariant. Acknowledgements This report is the result of a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories and General Atomics Aeronautical Systems, Inc. -- CRADA No. SC08/01749. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affiliate of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and related mission systems, including the Predator (r) /Gray Eagle-series and Lynx (r) Multi-mode Radar. - 4 -« less
Surface-Wave Tomography of Yucca Flat, Nevada
NASA Astrophysics Data System (ADS)
Toney, L. D.; Abbott, R. E.; Knox, H. A.; Preston, L. A.; Hoots, C. R.
2016-12-01
In 2015, Sandia National Laboratories conducted an active-source seismic survey of Yucca Flat, Nevada, on the Nevada National Security Site. The Yucca Flat basin hosted over 900 nuclear tests between 1951 and 1992. Data from this survey will help characterize seismic propagation effects of the area, informing models for the next phase of the Source Physics Experiments. The survey source was a 13,000-kg weight-drop at 91 locations along a 19-km N-S transect and 56 locations along an 11-km E-W transect. Over 350 three-component 2-Hz geophones were variably spaced at 10, 20, and 100 m along each line. We employed roll-along survey geometry to ensure 10-m receiver spacing within 2 km of the source. Phase velocity surface-wave analysis via the refraction-microtremor (ReMi) method was previously performed on this data in order to obtain an S-wave velocity model of the subsurface. However, the results of this approach were significantly impacted in areas where ray paths were proximate to underground nuclear tests, resulting in a spatially incomplete model. We have processed the same data utilizing group velocities and the multiple filter technique (MFT), with the hope that the propagation of wave groups is less impacted by the disrupted media surrounding former tests. We created a set of 30 Gaussian band-pass filters with scaled relative passbands and central frequencies ranging from 1 to 50 Hz. We picked fundamental Rayleigh wave arrivals from the filtered data; these picks were then inverted for 2D S-wave velocity along the transects. The new S-wave velocity model will be integrated with previous P-wave tomographic results to yield a more complete model of the subsurface structure of Yucca Flat. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Shock Temperatures of Major Silicates in Rocky Planets
NASA Astrophysics Data System (ADS)
Davies, E.; Root, S.; Spaulding, D.; Kraus, R. G.; Stewart, S. T.; Jacobsen, S. B.; Mattsson, T. R.
2016-12-01
Rocky extra-solar planets have been discovered with very high masses that challenge our theoretical understanding of planetary structures and notions of planet formation. In order to constrain models and understand mechanisms of both the formation and subsequent evolution of these planets, it is imperative to determine the properties of materials within the interiors of large Earth-like planets. The major minerals olivine [(Mg,Fe)2SiO4] and enstatite [(Mg,Fe)SiO3], along with Fe-rich metal (with 5% Ni), are the most abundant solids from which Earth-like planets accrete. These materials are subject to ultra-high pressures and temperatures (approaching 10TPa and 10,000 K) during planetary formation and in the present day interiors of large rocky planets. Here, we present results of shock compression experiments on the Sandia Z machine. Shock compression experiments with the Sandia Z machine use large current and field densities that generate magnetic pressures up to 650 GPa that can accelerate flyer plates up to 40 km/s. We report shock temperatures for pressures greater than 270 GPa for forsterite (Mg2SiO4) and enstatite. Our results, together with prior data, demonstrate discrepancies in shock temperatures on forsterite in the region of possible incongruent melting on the Hugoniot. Key gaps in the Hugoniot contribute to this uncertainty. EOS formalisms such as M-ANEOS, which are commonly used in planetary impact simulations, over predict temperatures above 200 GPa with significant disagreement above 500 GPa. As a result, the amount of material subject to shock-induced vaporization during giant impacts is larger than currently estimated. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Integrated Energy-Water Planning in the Western and Texas Interconnections (Invited)
NASA Astrophysics Data System (ADS)
Tidwell, V. C.
2013-12-01
While thermoelectric power generation accounts for less than one percent of total water consumption in the western U.S, steady growth in demand is projected for this sector. Complexities and heterogeneity in water supply, water demand, and institutional controls make water development a challenging proposition throughout the West. A consortium of National Laboratories, the University of Texas and the Electric Power Research Institute are working with the Western Governors' Association and Western States Water Council to assist the Western Electricity Coordinating Council and the Electric Reliability Council of Texas to integrate water related issues into long-term transmission planning. Specifically, water withdrawal and consumption have been estimated for each western power plant and their susceptibility to climate impacts assessed. To assist with transmission planning, water availability and cost data have been mapped at the 8-digit Hydrologic Unit Code level for the conterminous western U.S. (1208 watersheds). Five water sources were individually considered, including unappropriated surface water, unappropriated groundwater, appropriated water, municipal wastewater and brackish groundwater. Also mapped is projected growth in consumptive water demand to 2030. The relative costs (capital and O&M) to secure, convey, and treat the water as necessary have also been estimated for each source of water. These data configured into watershed level supply curves were subsequently used to constrain West-wide transmission planning. Results across a range of alternative energy futures indicate the impact of water availability and cost on the makeup and siting of future power generation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Water budgets at a 8-digit HUC level constructed by aggregating available water (all five sources) and subtracting projected change in demand for 2010-2030.
Conduction and Narrow Escape in Dense, Disordered, Particulate-based Heterogeneous Materials
NASA Astrophysics Data System (ADS)
Lechman, Jeremy
For optimal and reliable performance, many technological devices rely on complex, disordered heterogeneous or composite materials and their associated manufacturing processes. Examples include many powder and particulate-based materials found in phyrotechnic devices for car airbags, electrodes in energy storage devices, and various advanced composite materials. Due to their technological importance and complex structure, these materials have been the subject of much research in a number of fields. Moreover, the advent of new manufacturing techniques based on powder bed and particulate process routes, the potential of functional nano-structured materials, and the additional recognition of persistent shortcomings in predicting reliable performance of high consequence applications; leading to ballooning costs of fielding and maintaining advanced technologies, should motivate renewed efforts in understanding, predicting and controlling these materials' fabrication and behavior. Our particular effort seeks to understand the link between the top-down control presented in specific non-equilibrium processes routes (i.e., manufacturing processes) and the variability and uncertainty of the end product performance. Our ultimate aim is to quantify the variability inherent in these constrained dynamical or random processes and to use it to optimize and predict resulting material properties/performance and to inform component design with precise margins. In fact, this raises a set of deep and broad-ranging issues that have been recognized and as touching the core of a major research challenge at Sandia National Laboratories. In this talk, we will give an overview of recent efforts to address aspects of this vision. In particular the case of conductive properties of packed particulate materials will be highlighted. Combining a number of existing approaches we will discuss new insights and potential directions for further development toward the stated goal. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
Technology Transfer Annual Report Fiscal Year 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skinner, Wendy Lee
Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partnersmore » for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Technology Deployment and Contracts Management Offices. Accomplishments cataloged in the report reflect the achievements and creativity of the researchers, technicians, support staff, and operators of the INL workforce.« less
ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon
NASA Astrophysics Data System (ADS)
Tracy, Lisa; Luhman, Dwight; Carr, Stephen; Borchardt, John; Bishop, Nathaniel; Ten Eyck, Gregory; Pluym, Tammy; Wendt, Joel; Witzel, Wayne; Blume-Kohout, Robin; Nielsen, Erik; Lilly, Michael; Carroll, Malcolm
In this talk we will discuss electron spin resonance experiments in single donor silicon qubit devices fabricated at Sandia National Labs. A self-aligned device structure consisting of a polysilicon gate SET located adjacent to the donor is used for donor electron spin readout. Using a cryogenic HEMT amplifier next to the silicon device, we demonstrate spin readout at 100 kHz bandwidth and Rabi oscillations with 0.96 visibility. Electron spin resonance measurements on these devices show a linewidth of 30 kHz and coherence times T2* = 10 us and T2 = 0.3 ms. We also discuss estimates of the fidelity of our donor electron spin qubit measurements using gate set tomography. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon.
NASA Astrophysics Data System (ADS)
England, Troy; Curry, Matthew; Carr, Steve; Swartzentruber, Brian; Lilly, Michael; Bishop, Nathan; Carrol, Malcolm
2015-03-01
Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance typical of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will discuss calibration data, as well as modeling and simulation of cryogenic silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) circuits connected to a silicon SET and operating at 4 K. We find a continuum of solutions from simple, single-HBT amplifiers to more complex, multi-HBT circuits suitable for integration, with varying noise levels and power vs. bandwidth tradeoffs. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
Experimental and Theoretical Study of Molecular Response of Amine Bases in Organic Solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kathmann, Shawn M.; Cho, Herman M.; Chang, Tsun-Mei
2014-05-08
Reorientational correlation times of various amine bases (viz., pyridine, 2,6-lutidene, 2,2,6,6-tetramethylpiperidine) and organic solvents (dichloromethane, toluene) were determined by solution-state NMR relaxation time measurements and compared with predictions from molecular dynamics (MD) simulations. The bases and solvents are reagents in complex reactions involving Frustrated Lewis Pairs (FLP), which display remarkable catalytic activity in metal-free H2 scission. The comparison of measured and simulated correlation times is a key test of the ability of recent MD and quantum electronic structure calculations to elucidate the mechanism of FLP activity. Correla- tion times were found to be in the range 1.4-3.4 ps (NMR) andmore » 1.23-5.28 ps (MD) for the amines, and 0.9-2.3 ps (NMR) and 0.2-1.7 ps (MD) for the solvent molecules. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacic Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
The melting temperature of liquid water with the effective fragment potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brorsen, Kurt R.; Willow, Soohaeng Y.; Xantheas, Sotiris S.
2015-09-17
Direct simulation of the solid-liquid water interface with the effective fragment potential (EFP) via the constant enthalpy and pressure (NPH) ensemble was used to estimate the melting temperature (Tm) of ice-Ih. Initial configurations and velocities, taken from equilibrated constant pressure and temperature (NPT) simulations at T = 300 K, 350 K and 400 K, respectively, yielded corresponding Tm values of 378±16 K, 382±14 K and 384±15 K. These estimates are consistently higher than experiment, albeit to the same degree with previously reported estimates using density functional theory (DFT)-based Born-Oppenheimer simulations with the Becke-Lee-Yang-Parr functional plus dispersion corrections (BLYP-D). KRB wasmore » supported by a Computational Science Graduate Fellowship from the Department of Energy. MSG was supported by a U.S. National Science Foundation Software Infrastructure (SI2) grant (ACI – 1047772). SSX acknowledges support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parent, Lucas R.; Robinson, David B.; Cappillino, Patrick J.
2014-02-11
The prevalent approach to developing new nanomaterials is a trial and error process of iteratively altering synthesis procedures and then characterizing the resulting nanostructures. This is fundamentally limited in that the growth processes that occur during synthesis can only be inferred from the final synthetic structure. Directly observing real-time nanomaterial growth provides unprecedented insight into the relationship between synthesis conditions and product evolution, and facilitates a mechanistic approach to nanomaterial development. Here we use in situ liquid stage scanning transmission electron microscopy to observe the growth of mesoporous palladium in a solvated block copolymer (BCP) template under various synthesis conditions,more » and ultimately determine a refined synthesis procedure that yields ordered pores. We find that at low organic solvent (tetrahydrofuran, THF) content, the BCP assembles into a rigid, cylindrical micelle array with a high degree of short-range order, but poor long-range order. Upon slowing the THF evaporation rate using a solvent-vapor anneal step, the long-range order is greatly improved. The electron beam induces nucleation of small particles in the aqueous phase around the micelles. The small particles then flocculate and grow into denser structures that surround the micelles, forming an ordered mesoporous structure. The microscope observations revealed that template disorder can be addressed prior to reaction, and is not invariably induced by the growth process itself, allowing us to more quickly optimize the synthetic method. This work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76RL01830. This research was funded in part by: the Presidential Early Career Award for Scientist and Engineers for I.A., the University of California Academic Senate and the University of California Laboratory fee research grant, the Laboratory-Directed Research and Development program at Sandia National Laboratories, and the Chemical Imaging Initiative at Pacific Northwest National Laboratory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.« less
Electromagnetic Measurements in an Active Oilfield Environment
NASA Astrophysics Data System (ADS)
Schramm, K. A.; Aldridge, D. F.; Bartel, L. C.; Knox, H. A.; Weiss, C. J.
2015-12-01
An important issue in oilfield development pertains to mapping and monitoring of the fracture distributions (either natural or man-made) controlling subsurface fluid flow. Although microseismic monitoring and analysis have been used for this purpose for several decades, there remain several ambiguities and uncertainties with this approach. We are investigating a novel electromagnetic (EM) technique for detecting and mapping hydraulic fractures in a petroleum reservoir by injecting an electrically conductive contrast agent into an open fracture. The fracture is subsequently illuminated by a strong EM field radiated by a large engineered antenna. Specifically, a grounded electric current source is applied directly to the steel casing of the borehole, either at/near the wellhead or at a deep downhole point. Transient multicomponent EM signals (both electric and magnetic) scattered by the conductivity contrast are then recorded by a surface receiver array. We are presently utilizing advanced 3D numerical modeling algorithms to accurately simulate fracture responses, both before and after insertion of the conductive contrast agent. Model results compare favorably with EM field data recently acquired in a Permian Basin oilfield. However, extraction of the very-low-amplitude fracture signatures from noisy data requires effective noise suppression strategies such as long stacking times, rejection of outliers, and careful treatment of natural magnetotelluric fields. Dealing with the ever-present "episodic EM noise" typical in an active oilfield environment (associated with drilling, pumping, machinery, traffic, etc.) constitutes an ongoing problem. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Quantitative analysis of nano-pore geomaterials and representative sampling for digital rock physics
NASA Astrophysics Data System (ADS)
Yoon, H.; Dewers, T. A.
2014-12-01
Geomaterials containing nano-pores (e.g., shales and carbonate rocks) have become increasingly important for emerging problems such as unconventional gas and oil resources, enhanced oil recovery, and geologic storage of CO2. Accurate prediction of coupled geophysical and chemical processes at the pore scale requires realistic representation of pore structure and topology. This is especially true for chalk materials, where pore networks are small and complex, and require characterization at sub-micron scale. In this work, we apply laser scanning confocal microscopy to characterize pore structures and microlithofacies at micron- and greater scales and dual focused ion beam-scanning electron microscopy (FIB-SEM) for 3D imaging of nanometer-to-micron scale microcracks and pore distributions. With imaging techniques advanced for nano-pore characterization, a problem of scale with FIB-SEM images is how to take nanometer scale information and apply it to the thin-section or larger scale. In this work, several texture characterization techniques including graph-based spectral segmentation, support vector machine, and principal component analysis are applied for segmentation clusters represented by 1-2 FIB-SEM samples per each cluster. Geometric and topological properties are analyzed and lattice-Boltzmann method (LBM) is used to obtain permeability at several different scales. Upscaling of permeability to the Darcy scale (e.g., the thin-section scale) with image dataset will be discussed with emphasis on understanding microfracture-matrix interaction, representative volume for FIB-SEM sampling, and multiphase flow and reactive transport. Funding from the DOE Basic Energy Sciences Geosciences Program is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Imaging the Subsurface with Upgoing Muons
NASA Astrophysics Data System (ADS)
Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.
2014-12-01
We assess the feasibility of imaging the subsurface using upgoing muons. Traditional muon imaging focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target detectors. For aboveground objects like a volcano, the detector is placed at the volcano's base and the top portion of the volcano is imaged. For underground targets like tunnels, the detector would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods sensitive to density variations would be ideal. High-energy cosmic ray muons are more sensitive to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and detector, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Roesler, E. L.; Bosler, P. A.; Taylor, M.
2016-12-01
The impact of strong extratropical storms on coastal communities is large, and the extent to which storms will change with a warming Arctic is unknown. Understanding storms in reanalysis and in climate models is important for future predictions. We know that the number of detected Arctic storms in reanalysis is sensitive to grid resolution. To understand Arctic storm sensitivity to resolution in climate models, we describe simulations designed to identify and compare Arctic storms at uniform low resolution (1 degree), at uniform high resolution (1/8 degree), and at variable resolution (1 degree to 1/8 degree). High-resolution simulations resolve more fine-scale structure and extremes, such as storms, in the atmosphere than a uniform low-resolution simulation. However, the computational cost of running a globally uniform high-resolution simulation is often prohibitive. The variable resolution tool in atmospheric general circulation models permits regional high-resolution solutions at a fraction of the computational cost. The storms are identified using the open-source search algorithm, Stride Search. The uniform high-resolution simulation has over 50% more storms than the uniform low-resolution and over 25% more storms than the variable resolution simulations. Storm statistics from each of the simulations is presented and compared with reanalysis. We propose variable resolution as a cost-effective means of investigating physics/dynamics coupling in the Arctic environment. Future work will include comparisons with observed storms to investigate tuning parameters for high resolution models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7402 A
3D Printing and Digital Rock Physics for Geomaterials
NASA Astrophysics Data System (ADS)
Martinez, M. J.; Yoon, H.; Dewers, T. A.
2015-12-01
Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. Digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts with complex internal geometries. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that these technologies can bring to geosciences and present early experiences with coupled multiscale experimental and numerical analysis using 3D printed fractured rock specimens. In particular, we discuss the processes of selection and printing of transparent fractured specimens based on 3D reconstruction of micro-fractured rock to study fluid flow characterization and manipulation. Micro-particle image velocimetry is used to directly visualize 3D single and multiphase flow velocity in 3D fracture networks. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Site Characterization for a Deep Borehole Field Test
NASA Astrophysics Data System (ADS)
Kuhlman, K. L.; Hardin, E. L.; Freeze, G. A.; Sassani, D.; Brady, P. V.
2015-12-01
The US Department of Energy Office of Nuclear Energy is at the beginning of 5-year Deep Borehole Field Test (DBFT) to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages over mined repositories, including incremental construction and loading, the enhanced natural barriers provided by deep continental crystalline basement, and reduced site characterization. Site characterization efforts need to determine an eligible site that does not have the following disqualifying characteristics: greater than 2 km to crystalline basement, upward vertical fluid potential gradients, presence of economically exploitable natural resources, presence of high permeability connection to the shallow subsurface, and significant probability of future seismic or volcanic activity. Site characterization activities for the DBFT will include geomechanical (i.e., rock in situ stress state, and fluid pressure), geological (i.e., rock and fracture infill lithology), hydrological (i.e., quantity of fluid, fluid convection properties, and solute transport mechanisms), and geochemical (i.e., rock-water interaction and natural tracers) aspects. Both direct (i.e., sampling and in situ testing) and indirect (i.e., borehole geophysical) methods are planned for efficient and effective characterization of these site aspects and physical processes. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth, and interpretation of material and system parameters relevant to numerical site simulation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Optimized Finite-Difference Coefficients for Hydroacoustic Modeling
NASA Astrophysics Data System (ADS)
Preston, L. A.
2014-12-01
Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Sparse Polynomial Chaos Surrogate for ACME Land Model via Iterative Bayesian Compressive Sensing
NASA Astrophysics Data System (ADS)
Sargsyan, K.; Ricciuto, D. M.; Safta, C.; Debusschere, B.; Najm, H. N.; Thornton, P. E.
2015-12-01
For computationally expensive climate models, Monte-Carlo approaches of exploring the input parameter space are often prohibitive due to slow convergence with respect to ensemble size. To alleviate this, we build inexpensive surrogates using uncertainty quantification (UQ) methods employing Polynomial Chaos (PC) expansions that approximate the input-output relationships using as few model evaluations as possible. However, when many uncertain input parameters are present, such UQ studies suffer from the curse of dimensionality. In particular, for 50-100 input parameters non-adaptive PC representations have infeasible numbers of basis terms. To this end, we develop and employ Weighted Iterative Bayesian Compressive Sensing to learn the most important input parameter relationships for efficient, sparse PC surrogate construction with posterior uncertainty quantified due to insufficient data. Besides drastic dimensionality reduction, the uncertain surrogate can efficiently replace the model in computationally intensive studies such as forward uncertainty propagation and variance-based sensitivity analysis, as well as design optimization and parameter estimation using observational data. We applied the surrogate construction and variance-based uncertainty decomposition to Accelerated Climate Model for Energy (ACME) Land Model for several output QoIs at nearly 100 FLUXNET sites covering multiple plant functional types and climates, varying 65 input parameters over broad ranges of possible values. This work is supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Accelerated Climate Modeling for Energy (ACME) project. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Sargsyan, K.; Ricciuto, D. M.; Safta, C.; Debusschere, B.; Najm, H. N.; Thornton, P. E.
2016-12-01
Surrogate construction has become a routine procedure when facing computationally intensive studies requiring multiple evaluations of complex models. In particular, surrogate models, otherwise called emulators or response surfaces, replace complex models in uncertainty quantification (UQ) studies, including uncertainty propagation (forward UQ) and parameter estimation (inverse UQ). Further, surrogates based on Polynomial Chaos (PC) expansions are especially convenient for forward UQ and global sensitivity analysis, also known as variance-based decomposition. However, the PC surrogate construction strongly suffers from the curse of dimensionality. With a large number of input parameters, the number of model simulations required for accurate surrogate construction is prohibitively large. Relatedly, non-adaptive PC expansions typically include infeasibly large number of basis terms far exceeding the number of available model evaluations. We develop Weighted Iterative Bayesian Compressive Sensing (WIBCS) algorithm for adaptive basis growth and PC surrogate construction leading to a sparse, high-dimensional PC surrogate with a very few model evaluations. The surrogate is then readily employed for global sensitivity analysis leading to further dimensionality reduction. Besides numerical tests, we demonstrate the construction on the example of Accelerated Climate Model for Energy (ACME) Land Model for several output QoIs at nearly 100 FLUXNET sites covering multiple plant functional types and climates, varying 65 input parameters over broad ranges of possible values. This work is supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Accelerated Climate Modeling for Energy (ACME) project. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Nonequilibrium Simulations of Ion Dynamics in Ionomer Melts
NASA Astrophysics Data System (ADS)
Frischknecht, Amalie
Ionomers, polymers containing a small fraction of covalently bound ionic groups, are of interest as possible electrolytes in batteries. However, to date ionomers do not have sufficiently high conductivities for practical application, most likely because the ions tend to form aggregates, leading to slow ion transport. To build a better understanding of the relationships among ionomer chemistry, morphology, and ion transport, we have performed a series of molecular dynamics simulations and connected aspects of these simulations with experiment. In previous work using both atomistic and coarse-grained models, we showed that precise ionomers (with a fixed spacing between ionic groups along the polymer backbone) exhibit a range of ionic aggregate morphologies, from discrete clusters to percolated aggregates. In this talk I will describe recent simulations of our coarse-grained ionomer melts in an applied electric field. From a constant applied field, we are able to extract the ion mobilities and hence conductivities. We find that ionomers with percolated ionic aggregate morphologies have higher ion mobilities and hence higher conductivities. Application of an oscillating electric field enables us to calculate the frequency-dependent conductivity of the model ionomer melts. The real part of the conductivity has a high frequency peak associated with plasma oscillations, and a very broad low frequency peak associated with ion motions in ionic aggregates. I will end with comments on the connections to atomistic simulations and to experimental probes of ion dynamics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Geomechanical Response of Jointed Caprock During CO2 Geological Sequestration
NASA Astrophysics Data System (ADS)
Newell, P.; Martinez, M. J.; Bishop, J. E.
2014-12-01
Geological sequestration of CO2 refers to the injection of supercritical CO2 into deep reservoirs trapped beneath a low-permeability caprock formation. Maintaining caprock integrity during the injection process is the most important factor for a successful injection. In this work we evaluate the potential for jointed caprock during injection scenarios using coupled three-dimensional multiphase flow and geomechanics modeling. Evaluation of jointed/fractured caprock systems is of particular concern to CO2 sequestration because creation or reactivation of joints (mechanical damage) can lead to enhanced pathways for leakage. In this work, we use an equivalent continuum approach to account for the joints within the caprock. Joint's aperture and non-linear stiffness of the caprock will be updated dynamically based on the effective normal stress. Effective permeability field will be updated based on the joints' aperture creating an anisotropic permeability field throughout the caprock. This feature would add another coupling between the solid and fluid in addition to basic Terzaghi's effective stress concept. In this study, we evaluate the impact of the joint's orientation and geometry of caprock and reservoir layers on geomechanical response of the CO2 geological systems. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Cavity length dependence of mode beating in passively Q-switched Nd-solid state lasers
NASA Astrophysics Data System (ADS)
Zameroski, Nathan D.; Wanke, Michael; Bossert, David
2013-03-01
The temporal intensity profile of pulse(s) from passively Q-switched and passively Q-switched mode locked (QSML) solid-state lasers is known to be dependent on cavity length. In this work, the pulse width, modulation depth, and beat frequencies of a Nd:Cr:GSGG laser using a Cr+4:YAG passive Q-switch are investigated as function cavity length. Measured temporal widths are linearly correlated with cavity length but generally 3-5 ns larger than theoretical predictions. Some cavity lengths exhibit pulse profiles with no modulation while other lengths exhibit complete amplitude modulation. The observed beat frequencies at certain cavity lengths cannot be accounted for with passively QSML models in which the pulse train repetition rate is τRT-1, τRT= round-trip time. They can be explained, however, by including coupled cavity mode-locking effects. A theoretical model developed for a two section coupled cavity semiconductor laser is adapted to a solid-state laser to interpret measured beat frequencies. We also numerically evaluate the temporal criterion required to achieve temporally smooth Q-switched pulses, versus cavity length and pump rate. We show that in flash lamp pumped systems, the difference in buildup time between longitudinal modes is largely dependent on the pump rate. In applications where short pulse delay is important, the pumping rate may limit the ability to achieve temporally smooth pulses in passively Q-switched lasers. Simulations support trends in experimental data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Simulation of Ionic Aggregation and Ion Dynamics in Model Ionomers
NASA Astrophysics Data System (ADS)
Frischknecht, Amalie L.
2012-02-01
Ionomers, polymers containing a small fraction of covalently bound ionic groups, are of interest as possible electrolytes in batteries. A single-ion conducting polymer electrolyte would be safer and have higher efficiency than the currently-used liquid electrolytes. However, to date ionomeric materials do not have sufficiently high conductivities for practical application. This is most likely because the ions tend to form aggregates, leading to slow ion transport. A key question is therefore how molecular structure affects the ionic aggregation and ion dynamics. To probe these structure-property relationships, we have performed molecular simulations of a set of recently synthesized poly(ethylene-co-acrylic acid) copolymers and ionomers, with a focus on the morphology of the ionic aggregates. The ionomers have a precise, constant spacing of charged groups, making them ideal for direct comparisons with simulations. Ab initio calculations give insight into the expected coordination of cations with fragments of the ionomers. All-atom molecular dynamics (MD) simulations of the ionomer melt show aggregation of the ionic groups into extended string-like clusters. An extensive set of coarse-grained molecular dynamics simulations extend the results to longer times and larger length scales. The structure factors calculated from the MD simulations compare favorably with x-ray scattering data. Furthermore, the simulations give a detailed picture of the sizes, shapes, and composition of the ionic aggregates, and how they depend on polymer architecture. Implications for ion transport will be discussed. [Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Geomechanical Engineering Concepts Applied to Deep Borehole Disposal Wells
NASA Astrophysics Data System (ADS)
Herrick, C. G.; Haimson, B. C.; Lee, M.
2015-12-01
Deep borehole disposal (DBD) of certain defense-generated radioactive waste forms is being considered by the US Department of Energy (DOE) as an alternative to mined repositories. The 17 inch diameter vertical boreholes are planned to be drilled in crystalline basement rock. As part of an initial field test program, the DOE will drill a demonstration borehole, to be used to test equipment for handling and emplacing prototype nonradioactive waste containers, and a second smaller diameter borehole, to be used for site characterization. Both boreholes will be drilled to a depth of 5 km. Construction of such boreholes is expected to be complex because of their overall length, large diameter, and anticipated downhole conditions of high temperatures, pore pressures, and stress regimes. It is believed that successful development of DBD boreholes can only be accomplished if geologic and tectonic conditions are characterized and drill activities are designed based on that understanding. Our study focuses primarily on using the in situ state of stress to mitigate borehole wall failure, whether tensile or compressive. The measured stresses, or their constrained estimates, will include pore pressure, the vertical stress, the horizontal stresses and orientations, and thermally induced stresses. Pore pressure will be measured directly or indirectly. Horizontal stresses will be estimated from hydraulic fracturing tests, leak off tests, and breakout characteristics. Understanding the site stress condition along with the rock's strength characteristics will aid in the optimization of mud weight and casing design required to control borehole wall failure and other drilling problems.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6552A
DFT modeling of chemistry on the Z machine
NASA Astrophysics Data System (ADS)
Mattsson, Thomas
2013-06-01
Density Functional Theory (DFT) has proven remarkably accurate in predicting properties of matter under shock compression for a wide-range of elements and compounds: from hydrogen to xenon via water. Materials where chemistry plays a role are of particular interest for many applications. For example the deep interiors of Neptune, Uranus, and hundreds of similar exoplanets are composed of molecular ices of carbon, hydrogen, oxygen, and nitrogen at pressures of several hundred GPa and temperatures of many thousand Kelvin. High-quality thermophysical experimental data and high-fidelity simulations including chemical reaction are necessary to constrain planetary models over a large range of conditions. As examples of where chemical reactions are important, and demonstration of the high fidelity possible for these both structurally and chemically complex systems, we will discuss shock- and re-shock of liquid carbon dioxide (CO2) in the range 100 to 800 GPa, shock compression of the hydrocarbon polymers polyethylene (PE) and poly(4-methyl-1-pentene) (PMP), and finally simulations of shock compression of glow discharge polymer (GDP) including the effects of doping with germanium. Experimental results from Sandia's Z machine have time and again validated the DFT simulations at extreme conditions and the combination of experiment and DFT provide reliable data for evaluating existing and constructing future wide-range equations of state models for molecular compounds like CO2 and polymers like PE, PMP, and GDP. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Magyar, Rudolph
2013-06-01
We report a computational and validation study of equation of state (EOS) properties of liquid / dense plasma mixtures of xenon and ethane to explore and to illustrate the physics of the molecular scale mixing of light elements with heavy elements. Accurate EOS models are crucial to achieve high-fidelity hydrodynamics simulations of many high-energy-density phenomena such as inertial confinement fusion and strong shock waves. While the EOS is often tabulated for separate species, the equation of state for arbitrary mixtures is generally not available, requiring properties of the mixture to be approximated by combining physical properties of the pure systems. The main goal of this study is to access how accurate this approximation is under shock conditions. Density functional theory molecular dynamics (DFT-MD) at elevated-temperature and pressure is used to assess the thermodynamics of the xenon-ethane mixture. The simulations are unbiased as to elemental species and therefore provide comparable accuracy when describing total energies, pressures, and other physical properties of mixtures as they do for pure systems. In addition, we have performed shock compression experiments using the Sandia Z-accelerator on pure xenon, ethane, and various mixture ratios thereof. The Hugoniot results are compared to the DFT-MD results and the predictions of different rules for combing EOS tables. The DFT-based simulation results compare well with the experimental points, and it is found that a mixing rule based on pressure equilibration performs reliably well for the mixtures considered. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
The Tri-lab Tantalum Strength Consortium
NASA Astrophysics Data System (ADS)
Flicker, Dawn G.; Arsenlis, Thomas A.; Austin, Ryan; Barton, Nathan R.; Benage, John F.; Bronkhorst, Curt A.; Brown, Justin L.; Brown, Staci L.; Buttler, William T.; Shen, Shuh-Rong; Dattelbaum, Dana M.; Fensin, Sayu J.; Gray, George T., III; Lane, J. Matthew D.; Lim, Hojun; Luscher, D. J.; Mattsson, Thomas R.; McNabb, Dennis P.; Remington, Bruce A.; Park, Hye-Sook; Prisbrey, Shon T.; Prime, Michael B.; Scharff, Robert J.; Schraad, Mark W.; Sun, Amy C.
2017-06-01
A Tri-lab consortium of experimentalists and theorists at SNL, LLNL, and LANL is joining forces to better understand tantalum strength across an unprecedented range of loading conditions. The team is collecting and comparing tantalum strength data from Hopkinson bar, Taylor cylinder, guns, Z, Omega and the NIF. These experiments, all using Ta from a single lot, span pressures from tenths to hundreds of GPa and strain rates from 103 to 107. New experiments are underway to provide more overlap between the platforms. The experiments are being simulated with a variety of models in order to determine which processes are important under which conditions. The presentation will show results to date. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.
Anti-levitation of Landau levels in vanishing magnetic fields
NASA Astrophysics Data System (ADS)
Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.
Soon after the discovery of the quantum Hall effects in two-dimensional electron systems, the question on the fate of the extended states in a Landau level in vanishing magnetic (B) field arose. Many theoretical models have since been proposed, and experimental results remain inconclusive. In this talk, we report experimental observation of anti-levitation behavior of Landau levels in vanishing B fields (down to as low as B 58 mT) in a high quality heterojunction insulated-gated field-effect transistor (HIGFET). We observed that, in the Landau fan diagram of electron density versus magnetic field, the positions of the magneto-resistance minima at Landau level fillings ν = 4, 5, 6 move below the ``traditional'' Landau level line to lower electron densities. This clearly differs from what was observed in the earlier experiments where in the same Landau fan plot the density moved up. Our result strongly supports the anti-levitation behavior predicted recently. Moreover, the even and odd Landau level filling states show quantitatively different behaviors in anti-levitation, suggesting that the exchange interactions, which are important at odd fillings, may play a role. SNL is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Ziegler, A.; Balch, R. S.; Knox, H. A.; Van Wijk, J. W.; Draelos, T.; Peterson, M. G.
2016-12-01
We present results (e.g. seismic detections and STA/LTA detection parameters) from a continuous downhole seismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project. Specifically, we evaluate data from a passive vertical monitoring array consisting of 16 levels of 3-component 15Hz geophones installed in the field and continuously recording since January 2014. This detection database is directly compared to ancillary data (i.e. wellbore pressure) to determine if there is any relationship between seismic observables and CO2 injection and pressure maintenance in the field. Of particular interest is detection of relatively low-amplitude signals constituting long-period long-duration (LPLD) events that may be associated with slow shear-slip analogous to low frequency tectonic tremor. While this category of seismic event provides great insight into dynamic behavior of the pressurized subsurface, it is inherently difficult to detect. To automatically detect seismic events using effective data processing parameters, an automated sensor tuning (AST) algorithm developed by Sandia National Laboratories is being utilized. AST exploits ideas from neuro-dynamic programming (reinforcement learning) to automatically self-tune and determine optimal detection parameter settings. AST adapts in near real-time to changing conditions and automatically self-tune a signal detector to identify (detect) only signals from events of interest, leading to a reduction in the number of missed legitimate event detections and the number of false event detections. Funding for this project is provided by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) through the Southwest Regional Partnership on Carbon Sequestration (SWP) under Award No. DE-FC26-05NT42591. Additional support has been provided by site operator Chaparral Energy, L.L.C. and Schlumberger Carbon Services. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan; Wei, Zhehao; Gao, Feng
2015-05-01
In this work, CeO2 nanocubes with controlled particle size and dominating (100) facets are synthesized as supports for VOx catalysts. Combined TEM, SEM, XRD, and Raman study reveals that the oxygen vacancy density of CeO2 supports can be tuned by tailoring the particle sizes without altering the dominating facets, where smaller particle sizes result in larger oxygen vacancy densities. At the same vanadium coverage, the VOx catalysts supported on small-sized CeO2 supports with higher oxygen defect densities exhibit promoted redox property and lower activation energy for methoxyl group decomposition, as evidenced by H2-TPR and methanol TPD study. These results furthermore » confirm that the presence of oxygen vacancies plays an important role in promoting the activity of VOx species in methanol oxidation. We gratefully acknowledge financial support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Part of this work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the DOE by Battelle.« less
Space station dynamics, attitude control and momentum management
NASA Technical Reports Server (NTRS)
Sunkel, John W.; Singh, Ramen P.; Vengopal, Ravi
1989-01-01
The Space Station Attitude Control System software test-bed provides a rigorous environment for the design, development and functional verification of GN and C algorithms and software. The approach taken for the simulation of the vehicle dynamics and environmental models using a computationally efficient algorithm is discussed. The simulation includes capabilities for docking/berthing dynamics, prescribed motion dynamics associated with the Mobile Remote Manipulator System (MRMS) and microgravity disturbances. The vehicle dynamics module interfaces with the test-bed through the central Communicator facility which is in turn driven by the Station Control Simulator (SCS) Executive. The Communicator addresses issues such as the interface between the discrete flight software and the continuous vehicle dynamics, and multi-programming aspects such as the complex flow of control in real-time programs. Combined with the flight software and redundancy management modules, the facility provides a flexible, user-oriented simulation platform.
NASA Astrophysics Data System (ADS)
Sobolik, S. R.; Gomez, S. P.; Matteo, E. N.; Stormont, J.
2014-12-01
This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the US Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the Storage Division of the NETL and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DE-SC-0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Sobolik, S. R.; Matteo, E. N.; Dewers, T. A.; Newell, P.; Gomez, S. P.; Stormont, J.
2014-12-01
This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2 injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2 injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the University of New Mexico and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DE-SC-0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Sobolik, S. R.; Gomez, S. P.; Matteo, E. N.; Stormont, J.
2015-12-01
This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the US Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the Storage Division of the NETL and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DE-SC-0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Allan Ray
1987-05-01
Increases in high speed hardware have mandated studies in software techniques to exploit the parallel capabilities. This thesis examines the effects a run-time scheduler has on a multiprocessor. The model consists of directed, acyclic graphs, generated from serial FORTRAN benchmark programs by the parallel compiler Parafrase. A multitasked, multiprogrammed environment is created. Dependencies are generated by the compiler. Tasks are bidimensional, i.e., they may specify both time and processor requests. Processor requests may be folded into execution time by the scheduler. The graphs may arrive at arbitrary time intervals. The general case is NP-hard, thus, a variety of heuristics aremore » examined by a simulator. Multiprogramming demonstrates a greater need for a run-time scheduler than does monoprogramming for a variety of reasons, e.g., greater stress on the processors, a larger number of independent control paths, more variety in the task parameters, etc. The dynamic critical path series of algorithms perform well. Dynamic critical volume did not add much. Unfortunately, dynamic critical path maximizes turnaround time as well as throughput. Two schedulers are presented which balance throughput and turnaround time. The first requires classification of jobs by type; the second requires selection of a ratio value which is dependent upon system parameters. 45 refs., 19 figs., 20 tabs.« less
NASA Astrophysics Data System (ADS)
Kraynik, Andrew M.; Romero, Louis; Torczynski, John R.; Brooks, Carlton F.; O'Hern, Timothy J.; Jepson, Richard A.; Benavides, Gilbert L.
2009-11-01
The stability of an interface in a container partially filled with silicone oil and subjected to gravity and vertical oscillations has been examined theoretically and computationally. An exact theory for the onset of a parametric instability producing Faraday-like waves was developed for arbitrary liquid viscosity, stress-free walls, and deep two-dimensional or axisymmetric containers. Finite-element simulations for stress-free walls are in excellent agreement with the theory, which predicts instability in discrete frequency bands. These simpler calculations are a departure point for examining the more realistic problem, which involves no-slip at the walls and dynamic wetting modeled with a Blake condition. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Instability of Hydrogenated TiO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandasiri, Manjula I.; Shutthanandan, V.; Manandhar, Sandeep
2015-11-06
Hydrogenated TiO2 (H-TiO2) is toted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Protons (40 keV) implanted at a ~2 atom % level within a ~120 nm wide profile of rutile TiO2(110) were situated ~300 nm below the surface. NRA revealed that this H-profile broadened preferentially toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depthmore » (~800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile, as well as its activity toward interfacial reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Phuong T.; Nguyen, Van T.; Annapureddy, Harsha V.
2012-12-03
To elevate our understanding of ion specific activity in biological systems, the potential of mean force approach was utilized to study solvent effects on interactions between two alkali cations (Na+ and K+) with a formate anion in water. A very complex free energy landscape was observed, much more so than alkali-halide ion pairs. Furthermore, stronger binding between the Na+-formate pair was found in comparison to the K+-formate pair in water, a finding that agrees with experimental and theoretical studies of these systems. The kinetics of ion-pair interconversions were studied using transition rate theory, along with a variety of theoretical approachesmore » such as the Kramers and Grote Hynes theories. These rate results were used to predict solvent effects on dynamical features of contact ion-pair association, in which faster dynamics were found for K+-formate pairs than for Na+-formate pairs. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle.« less
Methods to Prescribe Particle Motion to Minimize Quadrature Error in Meshfree Methods
NASA Astrophysics Data System (ADS)
Templeton, Jeremy; Erickson, Lindsay; Morris, Karla; Poliakoff, David
2015-11-01
Meshfree methods are an attractive approach for simulating material systems undergoing large-scale deformation, such as spray break up, free surface flows, and droplets. Particles, which can be easily moved, are used as nodes and/or quadrature points rather than a relying on a fixed mesh. Most methods move particles according to the local fluid velocity that allows for the convection terms in the Navier-Stokes equations to be easily accounted for. However, this is a trade-off against numerical accuracy as the flow can often move particles to configurations with high quadrature error, and artificial compressibility is often required to prevent particles from forming undesirable regions of high and low concentrations. In this work, we consider the other side of the trade-off: moving particles based on reducing numerical error. Methods derived from molecular dynamics show that particles can be moved to minimize a surrogate for the solution error, resulting in substantially more accurate simulations at a fixed cost. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Understanding nanofluid stability through molecular simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang, Liem X.; Annapureddy, Harsha V.; Sun, Xiuquan
We performed molecular dynamics simulations to study solvation of a nanoparticle and nanoparticle-nanoparticle interactions in an n-hexane solution. Structural signatures are barely observed between the nanoparticle and n-hexane molecules because of weak binding and steric effects. The dynamic properties of the n-hexane molecule, on the other hand, are significantly influenced by the solvated nanoparticle. The diffusion of n-hexane molecules inside the nanoparticle is significantly decreased mainly because of the loss of dimensions of translation. Because one translational degree of freedom is lost by colliding with the wall of nanoparticle, the n-hexane molecules outside the nanoparticle diffuse 30% slower than themore » molecules in pure solution. The computed free energy profiles illustrate that the arrangement of the nanoparticles in bulk n-hexane solution are dependent on the orientation and functional group. We found that the n-hexane solvent exerts some effects on the interactions between the solvated nanoparticles. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and by the Office of Energy Efficiency and Renewable Energy, Geothermal Technologies Program. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Charles J.; Das, Partha Pratim; Higgins, Deanna LM
Nickel complexes were prepared with diphosphine ligands that contain pendant amines, and these complexes catalytically oxidize primary and secondary alcohols to their respective aldehydes and ketones. Kinetic and mechanistic studies of these prospective electrocatalysts were performed to understand what influences the catalytic activity. For the oxidation of diphenylmethanol, the catalytic rates were determined to be dependent on the concentration of both the catalyst and the alcohol. The catalytic rates were found to be independent of the concentration of base and oxidant. The incorporation of pendant amines to the phosphine ligand results in substantial increases in the rate of alcohol oxidationmore » with more electron-donating substituents on the pendant amine exhibiting the fastest rates. We thank Dr. John C. Linehan, Dr. Elliott B. Hulley, Dr. Jonathan M. Darmon, and Dr. Elizabeth L. Tyson for helpful discussions. Research by CJW, PD, DLM, and AMA was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Research by MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miliordos, Evangelos; Xantheas, Sotiris S.
2016-01-18
The electronic structure of the simplest Criegee intermediate (H₂COO) is practically that of a closed shell. On the biradical scale (β) from 0 (pure closed shell) to 1 (pure biradical) it registers a mere β=0.10, suggesting that a Lewis structure of a H₂C=O δ+-O δ- zwitterion best describes its ground electronic state. However, this picture of a nearly inert closed shell contradicts its rich atmospheric reactivity. It is the mixing of its ground with the first triplet excited state, which is a pure biradical state of the type H₂C•-O-O•, that is responsible for the formation of strongly bound products duringmore » reactions inducing atmospheric particle growth. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.« less
Meeting today's requirements for large thermal vacuum test facilities
NASA Technical Reports Server (NTRS)
Corinth, R. L.; Rouse, J. A.
1986-01-01
The Lockheed Thermal Vacuum Facility at Sunnyvale, California, completed in late 1986, one of the largest multi-program facilities constructed to date is described. The horizontal 12.2 m diameter by 24.4 m long chamber has removable heads at each end and houses a thermal shroud providing a test volume 10.4 m diameter by 24.4 m long. The chamber and thermal shroud are configured to permit the insertion of a 6.1 m wide by 24.4 m long vibration isolated optical bench. The pumpimg system incorporates an internal cryopumping array, turbomolecular pumps and cryopumps to handle multi-program needs and ranges of gas loads. The high vacuum system is capable of achieving clean, dry and empty pressures below 1.3 times 10 to the minus 6 power Pa (10 to the minus 8 power torr.)
NASA Astrophysics Data System (ADS)
Loisel, Guillaume
2016-10-01
Emission from accretion powered objects accounts for a large fraction of all photons in the universe and is a powerful diagnostic for their behavior and structure. Quantitative interpretation of spectrum emission from these objects requires a spectral synthesis model for photoionized plasma, since the ionizing luminosity is so large that photon driven atomic processes dominate over collisions. This is a quandary because laboratory experiments capable of testing the spectral emission models are non-existent. The models must predict the photoionized charge state distribution, the photon emission processes, and the radiation transport influence on the observed emission. We have used a decade of research at the Z facility to achieve the first simultaneous measurements of emission and absorption from photoionized plasmas. The extraordinary spectra are reproducible to within +/-2% and the E/dE 500 spectral resolution has enabled unprecedented tests of atomic structure calculations. The absorption spectra enable determination of plasma density, temperature, and charge state distribution. The emission spectra then enable tests of spectral emission models. The emission has been measured from plasmas with varying size to elucidate the radiation transport effects. This combination of measurements will provide strong constraints on models used in astrophysics. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.
Transport Measurements on Si Nanostructures with Counted Sb Donors
NASA Astrophysics Data System (ADS)
Singh, Meenakshi; Bielejec, Edward; Garratt, Elias; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael
2014-03-01
Donor based spin qubits are a promising platform for quantum computing. Single qubits using timed implant of donors have been demonstrated.1 Extending this to multiple qubits requires precise control over the placement and number of donors. Such control can be achieved by using a combination of low-energy heavy-ion implants (to reduce depth straggle), electron-beam lithography (to define position), focused ion beam (to localize implants to one lithographic site) and counting the number of implants with a single ion detector.2 We report transport measurements on MOS quantum dots implanted with 5, 10 and 20 Sb donors using the approach described above. A donor charge transition is identified by a charge offset in the transport characteristics. Correlation between the number of donors and the charge offsets is studied. These results are necessary first steps towards fabricating donor nanostructures for two qubit interactions. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. 1J. J. Pla et al., Nature 496, 334 (2013) 2J. A. Seamons et al., APL 93, 043124 (2008).
SiGe HBT cryogenic preamplification for higher bandwidth donor spin read-out
NASA Astrophysics Data System (ADS)
Curry, Matthew; Carr, Stephen; Ten-Eyck, Greg; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carroll, Malcolm
2014-03-01
Single-shot read-out of a donor spin can be performed using the response of a single-electron-transistor (SET). This technique can produce relatively large changes in current, on the order of 1 (nA), to distinguish between the spin states. Despite the relatively large signal, the read-out time resolution has been limited to approximately 100 (kHz) of bandwidth because of noise. Cryogenic pre-amplification has been shown to extend the response of certain detection circuits to shorter time resolution and thus higher bandwidth. We examine a SiGe HBT circuit configuration for cryogenic preamplification, which has potential advantages over commonly used HEMT configurations. Here we present 4 (K) measurements of a circuit consisting of a Silicon-SET inline with a Heterojunction-Bipolar-Transistor (HBT). We compare the measured bandwidth with and without the HBT inline and find that at higher frequencies the signal-to-noise-ratio (SNR) with the HBT inline exceeds the SNR without the HBT inline. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Ding, Jow; Alexander, C. Scott
2017-06-01
MAPS (Magnetically Applied Pressure Shear) is a new technique that can be used to explore the material behavior under dynamic compression-shear loadings at strain rates and pressures that are much higher than those that can be achieved by gas-gun driven pressure shear experiments. A significant challenge for MAPS is the transmission of large shear stress through material interfaces. In this study, numerical simulations were used to gain insights on the behavior of the interface between molybdenum, which is the driver, and zirconia, the anvil, in MAPS experiments. Molybdenum was stressed into the plastic regime and zirconia stayed elastic but appeared to have incurred some spall damage at the later stage of the experiments. By including damage for the anvil and interfacial sliding in the simulations, both the longitudinal and transverse velocity data were able to be reasonably simulated. The results indicate that the interfacial slip appears to usually occur at the beginning stage of the shear loading when the pressure is relatively low. After the pressure reaches a certain level, the shear stress could be fully transmitted. Some other possible experiment designs to minimize the role of interface in MAPS are discussed. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.
2011-11-01
Significant progress has over the last few years been made in high energy density physics (HEDP) by executing high-precision multi-Mbar experiments and performing first-principles simulations for elements ranging from carbon [1] to xenon [2]. The properties of water under HEDP conditions are of particular importance in planetary science due to the existence of ice-giants like Neptune and Uranus. Modeling the two planets, as well as water-rich exoplanets, requires knowing the equation of state (EOS), the pressure as a function of density and temperature, of water with high accuracy. Although extensive density functional theory (DFT) simulations have been performed for water under planetary conditions [3] experimental validation has been lacking. Accessing thermodynamic states along planetary isentropes in dynamic compression experiments is challenging because the principal Hugoniot follows a significantly different path in the phase diagram. In this talk, we present experimental data for dynamic compression of water up to 700 GPa, including in a regime of the phase-diagram intersected by the Neptune isentrope and water-rich models for the exoplanet GJ436b. The data was obtained on the Z-accelerator at Sandia National Laboratories by performing magnetically accelerated flyer plate impact experiments measuring both the shock and re-shock in the sample. The high accuracy makes it possible for the data to be used for detailed model validation: the results validate first principles based thermodynamics as a reliable foundation for planetary modeling and confirm the fine effect of including nuclear quantum effects on the shock pressure. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. [4pt] [1] M.D. Knudson, D.H. Dolan, and M.P. Desjarlais, SCIENCE 322, 1822 (2008).[0pt] [2] S. Root, et al., Phys. Rev. Lett. 105, 085501 (2010).[0pt] [3] M. French, et al., Phys. Rev. B 79, 054107 (2009).
NASA Technical Reports Server (NTRS)
Kennedy, J. R.; Fitzpatrick, W. S.
1971-01-01
The computer executive functional system design concepts derived from study of the Space Station/Base are presented. Information Management System hardware configuration as directly influencing the executive design is reviewed. The hardware configuration and generic executive design requirements are considered in detail in a previous report (System Configuration and Executive Requirements Specifications for Reusable Shuttle and Space Station/Base, 9/25/70). This report defines basic system primitives and delineates processes and process control. Supervisor states are considered for describing basic multiprogramming and multiprocessing systems. A high-level computer executive including control of scheduling, allocation of resources, system interactions, and real-time supervisory functions is defined. The description is oriented to provide a baseline for a functional simulation of the computer executive system.
Bridging the Gap: Ideas for water sustainability in the western United States
NASA Astrophysics Data System (ADS)
Tidwell, V. C.; Passell, H. D.; Roach, J. D.
2012-12-01
Incremental improvements in water sustainability in the western U.S. may not be able to close the growing gap between increasing freshwater demand, climate driven variability in freshwater supply, and growing environmental consciousness. Incremental improvements include municipal conservation, improvements to irrigation technologies, desalination, water leasing, and others. These measures, as manifest today in the western U.S., are successful in themselves but limited in their ability to solve long term water scarcity issues. Examples are plainly evident and range from the steady and long term decline of important aquifers and their projected inability to provide water for future agricultural irrigation, projected declines in states' abilities to meet legal water delivery obligations between states, projected shortages of water for energy production, and others. In many cases, measures that can close the water scarcity gap have been identified, but often these solutions simply shift the gap from water to some other sector, e.g., economics. Saline, brackish or produced water purification, for example, could help solve western water shortages in some areas, but will be extremely expensive, and so shift the gap from water to economics. Transfers of water out of agriculture could help close the water scarcity gap in other areas; however, loss of agriculture will shift the gap to regional food security. All these gaps, whether in water, economics, food security, or other sectors, will have a negative impact on the western states. Narrowing these future gaps requires both technical and policy solutions as well as tools to understand the tradeoffs. Here we discuss several examples from across the western U.S. that span differing scales and decision spaces. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000
Numerical Modeling of ROM Panel Closures at WIPP
NASA Astrophysics Data System (ADS)
Herrick, C. G.
2016-12-01
The Waste Isolation Pilot Plant (WIPP) in New Mexico is a U.S. DOE geologic repository for permanent disposal of defense-related transuranic (TRU) waste. Waste is emplaced in panels excavated in a bedded salt formation (Salado Fm.) at 655 m bgs. In 2014 the U.S. EPA approved the new Run-of-Mine Panel Closure System (ROMPCS) for WIPP. The closure system consists of 100 feet of run-of-mine (ROM) salt sandwiched between two barriers. Nuclear Waste Partnership LLC (the M&O contractor for WIPP) initiated construction of the ROMPCS. The design calls for three horizontal ROM salt layers at different compaction levels ranging from 70-85% intact salt density. Due to panel drift size constraints and equipment availability the design was modified. Three prototype panel closures were constructed: two having two layers of compacted ROM salt (one closure had 1% water added) and a third consisting of simply ROM salt with no layering or added water. Sampling of the prototype ROMPCS layers was conducted to determine the following ROM salt parameters: thickness, moisture content, emplaced density, and grain-size distribution. Previous modeling efforts were performed without knowledge of these ROM salt parameters. This modeling effort incorporates them. The program-accepted multimechanism deformation model is used to model intact salt room creep closure. An advanced crushed salt model is used to model the ROM salt. Comparison of the two models' results with the prototypes' behavior is given. Our goal is to develop a realistic, reliable model that can be used for ROM salt applications at WIPP. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy SAND2016-7259A
NASA Astrophysics Data System (ADS)
Hebner, Greg
2010-11-01
Products and consumer goods that utilize low temperature plasmas at some point in their creation touch and enrich our lives on almost a continuous basis. Examples are many but include the tremendous advances in microelectronics and the pervasive nature of the internet, advanced material coatings that increase the strength and reliability of products from turbine engines to potato chip bags, and the recent national emphasis on energy efficient lighting and compact fluorescent bulbs. Each of these products owes their contributions to energy security and international competiveness to fundamental research investments. However, it would be a mistake to believe that the great commercial success of these products implies a robust understanding of the complicated interactions inherent in plasma systems. Rather, current development of the next generation of low temperature plasma enabled products and processes is clearly exposing a new set of exciting scientific challenges that require leaps in fundamental understanding and interdisciplinary research teams. Emerging applications such as liquid-plasma systems to improve water quality and remediate hazardous chemicals, plasma-assisted combustion to increase energy efficiency and reduce emissions, and medical applications promise to improve our lives and the environment only if difficult science questions are solved. This talk will take a brief look back at the role of low temperature plasma science in enabling entirely new markets and then survey the next generation of emerging plasma applications. The emphasis will be on describing the key science questions and the opportunities for scientific cross cutting collaborations that underscore the need for increased outreach on the part of the plasma science community to improve visibility at the federal program level. This work is supported by the DOE, Office of Science for Fusion Energy Sciences, and Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000
NASA Astrophysics Data System (ADS)
Hillman, B. R.; Marchand, R.; Ackerman, T. P.
2016-12-01
Satellite instrument simulators have emerged as a means to reduce errors in model evaluation by producing simulated or psuedo-retrievals from model fields, which account for limitations in the satellite retrieval process. Because of the mismatch in resolved scales between satellite retrievals and large-scale models, model cloud fields must first be downscaled to scales consistent with satellite retrievals. This downscaling is analogous to that required for model radiative transfer calculations. The assumption is often made in both model radiative transfer codes and satellite simulators that the unresolved clouds follow maximum-random overlap with horizontally homogeneous cloud condensate amounts. We examine errors in simulated MISR and CloudSat retrievals that arise due to these assumptions by applying the MISR and CloudSat simulators to cloud resolving model (CRM) output generated by the Super-parameterized Community Atmosphere Model (SP-CAM). Errors are quantified by comparing simulated retrievals performed directly on the CRM fields with those simulated by first averaging the CRM fields to approximately 2-degree resolution, applying a "subcolumn generator" to regenerate psuedo-resolved cloud and precipitation condensate fields, and then applying the MISR and CloudSat simulators on the regenerated condensate fields. We show that errors due to both assumptions of maximum-random overlap and homogeneous condensate are significant (relative to uncertainties in the observations and other simulator limitations). The treatment of precipitation is particularly problematic for CloudSat-simulated radar reflectivity. We introduce an improved subcolumn generator for use with the simulators, and show that these errors can be greatly reduced by replacing the maximum-random overlap assumption with the more realistic generalized overlap and incorporating a simple parameterization of subgrid-scale cloud and precipitation condensate heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. SAND2016-7485 A
NASA Astrophysics Data System (ADS)
Jones, R. E.; Criscenti, L. J.; Rimsza, J.
2016-12-01
Predicting fracture initiation and propagation in low-permeability geomaterials is a critical yet un- solved problem crucial to assessing shale caprocks at carbon dioxide sequestration sites, and controlling fracturing for gas and oil extraction. Experiments indicate that chemical reactions at fluid-geomaterial interfaces play a major role in subcritical crack growth by weakening the material and altering crack nu- cleation and growth rates. Engineering the subsurface fracture environment, however, has been hindered by a lack of understanding of the mechanisms relating chemical environment to mechanical outcome, and a lack of capability directly linking atomistic insight to macroscale observables. We have developed a fundamental atomic-level understanding of the chemical-mechanical mecha- nisms that control subcritical cracks through coarse-graining data from reactive molecular simulations. Previous studies of fracture at the atomic level have typically been limited to producing stress-strain curves, quantifying either the system-level stress or energy at which fracture propagation occurs. As such, these curves are neither characteristic of nor insightful regarding fracture features local to the crack tip. In contrast, configurational forces, such as the J-integral, are specific to the crack in that they measure the energy available to move the crack and truly quantify fracture resistance. By development and use of field estimators consistent with the continuum conservation properties we are able to connect the data produced by atomistic simulation to the continuum-level theory of fracture mechanics and thus inform engineering decisions. In order to trust this connection we have performed theoretical consistency tests and validation with experimental data. Although we have targeted geomaterials, this capability can have direct impact on other unsolved technological problems such as predicting the corrosion and embrittlement of metals and ceramics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corpo- ration, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Large-N Over the Source Physics Experiment (SPE) Phase I and Phase II Test Beds
NASA Astrophysics Data System (ADS)
Snelson, C. M.; Carmichael, J. D.; Mellors, R. J.; Abbott, R. E.
2014-12-01
One of the current challenges in the field of monitoring and verification is source discrimination of low-yield nuclear explosions from background seismicity, both natural and anthropogenic. Work is underway at the Nevada National Security Site to conduct a series of chemical explosion experiments using a multi-institutional, multi-disciplinary approach. The goal of this series of experiments, called the Source Physics Experiments (SPE), is to refine the understanding of the effect of earth structures on source phenomenology and energy partitioning in the source region, the transition of seismic energy from the near field to the far field, and the development of S waves observed in the far field. To fully explore these problems, the SPE series includes tests in both hard and soft rock geologic environments. The project comprises a number of activities, which range from characterizing the shallow subsurface to acquiring new explosion data from both the near field (<100 m) and the far field (>100 m). SPE includes a series of planned explosions (with different yields and depths of burials), which are conducted in the same hole and monitored by a diverse set of sensors recording characteristics of the explosions, ground-shock, seismo-acoustic energy propagation. This presentation focuses on imaging the full 3D wavefield over hard rock and soft rock test beds using a large number of seismic sensors. This overview presents statistical analyses of optimal sensor layout required to estimate wavefield discriminants and the planned deployment for the upcoming experiments. This work was conducted under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
What Density Functional Theory could do for Quantum Information
NASA Astrophysics Data System (ADS)
Mattsson, Ann
2015-03-01
The Hohenberg-Kohn theorem of Density Functional Theory (DFT), and extensions thereof, tells us that all properties of a system of electrons can be determined through their density, which uniquely determines the many-body wave-function. Given access to the appropriate, universal, functionals of the density we would, in theory, be able to determine all observables of any electronic system, without explicit reference to the wave-function. On the other hand, the wave-function is at the core of Quantum Information (QI), with the wave-function of a set of qubits being the central computational resource in a quantum computer. While there is seemingly little overlap between DFT and QI, reliance upon observables form a key connection. Though the time-evolution of the wave-function and associated phase information is fundamental to quantum computation, the initial and final states of a quantum computer are characterized by observables of the system. While observables can be extracted directly from a system's wave-function, DFT tells us that we may be able to intuit a method for extracting them from its density. In this talk, I will review the fundamentals of DFT and how these principles connect to the world of QI. This will range from DFT's utility in the engineering of physical qubits, to the possibility of using it to efficiently (but approximately) simulate Hamiltonians at the logical level. The apparent paradox of describing algorithms based on the quantum mechanical many-body wave-function with a DFT-like theory based on observables will remain a focus throughout. The ultimate goal of this talk is to initiate a dialog about what DFT could do for QI, in theory and in practice. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Choens, R. C., II; Chester, F. M.; Bauer, S. J.; Flint, G. M.
2014-12-01
Fluid-pressure assisted fracturing can produce mesh and other large, interconnected and complex networks consisting of both extension and shear fractures in various metamorphic, magmatic and tectonic systems. Presently, rock failure criteria for tensile and low-mean compressive stress conditions is poorly defined, although there is accumulating evidence that the transition from extension to shear fracture with increasing mean stress is continuous. We report on the results of experiments designed to document failure criteria, fracture mode, and localization phenomena for several rock types (sandstone, limestone, chalk and marble). Experiments were conducted in triaxial extension using a necked (dogbone) geometry to achieve mixed tension and compression stress states with local component-strain measurements in the failure region. The failure envelope for all rock types is similar, but are poorly described using Griffith or modified Griffith (Coulomb or other) failure criteria. Notably, the mode of fracture changes systematically from pure extension to shear with increase in compressive mean stress and display a continuous change in fracture orientation with respect to principal stress axes. Differential stress and inelastic strain show a systematic increase with increasing mean stress, whereas the axial stress decreases before increasing with increasing mean stress. The stress and strain data are used to analyze elastic and plastic strains leading to failure and compare the experimental results to predictions for localization using constitutive models incorporating on bifurcation theory. Although models are able to describe the stability behavior and onset of localization qualitatively, the models are unable to predict fracture type or orientation. Constitutive models using single or multiple yield surfaces are unable to predict the experimental results, reflecting the difficulty in capturing the changing micromechanisms from extension to shear failure. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deopartment of Energy's National Security Administration under contract DE-AC04-94AL85000. SAND2014-16578A
NASA Astrophysics Data System (ADS)
James, S. R.; Knox, H. A.; Cole, C. J.; Abbott, R. E.; Screaton, E.
2016-12-01
Seasonal freeze and thaw of the active layer above permafrost results in dramatic changes in seismic velocity. We used daily cross correlations of ambient seismic noise recorded at Poker Flat Research Range in central Alaska to create a nearly continuous 2-year record of relative velocity changes. This analysis required that we modify the Moving Window Cross-spectral Analysis technique used in the Python package MSNoise to reduce the occurrence of cycle skipping. Results show relative velocity variations follow a seasonal pattern, where velocities decrease in late spring through the summer months and increase through the fall and winter months. This timing is consistent with active layer freeze and thaw in this region. These results were compared to a suite of ground- and satellite-based measurements to identify relationships. A decrease in relative velocities in late spring closely follows the timing of snow melt recorded in nearby ground temperatures and snow-depth logs. This transition also aligns with a decrease in the Normalized Difference Snow Index (NDSI) derived from multi-temporal Landsat 8 satellite imagery collected over the study site. A gradual increase in relative velocity through the fall months occurs when temperatures below ground surface remain near zero. We suggest this is due to latent heat feedbacks that keep temperatures constant while active layer velocities increase from continued ice formation. This highlights the value in velocity variations for capturing details on the freezing process. In addition, spatial variations in the magnitude of velocity changes are consistent with thaw probe surveys. Exploring relationships with remote sensing may allow indirect measurements of thaw over larger areas and further surface wave analysis may allow for thickness evolution measurements. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Numerical Modeling of Thermal-Hydrology in the Near Field of a Generic High-Level Waste Repository
NASA Astrophysics Data System (ADS)
Matteo, E. N.; Hadgu, T.; Park, H.
2016-12-01
Disposal in a deep geologic repository is one of the preferred option for long term isolation of high-level nuclear waste. Coupled thermal-hydrologic processes induced by decay heat from the radioactive waste may impact fluid flow and the associated migration of radionuclides. This study looked at the effects of those processes in simulations of thermal-hydrology for the emplacement of U. S. Department of Energy managed high-level waste and spent nuclear fuel. Most of the high-level waste sources have lower thermal output which would reduce the impact of thermal propagation. In order to quantify the thermal limits this study concentrated on the higher thermal output sources and on spent nuclear fuel. The study assumed a generic nuclear waste repository at 500 m depth. For the modeling a representative domain was selected representing a portion of the repository layout in order to conduct a detailed thermal analysis. A highly refined unstructured mesh was utilized with refinements near heat sources and at intersections of different materials. Simulations looked at different values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock). The simulations also looked at the effects of different durations of surface aging of the waste to reduce thermal perturbations. The PFLOTRAN code (Hammond et al., 2014) was used for the simulations. Modeling results for the different options are reported and include temperature and fluid flow profiles in the near field at different simulation times. References:G. E. Hammond, P.C. Lichtner and R.T. Mills, "Evaluating the Performance of Parallel Subsurface Simulators: An Illustrative Example with PFLOTRAN", Water Resources Research, 50, doi:10.1002/2012WR013483 (2014). Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7510 A
Behavior of water in supercritical CO2: adsorption and capillary condensation in porous media
NASA Astrophysics Data System (ADS)
Heath, J. E.; Bryan, C. R.; Dewers, T. A.; Wang, Y.
2011-12-01
The chemical potential of water in supercritical CO2 (scCO2) may play an important role in water adsorption, capillary condensation, and evaporation under partially saturated conditions at geologic CO2 storage sites, especially if initially anhydrous CO2 is injected. Such processes may affect residual water saturations, relative permeability, shrink/swell of clays, and colloidal transport. We have developed a thermodynamic model of water or brine film thickness as a function of water relative humidity in scCO2. The model is based on investigations of liquid water configuration in the vadose zone and uses the augmented Young-Laplace equation, which incorporates both adsorptive and capillary components. The adsorptive component is based on the concept of disjoining pressure, which reflects force per area normal to the solid and water/brine-scCO2 interfaces. The disjoining pressure includes van der Waals, electrostatic, and structural interactions. The van der Waals term includes the effects of mutual dissolution of CO2 and water in the two fluid phases on partial molar volumes, dielectric coefficients, and refractive indices. Our approach treats the two interfaces as asymmetric surfaces in terms of charge densities and electrostatic potentials. We use the disjoining pressure isotherm to evaluate the type of wetting (e.g., total or partial wetting) for common reservoir and caprock minerals and kerogen. The capillary component incorporates water activity and is applied to simple pore geometries with slits and corners. Finally, we compare results of the model to a companion study by the coauthors on measurement of water adsorption to mineral phases using a quartz-crystal microbalance. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Characterization of Heat-treated Clay Minerals in the Context of Nuclear Waste Disposal
NASA Astrophysics Data System (ADS)
Matteo, E. N.; Wang, Y.; Kruichak, J. N.; Mills, M. M.
2015-12-01
Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes, if any, that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of repository-relevant clay minerals (illite, mixed layer illite/smectite, and montmorillonite), were heated for a range of temperatures between 100-1000 °C. These samples were characterized to determine surface area, mineralogical alteration, and cation exchange capacity (CEC). Our results show that for conditions up to 500 °C, no significant change occurs, so long as the clay mineral remains mineralogically intact. At temperatures above 500 °C, transformation of the layered silicates into silica phases leads to alteration that impacts important clay characteristics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: SAND2015-6524 A
Design of Fit-for-Purpose Cement to Restore Cement-Caprock Seal Integrity
NASA Astrophysics Data System (ADS)
Provost, R.
2015-12-01
This project aims to study critical research needs in the area of rock-cement interfaces, with a special focus on crosscutting applications in the Wellbore Integrity Pillar of the SubTER initiative. This study will focus on design and test fit-for-purpose cement formulations. The goals of this project are as follows: 1) perform preliminary study of dispersing nanomaterial admixtures in Ordinary Portland Cement (OPC) mixes, 2) characterize the cement-rock interface, and 3) identify potential high-performance cement additives that can improve sorption behavior, chemical durability, bond strength, and interfacial fracture toughness, as appropriate to specific subsurface operational needs. The work presented here focuses on a study of cement-shale interfaces to better understand failure mechanisms, with particular attention to measuring bond strength at the cement-shale interface. Both experimental testing and computational modeling were conducted to determine the mechanical behavior at the interface representing the interaction of cement and shale of a typical wellbore environment. Cohesive zone elements are used in the finite element method to computationally simulate the interface of the cement and rock materials with varying properties. Understanding the bond strength and mechanical performance of the cement-formation interface is critical to wellbore applications such as sequestration, oil and gas production and exploration and nuclear waste disposal. Improved shear bond strength is an indication of the capability of the interface to ensure zonal isolation and prevent zonal communication, two crucial goals in preserving wellbore integrity. Understanding shear bond strength development and interface mechanics will provide an idea as to how the cement-formation interface can be altered under environmental changes (temperature, pressure, chemical degradation, etc.) so that the previously described objectives can be achieved. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND #: SAND2015-6523 A
Upscaling of reaction rates in reactive transport using pore-scale reactive transport model
NASA Astrophysics Data System (ADS)
Yoon, H.; Dewers, T. A.; Arnold, B. W.; Major, J. R.; Eichhubl, P.; Srinivasan, S.
2013-12-01
Dissolved CO2 during geological CO2 storage may react with minerals in fractured rocks, confined aquifers, or faults, resulting in mineral precipitation and dissolution. The overall rate of reaction can be affected by coupled processes among hydrodynamics, transport, and reactions at the (sub) pore-scale. In this research pore-scale modeling of coupled fluid flow, reactive transport, and heterogeneous reaction at the mineral surface is applied to account for permeability alterations caused by precipitation-induced pore-blocking. This work is motivated by the observed CO2 seeps from a natural analog to geologic CO2 sequestration at Crystal Geyser, Utah. A key observation is the lateral migration of CO2 seep sites at a scale of ~ 100 meters over time. A pore-scale model provides fundamental mechanistic explanations of how calcite precipitation alters flow paths by pore plugging under different geochemical compositions and pore configurations. In addition, response function of reaction rates will be constructed from pore-scale simulations which account for a range of reaction regimes characterized by the Damkohler and Peclet numbers. Newly developed response functions will be used in a continuum scale model that may account for large-scale phenomena mimicking lateral migration of surface CO2 seeps. Comparison of field observations and simulations results will provide mechanistic explanations of the lateral migration and enhance our understanding of subsurface processes associated with the CO2 injection. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Feasibility of using backscattered muons for archeological imaging
NASA Astrophysics Data System (ADS)
Bonal, N.; Preston, L. A.
2013-12-01
Use of nondestructive methods to accurately locate and characterize underground objects such as rooms and tools found at archeological sites is ideal to preserve these historic sites. High-energy cosmic ray muons are very sensitive to density variation and have been used to image volcanoes and archeological sites such as the Egyptian and Mayan pyramids. Muons are subatomic particles produced in the upper atmosphere that penetrate the earth's crust up to few kilometers. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale making it useful for this type of work. However, the muon detector must be placed below the target of interest. For imaging volcanoes, the upper portion is imaged when the detector is placed on the earth's surface at the volcano's base. For sites of interest beneath the ground surface, the muon detector would need to be placed below the site in a tunnel or borehole. Placing the detector underground can be costly and may disturb the historical site. We will assess the feasibility of imaging the subsurface using upward traveling muons, to eliminate the current constraint of positioning the detector below the target. This work consists of three parts 1) determine the backscattered flux rate from theory, 2) distinguish backscattered from forward scattered muons at the detector, and 3) validate the theoretical results with field experimentation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
The phase diagram and transport properties of MgO from theory and experiment
NASA Astrophysics Data System (ADS)
Shulenburger, Luke
2013-06-01
Planetary structure and the formation of terrestrial planets have received tremendous interest due to the discovery of so called super-earth exoplanets. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants and is a likely component of the interiors of many of these exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine MgO under extreme conditions using experimental and theoretical methods to determine its phase diagram and transport properties. Using plate impact experiments on Sandia's Z facility the solid-solid phase transition from B1 to B2 is clearly determined. The melting transition, on the other hand, is subtle, involving little to no signal in us-up space. Theoretical work utilizing density functional theory (DFT) provides a complementary picture of the phase diagram. The solid-solid phase transition is identified through a series of quasi-harmonic phonon calculations and thermodynamic integration, while the melt boundary is found using phase coexistence calculations. One issue of particular import is the calculation of reflectivity along the Hugoniot and the influence of the ionic structure on the transport properties. Particular care is necessary because of the underestimation of the band gap and attendant overestimation of transport properties due to the use of semi-local density functional theory. We will explore the impact of this theoretical challenge and its potential solutions in this talk. The integrated use of DFT simulations and high-accuracy shock experiments together provide a comprehensive understanding of MgO under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Hipp, J. R.; Encarnacao, A.; Ballard, S.; Young, C. J.; Phillips, W. S.; Begnaud, M. L.
2011-12-01
Recently our combined SNL-LANL research team has succeeded in developing a global, seamless 3D tomographic P-velocity model (SALSA3D) that provides superior first P travel time predictions at both regional and teleseismic distances. However, given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we show a methodology for accomplishing this by exploiting the full model covariance matrix. Our model has on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes Tikhonov regularization terms) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiply methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix we solve for the travel-time covariance associated with arbitrary ray-paths by integrating the model covariance along both ray paths. Setting the paths equal gives variance for that path. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Shock Compression of Liquid Noble Gases to Multi-Mbar Pressures
NASA Astrophysics Data System (ADS)
Root, Seth
2011-10-01
The high pressure - high temperature behavior of noble gases is of considerable interest because of their use in z-pinch liners for fusion studies and for understanding astrophysical and planetary evolution. However, our understanding of the equation of state (EOS) of the noble gases at extreme conditions is limited. A prime example of this is the liquid xenon Hugoniot. Previous EOS models rapidly diverged on the Hugoniot above 1 Mbar because of differences in the treatment of the electronic contribution to the free energy. Similar divergences are observed for krypton EOS. Combining shock compression experiments and density functional theory (DFT) simulations, we can determine the thermo-physical behavior of matter under extreme conditions. The experimental and DFT results have been instrumental to recent developments in planetary astrophysics and inertial confinement fusion. Shock compression experiments are performed using Sandia's Z-Accelerator to determine the Hugoniot of liquid xenon and krypton in the Mbar regime. Under strong pressure, krypton and xenon undergo an insulator to metal transition. In the metallic state, the shock front becomes reflective allowing for a direct measurement of the sample's shock velocity using laser interferometry. The Hugoniot state is determined using a Monte Carlo analysis method that accounts for systematic error in the standards and for correlations. DFT simulations at these extreme conditions show good agreement with the experimental data - demonstrating the attention to detail required for dealing with elements with relativistic core states and d-state electrons. The results from shock compression experiments and DFT simulations are presented for liquid xenon to 840 GPa and for liquid krypton to 800 GPa, decidedly increasing the range of known behavior of both gases. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Chojnicki, K. N.; Yoon, H.; Martinez, M. J.
2015-12-01
Understanding reactive flow in geomaterials is important for optimizing geologic carbon storage practices, such as using pore space efficiently. Flow paths can be complex in large degrees of geologic heterogeneities across scales. In addition, local heterogeneity can evolve as reactive transport processes alter the pore-scale morphology. For example, dissolved carbon dioxide may react with minerals in fractured rocks, confined aquifers, or faults, resulting in heterogeneous cementation (and/or dissolution) and evolving flow conditions. Both path and flow complexities are important and poorly characterized, making it difficult to determine their evolution with traditional 2-D transport models. Here we characterize the development of 3-D pore-scale flow with an evolving pore configuration due to calcium carbonate (CaCO3) precipitation and dissolution. A simple pattern of a microfluidic pore network is used initially and pore structures will become more complex due to precipitation and dissolution processes. At several stages of precipitation and dissolution, we directly visualize 3-D velocity vectors using micro particle image velocimetry and a laser scanning confocal microscope. Measured 3-D velocity vectors are then compared to 3-D simulated flow fields which will be used to simulate reactive transport. Our findings will highlight the importance of the 3-D flow dynamics and its impact on estimating reactive surface area over time. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114.
3D Printing and Digital Rock Physics for the Geosciences
NASA Astrophysics Data System (ADS)
Martinez, M. J.; Yoon, H.; Dewers, T. A.
2014-12-01
Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. For example, digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts, to the point where parts might be cheaper to print than to make by traditional means in a plant and ship. Some key benefits of additive manufacturing include short lead times, complex shapes, parts on demand, zero required inventory and less material waste. Even subtractive processing, such as milling and etching, may be economized by additive manufacturing. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that the marriage of these technologies can bring to geosciences, including examples from our current research initiatives in developing constitutive laws for transport and geomechanics via digital rock physics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Mechanistic insights into aqueous phase propanol dehydration in H-ZSM-5 zeolite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Donghai; Lercher, Johannes A.
Aqueous phase dehydration of 1-propanol over H-ZSM-5 zeolite was investigated using density functional theory (DFT) calculations. The water molecules in the zeolite pores prefer to aggregate via the hydrogen bonding network and be protonated at the Brønsted acidic sites (BAS). Two typical configurations, i.e., dispersed and clustered, of water molecules were identified by ab initio molecular dynamics simulation of the mimicking aqueous phase H-ZSM-5 zeolite unit cell with 20 water molecules per unit cell. DFT calculated Gibbs free energies suggest that the dimeric propanol-propanol, the propanol-water complex, and the trimeric propanol-propanol-water are formed at high propanol concentrations, which provide amore » kinetically feasible dehydration reaction channel of 1-propanol to propene. However, calculation results also indicate that the propanol dehydration via the unimolecular mechanism becomes kinetically discouraged due to the enhanced stability of the protonated dimeric propanol and the protonated water cluster acting as the BAS site for alcohol dehydration reaction. This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less
Dehydration of 1-octadecanol over H-BEA: A combined experimental and computational study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Wenji; Liu, Yuanshuai; Barath, Eszter
Liquid phase dehydration of 1-octdecanol, which is intermediately formed during the hydrodeoxygenation of microalgae oil, has been explored in a combined experimental and computational study. The alkyl chain of C18 alcohol interacts with acid sites during diffusion inside the zeolite pores, resulting in an inefficient utilization of the Brønsted acid sites for samples with high acid site concentrations. The parallel intra- and inter- molecular dehydration pathways having different activation energies pass through alternative reaction intermediates. Formation of surface-bound alkoxide species is the rate-limiting step during intramolecular dehydration, whereas intermolecular dehydration proceeds via a bulky dimer intermediate. Octadecene is the primarymore » dehydration product over H-BEA at 533 K. Despite of the main contribution of Brønsted acid sites towards both dehydration pathways, Lewis acid sites are also active in the formation of dioctadecyl ether. The intramolecular dehydration to octadecene and cleavage of the intermediately formed ether, however, require strong BAS. L. Wang, D. Mei and J. A. Lercher, acknowledge the partial support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less
ERIC Educational Resources Information Center
McMahon, Brian T., Ed.
1983-01-01
Discusses the expanding role of the rehabilitation counselor into private sector rehabilitation in the seven articles of this special issue. Topics cover private rehabilitation in an insurance context including forensics issues, computer applications, recent trends, services in a multiprogram private clinic, and rehabilitation counselor training.…
Entropically Driven Layering Near a Substrate: A Fluids DFT Study
NASA Astrophysics Data System (ADS)
McGarrity, Erin; Frischknecht, Amalie; Mackay, Michael
2008-03-01
We employ a fluids density functional theory to study the phase behavior of athermal polymer/nanoparticle blends near a hard substrate. These blends exhibit two types of first order, entropically driven layering transitions. In the first type of transition, the nanoparticles order to form a layer which is a fixed distance from the surface. The structure and location of this layer depends on nanoparticle radius. In the second type of transition, which occurs at melt-like densities, the nanoparticles and polymers form laminar structures which resemble colloidal crystals. We examine the effects of packing density, chain length and nanoparticle radius on the system and show that the transitions are first order. In addition we show that the crystalline phase is nucleated by the presence of the surface. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
A new Ion Mobility Spectrometer
NASA Astrophysics Data System (ADS)
Butler, M. A.
1998-03-01
A new ion mobility spectrometer (IMS) concept has been demonstrated that traps ions in a potential well and then moves the well down a tube to a detector. The charge remaining in the well is measured as a function of well velocity or electric field that the ion experiences; thus separating the ions by mobility. The potential wave is generated and propagated down the tube by a series of ring electrodes along the tube under real-time computer control via an array of DACs. The operating characteristics of this device have been explored including the effects of ion "lifetime," well shape, and well velocity. The ion "lifetime" results from a radial field at the bottom of the potential well that pushes the ions toward the tube wall. This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.
Advanced Kr Atomic Structure and Ionization Kinetics for Pinches on ZR
NASA Astrophysics Data System (ADS)
Dasgupta, Arati; Clark, Robert; Giuliani, John; Ouart, Nick; Davis, Jack; Jones, Brent; Ampleford, Dave; Hansen, Stephanie
2011-10-01
High fluence photon sources above 10 keV are a challenge for HED plasmas. This motivates Kr atomic modeling as its K-shell radiation starts at 13 keV. We have developed atomic structure and collisional-radiatve data for the full K-and L-shell and much of the M-shell using the the state-of-the-art Flexible Atomic Code. All relevant atomic collisional and radiative processes that affect ionization balance and are necessary to accurately model the pinch dynamics and the spectroscopic details of the emitted radiation are included in constructing the model. This non-LTE CRE model will be used to generate synthetic spectra for fixed densities and temperatures relevant for Kr gas-puff simulations in ZR. Work supported by DOE/NNSA. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Free Energy Wells and Barriers to Ion Transport Across Membranes
NASA Astrophysics Data System (ADS)
Rempe, Susan
2014-03-01
The flow of ions across cellular membranes is essential to many biological processes. Ion transport is also important in synthetic materials used as battery electrolytes. Transport often involves specific ions and fast conduction. To achieve those properties, ion conduction pathways must solvate specific ions by just the ``right amount.'' The right amount of solvation avoids ion traps due to deep free energy wells, and avoids ion block due to high free energy barriers. Ion channel proteins in cellular membranes demonstrate this subtle balance in solvation of specific ions. Using ab initio molecular simulations, we have interrogated the link between binding site structure and ion solvation free energies in biological ion binding sites. Our results emphasize the surprisingly important role of the environment that surrounds ion-binding sites for fast transport of specific ions. We acknowledge support from Sandia's LDRD program. Sandia National Labs is a multi-program laboratory operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the US DOE's NNSA under contract DE-AC04-94AL85000.
Transition from Selective Withdrawal to Light Layer Entrainment in an Oil-Water System
NASA Astrophysics Data System (ADS)
Hartenberger, Joel; O'Hern, Timothy; Webb, Stephen; James, Darryl
2010-11-01
Selective withdrawal refers to the selective removal of fluid of one density without entraining an adjacent fluid layer of a different density. Most prior literature has examined removal of the lower density fluid and the transition to entraining the higher density fluid. In the present experiments, a higher density liquid is removed through a tube that extends just below its interface with a lower density fluid. The critical depth for a given flow rate at which the liquid-liquid interface transitions to entrain the lighter fluid was measured. Experiments were performed for a range of different light layer silicone oils and heavy layer water or brine, covering a range of density and viscosity ratios. Applications include density-stratified reservoirs and brine removal from oil storage caverns. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Vibration-Induced Gas-Liquid Interface Breakup
NASA Astrophysics Data System (ADS)
O'Hern, Timothy; Torczynski, John; Romero, Ed; Shelden, Bion
2010-11-01
Gas-liquid interfaces can be forced to break up when subjected to vibrations within critical ranges of frequency and amplitude. This breakup mechanism was examined experimentally using deep layers of silicone oils over a range of viscosity and sinusoidal, primarily axial vibration conditions that can produce dramatic disturbances at the gas-liquid free surface. Although small-amplitude vibrations produce standing Faraday waves, large-amplitude vibrations produce liquid jets into the gas, droplets pinching off from the jets, gas cavities in the liquid from droplet impact, and bubble transport below the interface. Experiments used several different silicone oils over a range of pressures and vibration conditions. Computational simulations exhibiting similar behavior will be included in the presentation. Applications include liquid fuel rockets, inertial sensing devices, moving vehicles, mixing processes, and acoustic excitation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Fuel magnetization without external field coils (AutoMag)
NASA Astrophysics Data System (ADS)
Slutz, Stephen; Jennings, Christopher; Awe, Thomas; Shipley, Gabe; Lamppa, Derek; McBride, Ryan
2016-10-01
Magnetized Liner Inertial Fusion (MagLIF) has produced fusion-relevant plasma conditions on the Z accelerator where the fuel was magnetized using external field coils. We present a novel concept that does not need external field coils. This concept (AutoMag) magnetizes the fuel during the early part of the drive current by using a composite liner with helical conduction paths separated by insulating material. The drive is designed so the current rises slowly enough to avoid electrical breakdown of the insulators until a sufficiently strong magnetic field is established. Then the current rises more quickly, which causes the insulators to break down allowing the drive current to follow an axial path and implode the liner. Low inductance magnetically insulated power feeds can be used with AutoMag to increase the drive current without interfering with diagnostic access. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
A Scalable Microfabricated Ion Trap for Quantum Information Processing
NASA Astrophysics Data System (ADS)
Maunz, Peter; Haltli, Raymond; Hollowell, Andrew; Lobser, Daniel; Mizrahi, Jonathan; Rembetski, John; Resnick, Paul; Sterk, Jonathan D.; Stick, Daniel L.; Blain, Matthew G.
2016-05-01
Trapped Ion Quantum Information Processing (QIP) relies on complex microfabricated trap structures to enable scaling of the number of quantum bits. Building on previous demonstrations of surface-electrode ion traps, we have designed and characterized the Sandia high-optical-access (HOA-2) microfabricated ion trap. This trap features high optical access, high trap frequencies, low heating rates, and negligible charging of dielectric trap components. We have observed trap lifetimes of more than 100h, measured trap heating rates for ytterbium of less than 40quanta/s, and demonstrated shuttling of ions from a slotted to an above surface region and through a Y-junction. Furthermore, we summarize demonstrations of high-fidelity single and two-qubit gates realized in this trap. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was supported by the Intelligence Advanced Research Projects Activity (IARPA).
Density Functional Theory (dft) Simulations of Shocked Liquid Xenon
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.; Magyar, Rudolph J.
2009-12-01
Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as xenon is known to form compounds under normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. We present DFT-MD simulations of shocked liquid xenon with the goal of developing an improved equation of state. The calculated Hugoniot to 2 MPa compares well with available experimental shock data. Sandia is a mul-tiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Density Functional Theory (DFT) Simulations of Shocked Liquid Xenon
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.; Magyar, Rudolph J.
2009-06-01
Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, Xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as Xenon is known to form compounds at normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. In this talk, we present DFT-MD simulations of shocked liquid Xenon with the goal of developing an improved equation of state. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Mixing-Chamber Preamplifier for Spin Qubit Readout
NASA Astrophysics Data System (ADS)
Curry, Matthew; Mounce, Andrew; England, Troy; Manginell, Ronald; Wendt, Joel; Pluym, Tammy; Carr, Stephen; Carroll, Malcolm
Spin qubit states are often read out with a nearby charge sensor. To improve signal-to-noise ratio (SNR) and bandwidth, we amplify a charge sensor with a low-current-bias, silicon-germanium heterojunction-bipolar-transistor (HBT). The HBT is located at the mixing chamber of a dilution refrigerator, which minimizes parasitic capacitance and amplifies signal before fridge noise is introduced. Using the HBT-charge-sensor circuit, we tune a few-electron quantum dot (QD) into resonance with a donor-like object and observe singlet-triplet (ST) behavior. ST separation in this MOS donor-implanted-QD molecular system is measured using magnetospectroscopy to be approximately 100 μeV. The low current bias of the HBT minimizes both heating of the charge-sensed QD as well as maintains an overall low power at the mixing chamber. HBT bias impact on QD electron temperature is examined and we find that the HBT preamplifier can operate at around 100 nW with a current gain of around 500 without influencing the electron temperature, which is around 150 mK. We will also examine single-shot readout of a charge state using the HBT preamplifier. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout
NASA Astrophysics Data System (ADS)
England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm
Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annapureddy, Harsha Vardhan Reddy; Nune, Satish K.; Motkuri, Radha K.
2015-01-08
Computational studies on nanofluids composed of metal organic frameworks (MOFs) were performed using molecular modeling techniques. Grand Canonical Monte Carlo (GCMC) simulations were used to study adsorption behavior of 1,1,1,3,3-pentafluoropropane (R-245fa) in a MIL-101 MOF at various temperatures. To understand the stability of the nanofluid composed of MIL-101 particles, we performed molecular dynamics simulations to compute potentials of mean force between hypothetical MIL-101 fragments terminated with two different kinds of modulators in R-245fa and water. Our computed potentials of mean force results indicate that the MOF particles tend to disperse better in water than in R-245fa. The reasons for thismore » observation were analyzed and discussed. Our results agree with experimental results indicating that the employed potential models and modeling approaches provide good description of molecular interactions and the reliabilities. Work performed by LXD was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Work performed by HVRA, SKN, RKM, and PBM was supported by the Office of Energy Efficiency and Renewable Energy, Geothermal Technologies Program. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle.« less
Modeling the Kinetics of Deactivation of Catalysts during the Upgrading of Bio-Oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Robert S.; Olarte, Mariefel V.; Wang, Huamin
The fouling of catalysts for the upgrading of bio-oils appears to be very different from the fouling of catalysts for the hydroprocessing of petroleum-derived streams. There are two reasons for the differences: a) bio-oil contains polarizable components and phases that can stabilize reaction intermediates exhibiting charge separation and b) bio-oil components contain functional groups that contain O, notably carbonyls (>C=O). Aldol condensation of carbonyls affords very different pathways for the production of oligomeric, refractory deposits than does dehydrogenation/polymerization of petroleum-derived hydrocarbons. Colloquially, we refer to the bio-oil derived deposits as “gunk” to discriminate them from coke, the carbonaceous deposits encounteredmore » in petroleum refining. Classical gelation, appears to be a suitable model for the “gunking” reaction. Our work has helped explain the temperature range at which bio-oil should be pre-processed (“stabilized”) to confer longer lifetimes on the catalysts used for more severe processing. Stochastic modeling (kinetic Monte Carlo simulations) appears suitable to capture the rates of oligomerization of bio-oil. This work was supported by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
International Safeguards and the Pacific Northwest National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Khris B.; Smith, Leon E.; Frazar, Sarah L.
Established in 1965, Pacific Northwest National Laboratory’s (PNNL) strong technical ties and shared heritage with the nearby U.S. Department of Energy Hanford Site were central to the early development of expertise in nuclear fuel cycle signatures, separations chemistry, plutonium chemistry, environmental monitoring, modeling and analysis of reactor systems, and nuclear material safeguards and security. From these Hanford origins, PNNL has grown into a multi-program science and engineering enterprise that utilizes this diversity to strengthen the international safeguards regime. Today, PNNL supports the International Atomic Energy Agency (IAEA) in its mission to provide assurances to the international community that nations domore » not use nuclear materials and equipment outside of peaceful uses. PNNL also serves in the IAEA’s Network of Analytical Laboratories (NWAL) by providing analysis of environmental samples gathered around the world. PNNL is involved in safeguards research and development activities in support of many U.S. Government programs such as the National Nuclear Security Administration’s (NNSA) Office of Research and Development, NNSA Office of Nonproliferation and Arms Control, and the U.S. Support Program to IAEA Safeguards. In addition to these programs, PNNL invests internal resources including safeguards-specific training opportunities for staff, and laboratory-directed research and development funding to further ideas that may grow into new capabilities. This paper and accompanying presentation highlight some of PNNL’s contributions in technology development, implementation concepts and approaches, policy, capacity building, and human capital development, in the field of international safeguards.« less
NASA Astrophysics Data System (ADS)
Knudson, Marcus
2013-06-01
The past several years have seen tremendous increase in the number of identified extra-solar planetary systems. Our understanding of the formation of these systems is tied to our understanding of the internal structure of these exoplanets, which in turn rely upon equations of state of light elements and compounds such as water and hydrogen. Here we present shock compression data for water with unprecedented accuracy that shows commonly used models for water in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well described by a recent first-principles based equation of state. These findings advocate the use of this model as the standard for modeling Neptune, Uranus, and ``hot Neptune'' exoplanets, and should contribute to improved understanding of the interior structure of these planets, and perhaps improved understanding of formation mechanisms of planetary systems. We also present very recent experiments on deuterium that have taken advantage of continued improvements in both experimental configuration and the understanding of the quartz shock standard to obtain Hugoniot data with a significant increase in precision. These data will prove to provide a stringent test for the equation of state of hydrogen and its isotopes. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-ACO4-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Qiuxia; Wang, Jianguo; Wang, Yang-Gang
The effects of structure and size on the selectivity of catalytic furfural conversion over supported Pt catalysts in the presence of hydrogen have been studied using first principles density functional theory (DFT) calculations and microkinetic modeling. Four Pt model systems, i.e., periodic Pt(111), Pt(211) surfaces, as well as small nanoclusters (Pt13 and Pt55) are chosen to represent the terrace, step, and corner sites of Pt nanoparticles. Our DFT results show that the reaction routes for furfural hydrogenation and decarbonylation are strongly dependent on the type of reactive sites, which lead to the different selectivity. On the basis of the size-dependentmore » site distribution rule, we correlate the site distributions as a function of the Pt particle size. Our microkinetic results indicate the critical particle size that controls the furfural selectivity is about 1.0 nm, which is in good agreement with the reported experimental value under reaction conditions. This work was supported by National Basic Research Program of China (973 Program) (2013CB733501) and the National Natural Science Foundation of China (NSFC-21306169, 21176221, 21136001, 21101137 and 91334103). This work was also partially supported by the US Department of Energy (DOE), the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Xing; Liu, Lin; Jiang, Yu
The need for inexpensive and high-activity oxygen reduction reaction (ORR) electrocatalysts has attracted considerable research interest over the past years. Here we report a novel hybrid that contains cobalt nitride/nitrogen-rich hollow carbon spheres (CoxN/NHCS) as a high-performance catalyst for ORR. The CoxN nanoparticles were uniformly dispersed and confined in the hollow NHCS shell. The performance of the resulting CoxN/NHCS hybrid was comparable with that of a commercial Pt/C at the same catalyst loading toward ORR, but the mass activity of the former was 5.7 times better than that of the latter. The nitrogen in both CoxN and NHCS, especially CoxN,more » could weaken the adsorption of reaction intermediates (O and OOH), which follows the favourable reaction pathway on CoxN/NHCS according to the DFT-calculated Gibbs free energy diagrams. Our results demonstrated a new strategy for designing and developing inexpensive, non-precious metal electrocatalysts for next-generation fuels. The authors acknowledge the financial support from the National Basic Research Program (973 program, No. 2013CB733501) and the National Natural Science Foundation of China (No. 21306169, 21101137, 21136001, 21176221 and 91334013). Dr. D. Mei is supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less
Measuring the opacity of stellar interior matter in terrestrial laboratories
NASA Astrophysics Data System (ADS)
Bailey, James
2015-11-01
How does energy propagate from the core to the surface of the Sun, where it emerges to warm the Earth? Nearly a century ago Eddington recognized that the attenuation of radiation by stellar matter controls the internal structure of stars like the sun. Opacities for high energy density (HED) matter are challenging to calculate because accurate and complete descriptions of the energy levels, populations, and plasma effects such as continuum lowering and line broadening are needed for partially ionized atoms. This requires approximations, in part because billions of bound-bound and bound-free electronic transitions can contribute to the opacity. Opacity calculations, however, have never been benchmarked against laboratory measurements at stellar interior conditions. Laboratory opacity measurements were limited in the past by the challenges of creating and diagnosing sufficiently large and uniform samples at the extreme conditions found inside stars. In research conducted over more than 10 years, we developed an experimental platform on the Z facility and measured wavelength-resolved iron opacity at electron temperatures Te = 156-195 eV and densities ne = 0.7-4.0 x 1022 cm-3 - conditions very similar to the radiation/convection boundary zone within the Sun. The wavelength-dependent opacity in the 975-1775 eV photon energy range is 30-400% higher than models predict. This raises questions about how well we understand the behavior of atoms in HED plasma. These measurements may also help resolve decade-old discrepancies between solar model predictions and helioseismic observations. This talk will provide an overview of the measurements, investigations of possible errors, and ongoing experiments aimed at testing hypotheses to resolve the model-data discrepancy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Lawry, B. J.; Encarnacao, A.; Hipp, J. R.; Chang, M.; Young, C. J.
2011-12-01
With the rapid growth of multi-core computing hardware, it is now possible for scientific researchers to run complex, computationally intensive software on affordable, in-house commodity hardware. Multi-core CPUs (Central Processing Unit) and GPUs (Graphics Processing Unit) are now commonplace in desktops and servers. Developers today have access to extremely powerful hardware that enables the execution of software that could previously only be run on expensive, massively-parallel systems. It is no longer cost-prohibitive for an institution to build a parallel computing cluster consisting of commodity multi-core servers. In recent years, our research team has developed a distributed, multi-core computing system and used it to construct global 3D earth models using seismic tomography. Traditionally, computational limitations forced certain assumptions and shortcuts in the calculation of tomographic models; however, with the recent rapid growth in computational hardware including faster CPU's, increased RAM, and the development of multi-core computers, we are now able to perform seismic tomography, 3D ray tracing and seismic event location using distributed parallel algorithms running on commodity hardware, thereby eliminating the need for many of these shortcuts. We describe Node Resource Manager (NRM), a system we developed that leverages the capabilities of a parallel computing cluster. NRM is a software-based parallel computing management framework that works in tandem with the Java Parallel Processing Framework (JPPF, http://www.jppf.org/), a third party library that provides a flexible and innovative way to take advantage of modern multi-core hardware. NRM enables multiple applications to use and share a common set of networked computers, regardless of their hardware platform or operating system. Using NRM, algorithms can be parallelized to run on multiple processing cores of a distributed computing cluster of servers and desktops, which results in a dramatic speedup in execution time. NRM is sufficiently generic to support applications in any domain, as long as the application is parallelizable (i.e., can be subdivided into multiple individual processing tasks). At present, NRM has been effective in decreasing the overall runtime of several algorithms: 1) the generation of a global 3D model of the compressional velocity distribution in the Earth using tomographic inversion, 2) the calculation of the model resolution matrix, model covariance matrix, and travel time uncertainty for the aforementioned velocity model, and 3) the correlation of waveforms with archival data on a massive scale for seismic event detection. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
CP/M: A Family of 8- and 16-Bit Computer Operating Systems.
ERIC Educational Resources Information Center
Kildall, Gary
1982-01-01
Traces the development of the computer CP/M (Control Program for Microcomputers) and MP/M (Multiprogramming Monitor Microcomputers) operating system by Gary Kildall of Digital Research Company. Discusses the adaptation of these operating systems to the newly emerging 16 and 32 bit microprocessors. (Author/LC)
State of Supported Nickel Nanoparticles during Catalysis in Aqueous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chase, Zizwe; Kasakov, Stanislav; Shi, Hui
2015-11-09
The state of Ni supported on HZSM-5 zeolite, silica, and sulfonated carbon was determined during aqueous phase catalysis of phenol hydrodeoxygenation using in situ extended X-ray absorption fine structure spectroscopy (EXAFS). On sulfonated carbon and HZSM-5 supports, the NiO and Ni(OH)2 were readily reduced to Ni(0) under reaction conditions (~35 bar H2 in aqueous phenol solutions containing up to 0.5 wt. % phosphoric acid at 473 K). On the silica support, less than 70% of the Ni was converted to Ni(0) under reaction conditions, which is attributed to the formation of Ni phyllosilicates. Over a broad range of reaction conditionsmore » there was no leaching of Ni from the supports. In contrast, rapid leaching of the Ni(II) from HZSM-5 was observed, when 15 wt. % aqueous acetic acid was substituted for the aqueous phenol solution. Once the metallic state of Ni was established there was no leaching in 15 wt. % acetic acid at 473 K and 35 bar H2. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences & Biosciences. The STEM was supported under the Laboratory Directed Research and Development Program: Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL), a multi-program national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830. STEM was performed at EMSL, a DOE Office of Science user facility sponsored by the Office of Biological and Environmental Research and located at PNNL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Santanu; Baer, Marcel D.; Mundy, Christopher J.
We present a theory for ion pair dissociation and association, motivated by the concepts of the Marcus theory of electron transfer. Despite the extensive research on ion-pairing in many chemical and biological processes, much can be learned from the exploration of collective reaction coordinates. To this end, we explore two reaction coordinates, ion pair distance and coordination number. The study of the correlation between these reaction coordinates provides a new insight into the mechanism and kinetics of ion pair dissociation and association in water. The potential of mean force on these 2D-surfaces computed from molecular dynamics simulations of different monovalentmore » ion pairs reveal a Marcus-like mechanism for ion-pairing: Water molecules rearrange forming an activated coordination state prior to ion pair dissociation or association, followed by relaxation of the coordination state due to further water rearrangement. Like Marcus theory, we find the existence of an inverted region where the transition rates are slower with increasing exergonicity. This study provides a new perspective for the future investigations of ion-pairing and transport. SR, CJM, and GKS were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). The research was performed using PNNL Institutional Computing. PNNL is a multi-program national laboratory operated by Battelle for the U.S. Department of Energy.« less
NASA Astrophysics Data System (ADS)
Newell, P.; Yoon, H.; Martinez, M. J.; Bishop, J. E.; Arnold, B. W.; Bryant, S.
2013-12-01
It is essential to couple multiphase flow and geomechanical response in order to predict a consequence of geological storage of CO2. In this study, we estimate key hydrogeologic features to govern the geomechanical response (i.e., surface uplift) at a large-scale CO2 injection project at In Salah, Algeria using the Sierra Toolkit - a multi-physics simulation code developed at Sandia National Laboratories. Importantly, a jointed rock model is used to study the effect of postulated fractures in the injection zone on the surface uplift. The In Salah Gas Project includes an industrial-scale demonstration of CO2 storage in an active gas field where CO2 from natural gas production is being re-injected into a brine-filled portion of the structure downdip of the gas accumulation. The observed data include millimeter scale surface deformations (e.g., uplift) reported in the literature and injection well locations and rate histories provided by the operators. Our preliminary results show that the intrinsic permeability and Biot coefficient of the injection zone are important. Moreover pre-existing fractures within the injection zone affect the uplift significantly. Estimation of additional (i.e., anisotropy ratio) and coupled parameters will help us to develop models, which account for the complex relationship between mechanical integrity and CO2 injection-induced pressure changes. Uncertainty quantification of model predictions will be also performed using various algorithms including null-space Monte Carlo and polynomial-chaos expansion methods. This work will highlight that our coupled reservoir and geomechanical simulations associated with parameter estimation can provide a practical solution for designing operating conditions and understanding subsurface processes associated with the CO2 injection. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Klise, G. T.; Roach, J. D.; Passell, H. D.; Moreland, B. D.; O'Leary, S. J.; Pienkos, P. T.; Whalen, J.
2010-12-01
Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the “production” footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada’s NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model. Joint activities in algal biofuel research involving Sandia National Labs, NREL, and Canada’s NRC are supported by the U.S. - Canada Clean Energy Dialogue Secretariat. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Knudson, M. D.; Desjarlais, M.; Lemke, R.; Mattsson, T.; French, M.; Nettelmann, N.; Redmer, R.
2012-12-01
Recently, there has been a tremendous increase in the number of identified extrasolar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equation of state (EOS) models of light elements and compounds such as water at multi-Mbar pressure conditions. For the past decade, a large, interdisciplinary team at Sandia National Laboratories has been refining the Z Machine (20+ MA and 10+ MGauss) into a mature, robust, and precise platform for material dynamics experiments in the multi-Mbar pressure regime. In particular, significant effort has gone into effectively coupling condensed matter theory, magneto-hydrodynamic simulation, and electromagnetic modeling to produce a fully self-consistent simulation capability able to very accurately predict the performance of the Z machine and various experimental load configurations. This capability has been instrumental in the ability to develop experimental platforms to routinely perform magnetic ramp compression experiments to over 4 Mbar, and magnetically accelerate flyer plates to over 40 km/s, creating over 20 Mbar impact pressures. Furthermore, a strong tie has been developed between the condensed matter theory and the experimental program. This coupling has been proven time and again to be extremely fruitful, with the capability of both theory and experiment being challenged and advanced through this close interrelationship. This presentation will provide a short overview of the material dynamics platform and discuss in more detail the use of Z to perform extreme material dynamics studies with unprecedented accuracy on water in support of basic science, planetary astrophysics, and the emerging field of high energy density laboratory physics. It was found that widely used EOSs for water are much too compressible (up to 30 percent) at pressures and temperatures relevant to planetary interiors. Furthermore, it is shown that the behavior of water at these conditions, including its reflectivity and isentropic response, is well-described by an EOS for water based on recent first-principles calculations. These findings advocate that this water model be used as the standard for modeling Neptune, Uranus, and "hot Neptune" exoplanets, and should improve our understanding of these types of planetary systems. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
High precision Hugoniot measurements of D2 near maximum compression
NASA Astrophysics Data System (ADS)
Benage, John; Knudson, Marcus; Desjarlais, Michael
2015-11-01
The Hugoniot response of liquid deuterium has been widely studied due to its general importance and to the significant discrepancy in the inferred shock response obtained from early experiments. With improvements in dynamic compression platforms and experimental standards these results have converged and show general agreement with several equation of state (EOS) models, including quantum molecular dynamics (QMD) calculations within the Generalized Gradient Approximation (GGA). This approach to modeling the EOS has also proven quite successful for other materials and is rapidly becoming a standard approach. However, small differences remain among predictions obtained using different local and semi-local density functionals; these small differences show up in the deuterium Hugoniot at ~ 30-40 GPa near the region of maximum compression. Here we present experimental results focusing on that region of the Hugoniot and take advantage of advancements in the platform and standards, resulting in data with significantly higher precision than that obtained in previous studies. These new data may prove to distinguish between the subtle differences predicted by the various density functionals. Results of these experiments will be presented along with comparison to various QMD calculations. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Characterization of Novel Calorimeters in the Annular Core Research Reactor
NASA Astrophysics Data System (ADS)
Hehr, Brian D.; Parma, Edward J.; Peters, Curtis D.; Naranjo, Gerald E.; Luker, S. Michael
2016-02-01
A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response. This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.
Shock-Ramp Loading of Tin and Aluminum
NASA Astrophysics Data System (ADS)
Seagle, Christopher; Davis, Jean; Martin, Matthew; Hanshaw, Heath
2013-06-01
Equation of state properties for materials off the principle Hugoniot and isentrope are currently poorly constrained. The ability to directly probe regions of phase space between the Hugoniot and isentrope under dynamic loading will greatly improve our ability to constrain equation of state properties under a variety of conditions and study otherwise inaccessible phase transitions. We have developed a technique at Sandia's Z accelerator to send a steady shock wave through a material under test, and subsequently ramp compress from the Hugoniot state. The shock-ramp experimental platform results in a unique loading path and enables probing of equation of state properties in regions of phase space otherwise difficult to access in dynamic experiments. A two-point minimization technique has been developed for the analysis of shock-ramp velocity data. The technique correctly accounts for the ``initial'' Hugoniot density of the material under test before the ramp wave arrives. Elevated quasi-isentropes have been measured for solid aluminum up to 1.4 Mbar and liquid tin up to 1.1 Mbar using the shock ramp technique. These experiments and the analysis of the resulting velocity profiles will be discussed. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.
NASA Astrophysics Data System (ADS)
Curry, Matthew; England, Troy; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carr, Stephen; Carroll, Malcolm
Single-shot readout is a requirement for many implementations of quantum information processing. The single-shot readout fidelity is dependent on the signal-to-noise-ratio (SNR) and bandwidth of the readout detection technique. Several different approaches are being pursued to enhance read-out including RF-reflectometry, RF-transmission, parametric amplification, and transistor-based cryogenic preamplification. The transistor-based cryogenic preamplifier is attractive in part because of the reduced experimental complexity compared with the RF techniques. Here we present single-shot charge readout using a cryogenic Heterojunction-Bipolar-Transistor (HBT) inline with a silicon SET charge-sensor at millikelvin temperatures. For the relevant range of HBT DC-biasing, the current gain is 100 to 2000 and the power dissipation is 50 nW to 5 μW, with the microfabricated SET and discrete HBT in an integrated package mounted to the mixing chamber stage of a dilution refrigerator. We experimentally demonstrate a SNR of up to 10 with a bandwidth of 1 MHz, corresponding to a single-shot time-domain charge-sensitivity of approximately 10-4 e / √Hz. This measured charge-sensitivity is comparable to the values reported using the RF techniques. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
Morphology of Thermally Degraded PU and Irradiated PE
NASA Astrophysics Data System (ADS)
Harris, Douglas; Gillen, Kenneth; Celina, Mathias; Assink, Roger
2001-03-01
Several 1H and 13C NMR techniques have been applied to study the morphology and chemical structure of thermally degraded polyurethane rubber and irradiated polyethylene cable insulation. The combination of heat and presence of air results in oxidation of the hydroxyl-terminated polybutadiene/isophorone diisocyanate polyurethane and the gel content increases. The oxidation is inhomogeneous: pristine regions remain with a length scale of approximately 20 nm. The morphology and oxidation products were characterized by 1H spin diffusion with 13C detection. In addition, dynamics were probed with 1H and 2D WISE experiments. Radiation of cross-linked polyethylene cable insulation obeys anomalous aging behavior where lower temperature can result in a greater loss in ultimate tensile elongation. Annealing of the irradiated polyethylene allows significant recovery of mechanical properties. Analysis of 13C NMR data was used to study this "Lazarus effect" and the inverse temperature relationship. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL8500.
NASA Astrophysics Data System (ADS)
Hanson, D. L.; Vesey, R. A.; Cuneo Porter, M. E., Jr.; Chandler, G. A.; Ruggles, L. E.; Simpson, W. W.; Seamen, H.; Primm, P.; Torres, J.; McGurn, J.; Gilliland, T. L.; Reynolds, P.; Hebron, D. E.; Dropinski, S. C.; Schroen-Carey, D. G.; Hammer, J. H.; Landen, O.; Koch, J.
2000-10-01
We are currently exploring symmetry requirements of the z-pinch-driven hohlraum concept [1] for high-yield inertial confinement fusion. In experiments on the Z accelerator, the burnthrough of a low-density self-backlit foam ball has been used to diagnose the large time-dependent flux asymmetry of several single-sided-drive hohlraum geometries [2]. We are currently applying this technique to study polar radiation flux symmetry in a symmetric double z-pinch geometry. Wire arrays on opposite ends of the hohlraum, connected in series to a single current drive of 18 MA, implode and stagnate on axis, efficiently radiating about 100 TW of x rays which heat the secondary to 75 eV. Comparisons with 3-D radiosity and 2-D rad-hydro models of hohlraum symmetry performance will be presented. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. 1 J. H. Hammer et al., Phys. Plasmas 6, 2129 (1999). 2 D. L. Hanson et al., Bull. Am. Phys. Soc. 44, 40 (1999).
Direct Simulation Monte Carlo Investigation of Noncontinuum Couette Flow
NASA Astrophysics Data System (ADS)
Torczynski, J. R.; Gallis, M. A.
2009-11-01
The Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics is used to study noncontinuum effects in Couette flow. The walls have equal temperatures and equal accommodation coefficients but unequal tangential velocities. Simulations are performed for near-free-molecular to near-continuum gas pressures with accommodation coefficients of 0.25, 0.5, and 1. Ten gases are examined: argon, helium, nitrogen, sea-level air, and six Inverse-Power-Law (IPL) gases with viscosity temperature exponents of 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0, as represented by the Variable Soft Sphere (VSS) interaction. In all cases, the wall shear stress is proportional to the slip velocity. The momentum transfer coefficient relating these two quantities can be accurately correlated in terms of the Knudsen number based on the wall separation. The two dimensionless parameters in the correlation are similar for all gases examined. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Simulation Approach for Microscale Noncontinuum Gas-Phase Heat Transfer
NASA Astrophysics Data System (ADS)
Torczynski, J. R.; Gallis, M. A.
2008-11-01
In microscale thermal actuators, gas-phase heat transfer from the heated beams to the adjacent unheated substrate is often the main energy-loss mechanism. Since the beam-substrate gap is comparable to the molecular mean free path, noncontinuum gas effects are important. A simulation approach is presented in which gas-phase heat transfer is described by Fourier's law in the bulk gas and by a wall boundary condition that equates the normal heat flux to the product of the gas-solid temperature difference and a heat transfer coefficient. The dimensionless parameters in this heat transfer coefficient are determined by comparison to Direct Simulation Monte Carlo (DSMC) results for heat transfer from beams of rectangular cross section to the substrate at free-molecular to near-continuum gas pressures. This simulation approach produces reasonably accurate gas-phase heat-transfer results for wide ranges of beam geometries and gas pressures. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Zapotec Simulations of Momentum Transfer for Impacts into Thin Aluminum Targets
NASA Astrophysics Data System (ADS)
Helminiak, Nathaniel; Sable, Peter; Gullerud, Arne; Hollenshead, Jeromy; Hertel, Gene
2017-06-01
The momentum transfers between small, 3.2 mm, aluminum spheres into thin aluminum targets was characterized utilizing the numerical solver, Zapotec, which couples the CTH hydrocode and a transient finite elements code, Sierra/SM. The results are compared to experimental work, conducted at the NASA Ames Research Center. Square 15 × 15cm2 aluminum targets ranged in thickness from 5 to 48.2 mm were impacted at a range of velocities from 1 to 9 km/s. From these tests, the components of spray and ejecta momentum, along the axis of impact, normal to the plate surface, were measured. Variations of hole diameter and target mass loss, with respect to initial projectile velocity, were also recorded. The data presented covers a range of phases corresponding to impact behavior ranging from inelastic collision, through spalling behavior, and ending with complete penetration. Sandia is a multiprogram laboratory, operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Pore-scale modeling of moving contact line problems in immiscible two-phase flow
NASA Astrophysics Data System (ADS)
Kucala, Alec; Noble, David; Martinez, Mario
2016-11-01
Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Analysis of Precursor Properties of mixed Al/Alumel Cylindrical Wire Arrays*
NASA Astrophysics Data System (ADS)
Stafford, A.; Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Osborne, G. C.; Shlyaptseva, V. V.; Keim, S. F.; Coverdale, C. A.; Chuvatin, A. S.
2012-10-01
Previous studies of mid-Z (Cu and Ni) cylindrical wire arrays (CWAs) on Zebra have found precursors with high electron temperatures of >300 eV. However, past experiments with Al CWAs did not find the same high temperature precursors. New precursor experiments using mixed Al/Alumel (Ni 95%, Si 2%, and Al 2%) cylindrical wire arrays have been performed to understand how the properties of L-shell Ni precursor will change and whether Al precursor will be observed. Time gated spectra and pinholes are used to determine precursor plasma conditions for comparison with previous Alumel precursor experiments. A full diagnostic set which included more than ten different beam-lines was implemented. Future work in this direction is discussed. [4pt] *This work was supported by NNSA under DOE Cooperative Agreements DE-FC52-06NA27588, and in part by DE-FC52-06NA27586, and DE-FC52-06NA27616. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.
The Effect of External Magnetic Fields on the MRT Instability in MagLIF
NASA Astrophysics Data System (ADS)
Hess, Mark; Peterson, Kyle; Weis, Matthew; Lau, Yue Ying
2014-10-01
Recent experiments on MagLIF which incorporate an external B-field suggest that the MRT instability within the liner has a different behavior than without the B-field. Previous work by Chandrasekhar and Harris have illustrated how the MRT growth rate, assuming fixed liner density and fixed acceleration, can change due to the presence of an external B-field. In this work, we show how the growth rate of the MRT instability is dynamically affected by the rapidly varying acceleration, liner density, and surface magnetic field, which is composed of the external B-field and the drive B-field of the liner in the MagLIF experiments. In addition, we also examine the effects of finite liner resistivity on MRT growth, which gives rise to an additional time scale corresponding to magnetic diffusion. We discuss the implications of this result for future MagLIF designs. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.
Development of the electrothermal instability from resistive inclusions
NASA Astrophysics Data System (ADS)
Yu, Edmund; Awe, T. J.; Bauer, B. S.; Yates, K. C.; Yelton, W. G.; Hutchinson, T. M.; Fuelling, S.; McKenzie, B. B.; Peterson, K. J.
2016-10-01
The magneto Rayleigh-Taylor (MRT) instability limits the performance of all magnetically imploded systems. In the case of compressing metal liners, as in the magnetized liner inertial fusion concept, a dominant seed for MRT is believed to be the electrothermal instability (ETI). Here, linear theory predicts the most unstable mode manifests as horizontal (i.e. perpendicular to current flow) bands of heated and expanded metal. However, how do such bands, known as striations, actually develop from a smooth metal surface? Recent experiments on ETI evolution, performed at the University of Nevada, Reno, provide a possible answer: pre-shot characterization of aluminum rods show numerous resistive inclusions, several microns in diameter and distributed throughout the rod. In this work, we use 3D MHD simulation and analytic theory to explore how current redistribution around these isolated inclusions, combined with ETI, can lead to rapid formation of the global striation structures. Later in time, striations expand and form density perturbations much larger than the initial inclusion size. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under DE-AC04-94AL85000.
Window decompression in laser-heated MagLIF targets
NASA Astrophysics Data System (ADS)
Woodbury, Daniel; Peterson, Kyle; Sefkow, Adam
2015-11-01
The Magnetized Liner Inertial Fusion (MagLIF) concept requires pre-magnetized fuel to be pre-heated with a laser before undergoing compression by a thick solid liner. Recent experiments and simulations suggest that yield has been limited to date by poor laser preheat and laser-induced mix in the fuel region. In order to assess laser energy transmission through the pressure-holding window, as well as resultant mix, we modeled window disassembly under different conditions using 1D and 2D simulations in both Helios and HYDRA. We present results tracking energy absorption, time needed for decompression, risk of laser-plasma interaction (LPI) that may scatter laser light, and potential for mix from various window thicknesses, laser spot sizes and gas fill densities. These results indicate that using thinner windows (0.5-1 μm windows) and relatively large laser spot radii (600 μm and above) can avoid deleterious effects and improve coupling with the fuel. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under DE-AC04- 94AL85000.
DFT-MD simulations of shocked Xenon
NASA Astrophysics Data System (ADS)
Magyar, Rudolph J.; Mattsson, Thomas R.
2009-03-01
Xenon is not only a technologically important element used in laser technologies, jet propulsion and dental anesthesia, but it is also arguably the simplest material in which to study the metal-insulator transition at high pressure. Because of its closed shell electronic configuration, Xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as Xenon is known to form compounds at normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. In this talk, we present DFT-MD simulations of shocked liquid Xenon with the goal of developing an improved equation of state. The relative importance of the van der Waals interaction compared to other Coulomb interactions is considered, and estimates of the relative accuracy of various density functionals are quantified. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
A Model to Build Capacity through a Multi-Program Curriculum Review Process
ERIC Educational Resources Information Center
Dyjur, Patti; Lock, Jennifer
2016-01-01
Curriculum reviews are becoming more prevalent in higher educational institutions as a means to address quality assurance and improve program offerings. However, the review process can be structured so that instructors experience professional learning benefits as they work with program-level learning outcomes, map their courses, and analyze…
Lai, Cindy J; Aagaard, Eva; Brandenburg, Suzanne; Nadkarni, Mohan; Wei, Henry G; Baron, Robert
2006-05-01
To assess the reading habits and educational resources of primary care internal medicine residents for their ambulatory medicine education. Cross-sectional, multiprogram survey of primary care internal medicine residents. Second- and third-year residents on ambulatory care rotations at 9 primary care medicine programs (124 eligible residents; 71% response rate). Participants were asked open-ended and 5-point Likert-scaled questions about reading habits: time spent reading, preferred resources, and motivating and inhibiting factors. Participants reported reading medical topics for a mean of 4.3+/-3.0 SD hours weekly. Online-only sources were the most frequently utilized medical resource (mean Likert response 4.16+/-0.87). Respondents most commonly cited specific patients' cases (4.38+/-0.65) and preparation for talks (4.08+/-0.89) as motivating factors, and family responsibilities (3.99+/-0.65) and lack of motivation (3.93+/-0.81) as inhibiting factors. To stimulate residents' reading, residency programs should encourage patient- and case-based learning; require teaching assignments; and provide easy access to online curricula.
Concepts for a NASA Applied Spaceflight Environments Office
NASA Technical Reports Server (NTRS)
Edwards, David L.; Burns, Howard D.; Xapsos, Michael; Spann, Jim; Suggs, Robert
2010-01-01
The National Aeronautics and Space Administration (NASA) is launching a bold and ambitious new space initiative. A significant part of this new initiative includes exploration of new worlds, the development of more innovative technologies, and expansion our presence in the solar system. A common theme to this initiative is the exploration of space beyond Low Earth Orbit (LEO). As currently organized, NASA does not have an Agency-level office that provides coordination of space environment research and development. This has contributed to the formation of a gap between spaceflight environments knowledge and the application of this knowledge for multi-program use. This paper outlines a concept to establish a NASA-level Applied Spaceflight Environments (ASE) office that will provide coordination and funding for sustained multi-program support in three technical areas that have demonstrated these needs through customer requests. These technical areas are natural environments characterization and modeling, materials and systems analysis and test, and operational space environments modeling and prediction. This paper will establish the need for the ASE, discuss a concept for organizational structure and outline the scope in the three technical areas
Problem Video Gaming Among Children Enrolled in Tertiary Weight Management Programs.
Stubblefield, Sam; Datto, George; Phan, Thao-Ly T; Werk, Lloyd N; Stackpole, Kristin; Siegel, Robert; Stratbucker, William; Tucker, Jared M; Christison, Amy L; Hossain, Jobayer; Gentile, Douglas A
2017-02-01
Prior studies show seven percent to nine percent of children demonstrate gaming behaviors that affect a child's ability to function (e.g., problem gaming), but none have examined the association between problem gaming and weight status. The objective of this study was to determine the prevalence of problem gaming among children enrolled in tertiary weight management programs. We administered a computer-based survey to a convenience sample of children aged 11-17 years enrolled in five geographically diverse pediatric weight management (PWM) programs in the COMPASS (Childhood Obesity Multi-Program Analysis and Study System) network. The survey included demographics, gaming characteristics, and a problem gaming assessment. The survey had 454 respondents representing a diverse cohort (53 percent females, 27 percent black, 24 percent Hispanic, 41 percent white) with mean age of 13.7 years. A total of 8.2 percent of respondents met criteria for problem gaming. Problem gamers were more likely to be white, male, play mature-rated games, and report daily play. Children in PWM programs reported problem gaming at the same rate as other pediatric populations. Screening for problem gaming provides an opportunity for pediatricians to address gaming behaviors that may affect the health of children with obesity who already are at risk for worsened health and quality of life.
Problem Video Gaming Among Children Enrolled in Tertiary Weight Management Programs
Datto, George; Phan, Thao-Ly T.; Werk, Lloyd N.; Stackpole, Kristin; Siegel, Robert; Stratbucker, William; Tucker, Jared M.; Christison, Amy L.; Hossain, Jobayer; Gentile, Douglas A.
2017-01-01
Abstract Prior studies show seven percent to nine percent of children demonstrate gaming behaviors that affect a child's ability to function (e.g., problem gaming), but none have examined the association between problem gaming and weight status. The objective of this study was to determine the prevalence of problem gaming among children enrolled in tertiary weight management programs. We administered a computer-based survey to a convenience sample of children aged 11–17 years enrolled in five geographically diverse pediatric weight management (PWM) programs in the COMPASS (Childhood Obesity Multi-Program Analysis and Study System) network. The survey included demographics, gaming characteristics, and a problem gaming assessment. The survey had 454 respondents representing a diverse cohort (53 percent females, 27 percent black, 24 percent Hispanic, 41 percent white) with mean age of 13.7 years. A total of 8.2 percent of respondents met criteria for problem gaming. Problem gamers were more likely to be white, male, play mature-rated games, and report daily play. Children in PWM programs reported problem gaming at the same rate as other pediatric populations. Screening for problem gaming provides an opportunity for pediatricians to address gaming behaviors that may affect the health of children with obesity who already are at risk for worsened health and quality of life. PMID:28170312
Investigating the Thermal Limit of Clay Minerals for Applications in Nuclear Waste Repository Design
NASA Astrophysics Data System (ADS)
Matteo, E. N.; Miller, A. W.; Kruichak, J.; Mills, M.; Tellez, H.; Wang, Y.
2013-12-01
Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of clays (illite, mixed layer illite/smectite, montmorillonite, and palygorskite) were heated for a range of temperatures between 100-500 °C. These samples were characterized by a variety of methods, including nitrogen adsorption, x-ray diffraction, thermogravimetric analysis, barium chloride exchange for cation exchange capacity (CEC), and iodide sorption. The nitrogen porosimetry shows that for all the clays, thermally-induced changes in BET surface area are dominated by collapse/creation of the microporosity, i.e. pore diameters < 17 angstroms. Changes in micro porosity (relative to no heat treatment) are most significant for heat treatments 300 °C and above. Alterations are also seen in the chemical properties (CEC, XRD, iodide sorption) of clays, and like pore size distribution changes, are most significant above 300 °C. Overall, the results imply that changes seen in pores size distribution correlate with cation exchange capacity and cation exchange processes. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: 2013-6352A.
NASA Astrophysics Data System (ADS)
Thompson, Aidan
2013-06-01
Initiation in energetic materials is fundamentally dependent on the interaction between a host of complex chemical and mechanical processes, occurring on scales ranging from intramolecular vibrations through molecular crystal plasticity up to hydrodynamic phenomena at the mesoscale. A variety of methods (e.g. quantum electronic structure methods (QM), non-reactive classical molecular dynamics (MD), mesoscopic continuum mechanics) exist to study processes occurring on each of these scales in isolation, but cannot describe how these processes interact with each other. In contrast, the ReaxFF reactive force field, implemented in the LAMMPS parallel MD code, allows us to routinely perform multimillion-atom reactive MD simulations of shock-induced initiation in a variety of energetic materials. This is done either by explicitly driving a shock-wave through the structure (NEMD) or by imposing thermodynamic constraints on the collective dynamics of the simulation cell e.g. using the Multiscale Shock Technique (MSST). These MD simulations allow us to directly observe how energy is transferred from the shockwave into other processes, including intramolecular vibrational modes, plastic deformation of the crystal, and hydrodynamic jetting at interfaces. These processes in turn cause thermal excitation of chemical bonds leading to initial chemical reactions, and ultimately to exothermic formation of product species. Results will be presented on the application of this approach to several important energetic materials, including pentaerythritol tetranitrate (PETN) and ammonium nitrate/fuel oil (ANFO). In both cases, we validate the ReaxFF parameterizations against QM and experimental data. For PETN, we observe initiation occurring via different chemical pathways, depending on the shock direction. For PETN containing spherical voids, we observe enhanced sensitivity due to jetting, void collapse, and hotspot formation, with sensitivity increasing with void size. For ANFO, we examine the effect of reaction rates on shock direction, fuel oil fraction, and crystal/fuel oil/void microstructural arrangement. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy's National Nuclear Security Admin. under contract DEAC0494AL85000.
NASA Astrophysics Data System (ADS)
Lemke, Raymond
2015-06-01
The focus of this talk is on magnetically driven, liner implosion experiments on the Z machine (Z) in which a solid, metal tube is shocklessly compressed to multi-megabar pressure. The goal of the experiments is to collect velocimetry data that can be used in conjunction with a new optimization based analysis technique to infer the principal isentrope of the tube material over a range of pressures. For the past decade, shock impact and ramp loading experiments on Z have used planar platforms exclusively. While producing state-of-the-art results for material science, it is difficult to produce drive pressures greater than 6 Mbar in the divergent planar geometry. In contrast, a cylindrical liner implosion is convergent; magnetic drive pressures approaching 50 Mbar are possible with the available current on Z (~ 20 MA). In our cylindrical experiments, the liner comprises an inner tube composed of the sample material (e.g., Ta) of unknown equation of state, and an outer tube composed of aluminum (Al) that serves as the current carrying cathode. Internal to the sample are fielded multiple PDV (Photonic Doppler Velocimetry) probes that measure velocity of the inner free surface of the imploding sample. External to the composite liner, at much larger radius, is an Al tube that is the return current anode. VISAR (velocity interferometry system for any reflector) probes measure free surface velocity of the exploding anode. Using the latter, MHD and optimization codes are employed to solve an inverse problem that yields the current driving the liner implosion. Then, the drive current, PDV velocity, MHD and optimization codes, are used to solve another inverse problem that yields pressure vs. density on approximately the principal isentrope of the sample material. Results for Ta, Re, and Cu compressed to ~ 10 Mbar are presented. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Frederick, J. M.; Bull, D. L.; Jones, C.; Roberts, J.; Thomas, M. A.
2016-12-01
Arctic coastlines are receding at accelerated rates, putting existing and future activities in the developing coastal Arctic environment at extreme risk. For example, at Oliktok Long Range Radar Site, erosion that was not expected until 2040 was reached as of 2014 (Alaska Public Media). As the Arctic Ocean becomes increasingly ice-free, rates of coastal erosion will likely continue to increase as (a) increased ice-free waters generate larger waves, (b) sea levels rise, and (c) coastal permafrost soils warm and lose strength/cohesion. Due to the complex and rapidly varying nature of the Arctic region, little is known about the increasing waves, changing circulation, permafrost soil degradation, and the response of the coastline to changes in these combined conditions. However, as scientific focus has been shifting towards the polar regions, Arctic science is rapidly advancing, increasing our understanding of complex Arctic processes. Our present understanding allows us to begin to develop and evaluate the coupled models necessary for the prediction of coastal erosion in support of Arctic risk assessments. What are the best steps towards the development of a coupled model for Arctic coastal erosion? This work focuses on our current understanding of Arctic conditions and identifying the tools and methods required to develop an integrated framework capable of accurately predicting Arctic coastline erosion and assessing coastal risk and hazards. We will present a summary of the state-of-the-science, and identify existing tools and methods required to develop an integrated diagnostic and monitoring framework capable of accurately predicting and assessing Arctic coastline erosion, infrastructure risk, and coastal hazards. The summary will describe the key coastal processes to simulate, appropriate models to use, effective methods to couple existing models, and identify gaps in knowledge that require further attention to make progress in our understanding of Arctic coastal erosion. * Co-authors listed in alphabetical order. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Failure of Castlegate Sandstone under True Triaxial Loading
NASA Astrophysics Data System (ADS)
Ingraham, M. D.; Issen, K. A.; Holcomb, D. J.
2011-12-01
Understanding the stress conditions that cause deformation bands to form can provide insight into the geologic processes in a given location. In particular, understanding the relationship of the intermediate principal stress with respect to maximum and minimum compression when bands form, could provide useful information about the intermediate principal stress in field settings. Therefore, a series of tests were performed to investigate the effect of the intermediate principal stress on the mechanical response and failure of Castlegate sandstone under true triaxial states of stress. Constant mean stress tests were run at five different stress states ranging from: 1) intermediate principal stress equal to minimum compression to 2) intermediate principal stress equal to maximum compression. Failure occurred either through deformation band formation or apparent bulk compaction. Specimens that formed a deformation band experienced a stress drop at band formation. For a given level of intermediate principal stress, the peak stress increases with increasing mean stress. Additionally, as intermediate principal stress increases, the peak stress decreases for a given mean stress. Acoustic emissions (AE) recorded during testing were used to locate failure events in three-dimensional space within the sample. This allowed for more detailed investigation of the formation and propagation of the band(s) within the specimen. In specimens that appear to have undergone bulk compaction, AE events were randomly distributed throughout the sample. For specimens with bands, the band angles were measured as the angle between the maximum principal stress direction and the normal to the band that formed. Band angles tend to increase with increasing intermediate principal stress, and decrease with increasing mean stress. Results from the AE data shows that the band angle evolves during testing and the band that is expressed on the surface of the specimen at the conclusion of testing is not always the band that initially formed. AE results also show that low angle bands tend to be more diffuse than higher angle bands. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Finite-Difference Algorithm for Simulating 3D Electromagnetic Wavefields in Conductive Media
NASA Astrophysics Data System (ADS)
Aldridge, D. F.; Bartel, L. C.; Knox, H. A.
2013-12-01
Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies. In order to enhance understanding of field-recorded data, we are developing a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in heterogeneous conductive materials. Maxwell's equations are combined with isotropic constitutive relations to obtain a set of six, coupled, first-order partial differential equations governing the electric and magnetic vectors. An advantage of this system is that it does not contain spatial derivatives of the three medium parameters electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of explicit, time-domain finite-differencing on a 3D staggered rectangular grid. Temporal and spatial FD operators have order 2 and N, where N is user-selectable. We use an artificially-large electric permittivity to maximize the FD timestep, and thus reduce execution time. For the low frequencies typically used in geophysical exploration, accuracy is not unduly compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm execution on a multi-thread computational platform. Good agreement is obtained in comparisons of numerically-generated data with reference solutions. EM wavefields are sourced via point current density and magnetic dipole vectors. Spatially-extended inductive sources (current carrying wire loops) are under development. We are particularly interested in accurate representation of high-conductivity sub-grid-scale features that are common in industrial environments (borehole casing, pipes, railroad tracks). Present efforts are oriented toward calculating the EM responses of these objects via a First Born Approximation approach. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Compaction and Permeability Reduction of Castlegate Sandstone under Pore Pressure Cycling
NASA Astrophysics Data System (ADS)
Bauer, S. J.
2014-12-01
We investigate time-dependent compaction and permeability changes by cycling pore pressure with application to compressed air energy storage (CAES) in a reservoir. Preliminary experiments capture the impacts of hydrostatic stress, pore water pressure, pore pressure cycling, chemical, and time-dependent considerations near a borehole in a CAES reservoir analog. CAES involves creating an air bubble in a reservoir. The high pressure bubble serves as a mechanical battery to store potential energy. When there is excess grid energy, bubble pressure is increased by air compression, and when there is energy needed on the grid, stored air pressure is released through turbines to generate electricity. The analog conditions considered are depth ~1 km, overburden stress ~20 MPa and a pore pressure ~10MPa. Pore pressure is cycled daily or more frequently between ~10 MPa and 6 MPa, consistent with operations of a CAES facility at this depth and may continue for operational lifetime (25 years). The rock can vary from initially fully-to-partially saturated. Pore pressure cycling changes the effective stress.Jacketed, room temperature tap water-saturated samples of Castlegate Sandstone are hydrostatically confined (20 MPa) and subjected to a pore pressure resulting in an effective pressure of ~10 MPa. Pore pressure is cycled between 6 to 10 MPa. Sample displacement measurements yielded determinations of volumetric strain and from water flow measurements permeability was determined. Experiments ran for two to four weeks, with 2 to 3 pore pressure cycles per day. The Castlegate is a fluvial high porosity (>20%) primarily quartz sandstone, loosely calcite cemented, containing a small amount of clay.Pore pressure cycling induces compaction (~.1%) and permeability decreases (~20%). The results imply that time-dependent compactive processes are operative. The load path, of increasing and decreasing pore pressure, may facilitate local loosening and grain readjustments that results in the compaction and permeability decreases observed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.SAND2014-16586A
Modeling Seismoacoustic Propagation from the Nonlinear to Linear Regimes
NASA Astrophysics Data System (ADS)
Chael, E. P.; Preston, L. A.
2015-12-01
Explosions at shallow depth-of-burial can cause nonlinear material response, such as fracturing and spalling, up to the ground surface above the shot point. These motions at the surface affect the generation of acoustic waves into the atmosphere, as well as the surface-reflected compressional and shear waves. Standard source scaling models for explosions do not account for such nonlinear interactions above the shot, while some recent studies introduce a non-isotropic addition to the moment tensor to represent them (e.g., Patton and Taylor, 2011). We are using Sandia's CTH shock physics code to model the material response in the vicinity of underground explosions, up to the overlying ground surface. Across a boundary where the motions have decayed to nearly linear behavior, we couple the signals from CTH into a linear finite-difference (FD) seismoacoustic code to efficiently propagate the wavefields to greater distances. If we assume only one-way transmission of energy through the boundary, then the particle velocities there suffice as inputs for the FD code, simplifying the specification of the boundary condition. The FD algorithm we use applies the wave equations for velocity in an elastic medium and pressure in an acoustic one, and matches the normal traction and displacement across the interface. Initially we are developing and testing a 2D, axisymmetric seismoacoustic routine; CTH can use this geometry in the source region as well. The Source Physics Experiment (SPE) in Nevada has collected seismic and acoustic data on numerous explosions at different scaled depths, providing an excellent testbed for investigating explosion phenomena (Snelson et al., 2013). We present simulations for shots SPE-4' and SPE-5, illustrating the importance of nonlinear behavior up to the ground surface. Our goal is to develop the capability for accurately predicting the relative signal strengths in the air and ground for a given combination of source yield and depth. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Shulenburger, Luke
2015-11-01
MgO is a major constituent of Earth's mantle, the rocky cores of gas giants and is a likely component of the interiors of many exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine MgO under extreme conditions using experimental and theoretical methods to determine the phase diagram and transport properties. Using plate impact experiments on Sandia's Z facility a low entropy solid-solid phase transition from B1 to B2 is clearly determined. The melting transition, on the other hand, is subtle, involving little to no signal in us-up space. Theoretical work utilizing density functional theory (DFT) provides a complementary picture of the phase diagram. The solid-solid phase transition is identified through a series of quasi-harmonic phonon calculations and thermodynamic integration, while the melt boundary is found using phase coexistence calculations. The calculation of reflectivity along the Hugoniot and the influence of the ionic structure on the transport properties requires particular care because of the underestimation of the band gap and attendant overestimation of transport properties due to the use of semi-local density functional theory. We will explore the impact of this theoretical challenge and its potential solutions in this talk. Finally, understanding the behavior of MgO as the pressure releases from the Hugoniot state is a key ingredient to modeling giant impact events. We explore this regime both through additional DFT calculations and by observing the release state of the MgO into lower impedance materials. The integrated use of DFT simulations and high-accuracy shock experiments together provide a comprehensive understanding of MgO under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Cohesive model applied to fracture propagation in Indiana Limestone
NASA Astrophysics Data System (ADS)
Dewers, T. A.; Rinehart, A. J.; Bishop, J. E.
2014-12-01
We apply a cohesive fracture (CF) model to results of short-rod (SR), notched 3-point-bend (N3PB) tests, and Brazil tests in Indiana Limestone. Calibration and validation of the model are performed within a commercial finite element modeling platform. By using a linear traction-displacement softening response for a defined fracture-opening displacement (w1) following peak tensile stress (σcrit), the CF model numerically lumps different spatially distributed inelastic processes occurring at and around fracture tips into a thin zone within an elastic domain. Both the SR and the N3PB test specimen geometries use a notch partway through the sample to control the location of fracture propagation. We develop a mesh for both the SR and N3PB geometries with a narrow cohesive zone in the center of notches. From the Brazil tests, we find a tensile splitting stress (σsplit) of 5.9 MPa. We use a σsplit as the peak tensile stress (σcrit) for all simulations. The Young's modulus (E) and the critical crack opening distance (w1) of the CF model are calibrated against the SR data. The model successfully captures the elastic, yield, peak, and initial and late failure behavior and compares favorably against the N3PB tests. Differences in force-displacement and crack propagation are primarily caused by: more mixed-mode (shear and opening) crack propagation in N3PB than in SR tests, causing a higher peak; and transition from compression (high E) to tension (low E) in a larger volume of the N3PB sample than in the SR geometry. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Multi-Program High School Students' Attitudes and Self-Efficacy Perceptions toward Mathematics
ERIC Educational Resources Information Center
Yavuz Mumcu, Hayal; Cansiz Aktas, Meral
2015-01-01
Problem Statement: So far, there have been many problems in maths education in the world; negative attitudes and low self-efficacy perceptions towards mathematics are the two important reasons for these problems. Though there are several studies regarding the topic, choosing random students from secondary school for the sample group of the study…
Impacts of climate change on landscapes of the eastern Sierra Nevada and western Great Basin
A. S. Jayko; C. I. Millar
2000-01-01
This effort was developed under a U.S. GeologicalSurvey (USGS) initiative to sponsor science workshops focusingon various of multidiscipline, multiprogram themes inthe arid Southwest. The intent was to use the workshopsto explore leading-edge questions, as well as to providebetter communication and collaboration between USGS andother organizations and agencies. The...
ERIC Educational Resources Information Center
Dewa, Carolyn S.; Horgan, Salinda; Russell, Marc; Keates, Jane
2001-01-01
Describes experiences in developing a multi-program economic evaluation and costing study of Assertive Community Treatment (ACT), a widely studied community mental health treatment model. The project description shows how the worlds of research and service delivery can collaborate to come to symbiotic resolutions. (Author/SLD)
ERIC Educational Resources Information Center
Greaney, Mary; Hardwick, Cary K.; Mezgebu, Solomon; Lindsay, Ana C.; Roover, Michelle L.; Peterson, Karen E.
2007-01-01
Background: University-community partnerships can support schools in implementing evidence-based responses to youth obesity trends. An inter-organizational partnership was established to implement and evaluate the Healthy Choices Collaborative Intervention (HCCI). HCCI combines an interdisciplinary curriculum, before/after school activities, and…
Ions interacting in solution: Moving from intrinsic to collective properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, Timothy T.; Baer, Marcel D.; Mundy, Christopher J.
A crucial determinant of Hofmeister effects is the direct interaction of ions in solution with the charged groups on the surface of larger particles. Understanding ion–ion interactions in solution is therefore a necessary first step to explaining Hofmeister effects. Here, we advocate an approach to modeling these types of properties where state of the art Ab Initio Molecular Dynamics (AIMD) simulation of ions in solution is used to establish benchmark values for the intrinsic properties of ions in solution such as solvation structures and ion–ion Potentials of Mean Force (PMFs). This information can then be combined with or used to parametrize and improve reduced models, which use approximations such as the continuum solvent model.(CSM) These reduced models can then be used to calculate collective and concentration dependent properties of electrolyte solution and so make accurate predictions about complex systems of relevance for direct applications. We provide an example of this approach using AIMD calculations of the sodium chloride dimer to calculate osmotic coefficients of all 20 alkali halide electrolytes. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. TD and CJM were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MSmore » $$^{3}$$ (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy.« less
Nanostructures and radionuclide transport in clay formations (Invited)
NASA Astrophysics Data System (ADS)
Wang, Y.
2010-12-01
Nanostructures are widely present in geologic materials and are expected to directly affect the interactions of these materials with geologic fluids. The study of mineral-water interface chemistry as controlled by nanostructures is a necessary step to bridge the existing gap between the molecular level understanding of a geochemical process and the macro-scale laboratory and field observations. In this presentation, I will review the recent progresses in nanoscience and provide a perspective on how these progresses can potentially impact geochemical studies. My presentation will be focused the following areas: (1) the characterization of nanostructures in natural systems, (2) the study of water and chemical species in nanoconfinement, (3) the effects of nanopores on geochemical reaction and mass transfers, and (4) the use nanostructured materials for environmental remediation and cleanup. Specifically, I will demonstrate that the nanopore confinement can significantly modify geochemical reactions in porous geologic media. As the pore size is reduced to a few nanometers, the difference between surface acidity constants (pK2 - pK1) decreases, giving rise to a higher surface charge density on a nanopore surface than that on an unconfined mineral-water interface. The change in surface acidity constants results in a shift of ion sorption edges and enhances ion sorption on nanopore surfaces. This effect causes preferential enrichment of trace elements in nanopores and therefore directly impacts the bioavailability of these elements. The implication of these processes to radionuclide transport in clay formations will be discussed. This work was performed at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE under contract DE-AC04-94AL8500.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Xing; Wang, Lei; Zhou, Hu
A novel PtCo alloy in situ etched and embedded in graphene nanopores (PtCo/NPG) as a high-performance catalyst for ORR was reported. Graphene nanopores were fabricated in situ while forming PtCo nanoparticles that were uniformly embedded in the graphene nanopores. Given the synergistic effect between PtCo alloy and nanopores, PtCo/NPG exhibited 11.5 times higher mass activity than that of the commercial Pt/C cathode electrocatalyst. DFT calculations indicated that the nanopores in NPG cannot only stabilize PtCo nanoparticles but can also definitely change the electronic structures, thereby change its adsorption abilities. This enhancement can lead to a favorable reaction pathway on PtCo/NPGmore » for ORR. This study showed that PtCo/NPG is a potential candidate for the next generation of Pt-based catalysts in fuel cells. This study also offered a promising alternative strategy and enabled the fabrication of various kinds of metal/graphene nanopore nanohybrids with potential applications in catalysts and potential use for other technological devices. The authors acknowledge the financial support from the National Basic Research Program (973 program, No. 2013CB733501), Zhejiang Provincial Education Department Research Program (Y201326554) and the National Natural Science Foundation of China (No. 21306169, 21101137, 21136001, 21176221 and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC).« less
Reaction Rate Theory in Coordination Number Space: An Application to Ion Solvation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Santanu; Baer, Marcel D.; Mundy, Christopher J.
2016-04-14
Understanding reaction mechanisms in many chemical and biological processes require application of rare event theories. In these theories, an effective choice of a reaction coordinate to describe a reaction pathway is essential. To this end, we study ion solvation in water using molecular dynamics simulations and explore the utility of coordination number (n = number of water molecules in the first solvation shell) as the reaction coordinate. Here we compute the potential of mean force (W(n)) using umbrella sampling, predicting multiple metastable n-states for both cations and anions. We find with increasing ionic size, these states become more stable andmore » structured for cations when compared to anions. We have extended transition state theory (TST) to calculate transition rates between n-states. TST overestimates the rate constant due to solvent-induced barrier recrossings that are not accounted for. We correct the TST rates by calculating transmission coefficients using the reactive flux method. This approach enables a new way of understanding rare events involving coordination complexes. We gratefully acknowledge Liem Dang and Panos Stinis for useful discussion. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. SR, CJM, and GKS were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy.« less
NASA Astrophysics Data System (ADS)
Heath, J. E.; Dewers, T. A.; McPherson, B. J.; Kotula, P. G.
2010-12-01
Subsurface containment of CO2 is predicated on effective caprock sealing. Many previous studies have relied on macroscopic measurements of capillary breakthrough pressure and other petrophysical properties without direct examination of solid phases that line pore networks and directly contact fluids. However, pore-lining phases strongly contribute to sealing behavior through interfacial interactions among CO2, brine, and the mineral or non-mineral phases. Our high resolution (i.e., sub-micron) examination of the composition of pore-lining phases of several continental and marine mudstones indicates that sealing efficiency (i.e., breakthrough pressure) is governed by pore shapes and pore-lining phases that are not identifiable except through direct characterization of pores. Bulk X-ray diffraction data does not indicate which phases line the pores and may be especially lacking for mudstones with organic material. Organics can line pores and may represent once-mobile phases that modify the wettability of an originally clay-lined pore network. For shallow formations (i.e., < ~800 m depth), interfacial tension and contact angles result in breakthrough pressures that may be as high as those needed to fracture the rock—thus, in the absence of fractures, capillary sealing efficiency is indicated. Deeper seals have poorer capillary sealing if mica-like wetting dominates the wettability. We thank the U.S. Department of Energy’s National Energy Technology Laboratory and the Office of Basic Energy Sciences, and the Southeast and Southwest Carbon Sequestration Partnerships for supporting this work. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
The Site-Scale Saturated Zone Flow Model for Yucca Mountain
NASA Astrophysics Data System (ADS)
Al-Aziz, E.; James, S. C.; Arnold, B. W.; Zyvoloski, G. A.
2006-12-01
This presentation provides a reinterpreted conceptual model of the Yucca Mountain site-scale flow system subject to all quality assurance procedures. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain, which is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. This effort started from the ground up with a revised and updated hydrogeologic framework model, which incorporates the latest lithology data, and increased grid resolution that better resolves the hydrogeologic framework, which was updated throughout the model domain. In addition, faults are much better represented using the 250× 250- m2 spacing (compared to the previous model's 500× 500-m2 spacing). Data collected since the previous model calibration effort have been included and they comprise all Nye County water-level data through Phase IV of their Early Warning Drilling Program. Target boundary fluxes are derived from the newest (2004) Death Valley Regional Flow System model from the US Geologic Survey. A consistent weighting scheme assigns importance to each measured water-level datum and boundary flux extracted from the regional model. The numerical model is calibrated by matching these weighted water level measurements and boundary fluxes using parameter estimation techniques, along with more informal comparisons of the model to hydrologic and geochemical information. The model software (hydrologic simulation code FEHM~v2.24 and parameter estimation software PEST~v5.5) and model setup facilitates efficient calibration of multiple conceptual models. Analyses evaluate the impact of these updates and additional data on the modeled potentiometric surface and the flowpaths emanating from below the repository. After examining the heads and permeabilities obtained from the calibrated models, we present particle pathways from the proposed repository and compare them to those from the previous model calibration. Specific discharge at a point 5~km from the repository is also examined and found to be within acceptable uncertainty. The results show that updated model yields a calibration with smaller residuals than the previous model revision while ensuring that flowpaths follow measured gradients and paths derived from hydrochemical analyses. This work was supported by the Yucca Mountain Site Characterization Office as part of the Civilian Radioactive Waste Management Program, which is managed by the U.S. Department of Energy, Yucca Mountain Site Characterization Project. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE AC04 94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, Arushi; Baer, Marcel D.; Mundy, Christopher J.
Peptoids are peptide-mimetic biopolymers that are easy-to-synthesize and adaptable for use in drugs, chemical scaffolds, and coatings. However, there is insufficient information about their structural preferences and interactions with the environment in various applications. We conducted a study to understand the fundamental differences between peptides and peptoids using molecular dynamics simulations with semi-empirical (PM6) and empirical (AMBER) potentials, in conjunction with metadynamics enhanced sampling. From studies of single molecules in water and on surfaces, we found that sarcosine (model peptoid) is much more flexible than alanine (model peptide) in different environments. However, the sarcosine and alanine interact similarly with amore » hydrophobic or a hydrophilic. Finally, this study highlights the conformational landscape of peptoids and the dominant interactions that drive peptoids towards these conformations. ACKNOWLEDGMENT: MD simulations and manuscript preparation were supported by the MS3 (Materials Synthesis and Simulation Across Scales) Initiative at Pacific Northwest National Laboratory (PNNL), a multi-program national laboratory operated by Battelle for the U.S. Department of Energy. CJM was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by the US Department of Energy, Office of Basic Energy Sciences, Biomolecular Materials Program at PNNL. Computing resources were generously allocated by University of Washington's IT department and PNNL's Institutional Computing program. The authors greatly acknowledge conversations with Dr. Kayla Sprenger, Josh Smith, and Dr. Yeneneh Yimer.« less
A Radar-like Iron based Nanohybrid as an Efficient and Stable Electrocatalyst for Oxygen Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, X. Y.; Liu, Lin; Wang, Xinde
2014-05-21
The present study shows a design concept for fabricating Fe-PyNG hybrid via strong coupling between FePc and pyridine-N. The prominent features of the Fe-PyNG hybrid include high electrocatalytic activity, superior durability, and better performance than Pt/C toward ORR in alkaline media. These features potentially make Fe-PyNG an outstanding nonprecious metal cathode catalyst for fuel cells. The incorporation of Fe ion and pyridine-N afforded effective bonding and synergetic coupling effects, which lead to significant electrocatalytic performance. DFT calculations indicate that N-modified Fe is a superior site for OOH adsorption and ORR reaction. Meanwhile, the strong chemical bonding between FePc and pyridynemore » in PyNG leads to its superior stability. We believe that our present synthetic strategy can be further extended to develop other metal complexes/N-doped carbon materials for broad applications in the field of catalysts, batteries, and supercapacitors. This work was supported by National Basic Research Program of China (973 Program) (2013CB733501), the National Natural Science Foundation of China (NSFC-21306169, 21176221, 21136001 and 21101137), Zhejiang Provincial Natural Science Foundation of China (ZJNSF-R4110345) and the New Century Excellent Talents in University Program (NCET-10-0979). We thank Prof. Youqun Zhu for Instruments support. D. Mei is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less
Single-pass memory system evaluation for multiprogramming workloads
NASA Technical Reports Server (NTRS)
Conte, Thomas M.; Hwu, Wen-Mei W.
1990-01-01
Modern memory systems are composed of levels of cache memories, a virtual memory system, and a backing store. Varying more than a few design parameters and measuring the performance of such systems has traditionally be constrained by the high cost of simulation. Models of cache performance recently introduced reduce the cost simulation but at the expense of accuracy of performance prediction. Stack-based methods predict performance accurately using one pass over the trace for all cache sizes, but these techniques have been limited to fully-associative organizations. This paper presents a stack-based method of evaluating the performance of cache memories using a recurrence/conflict model for the miss ratio. Unlike previous work, the performance of realistic cache designs, such as direct-mapped caches, are predicted by the method. The method also includes a new approach to the problem of the effects of multiprogramming. This new technique separates the characteristics of the individual program from that of the workload. The recurrence/conflict method is shown to be practical, general, and powerful by comparing its performance to that of a popular traditional cache simulator. The authors expect that the availability of such a tool will have a large impact on future architectural studies of memory systems.
Decision Support for Integrated Energy-Water Planning
NASA Astrophysics Data System (ADS)
Tidwell, V. C.; William, H.; Klise, G.; Kobos, P. H.; Malczynski, L. A.
2008-12-01
Currently, electrical power generation uses about 140 billion gallons of water per day accounting for over 40% of all freshwater withdrawals thus competing with irrigated agriculture as the leading user of water. To meet their demand for water, proposed power plants must often target waterways and aquifers prone to overdraft or which may be home to environmentally sensitive species. Acquisition of water rights, permits and public support may therefore be a formidable hurdle when licensing new power plants. Given these current difficulties, what does the future hold when projected growth in population and the economy may require a 30% increase in power generation capacity by 2025? Technology solutions can only take us so far, as noted by the National Energy-Water Roadmap Exercise. This roadmap identified the need for long-term and integrated resource planning supported with scientifically credible models as a leading issue. To address this need a decision support framework is being developed that targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. The framework integrates analysis and optimization capabilities to help identify potential trade-offs, and "best" alternatives among an overwhelming number of energy/water options and objectives. The decision support tool is comprised of three basic elements: a system dynamics model coupling the physical and economic systems important to integrated energy-water planning and management; an optimization toolbox; and a software wrapper that integrates the aforementioned elements along with additional external energy/water models, databases, and visualization products. An interactive interface allows direct interaction with the model and access to real-time results organized according to a variety of reference systems, e.g., from a political, watershed, or electric power grid perspective. With this unique synthesis of various perspectives, the tool may help highlight looming changes where policy, technical, economic, and data collection options may alleviate stresses within the underlying water systems that support electricity generation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04- 94AL85000.
Asteroid-Generated Tsunami and Impact Risk
NASA Astrophysics Data System (ADS)
Boslough, M.; Aftosmis, M.; Berger, M. J.; Ezzedine, S. M.; Gisler, G.; Jennings, B.; LeVeque, R. J.; Mathias, D.; McCoy, C.; Robertson, D.; Titov, V. V.; Wheeler, L.
2016-12-01
The justification for planetary defense comes from a cost/benefit analysis, which includes risk assessment. The contribution from ocean impacts and airbursts is difficult to quantify and represents a significant uncertainty in our assessment of the overall risk. Our group is currently working toward improved understanding of impact scenarios that can generate dangerous tsunami. The importance of asteroid-generated tsunami research has increased because a new Science Definition Team, at the behest of NASA's Planetary Defense Coordinating Office, is now updating the results of a 2003 study on which our current planetary defense policy is based Our group was formed to address this question on many fronts, including asteroid entry modeling, tsunami generation and propagation simulations, modeling of coastal run-ups, inundation, and consequences, infrastructure damage estimates, and physics-based probabilistic impact risk assessment. We also organized the Second International Workshop on Asteroid Threat Assessment, focused on asteroid-generated tsunami and associated risk (Aug. 23-24, 2016). We will summarize our progress and present the highlights of our workshop, emphasizing its relevance to earth and planetary science. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Sable, Peter; Helminiak, Nathaniel; Harstad, Eric; Gullerud, Arne; Hollenshead, Jeromy; Hertel, Eugene; Sandia National Laboratories Collaboration; Marquette University Collaboration
2017-06-01
With the increasing use of hydrocodes in modeling and system design, experimental benchmarking of software has never been more important. While this has been a large area of focus since the inception of computational design, comparisons with temperature data are sparse due to experimental limitations. A novel temperature measurement technique, magnetic diffusion analysis, has enabled the acquisition of in-flight temperature measurements of hyper velocity projectiles. Using this, an AC-14 bare shaped charge and an LX-14 EFP, both with copper linings, were simulated using CTH to benchmark temperature against experimental results. Particular attention was given to the slug temperature profiles after separation, and the effect of varying equation-of-state and strength models. Simulations are in agreement with experimental, attaining better than 2% error between observed shaped charge temperatures. This varied notably depending on the strength model used. Similar observations were made simulating the EFP case, with a minimum 4% deviation. Jet structures compare well with radiographic images and are consistent with ALEGRA simulations previously conducted. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Theory of formation of helical structures in a perfectly conducting, premagnetized Z-pinch liner
NASA Astrophysics Data System (ADS)
Yu, Edmund; Velikovich, Alexander; Peterson, Kyle
2014-10-01
The magnetized liner inertial fusion (MagLIF) concept uses an azimuthal magnetic field to collapse a thick metallic liner containing preheated fusion fuel. A critical component of the concept is an axial magnetic field, permeating both the fuel and surrounding liner, which reduces the compression necessary to achieve fusion conditions. Recent experiments demonstrate that a liner premagnetized with a 10 T axial field develops helical structures with a pitch significantly larger than an estimate of Bz /Bθ would suggest. The cause of the helical perturbations is still not understood. In this work, we present an analytic, linear theory in which we model the liner as a perfectly conducting metal, and study how bumps and divots on its surface redirect current flow, resulting in perturbations to B as well as j × B . We show that in the presence of axial and azimuthal magnetic field, the theory predicts divots will grow and deform at an angle determined by the magnetic field. We compare theoretical results with three dimensional, resistive MHD simulations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under DE-AC04-94AL85000.
Quasi-isentropic compression of materials using the magnetic loading technique
NASA Astrophysics Data System (ADS)
Ao, Tommy
2009-06-01
The Isentropic Compression Experiment (ICE) technique has proven to be a valuable complement to the well-established method of shock compression of condensed matter. The magnetic loading technique using pulsed power generators was first developed about a decade ago on the Z Accelerator, and has matured significantly. The recent development of small pulsed power generators have enabled several key issues in ICE, such as panel & sample preparation, uniformity of loading, and edge effects to be studied. Veloce is a medium-voltage, high-current, compact pulsed power generator developed for cost effective isentropic experiments. The machine delivers up to 3 MA of current rapidly (˜ 440-530 ns) into an inductive load where significant magnetic pressures are produced. Examples of recent material strength measurements from quasi-isentropic loading and unloading of materials will be presented. In particular, the influence that the strength of interferometer windows has on wave profile analyses and thus the inferred strength of materials is examined. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gajdos, Fruzsina; Oberhofer, Harald; Dupuis, Michel
2013-03-21
Phenyl-C61-butyric Acid Methyl Ester (PCBM) is one of the most popular semiconductors in organic photovoltaic cells, but the electron transport mechanism in the microcrystalline domains of this material as well as its preferred packing structure remains unclear. Here we use density functional theory to calculate electronic coupling matrix elements, reorganization energies and activation energies for available experimental and model crystal structures. We find that the picture of an excess electron hopping from one fullerene to another does not apply for any of the crystalline phases, rendering traditional rate equations inappropriate. We also find that the cohesive energy increases in themore » order body-centred-cubic < hexagonal < simple cubic < monoclinic < triclinic, independently on the type of dispersion correction used. Our results indicate that the electron-ion dynamics needs to be solved explicitly in order to obtain a realistic description of charge transfer in this material. M.D. was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences. PNNL is a multiprogram national laboratory operated for DOE by Battelle.« less
NASA Astrophysics Data System (ADS)
Mattie, P. D.; Knowlton, R. G.; Arnold, B. W.; Tien, N.; Kuo, M.
2006-12-01
Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in radioactive waste disposal and is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. International technology transfer efforts are often hampered by small budgets, time schedule constraints, and a lack of experienced personnel in countries with small radioactive waste disposal programs. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, re-vitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a creditable and solid computational platform for constructing probabilistic safety assessment models. External model linkage capabilities in Goldsim and the techniques applied to facilitate this process will be presented using example applications, including Breach, Leach, and Transport-Multiple Species (BLT-MS), a U.S. NRC sponsored code simulating release and transport of contaminants from a subsurface low-level waste disposal facility used in a cooperative technology transfer project between Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research (INER) for the preliminary assessment of several candidate low-level waste repository sites. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE AC04 94AL85000.
Comparative Evaluation of Financing Programs: Insights From California’s Experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deason, Jeff
Berkeley Lab examines criteria for a comparative assessment of multiple financing programs for energy efficiency, developed through a statewide public process in California. The state legislature directed the California Alternative Energy and Advanced Transportation Financing Authority (CAEATFA) to develop these criteria. CAEATFA's report to the legislature, an invaluable reference for other jurisdictions considering these topics, discusses the proposed criteria and the rationales behind them in detail. Berkeley Lab's brief focuses on several salient issues that emerged during the criteria development and discussion process. Many of these issues are likely to arise in other states that plan to evaluate the impactsmore » of energy efficiency financing programs, whether for a single program or multiple programs. Issues discussed in the brief include: -The stakeholder process to develop the proposed assessment criteria -Attribution of outcomes - such as energy savings - to financing programs vs. other drivers -Choosing the outcome metric of primary interest: program take-up levels vs. savings -The use of net benefits vs. benefit-cost ratios for cost-effectiveness evaluation -Non-energy factors -Consumer protection factors -Market transformation impacts -Accommodating varying program goals in a multi-program evaluation -Accounting for costs and risks borne by various parties, including taxpayers and utility customers, in cost-effectiveness analysis -How to account for potential synergies among programs in a multi-program evaluation« less
A NASA Applied Spaceflight Environments Office Concept
NASA Technical Reports Server (NTRS)
Spann, James F.; Edwards, David L.; Burns, Howard D.; Xapsos, Mike
2011-01-01
The National Aeronautics and Space Administration (NASA) is launching a bold and ambitious new space initiative. A significant part of this new initiative includes exploration of new worlds, the development of more innovative technologies, and expansion our presence in the solar system. A common theme to this initiative is the exploration of space beyond Low Earth Orbit (LEO). As currently organized, NASA does not have an Agency-level office that provides coordination of space environment research and development. This has contributed to the formation of a gap between spaceflight environments knowledge and the application of this knowledge for multi-program use and for use outside NASA. This paper outlines a concept to establish a NASA-level Applied Spaceflight Environments (ASE) office that will provide coordination and funding for sustained multi-program support in three technical areas that have demonstrated these needs through customer requests. These technical areas are natural environments characterization and modeling, materials and systems analysis and test, and operational space environments modeling. Additionally the ASE office will serve as an entry point of contact for external users who wish to take advantage of data and assets associated with space environments, including space weather. This paper will establish the need for the ASE, discuss a concept for organizational structure and outline the scope in the three technical areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willow, Soohaeng Yoo; Xantheas, Sotiris S.
The effect of the Hofmeister anion series on the structure and stability of proteins is often discussed using simple systems such as a water-vapor interface with the assumption that the vapor region mimics the hydrophobic surface. Microscopic theories suggest that the Hofmeister anion series is highly correlated with the different contributions of the various ions to the surface tension of such a water-vapor interface. Proteins, however, have both hydrophobic and hydrophilic regions rather than just a pure hydrophobic one. Using a solvated parallel β -sheet layer consisting of both hydrophobic and positively charged hydrophilic surfaces as a more realistic modelmore » to represent a protein surface, we investigated the interaction of such a system with hydrophilic-like (SO42-) and hydrophobic-like (ClO4-) anions via Born-Oppenheimer Molecular Dynamics (BOMD) simulations. We found that both the SO42- and ClO4- anions prefer to reside on the hydrophilic rather than on the hydrophobic surface of the parallel β -sheet layer. In addition, our simulations suggest that the ClO4- ions not only penetrate towards the peptide groups through the hydrophilic residues, but also allow water molecules to penetrate as well to form water-peptide hydrogen bonds, while the SO42- ions stabilize the interface of the water-hydrophilic surface. Our results render a plausible explanation of why hydrophobic-like Hofmeister anions act as protein denaturants. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Nikolay G.; Kimmel, Greg A.; Shen, Mingmin
Using temperature programmed desorption (TPD) and photon stimulated desorption (PSD), we show that coadsorbates of varying binding energies on the rutile TiO2(110) surface exert a commensurate inhibiting influence on the hole-mediated photodesorption of adsorbed O2. A variety of coadsorbates (Ar, Kr, Xe, N2, CO, CO2, CH4, N2O, acetone, methanol or water) were shown to quench O2 photoactivity, with the extent correlating with the coadsorbate’s gas phase basicity, which in turn determines the strength of the coadsorbate-Ti4+ bond. Coadsorbed rare gases inhibited the photodesorption of O2 by ~10-25%, whereas strongly bound species (water, methanol and acetone) nearly completely inhibited O2 PSD.more » We suggest that coadsorption of these molecules inhibit the arrival probability of holes to the surface. Band bending effects, which vary with the extent of charge transfer between the coadsorbate and the TiO2(110) surface, are not expected to be significant in the cases of the rare gases and physisorbed species. These results indicate that neutral coadsorbates can exert a significant influence on charge transfer events by altering the interfacial dipole in the vicinity of the target molecule. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The work was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830.« less
Heterogeneous catalysis in complex, condensed reaction media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantu, David C.; Wang, Yang-Gang; Yoon, Yeohoon
Many reactions required for the upgrading of biomass into fuels and chemicals—hydrogenation, hydrodeoxygenation, hydrocracking—are ostensibly similar to those practiced in the upgrading of petroleum into fuels. But, repurposing hydroprocessing catalysts from refinery operations to treat bio-oil has proved to be unsatisfactory. New catalysts are needed because the composition of the biogenic reactants differs from that of petroleum-derived feedstocks (e.g. the low concentration of sulfur in cellulose-derived biomass precludes use of metal sulfide catalysts unless sulfur is added to the reaction stream). New processes are needed because bio-oils oligomerize rapidly, forming intractable coke and “gunk”, at temperatures so low that themore » desired upgrading reactions are impractically slow, and so low that the bio-oil upgrading must be handled as a condensed fluid. Ideally, the new catalysts and processes would exploit the properties of the multiple phases present in condensed bio-oil, notably the polarizability and structure of the fluid near a catalyst’s surface in the cybotactic region. The results of preliminary modeling of the cybotactic region of different catalyst surfaces in the hydrogenation of phenol suggest that Pd catalysts supported on hydrophilic surfaces are more active than catalysts based on lipophilic supports because the former serve to enhance the concentration of the phenol in the vicinity of the Pd. The effect stems from thermodynamics, not the rate of mass transport. This work was supported by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
Rapid insights from remote sensing in the geosciences
NASA Astrophysics Data System (ADS)
Plaza, Antonio
2015-03-01
The growing availability of capacity computing for atomistic materials modeling has encouraged the use of high-accuracy computationally intensive interatomic potentials, such as SNAP. These potentials also happen to scale well on petascale computing platforms. SNAP has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The computational cost per atom is much greater than that of simpler potentials such as Lennard-Jones or EAM, while the communication cost remains modest. We discuss a variety of strategies for implementing SNAP in the LAMMPS molecular dynamics package. We present scaling results obtained running SNAP on three different classes of machine: a conventional Intel Xeon CPU cluster; the Titan GPU-based system; and the combined Sequoia and Vulcan BlueGene/Q. The growing availability of capacity computing for atomistic materials modeling has encouraged the use of high-accuracy computationally intensive interatomic potentials, such as SNAP. These potentials also happen to scale well on petascale computing platforms. SNAP has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The computational cost per atom is much greater than that of simpler potentials such as Lennard-Jones or EAM, while the communication cost remains modest. We discuss a variety of strategies for implementing SNAP in the LAMMPS molecular dynamics package. We present scaling results obtained running SNAP on three different classes of machine: a conventional Intel Xeon CPU cluster; the Titan GPU-based system; and the combined Sequoia and Vulcan BlueGene/Q. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Admin. under Contract DE-AC04-94AL85000.
Variation in Biofilm Stability with Decreasing pH Affects Porous Medium Hydraulic Properties
NASA Astrophysics Data System (ADS)
Kirk, M. F.; Santillan, E. F.; McGrath, L. K.; Altman, S. J.
2010-12-01
Changes to microbial communities caused by subsurface CO2 injection may have many consequences, including possible impacts to CO2 transport. We used column experiments to examine how decreasing pH, a geochemical change associated with CO2 injection, will affect biofilm stability and ultimately the hydraulic properties of porous media. Columns consisted of 1 mm2 square capillary tubes filled with 105-150 µm diameter glass beads. Artificial groundwater medium containing 1 mM glucose was pumped through the columns at a rate of 0.01 mL/min (q = 14.4 m/day; Re = 0.03). Columns were inoculated with 3 × 10^8 CFU (avg.) of Pseudomonas fluorescens, a model biofilm former, transformed with a green fluorescent protein. Biomass distribution and transport was examined using scanning laser confocal microscopy and effluent plating. Variation in the bulk hydraulic properties of the columns was measured using manometers. In an initial experiment, biofilm growth was allowed to occur for seven days in medium with pH 7.3. Within this period, cells uniformly coated bead surfaces, effluent cell numbers stabilized at 1 × 10^9 CFU/mL, and hydraulic conductivity (K) decreased 77%. Next, medium with pH 4 was introduced. As a result, biomass within the reactor redistributed from bead surfaces to pores, effluent cell numbers decreased to 3 × 10^5 CFU/mL, and K decreased even further (>94% reduction). This decreased K was maintained until the experiment was terminated, seven days after introducing low pH medium. These results suggest that changes in biomass distribution as a result of decreased pH may initially limit transport of solubility-trapped CO2 following CO2 injection. Experiments in progress and planned will test this result in more detail and over longer periods of time. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Finite-difference numerical simulations of underground explosion cavity decoupling
NASA Astrophysics Data System (ADS)
Aldridge, D. F.; Preston, L. A.; Jensen, R. P.
2012-12-01
Earth models containing a significant portion of ideal fluid (e.g., air and/or water) are of increasing interest in seismic wave propagation simulations. Examples include a marine model with a thick water layer, and a land model with air overlying a rugged topographic surface. The atmospheric infrasound community is currently interested in coupled seismic-acoustic propagation of low-frequency signals over long ranges (~tens to ~hundreds of kilometers). Also, accurate and efficient numerical treatment of models containing underground air-filled voids (caves, caverns, tunnels, subterranean man-made facilities) is essential. In support of the Source Physics Experiment (SPE) conducted at the Nevada National Security Site (NNSS), we are developing a numerical algorithm for simulating coupled seismic and acoustic wave propagation in mixed solid/fluid media. Solution methodology involves explicit, time-domain, finite-differencing of the elastodynamic velocity-stress partial differential system on a three-dimensional staggered spatial grid. Conditional logic is used to avoid shear stress updating within the fluid zones; this approach leads to computational efficiency gains for models containing a significant proportion of ideal fluid. Numerical stability and accuracy are maintained at air/rock interfaces (where the contrast in mass density is on the order of 1 to 2000) via a finite-difference operator "order switching" formalism. The fourth-order spatial FD operator used throughout the bulk of the earth model is reduced to second-order in the immediate vicinity of a high-contrast interface. Current modeling efforts are oriented toward quantifying the amount of atmospheric infrasound energy generated by various underground seismic sources (explosions and earthquakes). Source depth and orientation, and surface topography play obvious roles. The cavity decoupling problem, where an explosion is detonated within an air-filled void, is of special interest. A point explosion source located at the center of a spherical cavity generates only diverging compressional waves. However, we find that shear waves are generated by an off-center source, or by a non-spherical cavity (e.g. a tunnel). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Yoon, H.; Dewers, T. A.; Valocchi, A. J.; Werth, C. J.
2011-12-01
Dissolved CO2 during geological CO2 storage may react with minerals in fractured rocks or confined aquifers and cause mineral precipitation. The overall rate of reaction can be affected by coupled processes among hydrodynamics, transport, and reactions at pore-scale. Pore-scale models of coupled fluid flow, reactive transport, and CaCO3 precipitation and dissolution are applied to account for transient experimental results of CaCO3 precipitation and dissolution under highly supersaturated conditions in a microfluidic pore network (i.e., micromodel). Pore-scale experiments in the micromodel are used as a basis for understanding coupled physics of systems perturbed by geological CO2 injection. In the micromodel, precipitation is induced by transverse mixing along the centerline in pore bodies. Overall, the pore-scale model qualitatively captured the governing physics of reactions such as precipitate morphology, precipitation rate, and maximum precipitation area in first few pore spaces. In particular, we found that proper estimation of the effective diffusion coefficient and the reactive surface area is necessary to adequately simulate precipitation and dissolution rates. As the model domain increases, the effect of flow patterns affected by precipitation on the overall reaction rate also increases. The model is also applied to account for the effect of different reaction rate laws on mineral precipitation and dissolution at pore-scale. Reaction rate laws tested include the linear rate law, nonlinear power law, and newly-developed rate law based on in-situ measurements at nano scale in the literature. Progress on novel methods for upscaling pore-scale models for reactive transport are discussed, and are being applied to mineral precipitation patterns observed in natural analogues. H.Y. and T. D. were supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Choens, R. C., II; Dewers, T. A.; Ilgen, A.; Espinoza, N.; Aman, M.
2016-12-01
Experimental rock deformation was used to quantify the relationship between supercritical carbon dioxide (scCO2), water vapor, and failure strength in an analog for Tertiary sandstone saline formation reservoirs. Storing large volumes of carbon dioxide in depleted petroleum reservoirs and deep saline aquifers over geologic time is an important tool in mitigating effects of climate change. Carbon dioxide is injected as a supercritical phase, where it forms a buoyant plume. At brine-plume interfaces, scCO2 dissolves over time into the brine, lowering pH and perturbing the local chemical environment. Previous work has shown that the resulting geochemical changes at mineral-fluid interfaces can alter rock mechanical properties, generally causing a decrease in strength. Additionally, water from the native brine can dissolve into the scCO2 plume where it is present as humidity. This study investigates the effect of hydrous scCO2 and CO2-saturated brine on shear failure of Boise sandstone. Samples are held in a hydrostatic pressure vessel at 2250 PSI confining pressure (PC) and 70 C, and scCO2 at specific humidity is circulated through the core for 24 hours at 2000 PSI and 70 C. Experiments are conducted at relative humidity levels of 0, 14, 28, 42, 56, 70, 84, 98, and 100% relative humidity. After the scCO2 core flood is finished, triaxial compression experiments are conducted on the samples at room temperature and an axial strain rate of 10-5 sec-1. Experiments are conducted at 500, 1000, and 1500 PSI PC. The results demonstrate that water present as humidity in scCO2 can reduce failure strength and lower slopes of the Mohr-Coulomb failure envelope. These effects increase with increasing humidity, as dry scCO2 does not affect rock strength, and may be influenced by capillary condensation of water films from humid scCO2. The reductions in failure strength seen in this study could be important in predicting reservoir response to injection, reservoir caprock integrity, and borehole stability of injection wells. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000. SAND2016-7552A
NASA Astrophysics Data System (ADS)
Bryan, C. R.; Wells, R. K.; Burton, P. D.; Heath, J. E.; Dewers, T. A.; Wang, Y.
2011-12-01
Carbon sequestration via underground storage in geologic formations is a proposed approach for reducing industrial CO2 emissions. However, current models for carbon injection and long-term storage of supercritical CO2 (scCO2) do not consider the development and stability of adsorbed water films at the scCO2-hydrophilic mineral interface. The thickness and properties of the water films control the surface tension and wettability of the mineral surface, and on the core scale, affect rock permeability, saturation, and capillary properties. The film thickness is strongly dependent upon the activity of water in the supercritical fluid, which will change as initially anhydrous scCO2 absorbs water from formation brine. As described in a companion paper by the coauthors, the thickness of the adsorbed water layer is controlled by the disjoining pressure; structural and van der Waals components dominate at low water activity, while electrostatic forces become more important with increasing film thickness (higher water activities). As scCO2 water activity and water layer thickness increase, concomitant changes in mineral surface properties and reservoir/caprock hydrologic properties will affect the mobility of the aqueous phase and of scCO2. Moreover, the development of a water layer may be critical to mineral dissolution reactions in scCO2. Here, we describe the use of a quartz-crystal microbalance (QCM) to monitor adsorption of water by mineral surfaces. QCMs utilize a piezoelectrically-stimulated quartz wafer to measure adsorbed or deposited mass via changes in vibrational frequency. When used to measure the mass of adsorbed liquid films, the frequency response of the crystal must be corrected for the viscoelastic, rather than elastic, response of the adsorbed layer. Results are presented for adsorption to silica in N2 and CO2 at one bar, and in scCO2. Additional data are presented for water uptake by clays deposited on a QCM wafer. In this case, water uptake occurs by the combined processes of interlayer cation hydration, surface adsorption, and capillary condensation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work is supported by the DOE Sandia LDRD Program.
VAXELN Experimentation: Programming a Real-Time Periodic Task Dispatcher Using VAXELN Ada 1.1
1987-11-01
synchronization to the SQM and VAXELN semaphores. Based on real-time scheduling theory, the optimal rate-monotonic scheduling algorithm [Lui 73...schedulability test based on the rate-monotonic algorithm , namely task-lumping [Sha 871, was necessary to cal- culate the theoretically expected schedulability...8217 Guide Digital Equipment Corporation, Maynard, MA, 1986. [Lui 73] Liu, C.L., Layland, J.W. Scheduling Algorithms for Multi-programming in a Hard-Real-Time
Design and Development of a Multiprogramming Operating System for Sixteen Bit Microprocessors.
1981-12-01
with the technical details of how services are programmed or produced, except perhaps when they fail to meet user requirements. Users are interested in...locations and loading decks. As the expense *and speed of computers increased, executive programs were created to allow several users to sequence...single user operating system as a companion to the 8080 microprocessor. CP/M (Control Program for Microcomputers) was a single user operating system that
Site Environmental Report for 2009, Volume I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lackner, Regina
2010-08-17
Each year, the University of California (UC), as the managing and operating contractor of the Ernest Orlando Lawrence Berkeley National Laboratory, prepares an integrated report regarding its environmental programs to satisfy the requirements of United States Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2009 summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year (CY) 2009. Throughout this report, 'Berkeley Lab' or 'LBNL' refers both to (1) the multiprogram scientific facility the UC manages and operates on the 202-acre university-owned site located in themore » hills above the UC Berkeley campus, and the site itself, and (2) the UC as managing and operating contractor for Ernest Orlando Lawrence Berkeley National Laboratory. The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters that contain an overview of LBNL, a discussion of its environmental management system (EMS), the status of environmental programs, summarized results from surveillance and monitoring activities, and quality assurance (QA) measures. Volume II contains individual data results from surveillance and monitoring activities. The Site Environmental Report is distributed by releasing it on the World Wide Web (Web) from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. Links to documents available on the Web are given with the citations in the References section. CD and printed copies of this Site Environmental Report are available upon request. The report follows Berkeley Lab's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are also reported using the more conventional (non-SI) system of measurements, because the non-SI system is referenced by several current regulatory standards and is more familiar to some readers. Two tables are provided at the end of the Glossary to help readers: Table G-1 defines the prefixes used with SI units of measurement, and Table G-2 provides conversions to non-SI units. Years mentioned in this report refer to calendar years unless specified as fiscal year(s). Berkeley Lab's fiscal year (FY) is October 1 to September 30, and begins in the year previous to its name, i.e., FY 2009 was from October 1, 2008, to September 30, 2009. For ease of reference, a key to acronyms and abbreviations used in this report can be found directly after the text, at the end of Chapter 6. Following that is also a glossary for readers who may be unfamiliar with some of the terms used in this report. This report was prepared under the direction of Ron Pauer of ESG. Please address any questions regarding this report to him by telephone at 510-486-7614, or by e-mail at ropauer@lbl.gov. The primary contributors were David Baskin, Tim Bauters, Ned Borglin, Robert Fox, John Jelinski, Ginny Lackner, Patrick Thorson, Linnea Wahl, and Suying Xu (Volume II). Readers are encouraged to comment on this report by completing the survey form found at the ESG Web page where this report is available.« less
Effect of Graphene with Nanopores on Metal Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hu; Chen, Xianlang; Wang, Lei
Porous graphene, which is a novel type of defective graphene, shows excellent potential as a support material for metal clusters. In this work, the stability and electronic structures of metal clusters (Pd, Ir, Rh) supported on pristine graphene and graphene with different sizes of nanopore were investigated by first-principle density functional theory (DFT) calculations. Thereafter, CO adsorption and oxidation reaction on the Pd-graphene system were chosen to evaluate its catalytic performance. Graphene with nanopore can strongly stabilize the metal clusters and cause a substantial downshift of the d-band center of the metal clusters, thus decreasing CO adsorption. All binding energies,more » d-band centers, and adsorption energies show a linear change with the size of the nanopore: a bigger size of nanopore corresponds to a stronger metal clusters bond to the graphene, lower downshift of the d-band center, and weaker CO adsorption. By using a suitable size nanopore, supported Pd clusters on the graphene will have similar CO and O2 adsorption ability, thus leading to superior CO tolerance. The DFT calculated reaction energy barriers show that graphene with nanopore is a superior catalyst for CO oxidation reaction. These properties can play an important role in instructing graphene-supported metal catalyst preparation to prevent the diffusion or agglomeration of metal clusters and enhance catalytic performance. This work was supported by National Basic Research Program of China (973Program) (2013CB733501), the National Natural Science Foundation of China (NSFC-21176221, 21136001, 21101137, 21306169, and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC).« less
Local Aqueous Solvation Structure Around Ca2+ During Ca2+---Cl– Pair Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Marcel D.; Mundy, Christopher J.
2016-03-03
The molecular details of single ion solvation around Ca2+ and ion-pairing of Ca2--Cl- are investigated using ab initio molecular dynamics. The use of empirical dispersion corrections to the BLYP functional are investigated by comparison to experimentally available extended X-ray absorption fine structure (EXAFS) measurements, which probes the first solvation shell in great detail. Besides finding differences in the free-energy for both ion-pairing and the coordination number of ion solvation between the quantum and classical descriptions of interaction, there were important differences found between dispersion corrected and uncorrected density functional theory (DFT). Specifically, we show significantly different free-energy landscapes for bothmore » coordination number of Ca2+ and its ion-pairing with Cl- depending on the DFT simulation protocol. Our findings produce a self-consistent treatment of short-range solvent response to the ion and the intermediate to long-range collective response of the electrostatics of the ion-ion interaction to produce a detailed picture of ion-pairing that is consistent with experiment. MDB is supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative at Pacific Northwest National Laboratory. It was conducted under the Laboratory Directed Research and Development Program at PNNL, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. CJM acknowledges support from US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Additional computing resources were generously allocated by PNNL's Institutional Computing program. The authors thank Prof. Tom Beck for discussions regarding QCT, and Drs. Greg Schenter and Shawn Kathmann for insightful comments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual propertymore » is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. INL employees also work cooperatively with researchers and technical staff from the university and industrial sectors to further develop emerging technologies. In a multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Deployment. However, the accomplishments cataloged in the report reflect the achievements and creativity of the researchers, technicians, support staff, and operators of the INL workforce.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michelle R. Blacker
The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectualmore » property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers, technicians, support staff, and operators of the INL workforce. Their achievements and recognized capabilities are what make the accomplishments cataloged here possible. Without them, none of these transactions would occur.« less
Huang, Ying; Zhang, Yi; Youtie, Jan; Porter, Alan L.; Wang, Xuefeng
2016-01-01
How do funding agencies ramp-up their capabilities to support research in a rapidly emerging area? This paper addresses this question through a comparison of research proposals awarded by the US National Science Foundation (NSF) and the National Natural Science Foundation of China (NSFC) in the field of Big Data. Big data is characterized by its size and difficulties in capturing, curating, managing and processing it in reasonable periods of time. Although Big Data has its legacy in longstanding information technology research, the field grew very rapidly over a short period. We find that the extent of interdisciplinarity is a key aspect in how these funding agencies address the rise of Big Data. Our results show that both agencies have been able to marshal funding to support Big Data research in multiple areas, but the NSF relies to a greater extent on multi-program funding from different fields. We discuss how these interdisciplinary approaches reflect the research hot-spots and innovation pathways in these two countries. PMID:27219466
Huang, Ying; Zhang, Yi; Youtie, Jan; Porter, Alan L; Wang, Xuefeng
2016-01-01
How do funding agencies ramp-up their capabilities to support research in a rapidly emerging area? This paper addresses this question through a comparison of research proposals awarded by the US National Science Foundation (NSF) and the National Natural Science Foundation of China (NSFC) in the field of Big Data. Big data is characterized by its size and difficulties in capturing, curating, managing and processing it in reasonable periods of time. Although Big Data has its legacy in longstanding information technology research, the field grew very rapidly over a short period. We find that the extent of interdisciplinarity is a key aspect in how these funding agencies address the rise of Big Data. Our results show that both agencies have been able to marshal funding to support Big Data research in multiple areas, but the NSF relies to a greater extent on multi-program funding from different fields. We discuss how these interdisciplinary approaches reflect the research hot-spots and innovation pathways in these two countries.
NASA Astrophysics Data System (ADS)
Sargsyan, K.; Safta, C.; Debusschere, B.; Najm, H.
2010-12-01
Uncertainty quantification in complex climate models is challenged by the sparsity of available climate model predictions due to the high computational cost of model runs. Another feature that prevents classical uncertainty analysis from being readily applicable is bifurcative behavior in climate model response with respect to certain input parameters. A typical example is the Atlantic Meridional Overturning Circulation. The predicted maximum overturning stream function exhibits discontinuity across a curve in the space of two uncertain parameters, namely climate sensitivity and CO2 forcing. We outline a methodology for uncertainty quantification given discontinuous model response and a limited number of model runs. Our approach is two-fold. First we detect the discontinuity with Bayesian inference, thus obtaining a probabilistic representation of the discontinuity curve shape and location for arbitrarily distributed input parameter values. Then, we construct spectral representations of uncertainty, using Polynomial Chaos (PC) expansions on either side of the discontinuity curve, leading to an averaged-PC representation of the forward model that allows efficient uncertainty quantification. The approach is enabled by a Rosenblatt transformation that maps each side of the discontinuity to regular domains where desirable orthogonality properties for the spectral bases hold. We obtain PC modes by either orthogonal projection or Bayesian inference, and argue for a hybrid approach that targets a balance between the accuracy provided by the orthogonal projection and the flexibility provided by the Bayesian inference - where the latter allows obtaining reasonable expansions without extra forward model runs. The model output, and its associated uncertainty at specific design points, are then computed by taking an ensemble average over PC expansions corresponding to possible realizations of the discontinuity curve. The methodology is tested on synthetic examples of discontinuous model data with adjustable sharpness and structure. This work was supported by the Sandia National Laboratories Seniors’ Council LDRD (Laboratory Directed Research and Development) program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Ja Hun; Varga, Tamas; Peden, Charles HF
2014-05-05
Cu-SSZ-13 has been shown to possess high activity and superior N2 formation selectivity in the selective catalytic reduction of NOx under oxygen rich conditions. Here, a combination of synchrotron-based (XRD and XANES) and vibrational (DRIFTS) spectroscopy tools have been used to follow the changes in the location and coordination environment of copper ions in a Cu-SSZ-13 zeolite during calcinations, reduction with CO, and adsorption of CO and H2O. XANES spectra collected during these procedures provides critical information not only on the variation in the oxidation state of the copper species in the zeolite structure, but also on the changes inmore » the coordination environment around these ions as they interact with the framework, and with different adsorbates (H2O and CO). Time-resolved XRD data indicate the movement of copper ions and the consequent variation of the unit cell parameters during dehydration. DRIFT spectra provide information about the adsorbed species present in the zeolite, as well as the oxidation states of and coordination environment around the copper ions. A careful analysis of the asymmetric T-O-T vibrations of the CHA framework perturbed by copper ions in different coordination environments proved to be especially informative. The results of this study will aid the identification of the location, coordination and oxidation states of copper ions obtained during in operando catalytic studies. Financial support was provided by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Part of this work (sample preparation) was performed in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility supported by the US DOE, Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the US DOE by Battelle. All of the spectroscopy work reported here was carried out at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). NSLS is a national scientific user facility supported by the US DOE.« less
Impact of zeolite aging in hot liquid water on activity for acid-catalyzed dehydration of alcohols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vjunov, Aleksei; Derewinski, Miroslaw A.; Fulton, John L.
The catalytic performance of zeolite in aqueous medium depends on a multitude of factors, such as the concentration and distribution of active sites and framework integrity. Al K–edge extended X–ray absorption fine structure and 27Al MAS NMR spectroscopies in combination with DFT calculations are used to determine the distribution of tetrahedral Al sites both qualitatively and quantitatively for both parent and 48 h 160 ºC water treated HBEA catalysts. There is no evidence of Al coordination modification after aging in water. The distribution and concentration of Al T–sites, active centers for the dehydration of cyclohexanol, do not markedly impact themore » catalytic performance in water, because the Brønsted acidic protons are present in the form of hydrated hydronium ions and thus have very similar acid properties. The results suggest that all Brønsted acid sites are equally active in aqueous medium. The decrease of zeolite catalytic performance after water treatment is attributed to the reduced concentration of Brønsted acid sites. Increasing the stability of pore walls and decreasing the rate of Si–O–Si group hydrolysis may result in improved apparent zeolite catalytic performance in aqueous medium. Authors thank B. W. Arey (PNNL) for HIM measurements, T. Huthwelker for support during Al XAFS measurements at the Swiss Light Source (PSI, Switzerland), J. Z. Hu and S. D. Burton (PNNL) for support during NMR experiments. This work was supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MD acknowledges support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL. HIM imaging and NMR experiments were performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE Office of Science, Office of Biological and Environmental Research, located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the DOE by Battelle Memorial Institute under contract # DE-AC05-76RL0-1830« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Michael D.; Baer, Marcel D.; Mundy, Christopher J.
2016-03-10
The description of peptides and the use of molecular dynamics simulations to refine structures and investigate the dynamics on an atomistic scale are well developed. Through a consensus in this community over multiple decades, parameters were developed for molecular interactions that only require the sequence of amino-acids and an initial guess for the three-dimensional structure. The recent discovery of peptoids will require a retooling of the currently available interaction potentials in order to have the same level of confidence in the predicted structures and pathways as there is presently in the peptide counterparts. Here we present modeling of peptoids usingmore » a combination of ab initio molecular dynamics (AIMD) and atomistic resolution classical forcefield (FF) to span the relevant time and length scales. To properly account for the dominant forces that stabilize ordered structures of peptoids, namely steric-, electrostatic, and hydrophobic interactions mediated through sidechain-sidechain interactions in the FF model, those have to be first mapped out using high fidelity atomistic representations. A key feature here is not only to use gas phase quantum chemistry tools, but also account for solvation effects in the condensed phase through AIMD. One major challenge is to elucidate ion binding to charged or polar regions of the peptoid and its concomitant role in the creation of local order. Here, similar to proteins, a specific ion effect is observed suggesting that both the net charge and the precise chemical nature of the ion will need to be described. MDD was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative at Pacific Northwest National Laboratory. Research was funded by the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MDB acknowledges support from US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Material & Engineering. CJM acknowledges support from US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. PNNL is a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy.« less
Undoped GaAs bilayers for exciton condensation experiments
NASA Astrophysics Data System (ADS)
Lilly, M. P.
2005-03-01
Experimental progress in transport studies of exciton condensation of in electron and hole bilayers at high magnetic fields [1,2] has shown this novel physics can be observed. Fabrication of the bipolar electron-hole bilayers for zero field studies of exciton condensation still remains elusive. We describe a series of experiments on undoped GaAs/AlGaAs heterostructures with the motivation of making electron-hole bilayers. In these undoped devices, external electric fields induce carriers rather than the traditional doping techniques. Single layer electron (or hole) devices demonstrate a high mobility over a wide range of density. More recently, fully undoped bilayers have been made where the density in each layer is independently controlled with gates on the top and bottom of the bilayer. In this talk we present high field transport of undoped electron-electron bilayers, and describe recent progress towards extending the fabrication techniques to creating electron-hole bilayers for exciton condensation studies at zero magnetic field. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 1. M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 93 036801 (2004). 2. E. Tutoc, M. Shayegan, and D. A. Huse, Phys. Rev. Lett. 93, 036802 (2004).
NASA Astrophysics Data System (ADS)
Ismail, Ahmed E.; Grest, Gary S.; Stevens, Mark J.
2007-03-01
Oligo(ethylene oxide) self-assembled monolayers (OEO SAM's) deposited on Au are the prototypical materials used to study protein resistance. Recently, protein resistance has been shown to vary as a function of surface coverage and to be maximal at about two-thirds coverage, not complete coverage. We use molecular dynamics simulations to study the nature of the interface between water and the OEO SAM for a range of SAM coverages. As SAM coverage decreases, the amount of water within the OEO monolayer increases monotonically; however, the penetration depth of the water shows a maximum near the experimentally-found maximal coverage. As the water content increases, the SAM-water mixture becomes harder to distinguish from bulk water. Since the oxygen atoms of OEO are hydrogen bond acceptors, a hydrogen bond network forms within the SAM-water mixture. The water molecules diffuse freely within the monolayer and exchange with the bulk water. Because the monolayer becomes increasingly like bulk water as the coverage decreases, proteins stay in their bulk soluble conformation and do not adsorb. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000.
MagLIF scaling on Z and future machines
NASA Astrophysics Data System (ADS)
Slutz, Stephen; Stygar, William; Gomez, Matthew; Campbell, Edward; Peterson, Kyle; Sefkow, Adam; Sinars, Daniel; Vesey, Roger
2015-11-01
The MagLIF (Magnetized Liner Inertial Fusion) concept [S.A. Slutz et al Phys. Plasmas 17, 056303, 2010] has demonstrated [M.R. Gomez et al., PRL 113, 155003, 2014] fusion-relevant plasma conditions on the Z machine. We present 2D numerical simulations of the scaling of MagLIF on Z indicating that deuterium/tritium (DT) fusion yields greater than 100 kJ could be possible on Z when operated at a peak current of 25 MA. Much higher yields are predicted for MagLIF driven with larger peak currents. Two high performance pulsed-power machines (Z300 and Z800) have been designed based on Linear Transformer Driver (LTD) technology. The Z300 design would provide approximately 48 MA to a MagLIF load, while Z800 would provide about 66 MA. We used a parameterized Thevenin equivalent circuit to drive a series of 1D and 2D numerical simulations with currents between and beyond these two designs. Our simulations indicate that 5-10 MJ yields may be possible with Z300, while yields of about 1 GJ may be possible with Z800. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
The Sapphire (0001) Surface, Clean and with d-metal Overlayers: Density Functional - LDA Results
NASA Astrophysics Data System (ADS)
Verdozzi, C.; Jennison, D. R.; Schultz, P. A.; Sears, M. P.
1998-03-01
Previous theoretical work for the a-Al2O3(0001) surface mostly used very thin slabs, and limited theoretical information is available on the binding of metal overlayers. Also, no systematic information is available about the dependence of the metal-ceramic interaction on metal coverage. We present here results using the local density approximation for the structural and electronic properties of the a-Al2O3(0001) surface, with and without d-metal overlayers Pt, Ag, Cu, and with sufficiently thick slabs to find the bottom of the unusually large and deep surface relaxation in this material. Our thick slab site-optimized calculations are performed for 1, 2/3 and 1/3 monolayer (ML) coverage. The adhesion energy and the nature of the interfacial bond vary greatly with metal coverage and can be understood in terms of the relative roles of the surface Madelung potential and the strength of the lateral metal-metal bond. Our study should in principle succeed in bracketing the phenomenology of adhesion and wetting at least for the right-most part of the d-metal periodic table. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. Corresponding author: claudio@sandia.gov.
Laboratory Testing of Waste Isolation Pilot Plant Surrogate Waste Materials
NASA Astrophysics Data System (ADS)
Broome, S.; Bronowski, D.; Pfeifle, T.; Herrick, C. G.
2011-12-01
The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below the ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. WIPP Performance Assessment modeling of the underground material response requires a full and accurate understanding of coupled mechanical, hydrological, and geochemical processes and how they evolve with time. This study was part of a broader test program focused on room closure, specifically the compaction behavior of waste and the constitutive relations to model this behavior. The goal of this study was to develop an improved waste constitutive model. The model parameters are developed based on a well designed set of test data. The constitutive model will then be used to realistically model evolution of the underground and to better understand the impacts on repository performance. The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of the degraded containers and TRU waste materials after the 10,000 year regulatory period. Testing consists of hydrostatic, uniaxial, and triaxial tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, and rubbers. Axial, lateral, and volumetric strain and axial and lateral stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk moduli of the samples measured using this technique were consistent with those measured using more conventional methods. The second technique involved performing triaxial tests under lateral strain control. By limiting the lateral strain to zero by controlling the applied confining pressure while loading the specimen axially in compression, one can maintain a right-circular cylindrical geometry even under large deformations. This technique is preferred over standard triaxial testing methods which result in inhomogeneous deformation or "barreling". Manifestations of the inhomogeneous deformation included non-uniform stress states, as well as unrealistic Poisson's ratios (> 0.5) or those that vary significantly along the length of the specimen. Zero lateral strain controlled tests yield a more uniform stress state, and admissible and uniform values of Poisson's ratio. Hansen, F.D., Knowles, M.K., et al. 1997. Description and Evaluation of a Mechanistically Based Conceptual Model for Spall. SAND97-1369. Sandia National Laboratories, Albuquerque. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Vertical Flume Testing of WIPP Surrogate Waste Materials
NASA Astrophysics Data System (ADS)
Herrick, C. G.; Schuhen, M.; Kicker, D.
2012-12-01
The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. The DOE demonstrates compliance with 40 CFR 194 by means of performance assessment (PA) calculations conducted by Sandia National Laboratories. WIPP PA calculations estimate the probability and consequences of radionuclide releases for a 10,000 year regulatory period. Human intrusion scenarios include cases in which a future borehole is drilled through the repository. Drilling mud flowing up the borehole will apply a hydrodynamic shear stress to the borehole wall which could result in erosion of the waste and radionuclides being carried up the borehole. WIPP PA uses the parameter TAUFAIL to represent the shear strength of the degraded waste. The hydrodynamic shear strength can only be measured experimentally by flume testing. Flume testing is typically performed horizontally, mimicking stream or ocean currents. However, in a WIPP intrusion event, the drill bit would penetrate the degraded waste and drilling mud would flow up the borehole in a predominantly vertical direction. In order to simulate this, a flume was designed and built so that the eroding fluid enters an enclosed vertical channel from the bottom and flows up past a specimen of surrogate waste material. The sample is pushed into the current by a piston attached to a step motor. A qualified data acquisition system controls and monitors the fluid's flow rate, temperature, pressure, and conductivity and the step motor's operation. The surrogate materials used correspond to a conservative estimate of degraded TRU waste at the end of the regulatory period. The recipes were previously developed by SNL based on anticipated future states of the waste considering inventory, changes in the underground environment, and theoretical and experimental results. The recipes represent the degraded waste in its weakest condition; simulating 50, 75, and 100% degradation by weight. The percent degradation indicates the anticipated amount of iron corrosion and decomposition of cellulosics, plastics, and rubbers. Samples were die compacted to two pressures, 2.3 and 5.0 MPa. Testing has established that the less degraded the surrogate material is and the higher the compaction stress it undergoes, the stronger the sample is. The 50% degraded surrogate waste material was accepted for use in obtaining input parameters for another WIPP PA model by a conceptual model peer review panel and the EPA. The use of a 50% degraded surrogate waste in vertical flume testing would provide an improved estimate of the waste shear strength and establish consistency between PA models in the approach used to obtain input parameters. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.
Vertical Flume Testing of WIPP Surrogate Waste Materials
NASA Astrophysics Data System (ADS)
Herrick, C. G.; Schuhen, M.; Kicker, D.
2013-12-01
The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. The DOE demonstrates compliance with 40 CFR 194 by means of performance assessment (PA) calculations conducted by Sandia National Laboratories. WIPP PA calculations estimate the probability and consequences of radionuclide releases for a 10,000 year regulatory period. Human intrusion scenarios include cases in which a future borehole is drilled through the repository. Drilling mud flowing up the borehole will apply a hydrodynamic shear stress to the borehole wall which could result in erosion of the waste and radionuclides being carried up the borehole. WIPP PA uses the parameter TAUFAIL to represent the shear strength of the degraded waste. The hydrodynamic shear strength can only be measured experimentally by flume testing. Flume testing is typically performed horizontally, mimicking stream or ocean currents. However, in a WIPP intrusion event, the drill bit would penetrate the degraded waste and drilling mud would flow up the borehole in a predominantly vertical direction. In order to simulate this, a flume was designed and built so that the eroding fluid enters an enclosed vertical channel from the bottom and flows up past a specimen of surrogate waste material. The sample is pushed into the current by a piston attached to a step motor. A qualified data acquisition system controls and monitors the fluid's flow rate, temperature, pressure, and conductivity and the step motor's operation. The surrogate materials used correspond to a conservative estimate of degraded TRU waste at the end of the regulatory period. The recipes were previously developed by SNL based on anticipated future states of the waste considering inventory, changes in the underground environment, and theoretical and experimental results. The recipes represent the degraded waste in its weakest condition; simulating 50, 75, and 100% degradation by weight. The percent degradation indicates the anticipated amount of iron corrosion and decomposition of cellulosics, plastics, and rubbers. Samples were die compacted to two pressures, 2.3 and 5.0 MPa. Testing has established that the less degraded the surrogate material is and the higher the compaction stress it undergoes, the stronger the sample is. The 50% degraded surrogate waste material was accepted for use in obtaining input parameters for another WIPP PA model by a conceptual model peer review panel and the EPA. The use of a 50% degraded surrogate waste in vertical flume testing would provide an improved estimate of the waste shear strength and establish consistency between PA models in the approach used to obtain input parameters. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.
40 CFR 262.103 - What is the scope of the laboratory environmental management standard?
Code of Federal Regulations, 2010 CFR
2010-07-01
... University Laboratories XL Project-Laboratory Environmental Management Standard § 262.103 What is the scope of the laboratory environmental management standard? The Laboratory Environmental Management Standard... environmental management standard? 262.103 Section 262.103 Protection of Environment ENVIRONMENTAL PROTECTION...
NASA Astrophysics Data System (ADS)
Broome, S. T.
2012-12-01
Design, analysis and performance assessment of potential salt repositories for heat-generating nuclear waste require knowledge of thermal, mechanical, and fluid transport properties of reconsolidating granular salt. Mechanical properties, Bulk (K) and Elastic (E) Moduli and Poisson's ratio (ν) are functions of porosity which decreases as the surrounding salt creeps inward and compresses granular salt within the rooms, drifts or shafts. To inform salt repository evaluations, we have undertaken an experimental program to determine K, E, and ν of reconsolidated granular salt as a function of porosity and temperature and to establish the deformational processes by which the salt reconsolidates. The experiments will be used to populate the database used in the reconsolidation model developed by Callahan (1999) which accounts for the effects of moisture through pressure solution and dislocation creep, with both terms dependent on effective stress to account for the effects of porosity. Mine-run salt from the Waste Isolation Pilot Program (WIPP) was first dried at 105 °C for a few days. Undeformed right-circular cylindrical sample assemblies of unconsolidated granular salt with an initial porosity of ~ 40%, nominally 10 cm in diameter and 17.5 cm in length, are jacketed in lead. Samples are placed in a pressure vessel and kept at test temperatures of 100, 175 or 250 °C; samples are vented to the atmosphere during the entire test procedure. At these test conditions the consolidating salt is always creeping, the creep rate increases with increasing temperature and stress and decreases as porosity decreases. In hydrostatic tests, confining pressure is increased to 20 MPa with periodic unload/reload loops to determine K. Volume strain increases with increasing temperature. In shear tests at 2.5 and 5 MPa confining pressure, after confining pressure is applied, the crushed salt is subjected to a differential stress, with periodic unload/reload loops to determine E and ν. At predetermined differential stress levels the stress is held constant and the salt consolidates. Displacement gages mounted on the samples show little lateral deformation until the samples reach a porosity of ~10%. Interestingly, vapor is vented in tests at 250°C and condenses at the vent port. Release of water is not observed in the lower two test temperatures. It is hypothesized that the water originates from fluid inclusions, which were made accessible by intragranular deformational processes including decrepitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Modeling, measuring, and mitigating instability growth in liner implosions on Z
NASA Astrophysics Data System (ADS)
Peterson, Kyle
2015-11-01
Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. In this talk, we will discuss the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. We present simulations that show electro-thermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent magneto-Rayleigh-Taylor (MRT) instability growth. We discuss measurement results from experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electro-thermal instability growth on well-characterized initially solid aluminum or beryllium rods driven with a 20 MA, 100 ns risetime current pulse. These measurements show good agreement with electro-thermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone. Recent experiments have confirmed simulation predictions of dramatically reduced instability growth in solid metallic rods when thick dielectric coatings are used to mitigate density perturbations arising from the electro-thermal instability. These results provide further evidence that the inherent surface roughness of the target is not the dominant seed for the MRT instability, in contrast with most inertial confinement fusion approaches. These results suggest a new technique for substantially reducing the integral MRT growth in magnetically driven implosions. Indeed, recent results on the Z facility with 100 km/s Al and Be liner implosions show substantially reduced growth. These new results include axially magnetized, CH-coated beryllium liner radiographs in which the inner liner surface is observed to be remarkably straight and uniform at a radius of about 120 microns (convergence ratio ~20). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.
Photoionized Plasma and Opacity Experiments on the Z Machine
NASA Astrophysics Data System (ADS)
Bailey, James
2008-04-01
Laboratory experiments at Z use high energy density to create plasma conditions similar to extreme astrophysical environments, including stellar interiors and accretion powered objects. The importance of radiation unifies these topics, even though the plasmas involved are very different. Understanding stellar interiors requires knowledge of radiation transport in dense, hot, collision-dominated plasma. A Z x-ray source was used to measure iron plasma transmission at 156 eV electron temperature, 2x higher than in prior work. The data provide the first experimental tests of absorption features critical for stellar interior opacity models and may provide insight into whether the present discrepancy between solar models and helioseismology originates in opacity model deficiencies or in some other aspect of the solar model. In contrast, accretion physics requires interpretation of x-ray spectra from lower density photoionization-dominated plasma. Exploiting astrophysical spectra requires a spectral model that connects the observations with a model that describes the overall picture of the astrophysical object. However, photoionized plasma spectral models are largely untested. Z-pinch radiation was used to create photoionized iron and neon plasmas with photoionization parameter 5-25 erg cm /s. Comparisons with the data improve x-ray photoionization models and promote more accurate interpretation of spectra acquired with astrophysical observatories. The prospects for new experiments at the higher radiation powers provided by the recently upgraded Z facility will be described.* In collaboration with scientists from CEA, LANL, LLNL, Oxford, Prism, Queens University, Swarthmore College, U. Nevada Reno, and Sandia ++Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.
Public health laboratory quality management in a developing country.
Wangkahat, Khwanjai; Nookhai, Somboon; Pobkeeree, Vallerut
2012-01-01
The article aims to give an overview of the system of public health laboratory quality management in Thailand and to produce a strengths, weaknesses, opportunities and threats (SWOT) analysis that is relevant to public health laboratories in the country. The systems for managing laboratory quality that are currently employed were described in the first component. The second component was a SWOT analysis, which used the opinions of laboratory professionals to identify any areas that could be improved to meet quality management systems. Various quality management systems were identified and the number of laboratories that met both international and national quality management requirements was different. The SWOT analysis found the opportunities and strengths factors offered the best chance to improve laboratory quality management in the country. The results are based on observations and brainstorming with medical laboratory professionals who can assist laboratories in accomplishing quality management. The factors derived from the analysis can help improve laboratory quality management in the country. This paper provides viewpoints and evidence-based approaches for the development of best possible practice of services in public health laboratories.
Site Environmental Report for 2010, Volumes 1 & 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baskin, David; Bauters, Tim; Borglin, Ned
2011-09-01
LBNL is a multiprogram scientific facility operated by the UC for the DOE. LBNL’s research is directed toward the physical, biological, environmental, and computational sciences, in order to deliver scientific knowledge and discoveries pertinent to DOE’s missions. This annual Site Environmental Report covers activities conducted in CY 2010. The format and content of this report satisfy the requirements of DOE Order 231.1A, Environment, Safety, and Health Reporting,1 and the operating contract between UC and DOE
Some queuing network models of computer systems
NASA Technical Reports Server (NTRS)
Herndon, E. S.
1980-01-01
Queuing network models of a computer system operating with a single workload type are presented. Program algorithms are adapted for use on the Texas Instruments SR-52 programmable calculator. By slightly altering the algorithm to process the G and H matrices row by row instead of column by column, six devices and an unlimited job/terminal population could be handled on the SR-52. Techniques are also introduced for handling a simple load dependent server and for studying interactive systems with fixed multiprogramming limits.
40 CFR 262.105 - What must be included in the laboratory environmental management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... University Laboratories XL Project-Laboratory Environmental Management Standard § 262.105 What must be included in the laboratory environmental management plan? (a) Each University must include specific... laboratory environmental management plan? 262.105 Section 262.105 Protection of Environment ENVIRONMENTAL...
Laboratory Waste Management. A Guidebook.
ERIC Educational Resources Information Center
American Chemical Society, Washington, DC.
A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…
[What's the point of cost management in clinical laboratories?].
Setoyama, Tomokazu; Yamauchi, Kazuyoshi; Katsuyama, Tsutomu
2006-11-01
Clinical laboratories need to know and manage the costs of laboratory tests, because they need financial data (1) to estimate costs per patient, (2) to request a budget to buy equipment, and (3) to improve their work; however, less than 40% laboratories practice cost management. In 2002, Shinshu University Hospital began to assess the costs of laboratory tests, but it was difficult to evaluate the quality of our cost management because there are few data and papers about the costs of laboratory tests in Japan. In this article, we practiced cost analysis using Shinshu University Hospital's data for 3 years (2002-2004), and studied the features of laboratory test costs and the problems of laboratory cost management. As a result, we listed 7 points to check cost management in clinical laboratories. This check list was established using only one data from our hospital. So, we suggest the benchmarking laboratory test costs between laboratories of the same type of hospitals or various laboratories.
[The future of clinical laboratory database management system].
Kambe, M; Imidy, D; Matsubara, A; Sugimoto, Y
1999-09-01
To assess the present status of the clinical laboratory database management system, the difference between the Clinical Laboratory Information System and Clinical Laboratory System was explained in this study. Although three kinds of database management systems (DBMS) were shown including the relational model, tree model and network model, the relational model was found to be the best DBMS for the clinical laboratory database based on our experience and developments of some clinical laboratory expert systems. As a future clinical laboratory database management system, the IC card system connected to an automatic chemical analyzer was proposed for personal health data management and a microscope/video system was proposed for dynamic data management of leukocytes or bacteria.
Hanley, Timothy; Sowder, Aleksandra M; Palmer, Cheryl Ann; Weiss, Ronald L
2016-01-01
With the changing landscape of medicine in general, and pathology in particular, a greater emphasis is being placed on laboratory management as a means of controlling spiraling medical costs and improving health-care efficiency. To meet this challenge, pathology residency programs have begun to incorporate formal laboratory management training into their curricula, using institutional curricula and/or online laboratory management courses offered by professional organizations. At the University of Utah, and its affiliated national reference laboratory, ARUP Laboratories, Inc, interested residents are able to supplement the departmental lecture-based and online laboratory management curriculum by participating in assistant medical directorship programs in one of several pathology subspecialty disciplines. The goals of many of the assistant medical directorship positions include the development of laboratory management skills and competencies. A survey of current and recent assistant medical directorship participants revealed that the assistant medical directorship program serves as an excellent means of improving laboratory management skills, as well as improving performance as a fellow and practicing pathologist.
Estimating fracture spacing from natural tracers in shale-gas production
NASA Astrophysics Data System (ADS)
Bauer, S. J.; McKenna, S. A.; Heath, J. E.; Gardner, P.
2012-12-01
Resource appraisal and long-term recovery potential of shale gas relies on the characteristics of the fracture networks created within the formation. Both well testing and analysis of micro-seismic data can provide information on fracture characteristics, but approaches that directly utilize observations of gas transport through the fractures are not well-developed. We examine transport of natural tracers and analyze the breakthrough curves (BTC's) of these tracers with a multi-rate mass transfer (MMT) model to elucidate fracture characteristics. The focus here is on numerical simulation studies to determine constraints on the ability to accurately estimate fracture network characteristics as a function of the diffusion coefficients of the natural tracers, the number and timing of observations, the flow rates from the well, and the noise in the observations. Traditional tracer testing approaches for dual-porosity systems analyze the BTC of an injected tracer to obtain fracture spacing considering a single spacing value. An alternative model is the MMT model where diffusive mass transfer occurs simultaneously over a range of matrix block sizes defined by a statistical distribution (e.g., log-normal, gamma, or power-law). The goal of the estimation is defining the parameters of the fracture spacing distribution. The MMT model has not yet been applied to analysis of natural in situ natural tracers. Natural tracers are omnipresent in the subsurface, potentially obviating the needed for introduced tracers, and could be used to improve upon fracture characteristics estimated from pressure transient and decline curve production analysis. Results of this study provide guidance for data collection and analysis of natural tracers in fractured shale formations. Parameter estimation on simulated BTC's will provide guidance on the necessary timing of BTC sampling in field experiments. The MMT model can result in non-unique or nonphysical parameter estimates. We address this with Bayesian estimation approaches that can define uncertainty in estimated parameters as a posterior probability distribution. We will also use Bayesian estimation to examine model identifiability (e.g., selecting between parametric distributions of fracture spacing) from various BTC's. Application of the MMT model to natural tracers and hydraulic fractures in shale will require extension of the model to account for partitioning of the tracers between multiple phases and different mass transfer behavior in mixed gas-liquid (e.g., oil or groundwater rich) systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Numerical and theoretical analyses of underground explosion cavity decoupling
NASA Astrophysics Data System (ADS)
Jensen, R.; Aldridge, D. F.; Chael, E. P.
2013-12-01
It has long been established that the amplitudes of seismic waves radiated from an underground explosion can be reduced by detonating the explosive within a fluid-filled cavity of adequate size. Significant amplitude reduction occurs because the reflection coefficient at the fluid/rock interface (i.e., the cavity wall) is large. In fact, the DC frequency limit of the reflection coefficient for a spherically-diverging seismic wave incident upon a concentric spherical interface is -1.0, independent of radius of curvature and all material properties. In order to quantify to the degree of amplitude reduction expected in various realistic scenarios, we are conducting mathematical and numerical investigations into the so-called 'cavity decoupling problem' for a buried explosion. Our working tool is a numerical algorithm for simulating fully-coupled seismic and acoustic wave propagation in mixed solid/fluid media. Solution methodology involves explicit, time-domain, finite differencing of the elastodynamic velocity-stress partial differential system on a three-dimensional staggered spatial grid. Conditional logic is used to avoid shear stress updating within fluid zones; this approach leads to computational efficiency gains for models containing a significant proportion of ideal fluid. Numerical stability and accuracy are maintained at air/rock interfaces (where the contrast in mass density is on the order of 1 to 2000) via an FD operator 'order switching' formalism. The fourth-order spatial FD operator used throughout the bulk of the earth model is reduced to second-order in the immediate vicinity of a high-contrast interface. Point explosions detonated at the center of an air-filled or water-filled spherical cavity lead to strong resonant oscillations in radiated seismic energy, with period controlled by cavity radius and sound speed of the fill fluid. If the explosion is off-center, or the cavity is non-spherical, shear waves are generated in the surrounding elastic wholespace. Equilibrating the moment magnitudes of explosions for differing fill materials leads to misleading results in the amplitudes of the radiated elastic waves. The proper procedure entails equalizing the intrinsic energies of the explosions. Numerically-calculated results are in reasonable agreement with a theoretical model based on acoustic and elastic spherical wave propagation from a point center of symmetry. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Parameter estimation uncertainty: Comparing apples and apples?
NASA Astrophysics Data System (ADS)
Hart, D.; Yoon, H.; McKenna, S. A.
2012-12-01
Given a highly parameterized ground water model in which the conceptual model of the heterogeneity is stochastic, an ensemble of inverse calibrations from multiple starting points (MSP) provides an ensemble of calibrated parameters and follow-on transport predictions. However, the multiple calibrations are computationally expensive. Parameter estimation uncertainty can also be modeled by decomposing the parameterization into a solution space and a null space. From a single calibration (single starting point) a single set of parameters defining the solution space can be extracted. The solution space is held constant while Monte Carlo sampling of the parameter set covering the null space creates an ensemble of the null space parameter set. A recently developed null-space Monte Carlo (NSMC) method combines the calibration solution space parameters with the ensemble of null space parameters, creating sets of calibration-constrained parameters for input to the follow-on transport predictions. Here, we examine the consistency between probabilistic ensembles of parameter estimates and predictions using the MSP calibration and the NSMC approaches. A highly parameterized model of the Culebra dolomite previously developed for the WIPP project in New Mexico is used as the test case. A total of 100 estimated fields are retained from the MSP approach and the ensemble of results defining the model fit to the data, the reproduction of the variogram model and prediction of an advective travel time are compared to the same results obtained using NSMC. We demonstrate that the NSMC fields based on a single calibration model can be significantly constrained by the calibrated solution space and the resulting distribution of advective travel times is biased toward the travel time from the single calibrated field. To overcome this, newly proposed strategies to employ a multiple calibration-constrained NSMC approach (M-NSMC) are evaluated. Comparison of the M-NSMC and MSP methods suggests that M-NSMC can provide a computationally efficient and practical solution for predictive uncertainty analysis in highly nonlinear and complex subsurface flow and transport models. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Zhao-Hui, Zheng; Jun, Qin; Li, Chen; Hong, Zhu; Li, Tang; Zu-Wu, Tu; Ming-Xing, Zeng; Qian, Sun; Shun-Xiang, Cai
2016-10-09
To analyze the construction and operation status of management system of laboratories of schistosomiasis control institutions in Hubei Province, so as to provide the reference for the standardized detection and management of schistosomiasis laboratories. According to the laboratory standard of schistosomiasis at provincial, municipal and county levels, the management system construction and operation status of 60 schistosomiasis control institutions was assessed by the acceptance examination method from 2013 to 2015. The management system was already occupied over all the laboratories of schistosomiasis control institutions and was officially running. There were 588 non-conformities and the inconsistency rate was 19.60%. The non-conformity rate of the management system of laboratory quality control was 38.10% (224 cases) and the non-conformity rate of requirements of instrument and equipment was 23.81% (140 cases). The management system has played an important role in the standardized management of schistosomiasis laboratories.
[Knowledge management system for laboratory work and clinical decision support].
Inada, Masanori; Sato, Mayumi; Yoneyama, Akiko
2011-05-01
This paper discusses a knowledge management system for clinical laboratories. In the clinical laboratory of Toranomon Hospital, we receive about 20 questions relevant to laboratory tests per day from medical doctors or co-medical staff. These questions mostly involve the essence to appropriately accomplish laboratory tests. We have to answer them carefully and suitably because an incorrect answer may cause a medical accident. Up to now, no method has been in place to achieve a rapid response and standardized answers. For this reason, the laboratory staff have responded to various questions based on their individual knowledge. We began to develop a knowledge management system to promote the knowledge of staff working for the laboratory. This system is a type of knowledge base for assisting the work, such as inquiry management, laboratory consultation, process management, and clinical support. It consists of several functions: guiding laboratory test information, managing inquiries from medical staff, reporting results of patient consultation, distributing laboratory staffs notes, and recording guidelines for laboratory medicine. The laboratory test information guide has 2,000 records of medical test information registered in the database with flexible retrieval. The inquiry management tool provides a methos to record all questions, answer easily, and retrieve cases. It helps staff to respond appropriately in a short period of time. The consulting report system treats patients' claims regarding medical tests. The laboratory staffs notes enter a file management system so they can be accessed to aid in clinical support. Knowledge sharing using this function can achieve the transition from individual to organizational learning. Storing guidelines for laboratory medicine will support EBM. Finally, it is expected that this system will support intellectual activity concerning laboratory work and contribute to the practice of knowledge management for clinical work support.
Reactive decomposition of low density PMDI foam subject to shock compression
NASA Astrophysics Data System (ADS)
Alexander, Scott; Reinhart, William; Brundage, Aaron; Peterson, David
Low density polymethylene diisocyanate (PMDI) foam with a density of 5.4 pounds per cubic foot (0.087 g/cc) was tested to determine the equation of state properties under shock compression over the pressure range of 0.58 - 3.4 GPa. This pressure range encompasses a region approximately 1.0-1.2 GPa within which the foam undergoes reactive decomposition resulting in significant volume expansion of approximately three times the volume prior to reaction. This volume expansion has a significant effect on the high pressure equation of state. Previous work on similar foam was conducted only up to the region where volume expansion occurs and extrapolation of that data to higher pressure results in a significant error. It is now clear that new models are required to account for the reactive decomposition of this class of foam. The results of plate impact tests will be presented and discussed including details of the unique challenges associated with shock compression of low density foams. Sandia National Labs is a multi-program lab managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Spatio-Temporal Self-Organization in Mudstones (Invited)
NASA Astrophysics Data System (ADS)
Dewers, T. A.
2010-12-01
Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO2 sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates, high capillary pressures, and semi-permeable membrane behavior accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from nonlinear thermo-mechano-chemo-hydro coupling. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons in unconsolidated muds, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000
NASA Astrophysics Data System (ADS)
Battaile, Corbett; Owen, Steven; Moore, Nathan
2017-06-01
The properties of most engineering materials depend on the characteristics of internal microstructures and defects. In additively manufactured (AM) metals, these can include polycrystalline grains, impurities, phases, and significant porosity that qualitatively differ from conventional engineering materials. The microscopic details of the interactions between these internal defects, and the propagation of applied loads through the body, act in concert to dictate macro-observable properties like strength and compressibility. In this work, we used Sandia's ALEGRA finite element software to simulate the high-strain-rate loading of AM metals from laser engineered net shaping (LENS) and thermal spraying. The microstructural details of the material were represented explicitly, such that internal features like second phases and pores are captured and meshed as individual entities in the computational domain. We will discuss the dependence of the high-strain-rate mechanical properties on microstructural characteristics such as the shapes, sizes, and volume fractions of second phases and pores. In addition, we will examine how the details of the microstructural representation affect the microscopic material response to dynamic loads, and the effects of using ``stair-step'' versus conformal interfaces smoothed via the SCULPT tool in Sandia's CUBIT software. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE NNSA under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Ao, Tommy; Asay, James; Knudson, Marcus; Davis, Jean-Paul
2007-06-01
The Isentropic Compression Experiment technique has proven to be a valuable complement to the well-established method of shock compression of condensed matter. However, whereas the high-pressure compression response of window materials has been studied extensively under shock loading, similar knowledge of these materials under ICE loading is limited. We present recent experimental results on the isentropic compression of the high-pressure windows sapphire and LiF. It has previously been observed that c-cut sapphire yields under shock loading at the HEL of ˜15-18GPa, and subsequently loses transparency at higher stresses. However, it will be shown that under isentropic ramp wave loading sapphire appears to remain elastic and transparent at stresses well above 20GPa [D.B. Hayes et al, JAP 94, 2331 (2003)]. LiF is another frequently used window material in isentropic loading and unloading experiments, yet the unloading response of LiF is usually neglected. Research is in progress to measure strength properties of LiF for ramp loading and unloading. It will be shown how the strength of LiF may influence wave profile analysis and thus inferred material strength. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the US DOE's NNSA under Contract No.DE-AC04-94AL85000.
A Framework for Adaptable Operating and Runtime Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterling, Thomas
The emergence of new classes of HPC systems where performance improvement is enabled by Moore’s Law for technology is manifest through multi-core-based architectures including specialized GPU structures. Operating systems were originally designed for control of uniprocessor systems. By the 1980s multiprogramming, virtual memory, and network interconnection were integral services incorporated as part of most modern computers. HPC operating systems were primarily derivatives of the Unix model with Linux dominating the Top-500 list. The use of Linux for commodity clusters was first pioneered by the NASA Beowulf Project. However, the rapid increase in number of cores to achieve performance gain throughmore » technology advances has exposed the limitations of POSIX general-purpose operating systems in scaling and efficiency. This project was undertaken through the leadership of Sandia National Laboratories and in partnership of the University of New Mexico to investigate the alternative of composable lightweight kernels on scalable HPC architectures to achieve superior performance for a wide range of applications. The use of composable operating systems is intended to provide a minimalist set of services specifically required by a given application to preclude overheads and operational uncertainties (“OS noise”) that have been demonstrated to degrade efficiency and operational consistency. This project was undertaken as an exploration to investigate possible strategies and methods for composable lightweight kernel operating systems towards support for extreme scale systems.« less
The Formation of Indicators on Engineering Laboratory Management
ERIC Educational Resources Information Center
Yasin, Ruhizan M.; Mohamad, Zunuwanas; Rahman, Mohd Nizam Ab.; Hashim, Mohamad Hisyam Mohd
2012-01-01
This research is a developmental study of Engineering Laboratory Management indicators. It is formed to assess the level of quality management of the polytechnic level laboratory. The purpose of indicators is to help provide input into the management process of an engineering laboratory. Effectiveness of teaching and learning at technical…
Mechanisms of selective cleavage of C–O bonds in di-aryl ethers in aqueous phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jiayue; Zhao, Chen; Mei, Donghai
2014-01-01
A novel route for cleaving the C-O aryl ether bonds of p-substituted H-, CH 3-, and OH- diphenyl ethers has been explored over Ni/SiO 2 catalysts at very mild conditions. The C-O bond of diphenyl ether is cleaved by parallel hydrogenolysis and hydrolysis (hydrogenolysis combined with HO* addition) on Ni. The rates as a function of H 2 pressure from 0 to 10 MPa indicate that the rate-determining step is the C-O bond cleavage on Ni. H* atoms compete with the organic reactant for adsorption leading to a maximum in the rate with increasing H 2 pressure. In contrast tomore » diphenyl ether, hydrogenolysis is the exclusive route for cleaving an ether C-O bond of di-p-tolyl ether to form p-cresol and toluene. 4,4'-dihydroxydiphenyl ether undergoes sequential surface hydrogenolysis, first to phenol and HOC 6H 4O* (adsorbed), which is then cleaved to phenol (C 6H 5O* with added H*) and H 2O (O* with two added H*) in a second step. Density function theory supports the operation of this pathway. Notably, addition of H* to HOC 6H 4O* is less favorable than a further hydrogenolytic C-O bond cleavage. The TOFs of three aryl ethers with Ni/SiO 2 in water followed the order 4,4'-dihydroxydiphenyl ether (69 h -1) > diphenyl ether (26 h -1) > di-p-tolyl ether (1.3 h -1), in line with the increasing apparent activation energies, ranging from 93 kJ∙mol -1 (4,4'-dihydroxydiphenyl ether) < diphenyl ether (98 kJ∙mol -1) to di-p-tolyl ether (105 kJ∙mol -1). D.M. thanks the support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less
First-principles Study of Phenol Hydrogenation on Pt and Ni Catalysts in Aqueous Phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Yeohoon; Rousseau, Roger J.; Weber, Robert S.
2014-07-23
The effects of aqueous phase on the reactivity of phenol hydrogenation over Pt and Ni catalysts were investigated using density functional theory based ab initio molecular dynamics (AIMD) calculations. The adsorption of phenol and the first hydrogenation steps via three carbon positions (ortho, meta and para) with respect to the phenolic OH group were studied in both vacuum and liquid phase conditions. To gain insight into how the aqueous phase affects the metal catalyst surface, increasing water environments including singly adsorbed water molecule, mono- (9 water molecules), double layers (24 water molecules), and the bulk liquid water which (52 watermore » molecules) on the Pt(111) and the Ni(111) surfaces were modeled. Compared to the vacuum/metal interfaces, AIMD simulation results suggest that the aqueous Pt(111) and Ni(111) interfaces have a lower metal work function in the order of 0.8 - 0.9 eV, thus, making the metals in aqueous phase stronger reducing agents and poorer oxidizing agents. Phenol adsorption from the aqueous phase is found to be slightly weaker that from the vapor phase. The first hydrogenation step of phenol at the ortho position of the phenolic ring is slightly favored over the other two positions. The polarization induced by the surrounding water molecules and the solvation effect play important roles in stabilizing the transition states associated with phenol hydrogenation by lowering the barriers of 0.1 - 0.4 eV. The detailed discussion on the basis of the interfacial electrostatics from the current study is very useful to understand the nature of a broader class of metal catalyzed reactions in liquid solution phase. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences and Office of Energy Efficiency and Renewable Energy. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less
Fulga, Netta
2013-06-01
Quality management and accreditation in the analytical laboratory setting are developing rapidly and becoming the standard worldwide. Quality management refers to all the activities used by organizations to ensure product or service consistency. Accreditation is a formal recognition by an authoritative regulatory body that a laboratory is competent to perform examinations and report results. The Motherisk Drug Testing Laboratory is licensed to operate at the Hospital for Sick Children in Toronto, Ontario. The laboratory performs toxicology tests of hair and meconium samples for research and clinical purposes. Most of the samples are involved in a chain of custody cases. Establishing a quality management system and achieving accreditation became mandatory by legislation for all Ontario clinical laboratories since 2003. The Ontario Laboratory Accreditation program is based on International Organization for Standardization 15189-Medical laboratories-Particular requirements for quality and competence, an international standard that has been adopted as a national standard in Canada. The implementation of a quality management system involves management commitment, planning and staff education, documentation of the system, validation of processes, and assessment against the requirements. The maintenance of a quality management system requires control and monitoring of the entire laboratory path of workflow. The process of transformation of a research/clinical laboratory into an accredited laboratory, and the benefits of maintaining an effective quality management system, are presented in this article.
Managing Science: Management for R&D Laboratories
NASA Astrophysics Data System (ADS)
Gelès, Claude; Lindecker, Gilles; Month, Mel; Roche, Christian
1999-10-01
A unique "how-to" manual for the management of scientific laboratories This book presents a complete set of tools for the management of research and development laboratories and projects. With an emphasis on knowledge rather than profit as a measure of output and performance, the authors apply standard management principles and techniques to the needs of high-flux, open-ended, separately funded science and technology enterprises. They also propose the novel idea that failure, and incipient failure, is an important measure of an organization's potential. From the management of complex, round-the-clock, high-tech operations to strategies for long-term planning, Managing Science: Management for R&D Laboratories discusses how to build projects with the proper research and development, obtain and account for funding, and deal with rapidly changing technologies, facilities, and trends. The entire second part of the book is devoted to personnel issues and the impact of workplace behavior on the various functions of a knowledge-based organization. Drawing on four decades of involvement with the management of scientific laboratories, the authors thoroughly illustrate their philosophy with real-world examples from the physics field and provide tables and charts. Managers of scientific laboratories as well as scientists and engineers expecting to move into management will find Managing Science: Management for R&D Laboratories an invaluable practical guide.
Laboratory testing under managed care dominance in the USA
Takemura, Y; Beck, J
2001-01-01
The uncontrolled escalation of total health care expenditure despite the government's endeavours during the past decades in the USA had led to the rapid infiltration of managed care organisations (MCOs). Traditional hospital based laboratories have been placed in a crucial situation with the advent of the managed care era. A massive reduction of in house testing urged them to develop strategies against financial difficulty. Consolidation and networking, participation in the outreach testing market, and emphasis on point of care/satellite laboratory testing in non-traditional, ambulatory settings are major strategies for the survival of hospital laboratories. Several physicians' office laboratories (POLS) have closed their doors in response both to regulatory restrictions imposed by the Clinical Laboratory Improvement Amendments of 1988 and to managed care infiltration. It seems likely that POLs and hospital laboratories will continue to reduce test volumes, whereas commercial reference laboratories will thrive through contracting with MCOs. In the current climate of managed care dominance in the USA, clinical laboratories are changing their basic operation focus and mission in response to the aggressively changing landscape. Key Words: laboratory testing • managed care organisations • survival strategies PMID:11215291
Current radar-responsive tag development activities at Sandia National Laboratories
NASA Astrophysics Data System (ADS)
Ormesher, Richard C.; Plummer, Kenneth W.; Wells, Lars M.
2004-08-01
Over the past ten years, Sandia has developed RF radar responsive tag systems and supporting technologies for various government agencies and industry partners. RF tags can function as RF transmitters or radar transponders that enable tagging, tracking, and location determination functions. Expertise in tag architecture, microwave and radar design, signal analysis and processing techniques, digital design, modeling and simulation, and testing have been directly applicable to these tag programs. In general, the radar responsive tag designs have emphasized low power, small package size, and the ability to be detected by the radar at long ranges. Recently, there has been an interest in using radar responsive tags for Blue Force tracking and Combat ID (CID). The main reason for this interest is to allow airborne surveillance radars to easily distinguish U.S. assets from those of opposing forces. A Blue Force tracking capability would add materially to situational awareness. Combat ID is also an issue, as evidenced by the fact that approximately one-quarter of all U.S. casualties in the Gulf War took the form of ground troops killed by friendly fire. Because the evolution of warfare in the intervening decade has made asymmetric warfare the norm rather than the exception, swarming engagements in which U.S. forces will be freely intermixed with opposing forces is a situation that must be anticipated. Increasing utilization of precision munitions can be expected to drive fires progressively closer to engaged allied troops at times when visual de-confliction is not an option. In view of these trends, it becomes increasingly important that U.S. ground forces have a widely proliferated all-weather radar responsive tag that communicates to all-weather surveillance. The purpose of this paper is to provide an overview of the recent, current, and future radar responsive research and development activities at Sandia National Laboratories that support both the Blue Force Tracking and Combat ID application. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Departments of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.
Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for coarse grained models of electrolyte solution. Here, we provide rigorous definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation (DFT-MD) and isolate the effects of charge and cavitation,more » comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to highly unphysical values for the solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry (CHA) for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation. We would like to thank Thomas Beck, Shawn Kathmann, Richard Remsing and John Weeks for helpful discussions. Computing resources were generously allocated by PNNL's Institutional Computing program. This research also used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. TTD, GKS, and CJM were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated by Battelle for the U.S. Department of Energy.« less
Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Qiuxia; Lopez-Ruiz, Juan A.; Cooper, Alan R.
The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxylmore » groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at PNNL.« less
Hydrogenation of benzaldehyde via electrocatalysis and thermal catalysis on carbon-supported metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yang; Sanyal, Udishnu; Pangotra, Dhananjai
Abstract Selective reduction of benzaldehyde to benzyl alcohol on C-supported Pt, Rh, Pd, and Ni in aqueous phase was conducted using either directly H2 (thermal catalytic hydrogenation, TCH) or in situ electrocatalytically generated hydrogen (electrocatalytic hydrogenation, ECH). In TCH, the intrinsic activity of the metals at room temperature and 1 bar H2 increased in the sequence Rh/C < Pt/C < Pd/C, while Ni/C is inactive at these conditions due to surface oxidation in the absence of cathodic potential. The reaction follows a Langmuir-Hinshelwood mechanism with the second hydrogen addition to the adsorbed hydrocarbon being the rate-determining step. All tested metalsmore » were active in ECH of benzaldehyde, although hydrogenation competes with the hydrogen evolution reaction (HER). The minimum cathodic potentials to obtain appreciable ECH rates were identical to the onset potentials of HER. Above this onset, the relative rates of H reacting to H2 and H addition to the hydrocarbon determines the selectivity to ECH and TCH. Accordingly, the selectivity of the metals towards ECH increases in the order Ni/C < Pt/C < Rh/C < Pd/C. Pd/C shows exceptionally high ECH selectivity due to its surprisingly low HER reactivity under the reaction conditions. Acknowledgements The authors would like to thank the groups of Hubert A. Gasteiger at the Technische Universität München of Jorge Gascon at the Delft University of Technology for advice and valuable discussions. The authors are grateful to Nirala Singh, Erika Ember, Gary Haller, and Philipp Rheinländer for fruitful discussions. We are also grateful to Marianne Hanzlik for TEM measurements and to Xaver Hecht and Martin Neukamm for technical support. Y.S. would like to thank the Chinese Scholarship Council for the financial support. The research described in this paper is part of the Chemical Transformation Initiative at Pacific Northwest National Laboratory (PNNL), conducted under the Laboratory Directed Research and Development Program at PNNL, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy.« less
Technology Deployment Annual Report 2014 December
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arterburn, George K.
This report is a summary of key Technology Deployment activities and achievements for 2014, including intellectual property, granted copyrights, royalties, license agreements, CRADAs, WFOs and Technology-Based Economic Development. Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventionsmore » and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. INL employees also work cooperatively with researchers and technical staff from the university and industrial sectors to further develop emerging technologies. In our multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational instiutitons throughout the world. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Deployment. However, the accomplishments cataloged in the report reflect the achievements and creativity of the researchers, technicians, support staff, and operators of the INL workforce.« less
Kinetic Coupling of Water Splitting and Photoreforming on SrTiO 3 -Based Photocatalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanwald, Kai E.; Berto, Tobias F.; Jentys, Andreas
Coupling the anodic half-reactions of overall water splitting and oxygenate photoreforming (i.e., proton reduction and oxygenate oxidations) on Al-doped SrTiO3 decorated with a co-catalyst enables efficient photocatalytic H2 generation along with oxygenate conversion without accumulating undesired intermediates such as formaldehyde. The net H2-evolution rates result from the interplay between water oxidation, oxygenate oxidation, and the back-reaction of H2 and O2 to water. When the latter pathway is quantitatively suppressed (e.g., on RhCrOx co-catalyst or in excess of oxygenated hydrocarbons), the initial H2-evolution rates are independent of the oxygenate nature and concentration. This is a consequence of the reduction equivalents formore » H2-evolution provided by water oxidation compensating changes in the rates of oxygenate conversion. Thus, under conditions of suppressed back-reaction, water and oxygenate oxidations have equal quantum efficiencies. The selectivities to water and oxygenate oxidation depend on oxygenate nature and concentration. Transformations mediated by indirect hole transfer dominate as a result of the water oxidation at the anode and the associated intermediates generated in O2-evolution catalysis (e.g. ·OH, ·O and ·OOH). On the undecorated semiconductor, the O2 produced during overall water splitting is reductively activated to participate in glycerol oxidation without consuming evolved H2. Acknowledgements The authors would like to thank ESRF in Grenoble, France, for providing beam time at the ID26 station for XAFS experiments. K.E.S. gratefully acknowledges financial support by the Fond der Chemischen Industrie (FCI). J.A.L. and O.Y.G. acknowledge support for his contribution by the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multi-program national laboratory operated by Battelle for the U.S. Department of Energy. The authors thank Xaver Hecht for BET measurements, Martin Neukamm for SEM and AAS measurements and Dr. Udishnu Sanyal for TEM imaging. Christine Schwarz is acknowledged for technical assistance in NMR experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A.
2013-10-17
The chemical and photochemical properties of three butene molecules (cis-butene, trans-butene and isobutene) were explored on the clean rutile TiO 2(110) surface using temperature programmed desorption (TPD) and photon simulated desorption (PSD). At the low coverage limit, trans-butene was the most strongly bound butene on the TiO 2(110) surface, desorbing at ~ 210 K, however increased intermolecular repulsions between trans-butene molecules at higher coverage diminished its binding. Both cis-butene and isobutene saturated the first layer on TiO 2(110) at a coverage of ~0.50 ML in a single TPD feature at 184 and 192 K, respectively. In contrast, the maximum coveragemore » that trans-butene could achieve in its 210 K peak was ~1/3 ML, with higher coverages resulting a low temperature desorption at ~137 K. Coverages of these molecules above 0.50 ML resulted in population of second layer and multilayer states. The instability of trans-butene at a coverage of 0.5 ML on the surface was linked to the inversion center in its symmetry. In the absence of coadsorbed oxygen, the primary photochemical pathway of each butene molecule on TiO 2(110) was photodesorption. The photoactivities of these molecules on TiO 2(110) at an initial coverage of 0.50 ML followed the trend: isobutene > cis-butene > trans-butene. In contrast, the photoactivities of low coverages of cis-butene and trans-butene exceeded those measured at 0.50 ML. These data suggest that intermolecular interactions (repulsions) play a significant role in diminishing the photoactivities of weakly bound molecules on TiO 2 photocatalysts. Work reported here was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences, and performed in the Williams R. Wiley Environmental Molecular Science Laboratory (EMSL), a Department of Energy user facility funded by the Office of Biological and Environmental Research. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the U.S. Department of Energy by the Battelle Memorial Institute under contract DEAC05-76RL01830.« less
MicroChemLab, A Novel Approach for Handheld Chemical Sensing
NASA Astrophysics Data System (ADS)
Lewis, Patrick
2003-03-01
In 1996, Sandia National Laboratories began development of a chemical sensing platform based on microfabricated components. The goal of the project was to develop a handheld system for the detection of chemical warfare (CW) agent vapors in air. The components developed for this project are analogous to devices used in analytical laboratories. The benefit of microfabrication is that the resulting components are small and require little power to operate. The key elements of MicroChemLab are a sample collector - preconcentrator, a GC column and a surface acoustic wave (SAW) array detector. The preconcentrator is a thermally isolated silicon nitride membrane with a resistive heater patterned on one side and a sorptive sol gel film deposited on the other. Since the membrane has a very small mass, the resistive heater can ballistically elevate the temperature of the sorptive film to 200° C in approximately 10 ms. The sol gel film collects target compounds efficiently, but rejects volatile industrial solvents like alcohols, ketones, etc. The GC column is a one-meter high aspect ratio spiral channel etched in silicon with an anodically bonded pyrex lid completing the channel. A heater patterned on the silicon allows the column to be temperature ramped. Analytes injected from the preconcentrator are separated in this stage. The SAW array detector contains 3 delay lines used for sensing and 1 reference delay line. Each delay line is driven by an application specific integrated circuit (ASIC) at 500 MHz. Instead of counting frequency, additional ASICs incorporate a phase comparator that delivers a DC signal proportional to the amount of phase change. The three sensing elements of the detector provide a pattern that is indicative of the class of compound detected i.e. nerve agents or blister agents. Combined, these components provide a selective and sensitive handheld solution for the detection of chemical warfare agents. We will present lab data showing the performance of individual components and field data demonstrating the performance of this system. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.
Hybrid Ultra-Microporous Materials for Selective Xenon Adsorption and Separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Mona H.; Elsaidi, Sameh K.; Pham, Tony
The demand for Xe/Kr separation continues to grow due to the industrial significance of high-purity Xe gas. Current separation processes rely on energy intensive cryogenic distillation. Therefore, there is a need to develop less energy intensive alternatives such as physisorptive separation using porous materials. Here we show that an underexplored class of porous materials called hybrid ultramicroporous materials (HUMs) based upon inorganic and organic building blocks affords new benchmark selectivity for Xe separation from Xe/Kr mixtures. The isostructural materials, CROFOUR-1-Ni and CROFOUR-2-Ni, are coordination networks that exhibit coordinatively saturated metal centres and two distinct types of micropores, one of whichmore » is lined by CrO 4 2- (CROFOUR) anions and the other is decorated by the functionalized organic linker. These nets offer unprecedented selectivity towards Xe, and also address processing and stability limitations of existing porous materials. Modelling experiments indicate that the extraordinary selectivity of these nets is tailored by synergy between the pore size, which is just above the kinetic diameter of Xe, and the strong electrostatics afforded by the CrO 4 2- anions. Column breakthrough experiments demonstrate the potential of the practical use of these materials in Xe/Kr separation at low concentrations at the levels relevant to Xe capture from air and in nuclear fuel reprocessing. B.S. acknowledges the National Science Foundation (Award No. CHE-1152362), including support from the Major Research Instrumentation Program (Award No CHE-1531590), the computational resources that were made available by a XSEDE Grant (No. TG-DMR090028), and the use of the services provided by Research Computing at the University of South Florida. We (P.K.T) thank the US Department of Energy (DOE), Office of Nuclear Energy for adsorption and breakthrough measurements. We (P.K.T) particularly thank J. Bresee, Kimberly Gray, T. Todd (Idaho National Laboratory), John Vienna (PNNL), B. Jubin (Oak Ridge National Laboratory) and D.M. Strachan (Strachan LLC) for providing programmatic support and guidance. Pacific Northwest National Laboratory is a multi-program national laboratory operated for the US Department of Energy by Battelle Memorial Institute under Contract DE-AC05-76RL01830. M.J.Z. gratefully acknowledges Science Foundation Ireland (Award 13/RP/B2549) for support. This research used Beamline 17-BM of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.« less
48 CFR 970.1504-1-3 - Special considerations: Laboratory management and operation.
Code of Federal Regulations, 2010 CFR
2010-10-01
...: Laboratory management and operation. 970.1504-1-3 Section 970.1504-1-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Contracting by Negotiation 970.1504-1-3 Special considerations: Laboratory management and operation. (a) For the management...
Pereira, Paulo; Westgard, James O; Encarnação, Pedro; Seghatchian, Jerard; de Sousa, Gracinda
2015-04-01
The screening laboratory has a critical role in the post-transfusion safety. The success of its targets and efficiency depends on the management system used. Even though the European Union directive 2002/98/EC requires a quality management system in blood establishments, its requirements for screening laboratories are generic. Complementary approaches are needed to implement a quality management system focused on screening laboratories. This article briefly discusses the current good manufacturing practices and good laboratory practices, as well as the trends in quality management system standards. ISO 9001 is widely accepted in some European Union blood establishments as the quality management standard, however this is not synonymous of its successful application. The ISO "risk-based thinking" is interrelated with the quality risk-management process of the EuBIS "Standards and criteria for the inspection of blood establishments". ISO 15189 should be the next step on the quality assurance of a screening laboratory, since it is focused on medical laboratory. To standardize the quality management systems in blood establishments' screening laboratories, new national and European claims focused on technical requirements following ISO 15189 is needed. Copyright © 2015 Elsevier Ltd. All rights reserved.
The science of laboratory and project management in regulated bioanalysis.
Unger, Steve; Lloyd, Thomas; Tan, Melvin; Hou, Jingguo; Wells, Edward
2014-05-01
Pharmaceutical drug development is a complex and lengthy process, requiring excellent project and laboratory management skills. Bioanalysis anchors drug safety and efficacy with systemic and site of action exposures. Development of scientific talent and a willingness to innovate or adopt new technology is essential. Taking unnecessary risks, however, should be avoided. Scientists must strategically assess all risks and find means to minimize or negate them. Laboratory Managers must keep abreast of ever-changing technology. Investments in instrumentation and laboratory design are critical catalysts to efficiency and safety. Matrix management requires regular communication between Project Managers and Laboratory Managers. When properly executed, it aligns the best resources at the right times for a successful outcome. Attention to detail is a critical aspect that separates excellent laboratories. Each assay is unique and requires attention in its development, validation and execution. Methods, training and facilities are the foundation of a bioanalytical laboratory.
Management Academy LANL Business Systems: Property Management, Course #31036
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepherd, Michael J.; Rinke, Helen Mae; Hanson, Todd
Los Alamos National Laboratory (LANL) is responsible for the efficient economical management of all government property in its stewardship. This training explains the role LANL managers have in managing, controlling, and disposing of government property. The Laboratory's goal is good asset management. By properly managing property across the facility, Laboratory managers can help ASM improve government property utilization and extend asset life, while reducing asset-related operating costs and expenditures.
Review and comparison of quality standards, guidelines and regulations for laboratories.
Datema, Tjeerd A M; Oskam, Linda; Klatser, Paul R
2012-01-01
The variety and number of laboratory quality standards, guidelines and regulations (hereafter: quality documents) makes it difficult to choose the most suitable one for establishing and maintaining a laboratory quality management system. There is a need to compare the characteristics, suitability and applicability of quality documents in view of the increasing efforts to introduce quality management in laboratories, especially in clinical diagnostic laboratories in low income and middle income countries. This may provide valuable insights for policy makers developing national laboratory policies, and for laboratory managers and quality officers in choosing the most appropriate quality document for upgrading their laboratories. We reviewed the history of quality document development and then selected a subset based on their current use. We analysed these documents following a framework for comparison of quality documents that was adapted from the Clinical Laboratory Standards Institute guideline GP26 Quality management system model for clinical laboratory services . Differences were identified between national and international, and non-clinical and clinical quality documents. The most salient findings were the absence of provisions on occurrence management and customer service in almost all non-clinical quality documents, a low number of safety requirements aimed at protecting laboratory personnel in international quality documents and no requirements regarding ethical behaviour in almost all quality documents. Each laboratory needs to investigate whether national regulatory standards are present. These are preferred as they most closely suit the needs of laboratories in the country. A laboratory should always use both a standard and a guideline: a standard sums up the requirements to a quality management system, a guideline describes how quality management can be integrated in the laboratory processes.
ERIC Educational Resources Information Center
McKim, Billy R.; Saucier, P. Ryan
2011-01-01
Accidents happen; however, the likelihood of accidents occurring in the agricultural mechanics laboratory is greatly reduced when agricultural mechanics laboratory facilities are managed by secondary agriculture teachers who are competent and knowledgeable. This study investigated the agricultural mechanics laboratory management in-service needs…
75 FR 82004 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-29
... Laboratory AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory...--Radioactive Waste Management. Public Participation: The EM SSAB, Idaho National Laboratory, welcomes the...
78 FR 12747 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... Laboratory AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... Management System Public Participation: The EM SSAB, Idaho National Laboratory, welcomes the attendance of...
40 CFR 262.102 - What special definitions are included in this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Laboratories XL Project-Laboratory Environmental Management Standard § 262.102 What special definitions are... Laboratory Waste means a laboratory waste, defined in the Environmental Management Plan as posing significant... Management Plan (EMP) means a written program developed and implemented by the university which sets forth...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
... adopt the Naval Research Laboratory (NRL) Personnel Management Demonstration Project with modifications... Secretary of Defense (SECDEF) to conduct personnel management demonstration projects at DoD laboratories... execute a process and plan to employ the personnel management demonstration project authorities granted to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franz, James A.; O'Hagan, Molly J.; Ho, Ming-Hsun
2013-12-09
The [Ni(PR2NR’2)2]2+ catalysts, (where PR2NR´2 is 1,5-R´-3,7-R-1,5-diaza-3,7-diphosphacyclooctane), are some of the fastest reported for hydrogen production and oxidation, however, chair/boat isomerization and the presence of a fifth solvent ligand have the potential to slow catalysis by incorrectly positioning the pendant amines or blocking the addition of hydrogen. Here, we report the structural dynamics of a series of [Ni(PR2NR’2)2]n+ complexes, characterized by NMR spectroscopy and theoretical modeling. A fast exchange process was observed for the [Ni(CH3CN)(PR2NR’2)2]2+ complexes which depends on the ligand. This exchange process was identified to occur through a three step mechanism including dissociation of the acetonitrile, boat/chair isomerizationmore » of each of the four rings identified by the phosphine ligands (including nitrogen inversion), and reassociation of acetonitrile on the opposite side of the complex. The rate of the chair/boat inversion can be influenced by varying the substituent on the nitrogen atom, but the rate of the overall exchange process is at least an order of magnitude faster than the catalytic rate in acetonitrile demonstrating that the structural dynamics of the [Ni(PR2NR´2)2]2+ complexes does not hinder catalysis. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under FWP56073. Research by J.A.F., M.O., M-H. H., M.L.H, D.L.D. A.M.A., S. R. and R.M.B. was carried out in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. W.J.S. and S.L. were funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences. T.L. was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory; the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory; and the Jaguar supercomputer at Oak Ridge National Laboratory (INCITE 2008-2011 award supported by the Office of Science of the U.S. DOE under Contract No. DE-AC0500OR22725).« less
The SLMTA programme: Transforming the laboratory landscape in developing countries
Maruta, Talkmore; Luman, Elizabeth T.; Nkengasong, John N.
2014-01-01
Background Efficient and reliable laboratory services are essential to effective and well-functioning health systems. Laboratory managers play a critical role in ensuring the quality and timeliness of these services. However, few laboratory management programmes focus on the competencies required for the daily operations of a laboratory in resource-limited settings. This report provides a detailed description of an innovative laboratory management training tool called Strengthening Laboratory Management Toward Accreditation (SLMTA) and highlights some challenges, achievements and lessons learned during the first five years of implementation (2009–2013) in developing countries. Programme SLMTA is a competency-based programme that uses a series of short courses and work-based learning projects to effect immediate and measurable laboratory improvement, while empowering laboratory managers to implement practical quality management systems to ensure better patient care. A SLMTA training programme spans from 12 to 18 months; after each workshop, participants implement improvement projects supported by regular supervisory visits or on-site mentoring. In order to assess strengths, weaknesses and progress made by the laboratory, audits are conducted using the World Health Organization’s Regional Office for Africa (WHO AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist, which is based on International Organization for Standardization (ISO) 15189 requirements. These internal audits are conducted at the beginning and end of the SLMTA training programme. Conclusion Within five years, SLMTA had been implemented in 617 laboratories in 47 countries, transforming the laboratory landscape in developing countries. To our knowledge, SLMTA is the first programme that makes an explicit connection between the performance of specific management behaviours and routines and ISO 15189 requirements. Because of this close relationship, SLMTA is uniquely positioned to help laboratories seek accreditation to ISO 15189. PMID:26752335
Access to laboratory testing: the impact of managed care in the Pacific Northwest.
LaBeau, K M; Simon, M; Steindel, S J
1999-01-01
Patient access to health-care services has become an important issue owing to the growth of managed care organizations and the number of patients enrolled. To better understand the current issues related to access to laboratory testing, with a particular focus on the impact of managed care, we gathered information from a network of clinical laboratories in the Pacific Northwest. Two questionnaires were sent to the 257 Laboratory Medicine Sentinel Monitoring Network participants in November 1995 and March 1996 to investigate trends in the availability and utilization of laboratory testing services and changes in onsite testing menus. Although laboratories reported that managed care was a factor in their decisions about laboratory practices, testing decisions were more likely made for business reasons, based on medical practice changes and marketplace influences not associated with managed care.
Project management: importance for diagnostic laboratories.
Croxatto, A; Greub, G
2017-07-01
The need for diagnostic laboratories to improve both quality and productivity alongside personnel shortages incite laboratory managers to constantly optimize laboratory workflows, organization, and technology. These continuous modifications of the laboratories should be conducted using efficient project and change management approaches to maximize the opportunities for successful completion of the project. This review aims at presenting a general overview of project management with an emphasis on selected critical aspects. Conventional project management tools and models, such as HERMES, described in the literature, associated personal experience, and educational courses on management have been used to illustrate this review. This review presents general guidelines of project management and highlights their importance for microbiology diagnostic laboratories. As an example, some critical aspects of project management will be illustrated with a project of automation, as experienced at the laboratories of bacteriology and hygiene of the University Hospital of Lausanne. It is important to define clearly beforehand the objective of a project, its perimeter, its costs, and its time frame including precise duration estimates of each step. Then, a project management plan including explanations and descriptions on how to manage, execute, and control the project is necessary to continuously monitor the progression of a project to achieve its defined goals. Moreover, a thorough risk analysis with contingency and mitigation measures should be performed at each phase of a project to minimize the impact of project failures. The increasing complexities of modern laboratories mean clinical microbiologists must use several management tools including project and change management to improve the outcome of major projects and activities. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
40 CFR 262.103 - What is the scope of the laboratory environmental management standard?
Code of Federal Regulations, 2014 CFR
2014-07-01
... University Laboratories XL Project-Laboratory Environmental Management Standard § 262.103 What is the scope... 40 Protection of Environment 26 2014-07-01 2014-07-01 false What is the scope of the laboratory environmental management standard? 262.103 Section 262.103 Protection of Environment ENVIRONMENTAL PROTECTION...
40 CFR 262.103 - What is the scope of the laboratory environmental management standard?
Code of Federal Regulations, 2012 CFR
2012-07-01
... University Laboratories XL Project-Laboratory Environmental Management Standard § 262.103 What is the scope... 40 Protection of Environment 27 2012-07-01 2012-07-01 false What is the scope of the laboratory environmental management standard? 262.103 Section 262.103 Protection of Environment ENVIRONMENTAL PROTECTION...
40 CFR 262.103 - What is the scope of the laboratory environmental management standard?
Code of Federal Regulations, 2013 CFR
2013-07-01
... University Laboratories XL Project-Laboratory Environmental Management Standard § 262.103 What is the scope... 40 Protection of Environment 27 2013-07-01 2013-07-01 false What is the scope of the laboratory environmental management standard? 262.103 Section 262.103 Protection of Environment ENVIRONMENTAL PROTECTION...
40 CFR 262.103 - What is the scope of the laboratory environmental management standard?
Code of Federal Regulations, 2011 CFR
2011-07-01
... University Laboratories XL Project-Laboratory Environmental Management Standard § 262.103 What is the scope... 40 Protection of Environment 26 2011-07-01 2011-07-01 false What is the scope of the laboratory environmental management standard? 262.103 Section 262.103 Protection of Environment ENVIRONMENTAL PROTECTION...
40 CFR 262.104 - What are the minimum performance criteria?
Code of Federal Regulations, 2010 CFR
2010-07-01
... XL Project-Laboratory Environmental Management Standard § 262.104 What are the minimum performance... container management. (f) The management of laboratory waste must not result in the release of hazardous... waste management program approved under 40 CFR part 271) if it is determined in the laboratory by the...
NASA Technical Reports Server (NTRS)
Eckhardt, D. E., Jr.
1979-01-01
A model of a central processor (CPU) which services background applications in the presence of time critical activity is presented. The CPU is viewed as an M/M/1 queueing system subject to periodic interrupts by deterministic, time critical process. The Laplace transform of the distribution of service times for the background applications is developed. The use of state of the art queueing models for studying the background processing capability of time critical computer systems is discussed and the results of a model validation study which support this application of queueing models are presented.
Yao, Katy; McKinney, Barbara; Murphy, Anna; Rotz, Phil; Wafula, Winnie; Sendagire, Hakim; Okui, Scolastica; Nkengasong, John N
2010-09-01
The Strengthening Laboratory Management Toward Accreditation (SLMTA) program was developed to promote immediate, measurable improvement in laboratories of developing countries. The laboratory management framework, a tool that prescribes managerial job tasks, forms the basis of the hands-on, activity-based curriculum. SLMTA is implemented through multiple workshops with intervening site visits to support improvement projects. To evaluate the effectiveness of SLMTA, the laboratory accreditation checklist was developed and subsequently adopted by the World Health Organization Regional Office for Africa (WHO AFRO). The SLMTA program and the implementation model were validated through a pilot in Uganda. SLMTA yielded observable, measurable results in the laboratories and improved patient flow and turnaround time in a laboratory simulation. The laboratory staff members were empowered to improve their own laboratories by using existing resources, communicate with clinicians and hospital administrators, and advocate for system strengthening. The SLMTA program supports laboratories by improving management and building preparedness for accreditation.
1998-01-01
A MANUAL FOR A LABORATORY INFORMATION MANAGEMENT SYSTEM (LIMS) FOR LIGHT STABLE ISOTOPES— VERSION 7.0 U.S. GEOLOGICAL SURVEY Open-File Report 98-284...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 A MANUAL FOR A LABORATORY INFORMATION MANAGEMENT SYSTEM (LIMS) FOR LIGHT STABLE...Europa Scientific ..................................................120 1 A MANUAL FOR A LABORATORY INFORMATION MANAGEMENT SYSTEM (LIMS) FOR LIGHT STABLE
Dual FIB-SEM 3D Imaging and Lattice Boltzmann Modeling of Porosimetry and Multiphase Flow in Chalk
NASA Astrophysics Data System (ADS)
Rinehart, A. J.; Yoon, H.; Dewers, T. A.; Heath, J. E.; Petrusak, R.
2010-12-01
Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage. This work was supported by the US Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Laser propagation through full-scale, high-gain MagLIF gas pipes using the NIF
NASA Astrophysics Data System (ADS)
Pollock, Bradley; Sefkow, Adam; Goyon, Clement; Strozzi, David; Khan, Shahab; Rosen, Mordy; Campbell, Mike; Logan, Grant; Peterson, Kyle; Moody, John
2016-10-01
The first relevant measurements of laser propagation through surrogate high-gain MagLIF gas pipe targets at full scale have been performed at the NIF, using 30 kJ of laser drive from one quad in a 10 ns pulse at an intensity of 2e14 W/cm2. The unmagnetized pipe is filled with 1 atm of 99%/1% neopentane/Ar, and uses an entrance window of 0.75 um polyimide and an exit window of 0.3 um of Ta backed with 5 um of polyimide. Side-on x-ray emission from the plasma is imaged through the 100 um-thick epoxy wall onto a framing camera at four times during the drive, and is in excellent agreement with pre-shot HYDRA radiation-hydrodynamics modeling. X-ray emission from the Ta exit plane is imaged onto a streak camera to determine the timing and intensity of the laser burning through the pipe, and the Ar emission from the center of the pipe is spectrally- and temporally-resolved to determine the plasma electron temperature. Backscatter is measured throughout the laser drive, and is found to be of significance only when the laser reaches the Ta exit plane and produces SBS. These first results in unmagnetized surrogate gas fills are encouraging since they demonstrate sufficient laser energy absorption and low LPI losses within high-density long-scale-length plasmas for proposed high-gain MagLIF target designs. We will discuss plans to magnetize targets filled with high-density DT gas in future experiments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
Computational Studies of [Bmim][PF6]/n-Alcohol Interfaces with Many-Body Potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Tsun-Mei; Dang, Liem X.
2014-09-04
In this paper, we present the results from molecular-dynamics simulations of the equilibrium properties of liquid/liquid interfaces of room temperature ionic liquid [bmim][PF6] and simple alcohols (i.e., methanol, 1-butanol, and 1-hexanol) at room temperature. Polarizable potential models are employed to describe the interactions among species. Results from our simulations show stable interfaces between the ionic liquid and n-alcohols, and we found that the interfacial widths decrease from methanol to 1-butanol systems, and then increase for 1-hexanol interfaces. Angular distribution analysis reveals that the interface induces a strong orientational order of [bmim] and n-alcohol molecules near the interface, with [bmim] extendingmore » its butyl group into the alcohol phase while the alcohol has the OH group pointing into the ion liquid region, which is consistent with the recent sum-frequency-generation experiments. We found the interface to have a significant influence on the dynamics of ionic liquids and n-alcohols. The orientational autocorrelation functions illustrate that [bmim] rotate more freely near the interface than in the bulk, while the rotation of n-alcohol is hindered at the interface. Additionally, the time scale associated with the diffusion along the interfacial direction is found to be faster for [bmim] but slowed down for n-alcohols approaching the interface. We also calculate the dipole moment of n-alcohols as a function of the distance normal to the interface. We found that, even though methanol and 1-butanol have different dipole moments in bulk phase, they reach a similar value at the interface. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the Department of Energy by Battelle. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less
Extracting Strength from Ramp-Release Experiments on Z
NASA Astrophysics Data System (ADS)
Brown, Justin
2013-06-01
Releasing from a compressed state has long been recognized as a sensitive measure of a material's constitutive response. The initial elastic unloading provides insights which can be related to changes in shear stress or, in the context of classic plasticity, to the material's yield surface. Ramp compression and subsequent release experiments on Sandia's Z machine typically consist of a driving aluminum electrode pushing a sample material which is backed by a window. A particle velocity measurement of the sample/window interface provides a ramp-release profile. Under most circumstances, however, the impedance mismatch at this interface results in the measurement of a highly perturbed velocity, particularly at the late times of interest. Wave attenuation, the finite pressure range over which the material elastically unloads, and rate effects additionally complicate the interpretation of the experiment. In an effort to accurately analyze experiments of this type, each of these complications is addressed. The wave interactions are accounted for through the so-called transfer function methodology and involves a coupling of the experimental measurements with numerical simulations. Simulated window velocity measurements are combined with the corresponding in situ simulations to define a mapping describing the wave interactions due to the presence of the window. Applying this mapping to the experimentally measured velocity results in an in situ sample response which may then be used in a classic Lagrangian analysis from which the strength can be extracted via the self-consistent method. Corrections for attenuation, pressure averaging, and limitations of the analysis due to rate-effects are verified through the use of synthetic data. To date, results on the strength of aluminum to 1.2 MBar, beryllium to 1 MBar, and tantalum to over 2 MBar have been obtained through this methodology and will be presented. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Measuring the radiative properties of astrophysical matter using the Z X-ray source
NASA Astrophysics Data System (ADS)
Bailey, James; ZAPP Team
2017-06-01
The Z Astrophysical Plasma Properties (ZAPP) collaboration is staging Z experiments that simultaneously investigate multiple topics in radiative properties of hot dense matter. The four astrophysics questions presently guiding this research are: 1) Why can’t we predict the location of the convection zone base in the Sun?; 2) How does radiation transport affect spectrum formation in accretion-powered objects?; 3) Why doesn’t spectral fitting provide the correct properties for White Dwarfs?; and 4) Why can’t we predict the heating and charge state distribution in photoionized plasmas? Recent progress using Z, the most energetic x-ray source on earth, to address these questions will be described. We emphasize the first two topics. Opacity models are an essential ingredient of stellar models and are highly sophisticated, but laboratory opacity tests have only now become possible at the conditions existing inside stars. Our opacity research emphasizes measuring iron at conditions relevant to the base of the solar convection zone, where the electron temperature and density are believed to be 190 eV and 9x1022 e/cc, respectively. The results exhibit large disagreements between iron opacity measurements and models and ongoing research is aimed at testing hypotheses for this discrepancy. The second project is motivated by the fact that emission lines from L-shell ions are not observed from iron in black hole accretion disks, but are observed from silicon in x-ray binaries. These disparate observations may be explained by differences in the radiation transport within the plasmas, but models for the spectral line formation and transport in photoionized plasmas have never been tested. We investigate photoionized silicon plasmas using absorption spectroscopy to infer the plasma conditions and emission spectroscopy to determine the dependence of spectral emission on plasma column density.++Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Blume-Kohout, Robin
2014-03-01
Quantum information technology is built on (1) physical qubits and (2) precise, accurate quantum logic gates that transform their states. Developing quantum logic gates requires good characterization - both in the development phase, where we need to identify a device's flaws so as to fix them, and in the production phase, where we need to make sure that the device works within specs and predict residual error rates and types. This task falls to quantum state and process tomography. But until recently, protocols for tomography relied on a pre-existing and perfectly calibrated reference frame comprising the measurements (and, for process tomography, input states) used to characterize the device. In practice, these measurements are neither independent nor perfectly known - they are usually implemented via exactly the same gates that we are trying to characterize! In the past year, several partial solutions to this self-consistency problem have been proposed. I will present a framework (gate set tomography, or GST) that addresses and resolves this problem, by self-consistently characterizing an entire set of quantum logic gates on a black-box quantum device. In particular, it contains an explicit closed-form protocol for linear-inversion gate set tomography (LGST), which is immune to both calibration error and technical pathologies like local maxima of the likelihood (which plagued earlier methods). GST also demonstrates significant (multiple orders of magnitude) improvements in efficiency over standard tomography by using data derived from long sequences of gates (much like randomized benchmarking). GST has now been applied to qubit devices in multiple technologies. I will present and discuss results of GST experiments in technologies including a single trapped-ion qubit and a silicon quantum dot qubit. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL850.
Marketing and Distribution: What About Training Plans in the DE Project Laboratory?
ERIC Educational Resources Information Center
Snyder, Ruth
1977-01-01
Managing a distributive education (DE) laboratory is a challenge. The laboratory is the simulated training station, with the instructor taking on the role of employer, managing student activities and learning. One tool to be utilized in managing a DE laboratory is a training plan. This article discusses the need for student training plans and the…
Region 7 Laboratory Information Management System
This is metadata documentation for the Region 7 Laboratory Information Management System (R7LIMS) which maintains records for the Regional Laboratory. Any Laboratory analytical work performed is stored in this system which replaces LIMS-Lite, and before that LAST. The EPA and its contractors may use this database. The Office of Policy & Management (PLMG) Division at EPA Region 7 is the primary managing entity; contractors can access this database but it is not accessible to the public.
NASA Astrophysics Data System (ADS)
Mytych, Joanna; Ligarski, Mariusz J.
2018-03-01
The quality management systems compliant with the ISO 9001:2009 have been thoroughly researched and described in detail in the world literature. The accredited management systems used in the testing laboratories and compliant with the ISO/IEC 17025:2005 have been mainly described in terms of the system design and implementation. They have also been investigated from the analytical point of view. Unfortunately, a low number of studies concerned the management system functioning in the accredited testing laboratories. The aim of following study was to assess the management system functioning in the accredited testing laboratories in Poland. On 8 October 2015, 1,213 accredited testing laboratories were present in Poland. They investigated various scientific areas and substances/objects. There are more and more such laboratories that have various problems and different long-term experience when it comes to the implementation, maintenance and improvement of the management systems. The article describes the results of the conducted expert assessment (survey) carried out to examine the conditions for the functioning of a management system in an accredited laboratory. It also focuses on the characteristics of the accredited research laboratories in Poland. The authors discuss the selection of the external and internal conditions that may affect the accredited management system. They show how the experts assessing the selected conditions were chosen. The survey results are also presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-21
... Food Modernization Safety Act for Private Laboratory Managers AGENCY: Food and Drug Administration, HHS... Food Modernization Safety Act for Private Laboratory Managers.'' The topic to be discussed is the...
NASA Astrophysics Data System (ADS)
Robbins, Brian; Field, Rich; Grigoriu, Mircea; Jamison, Ryan; Mesh, Mikhail; Casper, Katya; Dechant, Lawrence
2016-11-01
During reentry, a hypersonic vehicle undergoes a period in which the flow about the vehicle transitions from laminar to turbulent flow. During this transitional phase, the flow is characterized by intermittent formations of localized turbulent behavior. These localized regions of turbulence are born at the onset of transition and grow as they move to the aft end of the flight vehicle. Throughout laminar-turbulent transition, the moving turbulent spots cause pressure fluctuations on the outer surface of the vehicle, which leads to the random vibration of the structure and its internal components. In light of this, it is of great interest to study the dynamical response of a flight vehicle undergoing transitional flow so that aircraft can be better designed to prevent structural failure. In this talk, we present a statistical model that calculates the birth, evolution, and pressure field of turbulent spots over a generic slender cone structure. We then illustrate that the model appropriately quantifies intermittency behavior and pressure loading by comparing the intermittency and root-mean-square pressure fluctuations produced by the model with theory and experiment. Finally, we present results pertaining to the structural response of a housing panel on the slender cone. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Laser heating challenges of high yield MagLIF targets
NASA Astrophysics Data System (ADS)
Slutz, Stephen; Sefkow, Adam; Vesey, Roger
2014-10-01
The MagLIF (Magnetized Liner Inertial Fusion) concept is predicted by numerical simulation to produce fusion yields of about 100 kJ, when driven by 25 MA from the existing Z accelerator [S. A. Slutz et al. Phys. Plasmas 17, 056303 (2010)] and much higher yields with future accelerators delivering higher currents [Slutz and Vesey PRL 108, 025003 (2012)]. The fuel must be heated before compression to obtain significant fusion yields due to the relatively slow implosion velocities (~ 100 km/s) of magnetically driven liners. Lasers provide a convenient means to accomplish this pre-compressional heating of the fusion fuel, but there are challenges. The laser must penetrate a foil covering the laser entrance hole and deposit 20-30 kJ within the ~1 cm length of the liner in fuel at 6-12 mg/cc. Such high densities could result in beam scattering due to refraction and laser plasma interactions. Numerical simulations of the laser heating process are presented, which indicate that energies as high as 30 kJ could be deposited in the fuel by using two laser pulses of different wavelengths. Simulations of this process will be presented as well of results for a MagLIF design for a potential new machine delivering 50 MA of current. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Studies of Cu adatom island ripening on Cu(100) by LEEM
NASA Astrophysics Data System (ADS)
Bussmann, Ezra; Kellogg, Gary L.
2007-03-01
Simple metal surfaces are model systems for characterizing kinetic processes governing the growth and stability of nanoscale structures. It is generally presumed that diffusive transport of adatoms across terraces determines the rate of these processes. However, STM studies in the temperature range T˜330-420 K reveal that transport between step edges on the Cu(100) surface is limited by detachment barriers at the step edges, rather than by the adatom diffusion barrier.^1 This is because on the Cu(100) surface, mass transport is mediated primarily by vacancies, instead of adatoms. We have used low energy electron microscopy (LEEM) movies to characterize coarsening of Cu islands on the Cu(100) surface in the range T˜460-560 K. By measuring the temperature dependence of the island decay rate we find an activation barrier of 0.9±0.1 eV. This value is comparable to the 0.80±0.03 eV barrier found in STM studies.^1 However, we are not able to conclude that transport is entirely detachment limited at these elevated temperatures. This work serves as background to establish whether or not Pd alloying in the Cu(100) surface will slow Cu surface transport. ^2 1. C. Kl"unker, et al., PRB 58, R7556 (1998). 2. M. L. Grant, et al., PRL 86, 4588 (2001). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. DOE NNSA, Contract No. DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Sullivan, J. P.
2002-03-01
Pure carbon films can exhibit surprising complexity in structure and properties. Amorphous diamond (tetrahedrally-coordinated amorphous carbon) is an amorphous quasi-two phase mixture of four-fold and three-fold coordinated carbon which is produced by pulsed excimer laser deposition, an energetic deposition process that leads to film growth by sub-surface carbon implantation and the creation of local metastability in carbon bonding. Modest annealing, < 900K, produces significant irreversible strain relaxation which is thermally activated with activation energies ranging from < 1 eV to > 2 eV. During annealing the material remains amorphous, but there is a detectable increase in medium-range order as measured by fluctuation microscopy. The strain relaxation permits the residual strain in the films to be reduced to < 0.00001, which is a critical requirement for the fabrication of microelectromechanical systems (MEMS). Amorphous diamond MEMS have been fabricated in order to evaluate the mechanical properties of this material under tension and flexure, and this has enabled the determination of elastic modulus (800 GPa), tensile strength (8 GPa), and fracture toughness (8 MPa m^1/2). In addition, amorphous diamond MEMS structures have been fabricated to measure internal dissipation and surface adhesion. The high hardness and strength and hydrophobic nature of the surface makes this material particularly suitable for the fabrication of high wear resistance and low stiction MEMS. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Co., for the U.S. Dept. of Energy under contract DE-AC04-94AL85000.
Wilkinson, D S; Dilts, T J
1999-01-01
We believe the team approach to laboratory management achieves the best outcomes. Laboratory management requires the integration of medical, technical, and administrative expertise to achieve optimal service, quality, and cost performance. Usually, a management team of two or more individuals must be assembled to achieve all of these critical leadership functions. The individual members of the management team must possess the requisite expertise in clinical medicine, laboratory science, technology management, and administration. They also must work together in a unified and collaborative manner, regardless of where individual team members appear on the organizational chart. The management team members share in executing the entire human resource management life cycle, creating the proper environment to maximize human performance. Above all, the management team provides visionary and credible leadership.
Morris, Chris; Pajon, Anne; Griffiths, Susanne L.; Daniel, Ed; Savitsky, Marc; Lin, Bill; Diprose, Jonathan M.; Wilter da Silva, Alan; Pilicheva, Katya; Troshin, Peter; van Niekerk, Johannes; Isaacs, Neil; Naismith, James; Nave, Colin; Blake, Richard; Wilson, Keith S.; Stuart, David I.; Henrick, Kim; Esnouf, Robert M.
2011-01-01
The techniques used in protein production and structural biology have been developing rapidly, but techniques for recording the laboratory information produced have not kept pace. One approach is the development of laboratory information-management systems (LIMS), which typically use a relational database schema to model and store results from a laboratory workflow. The underlying philosophy and implementation of the Protein Information Management System (PiMS), a LIMS development specifically targeted at the flexible and unpredictable workflows of protein-production research laboratories of all scales, is described. PiMS is a web-based Java application that uses either Postgres or Oracle as the underlying relational database-management system. PiMS is available under a free licence to all academic laboratories either for local installation or for use as a managed service. PMID:21460443
Morris, Chris; Pajon, Anne; Griffiths, Susanne L; Daniel, Ed; Savitsky, Marc; Lin, Bill; Diprose, Jonathan M; da Silva, Alan Wilter; Pilicheva, Katya; Troshin, Peter; van Niekerk, Johannes; Isaacs, Neil; Naismith, James; Nave, Colin; Blake, Richard; Wilson, Keith S; Stuart, David I; Henrick, Kim; Esnouf, Robert M
2011-04-01
The techniques used in protein production and structural biology have been developing rapidly, but techniques for recording the laboratory information produced have not kept pace. One approach is the development of laboratory information-management systems (LIMS), which typically use a relational database schema to model and store results from a laboratory workflow. The underlying philosophy and implementation of the Protein Information Management System (PiMS), a LIMS development specifically targeted at the flexible and unpredictable workflows of protein-production research laboratories of all scales, is described. PiMS is a web-based Java application that uses either Postgres or Oracle as the underlying relational database-management system. PiMS is available under a free licence to all academic laboratories either for local installation or for use as a managed service.
41 CFR 101-25.109 - Laboratory and research equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal laboratories...
41 CFR 101-25.109 - Laboratory and research equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal laboratories...
41 CFR 101-25.109 - Laboratory and research equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal laboratories...
NRMRL SCIENCE PUBLICATIONS (NATIONAL RISK MANAGEMENT RESEARCH LABORATORY, EPA, CINCINNATI, OH)
The National Risk Management Research Laboratory (NRMRL)is the U.S.EPA's center for investigating technological and management approaches for preventing and reducing risks from pollution that threaten human health and the environment. The focus of the Laboratory's research progra...
40 CFR 262.214 - Laboratory management plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Waste Determination and Accumulation of Unwanted Material for Laboratories Owned by Eligible Academic Entities § 262.214 Laboratory management plan. An eligible academic entity must develop and retain a... a site-specific document that describes how the eligible academic entity will manage unwanted...
21 CFR 58.31 - Testing facility management.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Organization and Personnel § 58.31 Testing facility management. For each nonclinical laboratory study, testing facility management shall: (a) Designate a study...
40 CFR 262.214 - Laboratory management plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Waste Determination and Accumulation of Unwanted Material for Laboratories Owned by Eligible Academic Entities § 262.214 Laboratory management plan. An eligible academic entity must develop and retain a... a site-specific document that describes how the eligible academic entity will manage unwanted...
40 CFR 262.214 - Laboratory management plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Waste Determination and Accumulation of Unwanted Material for Laboratories Owned by Eligible Academic Entities § 262.214 Laboratory management plan. An eligible academic entity must develop and retain a... a site-specific document that describes how the eligible academic entity will manage unwanted...
Decoding Student Satisfaction: How to Manage and Improve the Laboratory Experience
ERIC Educational Resources Information Center
Nikolic, Sasha; Ritz, Christian; Vial, Peter James; Ros, Montserrat; Stirling, David
2015-01-01
The laboratory plays an important role in teaching engineering skills. An Electrical Engineering department at an Australian University implemented a reform to monitor and improve student satisfaction with the teaching laboratories. A Laboratory Manager was employed to oversee the quality of 27 courses containing instructional laboratories.…
Hunter, Adam; Dayalan, Saravanan; De Souza, David; Power, Brad; Lorrimar, Rodney; Szabo, Tamas; Nguyen, Thu; O'Callaghan, Sean; Hack, Jeremy; Pyke, James; Nahid, Amsha; Barrero, Roberto; Roessner, Ute; Likic, Vladimir; Tull, Dedreia; Bacic, Antony; McConville, Malcolm; Bellgard, Matthew
2017-01-01
An increasing number of research laboratories and core analytical facilities around the world are developing high throughput metabolomic analytical and data processing pipelines that are capable of handling hundreds to thousands of individual samples per year, often over multiple projects, collaborations and sample types. At present, there are no Laboratory Information Management Systems (LIMS) that are specifically tailored for metabolomics laboratories that are capable of tracking samples and associated metadata from the beginning to the end of an experiment, including data processing and archiving, and which are also suitable for use in large institutional core facilities or multi-laboratory consortia as well as single laboratory environments. Here we present MASTR-MS, a downloadable and installable LIMS solution that can be deployed either within a single laboratory or used to link workflows across a multisite network. It comprises a Node Management System that can be used to link and manage projects across one or multiple collaborating laboratories; a User Management System which defines different user groups and privileges of users; a Quote Management System where client quotes are managed; a Project Management System in which metadata is stored and all aspects of project management, including experimental setup, sample tracking and instrument analysis, are defined, and a Data Management System that allows the automatic capture and storage of raw and processed data from the analytical instruments to the LIMS. MASTR-MS is a comprehensive LIMS solution specifically designed for metabolomics. It captures the entire lifecycle of a sample starting from project and experiment design to sample analysis, data capture and storage. It acts as an electronic notebook, facilitating project management within a single laboratory or a multi-node collaborative environment. This software is being developed in close consultation with members of the metabolomics research community. It is freely available under the GNU GPL v3 licence and can be accessed from, https://muccg.github.io/mastr-ms/.
Clinical laboratory waste management in Shiraz, Iran.
Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John
2012-06-01
Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.
Sisay, Abay; Mindaye, Tedla; Tesfaye, Abrham; Abera, Eyob; Desale, Adino
2015-01-01
Introduction Strengthening Laboratory Management Toward Accreditation (SLMTA) is a competency-based management training programme designed to bring about immediate and measurable laboratory improvement. The aim of this study is to assess the outcome of SLMTA on laboratory quality management system in Addis Ababa, Ethiopia. Methods The study used an Institutional based cross sectional study design that employed a secondary and primary data collection approach on the participated institution of medical laboratory in SLMTA. The study was conducted in Addis Ababa city government and the data was collected from February ‘April 2014 and data was entered in to EPI-data version 3.1 and was analyzed by SPSS version 20. Results The assessment finding indicate that there was a significant improvement in average scores (141.4; range of 65-196, 95%CI =86.275-115.5, p = 0.000) at final with 3 laboratories become 3 star, 6 laboratories were at 2 star, 11 were 1 star. Laboratory facilities respondents which thought getting adequate and timely manner mentorship were found 2.5 times more likely to get good success in the final score(AOR= 2.501, 95% CI= 1.109-4.602) than which did not get it. Conclusion At the end of SLMTA implementation,3 laboratories score 3 star, 6 laboratories were at 2 star, 11 were at 1 star. The most important contributing factor for not scoring star in the final outcome of SLMTA were not conducting their customer satisfaction survey, poor staff motivation, and lack of regular equipment service maintenance. Mentorship, onsite and offsite coaching and training activities had shown a great improvement on laboratory quality management system in most laboratories. PMID:26175805
Sisay, Abay; Mindaye, Tedla; Tesfaye, Abrham; Abera, Eyob; Desale, Adino
2015-01-01
Strengthening Laboratory Management Toward Accreditation (SLMTA) is a competency-based management training programme designed to bring about immediate and measurable laboratory improvement. The aim of this study is to assess the outcome of SLMTA on laboratory quality management system in Addis Ababa, Ethiopia. The study used an Institutional based cross sectional study design that employed a secondary and primary data collection approach on the participated institution of medical laboratory in SLMTA. The study was conducted in Addis Ababa city government and the data was collected from February 'April 2014 and data was entered in to EPI-data version 3.1 and was analyzed by SPSS version 20. The assessment finding indicate that there was a significant improvement in average scores (141.4; range of 65-196, 95%CI=86.275-115.5, p=0.000) at final with 3 laboratories become 3 star, 6 laboratories were at 2 star, 11 were 1 star. Laboratory facilities respondents which thought getting adequate and timely manner mentorship were found 2.5 times more likely to get good success in the final score(AOR=2.501, 95% CI=1.109-4.602) than which did not get it. At the end of SLMTA implementation,3 laboratories score 3 star, 6 laboratories were at 2 star, 11 were at 1 star. The most important contributing factor for not scoring star in the final outcome of SLMTA were not conducting their customer satisfaction survey, poor staff motivation, and lack of regular equipment service maintenance. Mentorship, onsite and offsite coaching and training activities had shown a great improvement on laboratory quality management system in most laboratories.
The ideal laboratory information system.
Sepulveda, Jorge L; Young, Donald S
2013-08-01
Laboratory information systems (LIS) are critical components of the operation of clinical laboratories. However, the functionalities of LIS have lagged significantly behind the capacities of current hardware and software technologies, while the complexity of the information produced by clinical laboratories has been increasing over time and will soon undergo rapid expansion with the use of new, high-throughput and high-dimensionality laboratory tests. In the broadest sense, LIS are essential to manage the flow of information between health care providers, patients, and laboratories and should be designed to optimize not only laboratory operations but also personalized clinical care. To list suggestions for designing LIS with the goal of optimizing the operation of clinical laboratories while improving clinical care by intelligent management of laboratory information. Literature review, interviews with laboratory users, and personal experience and opinion. Laboratory information systems can improve laboratory operations and improve patient care. Specific suggestions for improving the function of LIS are listed under the following sections: (1) Information Security, (2) Test Ordering, (3) Specimen Collection, Accessioning, and Processing, (4) Analytic Phase, (5) Result Entry and Validation, (6) Result Reporting, (7) Notification Management, (8) Data Mining and Cross-sectional Reports, (9) Method Validation, (10) Quality Management, (11) Administrative and Financial Issues, and (12) Other Operational Issues.
Variation in Hydraulic Conductivity with Decreasing pH in a Biologically-Clogged Porous Medium
NASA Astrophysics Data System (ADS)
Kirk, M. F.; Santillan, E.; McGrath, L. K.; Altman, S. J.
2011-12-01
Biological clogging can significantly lower the hydraulic conductivity of porous media, potentially helping to limit CO2 transport from geological carbon storage reservoirs. How clogging is affected by CO2 injection, however, is unclear. We used column experiments to examine how decreasing pH, a geochemical change associated with CO2 injection, will affect the hydraulic conductivity (K) of biologically clogged porous medium. Four biologically-active experiments and two control experiments were performed. Columns consisted of 1 mm2 capillary tubes filled with 105-150 μm diameter glass beads. Artificial groundwater medium containing 1 mM glucose was pumped through the columns at a rate of 0.015 mL/min (q = 21.6 m/day; Re = 0.045). Each column was inoculated with 10^8 CFU of Pseudomonas fluorescens tagged with a green fluorescent protein; cells introduced to control columns were heat sterilized. Biomass distribution and transport was monitored using scanning laser confocal microscopy and effluent plating. Growth was allowed to occur for 5 days in medium with pH 7 in the biologically active columns. During that time, K decreased to values ranging from 10 to 27% of the average control K and effluent cell levels increased to about 10^8 CFU/mL. Next, the pH of the inflowing medium was lowered to 4 in three experiments and 5.5 in one experiment. After pH 4 medium was introduced, K increased to values ranging from 21 to 64% of the average control K and culturable cell levels in the effluent fell by about 4 log units. Confocal images show that clogging persisted in the columns at pH 4 because most of the microbial biomass remained attached to bead surfaces. In the experiment where pH was lowered to 5.5, K changed little because biological clogging remained entirely intact. The concentration of culturable cells in the effluent was also invariant. These results suggest that biomass in porous medium will largely remain in place following exposure to acidic water in a CO2 storage reservoir, particularly where buffering is able to limit the extent of acidification. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Sexton, E. A.; Snelson, C. M.; Chipman, V.; Emer, D. F.; White, R. L.; Emmitt, R.; Wright, A. A.; Drellack, S.; Huckins-Gang, H.; Mercadante, J.; Floyd, M.; McGowin, C.; Cothrun, C.; Bonal, N.
2013-12-01
An objective of the Source Physics Experiment (SPE) is to identify low-yield nuclear explosions from a regional distance. Low-yield nuclear explosions can often be difficult to discriminate among the clutter of natural and man-made explosive events (e.g., earthquakes and mine blasts). The SPE is broken into three phases. Phase I has provided the first of the physics-based data to test the empirical models that have been used to discriminate nuclear events. The Phase I series of tests were placed within a highly fractured granite body. The evolution of the project has led to development of Phase II, to be placed within the opposite end member of geology, an alluvium environment, thereby increasing the database of waveforms to build upon in the discrimination models. Both the granite and alluvium sites have hosted nearby nuclear tests, which provide comparisons for the chemical test data. Phase III of the SPE is yet to be determined. For Phase II of the experiment, characterization of the location is required to develop the geologic/geophysical models for the execution of the experiment. Criteria for the location are alluvium thickness of approximately 170 m and a water table below 170 m; minimal fracturing would be ideal. A P-wave mini-vibroseis survey was conducted at a potential site in alluvium to map out the subsurface geology. The seismic reflection profile consisted of 168 geophone stations, spaced 5 m apart. The mini-vibe was a 7,000-lb peak-force source, starting 57.5 m off the north end of the profile and ending 57.5 m past the southern-most geophone. The length of the profile was 835 m. The source points were placed every 5 m, equally spaced between geophones to reduce clipping. The vibroseis sweep was from 20 Hz down to 180 Hz over 8 seconds, and four sweeps were stacked at each shot location. The shot gathers show high signal-to-noise ratios with clear first arrivals across the entire spread and the suggestion of some shallow reflectors. The data were processed using Seismic Processing Workshop in a standard reflection processing flow. The results from this vibroseis survey will contribute to the characterization of the location for Phase II of the SPE in order to appropriately execute the experiment. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25946--1836. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Perrone, L A; Confer, D; Scott, E; Livingston, L; Bradburn, C; McGee, A; Furtwangler, T; Downer, A; Mokdad, A H; Flandin, J F; Shotorbani, S; Asghar, H; Tolbah, H E; Ahmed, H J; Alwan, A; Martin, R
2017-02-01
Laboratories need leaders who can effectively utilize the laboratories' resources, maximize the laboratories'capacity to detect disease, and advocate for laboratories in a fluctuating health care environment. To address this need, the University of Washington, USA, created the Certificate Program in Laboratory Leadership and Management in partnership with WHO Regional Office for the Eastern Mediterranean, and implemented it with 17 participants and 11 mentors from clinical and public health laboratories in 10 countries (Egypt, Iraq, Jordan, Lebanon, Morocco, Oman, Pakistan, Qatar, Saudi Arabia, and Yemen) in 2014. Designed to teach leadership and management skills to laboratory supervisors, the programme enabled participants to improve laboratory testing quality and operations. The programme was successful overall, with 80% of participants completing it and making impactful changes in their laboratories. This success is encouraging and could serve as a model to further strengthen laboratory capacity in the Region.
Laboratory information management system: an example of international cooperation in Namibia.
Colangeli, Patrizia; Ferrilli, Monica; Quaranta, Fabrizio; Malizia, Elio; Mbulu, Rosa-Stella; Mukete, Esther; Iipumbu, Lukas; Kamhulu, Anna; Tjipura-Zaire, Georgina; Di Francesco, Cesare; Lelli, Rossella; Scacchia, Massimo
2012-01-01
The authors describe the project undertaken by the Istituto G. Caporale to provide a laboratory information management system (LIMS) to the Central Veterinary Laboratory (CVL) in Windhoek, Namibia. This robust laboratory management tool satisfies Namibia's information obligations under international quality standard ISO 17025:2005. The Laboratory Information Management System (LIMS) for Africa was designed to collect and manage all necessary information on samples, tests and test results. The system involves the entry of sample data on arrival, as required by Namibian sampling plans, the tracking of samples through the various sections of the CVL, the collection of test results, generation of test reports and monitoring of outbreaks through data interrogation functions, eliminating multiple registrations of the same data on paper records. It is a fundamental component of the Namibian veterinary information system.
Biosafety and biosecurity measures: management of biosafety level 3 facilities.
Zaki, Adel N
2010-11-01
With the increasing biological threat from emerging infectious diseases and bioterrorism, it has become essential for governments around the globe to increase awareness and preparedness for identifying and containing those agents. This article introduces the basic concepts of laboratory management, laboratory biosafety and laboratory biosecurity. Assessment criteria for laboratories' biorisk should include both biosafety and biosecurity measures. The assessment requires setting specific goals and selecting management approaches. In order to implement technologies at the laboratory working level, a management team should be created whose role is to implement biorisk policies, rules and regulations appropriate for that facility. Rules and regulations required by government authorities are presented, with special emphasis on methods for air control, and liquid and solid waste management. Management and biorisk measures and appropriate physical facilities must keep pace, ensuring efficient facilities that protect workers, the environment, the product (research, diagnostic and/or vaccine) and the biological pathogen. Published by Elsevier B.V.
Lekalakala, Ruth; Asmall, Shaidah; Cassim, Naseem
2016-01-01
Background Diagnostic health laboratory services are regarded as an integral part of the national health infrastructure across all countries. Clinical laboratory tests contribute substantially to health system goals of increasing quality of care and improving patient outcomes. Objectives This study aimed to analyse current laboratory expenditures at the primary healthcare (PHC) level in South Africa as processed by the National Health Laboratory Service and to determine the potential cost savings of introducing laboratory demand management. Methods A retrospective cross-sectional analysis of laboratory expenditures for the 2013/2014 financial year across 11 pilot National Health Insurance health districts was conducted. Laboratory expenditure tariff codes were cross-tabulated to the PHC essential laboratory tests list (ELL) to determine inappropriate testing. Data were analysed using a Microsoft Access database and Excel software. Results Approximately R35 million South African Rand (10%) of the estimated R339 million in expenditures was for tests that were not listed within the ELL. Approximately 47% of expenditure was for laboratory tests that were indicated in the algorithmic management of patients on antiretroviral treatment. The other main cost drivers for non-ELL testing included full blood count and urea, as well as electrolyte profiles usually requested to support management of patients on antiretroviral treatment. Conclusions Considerable annual savings of up to 10% in laboratory expenditure are possible at the PHC level by implementing laboratory demand management. In addition, to achieve these savings, a standardised PHC laboratory request form and some form of electronic gatekeeping system that must be supported by an educational component should be implemented. PMID:28879107