Sample records for multireference configuration interaction

  1. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bross, David H.; Parmar, Payal; Peterson, Kirk A., E-mail: kipeters@wsu.edu

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set limit using new all-electron correlation consistent basis sets. The latter was carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons has been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. The final ionizationmore » potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV) and thus more reliable than the current experimental values of IP{sub 3} through IP{sub 6}.« less

  2. Combined multireference configuration interaction/ molecular dynamics approach for calculating solvatochromic shifts: application to the n(O) --> pi* electronic transition of formaldehyde.

    PubMed

    Xu, ZongRong; Matsika, Spiridoula

    2006-11-02

    A combined quantum mechanics/molecular mechanics method is described here for considering the solvatochromic shift of excited states in solution. The quantum mechanical solute is described using high level multireference configuration interaction methods (MRCI), while molecular dynamics is used for obtaining the structure of the solvent around the solute. The electrostatic effect of the solvent is included in the quantum description of the solute in an averaged way. This method is used to study solvent effects on the n(O) --> pi* electronic transition of formaldehyde in aqueous solution. The effects of solute polarization, basis sets, and dynamical correlation on the solvatochromic shift, and on dipole moments, have been investigated.

  3. Low-lying excited states of model proteins: Performances of the CC2 method versus multireference methods

    NASA Astrophysics Data System (ADS)

    Ben Amor, Nadia; Hoyau, Sophie; Maynau, Daniel; Brenner, Valérie

    2018-05-01

    A benchmark set of relevant geometries of a model protein, the N-acetylphenylalanylamide, is presented to assess the validity of the approximate second-order coupled cluster (CC2) method in studying low-lying excited states of such bio-relevant systems. The studies comprise investigations of basis-set dependence as well as comparison with two multireference methods, the multistate complete active space 2nd order perturbation theory (MS-CASPT2) and the multireference difference dedicated configuration interaction (DDCI) methods. First of all, the applicability and the accuracy of the quasi-linear multireference difference dedicated configuration interaction method have been demonstrated on bio-relevant systems by comparison with the results obtained by the standard MS-CASPT2. Second, both the nature and excitation energy of the first low-lying excited state obtained at the CC2 level are very close to the Davidson corrected CAS+DDCI ones, the mean absolute deviation on the excitation energy being equal to 0.1 eV with a maximum of less than 0.2 eV. Finally, for the following low-lying excited states, if the nature is always well reproduced at the CC2 level, the differences on excitation energies become more important and can depend on the geometry.

  4. Low-lying excited states of model proteins: Performances of the CC2 method versus multireference methods.

    PubMed

    Ben Amor, Nadia; Hoyau, Sophie; Maynau, Daniel; Brenner, Valérie

    2018-05-14

    A benchmark set of relevant geometries of a model protein, the N-acetylphenylalanylamide, is presented to assess the validity of the approximate second-order coupled cluster (CC2) method in studying low-lying excited states of such bio-relevant systems. The studies comprise investigations of basis-set dependence as well as comparison with two multireference methods, the multistate complete active space 2nd order perturbation theory (MS-CASPT2) and the multireference difference dedicated configuration interaction (DDCI) methods. First of all, the applicability and the accuracy of the quasi-linear multireference difference dedicated configuration interaction method have been demonstrated on bio-relevant systems by comparison with the results obtained by the standard MS-CASPT2. Second, both the nature and excitation energy of the first low-lying excited state obtained at the CC2 level are very close to the Davidson corrected CAS+DDCI ones, the mean absolute deviation on the excitation energy being equal to 0.1 eV with a maximum of less than 0.2 eV. Finally, for the following low-lying excited states, if the nature is always well reproduced at the CC2 level, the differences on excitation energies become more important and can depend on the geometry.

  5. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bross, David H.; Parmar, Payal; Peterson, Kirk A.

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set (CBS) limit using new all-electron correlation consistent basis sets. The latter were carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons have been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. As amore » result, the final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV), and thus more reliable than the current experimental values of IP 3 through IP 6.« less

  6. The multi-reference retaining the excitation degree perturbation theory: A size-consistent, unitary invariant, and rapidly convergent wavefunction based ab initio approach

    NASA Astrophysics Data System (ADS)

    Fink, Reinhold F.

    2009-02-01

    The retaining the excitation degree (RE) partitioning [R.F. Fink, Chem. Phys. Lett. 428 (2006) 461(20 September)] is reformulated and applied to multi-reference cases with complete active space (CAS) reference wave functions. The generalised van Vleck perturbation theory is employed to set up the perturbation equations. It is demonstrated that this leads to a consistent and well defined theory which fulfils all important criteria of a generally applicable ab initio method: The theory is proven numerically and analytically to be size-consistent and invariant with respect to unitary orbital transformations within the inactive, active and virtual orbital spaces. In contrast to most previously proposed multi-reference perturbation theories the necessary condition for a proper perturbation theory to fulfil the zeroth order perturbation equation is exactly satisfied with the RE partitioning itself without additional projectors on configurational spaces. The theory is applied to several excited states of the benchmark systems CH2 , SiH2 , and NH2 , as well as to the lowest states of the carbon, nitrogen and oxygen atoms. In all cases comparisons are made with full configuration interaction results. The multi-reference (MR)-RE method is shown to provide very rapidly converging perturbation series. Energy differences between states of similar configurations converge even faster.

  7. An ab initio study of the C3(+) cation using multireference methods

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.; Martin, J. M. L.; Francois, J. P.; Gijbels, R.

    1991-01-01

    The energy difference between the linear 2 sigma(sup +, sub u) and cyclic 2B(sub 2) structures of C3(+) has been investigated using large (5s3p2d1f) basis sets and multireference electron correlation treatments, including complete active space self consistent fields (CASSCF), multireference configuration interaction (MRCI), and averaged coupled-pair functional (ACPF) methods, as well as the single-reference quadratic configuration interaction (QCISD(T)) method. Our best estimate, including a correction for basis set incompleteness, is that the linear form lies above the cyclic from by 5.2(+1.5 to -1.0) kcal/mol. The 2 sigma(sup +, sub u) state is probably not a transition state, but a local minimum. Reliable computation of the cyclic/linear energy difference in C3(+) is extremely demanding of the electron correlation treatment used: of the single-reference methods previously considered, CCSD(T) and QCISD(T) perform best. The MRCI + Q(0.01)/(4s2p1d) energy separation of 1.68 kcal/mol should provide a comparison standard for other electron correlation methods applied to this system.

  8. Ab initio multireference study of the BN molecule

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.; Lee, Timothy J.; Scuseria, Gustavo E.; Taylor, Peter R.

    1992-01-01

    The lowest 1Sigma(+) and 3Pi states of the BN molecule are studied using multireference configuration interaction (MRCI) and averaged coupled-pair functional (ACPF) methods and large atomic natural orbital (ANO) basis sets, as well as several coupled cluster methods. Our calculations strongly support a 3Pi ground state, but the a1Sigma(+) state lies only 381 +/- 100/cm higher. The a1Sigma(+) state wave function exhibits strong multireference character and, consequently, the predictions of the perturbationally-based single-reference CCSD(T) coupled cluster method are not as reliable in this case as the multireference results. The theoretical predictions for the spectroscopic constants of BN are in good agreement with experiment for the Chi3Pi state, but strongly suggest a misassignment of the fundamental vibrational frequency for the a1Sigma(+) state.

  9. Ab initio study of the RbSr electronic structure: potential energy curves, transition dipole moments, and permanent electric dipole moments.

    PubMed

    Pototschnig, Johann V; Krois, Günter; Lackner, Florian; Ernst, Wolfgang E

    2014-12-21

    Excited states and the ground state of the diatomic molecule RbSr were calculated by post Hartree-Fock molecular orbital theory up to 22 000 cm(-1). We applied a multireference configuration interaction calculation based on multiconfigurational self-consistent field wave functions. Both methods made use of effective core potentials and core polarization potentials. Potential energy curves, transition dipole moments, and permanent electric dipole moments were determined for RbSr and could be compared with other recent calculations. We found a good agreement with experimental spectra, which have been obtained recently by helium nanodroplet isolation spectroscopy. For the lowest two asymptotes (Rb (5s (2)S) + Sr (5s4d (3)P°) and Rb (5p (2)P°) + Sr (5s(2) (1)S)), which exhibit a significant spin-orbit coupling, we included relativistic effects by two approaches, one applying the Breit-Pauli Hamiltonian to the multireference configuration interaction wave functions, the other combining a spin-orbit Hamiltonian and multireference configuration interaction potential energy curves. Using the results for the relativistic potential energy curves that correspond to the Rb (5s (2)S) + Sr (5s4d (3)P°) asymptote, we have simulated dispersed fluorescence spectra as they were recently measured in our lab. The comparison with experimental data allows to benchmark both methods and demonstrate that spin-orbit coupling has to be included for the lowest states of RbSr.

  10. Comparison of the quadratic configuration interaction and coupled cluster approaches to electron correlation including the effect of triple excitations

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.; Lee, Timothy J.; Rendell, Alistair P.

    1990-01-01

    The recently proposed quadratic configuration interaction (QCI) method is compared with the more rigorous coupled cluster (CC) approach for a variety of chemical systems. Some of these systems are well represented by a single-determinant reference function and others are not. The finite order singles and doubles correlation energy, the perturbational triples correlation energy, and a recently devised diagnostic for estimating the importance of multireference effects are considered. The spectroscopic constants of CuH, the equilibrium structure of cis-(NO)2 and the binding energies of Be3, Be4, Mg3, and Mg4 were calculated using both approaches. The diagnostic for estimating multireference character clearly demonstrates that the QCI method becomes less satisfactory than the CC approach as non-dynamical correlation becomes more important, in agreement with a perturbational analysis of the two methods and the numerical estimates of the triple excitation energies they yield. The results for CuH show that the differences between the two methods become more apparent as the chemical systems under investigation becomes more multireference in nature and the QCI results consequently become less reliable. Nonetheless, when the system of interest is dominated by a single reference determinant both QCI and CC give very similar results.

  11. Assessing the density functional theory-based multireference configuration interaction (DFT/MRCI) method for transition metal complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escudero, Daniel, E-mail: escudero@kofo.mpg.de, E-mail: thiel@kofo.mpg.de; Thiel, Walter, E-mail: escudero@kofo.mpg.de, E-mail: thiel@kofo.mpg.de

    2014-05-21

    We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF{sub 6} complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO{sub 4}{sup −}, Cr(CO){sub 6}, [Fe(CN){sub 6}]{sup 4−}, four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons withmore » results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.« less

  12. New schemes for internally contracted multi-reference configuration interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yubin; Han, Huixian; Lei, Yibo; Suo, Bingbing; Zhu, Haiyan; Song, Qi; Wen, Zhenyi

    2014-10-01

    In this work we present a new internally contracted multi-reference configuration interaction (MRCI) scheme by applying the graphical unitary group approach and the hole-particle symmetry. The latter allows a Distinct Row Table (DRT) to split into a number of sub-DRTs in the active space. In the new scheme a contraction is defined as a linear combination of arcs within a sub-DRT, and connected to the head and tail of the DRT through up-steps and down-steps to generate internally contracted configuration functions. The new scheme deals with the closed-shell (hole) orbitals and external orbitals in the same manner and thus greatly simplifies calculations of coupling coefficients and CI matrix elements. As a result, the number of internal orbitals is no longer a bottleneck of MRCI calculations. The validity and efficiency of the new ic-MRCI code are tested by comparing with the corresponding WK code of the MOLPRO package. The energies obtained from the two codes are essentially identical, and the computational efficiencies of the two codes have their own advantages.

  13. The study of molecular spectroscopy by ab initio methods

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.

  14. Wavelength regulation in bacteriorhodopsin and halorhodopsin: A Pariser-Parr-Pople multireference double excitation configuration interaction study of retinal dyes

    NASA Astrophysics Data System (ADS)

    Grossjean, Michael F.; Tavan, Paul

    1988-04-01

    A Pariser-Parr-Pople (PPP) Hamiltonian is employed to study many-electron excitations in protonated and unprotonated retinal Schiff bases. Excited states are described by a multireference double excitation configuration interaction expansion (MRD-CI) and a simplified perturbational treatment. The effects of electron correlation on the spectra of retinal dyes are analyzed and compared with experimental data. It is shown that the spectra of retinal Schiff bases are much more sensitive to the effects of protonation and charge environment than previously assumed. Based on an analysis of observations the computational results demonstrate that varying counterion distance is the essential mechanism of wavelength regulation in the retinal proteins bacteriohodopsin (BR) and halorhodopsin (HR). Spectral properties of intermediates of the photocycles of BR and HR are predicted and it is shown that available spectroscopic data are compatible with a 13,14-cis model of these cycles. Independent evidence is provided that the quantum yield of photoisomerization in BR is 0.6.

  15. Complex multireference configuration interaction calculations for the K-vacancy Auger states of N{sup q+} (q = 2-5) ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Yi-Geng; Data Center for High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088; Wu, Yong, E-mail: wu-yong@iapcm.ac.cn

    2016-02-07

    K-vacancy Auger states of N{sup q+} (q = 2-5) ions are studied by using the complex multireference single- and double-excitation configuration interaction (CMRD-CI) method. The calculated resonance parameters are in good agreement with the available experimental and theoretical data. It shows that the resonance positions and widths converge quickly with the increase of the atomic basis sets in the CMRD-CI calculations; the standard atomic basis set can be employed to describe the atomic K-vacancy Auger states well. The strong correlations between the valence and core electrons play important roles in accurately determining those resonance parameters, Rydberg electrons contribute negligibly inmore » the calculations. Note that it is the first time that the complex scaling method has been successfully applied for the B-like nitrogen. CMRD-CI is readily extended to treat the resonance states of molecules in the near future.« less

  16. Fitting coupled potential energy surfaces for large systems: Method and construction of a 3-state representation for phenol photodissociation in the full 33 internal degrees of freedom using multireference configuration interaction determined data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu

    2014-01-14

    A recently reported algorithm for representing adiabatic states coupled by conical intersections using a quasi-diabatic state Hamiltonian in four and five atom systems is extended to treat nonadiabatic processes in considerably larger molecules. The method treats all internal degrees of freedom and uses electronic structure data from ab initio multireference configuration interaction wave functions with nuclear configuration selection based on quasi-classical surface hopping trajectories. The method is shown here to be able to treat ∼30 internal degrees of freedom including dissociative and large amplitude internal motion. Two procedures are introduced which are essential to the algorithm, a null space projectormore » which removes basis functions from the fitting process until they are needed and a partial diagonalization technique which allows for automated, but accurate, treatment of the vicinity of extended seams of conical intersections of two or more states. These procedures are described in detail. The method is illustrated using the photodissociaton of phenol, C{sub 6}H{sub 5}OH(X{sup ~1}A{sup ′}) + hv → C{sub 6}H{sub 5}OH(A{sup ~1}A{sup ′}, B{sup ~1}A{sup ′′}) → C{sub 6}H{sub 5}O(X{sup ~2}B{sub 1}, A{sup ~2}B{sub 2}) + H as a test case. Ab initio electronic structure data for the 1,2,3{sup 1}A states of phenol, which are coupled by conical intersections, are obtained from multireference first order configuration interaction wave functions. The design of bases to simultaneously treat large amplitude motion and dissociation is described, as is the ability of the fitting procedure to smooth the irregularities in the electronic energies attributable to the orbital changes that are inherent to nonadiabatic processes.« less

  17. Development of Xi'an-CI package – applying the hole–particle symmetry in multi-reference electronic correlation calculations

    NASA Astrophysics Data System (ADS)

    Suo, Bingbing; Lei, Yibo; Han, Huixian; Wang, Yubin

    2018-04-01

    This mini-review introduces our works on the Xi'an-CI (configuration interaction) package using graphical unitary group approach (GUGA). Taking advantage of the hole-particle symmetry in GUGA, the Galfand states used to span the CI space are classified into CI subspaces according to the number of holes and particles, and the coupling coefficients used to calculate Hamiltonian matrix elements could be factorised into the segment factors in the hole, active and external spaces. An efficient multi-reference CI with single and double excitations (MRCISD) algorithm is thus developed that reduces the storage requirement and increases the number of correlated electrons significantly. The hole-particle symmetry also gives rise to a doubly contracted MRCISD approach. Moreover, the internally contracted Gelfand states are defined within the CI subspace arising from the hole-particle symmetry, which makes the implementation of internally contracted MRCISD in the framework of GUGA possible. In addition to MRCISD, the development of multi-reference second-order perturbation theory (MRPT2) also benefits from the hole-particle symmetry. A configuration-based MRPT2 algorithm is proposed and extended to the multi-state n-electron valence-state second-order perturbation theory.

  18. Quadratic canonical transformation theory and higher order density matrices.

    PubMed

    Neuscamman, Eric; Yanai, Takeshi; Chan, Garnet Kin-Lic

    2009-03-28

    Canonical transformation (CT) theory provides a rigorously size-extensive description of dynamic correlation in multireference systems, with an accuracy superior to and cost scaling lower than complete active space second order perturbation theory. Here we expand our previous theory by investigating (i) a commutator approximation that is applied at quadratic, as opposed to linear, order in the effective Hamiltonian, and (ii) incorporation of the three-body reduced density matrix in the operator and density matrix decompositions. The quadratic commutator approximation improves CT's accuracy when used with a single-determinant reference, repairing the previous formal disadvantage of the single-reference linear CT theory relative to singles and doubles coupled cluster theory. Calculations on the BH and HF binding curves confirm this improvement. In multireference systems, the three-body reduced density matrix increases the overall accuracy of the CT theory. Tests on the H(2)O and N(2) binding curves yield results highly competitive with expensive state-of-the-art multireference methods, such as the multireference Davidson-corrected configuration interaction (MRCI+Q), averaged coupled pair functional, and averaged quadratic coupled cluster theories.

  19. Driven similarity renormalization group: Third-order multireference perturbation theory.

    PubMed

    Li, Chenyang; Evangelista, Francesco A

    2017-03-28

    A third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6 ) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2 , H 2 O 2 , C 2 H 6 , and N 2 along the F-F, O-O, C-C, and N-N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbation theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST =E T -E S ) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol -1 , a value that is within 0.1 kcal mol -1 from multireference coupled cluster results.

  20. Size consistent formulations of the perturb-then-diagonalize Møller-Plesset perturbation theory correction to non-orthogonal configuration interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yost, Shane R.; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

    2016-08-07

    In this paper we introduce two size consistent forms of the non-orthogonal configuration interaction with second-order Møller-Plesset perturbation theory method, NOCI-MP2. We show that the original NOCI-MP2 formulation [S. R. Yost, T. Kowalczyk, and T. VanVoorh, J. Chem. Phys. 193, 174104 (2013)], which is a perturb-then-diagonalize multi-reference method, is not size consistent. We also show that this causes significant errors in large systems like the linear acenes. By contrast, the size consistent versions of the method give satisfactory results for singlet and triplet excited states when compared to other multi-reference methods that include dynamic correlation. For NOCI-MP2 however, the numbermore » of required determinants to yield similar levels of accuracy is significantly smaller. These results show the promise of the NOCI-MP2 method, though work still needs to be done in creating a more consistent black-box approach to computing the determinants that comprise the many-electron NOCI basis.« less

  1. Configuration interaction singles natural orbitals: An orbital basis for an efficient and size intensive multireference description of electronic excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Yinan; Levine, Benjamin G., E-mail: levine@chemistry.msu.edu; Hohenstein, Edward G.

    2015-01-14

    Multireference quantum chemical methods, such as the complete active space self-consistent field (CASSCF) method, have long been the state of the art for computing regions of potential energy surfaces (PESs) where complex, multiconfigurational wavefunctions are required, such as near conical intersections. Herein, we present a computationally efficient alternative to the widely used CASSCF method based on a complete active space configuration interaction (CASCI) expansion built from the state-averaged natural orbitals of configuration interaction singles calculations (CISNOs). This CISNO-CASCI approach is shown to predict vertical excitation energies of molecules with closed-shell ground states similar to those predicted by state averaged (SA)-CASSCFmore » in many cases and to provide an excellent reference for a perturbative treatment of dynamic electron correlation. Absolute energies computed at the CISNO-CASCI level are found to be variationally superior, on average, to other CASCI methods. Unlike SA-CASSCF, CISNO-CASCI provides vertical excitation energies which are both size intensive and size consistent, thus suggesting that CISNO-CASCI would be preferable to SA-CASSCF for the study of systems with multiple excitable centers. The fact that SA-CASSCF and some other CASCI methods do not provide a size intensive/consistent description of excited states is attributed to changes in the orbitals that occur upon introduction of non-interacting subsystems. Finally, CISNO-CASCI is found to provide a suitable description of the PES surrounding a biradicaloid conical intersection in ethylene.« less

  2. Multireference configuration interaction study of the mixed Valence-Rydberg character of the C2H4 1(π,π*) V state

    NASA Astrophysics Data System (ADS)

    Krebs, Stefan; Buenker, Robert J.

    1997-05-01

    The spatial extension of the C2H41(π,π*) V state is investigated by means of low selection threshold multireference configuration interaction (CI) calculations employing two atomic orbital (AO) basis sets with different numbers of polarization and Rydberg functions. The results are shown to be nearly independent of the choice of one-electron basis (ground N, triplet T, and singlet V self-consistent field molecular orbitals (SCF MOs)) in forming the many-electron basis for the configuration interaction indicating that the AO basis limit has been closely approached in each case. The calculations indicate that the value for the <ΨV|Σxi2|ΨV>≡V matrix element falls in the 18±1 a02 range, 50% larger than the corresponding values computed for N and T, respectively, for the corresponding N and T states. This result is interpreted to be a consequence of the mixing of diabatic 1(π,π*) valence and 1(π,dπ) Rydberg states in the Franck-Condon region of the V-N transition. The corresponding excitation energy is computed to lie in the 7.90-7.95 eV range, indicating that there is a distinct nonverticality in the measured absorption spectrum which is caused in part by nonadiabatic interactions between the V and 1(π,3py) Rydberg states as a result of torsional motion of the C2H4 molecule.

  3. Perturbational treatment of spin-orbit coupling for generally applicable high-level multi-reference methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2014-08-21

    An efficient perturbational treatment of spin-orbit coupling within the framework of high-level multi-reference techniques has been implemented in the most recent version of the COLUMBUS quantum chemistry package, extending the existing fully variational two-component (2c) multi-reference configuration interaction singles and doubles (MRCISD) method. The proposed scheme follows related implementations of quasi-degenerate perturbation theory (QDPT) model space techniques. Our model space is built either from uncontracted, large-scale scalar relativistic MRCISD wavefunctions or based on the scalar-relativistic solutions of the linear-response-theory-based multi-configurational averaged quadratic coupled cluster method (LRT-MRAQCC). The latter approach allows for a consistent, approximatively size-consistent and size-extensive treatment of spin-orbitmore » coupling. The approach is described in detail and compared to a number of related techniques. The inherent accuracy of the QDPT approach is validated by comparing cuts of the potential energy surfaces of acrolein and its S, Se, and Te analoga with the corresponding data obtained from matching fully variational spin-orbit MRCISD calculations. The conceptual availability of approximate analytic gradients with respect to geometrical displacements is an attractive feature of the 2c-QDPT-MRCISD and 2c-QDPT-LRT-MRAQCC methods for structure optimization and ab inito molecular dynamics simulations.« less

  4. Driven similarity renormalization group: Third-order multireference perturbation theory

    DOE PAGES

    Li, Chenyang; Evangelista, Francesco A.

    2017-03-28

    Here, a third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2, H 2O 2, C 2H 6, and N 2 along the F–F, O–O, C–C, and N–N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbationmore » theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST = E T–E S) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol –1, a value that is within 0.1 kcal mol –1 from multireference coupled cluster results.« less

  5. Driven similarity renormalization group: Third-order multireference perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chenyang; Evangelista, Francesco A.

    Here, a third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2, H 2O 2, C 2H 6, and N 2 along the F–F, O–O, C–C, and N–N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbationmore » theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST = E T–E S) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol –1, a value that is within 0.1 kcal mol –1 from multireference coupled cluster results.« less

  6. Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function.

    PubMed

    Saitow, Masaaki; Kurashige, Yuki; Yanai, Takeshi

    2013-07-28

    We report development of the multireference configuration interaction (MRCI) method that can use active space scalable to much larger size references than has previously been possible. The recent development of the density matrix renormalization group (DMRG) method in multireference quantum chemistry offers the ability to describe static correlation in a large active space. The present MRCI method provides a critical correction to the DMRG reference by including high-level dynamic correlation through the CI treatment. When the DMRG and MRCI theories are combined (DMRG-MRCI), the full internal contraction of the reference in the MRCI ansatz, including contraction of semi-internal states, plays a central role. However, it is thought to involve formidable complexity because of the presence of the five-particle rank reduced-density matrix (RDM) in the Hamiltonian matrix elements. To address this complexity, we express the Hamiltonian matrix using commutators, which allows the five-particle rank RDM to be canceled out without any approximation. Then we introduce an approximation to the four-particle rank RDM by using a cumulant reconstruction from lower-particle rank RDMs. A computer-aided approach is employed to derive the exceedingly complex equations of the MRCI in tensor-contracted form and to implement them into an efficient parallel computer code. This approach extends to the size-consistency-corrected variants of MRCI, such as the MRCI+Q, MR-ACPF, and MR-AQCC methods. We demonstrate the capability of the DMRG-MRCI method in several benchmark applications, including the evaluation of single-triplet gap of free-base porphyrin using 24 active orbitals.

  7. Can time-dependent density functional theory predict intersystem crossing in organic chromophores? A case study on benzo(bis)-X-diazole based donor-acceptor-donor type molecules.

    PubMed

    Tam, Teck Lip Dexter; Lin, Ting Ting; Chua, Ming Hui

    2017-06-21

    Here we utilized new diagnostic tools in time-dependent density functional theory to explain the trend of intersystem crossing in benzo(bis)-X-diazole based donor-acceptor-donor type molecules. These molecules display a wide range of fluorescence quantum yields and triplet yields, making them excellent candidates for testing the validity of these diagnostic tools. We believe that these tools are cost-effective and can be applied to structurally similar organic chromophores to predict/explain the trends of intersystem crossing, and thus fluorescence quantum yields and triplet yields without the use of complex and expensive multireference configuration interaction or multireference pertubation theory methods.

  8. Studies of excited states of HeH by the multi-reference configuration-interaction method

    NASA Astrophysics Data System (ADS)

    Lee, Chun-Woo; Gim, Yeongrok

    2013-11-01

    The excited states of a HeH molecule for an n of up to 4 are studied using the multi-reference configuration-interaction method and Kaufmann's Rydberg basis functions. The advantages of using two different ways of locating Rydberg orbitals, either on the atomic nucleus or at the charge centre of molecules, are exploited by limiting their application to different ranges of R. Using this method, the difference between the experimental binding energies of the lower Rydberg states obtained by Ketterle and the ab initio results obtained by van Hemert and Peyerimhoff is reduced from a few hundreds of wave numbers to a few tens of wave numbers. A substantial improvement in the accuracy allows us to obtain quantum defect curves characterized by the correct behaviour. We obtain several Rydberg series that have more than one member, such as the ns series (n = 2, 3 and 4), npσ series (n = 3 and 4), npπ (n = 2, 3, 4) series and ndπ (n = 3, 4) series. These quantum defect curves are compared to the quantum defect curves obtained by the R-matrix or the multichannel quantum defect theory methods.

  9. Construction of CASCI-type wave functions for very large active spaces.

    PubMed

    Boguslawski, Katharina; Marti, Konrad H; Reiher, Markus

    2011-06-14

    We present a procedure to construct a configuration-interaction expansion containing arbitrary excitations from an underlying full-configuration-interaction-type wave function defined for a very large active space. Our procedure is based on the density-matrix renormalization group (DMRG) algorithm that provides the necessary information in terms of the eigenstates of the reduced density matrices to calculate the coefficient of any basis state in the many-particle Hilbert space. Since the dimension of the Hilbert space scales binomially with the size of the active space, a sophisticated Monte Carlo sampling routine is employed. This sampling algorithm can also construct such configuration-interaction-type wave functions from any other type of tensor network states. The configuration-interaction information obtained serves several purposes. It yields a qualitatively correct description of the molecule's electronic structure, it allows us to analyze DMRG wave functions converged for the same molecular system but with different parameter sets (e.g., different numbers of active-system (block) states), and it can be considered a balanced reference for the application of a subsequent standard multi-reference configuration-interaction method.

  10. A Multireference Configuration Interaction Study of the Photodynamics of Nitroethylene

    PubMed Central

    2014-01-01

    Extended multireference configuration interaction with singles and doubles (MR-CISD) calculations of nitroethylene (H2C=CHNO2) were carried out to investigate the photodynamical deactivation paths to the ground state. The ground (S0) and the first five valence excited electronic states (S1–S5) were investigated. In the first step, vertical excitations and potential energy curves for CH2 and NO2 torsions and CH2 out-of-plane bending starting from the ground state geometry were computed. Afterward, five conical intersections, one between each pair of adjacent states, were located. The vertical calculations mostly confirm the previous assignment of experimental spectrum and theoretical results using lower-level calculations. The conical intersections have as main features the torsion of the CH2 moiety, different distortions of the NO2 group and CC, CN, and NO bond stretchings. In these conical intersections, the NO2 group plays an important role, also seen in excited state investigations of other nitro molecules. Based on the conical intersections found, a photochemical nonradiative deactivation process after a π–π* excitation to the bright S5 state is proposed. In particular, the possibility of NO2 release in the ground state, an important property in nitro explosives, was found to be possible. PMID:25158277

  11. Accurate bond energies of hydrocarbons from complete basis set extrapolated multi-reference singles and doubles configuration interaction.

    PubMed

    Oyeyemi, Victor B; Pavone, Michele; Carter, Emily A

    2011-12-09

    Quantum chemistry has become one of the most reliable tools for characterizing the thermochemical underpinnings of reactions, such as bond dissociation energies (BDEs). The accurate prediction of these particular properties (BDEs) are challenging for ab initio methods based on perturbative corrections or coupled cluster expansions of the single-determinant Hartree-Fock wave function: the processes of bond breaking and forming are inherently multi-configurational and require an accurate description of non-dynamical electron correlation. To this end, we present a systematic ab initio approach for computing BDEs that is based on three components: 1) multi-reference single and double excitation configuration interaction (MRSDCI) for the electronic energies; 2) a two-parameter scheme for extrapolating MRSDCI energies to the complete basis set limit; and 3) DFT-B3LYP calculations of minimum-energy structures and vibrational frequencies to account for zero point energy and thermal corrections. We validated our methodology against a set of reliable experimental BDE values of CC and CH bonds of hydrocarbons. The goal of chemical accuracy is achieved, on average, without applying any empirical corrections to the MRSDCI electronic energies. We then use this composite scheme to make predictions of BDEs in a large number of hydrocarbon molecules for which there are no experimental data, so as to provide needed thermochemical estimates for fuel molecules. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Radical O-O coupling reaction in diferrate-mediated water oxidation studied using multireference wave function theory.

    PubMed

    Kurashige, Yuki; Saitow, Masaaki; Chalupský, Jakub; Yanai, Takeshi

    2014-06-28

    The O-O (oxygen-oxygen) bond formation is widely recognized as a key step of the catalytic reaction of dioxygen evolution from water. Recently, the water oxidation catalyzed by potassium ferrate (K2FeO4) was investigated on the basis of experimental kinetic isotope effect analysis assisted by density functional calculations, revealing the intramolecular oxo-coupling mechanism within a di-iron(vi) intermediate, or diferrate [Sarma et al., J. Am. Chem. Soc., 2012, 134, 15371]. Here, we report a detailed examination of this diferrate-mediated O-O bond formation using scalable multireference electronic structure theory. High-dimensional correlated many-electron wave functions beyond the one-electron picture were computed using the ab initio density matrix renormalization group (DMRG) method along the O-O bond formation pathway. The necessity of using large active space arises from the description of complex electronic interactions and varying redox states both associated with two-center antiferromagnetic multivalent iron-oxo coupling. Dynamic correlation effects on top of the active space DMRG wave functions were additively accounted for by complete active space second-order perturbation (CASPT2) and multireference configuration interaction (MRCI) based methods, which were recently introduced by our group. These multireference methods were capable of handling the double shell effects in the extended active space treatment. The calculations with an active space of 36 electrons in 32 orbitals, which is far over conventional limitation, provide a quantitatively reliable prediction of potential energy profiles and confirmed the viability of the direct oxo coupling. The bonding nature of Fe-O and dual bonding character of O-O are discussed using natural orbitals.

  13. A multireference configuration interaction study of the low-lying electronic states of ClO[sub 2][sup +] and the [ital X] [sup 1][ital A][sub 1] state of ClO[sub 2][sup [minus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, K.A.; Werner, H.

    1993-07-01

    Near-equilibrium two-dimensional ([ital C][sub 2][ital v] symmetry) potential energy functions of the first seven electronic states of ClO[sub 2][sup +] and the ground [ital X] [sup 1][ital A][sub 1] electronic state of ClO[sub 2][sup [minus

  14. Transition energy and potential energy curves for ionized inner-shell states of CO, O2 and N 2 calculated by several inner-shell multiconfigurational approaches.

    PubMed

    Moura, Carlos E V de; Oliveira, Ricardo R; Rocha, Alexandre B

    2013-05-01

    Potential energy curves and inner-shell ionization energies of carbon monoxide, oxygen and nitrogen molecules were calculated using several forms of the inner-shell multiconfigurational self-consistent field (IS-MCSCF) method-a recently proposed protocol to obtain specifically converged inner-shell states at this level. The particular forms of the IS-MCSCF method designated IS-GVB-PP, IS-FVBL and IS-CASSCF stand for perfect pairing generalized valence bond, full valence bond-like MCSCF and complete active space self consistent field, respectively. A comparison of these different versions of the IS-MCSCF method was carried out for the first time. The results indicate that inner-shell states are described accurately even for the simplest version of the method (IS-GVB-PP). Dynamic correlation was recovered by multireference configuration interaction or multireference perturbation theory. For molecules not having equivalent atoms, all methods led to comparable and accurate transition energies. For molecules with equivalent atoms, the most accurate results were obtained by multireference perturbation theory. Scalar relativistic effects were accounted for using the Douglas-Kroll-Hess Hamiltonian.

  15. Comparison of fully internally and strongly contracted multireference configuration interaction procedures

    NASA Astrophysics Data System (ADS)

    Sivalingam, Kantharuban; Krupicka, Martin; Auer, Alexander A.; Neese, Frank

    2016-08-01

    Multireference (MR) methods occupy an important class of approaches in quantum chemistry. In many instances, for example, in studying complex magnetic properties of transition metal complexes, they are actually the only physically satisfactory choice. In traditional MR approaches, single and double excitations are performed with respect to all reference configurations (or configuration state functions, CSFs), which leads to an explosive increase of computational cost for larger reference spaces. This can be avoided by the internal contraction scheme proposed by Meyer and Siegbahn, which effectively reduces the number of wavefunction parameters to their single-reference counterpart. The "fully internally contracted" scheme (FIC) is well known from the popular CASPT2 approach. An even shorter expansion of the wavefunction is possible with the "strong contraction" (SC) scheme proposed by Angeli and Malrieu in their NEVPT2 approach. Promising multireference configuration interaction formulations (MRCI) employing internal contraction and strong contraction have been reported by several authors. In this work, we report on the implementation of the FIC-MRCI and SC-MRCI methodologies, using a computer assisted implementation strategy. The methods are benchmarked against the traditional uncontracted MRCI approach for ground and excited states of small molecules (N2, O2, CO, CO+, OH, CH, and CN). For ground states, the comparison includes the "partially internally contracted" MRCI based on the Celani-Werner ansatz (PC-MRCI). For the three contraction schemes, the average errors range from 2% to 6% of the uncontracted MRCI correlation energies. Excitation energies are reproduced with ˜0.2 eV accuracy. In most cases, the agreement is better than 0.2 eV, even in cases with very large differential correlation contributions as exemplified for the d-d and ligand-to-metal charge transfer transitions of a Cu [NH 3 ] 4 2 + model complex. The benchmark is supplemented with the investigation of typical potential energy surfaces (i.e., N2, HF, LiF, BeH2, ethane C-C bond stretching, and the ethylene double bond torsion). Our results indicate that the SC-scheme, which is successful in the context of second- and third-order perturbation theory, does not offer computational advantages and at the same time leads to much larger errors than the PC and FIC schemes. We discuss the advantages and disadvantages of the PC and FIC schemes, which are of comparable accuracy and, for the systems tested, also of comparable efficiency.

  16. Strongly contracted canonical transformation theory

    NASA Astrophysics Data System (ADS)

    Neuscamman, Eric; Yanai, Takeshi; Chan, Garnet Kin-Lic

    2010-01-01

    Canonical transformation (CT) theory describes dynamic correlation in multireference systems with large active spaces. Here we discuss CT theory's intruder state problem and why our previous approach of overlap matrix truncation becomes infeasible for sufficiently large active spaces. We propose the use of strongly and weakly contracted excitation operators as alternatives for dealing with intruder states in CT theory. The performance of these operators is evaluated for the H2O, N2, and NiO molecules, with comparisons made to complete active space second order perturbation theory and Davidson-corrected multireference configuration interaction theory. Finally, using a combination of strongly contracted CT theory and orbital-optimized density matrix renormalization group theory, we evaluate the singlet-triplet gap of free base porphin using an active space containing all 24 out-of-plane 2p orbitals. Modeling dynamic correlation with an active space of this size is currently only possible using CT theory.

  17. Prediction of electronic structure of organic radicaloid anions using efficient, economical multireference gradient approach.

    PubMed

    Chattopadhyay, Sudip; Chaudhuri, Rajat K; Freed, Karl F

    2011-04-28

    The improved virtual orbital-complete active space configuration interaction (IVO-CASCI) method enables an economical and reasonably accurate treatment of static correlation in systems with significant multireference character, even when using a moderate basis set. This IVO-CASCI method supplants the computationally more demanding complete active space self-consistent field (CASSCF) method by producing comparable accuracy with diminished computational effort because the IVO-CASCI approach does not require additional iterations beyond an initial SCF calculation, nor does it encounter convergence difficulties or multiple solutions that may be found in CASSCF calculations. Our IVO-CASCI analytical gradient approach is applied to compute the equilibrium geometry for the ground and lowest excited state(s) of the theoretically very challenging 2,6-pyridyne, 1,2,3-tridehydrobenzene and 1,3,5-tridehydrobenzene anionic systems for which experiments are lacking, accurate quantum calculations are almost completely absent, and commonly used calculations based on single reference configurations fail to provide reasonable results. Hence, the computational complexity provides an excellent test for the efficacy of multireference methods. The present work clearly illustrates that the IVO-CASCI analytical gradient method provides a good description of the complicated electronic quasi-degeneracies during the geometry optimization process for the radicaloid anions. The IVO-CASCI treatment produces almost identical geometries as the CASSCF calculations (performed for this study) at a fraction of the computational labor. Adiabatic energy gaps to low lying excited states likewise emerge from the IVO-CASCI and CASSCF methods as very similar. We also provide harmonic vibrational frequencies to demonstrate the stability of the computed geometries.

  18. Nanoscale multireference quantum chemistry: full configuration interaction on graphical processing units.

    PubMed

    Fales, B Scott; Levine, Benjamin G

    2015-10-13

    Methods based on a full configuration interaction (FCI) expansion in an active space of orbitals are widely used for modeling chemical phenomena such as bond breaking, multiply excited states, and conical intersections in small-to-medium-sized molecules, but these phenomena occur in systems of all sizes. To scale such calculations up to the nanoscale, we have developed an implementation of FCI in which electron repulsion integral transformation and several of the more expensive steps in σ vector formation are performed on graphical processing unit (GPU) hardware. When applied to a 1.7 × 1.4 × 1.4 nm silicon nanoparticle (Si72H64) described with the polarized, all-electron 6-31G** basis set, our implementation can solve for the ground state of the 16-active-electron/16-active-orbital CASCI Hamiltonian (more than 100,000,000 configurations) in 39 min on a single NVidia K40 GPU.

  19. Electron capture in collisions of N^+ with H and H^+ with N

    NASA Astrophysics Data System (ADS)

    Lin, C. Y.; Stancil, P. C.; Gu, J. P.; Buenker, R. J.; Kimura, M.

    2004-05-01

    Charge transfer processes due to collisions of N^+ with atomic hydrogen and H^+ with atomic nitrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potential curves and nonadiabatic radial and rotational coupling matrix elements obtained with the multireference single- and double-excitation configuration interaction approach. Total and state-selective cross sections for the energy range 0.1-500 eV/u will be presented and compared with existing experimental and theoretical data.

  20. Lithium cluster anions: photoelectron spectroscopy and ab initio calculations.

    PubMed

    Alexandrova, Anastassia N; Boldyrev, Alexander I; Li, Xiang; Sarkas, Harry W; Hendricks, Jay H; Arnold, Susan T; Bowen, Kit H

    2011-01-28

    Structural and energetic properties of small, deceptively simple anionic clusters of lithium, Li(n)(-), n = 3-7, were determined using a combination of anion photoelectron spectroscopy and ab initio calculations. The most stable isomers of each of these anions, the ones most likely to contribute to the photoelectron spectra, were found using the gradient embedded genetic algorithm program. Subsequently, state-of-the-art ab initio techniques, including time-dependent density functional theory, coupled cluster, and multireference configurational interactions methods, were employed to interpret the experimental spectra.

  1. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.

    PubMed

    Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura

    2016-07-12

    A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.

  2. A diagnostic for determining the quality of single-reference electron correlation methods

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Taylor, Peter R.

    1989-01-01

    It was recently proposed that the Euclidian norm of the t(sub 1) vector of the coupled cluster wave function (normalized by the number of electrons included in the correlation procedure) could be used to determine whether a single-reference-based electron correlation procedure is appopriate. This diagnostic, T(sub 1) is defined for use with self-consistent-field molecular orbitals and is invariant to the same orbital rotations as the coupled cluster energy. T(sub 1) is investigated for several different chemical systems which exhibit a range of multireference behavior, and is shown to be an excellent measure of the importance of non-dynamical electron correlation and is far superior to C(sub 0) from a singles and doubles configuration interaction wave function. It is further suggested that when the aim is to recover a large fraction of the dynamical electron correlation energy, a large T(sub 1) (i.e., greater than 0.02) probably indicates the need for a multireference electron correlation procedure.

  3. A diagnostic for determining the quality of single-reference electron correlation methods

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Taylor, Peter R.

    1989-01-01

    It was recently proposed that the Euclidian norm of the t sub 1 vector of the coupled cluster wave function (normalized by the number of electrons included in the correlation procedure) could be used to determine whether a single-reference-based electron correlation procedure is appropriate. This diagnostic, T sub 1, is defined for use with self consistent field molecular orbitals and is invariant to the same orbital rotations as the coupled cluster energy. T sub 1 is investigated for several different chemical systems which exhibit a range of multireference behavior, and is shown to be an excellent measure of the importance of nondynamical electron correlation and is far superior to C sub 0 from a singles and doubles configuration interaction wave function. It is further suggested that when the aim is to recover a large fraction of the dynamical electron correlation energy, a large T sub 1 (i.e., greater than 0.02) probably indicates the need for a multireference electron correlation procedure.

  4. Excited state characterization of carbonyl containing carotenoids: a comparison between single and multireference descriptions

    NASA Astrophysics Data System (ADS)

    Spezia, Riccardo; Knecht, Stefan; Mennucci, Benedetta

    Carotenoids can play multiple roles in biological photoreceptors thanks to their rich photophysics. In the present work, we have investigated six of the most common carbonyl containing carotenoids: Echinenone, Canthaxanthin, Astaxanthin, Fucoxanthin, Capsanthin and Capsorubin. Their excitation properties are investigated by means of a hybrid density functional theory (DFT) and multireference configuration interaction (MRCI) approach to elucidate the role of the carbonyl group: the bright transition is of {\\pi}{\\pi}* character, as expected, but the presence of a C=O moiety reduces the energy of n{\\pi}* transitions which may become closer to the {\\pi}{\\pi}* transition, in particular as the conjugation chain decreases. This can be related to the presence of a low-lying charge transfer state typical of short carbonyl- containing carotenoids. The DFT/MRCI results are finally used to benchmark single- reference time-dependent DFT-based methods: among the investigated functionals, the meta- GGA (and in particular M11L and MN12L) functionals show to perform the best for all six investigated systems.

  5. Universal state-selective corrections to multireference coupled-cluster theories with single and double excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabec, Jiri; van Dam, Hubertus JJ; Pittner, Jiri

    2012-03-28

    The recently proposed Universal State-Selective (USS) corrections [K. Kowalski, J. Chem. Phys. 134, 194107 (2011)] to approximate Multi-Reference Coupled Cluster (MRCC) energies can be commonly applied to any type of MRCC theory based on the Jeziorski-Monkhorst [B. Jeziorski, H.J. Monkhorst, Phys. Rev. A 24, 1668 (1981)] exponential Ansatz. In this letter we report on the performance of a simple USS correction to the Brillouin-Wigner MRCC (BW-MRCC) formalism employing single and double excitations (BW-MRCCSD). It is shown that the resulting formalism (USS-BW-MRCCSD), which uses the manifold of single and double excitations to construct the correction, can be related to a posteriorimore » corrections utilized in routine BW-MRCCSD calculations. In several benchmark calculations we compare the results of the USS-BW-MRCCSD method with results of the BW-MRCCSD approach employing a posteriori corrections and with results obtained with the Full Configuration Interaction (FCI) method.« less

  6. Electron Capture in Slow Collisions of Si4+ With Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Joseph, D. C.; Gu, J. P.; Saha, B. C.

    2009-10-01

    In recent years the charge transfer involving Si4+ and H at low energies has drawn considerable attention both theoretically and experimentally due to its importance not only in astronomical environments but also in modern semiconductor industries. Accurate information regarding its molecular structures and interactions are essential to understand the low energy collision dynamics. Ab initio calculations are performed using the multireference single- and double-excitation configuration-interaction (MRD-CI) method to evaluate potential energies. State selective cross sections are calculate using fully quantum and semi-classical molecular-orbital close coupling (MOCC) methods in the adiabatic representation. Detail results will be presented in the conference.

  7. The calculated rovibronic spectrum of scandium hydride, ScH

    NASA Astrophysics Data System (ADS)

    Lodi, Lorenzo; Yurchenko, Sergei N.; Tennyson, Jonathan

    2015-07-01

    The electronic structure of six low-lying electronic states of scandium hydride, X 1Σ+, a 3Δ, b 3Π, A 1Δ, c 3Σ+ and B 1Π, is studied using multi-reference configuration interaction as a function of bond length. Diagonal and off-diagonal dipole moment, spin-orbit coupling and electronic angular momentum curves are also computed. The results are benchmarked against experimental measurements and calculations on atomic scandium. The resulting curves are used to compute a line list of molecular rovibronic transitions for 45ScH.

  8. iCI: Iterative CI toward full CI.

    PubMed

    Liu, Wenjian; Hoffmann, Mark R

    2016-03-08

    It is shown both theoretically and numerically that the minimal multireference configuration interaction (CI) approach [Liu, W.; Hoffmann, M. R. Theor. Chem. Acc. 2014, 133, 1481] converges quickly and monotonically from above to full CI by updating the primary, external, and secondary states that describe the respective static, dynamic, and again static components of correlation iteratively, even when starting with a rather poor description of a strongly correlated system. In short, the iterative CI (iCI) is a very effective means toward highly correlated wave functions and, ultimately, full CI.

  9. Accurate multireference calculations of the electronic structure of TiF 2 and TiCl 2

    NASA Astrophysics Data System (ADS)

    Vogel, M.; Wenzel, W.

    2005-09-01

    We report a systematic study of the electronic structure of two members of the transition metal dihalide family, TiF 2 and TiCl 2. Using the configuration interaction method in large basis sets we investigated the lowest 15 states of TiF 2 and TiCl 2. We report bond lengths, frequencies and dissociation energies of both molecules. For TiF 2 we found a near degeneracy of the ground and the first excited state with a possible breakdown of the Born-Oppenheimer approximation.

  10. Potential energy surfaces of the ground and low-lying states of HCCS and NCS: CASSCF, MRCI and CCSD(T) studies

    NASA Astrophysics Data System (ADS)

    Li, Yumin; Iwata, Suehiro

    1997-07-01

    For astronomically interesting molecules, HCCS and NCS, the equilibrium geometries and potential energy curves of three states (X 2Π, A 2Π and B 2Σ+) as well as vertical excitation energies are studied using complete active space SCF (CASSCF), multi-reference configuration interaction (MRCI) and coupled cluster (CCSD(T)) methods with cc-pVTZ basis sets. The difference and similarity in the three states of HCCS and NCS are illustrated. The results obtained are in good agreement with available experimental data.

  11. Assessment of multireference approaches to explicitly correlated full configuration interaction quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersten, J. A. F., E-mail: jennifer.kersten@cantab.net; Alavi, Ali, E-mail: a.alavi@fkf.mpg.de; Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart

    2016-08-07

    The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to provide near-exact solutions to the electronic Schrödinger equation within a finite orbital basis set, without relying on an expansion about a reference state. However, a drawback to the approach is that being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set incompleteness error that decays very slowly with the size of the employed single particle basis. The FCIQMC results obtained in a small basis set can be improved significantly with explicitly correlated techniques. Here, we present a study that assesses andmore » compares two contrasting “universal” explicitly correlated approaches that fit into the FCIQMC framework: the [2]{sub R12} method of Kong and Valeev [J. Chem. Phys. 135, 214105 (2011)] and the explicitly correlated canonical transcorrelation approach of Yanai and Shiozaki [J. Chem. Phys. 136, 084107 (2012)]. The former is an a posteriori internally contracted perturbative approach, while the latter transforms the Hamiltonian prior to the FCIQMC simulation. These comparisons are made across the 55 molecules of the G1 standard set. We found that both methods consistently reduce the basis set incompleteness, for accurate atomization energies in small basis sets, reducing the error from 28 mE{sub h} to 3-4 mE{sub h}. While many of the conclusions hold in general for any combination of multireference approaches with these methodologies, we also consider FCIQMC-specific advantages of each approach.« less

  12. Intersystem-crossing and phosphorescence rates in fac-Ir(III)(ppy)3: a theoretical study involving multi-reference configuration interaction wavefunctions.

    PubMed

    Kleinschmidt, Martin; van Wüllen, Christoph; Marian, Christel M

    2015-03-07

    We have employed combined density functional theory and multi-reference configuration interaction methods including spin-orbit coupling (SOC) effects to investigate the photophysics of the green phosphorescent emitter fac-tris-(2-phenylpyridine)iridium (fac-Ir(ppy)3). A critical evaluation of our quantum chemical approaches shows that a perturbational treatment of SOC is the method of choice for computing the UV/Vis spectrum of this heavy transition metal complex while multi-reference spin-orbit configuration interaction is preferable for calculating the phosphorescence rates. The particular choice of the spin-orbit interaction operator is found to be of minor importance. Intersystem crossing (ISC) rates have been determined by Fourier transformation of the time correlation function of the transition including Dushinsky rotations. In the electronic ground state, fac-Ir(ppy)3 is C3 symmetric. The calculated UV/Vis spectrum is in excellent agreement with experiment. The effect of SOC is particularly pronounced for the metal-to-ligand charge transfer (MLCT) band in the visible region of the absorption spectrum which does not only extend its spectral onset towards longer wavelengths but also experiences a blue shift of its maximum. Pseudo-Jahn-Teller interaction leads to asymmetric coordinate displacements in the lowest MLCT states. Substantial electronic SOC and a small energy gap make ISC an ultrafast process in fac-Ir(ppy)3. For the S1↝T1 non-radiative transition, we compute a rate constant of kISC = 6.9 × 10(12) s(-1) which exceeds the rate constant of radiative decay to the electronic ground state by more than six orders of magnitude, in agreement with the experimental observation of a subpicosecond ISC process and a triplet quantum yield close to unity. As a consequence of the geometric distortion in the T1 state, the T1 → S0 transition densities are localized on one of the phenylpyridyl moieties. In our best quantum chemical model, we obtain phosphorescence decay times of 264 μs, 13 μs, and 0.9 μs, respectively, for the T1,I, T1,II, and T1,III fine-structure levels in dichloromethane (DCM) solution. In addition to reproducing the correct orders of magnitude for the individual phosphorescence emission probabilities, our theoretical study gives insight into the underlying mechanisms. In terms of intensity borrowing from spin-allowed transitions, the low emission probability of the T1,I substate is caused by the mutual cancellation of contributions from several singlet states to the total transition dipole moment. Their contributions do not cancel but add up in case of the much faster T1,III → S0 emission while the T1,II → S0 emission is dominated by intensity borrowing from a single spin-allowed process, i.e., the S2 → S0 transition.

  13. Theoretical study of dissociative recombination of Cl{sub 2}{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Mingwu; Graduate School of Chinese Academy of Sciences, Beijing 100039; Department of Physics, Stockholm University, S-106 91 Stockholm

    Theoretical studies of low-energy electron collisions with Cl{sub 2}{sup +} leading to direct dissociative recombination are presented. The relevant potential energy curves and autoionization widths are calculated by combining electron scattering calculations using the complex Kohn variational method with multireference configuration interaction structure calculations. The dynamics on the four lowest resonant states of all symmetries is studied by the solution of a driven Schroedinger equation. The thermal rate coefficient for dissociative recombination of Cl{sub 2}{sup +} is calculated and the influence on the thermal rate coefficient from vibrational excited target ions is investigated.

  14. Energy-switching potential energy surface for the water molecule revisited: A highly accurate singled-sheeted form.

    PubMed

    Galvão, B R L; Rodrigues, S P J; Varandas, A J C

    2008-07-28

    A global ab initio potential energy surface is proposed for the water molecule by energy-switching/merging a highly accurate isotope-dependent local potential function reported by Polyansky et al. [Science 299, 539 (2003)] with a global form of the many-body expansion type suitably adapted to account explicitly for the dynamical correlation and parametrized from extensive accurate multireference configuration interaction energies extrapolated to the complete basis set limit. The new function mimics also the complicated Sigma/Pi crossing that arises at linear geometries of the water molecule.

  15. The electronic structure of VO in its ground and electronically excited states: A combined matrix isolation and quantum chemical (MRCI) study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hübner, Olaf; Hornung, Julius; Himmel, Hans-Jörg, E-mail: hans-jorg.himmel@aci.uni-heidelberg.de

    2015-07-14

    The electronic ground and excited states of the vanadium monoxide (VO) molecule were studied in detail. Electronic absorption spectra for the molecule isolated in Ne matrices complement the previous gas-phase spectra. A thorough quantum chemical (multi-reference configuration interaction) study essentially confirms the assignment and characterization of the electronic excitations observed for VO in the gas-phase and in Ne matrices and allows the clarification of open issues. It provides a complete overview over the electronically excited states up to about 3 eV of this archetypical compound.

  16. One-electron pseudo-potential investigation of NO(X2Π)-Arn clusters (n = 1,2,3,4)

    NASA Astrophysics Data System (ADS)

    Hammami, H.; Ben Mohamed, F. E.; Mohamed, D.; Ben El Hadj Rhouma, M.; Al Mogren, M. M.; Hochlaf, M.

    2017-10-01

    In this work, we investigate the minimal energy and low-lying isomers of the ground state of NOArn clusters using a hybrid pseudo-potential model, where a single electron quantum description is combined with the classical argon-argon pair potential and an expansion in terms of the Legendre polynomials. In such model, we use two centres of polarisation for NO+, where we considered for each nuclear configuration an analytic dipole polarisation for N+ and O+. The reliability of our model is checked by comparison of the NO(X2Π)-Ar potential energy surface with that deduced using the multireference configuration interaction (MRCI+Q) approach. The results of this formalism agree quite well with the MRCI ones over a wide range of nuclear arrangements.

  17. The dissociation energy of N2

    NASA Technical Reports Server (NTRS)

    Almloef, Jan; Deleeuw, Bradley J.; Taylor, Peter R.; Bauschlicher, Charles W., Jr.; Siegbahn, Per

    1989-01-01

    The requirements for very accurate ab initio quantum chemical prediction of dissociation energies are examined using a detailed investigation of the nitrogen molecule. Although agreement with experiment to within 1 kcal/mol is not achieved even with the most elaborate multireference CI (configuration interaction) wave functions and largest basis sets currently feasible, it is possible to obtain agreement to within about 2 kcal/mol, or 1 percent of the dissociation energy. At this level it is necessary to account for core-valence correlation effects and to include up to h-type functions in the basis. The effect of i-type functions, the use of different reference configuration spaces, and basis set superposition error were also investigated. After discussing these results, the remaining sources of error in our best calculations are examined.

  18. A multireference perturbation method using non-orthogonal Hartree-Fock determinants for ground and excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yost, Shane R.; Kowalczyk, Tim; Van Voorhis, Troy, E-mail: tvan@mit.edu

    2013-11-07

    In this article we propose the ΔSCF(2) framework, a multireference strategy based on second-order perturbation theory, for ground and excited electronic states. Unlike the complete active space family of methods, ΔSCF(2) employs a set of self-consistent Hartree-Fock determinants, also known as ΔSCF states. Each ΔSCF electronic state is modified by a first-order correction from Møller-Plesset perturbation theory and used to construct a Hamiltonian in a configuration interactions like framework. We present formulas for the resulting matrix elements between nonorthogonal states that scale as N{sub occ}{sup 2}N{sub virt}{sup 3}. Unlike most active space methods, ΔSCF(2) treats the ground and excited statemore » determinants even-handedly. We apply ΔSCF(2) to the H{sub 2}, hydrogen fluoride, and H{sub 4} systems and show that the method provides accurate descriptions of ground- and excited-state potential energy surfaces with no single active space containing more than 10 ΔSCF states.« less

  19. Adaptive multiconfigurational wave functions.

    PubMed

    Evangelista, Francesco A

    2014-03-28

    A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff Λ. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than Λ. The resulting Λ-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (Λ+SD-CI), which is based on a small Λ-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build Λ-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The Λ-CI and Λ+SD-CI approaches are used to compute the dissociation curve of N2 and the potential energy curves for the first three singlet states of C2. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the Λ-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu2O2(2+) core, illustrates an alternative use of the Λ-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.

  20. The interaction of MnH(X 7Σ+) with He: Ab initio potential energy surface and bound states

    NASA Astrophysics Data System (ADS)

    Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry

    2010-06-01

    The potential energy surface of the ground state of the He-MnH(X Σ7+) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the H3e-MnH and H4e-MnH complexes.

  1. The interaction of MnH(X 7Sigma+) with He: ab initio potential energy surface and bound states.

    PubMed

    Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry

    2010-06-07

    The potential energy surface of the ground state of the He-MnH(X (7)Sigma(+)) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the (3)He-MnH and (4)He-MnH complexes.

  2. First principles electron-correlated calculations of optical absorption in magnesium clusters★

    NASA Astrophysics Data System (ADS)

    Shinde, Ravindra; Shukla, Alok

    2017-11-01

    In this paper, we report large-scale configuration interaction (CI) calculations of linear optical absorption spectra of various isomers of magnesium clusters Mgn (n = 2-5), corresponding to valence transitions. Geometry optimization of several low-lying isomers of each cluster was carried out using coupled-cluster singles doubles (CCSD) approach, and these geometries were subsequently employed to perform ground and excited state calculations using either the full-CI (FCI) or the multi-reference singles-doubles configuration interaction (MRSDCI) approach, within the frozen-core approximation. Our calculated photoabsorption spectrum of magnesium dimer (Mg2) is in excellent agreement with the experiments both for peak positions, and intensities. Owing to the sufficiently inclusive electron-correlation effects, these results can serve as benchmarks against which future experiments, as well as calculations performed using other theoretical approaches, can be tested. Supplementary material in the form of one pdf fille available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80356-6.

  3. Accurate double many-body expansion potential energy surface for the 2(1)A' state of N2O.

    PubMed

    Li, Jing; Varandas, António J C

    2014-08-28

    An accurate double many-body expansion potential energy surface is reported for the 2(1)A' state of N2O. The new double many-body expansion (DMBE) form has been fitted to a wealth of ab initio points that have been calculated at the multi-reference configuration interaction level using the full-valence-complete-active-space wave function as reference and the cc-pVQZ basis set, and subsequently corrected semiempirically via double many-body expansion-scaled external correlation method to extrapolate the calculated energies to the limit of a complete basis set and, most importantly, the limit of an infinite configuration interaction expansion. The topographical features of the novel potential energy surface are then examined in detail and compared with corresponding attributes of other potential functions available in the literature. Exploratory trajectories have also been run on this DMBE form with the quasiclassical trajectory method, with the thermal rate constant so determined at room temperature significantly enhancing agreement with experimental data.

  4. Intersystem-crossing and phosphorescence rates in fac-Ir{sup III}(ppy){sub 3}: A theoretical study involving multi-reference configuration interaction wavefunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinschmidt, Martin; Marian, Christel M., E-mail: Christel.Marian@hhu.de; Wüllen, Christoph van

    2015-03-07

    We have employed combined density functional theory and multi-reference configuration interaction methods including spin–orbit coupling (SOC) effects to investigate the photophysics of the green phosphorescent emitter fac-tris-(2-phenylpyridine)iridium (fac-Ir(ppy){sub 3}). A critical evaluation of our quantum chemical approaches shows that a perturbational treatment of SOC is the method of choice for computing the UV/Vis spectrum of this heavy transition metal complex while multi-reference spin–orbit configuration interaction is preferable for calculating the phosphorescence rates. The particular choice of the spin–orbit interaction operator is found to be of minor importance. Intersystem crossing (ISC) rates have been determined by Fourier transformation of the timemore » correlation function of the transition including Dushinsky rotations. In the electronic ground state, fac-Ir(ppy){sub 3} is C{sub 3} symmetric. The calculated UV/Vis spectrum is in excellent agreement with experiment. The effect of SOC is particularly pronounced for the metal-to-ligand charge transfer (MLCT) band in the visible region of the absorption spectrum which does not only extend its spectral onset towards longer wavelengths but also experiences a blue shift of its maximum. Pseudo-Jahn-Teller interaction leads to asymmetric coordinate displacements in the lowest MLCT states. Substantial electronic SOC and a small energy gap make ISC an ultrafast process in fac-Ir(ppy){sub 3}. For the S{sub 1}↝T{sub 1} non-radiative transition, we compute a rate constant of k{sub ISC} = 6.9 × 10{sup 12} s{sup −1} which exceeds the rate constant of radiative decay to the electronic ground state by more than six orders of magnitude, in agreement with the experimental observation of a subpicosecond ISC process and a triplet quantum yield close to unity. As a consequence of the geometric distortion in the T{sub 1} state, the T{sub 1} → S{sub 0} transition densities are localized on one of the phenylpyridyl moieties. In our best quantum chemical model, we obtain phosphorescence decay times of 264 μs, 13 μs, and 0.9 μs, respectively, for the T{sub 1,I}, T{sub 1,II}, and T{sub 1,III} fine-structure levels in dichloromethane (DCM) solution. In addition to reproducing the correct orders of magnitude for the individual phosphorescence emission probabilities, our theoretical study gives insight into the underlying mechanisms. In terms of intensity borrowing from spin-allowed transitions, the low emission probability of the T{sub 1,I} substate is caused by the mutual cancellation of contributions from several singlet states to the total transition dipole moment. Their contributions do not cancel but add up in case of the much faster T{sub 1,III} → S{sub 0} emission while the T{sub 1,II} → S{sub 0} emission is dominated by intensity borrowing from a single spin-allowed process, i.e., the S{sub 2} → S{sub 0} transition.« less

  5. Adaptive multiconfigurational wave functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evangelista, Francesco A., E-mail: francesco.evangelista@emory.edu

    2014-03-28

    A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff Λ. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than Λ. The resulting Λ-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (Λ+SD-CI), which is based on a small Λ-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build Λ-CI wave functions.more » The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The Λ-CI and Λ+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the Λ-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the Λ-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.« less

  6. An ab initio benchmark study of the H + CO --> HCO reaction

    NASA Technical Reports Server (NTRS)

    Woon, D. E.

    1996-01-01

    The H + CO --> HCO reaction has been characterized with correlation consistent basis sets at five levels of theory in order to benchmark the sensitivities of the barrier height and reaction ergicity to the one-electron and n-electron expansions of the electronic wave function. Single and multireference methods are compared and contrasted. The coupled cluster method RCCSD(T) was found to be in very good agreement with Davidson-corrected internally-contracted multireference configuration interaction (MRCI+Q). Second-order Moller-Plesset perturbation theory (MP2) was also employed. The estimated complete basis set (CBS) limits for the barrier height (in kcal/mol) for the five methods, including harmonic zero-point energy corrections, are MP2, 4.66; RCCSD, 4.78; RCCSD(T), 4.15; MRCI, 5.10; and MRCI+Q, 4.07. Similarly, the estimated CBS limits for the ergicity of the reaction are: MP2, -17.99; RCCSD, -13.34; RCCSD(T), -13.79; MRCI, -11.46; and MRCI+Q, -13.70. Additional basis set explorations for the RCCSD(T) method demonstrate that aug-cc-pVTZ sets, even with some functions removed, are sufficient to reproduce the CBS limits to within 0.1-0.3 kcal/mol.

  7. Assigning the Cerium Oxidation State for CH2CeF2 and OCeF2 Based on Multireference Wave Function Analysis.

    PubMed

    Mooßen, Oliver; Dolg, Michael

    2016-06-09

    The geometric and electronic structure of the recently experimentally studied molecules ZCeF2 (Z = CH2, O) was investigated by density functional theory (DFT) and wave function-based ab initio methods. Special attention was paid to the Ce-Z metal-ligand bonding, especially to the nature of the interaction between the Ce 4f and the Z 2p orbitals and the possible multiconfigurational character arising from it, as well as to the assignment of an oxidation state of Ce reflecting the electronic structure. Complete active space self-consistent field (CASSCF) calculations were performed, followed by orbital rotations in the active orbital space. The methylene compound CH2CeF2 has an open-shell singlet ground state, which is characterized by a two-configurational wave function in the basis of the strongly mixed natural CASSCF orbitals. The system can also be described in a very compact way by the dominant Ce 4f(1) C 2p(1) configuration, if nearly pure Ce 4f and C 2p orbitals are used. In the basis of these localized orbitals, the molecule is almost monoconfigurational and should be best described as a Ce(III) system. The singlet ground state of the oxygen OCeF2 complex is of closed-shell character when a monoconfigurational wave function with very strongly mixed Ce 4f and O 2p CASSCF natural orbitals is used for the description. The transformation to orbitals localized on the cerium and oxygen atoms leads to a multiconfigurational wave function and reveals characteristics of a mixed valent Ce(IV)/Ce(III) compound. Additionally, the interactions of the localized active orbitals were analyzed by evaluating the expectation values of the charge fluctuation operator and the local spin operator. The Ce 4f and C 2p orbital interaction of the CH2CeF2 compound is weakly covalent and resembles the interaction of the H 1s orbitals in a stretched hydrogen dimer. In contrast, the interaction of the localized active orbitals for OCeF2 shows ionic character. Calculated vibrational Ce-C and Ce-O stretching frequencies at the DFT, CASSCF, second-order Rayleigh-Schrödinger perturbation theory (RS2C), multireference configuration interaction (MRCI), as well as single, doubles, and perturbative triples coupled cluster (CCSD(T)) level are reported and compared to experimental infrared absorption data in a Ne and Ar matrix.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rynkun, P., E-mail: pavel.rynkun@gmail.com; Jönsson, P.; Gaigalas, G.

    Based on relativistic wavefunctions from multiconfiguration Dirac–Hartree–Fock and configuration interaction calculations, E1, M1, E2, and M2 transition rates, weighted oscillator strengths, and lifetimes are evaluated for the states of the (1s{sup 2})2s{sup 2}2p{sup 3},2s2p{sup 4}, and 2p{sup 5} configurations in all nitrogen-like ions between F III and Kr XXX. The wavefunction expansions include valence, core–valence, and core–core correlation effects through single–double multireference expansions to increasing sets of active orbitals. The computed energies agree very well with experimental values, with differences of only 300–600 cm{sup −1} for the majority of the levels and ions in the sequence. Computed transitions rates aremore » in close agreement with available data from MCHF-BP calculations by Tachiev and Froese Fischer [G.I. Tachiev, C. Froese Fischer, A and A 385 (2002) 716].« less

  9. Orbitally invariant internally contracted multireference unitary coupled cluster theory and its perturbative approximation: theory and test calculations of second order approximation.

    PubMed

    Chen, Zhenhua; Hoffmann, Mark R

    2012-07-07

    A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4, and BeH(2), are performed in order to test the new methods on problems where full configuration interaction results are available.

  10. Symmetry breaking in a nutshell: the odyssey of a pseudo problem in molecular physics. The X̃(2)Σ(u)(+) BNB case revisited.

    PubMed

    Kalemos, Apostolos

    2013-06-14

    The X̃(2)Σu (+) BNB state considered to be of symmetry broken (SB) character has been studied by high level multireference variational and full configuration interaction methods. We discuss in great detail the roots of the so-called SB problem and we offer an in depth analysis of the unsuspected reasons behind the double minimum topology found in practically all previous theoretical investigations. We argue that the true reason of failure to recover a D∞h equilibrium geometry lies in the lack of the correct permutational symmetry of the wavefunctions employed and is by no means a real effect.

  11. Theoretical study of the electric dipole moment function of the ClO molecule

    NASA Technical Reports Server (NTRS)

    Pettersson, L. G. M.; Langhoff, S. R.; Chong, D. P.

    1986-01-01

    The potential energy function and electric dipole moment function (EDMF) are computed for ClO X 2Pi using several different techniques to include electron correlation. The EDMF is used to compute Einstein coefficients, vibrational lifetimes, and dipole moments in higher vibrational levels. The band strength of the 1-0 fundamental transition is computed to be 12 + or - 2 per sq cm atm determined from infrared heterodyne spectroscopy. The theoretical methods used include SCF, CASSCF, multireference singles plus doubles configuration interaction (MRCI) and contracted CI, coupled pair functional (CPF), and a modified version of the CPF method. The results obtained using the different methods are critically compared.

  12. Towards an automated and efficient calculation of resonating vibrational states based on state-averaged multiconfigurational approaches

    NASA Astrophysics Data System (ADS)

    Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian; Rauhut, Guntram

    2015-12-01

    Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.

  13. Quenching of Excited Na due to He Collisions

    NASA Technical Reports Server (NTRS)

    Lin, C. Y.; Stancil, P. C.; Liebermann, H. P.; Funke, P.; Buenker, R. J.

    2006-01-01

    The quenching and elastic scattering of excited Sodium by collisions with Helium have been investigated for energies between 10(exp -13) eV and 10 eV. With the ab initio adiabatic potentials and nonadiabatic radial and rotational couplings obtained from multireference single- and double-excitation configuration interaction approach, we carried out scattering calculations by the quantum-mechanical molecular-orbital close-coupling method. Cross sections for quenching reactions and elastic collisions are presented. Quenching and elastic collisional rate coefficients as a function of temperature between 1 micro-K and 10,000 K are also obtained. The results are relevant to modeling non-LTE effects on Na D absorption lines in extrasolar planets and brown dwarfs.

  14. Towards an automated and efficient calculation of resonating vibrational states based on state-averaged multiconfigurational approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian

    Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.

  15. Energy levels, wavelengths, and transition rates of multipole transitions (E1, E2, M1, M2) in Au{sup 67+} and Au{sup 66+} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamasha, Safeia, E-mail: safeia@hu.edu.jo

    2013-11-15

    The fully relativistic configuration interaction method of the FAC code is used to calculate atomic data for multipole transitions in Mg-like Au (Au{sup 67+}) and Al-like Au (Au{sup 66+}) ions. Generated atomic data are important in the modeling of M-shell spectra for heavy Au ions and Au plasma diagnostics. Energy levels, oscillator strengths and transition rates are calculated for electric-dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) for transitions between excited and ground states 3l−nl{sup ′}, such that n=4,5,6,7. The local central potential is derived using the Dirac–Fock–Slater method. Correlation effects to all orders are consideredmore » by the configuration interaction expansion. All relativistic effects are included in the calculations. Calculated energy levels are compared against published values that were calculated using the multi-reference many body perturbation theory, which includes higher order QED effects. Favorable agreement was observed, with less than 0.15% difference.« less

  16. A theoretical study of the dissociative recombination of SH+ with electrons through the 2Π states of SH.

    PubMed

    Kashinski, D O; Talbi, D; Hickman, A P; Di Nallo, O E; Colboc, F; Chakrabarti, K; Schneider, I F; Mezei, J Zs

    2017-05-28

    A quantitative theoretical study of the dissociative recombination of SH + with electrons has been carried out. Multireference, configuration interaction calculations were used to determine accurate potential energy curves for SH + and SH. The block diagonalization method was used to disentangle strongly interacting SH valence and Rydberg states and to construct a diabatic Hamiltonian whose diagonal matrix elements provide the diabatic potential energy curves. The off-diagonal elements are related to the electronic valence-Rydberg couplings. Cross sections and rate coefficients for the dissociative recombination reaction were calculated with a stepwise version of the multichannel quantum defect theory, using the molecular data provided by the block diagonalization method. The calculated rates are compared with the most recent measurements performed on the ion Test Storage Ring (TSR) in Heidelberg, Germany.

  17. Electron capture in collisions of N+ with H and H+ with N

    NASA Astrophysics Data System (ADS)

    Lin, C. Y.; Stancil, P. C.; Gu, J. P.; Buenker, R. J.; Kimura, M.

    2005-06-01

    Charge-transfer processes due to collisions of N+ with atomic hydrogen and H+ with atomic nitrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational couplings obtained with the multireference single- and double-excitation configuration interaction approach. Total and state-selective cross sections for the energy range 0.1meV/u-1keV/u are presented and compared with existing experimental and theoretical data. A large number of low-energy resonances are obtained for exoergic channels and near thresholds of endoergic channels. Rate coefficients are also obtained and comparison to previous calculations suggests nonadiabatic effects dominate for temperatures greater than 20 000 K, but that the spin-orbit interaction plays a major role for lower temperatures.

  18. Is HO3 minimum cis or trans? An analytic full-dimensional ab initio isomerization path.

    PubMed

    Varandas, A J C

    2011-05-28

    The minimum energy path for isomerization of HO(3) has been explored in detail using accurate high-level ab initio methods and techniques for extrapolation to the complete basis set limit. In agreement with other reports, the best estimates from both valence-only and all-electron single-reference methods here utilized predict the minimum of the cis-HO(3) isomer to be deeper than the trans-HO(3) one. They also show that the energy varies by less than 1 kcal mol(-1) or so over the full isomerization path. A similar result is found from valence-only multireference configuration interaction calculations with the size-extensive Davidson correction and a correlation consistent triple-zeta basis, which predict the energy difference between the two isomers to be of only Δ = -0.1 kcal mol(-1). However, single-point multireference calculations carried out at the optimum triple-zeta geometry with basis sets of the correlation consistent family but cardinal numbers up to X = 6 lead upon a dual-level extrapolation to the complete basis set limit of Δ = (0.12 ± 0.05) kcal mol(-1). In turn, extrapolations with the all-electron single-reference coupled-cluster method including the perturbative triples correction yield values of Δ = -0.19 and -0.03 kcal mol(-1) when done from triple-quadruple and quadruple-quintuple zeta pairs with two basis sets of increasing quality, namely cc-cpVXZ and aug-cc-pVXZ. Yet, if added a value of 0.25 kcal mol(-1) that accounts for the effect of triple and perturbative quadruple excitations with the VTZ basis set, one obtains a coupled cluster estimate of Δ = (0.14 ± 0.08) kcal mol(-1). It is then shown for the first time from systematic ab initio calculations that the trans-HO(3) isomer is more stable than the cis one, in agreement with the available experimental evidence. Inclusion of the best reported zero-point energy difference (0.382 kcal mol(-1)) from multireference configuration interaction calculations enhances further the relative stability to ΔE(ZPE) = (0.51 ± 0.08) kcal mol(-1). A scheme is also suggested to model the full-dimensional isomerization potential-energy surface using a quadratic expansion that is parametrically represented by a Fourier analysis in the torsion angle. The method illustrated at the raw and complete basis-set limit coupled-cluster levels can provide a valuable tool for a future analysis of the available (incomplete thus far) experimental rovibrational data. This journal is © the Owner Societies 2011

  19. Ab initio coupled-cluster and multi-reference configuration interaction studies of the low-lying electronic states of 1,2,3,4-cyclobutanetetraone

    DOE PAGES

    Hansen, Jared A.; Bauman, Nicholas P.; Shen, Jun; ...

    2015-12-09

    In this paper, the four, closely spaced, lowest energy electronic states of the challenging, D 4h-symmetric, 1,2,3,4-cyclobutanetetraone (C 4O 4) molecule have been investigated using high-level ab initio methods. The calculated states include the closed-shell singlet 8π( 1A 1g) state, the singlet 10π( 1A 1g) state, in which the π-type lowest unoccupied molecular orbital (LUMO) of the 8π( 1A 1g) reference is doubly occupied and the σ-type highest occupied molecular orbital (HOMO) is empty, and the open-shell singlet and triplet states, designated as 9π( 1B 2u) and 9π( 3B 2u), respectively, originating from single occupancy of the HOMO and LUMO.more » Our focus is on single-reference coupled-cluster (CC) approaches capable of handling electronic near-degeneracies in diradicals, especially the completely renormalised CR-CC(2,3) and active-space CCSDt methods, along with their CCSD and EOMCCSD counterparts. The internally contracted multi-reference configuration interaction calculations with a quasi-degenerate Davidson correction are performed as well. Our computations demonstrate that the state ordering is 9π( 3B 2u) < 8π( 1A 1g) < 9π( 1B 2u) < 10π( 1A 1g) and that the 8π( 1A 1g) - 9π( 3B 2u) gap is in the 7–11 kJ/mol range, in reasonable agreement with the negative ion photoelectron spectroscopy measurements, which give 6.27 ± 0.5 kJ/mol. Finally, in addition to the theory level used, geometry relaxation and basis set play a significant role in determining the state ordering and energy spacings. In particular, it is unsafe to use lower level, non-CC geometries and smaller basis sets.« less

  20. Ab initio Potential-Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O2 Interactions

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene

    1996-01-01

    Accurate quartet- and doublet-state potential-energy surfaces for the interaction of a hydrogen atom and an oxygen molecule in their ground states have been determined from an ab initio calculation using large-basis sets and the internally contracted multireference configuration interaction method. These potential surfaces have been used to calculate the H-O2 electron-spin-exchange cross section; the square root of the cross section (in a(sub 0)), not taking into account inelastic effects, can be obtained approximately from the expressions 2.390E(sup -1/6) and 5.266-0.708 log10(E) at low and high collision energies E (in E(sub h)), respectively. These functional forms, as well as the oscillatory structure of the cross section found at high energies, are expected from the nature of the interaction energy. The mean cross section (the cross section averaged over a Maxwellian velocity distribution) agrees reasonably well with the results of measurements.

  1. Multireference second order perturbation theory with a simplified treatment of dynamical correlation.

    PubMed

    Xu, Enhua; Zhao, Dongbo; Li, Shuhua

    2015-10-13

    A multireference second order perturbation theory based on a complete active space configuration interaction (CASCI) function or density matrix renormalized group (DMRG) function has been proposed. This method may be considered as an approximation to the CAS/A approach with the same reference, in which the dynamical correlation is simplified with blocked correlated second order perturbation theory based on the generalized valence bond (GVB) reference (GVB-BCPT2). This method, denoted as CASCI-BCPT2/GVB or DMRG-BCPT2/GVB, is size consistent and has a similar computational cost as the conventional second order perturbation theory (MP2). We have applied it to investigate a number of problems of chemical interest. These problems include bond-breaking potential energy surfaces in four molecules, the spectroscopic constants of six diatomic molecules, the reaction barrier for the automerization of cyclobutadiene, and the energy difference between the monocyclic and bicyclic forms of 2,6-pyridyne. Our test applications demonstrate that CASCI-BCPT2/GVB can provide comparable results with CASPT2 (second order perturbation theory based on the complete active space self-consistent-field wave function) for systems under study. Furthermore, the DMRG-BCPT2/GVB method is applicable to treat strongly correlated systems with large active spaces, which are beyond the capability of CASPT2.

  2. Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory.

    PubMed

    Granovsky, Alexander A

    2011-06-07

    The distinctive desirable features, both mathematically and physically meaningful, for all partially contracted multi-state multi-reference perturbation theories (MS-MR-PT) are explicitly formulated. The original approach to MS-MR-PT theory, called extended multi-configuration quasi-degenerate perturbation theory (XMCQDPT), having most, if not all, of the desirable properties is introduced. The new method is applied at the second order of perturbation theory (XMCQDPT2) to the 1(1)A(')-2(1)A(') conical intersection in allene molecule, the avoided crossing in LiF molecule, and the 1(1)A(1) to 2(1)A(1) electronic transition in cis-1,3-butadiene. The new theory has several advantages compared to those of well-established approaches, such as second order multi-configuration quasi-degenerate perturbation theory and multi-state-second order complete active space perturbation theory. The analysis of the prevalent approaches to the MS-MR-PT theory performed within the framework of the XMCQDPT theory unveils the origin of their common inherent problems. We describe the efficient implementation strategy that makes XMCQDPT2 an especially useful general-purpose tool in the high-level modeling of small to large molecular systems. © 2011 American Institute of Physics

  3. Parallelization of MRCI based on hole-particle symmetry.

    PubMed

    Suo, Bing; Zhai, Gaohong; Wang, Yubin; Wen, Zhenyi; Hu, Xiangqian; Li, Lemin

    2005-01-15

    The parallel implementation of multireference configuration interaction program based on the hole-particle symmetry is described. The platform to implement the parallelization is an Intel-Architectural cluster consisting of 12 nodes, each of which is equipped with two 2.4-G XEON processors, 3-GB memory, and 36-GB disk, and are connected by a Gigabit Ethernet Switch. The dependence of speedup on molecular symmetries and task granularities is discussed. Test calculations show that the scaling with the number of nodes is about 1.9 (for C1 and Cs), 1.65 (for C2v), and 1.55 (for D2h) when the number of nodes is doubled. The largest calculation performed on this cluster involves 5.6 x 10(8) CSFs.

  4. Theoretical Studies of Dissociative Recombination of Electrons with SH+ Ions

    NASA Astrophysics Data System (ADS)

    Kashinski, D. O.; di Nallo, O. E.; Hickman, A. P.; Mezei, J. Zs.; Colboc, F.; Schneider, I. F.; Chakrabarti, K.; Talbi, D.

    2017-04-01

    We are investigating the dissociative recombination (DR) of electrons with the molecular ion SH+, i.e. e- +SH+ -> S + H . SH+ is found in the interstellar medium (ISM), and little is known concerning its chemistry. Understanding the role of DR of electrons with SH+ will lead to more accurate astrophysical models. Large active-space multi-reference configuration interaction (MRCI) electronic structure calculations were performed using the GAMESS code to obtain ground and excited 2 Π state potential energy curves (PECs) for several values of SH separation. Core-excited Rydberg states have proven to be of huge importance. The block diagonalization method was used to disentangle interacting states and form a diabatic representation of the PECs. Currently we are performing dynamics calculations using Multichannel Quantum Defect Theory (MQDT) to obtain DR rates. The status of the work will be presented at the conference. Work supported by the French CNRS, the NSF, the XSEDE, and USMA.

  5. Calculation of the exchange coupling constants of copper binuclear systems based on spin-flip constricted variational density functional theory.

    PubMed

    Zhekova, Hristina R; Seth, Michael; Ziegler, Tom

    2011-11-14

    We have recently developed a methodology for the calculation of exchange coupling constants J in weakly interacting polynuclear metal clusters. The method is based on unrestricted and restricted second order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) and is here applied to eight binuclear copper systems. Comparison of the SF-CV(2)-DFT results with experiment and with results obtained from other DFT and wave function based methods has been made. Restricted SF-CV(2)-DFT with the BH&HLYP functional yields consistently J values in excellent agreement with experiment. The results acquired from this scheme are comparable in quality to those obtained by accurate multi-reference wave function methodologies such as difference dedicated configuration interaction and the complete active space with second-order perturbation theory. © 2011 American Institute of Physics

  6. Theoretical Studies of Dissociative Recombination of Electrons with SH+ Ions

    NASA Astrophysics Data System (ADS)

    Kashinski, D. O.; di Nallo, O. E.; Hickman, A. P.; Mezei, J. Zs.; Colboc, F.; Schneider, I. F.; Chakrabarti, K.; Talbi, D.

    2016-05-01

    We are investigating the dissociative recombination (DR) of electrons with the molecular ion SH+, i.e. e- +SH+ --> S + H . SH+ is found in the interstellar medium (ISM), and little is known concerning its chemistry. Understanding the role of DR of electrons with SH+ will lead to more accurate astrophysical models. Large active-space multi-reference configuration interaction (MRCI) electronic structure calculations were performed using the GAMESS code to obtain ground and excited 2 Π state potential energy curves (PECs) for several values of SH separation. Core-excited Rydberg states have proven to be of huge importance. The block diagonalization method was used to disentangle interacting states and form a diabatic representation of the PECs. Currently we are performing dynamics calculations using Multichannel Quantum Defect Theory (MQDT) to obtain DR rates. The status of the work will be presented at the conference. work supported by the French CNRS, the NSF, the XSEDE, and USMA.

  7. Improved Potential Energy Surface of Ozone Constructed Using the Fitting by Permutationally Invariant Polynomial Function

    DOE PAGES

    Ayouz, Mehdi; Babikov, Dmitri

    2012-01-01

    New global potential energy surface for the ground electronic state of ozone is constructed at the complete basis set level of the multireference configuration interaction theory. A method of fitting the data points by analytical permutationally invariant polynomial function is adopted. A small set of 500 points is preoptimized using the old surface of ozone. In this procedure the positions of points in the configuration space are chosen such that the RMS deviation of the fit is minimized. New ab initio calculations are carried out at these points and are used to build new surface. Additional points are added tomore » the vicinity of the minimum energy path in order to improve accuracy of the fit, particularly in the region where the surface of ozone exhibits a shallow van der Waals well. New surface can be used to study formation of ozone at thermal energies and its spectroscopy near the dissociation threshold.« less

  8. A revised MRCI-algorithm. I. Efficient combination of spin adaptation with individual configuration selection coupled to an effective valence-shell Hamiltonian

    NASA Astrophysics Data System (ADS)

    Strodel, Paul; Tavan, Paul

    2002-09-01

    We present a revised multi-reference configuration interaction (MRCI) algorithm for balanced and efficient calculation of electronic excitations in molecules. The revision takes up an earlier method, which had been designed for flexible, state-specific, and individual selection (IS) of MRCI expansions, included perturbational corrections (PERT), and used the spin-coupled hole-particle formalism of Tavan and Schulten (1980) for matrix-element evaluation. It removes the deficiencies of this method by introducing tree structures, which code the CI bases and allow us to efficiently exploit the sparseness of the Hamiltonian matrices. The algorithmic complexity is shown to be optimal for IS/MRCI applications. The revised IS/MRCI/PERT module is combined with the effective valence shell Hamiltonian OM2 suggested by Weber and Thiel (2000). This coupling serves the purpose of making excited state surfaces of organic dye molecules accessible to relatively cheap and sufficiently precise descriptions.

  9. Components of the Bond Energy in Polar Diatomic Molecules, Radicals, and Ions Formed by Group-1 and Group-2 Metal Atoms.

    PubMed

    Yu, Haoyu; Truhlar, Donald G

    2015-07-14

    Although many transition metal complexes are known to have high multireference character, the multireference character of main-group closed-shell singlet diatomic molecules like BeF, CaO, and MgO has been less studied. However, many group-1 and group-2 diatomic molecules do have multireference character, and they provide informative systems for studying multireference character because they are simpler than transition metal compounds. The goal of the present work is to understand these multireference systems better so that, ultimately, we can apply what we learn to more complicated multireference systems and to the design of new exchange-correlation functionals for treating multireference systems more adequately. Fourteen main-group diatomic molecules and one triatomic molecule (including radicals, cations, and anions, as well as neutral closed-shell species) have been studied for this article. Eight of these molecules contain a group-1 element, and six contain a group-2 element. Seven of these molecules are multireference systems, and eight of them are single-reference systems. Fifty-three exchange-correlation functionals of 11 types [local spin-density approximation (LSDA), generalized gradient approximation (GGA), nonseparable gradient approximation (NGA), global-hybrid GGA, meta-GGA, meta-NGA, global-hybrid meta GGA, range-separated hybrid GGA, range-separated hybrid meta-GGA, range-separated hybrid meta-NGA, and DFT augmented with molecular mechanics damped dispersion (DFT-D)] and the Hartree-Fock method have been applied to calculate the bond distance, bond dissociation energy (BDE), and dipole moment of these molecules. All of the calculations are converged to a stable solution by allowing the symmetry of the Slater determinant to be broken. A reliable functional should not only predict an accurate BDE but also predict accurate components of the BDE, so each bond dissociation energy has been decomposed into ionization potential (IP) of the electropositive element, electron affinity of the electronegative bonding partner (EA), atomic excitation energy (EE) to prepare the valence states of the interacting partners, and interaction energy (IE) of the valence-prepared states. Adding Hartree-Fock exchange helps to obtain better results for atomic excitation energy, and this leads to improvements in getting the right answer for the right reason. The following functionals are singled out for reasonably good performance on all three of bond distance, BDE, and dipole moment: B97-1, B97-3, MPW1B95, M05, M06, M06-2X, M08-SO, N12-SX, O3LYP, TPSS, τ-HCTHhyb, and GAM; all but two (TPSS and GAM) of these functionals are hybrid functionals.

  10. A Jeziorski-Monkhorst fully uncontracted multi-reference perturbative treatment. I. Principles, second-order versions, and tests on ground state potential energy curves

    NASA Astrophysics Data System (ADS)

    Giner, Emmanuel; Angeli, Celestino; Garniron, Yann; Scemama, Anthony; Malrieu, Jean-Paul

    2017-06-01

    The present paper introduces a new multi-reference perturbation approach developed at second order, based on a Jeziorski-Mokhorst expansion using individual Slater determinants as perturbers. Thanks to this choice of perturbers, an effective Hamiltonian may be built, allowing for the dressing of the Hamiltonian matrix within the reference space, assumed here to be a CAS-CI. Such a formulation accounts then for the coupling between the static and dynamic correlation effects. With our new definition of zeroth-order energies, these two approaches are strictly size-extensive provided that local orbitals are used, as numerically illustrated here and formally demonstrated in the Appendix. Also, the present formalism allows for the factorization of all double excitation operators, just as in internally contracted approaches, strongly reducing the computational cost of these two approaches with respect to other determinant-based perturbation theories. The accuracy of these methods has been investigated on ground-state potential curves up to full dissociation limits for a set of six molecules involving single, double, and triple bond breaking together with an excited state calculation. The spectroscopic constants obtained with the present methods are found to be in very good agreement with the full configuration interaction results. As the present formalism does not use any parameter or numerically unstable operation, the curves obtained with the two methods are smooth all along the dissociation path.

  11. Four-Component Relativistic State-Specific Multireference Perturbation Theory with a Simplified Treatment of Static Correlation.

    PubMed

    Ghosh, Anirban; Sinha Ray, Suvonil; Chaudhuri, Rajat K; Chattopadhyay, Sudip

    2017-02-23

    The relativistic multireference (MR) perturbative approach is one of the most successful tools for the description of computationally demanding molecular systems of heavy elements. We present here the ground state dissociation energy surfaces, equilibrium bond lengths, harmonic frequencies, and dissociation energies of Ag 2 , Cu 2 , Au 2 , and I 2 computed using the four-component (4c) relativistic spinors based state-specific MR perturbation theory (SSMRPT) with improved virtual orbital complete active space configuration interaction (IVO-CASCI) functions. The IVO-CASCI method is a simple, robust, useful and lower cost alternative to the complete active space self-consistent field approach for treating quasidegenerate situations. The redeeming features of the resulting method, termed as 4c-IVO-SSMRPT, lies in (i) manifestly size-extensivity, (ii) exemption from intruder problems, (iii) the freedom of convenient multipartitionings of the Hamiltonian, (iv) flexibility of the relaxed and unrelaxed descriptions of the reference coefficients, and (v) manageable cost/accuracy ratio. The present method delivers accurate descriptions of dissociation processes of heavy element systems. Close agreement with reference values has been found for the calculated molecular constants indicating that our 4c-IVOSSMRPT provides a robust and economic protocol for determining the structural properties for the ground state of heavy element molecules with eloquent MR character as it treats correlation and relativity on equal footing.

  12. Stochastic multi-reference perturbation theory with application to the linearized coupled cluster method

    NASA Astrophysics Data System (ADS)

    Jeanmairet, Guillaume; Sharma, Sandeep; Alavi, Ali

    2017-01-01

    In this article we report a stochastic evaluation of the recently proposed multireference linearized coupled cluster theory [S. Sharma and A. Alavi, J. Chem. Phys. 143, 102815 (2015)]. In this method, both the zeroth-order and first-order wavefunctions are sampled stochastically by propagating simultaneously two populations of signed walkers. The sampling of the zeroth-order wavefunction follows a set of stochastic processes identical to the one used in the full configuration interaction quantum Monte Carlo (FCIQMC) method. To sample the first-order wavefunction, the usual FCIQMC algorithm is augmented with a source term that spawns walkers in the sampled first-order wavefunction from the zeroth-order wavefunction. The second-order energy is also computed stochastically but requires no additional overhead outside of the added cost of sampling the first-order wavefunction. This fully stochastic method opens up the possibility of simultaneously treating large active spaces to account for static correlation and recovering the dynamical correlation using perturbation theory. The method is used to study a few benchmark systems including the carbon dimer and aromatic molecules. We have computed the singlet-triplet gaps of benzene and m-xylylene. For m-xylylene, which has proved difficult for standard complete active space self consistent field theory with perturbative correction, we find the singlet-triplet gap to be in good agreement with the experimental values.

  13. An ab initio global potential-energy surface for NH2(A(2)A') and vibrational spectrum of the Renner-Teller A(2)A'-X(2)A" system.

    PubMed

    Zhou, Shulan; Li, Zheng; Xie, Daiqian; Lin, Shi Ying; Guo, Hua

    2009-05-14

    A global potential-energy surface for the first excited electronic state of NH(2)(A(2)A(')) has been constructed by three-dimensional cubic spline interpolation of more than 20,000 ab initio points, which were calculated at the multireference configuration-interaction level with the Davidson correction using the augmented correlation-consistent polarized valence quadruple-zeta basis set. The (J=0) vibrational energy levels for the ground (X(2)A(")) and excited (A(2)A(')) electronic states of NH(2) were calculated on our potential-energy surfaces with the diagonal Renner-Teller terms. The results show a good agreement with the experimental vibrational frequencies of NH(2) and its isotopomers.

  14. New ab initio adiabatic potential energy surfaces and bound state calculations for the singlet ground X˜ 1A1 and excited C˜ 1B2(21A') states of SO2

    NASA Astrophysics Data System (ADS)

    Kłos, Jacek; Alexander, Millard H.; Kumar, Praveen; Poirier, Bill; Jiang, Bin; Guo, Hua

    2016-05-01

    We report new and more accurate adiabatic potential energy surfaces (PESs) for the ground X˜ 1A1 and electronically excited C˜ 1B2(21A') states of the SO2 molecule. Ab initio points are calculated using the explicitly correlated internally contracted multi-reference configuration interaction (icMRCI-F12) method. A second less accurate PES for the ground X ˜ state is also calculated using an explicitly correlated single-reference coupled-cluster method with single, double, and non-iterative triple excitations [CCSD(T)-F12]. With these new three-dimensional PESs, we determine energies of the vibrational bound states and compare these values to existing literature data and experiment.

  15. Parallel multireference configuration interaction calculations on mini-β-carotenes and β-carotene

    NASA Astrophysics Data System (ADS)

    Kleinschmidt, Martin; Marian, Christel M.; Waletzke, Mirko; Grimme, Stefan

    2009-01-01

    We present a parallelized version of a direct selecting multireference configuration interaction (MRCI) code [S. Grimme and M. Waletzke, J. Chem. Phys. 111, 5645 (1999)]. The program can be run either in ab initio mode or as semiempirical procedure combined with density functional theory (DFT/MRCI). We have investigated the efficiency of the parallelization in case studies on carotenoids and porphyrins. The performance is found to depend heavily on the cluster architecture. While the speed-up on the older Intel Netburst technology is close to linear for up to 12-16 processes, our results indicate that it is not favorable to use all cores of modern Intel Dual Core or Quad Core processors simultaneously for memory intensive tasks. Due to saturation of the memory bandwidth, we recommend to run less demanding tasks on the latter architectures in parallel to two (Dual Core) or four (Quad Core) MRCI processes per node. The DFT/MRCI branch has been employed to study the low-lying singlet and triplet states of mini-n-β-carotenes (n =3, 5, 7, 9) and β-carotene (n =11) at the geometries of the ground state, the first excited triplet state, and the optically bright singlet state. The order of states depends heavily on the conjugation length and the nuclear geometry. The B1u+ state constitutes the S1 state in the vertical absorption spectrum of mini-3-β-carotene but switches order with the 2 A1g- state upon excited state relaxation. In the longer carotenes, near degeneracy or even root flipping between the B1u+ and B1u- states is observed whereas the 3 A1g- state is found to remain energetically above the optically bright B1u+ state at all nuclear geometries investigated here. The DFT/MRCI method is seen to underestimate the absolute excitation energies of the longer mini-β-carotenes but the energy gaps between the excited states are reproduced well. In addition to singlet data, triplet-triplet absorption energies are presented. For β-carotene, where these transition energies are known from experiment, excellent agreement with our calculations is observed.

  16. Parallel multireference configuration interaction calculations on mini-beta-carotenes and beta-carotene.

    PubMed

    Kleinschmidt, Martin; Marian, Christel M; Waletzke, Mirko; Grimme, Stefan

    2009-01-28

    We present a parallelized version of a direct selecting multireference configuration interaction (MRCI) code [S. Grimme and M. Waletzke, J. Chem. Phys. 111, 5645 (1999)]. The program can be run either in ab initio mode or as semiempirical procedure combined with density functional theory (DFT/MRCI). We have investigated the efficiency of the parallelization in case studies on carotenoids and porphyrins. The performance is found to depend heavily on the cluster architecture. While the speed-up on the older Intel Netburst technology is close to linear for up to 12-16 processes, our results indicate that it is not favorable to use all cores of modern Intel Dual Core or Quad Core processors simultaneously for memory intensive tasks. Due to saturation of the memory bandwidth, we recommend to run less demanding tasks on the latter architectures in parallel to two (Dual Core) or four (Quad Core) MRCI processes per node. The DFT/MRCI branch has been employed to study the low-lying singlet and triplet states of mini-n-beta-carotenes (n=3, 5, 7, 9) and beta-carotene (n=11) at the geometries of the ground state, the first excited triplet state, and the optically bright singlet state. The order of states depends heavily on the conjugation length and the nuclear geometry. The (1)B(u) (+) state constitutes the S(1) state in the vertical absorption spectrum of mini-3-beta-carotene but switches order with the 2 (1)A(g) (-) state upon excited state relaxation. In the longer carotenes, near degeneracy or even root flipping between the (1)B(u) (+) and (1)B(u) (-) states is observed whereas the 3 (1)A(g) (-) state is found to remain energetically above the optically bright (1)B(u) (+) state at all nuclear geometries investigated here. The DFT/MRCI method is seen to underestimate the absolute excitation energies of the longer mini-beta-carotenes but the energy gaps between the excited states are reproduced well. In addition to singlet data, triplet-triplet absorption energies are presented. For beta-carotene, where these transition energies are known from experiment, excellent agreement with our calculations is observed.

  17. Characterization of the HSiN HNSi system in its electronic ground state

    NASA Astrophysics Data System (ADS)

    Lind, Maria C.; Pickard, Frank C.; Ingels, Justin B.; Paul, Ankan; Yamaguchi, Yukio; Schaefer, Henry F.

    2009-03-01

    The electronic ground states (X˜Σ+1) of HSiN, HNSi, and the transition state connecting the two isomers were systematically studied using configuration interaction with single and double (CISD) excitations, coupled cluster with single and double (CCSD) excitations, CCSD with perturbative triple corrections [CCSD(T)], multireference complete active space self-consistent field (CASSCF), and internally contracted multireference configuration interaction (ICMRCI) methods. The correlation-consistent polarized valence (cc-pVXZ), augmented correlation-consistent polarized valence (aug-cc-pVXZ) (X=T,Q,5), correlation-consistent polarized core-valence (cc-pCVYZ), and augmented correlation-consistent polarized core-valence (aug-cc-pCVYZ) (Y=T,Q) basis sets were used. Via focal point analyses, we confirmed the HNSi isomer as the global minimum on the ground state HSiN HNSi zero-point vibrational energy corrected surface and is predicted to lie 64.7kcalmol-1 (22640cm-1, 2.81eV) below the HSiN isomer. The barrier height for the forward isomerization reaction (HSiN→HNSi) is predicted to be 9.7kcalmol-1, while the barrier height for the reverse process (HNSi→HSiN) is determined to be 74.4kcalmol-1. The dipole moments of the HSiN and HNSi isomers are predicted to be 4.36 and 0.26D, respectively. The theoretical vibrational isotopic shifts for the HSiN/DSiN and HNSi/DNSi isotopomers are in strong agreement with the available experimental values. The dissociation energy for HSiN [HSiN(X˜Σ+1)→H(S2)+SiN(XΣ+2)] is predicted to be D0=59.6kcalmol-1, whereas the dissociation energy for HNSi [HNSi(X˜Σ+1)→H(S2)+NSi(XΣ+2)] is predicted to be D0=125.0kcalmol-1 at the CCSD(T)/aug-cc-pCVQZ level of theory. Anharmonic vibrational frequencies computed using second order vibrational perturbation theory are in good agreement with available matrix isolation experimental data for both HSiN and HNSi isomers root mean squared derivation (RMSD=9cm-1).

  18. On the elimination of the electronic structure bottleneck in on the fly nonadiabatic dynamics for small to moderate sized (10-15 atom) molecules using fit diabatic representations based solely on ab initio electronic structure data: The photodissociation of phenol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu

    2016-01-14

    In this work, we demonstrate that for moderate sized systems, here a system with 13 atoms, global coupled potential energy surfaces defined for several electronic states over a wide energy range and for distinct regions of nuclear coordinate space characterized by distinct electron configurations, can be constructed with precise energetics and an excellent description of non-adiabatic interactions in all regions. This is accomplished using a recently reported algorithm for constructing quasi-diabatic representations, H{sup d}, of adiabatic electronic states coupled by conical intersections. In this work, the algorithm is used to construct an H{sup d} to describe the photodissociation of phenolmore » from its first and second excited electronic states. The representation treats all 33 internal degrees of freedom in an even handed manner. The ab initio adiabatic electronic structure data used to construct the fit are obtained exclusively from multireference configuration interaction with single and double excitation wave functions comprised of 88 × 10{sup 6} configuration state functions, at geometries determined by quasi-classical trajectories. Since the algorithm uses energy gradients and derivative couplings in addition to electronic energies to construct H{sup d}, data at only 7379 nuclear configurations are required to construct a representation, which describes all nuclear configurations involved in H atom photodissociation to produce the phenoxyl radical in its ground or first excited electronic state, with a mean unsigned energy error of 202.9 cm{sup −1} for electronic energies <60 000 cm{sup −1}.« less

  19. Cluster decomposition of full configuration interaction wave functions: A tool for chemical interpretation of systems with strong correlation

    NASA Astrophysics Data System (ADS)

    Lehtola, Susi; Tubman, Norm M.; Whaley, K. Birgitta; Head-Gordon, Martin

    2017-10-01

    Approximate full configuration interaction (FCI) calculations have recently become tractable for systems of unforeseen size, thanks to stochastic and adaptive approximations to the exponentially scaling FCI problem. The result of an FCI calculation is a weighted set of electronic configurations, which can also be expressed in terms of excitations from a reference configuration. The excitation amplitudes contain information on the complexity of the electronic wave function, but this information is contaminated by contributions from disconnected excitations, i.e., those excitations that are just products of independent lower-level excitations. The unwanted contributions can be removed via a cluster decomposition procedure, making it possible to examine the importance of connected excitations in complicated multireference molecules which are outside the reach of conventional algorithms. We present an implementation of the cluster decomposition analysis and apply it to both true FCI wave functions, as well as wave functions generated from the adaptive sampling CI algorithm. The cluster decomposition is useful for interpreting calculations in chemical studies, as a diagnostic for the convergence of various excitation manifolds, as well as as a guidepost for polynomially scaling electronic structure models. Applications are presented for (i) the double dissociation of water, (ii) the carbon dimer, (iii) the π space of polyacenes, and (iv) the chromium dimer. While the cluster amplitudes exhibit rapid decay with an increasing rank for the first three systems, even connected octuple excitations still appear important in Cr2, suggesting that spin-restricted single-reference coupled-cluster approaches may not be tractable for some problems in transition metal chemistry.

  20. Charge-transfer contributions to the excitonic coupling matrix element in BODIPY-based energy transfer cassettes

    NASA Astrophysics Data System (ADS)

    Spiegel, J. Dominik; Lyskov, Igor; Kleinschmidt, Martin; Marian, Christel M.

    2017-01-01

    BODIPY-based dyads serve as model systems for the investigation of excitation energy transfer (EET). Through-space EET is brought about by direct and exchange interactions between the transition densities of donor and acceptor localized states. The presence of a molecular linker gives rise to additional charge transfer (CT) contributions. Here, we present a novel approach for the calculation of the excitonic coupling matrix element (ECME) including CT contributions which is based on supermolecular one-electron transition density matrices (STD). The validity of the approach is assessed for a model system of two π -stacked ethylene molecules at varying intermolecular separation. Wave functions and electronic excitation energies of five EET cassettes comprising anthracene as exciton donor and BODIPY as exciton acceptor are obtained by the redesigned combined density functional theory and multireference configuration interaction (DFT/MRCI-R) method. CT contributions to the ECME are shown to be important in the covalently linked EET cassettes.

  1. FAST TRACK COMMUNICATION: Oscillation structures in elastic and electron capture cross sections for H+-H collisions in Debye plasmas

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Wang, J. G.; Krstic, P. S.; Janev, R. K.

    2010-10-01

    We find that the number of vibrational states in the ground potential of a H2+ molecular ion embedded in the Debye plasma and the number of Regge oscillations in the resonant charge transfer cross section of the H+ + H collision system in the plasma are quasi-conserved when the Debye radius D is larger than 1.4a0. The elastic and resonant charge transfer processes in the H+ + H collision have been studied in the 0.1 meV-100 eV collision energy range for a wide range of Debye radii using a highly accurate calculation based on the modified ab initio multireference configuration interaction code. Remarkable plasma screening effects have been found in both the molecular structure and the collision dynamics of this system. Shape resonances, Regge and glory oscillations have been found in the integral cross sections in the considered energy range even for strong interaction screening, showing their ubiquitous nature.

  2. Ab initio study on the ground and low-lying states of BAlk (Alk = Li, Na, K) molecules.

    PubMed

    Xiao, Ke-La; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang

    2014-10-02

    The potential energy curves (PECs) and dipole moment functions of (1)Π, (3)Π, (1)Σ(+), and (3)Σ(+) states of BAlk (Alk = Li, Na, K) are calculated using multireference configuration interaction method and large all-electron basis sets. The effects of inner-shell correlation electron for BAlk are considered. The ro-vibrational energy levels are obtained by solving the Schrödinger equation of nuclear motion based on the ab initio PECs. The spectroscopic parameters are determined from the ro-vibrational levels with Dunham expansion. The PECs are fitted into analytical potential energy functions using the Morse long-range potential function. The dipole moment functions for the states of BAlk are presented. The transition dipole moments for (1)Σ(+) → (1)Π and (3)Σ(+) → (3)Π states of BAlk are obtained. The interactions between the outermost electron of Alk and B 2p electrons for (1)Π, (3)Π, (1)Σ(+), and (3)Σ(+) states are also analyzed, respectively.

  3. Theoretical Studies of Dissociative Recombination of Electrons with SH+ Ions

    NASA Astrophysics Data System (ADS)

    Kashinski, D. O.; di Nallo, O. E.; Hickman, A. P.; Mezei, J. Zs.; Schneider, I. F.; Talbi, D.

    2015-05-01

    We are investigating the dissociative recombination (DR) of electrons with the molecular ion SH+. (The process is e- +SH+ --> S + H .) SH+ is found in the interstellar medium (ISM), and little is known concerning its interstellar chemistry. The abundance of SH+ in the ISM suggests that destruction processes, like DR, are inefficient. Understanding the role of DR as a destruction pathway for SH+ will lead to more accurate astrophysical models. Large active-space multi-reference configuration interaction (MRCI) electronic structure calculations were performed to obtain excited-state potential energy curves (PECs) for several values of SH separation. Excited Rydberg states have proven to be of importance. The block diagonalization method was used to disentangle interacting states, forming a diabatic representation of the PECs. Currently we are performing Multichannel Quantum Defect Theory (MQDT) dynamics calculations to obtain DR rates. The status of the work will be presented at the conference. Work supported by the French CNRS, the NSF, the XSEDE, and USMA.

  4. The low-lying electronic excitations in long polyenes: A PPP-MRD-CI study

    NASA Astrophysics Data System (ADS)

    Tavan, Paul; Schulten, Klaus

    1986-12-01

    A correct description of the electronic excitations in polyenes demands that electron correlation is accounted for correctly. Very large expansions are necessary including many-electron configurations with at least one, two, three, and four electrons promoted from the Hartree-Fock ground state. The enormous size of such expansions had prohibited accurate computations of the spectra for polyenes with more than ten π electrons. We present a multireference double excitation configuration interaction method (MRD-CI) which allows such computations for polyenes with up to 16 π electrons. We employ a Pariser-Parr-Pople (PPP) model Hamiltonian. For short polyenes with up to ten π electrons our calculations reproduce the excitation energies resulting from full-CI calculations. We extend our calculations to study the low-lying electronic excitations of the longer polyenes, in particular, the gap between the first optically forbidden and the first optically allowed excited singlet state. The size of this gap is shown to depend strongly on the degree of bond alternation and on the dielectric shielding of the Coulomb repulsion between the π electrons.

  5. Systematic Expansion of Active Spaces beyond the CASSCF Limit: A GASSCF/SplitGAS Benchmark Study.

    PubMed

    Vogiatzis, Konstantinos D; Li Manni, Giovanni; Stoneburner, Samuel J; Ma, Dongxia; Gagliardi, Laura

    2015-07-14

    The applicability and accuracy of the generalized active space self-consistent field, (GASSCF), and (SplitGAS) methods are presented. The GASSCF method enables the exploration of larger active spaces than with the conventional complete active space SCF, (CASSCF), by fragmentation of a large space into subspaces and by controlling the interspace excitations. In the SplitGAS method, the GAS configuration interaction, CI, expansion is further partitioned in two parts: the principal, which includes the most important configuration state functions, and an extended, containing less relevant but not negligible ones. An effective Hamiltonian is then generated, with the extended part acting as a perturbation to the principal space. Excitation energies of ozone, furan, pyrrole, nickel dioxide, and copper tetrachloride dianion are reported. Various partitioning schemes of the GASSCF and SplitGAS CI expansions are considered and compared with the complete active space followed by second-order perturbation theory, (CASPT2), and multireference CI method, (MRCI), or available experimental data. General guidelines for the optimum applicability of these methods are discussed together with their current limitations.

  6. Theoretical investigation of rotationally inelastic collisions of CH(X2Π) with hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2017-06-01

    We report calculations of state-to-state cross sections for collision-induced rotational transitions of CH(X2Π) with atomic hydrogen. These calculations employed the four adiabatic potential energy surfaces correlating CH(X2Π) + H(2S), computed in this work through the multi-reference configuration interaction method [MRCISD + Q(Davidson)]. Because of the presence of deep wells on three of the potential energy surfaces, the scattering calculations were carried out using the quantum statistical method of Manolopoulos and co-workers [Chem. Phys. Lett. 343, 356 (2001)]. The computed cross sections included contributions from only direct scattering since the CH2 collision complex is expected to decay predominantly to C + H2. Rotationally energy transfer rate constants were computed for this system since these are required for astrophysical modeling.

  7. A new analytical potential energy surface for the singlet state of He{sub 2}H{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Jingjuan; Zhang Qinggang; Yang Chuanlu

    2012-03-07

    The analytic potential energy surface (APES) for the exchange reaction of HeH{sup +} (X{sup 1}{Sigma}{sup +}) + He at the lowest singlet state 1{sup 1}A{sup /} has been built. The APES is expressed as Aguado-Paniagua function based on the many-body expansion. Using the adaptive non-linear least-squares algorithm, the APES is fitted from 15 682 ab initio energy points calculated with the multireference configuration interaction calculation with a large d-aug-cc-pV5Z basis set. To testify the new APES, we calculate the integral cross sections for He + H{sup +}He (v= 0, 1, 2, j= 0) {yields} HeH{sup +}+ He by means ofmore » quasi-classical trajectory and compare them with the previous result in literature.« less

  8. Theoretical Study of the B(sup 3) Sigma(sup -, sub u) - X(sup3)Sigma(sub g, sup -) and B"(sup 3)Pi(sub u) - X(sup 3)Sigma(sub g, sup -) Band Systems of S(sub 2)

    NASA Technical Reports Server (NTRS)

    Pradhan, Atul D.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Multireference configuration-interaction (MRCI) wavefunctions and potential energy curves have been calculated for the X(sup 3)Sigma(sub g,sup -), B(sup 3)Sigma(sub u, Sup -) and B"(sup 3)Pi((sub u) states of S(sub 2) using correlation consistent Gaussian basis sets. These wavefunctions are utilized to compute the the transition dipole moments of the B(sup 3)Sigma(sub g, sup -) - X(sup 3) Sigma(sub g, sup -) and B"(sup 3)Pi(sub u) - X(sup 3)Sigma(sub g, sup -) systems. Oscillator strengths, transition probabilities, and radiative lifetimes are computed for the X-B system and comparison is made with experimental data.

  9. Pulsed-field ionization zero electron kinetic energy spectrum of the ground electronic state of BeOBe+.

    PubMed

    Antonov, Ivan O; Barker, Beau J; Heaven, Michael C

    2011-01-28

    The ground electronic state of BeOBe(+) was probed using the pulsed-field ionization zero electron kinetic energy photoelectron technique. Spectra were rotationally resolved and transitions to the zero-point level, the symmetric stretch fundamental and first two bending vibrational levels were observed. The rotational state symmetry selection rules confirm that the ground electronic state of the cation is (2)Σ(g)(+). Detachment of an electron from the HOMO of neutral BeOBe results in little change in the vibrational or rotational constants, indicating that this orbital is nonbonding in nature. The ionization energy of BeOBe [65480(4) cm(-1)] was refined over previous measurements. Results from recent theoretical calculations for BeOBe(+) (multireference configuration interaction) were found to be in good agreement with the experimental data.

  10. The Theoretical Transition Probabilities Between the B(sup 3)Pi(sub g) and the A(sup 3)Sigma(Sup +, sub u), W(sup 3)Delta(sub u), B'(sup 3)Sigma(sup -, sub u) States of N2

    NASA Technical Reports Server (NTRS)

    Thuemmel, Helmar T.; Partridge, Harry; Huo, Winifred M.; Langhoff, Stephen (Technical Monitor)

    1995-01-01

    The electronic transition moment functions between the B(sup 3)Pi(sub g) and the A(sup 3)Sigma(sup +, sub u), W(sup 3)Delta(sub u), B'(sup 3)Sigma(sup -, sub u) states of N2 are studied using the internally contracted multireference configuration interaction (ICMRCI) method based upon complete active space SCF (CASSCF) reference wave-functions. The dependence of the moments on both the one and n-particle basis sets has been investigated in detail. The calculated radiative lifetimes for the vibrational levels of B(sup 3)Pi(sub g) are in excellent agreement with the most recent measurement of Euler and Pipkin (1983)

  11. Power Series Approximation for the Correlation Kernel Leading to Kohn-Sham Methods Combining Accuracy, Computational Efficiency, and General Applicability

    NASA Astrophysics Data System (ADS)

    Erhard, Jannis; Bleiziffer, Patrick; Görling, Andreas

    2016-09-01

    A power series approximation for the correlation kernel of time-dependent density-functional theory is presented. Using this approximation in the adiabatic-connection fluctuation-dissipation (ACFD) theorem leads to a new family of Kohn-Sham methods. The new methods yield reaction energies and barriers of unprecedented accuracy and enable a treatment of static (strong) correlation with an accuracy of high-level multireference configuration interaction methods but are single-reference methods allowing for a black-box-like handling of static correlation. The new methods exhibit a better scaling of the computational effort with the system size than rivaling wave-function-based electronic structure methods. Moreover, the new methods do not suffer from the problem of singularities in response functions plaguing previous ACFD methods and therefore are applicable to any type of electronic system.

  12. Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems

    PubMed Central

    2015-01-01

    We study the tree-tensor-network-state (TTNS) method with variable tensor orders for quantum chemistry. TTNS is a variational method to efficiently approximate complete active space (CAS) configuration interaction (CI) wave functions in a tensor product form. TTNS can be considered as a higher order generalization of the matrix product state (MPS) method. The MPS wave function is formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert space of the original CAS-CI problem. These matrices belong to active orbitals organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-like arrangement of the same orbitals. The tree-structure is advantageous since the distance between two arbitrary orbitals in the tree scales only logarithmically with the number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be beneficial from the computational costs point of view to keep strongly correlated orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement. The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement. PMID:25844072

  13. A second-order multi-reference perturbation method for molecular vibrations

    NASA Astrophysics Data System (ADS)

    Mizukami, Wataru; Tew, David P.

    2013-11-01

    We present a general multi-reference framework for treating strong correlation in vibrational structure theory, which we denote the vibrational active space self-consistent field (VASSCF) approach. Active configurations can be selected according to excitation level or the degrees of freedom involved, or both. We introduce a novel state-specific second-order multi-configurational perturbation correction that accounts for the remaining weak correlation between the vibrational modes. The resulting VASPT2 method is capable of accurately and efficiently treating strong correlation in the form of large anharmonic couplings, at the same time as correctly resolving resonances between states. These methods have been implemented in our new dynamics package DYNAMOL, which can currently treat up to four-body Hamiltonian coupling terms. We present a pilot application of the VASPT2 method to the trans isomer of formic acid. We have constructed a new analytic potential that reproduces frozen core CCSD(T)(F12*)/cc-pVDZ-F12 energies to within 0.25% RMSD over the energy range 0-15 000 cm-1. The computed VASPT2 fundamental transition energies are accurate to within 9 cm-1 RMSD from experimental values, which is close to the accuracy one can expect from a CCSD(T) potential energy surface.

  14. Bridging single and multireference coupled cluster theories with universal state selective formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaskaran-Nair, Kiran; Kowalski, Karol

    2013-05-28

    The universal state selective (USS) multireference approach is used to construct new energy functionals which offers a unique possibility of bridging single and multireference coupled cluster theories (SR/MRCC). These functionals, which can be used to develop iterative and non-iterative approaches, utilize a special form of the trial wavefunctions, which assure additive separability (or size-consistency) of the USS energies in the non-interacting subsystem limit. When the USS formalism is combined with approximate SRCC theories, the resulting formalism can be viewed as a size-consistent version of the method of moments of coupled cluster equations (MMCC) employing a MRCC trial wavefunction. Special casesmore » of the USS formulations, which utilize single reference state specific CC (V.V. Ivanov, D.I. Lyakh, L. Adamowicz, Phys. Chem. Chem. Phys. 11, 2355 (2009)) and tailored CC (T. Kinoshita, O. Hino, R.J. Bartlett, J. Chem. Phys. 123, 074106 (2005)) expansions are also discussed.« less

  15. Spectroscopic accuracy directly from quantum chemistry: application to ground and excited states of beryllium dimer.

    PubMed

    Sharma, Sandeep; Yanai, Takeshi; Booth, George H; Umrigar, C J; Chan, Garnet Kin-Lic

    2014-03-14

    We combine explicit correlation via the canonical transcorrelation approach with the density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods to compute a near-exact beryllium dimer curve, without the use of composite methods. In particular, our direct density matrix renormalization group calculations produce a well-depth of D(e) = 931.2 cm(-1) which agrees very well with recent experimentally derived estimates D(e) = 929.7±2 cm(-1) [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)] and D(e) = 934.6 cm(-1) [K. Patkowski, V. Špirko, and K. Szalewicz, Science 326, 1382 (2009)], as well the best composite theoretical estimates, D(e) = 938±15 cm(-1) [K. Patkowski, R. Podeszwa, and K. Szalewicz, J. Phys. Chem. A 111, 12822 (2007)] and D(e) = 935.1±10 cm(-1) [J. Koput, Phys. Chem. Chem. Phys. 13, 20311 (2011)]. Our results suggest possible inaccuracies in the functional form of the potential used at shorter bond lengths to fit the experimental data [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)]. With the density matrix renormalization group we also compute near-exact vertical excitation energies at the equilibrium geometry. These provide non-trivial benchmarks for quantum chemical methods for excited states, and illustrate the surprisingly large error that remains for 1 ¹Σ(g)⁻ state with approximate multi-reference configuration interaction and equation-of-motion coupled cluster methods. Overall, we demonstrate that explicitly correlated density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods allow us to fully converge to the basis set and correlation limit of the non-relativistic Schrödinger equation in small molecules.

  16. The A6Sigma+ - X6Sigma+ Transition of CrH, Einstein Coefficients and an Improved Description of the A State

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Ram, R. S.; Bernath, Peter F.; Parsons, C. G.; Galehouse, D.; Arnold, James O. (Technical Monitor)

    2001-01-01

    The spectrum of CrH has been reinvestigated in the 9000-15000/cm region using the Fourier transform spectrometer of the National Solar Observatory. The 1-0 and 1-1 bands of the A6Sigma+ - X6Sigma+ transition have been measured and improved spectroscopic constants have been determined. A value for the 2-0 band origin has been obtained from the band head using estimated spectroscopic constants. These data provide a set of much improved equilibrium vibrational and rotational constants for the A6Sigma+ state. An accurate description of the A-X transition has been obtained using a multi-reference configuration interaction approach. The inclusion of both scalar relativity and Cr 3s3p correlation are required to obtain a good description of both states. The ab initio computed Einstein coefficients and radiative lifetimes are reported.

  17. Theoretical Study of the Electric Dipole Moment Function of the CIO Molecule

    NASA Technical Reports Server (NTRS)

    Pettersson, Lars G. M.; Langhoff, Stephen R.; Chong, Delano P.

    1986-01-01

    The potential energy function and electric dipole moment function (EDMF) are computed for CIO Chi(sup 2)Pi using several different techniques to include electron correlation. The EDMF is used to compute Einstein coefficients, vibrational lifetimes, and dipole moments in higher vibrational levels. Remaining questions concerning the position of the maximum of the EDMF may be resolved through experimental measurement of dipole moments of higher vibrational levels. The band strength of the 1-0 fundamental transition is computed to be 12 +/- 2 /sq cm atm in good agreement with three experimental values, but larger than a recent value of 5 /sq cm atm determined from infrared heterodyne spectroscopy. The theoretical methods used include SCF, CASSCF, multireference singles plus doubles configuration interaction (MRCI) and contracted CI, coupled pair functional (CPF), and a modified version of the CPF method. The results obtained using the different methods are critically compared.

  18. Towards a converged barrier height for the entrance channel transition state of the N( 2D) + CH 4 reaction and its implication for the chemistry in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Ouk, Chanda-Malis; Zvereva-Loëte, Natalia; Bussery-Honvault, Béatrice

    2011-10-01

    The N( 2D) + CH 4 reaction appears to be a key reaction for the chemistry of Titan's atmosphere, opening the door to nitrile formation as recently observed by the Cassini-Huygens mission. Faced to the controversy concerning the existence or not of a potential barrier for this reaction, we have carried out accurate ab initio calculations by means of multi-state multi-reference configuration interaction (MS-MR-SDCI) method. These calculations have been partially corrected for the size-consistency errors (SCE) by Davidson, Pople or AQCC corrections. We suggest a barrier height of 3.86 ± 0.84 kJ/mol, including ZPE, for the entrance transition state, in good agreement with the experimental value. Its implication in Titan's atmopsheric chemistry is discussed.

  19. The energy separation between the classical and nonclassical isomers of protonated acetylene - An extensive study in one- and n-particle space saturation

    NASA Technical Reports Server (NTRS)

    Lindh, Roland; Rice, Julia E.; Lee, Timothy J.

    1991-01-01

    The energy separation between the classical and nonclassical forms of protonated acetylene has been reinvestigated in light of the recent experimentally deduced lower bound to this value of 6.0 kcal/mol. The objective of the present study is to use state-of-the-art ab initio quantum mechanical methods to establish this energy difference to within chemical accuracy (i.e., about 1 kcal/mol). The one-particle basis sets include up to g-type functions and the electron correlation methods include single and double excitation coupled-cluster (CCSD), the CCSD(T) extension, multireference configuration interaction, and the averaged coupled-pair functional methods. A correction for zero-point vibrational energies has also been included, yielding a best estimate for the energy difference between the classical and nonclassical forms of 3.7 + or - 1.3 kcal/mol.

  20. Spin-orbit quenching of the C+(2P) ion by collisions with para- and ortho-H2.

    PubMed

    Lique, François; Werfelli, Ghofran; Halvick, Philippe; Stoecklin, Thierry; Faure, Alexandre; Wiesenfeld, Laurent; Dagdigian, Paul J

    2013-05-28

    Spin-orbit (de-)excitation of C(+)((2)P) by collisions with H2, a key process for astrochemistry, is investigated. Quantum-mechanical calculations of collisions between C(+) ions and para- and ortho-H2 have been performed in order to determine the cross section for the C(+) (2)P3∕2 → (2)P1∕2 fine-structure transition at low and intermediate energies. The calculation are based on new ab initio potential energy surfaces obtained using the multireference configuration interaction method. Corresponding rate coefficients were obtained for temperatures ranging from 5 to 500 K. These rate coefficients are compared to previous estimations, and their impact is assessed through radiative transfer computation. They are found to increase the flux of the (2)P3∕2 → (2)P1∕2 line at 158 μm by up to 30% for typical diffuse interstellar cloud conditions.

  1. Bonding of Alkali-Alkaline Earth Molecules in the Lowest Σ^+ States of Doublet and Quartet Multiplicity

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Hauser, Andreas W.; Ernst, Wolfgang E.

    2016-06-01

    n the present study the ground state as well as the lowest ^4Σ^+ state were determined for 16 AK-AKE molecules. Multireference configuration interaction calculations were carried out in order to understand the bonding of diatomic alkali-alkaline earth (AK-AKE) molecules. The correlations between molecular properties (disociation energy, bond distances, electric dipole moment) and atomic properties (electronegativity, polarizability) will be discussed. A correlation between the dissociation energy and the dipole moment of the lowest ^4Σ^+ state was observed, while the dipole moment of the lowest ^2Σ^+ state does not show such a simple dependency. In this case an empirical relation could be established. The class of AK-AKE molecules was selected for this investigation due to their possible applications in ultracold molecular physics. J. V. Pototschnig, A. W. Hauser and W. E. Ernst, Phys. Chem. Chem. Phys., 2016,18, 5964-5973

  2. Electronic spectrum of the UO and UO(+) molecules.

    PubMed

    Tyagi, Rajni; Zhang, Zhiyong; Pitzer, Russell M

    2014-12-18

    Electronic theory calculations are applied to the study of the UO molecule and the UO(+) ion. Relativistic effective core potentials are used along with the accompanying valence spin-orbit operators. Polarized double-ς and triple-ς basis sets are used. Molecular orbitals are obtained from state-averaged multiconfiguration self-consistent field calculations and then used in multireference spin-orbit configuration interaction calculations with a number of millions of terms. The ground state of UO has open shells of 5f(3)7s(1), angular momentum Ω = 4, and a spin-orbit-induced avoided crossing near the equilibrium internuclear distance. Many UO excited states are studied with rotational constants, intensities, and experimental comparisons. The ground state of UO(+) is of 5f(3) nature with Ω = 9/2. Many UO(+) excited states are also studied. The open-shell nature of both UO and UO(+) leads to many low-lying excited states.

  3. In-medium similarity renormalization group for closed and open-shell nuclei

    NASA Astrophysics Data System (ADS)

    Hergert, H.

    2017-02-01

    We present a pedagogical introduction to the in-medium similarity renormalization group (IMSRG) framework for ab initio calculations of nuclei. The IMSRG performs continuous unitary transformations of the nuclear many-body Hamiltonian in second-quantized form, which can be implemented with polynomial computational effort. Through suitably chosen generators, it is possible to extract eigenvalues of the Hamiltonian in a given nucleus, or drive the Hamiltonian matrix in configuration space to specific structures, e.g., band- or block-diagonal form. Exploiting this flexibility, we describe two complementary approaches for the description of closed- and open-shell nuclei: the first is the multireference IMSRG (MR-IMSRG), which is designed for the efficient calculation of nuclear ground-state properties. The second is the derivation of non-empirical valence-space interactions that can be used as input for nuclear shell model (i.e., configuration interaction (CI)) calculations. This IMSRG+shell model approach provides immediate access to excitation spectra, transitions, etc, but is limited in applicability by the factorial cost of the CI calculations. We review applications of the MR-IMSRG and IMSRG+shell model approaches to the calculation of ground-state properties for the oxygen, calcium, and nickel isotopic chains or the spectroscopy of nuclei in the lower sd shell, respectively, and present selected new results, e.g., for the ground- and excited state properties of neon isotopes.

  4. Driven similarity renormalization group for excited states: A state-averaged perturbation theory

    NASA Astrophysics Data System (ADS)

    Li, Chenyang; Evangelista, Francesco A.

    2018-03-01

    The multireference driven similarity renormalization group (MRDSRG) approach [C. Li and F. A. Evangelista, J. Chem. Theory Comput. 11, 2097 (2015)] is generalized to treat quasi-degenerate electronic excited states. The new scheme, termed state-averaged (SA) MRDSRG, is a state-universal approach that considers an ensemble of quasi-degenerate states on an equal footing. Using the SA-MRDSRG framework, we implement second- (SA-DSRG-PT2) and third-order (SA-DSRG-PT3) perturbation theories. These perturbation theories can treat a manifold of near-degenerate states at the cost of a single state-specific computation. At the same time, they have several desirable properties: (1) they are intruder-free and size-extensive, (2) their energy expressions can be evaluated non-iteratively and require at most the three-body density cumulant of the reference states, and (3) the reference states are allowed to relax in the presence of dynamical correlation effects. Numerical benchmarks on the potential energy surfaces of lithium fluoride, ammonia, and the penta-2,4-dieniminium cation reveal that the SA-DSRG-PT2 method yields results with accuracy similar to that of other second-order quasi-degenerate perturbation theories. The SA-DSRG-PT3 results are instead consistent with those from multireference configuration interaction with singles and doubles (MRCISD). Finally, we compute the vertical excitation energies of (E,E)-1,3,5,7-octatetraene. The ordering of the lowest three states is predicted to be 2 1Ag-<1 1Bu+<1 1Bu- by both SA-DSRG-PT2 and SA-DSRG-PT3, in accordance with MRCISD plus Davidson correction.

  5. Alternative definition of excitation amplitudes in multi-reference state-specific coupled cluster

    NASA Astrophysics Data System (ADS)

    Garniron, Yann; Giner, Emmanuel; Malrieu, Jean-Paul; Scemama, Anthony

    2017-04-01

    A central difficulty of state-specific Multi-Reference Coupled Cluster (MR-CC) in the multi-exponential Jeziorski-Monkhorst formalism concerns the definition of the amplitudes of the single and double excitation operators appearing in the exponential wave operators. If the reference space is a complete active space (CAS), the number of these amplitudes is larger than the number of singly and doubly excited determinants on which one may project the eigenequation, and one must impose additional conditions. The present work first defines a state-specific reference-independent operator T˜ ^ m which acting on the CAS component of the wave function |Ψ0m⟩ maximizes the overlap between (1 +T˜ ^ m ) |Ψ0m⟩ and the eigenvector of the CAS-SD (Singles and Doubles) Configuration Interaction (CI) matrix |ΨCAS-SDm⟩ . This operator may be used to generate approximate coefficients of the triples and quadruples, and a dressing of the CAS-SD CI matrix, according to the intermediate Hamiltonian formalism. The process may be iterated to convergence. As a refinement towards a strict coupled cluster formalism, one may exploit reference-independent amplitudes provided by (1 +T˜ ^ m ) |Ψ0m⟩ to define a reference-dependent operator T^ m by fitting the eigenvector of the (dressed) CAS-SD CI matrix. The two variants, which are internally uncontracted, give rather similar results. The new MR-CC version has been tested on the ground state potential energy curves of 6 molecules (up to triple-bond breaking) and two excited states. The non-parallelism error with respect to the full-CI curves is of the order of 1 mEh.

  6. Spin-Orbit Effect on the Molecular Properties of TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4): A Density Functional Theory and Ab Initio Study.

    PubMed

    Moon, Jiwon; Kim, Joonghan

    2016-09-29

    Density functional theory (DFT) and ab initio calculations, including spin-orbit coupling (SOC), were performed to investigate the spin-orbit (SO) effect on the molecular properties of tellurium halides, TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4). SOC elongates the Te-X bond and slightly reduces the vibrational frequencies. Consideration of SOC leads to better agreement with experimental values. Møller-Plesset second-order perturbation theory (MP2) seriously underestimates the Te-X bond lengths. In contrast, B3LYP significantly overestimates them. SO-PBE0 and multireference configuration interactions with the Davidson correction (MRCI+Q), which include SOC via a state-interaction approach, give the Te-I bond length of TeI2 that matches the experimental value. On the basis of the calculated thermochemical energy and optimized molecular structure, TeI4 is unlikely to be stable. The use of PBE0 including SOC is strongly recommended for predicting the molecular properties of Te-containing compounds.

  7. Ab initio calculation of the electronic structures of the (7)Sigma+ ground and A (7)Pi and a (5)Sigma+ excited states of MnH.

    PubMed

    Tomonari, Mutsumi; Nagashima, Umpei; Hirano, Tsuneo

    2009-04-21

    Electronic structures and molecular constants of the ground (7)Sigma(+) and low-lying A (7)Pi and a (5)Sigma(+) electronic excited states of the MnH molecule were studied by multireference single and double excitation configuration interaction (MR-SDCI) with Davidson's correction (+Q) calculations under exact C(infinity v) symmetry using Slater-type basis sets. To correctly describe the (7)Sigma(+) electronic ground state, X (7)Sigma(+), at the MR-SDCI+Q calculation, we employed a large number of reference configurations in terms of the state-averaged complete active space self-consistent field (CASSCF) orbitals, taking into account the contribution from the B (7)Sigma(+) excited state. The A (7)Pi and a (5)Sigma(+) states can well be described by the MR-SDCI wave functions based on the CASSCF orbitals obtained for the lowest state only. In the MR-SDCI+Q, calculations of the X (7)Sigma(+), A (7)Pi, and a (5)Sigma(+) states required 16, 7, and 17 reference configurations, respectively. Molecular constants, i.e., r(e) and omega(e) of these states and excitation energy from the X (7)Sigma(+) state, obtained at the MR-SDCI+Q level, showed a good agreement with experimental values. The small remaining differences may be accounted for by taking relativistic effects into account.

  8. Ab initio calculation of the electronic structures of the 7∑+ ground and A 7Π and a 5∑+ excited states of MnH

    NASA Astrophysics Data System (ADS)

    Tomonari, Mutsumi; Nagashima, Umpei; Hirano, Tsuneo

    2009-04-01

    Electronic structures and molecular constants of the ground ∑7+ and low-lying A 7Π and a ∑5+ electronic excited states of the MnH molecule were studied by multireference single and double excitation configuration interaction (MR-SDCI) with Davidson's correction (+Q) calculations under exact C∞v symmetry using Slater-type basis sets. To correctly describe the ∑7+ electronic ground state, X ∑7+, at the MR-SDCI+Q calculation, we employed a large number of reference configurations in terms of the state-averaged complete active space self-consistent field (CASSCF) orbitals, taking into account the contribution from the B ∑7+ excited state. The A 7Π and a ∑5+ states can well be described by the MR-SDCI wave functions based on the CASSCF orbitals obtained for the lowest state only. In the MR-SDCI+Q, calculations of the X ∑7+, A 7Π, and a ∑5+ states required 16, 7, and 17 reference configurations, respectively. Molecular constants, i.e., re and ωe of these states and excitation energy from the X ∑7+ state, obtained at the MR-SDCI+Q level, showed a good agreement with experimental values. The small remaining differences may be accounted for by taking relativistic effects into account.

  9. Configuration interaction studies on the spectroscopic properties of PbO including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Luo; Rui, Li; Zhiqiang, Gai; RuiBo, Ai; Hongmin, Zhang; Xiaomei, Zhang; Bing, Yan

    2016-07-01

    Lead oxide (PbO), which plays the key roles in a range of research fields, has received a great deal of attention. Owing to the large density of electronic states and heavy atom Pb including in PbO, the excited states of the molecule have not been well studied. In this work, high level multireference configuration interaction calculations on the low-lying states of PbO have been carried out by utilizing the relativistic effective core potential. The effects of the core-valence correlation correction, the Davidson modification, and the spin-orbital coupling on the electronic structure of the PbO molecule are estimated. The potential energy curves of 18 Λ-S states correlated to the lowest dissociation limit (Pb (3Pg) + O(3Pg)) are reported. The calculated spectroscopic parameters of the electronic states below 30000 cm-1, for instance, X1Σ+, 13Σ+, and 13Σ-, and their spin-orbit coupling interaction, are compared with the experimental results, and good agreements are derived. The dipole moments of the 18 Λ-S states are computed with the configuration interaction method, and the calculated dipole moments of X1Σ+ and 13Σ+ are consistent with the previous experimental results. The transition dipole moments from 11Π, 21Π, and 21Σ+ to X1Σ+ and other singlet excited states are estimated. The radiative lifetime of several low-lying vibrational levels of 11Π, 21Π, and 21Σ+ states are evaluated. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404180 and 11574114), the Natural Science Foundation of Heilongjiang Province, China (Grant No. A2015010), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province, China (Grant No. UNPYSCT-2015095), and the Natural Science Foundation of Jilin Province, China (Grant No. 20150101003JC).

  10. Gamow-Teller response in the configuration space of a density-functional-theory-rooted no-core configuration-interaction model

    NASA Astrophysics Data System (ADS)

    Konieczka, M.; Kortelainen, M.; Satuła, W.

    2018-03-01

    Background: The atomic nucleus is a unique laboratory in which to study fundamental aspects of the electroweak interaction. This includes a question concerning in medium renormalization of the axial-vector current, which still lacks satisfactory explanation. Study of spin-isospin or Gamow-Teller (GT) response may provide valuable information on both the quenching of the axial-vector coupling constant as well as on nuclear structure and nuclear astrophysics. Purpose: We have performed a seminal calculation of the GT response by using the no-core configuration-interaction approach rooted in multireference density functional theory (DFT-NCCI). The model treats properly isospin and rotational symmetries and can be applied to calculate both the nuclear spectra and transition rates in atomic nuclei, irrespectively of their mass and particle-number parity. Methods: The DFT-NCCI calculation proceeds as follows: First, one builds a configuration space by computing relevant, for a given physical problem, (multi)particle-(multi)hole Slater determinants. Next, one applies the isospin and angular-momentum projections and performs the isospin and K mixing in order to construct a model space composed of linearly dependent states of good angular momentum. Eventually, one mixes the projected states by solving the Hill-Wheeler-Griffin equation. Results: The method is applied to compute the GT strength distribution in selected N ≈Z nuclei including the p -shell 8Li and 8Be nuclei and the s d -shell well-deformed nucleus 24Mg. In order to demonstrate a flexibility of the approach we present also a calculation of the superallowed GT β decay in doubly-magic spherical 100Sn and the low-spin spectrum in 100In. Conclusions: It is demonstrated that the DFT-NCCI model is capable of capturing the GT response satisfactorily well by using a relatively small configuration space, exhausting simultaneously the GT sum rule. The model, due to its flexibility and broad range of applicability, may either serve as a complement or even as an alternative to other theoretical approaches, including the conventional nuclear shell model.

  11. A non-JKL density matrix functional for intergeminal correlation between closed-shell geminals from analysis of natural orbital configuration interaction expansions

    NASA Astrophysics Data System (ADS)

    van Meer, R.; Gritsenko, O. V.; Baerends, E. J.

    2018-03-01

    Almost all functionals that are currently used in density matrix functional theory have been created by some a priori ansatz that generates approximations to the second-order reduced density matrix (2RDM). In this paper, a more consistent approach is used: we analyze the 2RDMs (in the natural orbital basis) of rather accurate multi-reference configuration interaction expansions for several small molecules (CH4, NH3, H2O, FH, and N2) and use the knowledge gained to generate new functionals. The analysis shows that a geminal-like structure is present in the 2RDMs, even though no geminal theory has been applied from the onset. It is also shown that the leading non-geminal dynamical correlation contributions are generated by a specific set of double excitations. The corresponding determinants give rise to non-JKL (non Coulomb/Exchange like) multipole-multipole dispersive attractive terms between geminals. Due to the proximity of the geminals, these dispersion terms are large and cannot be omitted, proving pure JKL functionals to be essentially deficient. A second correction emerges from the observation that the "normal" geminal-like exchange between geminals breaks down when one breaks multiple bonds. This problem can be fixed by doubling the exchange between bond broken geminals, effectively restoring the often physically correct high-spin configurations on the bond broken fragments. Both of these corrections have been added to the commonly used antisymmetrized product of strongly orthogonal geminals functional. The resulting non-JKL functional Extended Löwdin-Shull Dynamical-Multibond is capable of reproducing complete active space self-consistent field curves, in which one active orbital is used for each valence electron.

  12. Accounting for the exact degeneracy and quasidegeneracy in the automerization of cyclobutadiene via multireference coupled-cluster methods.

    PubMed

    Li, Xiangzhu; Paldus, Josef

    2009-09-21

    The automerization of cyclobutadiene (CBD) is employed to test the performance of the reduced multireference (RMR) coupled-cluster (CC) method with singles and doubles (RMR CCSD) that employs a modest-size MR CISD wave function as an external source for the most important (primary) triples and quadruples in order to account for the nondynamic correlation effects in the presence of quasidegeneracy, as well as of its perturbatively corrected version accounting for the remaining (secondary) triples [RMR CCSD(T)]. The experimental results are compared with those obtained by the standard CCSD and CCSD(T) methods, by the state universal (SU) MR CCSD and its state selective or state specific (SS) version as formulated by Mukherjee et al. (SS MRCC or MkMRCC) and, wherever available, by the Brillouin-Wigner MRCC [MR BWCCSD(T)] method. Both restricted Hartree-Fock (RHF) and multiconfigurational self-consistent field (MCSCF) molecular orbitals are employed. For a smaller STO-3G basis set we also make a comparison with the exact full configuration interaction (FCI) results. Both fundamental vibrational energies-as obtained via the integral averaging method (IAM) that can handle anomalous potentials and automatically accounts for anharmonicity- and the CBD automerization barrier for the interconversion of the two rectangular structures are considered. It is shown that the RMR CCSD(T) potential has the smallest nonparallelism error relative to the FCI potential and the corresponding fundamental vibrational frequencies compare reasonably well with the experimental ones and are very close to those recently obtained by other authors. The effect of anharmonicity is assessed using the second-order perturbation theory (MP2). Finally, the invariance of the RMR CC methods with respect to orbital rotations is also examined.

  13. Simulation of the single-vibronic-level emission spectrum of HPS.

    PubMed

    Mok, Daniel K W; Lee, Edmond P F; Chau, Foo-tim; Dyke, John M

    2014-05-21

    We have computed the potential energy surfaces of the X¹A' and ùA" states of HPS using the explicitly correlated multi-reference configuration interaction (MRCI-F12) method, and Franck-Condon factors between the two states, which include anharmonicity and Duschinsky rotation, with the aim of testing the assignment of the recently reported single-vibronic-level (SVL) emission spectrum of HPS [R. Grimminger, D. J. Clouthier, R. Tarroni, Z. Wang, and T. J. Sears, J. Chem. Phys. 139, 174306 (2013)]. These are the highest level calculations on these states yet reported. It is concluded that our spectral simulation supports the assignments of the molecular carrier, the electronic states involved and the vibrational structure of the experimental laser induced fluorescence, and SVL emission spectra proposed by Grimminger et al. [J. Chem. Phys. 139, 174306 (2013)]. However, there remain questions unanswered regarding the relative electronic energies of the two states and the geometry of the excited state of HPS.

  14. Photodissociation of CS from Excited Rovibrational Levels

    NASA Astrophysics Data System (ADS)

    Pattillo, R. J.; Cieszewski, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.; McCann, J. F.; McLaughlin, B. M.

    2018-05-01

    Accurate photodissociation cross sections have been computed for transitions from the X 1Σ+ ground electronic state of CS to six low-lying excited electronic states. New ab initio potential curves and transition dipole moment functions have been obtained for these computations using the multi-reference configuration interaction approach with the Davidson correction (MRCI+Q) and aug-cc-pV6Z basis sets. State-resolved cross sections have been computed for transitions from nearly the full range of rovibrational levels of the X 1Σ+ state and for photon wavelengths ranging from 500 Å to threshold. Destruction of CS via predissociation in highly excited electronic states originating from the rovibrational ground state is found to be unimportant. Photodissociation cross sections are presented for temperatures in the range between 1000 and 10,000 K, where a Boltzmann distribution of initial rovibrational levels is assumed. Applications of the current computations to various astrophysical environments are briefly discussed focusing on photodissociation rates due to the standard interstellar and blackbody radiation fields.

  15. Collision induced broadening and shifting of the H and K lines of Ca+ at low temperature

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Zhang, Rui; Shen, Yong; Liu, Qu; Zou, Hongxin; Yan, Bing

    2017-09-01

    Multireference configuration interaction method was used to compute the potential energy curves of Λ-S states correlating with lowest three atomic limits in Ca+-He molecular collision system. The potential energy curves of nine Ω states were obtained with inclusion of spin-orbit coupling. And the electric dipole and quadrupole moment matrix elements between excited states and ground state were also computed. Furthermore, with aid of the Anderson-Talman theory we calculated the broadening and shifting coefficients for Ca+-He spectral lines in the low temperature regime. For H line, α = 0.303 × 10-20 cm-1/cm-3, β = -0.0527 × 10-20cm-1/cm-3; For K line, α = 0.233 × 10-20cm-1/cm-3, β = -0.0402 × 10-20cm-1/cm-3 These results are helpful to understand the collision effects induced by He atom in further spectra investigations of cold Ca+ ions.

  16. Dissociative recombination of HCl+

    NASA Astrophysics Data System (ADS)

    Larson, Åsa; Fonseca dos Santos, Samantha; E. Orel, Ann

    2017-08-01

    The dissociative recombination of HCl+, including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0 , to the first three excited vibrational states, v = 1 , v = 2 , and v = 3 , are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.

  17. Quantum computing applied to calculations of molecular energies: CH2 benchmark.

    PubMed

    Veis, Libor; Pittner, Jiří

    2010-11-21

    Quantum computers are appealing for their ability to solve some tasks much faster than their classical counterparts. It was shown in [Aspuru-Guzik et al., Science 309, 1704 (2005)] that they, if available, would be able to perform the full configuration interaction (FCI) energy calculations with a polynomial scaling. This is in contrast to conventional computers where FCI scales exponentially. We have developed a code for simulation of quantum computers and implemented our version of the quantum FCI algorithm. We provide a detailed description of this algorithm and the results of the assessment of its performance on the four lowest lying electronic states of CH(2) molecule. This molecule was chosen as a benchmark, since its two lowest lying (1)A(1) states exhibit a multireference character at the equilibrium geometry. It has been shown that with a suitably chosen initial state of the quantum register, one is able to achieve the probability amplification regime of the iterative phase estimation algorithm even in this case.

  18. Electronic and spectroscopic characterizations of SNP isomers

    NASA Astrophysics Data System (ADS)

    Trabelsi, Tarek; Al Mogren, Muneerah Mogren; Hochlaf, Majdi; Francisco, Joseph S.

    2018-02-01

    High-level ab initio electronic structure calculations were performed to characterize SNP isomers. In addition to the known linear SNP, cyc-PSN, and linear SPN isomers, we identified a fourth isomer, linear PSN, which is located ˜2.4 eV above the linear SNP isomer. The low-lying singlet and triplet electronic states of the linear SNP and SPN isomers were investigated using a multi-reference configuration interaction method and large basis set. Several bound electronic states were identified. However, their upper rovibrational levels were predicted to pre-dissociate, leading to S + PN, P + NS products, and multi-step pathways were discovered. For the ground states, a set of spectroscopic parameters were derived using standard and explicitly correlated coupled-cluster methods in conjunction with augmented correlation-consistent basis sets extrapolated to the complete basis set limit. We also considered scalar and core-valence effects. For linear isomers, the rovibrational spectra were deduced after generation of their 3D-potential energy surfaces along the stretching and bending coordinates and variational treatments of the nuclear motions.

  19. Dissociative recombination of HCl.

    PubMed

    Larson, Åsa; Fonseca Dos Santos, Samantha; E Orel, Ann

    2017-08-28

    The dissociative recombination of HCl + , including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0, to the first three excited vibrational states, v = 1, v = 2, and  v = 3, are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.

  20. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Dezhi; Kuang, Xiaoyu, E-mail: scu-kuang@163.com; Gao, Yufeng

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the {sup 2}Σ{sup +} ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Åmore » and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.« less

  1. Water-chromophore electron transfer determines the photochemistry of cytosine and cytidine.

    PubMed

    Szabla, Rafał; Kruse, Holger; Šponer, Jiří; Góra, Robert W

    2017-07-21

    Many of the UV-induced phenomena observed experimentally for aqueous cytidine were lacking the mechanistic interpretation for decades. These processes include the substantial population of the puzzling long-lived dark state, photohydration, cytidine to uridine conversion and oxazolidinone formation. Here, we present quantum-chemical simulations of excited-state spectra and potential energy surfaces of N1-methylcytosine clustered with two water molecules using the second-order approximate coupled cluster (CC2), complete active space with second-order perturbation theory (CASPT2), and multireference configuration interaction with single and double excitation (MR-CISD) methods. We argue that the assignment of the long-lived dark state to a singlet nπ* excitation involving water-chromophore electron transfer might serve as an explanation for the numerous experimental observations. While our simulated spectra for the state are in excellent agreement with experimentally acquired data, the electron-driven proton transfer process occurring on the surface may initiate the subsequent damage in the vibrationally hot ground state of the chromophore.

  2. Nonadiabatic Photodynamics of a Retinal Model in Polar and Nonpolar Environment

    PubMed Central

    2013-01-01

    The nonadiabatic photodynamics of the all-trans-2,4-pentadiene-iminium cation (protonated Schiff base 3, PSB3) and the all-trans-3-methyl-2,4-pentadiene-iminium cation (MePSB3) were investigated in the gas phase and in polar (aqueous) and nonpolar (n-hexane) solutions by means of surface hopping using a multireference configuration-interaction (MRCI) quantum mechanical/molecular mechanics (QM/MM) level. Spectra, lifetimes for radiationless deactivation to the ground state, and structural and electronic parameters are compared. A strong influence of the polar solvent on the location of the crossing seam, in particular in the bond length alternation (BLA) coordinate, is found. Additionally, inclusion of the polar solvent changes the orientation of the intersection cone from sloped in the gas phase to peaked, thus enhancing considerably its efficiency for deactivation of the molecular system to the ground state. These factors cause, especially for MePSB3, a substantial decrease in the lifetime of the excited state despite the steric inhibition by the solvent. PMID:23470211

  3. Relativistic Prolapse-Free Gaussian Basis Sets of Quadruple-ζ Quality: (aug-)RPF-4Z. III. The f-Block Elements.

    PubMed

    Teodoro, Tiago Quevedo; Visscher, Lucas; da Silva, Albérico Borges Ferreira; Haiduke, Roberto Luiz Andrade

    2017-03-14

    The f-block elements are addressed in this third part of a series of prolapse-free basis sets of quadruple-ζ quality (RPF-4Z). Relativistic adapted Gaussian basis sets (RAGBSs) are used as primitive sets of functions while correlating/polarization (C/P) functions are chosen by analyzing energy lowerings upon basis set increments in Dirac-Coulomb multireference configuration interaction calculations with single and double excitations of the valence spinors. These function exponents are obtained by applying the RAGBS parameters in a polynomial expression. Moreover, through the choice of C/P characteristic exponents from functions of lower angular momentum spaces, a reduction in the computational demand is attained in relativistic calculations based on the kinetic balance condition. The present study thus complements the RPF-4Z sets for the whole periodic table (Z ≤ 118). The sets are available as Supporting Information and can also be found at http://basis-sets.iqsc.usp.br .

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, James B.

    We report the third in a series of ’exact’ quantum Monte Carlo calculations for the potential energy of the saddle point of the barrier for the reaction H + H{sub 2} → H{sub 2} + H. The barrier heights determined are 9.61 ± 0.01 in 1992/94, 9.608 ± 0.001 in 2003, and 9.6089 ± 0.0001 in 2016 (this work), all in kcal/mole and successively a factor of ten more accurate. The new value is below the lowest value from explicitly correlated Gaussian calculations and within the estimated limits of extrapolated multireference configuration calculations.

  5. An improved quasi-diabatic representation of the 1, 2, 3{sup 1}A coupled adiabatic potential energy surfaces of phenol in the full 33 internal coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Malbon, Christopher L., E-mail: clmalbon@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu

    2016-03-28

    In a recent work we constructed a quasi-diabatic representation, H{sup d}, of the 1, 2, 3{sup 1}A adiabatic states of phenol from high level multireference single and double excitation configuration interaction electronic structure data, energies, energy gradients, and derivative couplings. That H{sup d} accurately describes surface minima, saddle points, and also regions of strong nonadiabatic interactions, reproducing the locus of conical intersection seams and the coordinate dependence of the derivative couplings. The present work determines the accuracy of H{sup d} for describing phenol photodissociation. Additionally, we demonstrate that a modest energetic shift of two diabats yields a quantifiably more accuratemore » H{sup d} compared with experimental energetics. The analysis shows that in favorable circumstances it is possible to use single point energies obtained from the most reliable electronic structure methods available, including methods for which the energy gradients and derivative couplings are not available, to improve the quality of a global representation of several coupled potential energy surfaces. Our data suggest an alternative interpretation of kinetic energy release measurements near λ{sub phot} ∼ 248 nm.« less

  6. Theoretical study of the H2 reaction with a Pt4 (111) cluster

    NASA Astrophysics Data System (ADS)

    Cruz, A.; Bertin, V.; Poulain, E.; Benitez, J. I.; Castillo, S.

    2004-04-01

    The Cs symmetry reaction of the H2 molecule on a Pt4 (111) clusters, has been studied using ab initio multiconfiguration self-consistent field plus extensive multireference configuration interaction variational and perturbative calculations. The H2 interaction by the vertex and by the base of a tetrahedral Pt4 cluster were studied in ground and excited triplet and singlet states (closed and open shells), where the reaction curves are obtained through many avoided crossings. The Pt4 cluster captures and activates the hydrogen molecule; it shows a similar behavior compared with other Ptn (n=1,2,3) systems. The Pt4 cluster in their lowest five open and closed shell electronic states: 3B2, 1B2, 1A1 3A1, 1A1, respectively, may capture and dissociate the H2 molecule without activation barriers for the hydrogen molecule vertex approach. For the threefolded site reaction, i.e., by the base, the situation is different, the hydrogen adsorption presents some barriers. The potential energy minima occur outside and inside the cluster, with strong activation of the H-H bond. In all cases studied, the Pt4 cluster does not absorb the hydrogen molecule.

  7. Multireference - Møller-Plesset Perturbation Theory Results on Levels and Transition Rates in Al-like Ions of Iron Group Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santana, J A; Ishikawa, Y; Tr�abert, E

    2009-02-26

    Ground configuration and low-lying levels of Al-like ions contribute to a variety of laboratory and solar spectra, but the available information in databases are neither complete not necessarily correct. We have performed multireference Moeller-Plesset perturbation theory calculations that approach spectroscopic accuracy in order to check the information that databases hold on the 40 lowest levels of Al-Like ions of iron group elements (K through Ge), and to provide input for the interpretation of concurrent experiments. Our results indicate problems of the database holdings on the levels of the lowest quartet levels in the lighter elements of the range studied. Themore » results of our calculations of the decay rates of five long-lived levels (3s{sup 2}3p {sup 2}p{sup o}{sub 3/2}, 3s3p{sup 2} {sup 4}P{sup o} J and 3s3p3d {sup 4}F{sup o}{sub 9/2}) are compared with lifetime data from beam-foil, electron beam ion trap and heavy-ion storage ring experiments.« less

  8. Theoretical Study on the Photoelectron Spectra of Ln(COT)2-: Lanthanide Dependence of the Metal-Ligand Interaction.

    PubMed

    Nakajo, Erika; Masuda, Tomohide; Yabushita, Satoshi

    2016-12-08

    We have performed a theoretical analysis of the recently reported photoelectron (PE) spectra of the series of sandwich complex anions Ln(COT) 2 - (Ln = La-Lu, COT = 1,3,5,7-cyclooctatetraene), focusing on the Ln dependence of the vertical detachment energies. For most Ln, the π molecular orbitals, largely localized on the COT ligands, have the energy order of e 1g < e 1u < e 2g < e 2u as in the actinide analogues, reflecting the substantial orbital interaction with the Ln 5d and 5p orbitals. Thus, it would be expected that the lanthanide contraction would increase the orbital interaction so that the overlaps between the COT π and Ln atomic orbitals tend to increase across the series. However, the PE spectra and theoretical calculations were not consistent with this expectation, and the details have been clarified in this study. Furthermore, the energy level splitting patterns of the anion and neutral complexes have been studied by multireference ab initio methods, and the X peak splittings observed in the PE spectra only for the middle-range Ln complexes were found to be due to the specific interaction between the Ln 4f and ligand π orbitals of the neutral complexes in e 2u symmetry. Because the magnitude of this 4f-ligand interaction depends critically on the final state 4f electron configuration and the spin state, a significant Ln dependence in the PE spectra is explained.

  9. Robust and Efficient Spin Purification for Determinantal Configuration Interaction.

    PubMed

    Fales, B Scott; Hohenstein, Edward G; Levine, Benjamin G

    2017-09-12

    The limited precision of floating point arithmetic can lead to the qualitative and even catastrophic failure of quantum chemical algorithms, especially when high accuracy solutions are sought. For example, numerical errors accumulated while solving for determinantal configuration interaction wave functions via Davidson diagonalization may lead to spin contamination in the trial subspace. This spin contamination may cause the procedure to converge to roots with undesired ⟨Ŝ 2 ⟩, wasting computer time in the best case and leading to incorrect conclusions in the worst. In hopes of finding a suitable remedy, we investigate five purification schemes for ensuring that the eigenvectors have the desired ⟨Ŝ 2 ⟩. These schemes are based on projection, penalty, and iterative approaches. All of these schemes rely on a direct, graphics processing unit-accelerated algorithm for calculating the S 2 c matrix-vector product. We assess the computational cost and convergence behavior of these methods by application to several benchmark systems and find that the first-order spin penalty method is the optimal choice, though first-order and Löwdin projection approaches also provide fast convergence to the desired spin state. Finally, to demonstrate the utility of these approaches, we computed the lowest several excited states of an open-shell silver cluster (Ag 19 ) using the state-averaged complete active space self-consistent field method, where spin purification was required to ensure spin stability of the CI vector coefficients. Several low-lying states with significant multiply excited character are predicted, suggesting the value of a multireference approach for modeling plasmonic nanomaterials.

  10. Communication: An accurate global potential energy surface for the ground electronic state of ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawes, Richard, E-mail: dawesr@mst.edu, E-mail: hguo@unm.edu; Lolur, Phalgun; Li, Anyang

    We report a new full-dimensional and global potential energy surface (PES) for the O + O{sub 2} → O{sub 3} ozone forming reaction based on explicitly correlated multireference configuration interaction (MRCI-F12) data. It extends our previous [R. Dawes, P. Lolur, J. Ma, and H. Guo, J. Chem. Phys. 135, 081102 (2011)] dynamically weighted multistate MRCI calculations of the asymptotic region which showed the widely found submerged reef along the minimum energy path to be the spurious result of an avoided crossing with an excited state. A spin-orbit correction was added and the PES tends asymptotically to the recently developed long-rangemore » electrostatic model of Lepers et al. [J. Chem. Phys. 137, 234305 (2012)]. This PES features: (1) excellent equilibrium structural parameters, (2) good agreement with experimental vibrational levels, (3) accurate dissociation energy, and (4) most-notably, a transition region without a spurious reef. The new PES is expected to allow insight into the still unresolved issues surrounding the kinetics, dynamics, and isotope signature of ozone.« less

  11. Systematics of Rydberg Series of Diatomic Molecules and Correlation Diagrams

    NASA Astrophysics Data System (ADS)

    Lee, Chun-Woo

    2015-06-01

    Rydberg states are studied for H2, Li2, HeH, LiH and BeH using the multi-reference configuration interaction (MRCI) method. The systematics and regularities of the physical properties such as potential energies curves (PECs), quantum defect curves, permanent dipole moment and transition dipole moment curves of the Rydberg series are studied. They are explained using united atom perturbation theory by Bingel and Byers-Brown, Fermi model, Stark theory, and Mulliken's theory. Interesting mirror relationships of the dipole moments are observed between l-mixed Rydberg series, indicating that the members of the l-mixed Rydberg series have dipole moments with opposite directions, which are related to the reversal of the polarity of a dipole moment at the avoided crossing points. The assignment of highly excited states is difficult because of the usual absence of the knowledge on the behaviors of potential energy curves at small internuclear separation whereby the correlation between the united atom limit and separated atoms limit cannot be given. All electron MRCI calculations of PECs are performed to obtain the correlation diagrams between Rydberg orbitals at the united-atom and separated atoms limits.

  12. Electronic excitation of Na due to low-energy He collisions

    NASA Astrophysics Data System (ADS)

    Lin, C. Y.; Liebermann, H. P.

    2005-05-01

    In warm astrophysical environments electron collisions are the primary mechanism for thermalizing the internal energy of ambient atoms and molecules. However, in cool stellar and planetary atmospheres, the electron abundance is extremely low so that thermalization is only possible through collisions of the dominant neutral species, H2, He, and H. Typically, the neutral cross sections are much smaller than those due to electrons, so that the level populations of the atmospheric constituents may display departures from equilibrium. Unfortunately, these cross sections are generally not available for collision energies typical of stellar/planetary environments. In this work, we investigate the electronic excitation of Na due to collisions with He for energies near and just above threshold. The calculations are performed with the quantum-mechanical molecular-orbital close-coupling method utilizing ab initio adiabatic potential curves and nonadiabatic radial and rotational coupling matrix elements obtained from multireference single- and double- excitation configuration interaction approach. State-to-state cross sections and rate coefficients will be presented and compared with other theoretical and experimental data where available.

  13. Theoretical studies of the electronic spectrum of tellurium monosulfide.

    PubMed

    Chattopadhyaya, Surya; Nath, Abhijit; Das, Kalyan Kumar

    2013-08-01

    Ab initio based multireference singles and doubles configuration interaction (MRDCI) study including spin-orbit coupling is carried out to explore the electronic structure and spectroscopic properties of tellurium monosulfide (TeS) molecule by employing relativistic effective core potentials (RECP) and suitable Gaussian basis sets of the constituent atoms. Potential energy curves correlating with the lowest and second dissociation limit are constructed and spectroscopic constants (T(e), r(e), and ω(e)) of several low-lying bound Λ-S electronic states up to 3.68 eV of energy are computed. The binding energies and electric dipole moments (μ(e)) of the ground and the low-lying excited Λ-S states are also computed. The effects of the spin-orbit coupling on the electronic spectrum of the species are studied in details and compared with the available data. The transition probabilities of some dipole-allowed and spin-forbidden transitions are computed and radiative lifetimes of some excited states at lowest vibrational level are estimated from the transition probability data. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Description of ground and excited electronic states by ensemble density functional method with extended active space

    DOE PAGES

    Filatov, Michael; Martínez, Todd J.; Kim, Kwang S.

    2017-08-14

    An extended variant of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, the REKS(4,4) method, designed to describe the ground electronic states of strongly multireference systems is modified to enable calculation of excited states within the time-independent variational formalism. The new method, the state-interaction state-averaged REKS(4,4), i.e., SI-SA-REKS(4,4), is capable of describing several excited states of a molecule involving double bond cleavage, polyradical character, or multiple chromophoric units.We demonstrate that the newmethod correctly describes the ground and the lowest singlet excited states of a molecule (ethylene) undergoing double bond cleavage. The applicability of the new method for excitonic states is illustrated withmore » π stacked ethylene and tetracene dimers. We conclude that the new method can describe a wide range of multireference phenomena.« less

  15. Description of ground and excited electronic states by ensemble density functional method with extended active space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filatov, Michael; Martínez, Todd J.; Kim, Kwang S.

    An extended variant of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, the REKS(4,4) method, designed to describe the ground electronic states of strongly multireference systems is modified to enable calculation of excited states within the time-independent variational formalism. The new method, the state-interaction state-averaged REKS(4,4), i.e., SI-SA-REKS(4,4), is capable of describing several excited states of a molecule involving double bond cleavage, polyradical character, or multiple chromophoric units.We demonstrate that the newmethod correctly describes the ground and the lowest singlet excited states of a molecule (ethylene) undergoing double bond cleavage. The applicability of the new method for excitonic states is illustrated withmore » π stacked ethylene and tetracene dimers. We conclude that the new method can describe a wide range of multireference phenomena.« less

  16. Interactions of C+(2PJ) with rare gas atoms: incipient chemical interactions, potentials and transport coefficients

    NASA Astrophysics Data System (ADS)

    Tuttle, William D.; Thorington, Rebecca L.; Viehland, Larry A.; Breckenridge, W. H.; Wright, Timothy G.

    2018-03-01

    Accurate interatomic potentials were calculated for the interaction of a singly charged carbon cation, C+, with a single rare gas atom, RG (RG = Ne-Xe). The RCCSD(T) method and basis sets of quadruple-ζ and quintuple-ζ quality were employed; each interaction energy was counterpoise corrected and extrapolated to the basis set limit. The lowest C+(2P) electronic term of the carbon cation was considered, and the interatomic potentials calculated for the diatomic terms that arise from these: 2Π and 2Σ+. Additionally, the interatomic potentials for the respective spin-orbit levels were calculated, and the effect on the spectroscopic parameters was examined. In doing this, anomalously large spin-orbit splittings for RG = Ar-Xe were found, and this was investigated using multi-reference configuration interaction calculations. The latter indicated a small amount of RG → C+ electron transfer and this was used to rationalize the observations. This is taken as evidence of an incipient chemical interaction, which was also examined via contour plots, Birge-Sponer plots and various population analyses across the C+-RG series (RG = He-Xe), with the latter showing unexpected results. Trends in several spectroscopic parameters were examined as a function of the increasing atomic number of the RG atom. Finally, each set of RCCSD(T) potentials was employed, including spin-orbit coupling to calculate the transport coefficients for C+ in RG, and the results were compared with the limited available data. This article is part of the theme issue `Modern theoretical chemistry'.

  17. UNO DMRG CASCI calculations of effective exchange integrals for m-phenylene-bis-methylene spin clusters

    NASA Astrophysics Data System (ADS)

    Kawakami, Takashi; Sano, Shinsuke; Saito, Toru; Sharma, Sandeep; Shoji, Mitsuo; Yamada, Satoru; Takano, Yu; Yamanaka, Shusuke; Okumura, Mitsutaka; Nakajima, Takahito; Yamaguchi, Kizashi

    2017-09-01

    Theoretical examinations of the ferromagnetic coupling in the m-phenylene-bis-methylene molecule and its oligomer were carried out. These systems are good candidates for exchange-coupled systems to investigate strong electronic correlations. We studied effective exchange integrals (J), which indicated magnetic coupling between interacting spins in these species. First, theoretical calculations based on a broken-symmetry single-reference procedure, i.e. the UHF, UMP2, UMP4, UCCSD(T) and UB3LYP methods, were carried out with a GAUSSIAN program code under an SR wave function. From these results, the J value by the UHF method was largely positive because of the strong ferromagnetic spin polarisation effect. The J value by the UCCSD(T) and UB3LYP methods improved an overestimation problem by correcting the dynamical electronic correlation. Next, magnetic coupling among these spins was studied using the CAS-based method of the symmetry-adapted multireference methods procedure. Thus, the UNO DMRG CASCI (UNO, unrestricted natural orbital; DMRG, density matrix renormalised group; CASCI, complete active space configuration interaction) method was mainly employed with a combination of ORCA and BLOCK program codes. DMRG CASCI calculations in valence electron counting, which included all orbitals to full valence CI, provided the most reliable result, and support the UB3LYP method for extended systems.

  18. Non-adiabatic couplings and dynamics in proton transfer reactions of Hn+ systems: application to H2+H2+→H+H3+ collisions

    PubMed Central

    Sanz-Sanz, Cristina; Aguado, Alfredo; Roncero, Octavio; Naumkin, Fedor

    2016-01-01

    Analytical derivatives and non-adiabatic coupling matrix elements are derived for Hn+ systems (n=3, 4 and 5). The method uses a generalized Hellmann-Feynman theorem applied to a multi-state description based on diatomics-in-molecules (for H3+) or triatomics-in-molecules (for H4+ and H5+) formalisms, corrected with a permutationally invariant many-body term to get high accuracy. The analytical non-adiabatic coupling matrix elements are compared with ab initio calculations performed at multi-reference configuration interaction level. These magnitudes are used to calculate H2(v′=0,j′=0)+H2+(v,j=0) collisions, to determine the effect of electronic transitions using a molecular dynamics method with electronic transitions. Cross sections for several initial vibrational states of H2+ are calculated and compared with the available experimental data, yielding an excellent agreement. The effect of vibrational excitation of H2+ reactant, and its relation with non-adiabatic processes are discussed. Also, the behavior at low collisional energies, in the 1 meV-0.1 eV interval, of interest in astrophysical environments, are discussed in terms of the long range behaviour of the interaction potential which is properly described within the TRIM formalism. PMID:26696058

  19. Rotational Quenching Study in Isovalent H+ + CO and H+ + CS Systems

    NASA Astrophysics Data System (ADS)

    Kaur, Rajwant; Dhilip Kumar, T. J.

    2016-06-01

    Cooling and trapping of polar molecules has attracted attention at cold and ultracold temperatures. Extended study of molecular inelastic collision processes of polar interstellar species with proton finds an important astrophysical application to model interstellar medium. Present study includes computation of rate coefficient for molecular rotational quenching process in proton collision with isovalent CO and CS molecules using quantum dynamical close-coupling calculations. Full dimensional ab initio potential energy surfaces have been computed for the ground state for both the systems using internally contracted multireference configuration interaction method and basis sets. Quantum scattering calculations for rotational quenching of isovalent species are studied in the rigid-rotor approximation with CX (X=O, S) bond length fixed at an experimental equilibrium value of 2.138 and 2.900 a.u., respectively. Asymptotic potentials are computed using the dipole and quadrupole moments, and the dipole polarizability components. The resulting long-range potentials with the short-range ab initio interaction potentials have been fitted to study the anisotropy of the rigid-rotor surface using the multipolar expansion coefficients. Rotational quenching cross-section and corresponding rates from j=4 level of CX to lower j' levels have been obtained and found to obey Wigner's threshold law at ultra cold temperatures.

  20. Vibrational Properties of Hydrogen-Bonded Systems Using the Multireference Generalization to the "On-the-Fly" Electronic Structure within Quantum Wavepacket ab Initio Molecular Dynamics (QWAIMD).

    PubMed

    Li, Junjie; Li, Xiaohu; Iyengar, Srinivasan S

    2014-06-10

    We discuss a multiconfigurational treatment of the "on-the-fly" electronic structure within the quantum wavepacket ab initio molecular dynamics (QWAIMD) method for coupled treatment of quantum nuclear effects with electronic structural effects. Here, multiple single-particle electronic density matrices are simultaneously propagated with a quantum nuclear wavepacket and other classical nuclear degrees of freedom. The multiple density matrices are coupled through a nonorthogonal configuration interaction (NOCI) procedure to construct the instantaneous potential surface. An adaptive-mesh-guided set of basis functions composed of Gaussian primitives are used to simplify the electronic structure calculations. Specifically, with the replacement of the atom-centered basis functions positioned on the centers of the quantum-mechanically treated nuclei by a mesh-guided band of basis functions, the two-electron integrals used to compute the electronic structure potential surface become independent of the quantum nuclear variable and hence reusable along the entire Cartesian grid representing the quantum nuclear coordinates. This reduces the computational complexity involved in obtaining a potential surface and facilitates the interpretation of the individual density matrices as representative diabatic states. The parametric nuclear position dependence of the diabatic states is evaluated at the initial time-step using a Shannon-entropy-based sampling function that depends on an approximation to the quantum nuclear wavepacket and the potential surface. This development is meant as a precursor to an on-the-fly fully multireference electronic structure procedure embedded, on-the-fly, within a quantum nuclear dynamics formalism. We benchmark the current development by computing structural, dynamic, and spectroscopic features for a series of bihalide hydrogen-bonded systems: FHF(-), ClHCl(-), BrHBr(-), and BrHCl(-). We find that the donor-acceptor structural features are in good agreement with experiments. Spectroscopic features are computed using a unified velocity/flux autocorrelation function and include vibrational fundamentals and combination bands. These agree well with experiments and other theories.

  1. Transition state theory thermal rate constants and RRKM-based branching ratios for the N((2)D) + CH(4) reaction based on multi-state and multi-reference ab initio calculations of interest for the Titan's chemistry.

    PubMed

    Ouk, Chanda-Malis; Zvereva-Loëte, Natalia; Scribano, Yohann; Bussery-Honvault, Béatrice

    2012-10-30

    Multireference single and double configuration interaction (MRCI) calculations including Davidson (+Q) or Pople (+P) corrections have been conducted in this work for the reactants, products, and extrema of the doublet ground state potential energy surface involved in the N((2)D) + CH(4) reaction. Such highly correlated ab initio calculations are then compared with previous PMP4, CCSD(T), W1, and DFT/B3LYP studies. Large relative differences are observed in particular for the transition state in the entrance channel resolving the disagreement between previous ab initio calculations. We confirm the existence of a small but positive potential barrier (3.86 ± 0.84 kJ mol(-1) (MR-AQCC) and 3.89 kJ mol(-1) (MRCI+P)) in the entrance channel of the title reaction. The correlation is seen to change significantly the energetic position of the two minima and five saddle points of this system together with the dissociation channels but not their relative order. The influence of the electronic correlation into the energetic of the system is clearly demonstrated by the thermal rate constant evaluation and it temperature dependance by means of the transition state theory. Indeed, only MRCI values are able to reproduce the experimental rate constant of the title reaction and its behavior with temperature. Similarly, product branching ratios, evaluated by means of unimolecular RRKM theory, confirm the NH production of Umemoto et al., whereas previous works based on less accurate ab initio calculations failed. We confirm the previous findings that the N((2)D) + CH(4) reaction proceeds via an insertion-dissociation mechanism and that the dominant product channels are CH(2)NH + H and CH(3) + NH. Copyright © 2012 Wiley Periodicals, Inc.

  2. Spectral Analysis of 3-(Adamantan-1-yl)-4-Ethyl-1-[(4-Phenylpiperazin-1-yl) Methyl]-1 H-1,2,4-Triazole-5(4 H)-Thione

    NASA Astrophysics Data System (ADS)

    Mindarava, Y. L.; Shundalau, M. B.; Al-Wahaibi, L. H.; El-Emam, A. A.; Matsukovich, A. S.; Gaponenko, S. V.

    2018-05-01

    Vibrational IR (3200-650 cm-1) and Raman spectra (3200-150 cm-1) of adamantane-containing 3-(adamantan-1-yl)-4-ethyl-1-[(4-phenylpiperazin-1-yl)methyl]-1H-1,2,4-triazole-5(4H)-thione, which is promising for drug design, were examined. The UV/Vis spectrum (450-200 nm) of the compound in EtOH was measured. Full geometry optimization using density functional theory (DFT) in the B3LYP/cc-pVDZ approximation allowed the equilibrium configuration of the molecule to be determined and IR and Raman spectra to be calculated. Based on these, the experimental vibrational IR and Raman spectra were interpreted and the biological activity indices were predicted. The UV/Vis spectrum of the title compound was simulated at the time-dependent DFT/CAM-B3LYP/cc-pVDZ level with and without solvent effects and at the ab initio multi-reference perturbation theory XMCQDPT2 level. The UV/Vis spectrum that was simulated using the multi-reference XMCQDPT2 approximation agreed very successfully with the experimental data, in contrast to the single-reference DFT method. This was probably a consequence of intramolecular charge transfer.

  3. Spectral Analysis of 3-(Adamantan-1-yl)-4-Ethyl-1-[(4-Phenylpiperazin-1-yl) Methyl]-1H-1,2,4-Triazole-5(4H)-Thione

    NASA Astrophysics Data System (ADS)

    Mindarava, Y. L.; Shundalau, M. B.; Al-Wahaibi, L. H.; El-Emam, A. A.; Matsukovich, A. S.; Gaponenko, S. V.

    2018-05-01

    Vibrational IR (3200-650 cm-1) and Raman spectra (3200-150 cm-1) of adamantane-containing 3-(adamantan-1-yl)-4-ethyl-1-[(4-phenylpiperazin-1-yl)methyl]-1H-1,2,4-triazole-5(4H)-thione, which is promising for drug design, were examined. The UV/Vis spectrum (450-200 nm) of the compound in EtOH was measured. Full geometry optimization using density functional theory (DFT) in the B3LYP/cc-pVDZ approximation allowed the equilibrium configuration of the molecule to be determined and IR and Raman spectra to be calculated. Based on these, the experimental vibrational IR and Raman spectra were interpreted and the biological activity indices were predicted. The UV/Vis spectrum of the title compound was simulated at the time-dependent DFT/CAM-B3LYP/cc-pVDZ level with and without solvent effects and at the ab initio multi-reference perturbation theory XMCQDPT2 level. The UV/Vis spectrum that was simulated using the multi-reference XMCQDPT2 approximation agreed very successfully with the experimental data, in contrast to the single-reference DFT method. This was probably a consequence of intramolecular charge transfer.

  4. Electronic excitations in long polyenes revisited

    NASA Astrophysics Data System (ADS)

    Schmidt, Maximilian; Tavan, Paul

    2012-03-01

    We apply the valence shell model OM2 [W. Weber and W. Thiel, Theor. Chem. Acc. 103, 495, (2000), 10.1007/s002149900083] combined with multireference configuration interaction (MRCI) to compute the vertical excitation energies and transition dipole moments of the low-energy singlet excitations in the polyenes with 4 ⩽ N ⩽ 22π-electrons. We find that the OM2/MRCI descriptions closely resemble those of Pariser-Parr-Pople (PPP) π-electron models [P. Tavan and K. Schulten, Phys. Rev. B 36, 4337, (1987)], if equivalent MRCI procedures and regularly alternating model geometries are used. OM2/MRCI optimized geometries are shown to entail improved descriptions particularly for smaller polyenes (N ⩽ 12), for which sizeable deviations from the regular model geometries are found. With configuration interaction active spaces covering also the σ- in addition to the π-electrons, OM2/MRCI excitation energies turn out to become smaller by at most 0.35 eV for the ionic and 0.15 eV for the covalent excitations. The particle-hole (ph) symmetry, which in Pariser-Parr-Pople models arises from the zero-differential overlap approximation, is demonstrated to be only weakly broken in OM2 such that the oscillator strengths of the covalent 1B_u^- states, which artificially vanish in ph-symmetric models, are predicted to be very small. According to OM2/MRCI and experimental data the 1B_u^- state is the third excited singlet state for N < 12 and becomes the second for N ⩾ 14. By comparisons with results of other theoretical approaches and experimental evidence we argue that deficiencies of the particular MRCI method employed by us, which show up in a poor size consistency of the covalent excitations for N > 12, are caused by its restriction to at most doubly excited references.

  5. No-core configuration-interaction model for the isospin- and angular-momentum-projected states

    NASA Astrophysics Data System (ADS)

    Satuła, W.; Båczyk, P.; Dobaczewski, J.; Konieczka, M.

    2016-08-01

    Background: Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multireference level allows for restoring symmetries and, in turn, for calculating transition rates. Purpose: We propose a new variant of the no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. Methods: The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of linearly dependent states having good angular momentum and properly treated isobaric spin. The states are generated by means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-(multi)hole deformed Slater determinants calculated using the self-consistent Skyrme-Hartree-Fock approach. Results: The theory is applied to calculate energy spectra in N ≈Z nuclei that are relevant from the point of view of a study of superallowed Fermi β decays. In particular, a new set of the isospin-symmetry-breaking corrections to these decays is given. Conclusions: It is demonstrated that the NCCI model is capable of capturing main features of low-lying energy spectra in light and medium-mass nuclei using relatively small model space and without any local readjustment of its low-energy coupling constants. Its flexibility and a range of applicability makes it an interesting alternative to the conventional nuclear shell model.

  6. Spectroscopy and heats of formation of CXI (X = Br, Cl, F) iodocarbenes: quantum chemical characterisation of the ?, ? and ? states

    NASA Astrophysics Data System (ADS)

    Bacskay, George B.

    2015-07-01

    The equilibrium energies of the iodocarbenes CXI (X = Br, Cl, F) in their ?, ? and ? states and their atomisation and dissociation energies in the complete basis limit were determined by extrapolating valence correlated (R/U)CCSD(T) and Davidson corrected multi-reference configuration interaction (MRCI) energies calculated with the aug-cc-pVxZ (x = T,Q,5) basis sets and the ECP28MDF pseudopotential of iodine plus corrections for core and core-valence correlation, scalar relativity, spin-orbit coupling and zero-point energies. Spin-orbit energies were computed in a large basis of configurations chosen so as to accurately describe dissociation to the 3P and 2P states of C and of the halogens X and I, respectively. The computed singlet-triplet splittings are 13.6, 14.4 and 27.3 kcal mol-1 for X = Br, Cl and F, respectively. The enthalpies of formation at 0 K are predicted to be 97.4, 82.6 and 38.1 kcal mol-1 with estimated errors of ±1.0 kcal mol-1. The ? excitation energies (T00) in CBrI and CClI are calculated to be 41.1 and 41.7 kcal mol-1, respectively. The Renner-Teller intersections in both molecules are predicted to be substantially higher than the dissociation barriers on the ? surfaces. By contrast, in CFI the ? state is found to be unbound with respect to dissociation.

  7. The roles of 4f- and 5f-orbitals in bonding: a magnetochemical, crystal field, density functional theory, and multi-reference wavefunction study

    DOE PAGES

    Lukens, W. W.; Speldrich, M.; Yang, P.; ...

    2016-01-01

    The electronic structures of 4f 3/5f 3Cp" 3M and Cp"sub>3M·alkylisocyanide complexes, where Cp" is 1,3-bis-(trimethylsilyl)cyclopentadienyl, are explored with a focus on the splitting of the f-orbitals, which provides information about the strengths of the metal–ligand interactions.

  8. Spectroscopy of Cold LiCa Molecules Formed on Helium Nanodroplets

    PubMed Central

    2013-01-01

    We report on the formation of mixed alkali–alkaline earth molecules (LiCa) on helium nanodroplets and present a comprehensive experimental and theoretical study of the ground and excited states of LiCa. Resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) spectroscopy and laser induced fluorescence (LIF) spectroscopy were used for the experimental investigation of LiCa from 15000 to 25500 cm–1. The 42Σ+ and 32Π states show a vibrational structure accompanied by distinct phonon wings, which allows us to determine molecular parameters as well as to study the interaction of the molecule with the helium droplet. Higher excited states (42Π, 52Σ+, 52Π, and 62Σ+) are not vibrationally resolved and vibronic transitions start to overlap. The experimental spectrum is well reproduced by high-level ab initio calculations. By using a multireference configuration interaction (MRCI) approach, we calculated the 19 lowest lying potential energy curves (PECs) of the LiCa molecule. On the basis of these calculations, we could identify previously unobserved transitions. Our results demonstrate that the helium droplet isolation approach is a powerful method for the characterization of tailor-made alkali–alkaline earth molecules. In this way, important contributions can be made to the search for optimal pathways toward the creation of ultracold alkali–alkaline earth ground state molecules from the corresponding atomic species. Furthermore, a test for PECs calculated by ab initio methods is provided. PMID:24028555

  9. a Theoretical Characterization of Electronic States of CH2IOO and CH2OO Radicals Relevant to the Near IR Region

    NASA Astrophysics Data System (ADS)

    Dawes, Richard; Lolur, Phalgun; Huang, Meng; Kline, Neal; Miller, Terry A.

    2015-06-01

    Criegee intermediates (R1R2COO or CIs) arise from ozonolysis of biogenic and anthropogenic alkenes, which is an important process in the atmosphere. Recent breakthroughs in producing them in the gas phase have resulted in a flurry of experimental and theoretical studies. Producing the simplest CI (CH2OO) in the lab via photolysis of CH2I2 in the presence of O2 yields both CH2OO and CH2IOO with pressure dependent branching. As discussed in the preceding talk, both species might be expected to have electronic transitions in the near IR (NIR). Here we discuss electronic structure calculations used to characterize the electronic states of both systems in the relevant energy range. Using explicitly-correlated multireference configuration interaction (MRCI-F12) and coupled-cluster (UCCSD(T)-F12b) calculations we were first able to exclude CH2OO as the carrier of the observed NIR spectrum. Next, by computing frequencies and relaxed full torsional scans for the ~A and ~X states, we were able to aid in analysis and assignment of the NIR spectrum attributed to CH2IOO.

  10. Theoretical investigation of the laser cooling of a LiBe molecule

    NASA Astrophysics Data System (ADS)

    You, Yang; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang

    2015-09-01

    An optical scheme to create the simplest heteronuclear metal ultracold LiBe molecule is proposed based on ab initio quantum chemistry calculations. The potential energy curves, dipole moments, and transition dipole moments of 1 +2Σ , 2 +2Σ , 1 2Π , and 2 2Π states are calculated using the multireference configuration interaction and large basis sets. The analytical functions deduced from the obtained curves are used to determine the rovibrational energy levels, the Franck-Condon factors, and the Einstein coefficients of the states through solving the Schrödinger equation of nuclear movement. The spectroscopic parameters are deduced with the obtained rovibrational energy levels. The Franck-Condon factors (f00:0.998 , f11:0.986 , f22:0.920 ) for the 2 +2Σ(v =0 ) ↔1 +2Σ(v'=0 ) transition are highly diagonally distributed, and the calculated radiative lifetime (74.87 ns) of the 2 +2Σ state is found to be short enough for rapid laser cooling. The results demonstrate that LiBe could be a very promising candidate for laser cooling and a three-cycle laser cooling scheme for the molecule has been proposed.

  11. Insights into the deactivation of 5-bromouracil after ultraviolet excitation

    NASA Astrophysics Data System (ADS)

    Peccati, Francesca; Mai, Sebastian; González, Leticia

    2017-03-01

    5-Bromouracil is a nucleobase analogue that can replace thymine in DNA strands and acts as a strong radiosensitizer, with potential applications in molecular biology and cancer therapy. Here, the deactivation of 5-bromouracil after ultraviolet irradiation is investigated in the singlet and triplet manifold by accurate quantum chemistry calculations and non-adiabatic dynamics simulations. It is found that, after irradiation to the bright ππ* state, three main relaxation pathways are, in principle, possible: relaxation back to the ground state, intersystem crossing (ISC) and C-Br photodissociation. Based on accurate MS-CASPT2 optimizations, we propose that ground-state relaxation should be the predominant deactivation pathway in the gas phase. We then employ different electronic structure methods to assess their suitability to carry out excited-state dynamics simulations. MRCIS (multi-reference configuration interaction including single excitations) was used in surface hopping simulations to compute the ultrafast ISC dynamics, which mostly involves the 1nOπ* and 3ππ* states. This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.

  12. Charge Transfer Processes in Collisions of Si4+ Ions with He Atoms at Intermediate Energies

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Watanabe, A.; Sato, H.; Gu, J. P.; Hirsch, G.; Buenker, R. J.; Kimura, M.; Stancil, P. C.

    Charge transfer in collisions of Si4+ ions with He atoms below 100 keV/u is studied by using a molecular orbital representation within both the semiclassical and quantal representations. Single transfer reaction Si4++He →Si3++He+ has been studied by a number of theoretical investigations. In addition to the reaction (1), the first semiclassical MOCC calculations are performed for the double transfer channel Si4++HE→Si2++He2+ Nine molecular states that connect both with single and double electron transfer processes are considered in the present model. Electronic states and corresponding couplings are determined by the multireference single- and double- excitation configuration interaction method. The present cross sections tie well with the earlier calculations of Stancil et al., Phys. Rev. A 55, 1064 (1997) at lower energies, but show a rather different magnitude from those of Bacchus-Montabonel and Ceyzeriat, Phys. Rev. A 58, 1162 (1998). The present rate constant is found to be significantly different from the experimental finding of Fang and Kwong, Phys. Rev. A 59, 342 (1996) at 4,600 K, and hence does not support the experiment.

  13. Charge transfer between O6+ and atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Stancil, P. C.; Liebermann, H. P.; Buenker, R. J.; Schultz, D. R.; Hui, Y.

    2011-05-01

    The charge exchange process has been found to play a dominant role in the production of X-rays and/or EUV photons observed in cometary and planetary atmospheres and from the heliosphere. Charge transfer cross sections, especially state-selective cross sections, are necessary parameters in simulations of X-ray emission. In the present work, charge transfer due to collisions of ground state O6+(1s2 1 S) with atomic hydrogen has been investigated theoretically using the quantum-mechanical molecular-orbital close-coupling method (QMOCC). The multi-reference single- and double-excitation configuration interaction approach (MRDCI) has been applied to compute the adiabatic potential and nonadiabatic couplings, and the atomic basis sets used have been optimized with the method proposed previously to obtain precise potential data. Total and state-selective cross sections are calculated for energies between 10 meV/u and 10 keV/u. The QMOCC results are compared to available experimental and theoretical data as well as to new atomic-orbital close-coupling (AOCC) and classical trajectory Monte Carlo (CTMC) calculations. A recommended set of cross sections, based on the MOCC, AOCC, and CTMC calculations, is deduced which should aid in X-ray modeling studies.

  14. Insights into the deactivation of 5-bromouracil after ultraviolet excitation

    PubMed Central

    2017-01-01

    5-Bromouracil is a nucleobase analogue that can replace thymine in DNA strands and acts as a strong radiosensitizer, with potential applications in molecular biology and cancer therapy. Here, the deactivation of 5-bromouracil after ultraviolet irradiation is investigated in the singlet and triplet manifold by accurate quantum chemistry calculations and non-adiabatic dynamics simulations. It is found that, after irradiation to the bright ππ* state, three main relaxation pathways are, in principle, possible: relaxation back to the ground state, intersystem crossing (ISC) and C–Br photodissociation. Based on accurate MS-CASPT2 optimizations, we propose that ground-state relaxation should be the predominant deactivation pathway in the gas phase. We then employ different electronic structure methods to assess their suitability to carry out excited-state dynamics simulations. MRCIS (multi-reference configuration interaction including single excitations) was used in surface hopping simulations to compute the ultrafast ISC dynamics, which mostly involves the 1nOπ* and 3ππ* states. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320905

  15. Analytic functions for potential energy curves, dipole moments, and transition dipole moments of LiRb molecule.

    PubMed

    You, Yang; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang; Wang, Li-Zhi

    2016-01-15

    The analytic potential energy functions (APEFs) of the X(1)Σ(+), 2(1)Σ(+), a(3)Σ(+), and 2(3)Σ(+) states of the LiRb molecule are obtained using Morse long-range potential energy function with damping function and nonlinear least-squares method. These calculations were based on the potential energy curves (PECs) calculated using the multi-reference configuration interaction (MRCI) method. The reliability of the APEFs is confirmed using the curves of their first and second derivatives. By using the obtained APEFs, the rotational and vibrational energy levels of the states are determined by solving the Schrödinger equation of nuclear movement. The spectroscopic parameters, which are deduced using Dunham expansion, and the obtained rotational and vibrational levels are compared with the reported theoretical and experimental values. The correlation effect of the electrons of the inner shell remarkably improves the results compared with the experimental spectroscopic parameters. For the first time, the APEFs for the dipole moments and transition dipole moments of the states have been determined based on the curves obtained from the MRCI calculations. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Ab initio calculations of the electronic structure of the low-lying states for the ultracold LiYb molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tohme, Samir N.; Korek, Mahmoud, E-mail: mahmoud.korek@bau.edu.lb, E-mail: fkorek@yahoo.com; Awad, Ramadan

    Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born–Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ω{sub e}, R{sub e}, B{sub e}, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, E{sub v}, themore » rotational constant, B{sub v}, the centrifugal distortion constant, D{sub v}, and the abscissas of the turning points, R{sub min} and R{sub max}, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.« less

  17. Excited electronic states of the methyl radical. Ab initio molecular orbital study of geometries, excitation energies and vibronic spectra

    NASA Astrophysics Data System (ADS)

    Mebel, Alexander M.; Lin, Sheng-Hsien

    1997-03-01

    The geometries, vibrational frequencies and vertical and adiabatic excitation energies of the excited valence and Rydberg 3s, 3p, 3d, and 4s electronic states of CH 3 have been studied using ab initio molecular orbital multiconfigurational SCF (CASSCF), internally contracted multireference configuration interaction (MRCI) and equation-of-motion coupled cluster (EOM-CCSD) methods. The vibronic spectra are determined through the calculation of Franck-Condon factors. Close agreement between theory and experiment has been found for the excitation energies, vibrational frequencies and vibronic spectra. The adiabatic excitation energies of the Rydberg 3s B˜ 2A' 1 and 3p 2 2A″ 2 states are calculated to be 46435 and 60065 cm -1 compared to the experimental values of 46300 and 59972 cm -1, respectively. The valence 2A″ excited state of CH 3 has been found to have a pyramidal geometry within C s symmetry and to be adiabatically by 97 kcal/mol higher in energy than the ground state. The 2A″ state is predicted to be stable by 9 and 13 kcal/mol with respect to H 2 and H elimination.

  18. Laser cooling of MgCl and MgBr in theoretical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Mingjie; Shao, Juxiang; Huang, Duohui

    Ab initio calculations for three low-lying electronic states (X{sup 2}Σ{sup +}, A{sup 2}Π, and 2{sup 2}Π) of MgCl and MgBr molecules, including spin-orbit coupling, are performed using multi-reference configuration interaction plus Davidson correction method. The calculations involve all-electronic basis sets and Douglas–Kroll scalar relativistic correction. Spectroscopic parameters well agree with available theoretical and experimental data. Highly diagonally distributed Franck-Condon factors f{sub 00} for A{sup 2}Π{sub 3/2,1/2} (υ′ = 0) → X{sup 2}Σ{sup +}{sub 1/2} (υ″ = 0) are determined for both MgCl and MgBr molecules. Suitable radiative lifetimes τ of A{sup 2}Π{sub 3/2,1/2} (υ′ = 0) states for rapid lasermore » cooling are also obtained. The proposed laser drives A{sup 2}Π{sub 3/2} (υ′ = 0) → X{sup 2}Σ{sup +}{sub 1/2} (υ″ = 0) transition by using three wavelengths (main pump laser λ{sub 00}; two repumping lasers λ{sub 10} and λ{sub 21}). These results indicate the probability of laser cooling MgCl and MgBr molecules.« less

  19. Straightening the Hierarchical Staircase for Basis Set Extrapolations: A Low-Cost Approach to High-Accuracy Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Varandas, António J. C.

    2018-04-01

    Because the one-electron basis set limit is difficult to reach in correlated post-Hartree-Fock ab initio calculations, the low-cost route of using methods that extrapolate to the estimated basis set limit attracts immediate interest. The situation is somewhat more satisfactory at the Hartree-Fock level because numerical calculation of the energy is often affordable at nearly converged basis set levels. Still, extrapolation schemes for the Hartree-Fock energy are addressed here, although the focus is on the more slowly convergent and computationally demanding correlation energy. Because they are frequently based on the gold-standard coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)], correlated calculations are often affordable only with the smallest basis sets, and hence single-level extrapolations from one raw energy could attain maximum usefulness. This possibility is examined. Whenever possible, this review uses raw data from second-order Møller-Plesset perturbation theory, as well as CCSD, CCSD(T), and multireference configuration interaction methods. Inescapably, the emphasis is on work done by the author's research group. Certain issues in need of further research or review are pinpointed.

  20. GVVPT2 energy gradient using a Lagrangian formulation.

    PubMed

    Theis, Daniel; Khait, Yuriy G; Hoffmann, Mark R

    2011-07-28

    A Lagrangian based approach was used to obtain analytic formulas for GVVPT2 energy nuclear gradients. The formalism can use either complete or incomplete model (or reference) spaces, and is limited, in this regard, only by the capabilities of the MCSCF program. An efficient means of evaluating the gradient equations is described. Demonstrative calculations were performed and compared with finite difference calculations on several molecules and show that the GVVPT2 gradients are accurate. Of particular interest, the suggested formalism can straightforwardly use state-averaged MCSCF descriptions of the reference space in which the states have arbitrary weights. This capability is demonstrated by some calculations on the ground and first excited singlet states of LiH, including calculations near an avoided crossing. The accuracy and usefulness of the GVVPT2 method and its gradient are highlighted by comparing the geometry of the near-C(2v) minimum on the conical intersection seam between the 1 (1)A(1) and 2 (1)A(1) surfaces of O(3) with values that were calculated at the multireference configuration interaction, including single and double excitations (MRCISD), level of theory. © 2011 American Institute of Physics

  1. A Low Spin Manganese(IV) Nitride Single Molecule Magnet

    PubMed Central

    Ding, Mei; Cutsail, George E.; Aravena, Daniel; Amoza, Martín; Rouzières, Mathieu; Dechambenoit, Pierre; Losovyj, Yaroslav; Pink, Maren

    2016-01-01

    Structural, spectroscopic and magnetic methods have been used to characterize the tris(carbene)borate compound PhB(MesIm)3Mn≡N as a four-coordinate manganese(IV) complex with a low spin (S = 1/2) configuration. The slow relaxation of the magnetization in this complex, i.e. its single-molecule magnet (SMM) properties, is revealed under an applied dc field. Multireference quantum mechanical calculations indicate that this SMM behavior originates from an anisotropic ground doublet stabilized by spin-orbit coupling. Consistent theoretical and experiment data show that the resulting magnetization dynamics in this system is dominated by ground state quantum tunneling, while its temperature dependence is influenced by Raman relaxation. PMID:27746891

  2. Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies.

    PubMed

    Escorihuela, Jorge; Das, Anita; Looijen, Wilhelmus J E; van Delft, Floris L; Aquino, Adelia J A; Lischka, Hans; Zuilhof, Han

    2018-01-05

    Stimulated by its success in both bioconjugation and surface modification, we studied the strain-promoted oxidation-controlled cycloalkyne-1,2-quinone cycloaddition (SPOCQ) in three ways. First, the second-order rate constants and activation parameters (ΔH ⧧ ) were determined of various cyclooctynes reacting with 4-tert-butyl-1,2-quinone in a SPOCQ reaction, yielding values for ΔH ⧧ of 4.5, 7.3, and 12.1 kcal/mol, for bicyclo[6.1.0]non-4-yne (BCN), cyclooctyne (OCT), and dibenzoazacyclooctyne (DIBAC), respectively. Second, their reaction paths were investigated in detail by a range of quantum mechanical calculations. Single-configuration theoretical methods, like various DFT and a range of MP2-based methods, typically overestimate this barrier by 3-8 kcal/mol (after inclusion of zero-point energy, thermal, and solvation corrections), whereas MP2 itself underestimates the barrier significantly. Only dispersion-corrected DFT methods like B97D (yielding 4.9, 6.4, and 12.1 kcal/mol for these three reactions) and high-level CCSD(T) and multireference multiconfiguration AQCC ab initio approaches (both yielding 8.2 kcal/mol for BCN) give good approximations of experimental data. Finally, the multireference methods show that the radical character in the TS is rather small, thus rationalizing the use of single-reference methods like B97D and SCS-MP2 as intrinsically valid approaches.

  3. Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies

    PubMed Central

    2017-01-01

    Stimulated by its success in both bioconjugation and surface modification, we studied the strain-promoted oxidation-controlled cycloalkyne–1,2-quinone cycloaddition (SPOCQ) in three ways. First, the second-order rate constants and activation parameters (ΔH⧧) were determined of various cyclooctynes reacting with 4-tert-butyl-1,2-quinone in a SPOCQ reaction, yielding values for ΔH⧧ of 4.5, 7.3, and 12.1 kcal/mol, for bicyclo[6.1.0]non-4-yne (BCN), cyclooctyne (OCT), and dibenzoazacyclooctyne (DIBAC), respectively. Second, their reaction paths were investigated in detail by a range of quantum mechanical calculations. Single-configuration theoretical methods, like various DFT and a range of MP2-based methods, typically overestimate this barrier by 3–8 kcal/mol (after inclusion of zero-point energy, thermal, and solvation corrections), whereas MP2 itself underestimates the barrier significantly. Only dispersion-corrected DFT methods like B97D (yielding 4.9, 6.4, and 12.1 kcal/mol for these three reactions) and high-level CCSD(T) and multireference multiconfiguration AQCC ab initio approaches (both yielding 8.2 kcal/mol for BCN) give good approximations of experimental data. Finally, the multireference methods show that the radical character in the TS is rather small, thus rationalizing the use of single-reference methods like B97D and SCS-MP2 as intrinsically valid approaches. PMID:29260879

  4. Perturbative universal state-selective correction for state-specific multi-reference coupled cluster methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabec, Jiri; Banik, Subrata; Kowalski, Karol

    2016-10-28

    The implementation details of the universal state-selective (USS) multi-reference coupled cluster (MRCC) formalism with singles and doubles (USS(2)) are discussed on the example of several benchmark systems. We demonstrate that the USS(2) formalism is capable of improving accuracies of state specific multi-reference coupled-cluster (MRCC) methods based on the Brillouin-Wigner and Mukherjee’s sufficiency conditions. Additionally, it is shown that the USS(2) approach significantly alleviates problems associated with the lack of invariance of MRCC theories upon the rotation of active orbitals. We also discuss the perturbative USS(2) formulations that significantly reduce numerical overhead of the full USS(2) method.

  5. Electron paramagnetic resonance g-tensors from state interaction spin-orbit coupling density matrix renormalization group

    NASA Astrophysics Data System (ADS)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2018-05-01

    We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.

  6. Ab Initio Reaction Kinetics of CH 3 O$$\\dot{C}$$(=O) and $$\\dot{C}$$H 2 OC(=O)H Radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Ting; Yang, Xueliang; Ju, Yiguang

    The dissociation and isomerization kinetics of the methyl ester combustion intermediates methoxycarbonyl radical (CH3Omore » $$\\dot{C}$$(=O)) and (formyloxy)methyl radical ($$\\dot{C}$$H2OC(=O)H) are investigated theoretically using high-level ab initio methods and Rice–Ramsperger–Kassel–Marcus (RRKM)/master equation (ME) theory. Geometries obtained at the hybrid density functional theory (DFT) and coupled cluster singles and doubles with perturbative triples correction (CCSD(T)) levels of theory are found to be similar. We employ high-level ab initio wave function methods to refine the potential energy surface: CCSD(T), multireference singles and doubles configuration interaction (MRSDCI) with the Davidson–Silver (DS) correction, and multireference averaged coupled-pair functional (MRACPF2) theory. MRSDCI+DS and MRACPF2 capture the multiconfigurational character of transition states (TSs) and predict lower barrier heights than CCSD(T). The temperature- and pressure-dependent rate coefficients are computed using RRKM/ME theory in the temperature range 300–2500 K and a pressure range of 0.01 atm to the high-pressure limit, which are then fitted to modified Arrhenius expressions. Dissociation of CH3O$$\\dot{C}$$(=O) to $$\\dot{C}$$H3 and CO2 is predicted to be much faster than dissociating to CH3$$\\dot{O}$$ and CO, consistent with its greater exothermicity. Isomerization between CH3O$$\\dot{C}$$(=O) and $$\\dot{C}$$H2OC(=O)H is predicted to be the slowest among the studied reactions and rarely happens even at high temperature and high pressure, suggesting the decomposition pathways of the two radicals are not strongly coupled. The predicted rate coefficients and branching fractions at finite pressures differ significantly from the corresponding high-pressure-limit results, especially at relatively high temperatures. Finally, because it is one of the most important CH3$$\\dot{O}$$ removal mechanisms under atmospheric conditions, the reaction kinetics of CH3$$\\dot{O}$$ + CO was also studied along the PES of CH3O$$\\dot{C}$$(=O); the resulting kinetics predictions are in remarkable agreement with experiments.« less

  7. Communication: Density functional theory model for multi-reference systems based on the exact-exchange hole normalization

    NASA Astrophysics Data System (ADS)

    Laqua, Henryk; Kussmann, Jörg; Ochsenfeld, Christian

    2018-03-01

    The correct description of multi-reference electronic ground states within Kohn-Sham density functional theory (DFT) requires an ensemble-state representation, employing fractionally occupied orbitals. However, the use of fractional orbital occupation leads to non-normalized exact-exchange holes, resulting in large fractional-spin errors for conventional approximative density functionals. In this communication, we present a simple approach to directly include the exact-exchange-hole normalization into DFT. Compared to conventional functionals, our model strongly improves the description for multi-reference systems, while preserving the accuracy in the single-reference case. We analyze the performance of our proposed method at the example of spin-averaged atoms and spin-restricted bond dissociation energy surfaces.

  8. Communication: Density functional theory model for multi-reference systems based on the exact-exchange hole normalization.

    PubMed

    Laqua, Henryk; Kussmann, Jörg; Ochsenfeld, Christian

    2018-03-28

    The correct description of multi-reference electronic ground states within Kohn-Sham density functional theory (DFT) requires an ensemble-state representation, employing fractionally occupied orbitals. However, the use of fractional orbital occupation leads to non-normalized exact-exchange holes, resulting in large fractional-spin errors for conventional approximative density functionals. In this communication, we present a simple approach to directly include the exact-exchange-hole normalization into DFT. Compared to conventional functionals, our model strongly improves the description for multi-reference systems, while preserving the accuracy in the single-reference case. We analyze the performance of our proposed method at the example of spin-averaged atoms and spin-restricted bond dissociation energy surfaces.

  9. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions

    NASA Astrophysics Data System (ADS)

    Pernal, Katarzyna

    2018-01-01

    An adiabatic connection (AC) formula for the electron correlation energy is derived for a broad class of multireference wave functions. The AC expression recovers dynamic correlation energy and assures a balanced treatment of the correlation energy. Coupling the AC formalism with the extended random phase approximation allows one to find the correlation energy only from reference one- and two-electron reduced density matrices. If the generalized valence bond perfect pairing model is employed a simple closed-form expression for the approximate AC formula is obtained. This results in the overall M5 scaling of the computation cost making the method one of the most efficient multireference approaches accounting for dynamic electron correlation also for the strongly correlated systems.

  10. A spin-adapted size-extensive state-specific multi-reference perturbation theory. I. Formal developments

    NASA Astrophysics Data System (ADS)

    Mao, Shuneng; Cheng, Lan; Liu, Wenjian; Mukherjee, Debashis

    2012-01-01

    We present in this paper a comprehensive formulation of a spin-adapted size-extensive state-specific multi-reference second-order perturbation theory (SA-SSMRPT2) as a tool for applications to molecular states of arbitrary complexity and generality. The perturbative theory emerges in the development as a result of a physically appealing quasi-linearization of a rigorously size-extensive state-specific multi-reference coupled cluster (SSMRCC) formalism [U. S. Mahapatra, B. Datta, and D. Mukherjee, J. Chem. Phys. 110, 6171 (1999), 10.1063/1.478523]. The formulation is intruder-free as long as the state-energy is energetically well-separated from the virtual functions. SA-SSMRPT2 works with a complete active space (CAS), and treats each of the model space functions on the same footing. This thus has the twin advantages of being capable of handling varying degrees of quasi-degeneracy and of ensuring size-extensivity. This strategy is attractive in terms of the applicability to bigger systems. A very desirable property of the parent SSMRCC theory is the explicit maintenance of size-extensivity under a variety of approximations of the working equations. We show how to generate both the Rayleigh-Schrödinger (RS) and the Brillouin-Wigner (BW) versions of SA-SSMRPT2. Unlike the traditional naive formulations, both the RS and the BW variants are manifestly size-extensive and both share the avoidance of intruders in the same manner as the parent SSMRCC. We discuss the various features of the RS as well as the BW version using several partitioning strategies of the hamiltonian. Unlike the other CAS based MRPTs, the SA-SSMRPT2 is intrinsically flexible in the sense that it is constructed in a manner that it can relax the coefficients of the reference function, or keep the coefficients frozen if we so desire. We delineate the issues pertaining to the spin-adaptation of the working equations of the SA-SSMRPT2, starting from SSMRCC, which would allow us to incorporate essentially any type open-shell configuration-state functions (CSF) within the CAS. The formalisms presented here will be applied extensively in a companion paper to assess their efficacy.

  11. Normal order and extended Wick theorem for a multiconfiguration reference wave function

    NASA Astrophysics Data System (ADS)

    Kutzelnigg, Werner; Mukherjee, Debashis

    1997-07-01

    A generalization of normal ordering and of Wick's theorem with respect to an arbitrary reference function Φ as some generalized "physical vacuum" is formulated in a different (but essentially equivalent) way than that suggested previously by one of the present authors. Guiding principles are that normal order operators with respect to any reference state must be expressible as linear combinations of those with respect to the genuine vacuum, that the vacuum expectation value of a normal order operator must vanish (with respect to the vacuum to which it is in normal order), and that the well-known formalism for a single Slater determinant as physical vacuum must be contained as a special case. The derivation is largely based on the concepts of "Quantum Chemistry in Fock space," which means that particle-number-conserving operators (excitation operators) play a central role. Nevertheless, the contraction rules in the frame of a generalized Wick theorem are derived, that hold for non-particle-number-conserving operators as well. The contraction rules are formulated and illustrated in terms of diagrams. The contractions involve the "residual n-particle density matrices" λ, which are the irreducible (non-factorizable) parts of the conventional n-particle density matrices γ, in the sense of a cumulant expansion for the density. A spinfree formulation is presented as well. The expression of the Hamiltonian in normal order with respect to a multiconfiguration reference function leads to a natural definition of a generalized Fock operator. MC-SCF-theory is easily worked out in this context. The paper concludes with a discussion of the excited configurations and the first-order interacting space, that underlies a perturbative coupled cluster type correction to the MCSCF function for an arbitrary reference function, and with general implications of the new formalism, that is related to "internally contracted multireference configuration interaction." The present generalization of normal ordering is not only valid for arbitrary reference functions, but also if the reference state is an ensemble state.

  12. Electronic couplings for molecular charge transfer: Benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations

    NASA Astrophysics Data System (ADS)

    Kubas, Adam; Hoffmann, Felix; Heck, Alexander; Oberhofer, Harald; Elstner, Marcus; Blumberger, Jochen

    2014-03-01

    We introduce a database (HAB11) of electronic coupling matrix elements (Hab) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NEVPT2, and (spin-component scaled) approximate coupled cluster model (SCS)-CC2 are reported for this database to assess the performance of three DFT methods of decreasing computational cost, including constrained density functional theory (CDFT), fragment-orbital DFT (FODFT), and self-consistent charge density functional tight-binding (FODFTB). We find that the CDFT approach in combination with a modified PBE functional containing 50% Hartree-Fock exchange gives best results for absolute Hab values (mean relative unsigned error = 5.3%) and exponential distance decay constants β (4.3%). CDFT in combination with pure PBE overestimates couplings by 38.7% due to a too diffuse excess charge distribution, whereas the economic FODFT and highly cost-effective FODFTB methods underestimate couplings by 37.6% and 42.4%, respectively, due to neglect of interaction between donor and acceptor. The errors are systematic, however, and can be significantly reduced by applying a uniform scaling factor for each method. Applications to dimers outside the database, specifically rotated thiophene dimers and larger acenes up to pentacene, suggests that the same scaling procedure significantly improves the FODFT and FODFTB results for larger π-conjugated systems relevant to organic semiconductors and DNA.

  13. Charge Transfer Rate in Collisions of H + Ions with Si Atoms

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Sannigrahi, A. B.; Gu, J. P.; Hirsch, G.; Buenker, R. J.; Shimamura, I.

    1996-12-01

    Charge transfer in Si(3P, 1D) + H+ collisions is studied theoretically by using a semiclassical molecular representation with six molecular channels for the triplet manifold and four channels for the singlet manifold at collision energies above 30 eV, and by using a fully quantum mechanical approach with two molecular channels for both triplet and singlet manifolds below 30 eV. The ab initio potential curves and nonadiabatic coupling matrix elements for the HSi+ system are obtained from multireference single- and double-excitation configuration interaction (MRD-CI) calculations employing a relatively large basis set. The present rate coefficients for charge transfer to Si+(4P) formation resulting from H+ + Si(3P) collisions are found to be large with values from 1 x 10-10 cm-3 s-1 at 1000 K to 1 x 10-8 cm-3 s-1 at 100,000 K. The rate coefficient for Si+(2P) formation, resulting from H+ + Si(3P) collisions, is found to be much smaller because of a larger energy defect from the initial state. These calculated rates are much larger than those reported by Baliunas & Butler, who estimated a value of 10-11 cm-3 s-1 in their coronal plasma study. The present result may be relevant to the description of the silicon ionization equilibrium.

  14. Prospects for transferring 87Rb84Sr dimers to the rovibrational ground state based on calculated molecular structures

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Zhu, Shaobing; Li, Xiaolin; Qian, Jun; Wang, Yuzhu

    2014-06-01

    Using fitted model potential curves of the ground and lowest three excited states yielded by the relativistic Kramers-restricted multireference configuration interaction method with 19 electrons correlated, we theoretically investigate the rovibrational properties including the number of vibrational state and diagonally distributed Franck-Condon factors for a 87Rb84Sr molecule. Benefiting from a turning point at about v'=20 for the Franck-Condon factors between the ground state and spin-orbit 2(Ω=1/2) excited state, we choose |2(Ω=1/2),v'=21,J'=1> as the intermediate state in the three-level model to theoretically analyze the possibility of performing stimulated Raman adiabatic passage to transfer weakly bound RbSr molecules to the rovibrational ground state. With 1550 nm pump laser (2 W/cm2) and 1342 nm dump laser (10 mW/cm2) employed and appropriate settings of pulse time length (about 300 μs), we have formalistically achieved a round-trip transfer efficiency of 60%, namely 77% for one-way transfer. The results demonstrate the possibility of producing polar 87Rb84Sr molecules efficiently in a submicrokelvin regime, and further provide promising directions for future theoretical and experimental studies on alkali-alkaline(rare)-earth dimers.

  15. Investigation of the RbCa molecule: Experiment and theory.

    PubMed

    Pototschnig, Johann V; Krois, Günter; Lackner, Florian; Ernst, Wolfgang E

    2015-04-01

    We present a thorough theoretical and experimental study of the electronic structure of RbCa. The mixed alkali-alkaline earth molecule RbCa was formed on superfluid helium nanodroplets. Excited states of the molecule in the range of 13 000-23 000 cm -1 were recorded by resonance enhanced multi-photon ionization time-of-flight spectroscopy. The experiment is accompanied by high level ab initio calculations of ground and excited state properties, utilizing a multireference configuration interaction method based on multiconfigurational self consistent field calculations. With this approach the potential energy curves and permanent electric dipole moments of 24 electronic states were calculated. In addition we computed the transition dipole moments for transitions from the ground into excited states. The combination of experiment and theory allowed the assignment of features in the recorded spectrum to the excited [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] states, where the experiment allowed to benchmark the calculation. This is the first experimental work giving insight into the previously unknown RbCa molecule, which offers great prospects in ultracold molecular physics due to its magnetic and electronic dipole moment in the [Formula: see text] ground state.

  16. A new potential energy surface of the OH2+ system and state-to-state quantum dynamics studies of the O+ + H2 reaction.

    PubMed

    Li, Wentao; Yuan, Jiuchuang; Yuan, Meiling; Zhang, Yong; Yao, Minghai; Sun, Zhigang

    2018-01-03

    A new global potential energy surface (PES) of the O + + H 2 system was constructed with the permutation invariant polynomial neural network method, using about 63 000 ab initio points, which were calculated by employing the multi-reference configuration interaction method with aug-cc-pVTZ and aug-cc-pVQZ basis sets. For improving the accuracy of the PES, the basis set was extrapolated to the complete basis set limit by the two-point extrapolation method. The root mean square error of fitting was only 5.28 × 10 -3 eV. The spectroscopic constants of the diatomic molecules were calculated and compared with previous theoretical and experimental results, which suggests that the present results agree well with the experiment. On the newly constructed PES, reaction dynamics studies were performed using the time-dependent wave packet method. The calculated integral cross sections (ICSs) were compared with the available theoretical and experimental results, where a good agreement with the experimental data was seen. Significant forward and backward scatterings were observed in the whole collision energy region studied. At the same time, the differential cross sections biased the forward scattering, especially at higher collision energies.

  17. Influence of Spin-Orbit Quenching on the Solvation of Indium in Helium Droplets

    NASA Astrophysics Data System (ADS)

    Meyer, Ralf; Pototschnig, Johann V.; Ernst, Wolfgang E.; Hauser, Andreas W.

    2017-06-01

    Recent experimental interest of the collaborating group of M. Koch on the dynamics of electronic excitations of indium in helium droplets triggered a series of computational studies on the group 13 elements Al, Ga and In and their indecisive behavior between wetting and non wetting when placed onto superfluid helium droplets. We employ a combination of multiconfigurational self consistent field calculations (MCSCF) and multireference configuration interaction (MRCI) to calculate the diatomic potentials. Particularly interesting is the case of indium with an Ancilotto parameter λ close to the threshold value of 1.9. As shown by Reho et al. the spin-orbit splitting of metal atoms solvated in helium droplets is subject to a quenching effect. This can drastically change the solvation behavior. In this work we extend the approach presented by Reho et al. to include distance dependent spin-orbit coupling. The resulting potential surfaces are used to calculate the solvation energy of the ground state and the first excited state with orbital-free helium density functional theory. F. Ancilotto, P. B. Lerner and M. W. Cole, Journal of Low Temperature Physics, 1995, 101, 1123-1146 J. H. Reho, U. Merker, M. R. Radcliff, K. K. Lehmann and G. Scoles, The Journal of Physical Chemistry A, 2000, 104, 3620-3626

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Keith; McLaughlin, Brendan M.; Lane, Ian C., E-mail: i.lane@qub.ac.uk

    BaH (and its isotopomers) is an attractive molecular candidate for laser cooling to ultracold temperatures and a potential precursor for the production of ultracold gases of hydrogen and deuterium. The theoretical challenge is to simulate the laser cooling cycle as reliably as possible and this paper addresses the generation of a highly accurate ab initio {sup 2}Σ{sup +} potential for such studies. The performance of various basis sets within the multi-reference configuration-interaction (MRCI) approximation with the Davidson correction is tested and taken to the Complete Basis Set (CBS) limit. It is shown that the calculated molecular constants using a 46more » electron effective core-potential and even-tempered augmented polarized core-valence basis sets (aug-pCVnZ-PP, n = 4 and 5) but only including three active electrons in the MRCI calculation are in excellent agreement with the available experimental values. The predicted dissociation energy D{sub e} for the X{sup 2}Σ{sup +} state (extrapolated to the CBS limit) is 16 895.12 cm{sup −1} (2.094 eV), which agrees within 0.1% of a revised experimental value of <16 910.6 cm{sup −1}, while the calculated r{sub e} is within 0.03 pm of the experimental result.« less

  19. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table.

    PubMed

    Aquilante, Francesco; Autschbach, Jochen; Carlson, Rebecca K; Chibotaru, Liviu F; Delcey, Mickaël G; De Vico, Luca; Fdez Galván, Ignacio; Ferré, Nicolas; Frutos, Luis Manuel; Gagliardi, Laura; Garavelli, Marco; Giussani, Angelo; Hoyer, Chad E; Li Manni, Giovanni; Lischka, Hans; Ma, Dongxia; Malmqvist, Per Åke; Müller, Thomas; Nenov, Artur; Olivucci, Massimo; Pedersen, Thomas Bondo; Peng, Daoling; Plasser, Felix; Pritchard, Ben; Reiher, Markus; Rivalta, Ivan; Schapiro, Igor; Segarra-Martí, Javier; Stenrup, Michael; Truhlar, Donald G; Ungur, Liviu; Valentini, Alessio; Vancoillie, Steven; Veryazov, Valera; Vysotskiy, Victor P; Weingart, Oliver; Zapata, Felipe; Lindh, Roland

    2016-02-15

    In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas-Kroll-Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization. © 2015 Wiley Periodicals, Inc.

  20. Electron Correlation in the Ionization Continuum of Molecules: Photoionization of N2 in the Vicinity of the Hopfield Series of Autoionizing States.

    PubMed

    Klinker, Markus; Marante, Carlos; Argenti, Luca; González-Vázquez, Jesús; Martín, Fernando

    2018-02-15

    Direct measurement of autoionization lifetimes by using time-resolved experimental techniques is a promising approach when energy-resolved spectroscopic methods do not work. Attosecond time-resolved experiments have recently provided the first quantitative determination of autoionization lifetimes of the lowest members of the well-known Hopfield series of resonances in N 2 . In this work, we have used the recently developed XCHEM approach to study photoionization of the N 2 molecule in the vicinity of these resonances. The XCHEM approach allows us to describe electron correlation in the molecular electronic continuum at a level similar to that provided by multireference configuration interaction methods in bound state calculations, a necessary condition to accurately describe autoionization, shakeup, and interchannel couplings occurring in this range of photon energies. Our results show that electron correlation leading to interchannel mixing is the main factor that determines the magnitude and shape of the N 2 photoionization cross sections, as well as the lifetimes of the Hopfield resonances. At variance with recent speculations, nonadiabatic effects do not seem to play a significant role. These conclusions are supported by the very good agreement between the calculated cross sections and those determined in synchrotron radiation and attosecond experiments.

  1. Electronic structure of the BaO molecule with dipole moments and ro-vibrational calculations

    NASA Astrophysics Data System (ADS)

    Khatib, Mohamed; Korek, Mahmoud

    2018-03-01

    The twenty-three low-lying electronic states (singlet and triplet) of the BaO molecule have been studied by using an ab initio method. These electronic states have been investigated by using the Complete Active Apace Self-Consistent Field (CASSCF) followed by multi-reference configuration interaction (MRCI + Q) with Davidson correction. The potential energy curves, the internuclear distance Re, the harmonic frequency ωe, the rotational constant Be, the electronic energy with respect to the ground state Te and the static and transition dipole moment have been investigated. The Einstein spontaneous and induced emission coefficients A21 and B21ω as well as the spontaneous radiative lifetime τspon, emission wavelength λ21 and oscillator strength f21 have been calculated by using the transition dipole moment between some doublet electronic states. The calculation of the eigenvalues Ev, the rotational constant Bv, the centrifugal distortion constant Dv, and the abscissas of the turning points Rmin and Rmax have been done by using the canonical functions approach. A very good agreement is shown by comparing the values of our work to those found in the literature for many electronic states. Eighteen new electronic states have been studied here for the first time.

  2. Guided ion beam and theoretical studies of the bond energy of SmS+

    NASA Astrophysics Data System (ADS)

    Armentrout, P. B.; Demireva, Maria; Peterson, Kirk A.

    2017-12-01

    Previous work has shown that atomic samarium cations react with carbonyl sulfide to form SmS+ + CO in an exothermic and barrierless process. To characterize this reaction further, the bond energy of SmS+ is determined in the present study using guided ion beam tandem mass spectrometry. Reactions of SmS+ with Xe, CO, and O2 are examined. Results for collision-induced dissociation processes with all three molecules along with the endothermicity of the SmS+ + CO → Sm+ + COS exchange reaction are combined to yield D0(Sm+-S) = 3.37 ± 0.20 eV. The CO and O2 reactions also yield a SmSO+ product, with measured endothermicities that indicate D0(SSm+-O) = 3.73 ± 0.16 eV and D0(OSm+-S) = 1.38 ± 0.27 eV. The SmS+ bond energy is compared with theoretical values characterized at several levels of theory, including CCSD(T) complete basis set extrapolations using all-electron basis sets. Multireference configuration interaction calculations with explicit spin-orbit calculations along with composite thermochemistry using the Feller-Peterson-Dixon method and all-electron basis sets were also explored for SmS+, and for comparison, SmO, SmO+, and EuO.

  3. Guided ion beam and theoretical studies of the bond energy of SmS.

    PubMed

    Armentrout, P B; Demireva, Maria; Peterson, Kirk A

    2017-12-07

    Previous work has shown that atomic samarium cations react with carbonyl sulfide to form SmS + + CO in an exothermic and barrierless process. To characterize this reaction further, the bond energy of SmS + is determined in the present study using guided ion beam tandem mass spectrometry. Reactions of SmS + with Xe, CO, and O 2 are examined. Results for collision-induced dissociation processes with all three molecules along with the endothermicity of the SmS + + CO → Sm + + COS exchange reaction are combined to yield D 0 (Sm + -S) = 3.37 ± 0.20 eV. The CO and O 2 reactions also yield a SmSO + product, with measured endothermicities that indicate D 0 (SSm + -O) = 3.73 ± 0.16 eV and D 0 (OSm + -S) = 1.38 ± 0.27 eV. The SmS + bond energy is compared with theoretical values characterized at several levels of theory, including CCSD(T) complete basis set extrapolations using all-electron basis sets. Multireference configuration interaction calculations with explicit spin-orbit calculations along with composite thermochemistry using the Feller-Peterson-Dixon method and all-electron basis sets were also explored for SmS + , and for comparison, SmO, SmO + , and EuO.

  4. Accurate potential energy surface for the 1(2)A' state of NH(2): scaling of external correlation versus extrapolation to the complete basis set limit.

    PubMed

    Li, Y Q; Varandas, A J C

    2010-09-16

    An accurate single-sheeted double many-body expansion potential energy surface is reported for the title system which is suitable for dynamics and kinetics studies of the reactions of N(2D) + H2(X1Sigmag+) NH(a1Delta) + H(2S) and their isotopomeric variants. It is obtained by fitting ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set, after slightly correcting semiempirically the dynamical correlation using the double many-body expansion-scaled external correlation method. The function so obtained is compared in detail with a potential energy surface of the same family obtained by extrapolating the calculated raw energies to the complete basis set limit. The topographical features of the novel global potential energy surface are examined in detail and found to be in general good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. The novel function has been built so as to become degenerate at linear geometries with the ground-state potential energy surface of A'' symmetry reported by our group, where both form a Renner-Teller pair.

  5. Ground and excited states of vanadium hydroxide isomers and their cations, VOH0,+ and HVO0,+

    NASA Astrophysics Data System (ADS)

    Miliordos, Evangelos; Harrison, James F.; Hunt, Katharine L. C.

    2013-03-01

    Employing correlation consistent basis sets of quadruple-zeta quality and applying both multireference configuration interaction and single-reference coupled cluster methodologies, we studied the electronic and geometrical structure of the [V,O,H]0,+ species. The electronic structure of HVO0,+ is explained by considering a hydrogen atom approaching VO0,+, while VOH0,+ molecules are viewed in terms of the interaction of V+,2+ with OH-. The potential energy curves for H-VO0,+ and V0,+-OH have been constructed as functions of the distance between the interacting subunits, and the potential energy curves have also been determined as functions of the H-V-O angle. For the stationary points that we have located, we report energies, geometries, harmonic frequencies, and dipole moments. We find that the most stable bent HVO0,+ structure is lower in energy than any of the linear HVO0,+ structures. Similarly, the most stable state of bent VOH is lower in energy than the linear structures, but linear VOH+ is lower in energy than bent VOH+. The global minimum on the potential energy surface for the neutral species is the tilde{X}^3A″ state of bent HVO, although the tilde{X}^5A″ state of bent VOH is less than 5 kcal/mol higher in energy. The global minimum on the potential surface for the cation is the tilde{X}^4Σ ^- state of linear VOH+, with bent VOH+ and bent HVO+ both more than 10 kcal/mol higher in energy. For the neutral species, the bent geometries exhibit significantly higher dipole moments than the linear structures.

  6. Coupled potential energy surface for the F(2P)+CH4→HF+CH3 entrance channel and quantum dynamics of the CH4·F- photodetachment.

    PubMed

    Westermann, Till; Eisfeld, Wolfgang; Manthe, Uwe

    2013-07-07

    An approach to construct vibronically and spin-orbit coupled diabatic potential energy surfaces (PESs) which describe all three relevant electronic states in the entrance channels of the X(P) + CH4 →HX + CH3 reactions (with X=F((2)P), Cl((2)P), or O((3)P)) is introduced. The diabatization relies on the permutational symmetry present in the methane molecule and results in diabatic states which transform as the three p orbitals of the X atom. Spin-orbit coupling is easily and accurately included using the atomic spin-orbit coupling matrix of the isolated X atom. The method is applied to the F + CH4 system obtaining an accurate PES for the entrance channel based on ab initio multi-reference configuration interaction (MRCI) calculations. Comparing the resulting PESs with spin-orbit MRCI calculations, excellent agreement is found for the excited electronic states at all relevant geometries. The photodetachment spectrum of CH4·F(-) is investigated via full-dimensional (12D) quantum dynamics calculations on the coupled PESs using the multi-layer multi-configurational time-dependent Hartree approach. Extending previous work [J. Palma and U. Manthe, J. Chem. Phys. 137, 044306 (2012)], which was restricted to the dynamics on a single adiabatic PES, the contributions of the electronically excited states to the photodetachment spectrum are calculated and compared to experiment. Considering different experimental setups, good agreement between experiment and theory is found. Addressing questions raised in the previous work, the present dynamical calculations show that the main contribution to the second peak in the photodetachment spectrum results from electron detachment into the electronically excited states of the CH4F complex.

  7. A Multireference Density Functional Approach to the Calculation of the Excited States of Uranium Ions

    DTIC Science & Technology

    2007-03-01

    approach. xiv A MULTIREFERENCE DENSITY FUNCTIONAL APPROACH TO THE CALCULATION OF THE EXCITED STATES OF URANIUM IONS I. Introduction Actinide chemistry, in...oxidation state of the uranium atom. Uranium, like most early actinides , can possess a wide range of oxidation states, ranging from +3 to +6, due in part...in predicting the electronic spectra for heavy element compounds. The first difficulty is that relativistic effects for actinides are significant

  8. The suitability of barium monofluoride for laser cooling from ab initio study

    NASA Astrophysics Data System (ADS)

    Kang, Shuying; Kuang, Fangguang; Jiang, Gang; Du, Jiguang

    2016-03-01

    The feasibility of laser cooling the 138Ba19F molecule is performed using ab initio quantum chemistry. Three low-lying doublet electronic states X 2Σ+, A' 2Δ and A 2Π are determined by the multireference configuration-interaction (MRCI) method, where the spin-orbit coupling (SOC) effect is also taken into account in the electronic structure calculations. The computed spectroscopic constants and permanent dipole moments agree well with the available experimental data. The Franck-Condon factors of the A 2П → X 2Σ+ transition show highly diagonal dominance (f00 = 0.981, f11 = 0.940, f22 = 0.896) and the A 2П state has a radiative lifetime of τ = 37.8 ns, allowing for rapid laser cooling. Our calculation indicates that the laser-cooling scheme require only three lasers at 822 nm, 855 nm and 856 nm proceeded on the A 2П (ν‧) ← X 2Σ+ (ν‧‧) transitions. The appeared intervening state A' 2Δ between the X 2Σ+ and A 2П states is the main challenge for laser cooling this molecule. In fact, the calculated vibrational branching loss ratio to the intermediate A' 2Δ state is almost negligible at a level of η < 4.5 × 10-9. Thus, BaF is a promising laser-cooling candidate with a relatively simple laser-cooling scheme.

  9. Low-Lying Electronic States of AlZn Calculated by MRCI+Q Method

    NASA Astrophysics Data System (ADS)

    Zhang, Shudong; Wang, Mingxu; Wang, Zifan; Hu, Kun; Dong, Jingping

    2017-07-01

    Some low-lying electronic states of AlZn have been studied by the ab initio calculation method of multireference configuration interaction (MRCI). The complete potential energy curves (PECs) of the three lowest doublet states (X2Π, A2Σ+, and B2Π) and the two lowest quartet states (a4Σ- and b4Π) are computed in the range of R = 0.1-0.9 nm and these states are correlated to three dissociation limits, X2Π and A2Σ+ to Zn(4s2,1S) + Al(3s23p1,2P), a4Σ- and b4Π to Zn(4s2,1S) + Al(3s13p2,4P), and B2Π to Zn(4s14p1,3P) + Al(3s23p1,2P). The calculated PECs indicate that the A2Σ+ state has a very shallow potential well and the other states show significant binding-state characteristics. The equilibrium internuclear distances Re, dissociation energies De, and term energies Te for the electronic excited states were obtained. All the possible vibrational levels, rotational constants, and spectral constants for the four bound states were computed by solving the radial Schrödinger equation of nuclear motion with the Level8.0 program provided by Le Roy.

  10. First-Principles Fe L 2,3 -Edge and O K-Edge XANES and XMCD Spectra for Iron Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sassi, Michel; Pearce, Carolyn I.; Bagus, Paul S.

    X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectroscopies are tools in widespread use for providing detailed local atomic structure, oxidation state, and magnetic structure information for materials and organometallic complexes. The analysis of these spectra for transition-metal L-edges is routinely performed on the basis of ligand-field multiplet theory because one- and two-particle mean-field ab initio methods typically cannot describe the multiplet structure. Here we show that multireference configuration interaction (MRCI) calculations can satisfactorily reproduce measured XANES spectra for a range of complex iron oxide materials including hematite and magnetite. MRCI Fe L2,3-edge XANES and XMCD spectramore » of Fe(II)O6, Fe(III)O6, and Fe(III)O4 in magnetite are found to be in very good qualitative agreement with experiment and multiplet calculations. Point-charge embedding and small distortions of the first-shell oxygen ligands have only small effects. Oxygen K-edge XANES/XMCD spectra for magnetite investigated by a real-space Green’s function approach complete the very good qualitative agreement with experiment. Material-specific differences in local coordination and site symmetry are well reproduced, making the approach useful for assigning spectral features to specific oxidation states and coordination environments.« less

  11. Electronic states and potential energy curves of molybdenum carbide and its ions

    NASA Astrophysics Data System (ADS)

    Denis, Pablo A.; Balasubramanian, K.

    2006-07-01

    The potential energy curves and spectroscopic constants of the ground and 29 low-lying excited states of MoC with different spin and spatial symmetries within 48000cm-1 have been investigated. We have used the complete active space multiconfiguration self-consistent field methodology, followed by multireference configuration interaction (MRCI) methods. Relativistic effects were considered with the aid of relativistic effective core potentials in conjunction with these methods. The results are in agreement with previous studies that determined the ground state as XΣ-3. At the MRCISD +Q level, the transition energies to the 1Δ3 and 4Δ1 states are 3430 and 8048cm-1, respectively, in fair agreement with the results obtained by DaBell et al. [J. Chem. Phy. 114, 2938 (2001)], namely, 4003 and 7834cm-1, respectively. The three band systems located at 18 611, 20 700, and 22520cm-1 observed by Brugh et al. [J. Chem. Phy. 109, 7851 (1998)] were attributed to the excited 11Σ-3, 14Π3, and 15Π1 states respectively. At the MRCISD level, these states are 17 560, 20 836, and 20952cm-1 above the ground state respectively. We have also identified a Π3 state lying 14309cm-1 above the ground state. The ground states of the molecular ions are predicted to be Σ-4 and Δ2 for MoC- and MoC+, respectively.

  12. Photodissociation of HCN and HNC isomers in the 7-10 eV energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chenel, Aurelie; Roncero, Octavio, E-mail: octavio.roncero@csic.es; Aguado, Alfredo

    2016-04-14

    The ultraviolet photoabsorption spectra of the HCN and HNC isomers have been simulated in the 7-10 eV photon energy range. For this purpose, the three-dimensional adiabatic potential energy surfaces of the 7 lowest electronic states, and the corresponding transition dipole moments, have been calculated, at multireference configuration interaction level. The spectra are calculated with a quantum wave packet method on these adiabatic potential energy surfaces. The spectra for the 3 lower excited states, the dissociative electronic states, correspond essentially to predissociation peaks, most of them through tunneling on the same adiabatic state. The 3 higher electronic states are bound, hereaftermore » electronic bound states, and their spectra consist of delta lines, in the adiabatic approximation. The radiative lifetime towards the ground electronic states of these bound states has been calculated, being longer than 10 ns in all cases, much longer that the characteristic predissociation lifetimes. The spectra of HCN is compared with the available experimental and previous theoretical simulations, while in the case of HNC there are no previous studies to our knowledge. The spectrum for HNC is considerably more intense than that of HCN in the 7-10 eV photon energy range, which points to a higher photodissociation rate for HNC, compared to HCN, in astrophysical environments illuminated by ultraviolet radiation.« less

  13. Non-Born-Oppenheimer molecular dynamics of the spin-forbidden reaction O(3P) + CO(X 1Σ+) → CO2(tilde X{}^1Σ _g^ +)

    NASA Astrophysics Data System (ADS)

    Jasper, Ahren W.; Dawes, Richard

    2013-10-01

    The lowest-energy singlet (1 1A') and two lowest-energy triplet (1 3A' and 1 3A″) electronic states of CO2 are characterized using dynamically weighted multireference configuration interaction (dw-MRCI+Q) electronic structure theory calculations extrapolated to the complete basis set (CBS) limit. Global analytic representations of the dw-MRCI+Q/CBS singlet and triplet surfaces and of their CASSCF/aug-cc-pVQZ spin-orbit coupling surfaces are obtained via the interpolated moving least squares (IMLS) semiautomated surface fitting method. The spin-forbidden kinetics of the title reaction is calculated using the coupled IMLS surfaces and coherent switches with decay of mixing non-Born-Oppenheimer molecular dynamics. The calculated spin-forbidden association rate coefficient (corresponding to the high pressure limit of the rate coefficient) is 7-35 times larger at 1000-5000 K than the rate coefficient used in many detailed chemical models of combustion. A dynamical analysis of the multistate trajectories is presented. The trajectory calculations reveal direct (nonstatistical) and indirect (statistical) spin-forbidden reaction mechanisms and may be used to test the suitability of transition-state-theory-like statistical methods for spin-forbidden kinetics. Specifically, we consider the appropriateness of the "double passage" approximation, of assuming statistical distributions of seam crossings, and of applications of the unified statistical model for spin-forbidden reactions.

  14. Photodissociation of N2O: triplet states and triplet channel.

    PubMed

    Schinke, R; Schmidt, J A; Johnson, M S

    2011-11-21

    The role of triplet states in the UV photodissociation of N(2)O is investigated by means of quantum mechanical wave packet calculations. Global potential energy surfaces are calculated for the lowest two (3)A' and the lowest two (3)A'' states at the multi-reference configuration interaction level of electronic structure theory using the augmented valence quadruple zeta atomic basis set. Because of extremely small transition dipole moments with the ground electronic state, excitation of the triplet states has only a marginal effect on the far red tail of the absorption cross section. The calculations do not show any hint of an increased absorption around 280 nm as claimed by early experimental studies. The peak observed in several electron energy loss spectra at 5.4 eV is unambiguously attributed to the lowest triplet state 1(3)A'. Excitation of the 2(1)A' state and subsequent transition to the repulsive branch of the 2(3)A'' state at intermediate NN-O separations, promoted by spin-orbit coupling, is identified as the main pathway to the N(2)((1)Σ(g)(+))+O((3)P) triplet channel. The yield, determined in two-state wave packet calculations employing calculated spin-orbit matrix elements, is 0.002 as compared to 0.005 ± 0.002 measured by Nishida et al. [J. Phys. Chem. A 108, 2451 (2004)].

  15. Merging symmetry projection methods with coupled cluster theory: Lessons from the Lipkin model Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahlen-Strothman, J. M.; Henderson, T. H.; Hermes, M. R.

    Coupled cluster and symmetry projected Hartree-Fock are two central paradigms in electronic structure theory. However, they are very different. Single reference coupled cluster is highly successful for treating weakly correlated systems, but fails under strong correlation unless one sacrifices good quantum numbers and works with broken-symmetry wave functions, which is unphysical for finite systems. Symmetry projection is effective for the treatment of strong correlation at the mean-field level through multireference non-orthogonal configuration interaction wavefunctions, but unlike coupled cluster, it is neither size extensive nor ideal for treating dynamic correlation. We here examine different scenarios for merging these two dissimilar theories.more » We carry out this exercise over the integrable Lipkin model Hamiltonian, which despite its simplicity, encompasses non-trivial physics for degenerate systems and can be solved via diagonalization for a very large number of particles. We show how symmetry projection and coupled cluster doubles individually fail in different correlation limits, whereas models that merge these two theories are highly successful over the entire phase diagram. Despite the simplicity of the Lipkin Hamiltonian, the lessons learned in this work will be useful for building an ab initio symmetry projected coupled cluster theory that we expect to be accurate in the weakly and strongly correlated limits, as well as the recoupling regime.« less

  16. Adaptive time steps in trajectory surface hopping simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spörkel, Lasse, E-mail: spoerkel@kofo.mpg.de; Thiel, Walter, E-mail: thiel@kofo.mpg.de

    2016-05-21

    Trajectory surface hopping (TSH) simulations are often performed in combination with active-space multi-reference configuration interaction (MRCI) treatments. Technical problems may arise in such simulations if active and inactive orbitals strongly mix and switch in some particular regions. We propose to use adaptive time steps when such regions are encountered in TSH simulations. For this purpose, we present a computational protocol that is easy to implement and increases the computational effort only in the critical regions. We test this procedure through TSH simulations of a GFP chromophore model (OHBI) and a light-driven rotary molecular motor (F-NAIBP) on semiempirical MRCI potential energymore » surfaces, by comparing the results from simulations with adaptive time steps to analogous ones with constant time steps. For both test molecules, the number of successful trajectories without technical failures rises significantly, from 53% to 95% for OHBI and from 25% to 96% for F-NAIBP. The computed excited-state lifetime remains essentially the same for OHBI and increases somewhat for F-NAIBP, and there is almost no change in the computed quantum efficiency for internal rotation in F-NAIBP. We recommend the general use of adaptive time steps in TSH simulations with active-space CI methods because this will help to avoid technical problems, increase the overall efficiency and robustness of the simulations, and allow for a more complete sampling.« less

  17. An AB Initio Study of SbH_2 and BiH_2: the Renner Effect, Spin-Orbit Coupling, Local Mode Vibrations and Rovibronic Energy Level Clustering in SbH_2

    NASA Astrophysics Data System (ADS)

    Ostojic, Bojana; Schwerdtfeger, Peter; Bunker, Phil; Jensen, Per

    2016-06-01

    We present the results of ab initio calculations for the lower electronic states of the Group 15 (pnictogen) dihydrides, SbH_2 and BiH_2. For each of these molecules the two lowest electronic states become degenerate at linearity and are therefore subject to the Renner effect. Spin-orbit coupling is also strong in these two heavy-element containing molecules. For the lowest two electronic states of SbH_2, we construct the three dimensional potential energy surfaces and corresponding dipole moment and transition moment surfaces by multi-reference configuration interaction techniques. Including both the Renner effect and spin-orbit coupling, we calculate term values and simulate the rovibrational and rovibronic spectra of SbH_2. Excellent agreement is obtained with the results of matrix isolation infrared spectroscopic studies and with gas phase electronic spectroscopic studies in absorption [1,2]. For the heavier dihydride BiH_2 we calculate bending potential curves and the spin-orbit coupling constant for comparison. For SbH_2 we further study the local mode vibrational behavior and the formation of rovibronic energy level clusters in high angular momentum states. [1] X. Wang, P. F. Souter and L. Andrews, J. Phys. Chem. A 107, 4244-4249 (2003) [2] N. Basco and K. K. Lee, Spectroscopy Letters 1, 13-15 (1968)

  18. Anab InitioStudy of the NH2+Absorption Spectrum

    NASA Astrophysics Data System (ADS)

    Osmann, Gerald; Bunker, P. R.; Jensen, Per; Kraemer, W. P.

    1997-12-01

    In a previous publication (1997. P. Jensen,J. Mol. Spectrosc.181,207-214), rotation-vibration energy levels for the electronic ground stateX˜3B1of the amidogen ion, NH2+, were predicted using the MORBID Hamiltonian and computer program with anab initiopotential energy surface. In the present paper we calculate a newab initiopotential energy surface for theX˜3B1state, and we calculateab initiothe potential energy surfaces of theã1A1andb˜1B1excited singlet electronic states (which become degenerate as a1Δ state at linearity). We use the multireference configuration interaction (MR-CI) level of theory with molecular orbital bases that are optimized separately for each state by complete-active-space SCF (CASSCF) calculations. For theX˜state we use the MORBID Hamiltonian and computer program to obtain the rotation-vibration energies. For theãandb˜excited singlet electronic states we calculate the rovibronic energy levels using the RENNER Hamiltonian and computer program. We also calculateab initiothe dipole moment surfaces for theX˜,ã, andb˜electronic states, and the out-of-plane transition moment surface for theb˜←ãelectronic transition. We use this information to simulate absorption spectra withinX˜3B1andã1A1state and of theb˜1B1← ã1A1transition in order to aid in the search for them.

  19. Adaptive time steps in trajectory surface hopping simulations

    NASA Astrophysics Data System (ADS)

    Spörkel, Lasse; Thiel, Walter

    2016-05-01

    Trajectory surface hopping (TSH) simulations are often performed in combination with active-space multi-reference configuration interaction (MRCI) treatments. Technical problems may arise in such simulations if active and inactive orbitals strongly mix and switch in some particular regions. We propose to use adaptive time steps when such regions are encountered in TSH simulations. For this purpose, we present a computational protocol that is easy to implement and increases the computational effort only in the critical regions. We test this procedure through TSH simulations of a GFP chromophore model (OHBI) and a light-driven rotary molecular motor (F-NAIBP) on semiempirical MRCI potential energy surfaces, by comparing the results from simulations with adaptive time steps to analogous ones with constant time steps. For both test molecules, the number of successful trajectories without technical failures rises significantly, from 53% to 95% for OHBI and from 25% to 96% for F-NAIBP. The computed excited-state lifetime remains essentially the same for OHBI and increases somewhat for F-NAIBP, and there is almost no change in the computed quantum efficiency for internal rotation in F-NAIBP. We recommend the general use of adaptive time steps in TSH simulations with active-space CI methods because this will help to avoid technical problems, increase the overall efficiency and robustness of the simulations, and allow for a more complete sampling.

  20. Spectral Study of A 1Π–X 1Σ+ Transitions of CO Relevant to Interstellar Clouds

    NASA Astrophysics Data System (ADS)

    Cheng, Junxia; Zhang, Hong; Cheng, Xinlu

    2018-05-01

    Highly correlated ab initio calculations were performed for an accurate determination of the A 1Π–X 1Σ+ system of the CO molecule. A highly accurate multi-reference configuration interaction approach was used to investigate the potential energy curves (PECs) and the transition dipole moment curve (TDMC). The resultant PECs and TDMC found by using the aug-cc-pV5Z (aV5Z) basis set and 5330 active spaces are in good agreement with the experimental data. Moreover, the Einstein A coefficients, lifetimes, ro-vibrational intensities, absorption oscillator strengths, and integrated cross sections are calculated so that the vibrational bands include v″ = 0–39 \\to v‧ = 0–23. For applications in the atmosphere and interstellar clouds, we studied the transition lineshapes to Gaussian and Lorentzian profiles at different temperatures and pressures. The intensities were calculated at high temperature that was used to satisfy some astrophysical applications, such as in planetary atmospheres. The results are potentially useful for important SAO/NASA Astrophysics Data System and databases such as HITRAN, HITEMP, and the National Institute of Standards and Technology. Because the results from many laboratory techniques and our calculations now agree, analyses of interstellar CO based on absorption from A 1Π–X 1Σ+ are no longer hindered by present spectral parameters.

  1. Accurate potential energy curves, spectroscopic parameters, transition dipole moments, and transition probabilities of 21 low-lying states of the CO+ cation

    NASA Astrophysics Data System (ADS)

    Xing, Wei; Shi, Deheng; Zhang, Jicai; Sun, Jinfeng; Zhu, Zunlue

    2018-05-01

    This paper calculates the potential energy curves of 21 Λ-S and 42 Ω states, which arise from the first two dissociation asymptotes of the CO+ cation. The calculations are conducted using the complete active space self-consistent field method, which is followed by the valence internally contracted multireference configuration interaction approach with the Davidson correction. To improve the reliability and accuracy of the potential energy curves, core-valence correlation and scalar relativistic corrections, as well as the extrapolation of potential energies to the complete basis set limit are taken into account. The spectroscopic parameters and vibrational levels are determined. The spin-orbit coupling effect on the spectroscopic parameters and vibrational levels is evaluated. To better study the transition probabilities, the transition dipole moments are computed. The Franck-Condon factors and Einstein coefficients of some emissions are calculated. The radiative lifetimes are determined for a number of vibrational levels of several states. The transitions between different Λ-S states are evaluated. Spectroscopic routines for observing these states are proposed. The spectroscopic parameters, vibrational levels, transition dipole moments, and transition probabilities reported in this paper can be considered to be very reliable and can be used as guidelines for detecting these states in an appropriate spectroscopy experiment, especially for the states that were very difficult to observe or were not detected in previous experiments.

  2. Multiconfiguration pair-density functional theory for doublet excitation energies and excited state geometries: the excited states of CN.

    PubMed

    Bao, Jie J; Gagliardi, Laura; Truhlar, Donald G

    2017-11-15

    Multiconfiguration pair-density functional theory (MC-PDFT) is a post multiconfiguration self-consistent field (MCSCF) method with similar performance to complete active space second-order perturbation theory (CASPT2) but with greater computational efficiency. Cyano radical (CN) is a molecule whose spectrum is well established from experiments and whose excitation energies have been used as a testing ground for theoretical methods to treat excited states of open-shell systems, which are harder and much less studied than excitation energies of closed-shell singlets. In the present work, we studied the adiabatic excitation energies of CN with MC-PDFT. Then we compared this multireference (MR) method to some single-reference (SR) methods, including time-dependent density functional theory (TDDFT) and completely renormalized equation-of-motion coupled-cluster theory with singles, doubles and noniterative triples [CR-EOM-CCSD(T)]; we also compared to some other MR methods, including configuration interaction singles and doubles (MR-CISD) and multistate CASPT2 (MS-CASPT2). Through a comparison between SR and MR methods, we achieved a better appreciation of the need to use MR methods to accurately describe higher excited states, and we found that among the MR methods, MC-PDFT stands out for its accuracy for the first four states out of the five doublet states studied this paper; this shows its efficiency for calculating doublet excited states.

  3. Experimental and theoretical characterization of the 2(2)A'-1(2)A' transition of BeOH/D.

    PubMed

    Mascaritolo, Kyle J; Merritt, Jeremy M; Heaven, Michael C; Jensen, Per

    2013-12-19

    The hydroxides of Ca, Sr, and Ba are known to be linear molecules, while MgOH is quasilinear. High-level ab initio calculations for BeOH predict a bent equilibrium structure with a bond angle of 140.9°, indicating a significant contribution of covalency to the bonding. However, experimental confirmation of the bent structure is lacking. In the present study, we have used laser excitation techniques to observe the 2(2)A'-1(2)A' transition of BeOH/D in the energy range of 30300-32800 cm(-1). Rotationally resolved spectra were obtained, with sufficient resolution to reveal spin splittings for the electronically excited state. Two-color photoionization was used to determine an ionization energy of 66425(10) cm(-1). Ab initio calculations were used to guide the analysis of the spectroscopic data. Multireference configuration interaction calculations were used to construct potential energy surfaces for the 1(2)A', 2(2)A', and 1(2)A" states. The rovibronic eigenstates supported by these surfaces were determined using the Morse oscillator rigid bender internal dynamics Hamiltonian. The theoretical results were in sufficiently good agreement with the experimental data to permit unambiguous assignment. It was confirmed that the equilibrium geometry of the ground state is bent and that the barrier to linearity lies below the zero-point energies for both BeOH and BeOD.

  4. An integral-factorized implementation of the driven similarity renormalization group second-order multireference perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannon, Kevin P.; Li, Chenyang; Evangelista, Francesco A., E-mail: francesco.evangelista@emory.edu

    2016-05-28

    We report an efficient implementation of a second-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT2) [C. Li and F. A. Evangelista, J. Chem. Theory Comput. 11, 2097 (2015)]. Our implementation employs factorized two-electron integrals to avoid storage of large four-index intermediates. It also exploits the block structure of the reference density matrices to reduce the computational cost to that of second-order Møller–Plesset perturbation theory. Our new DSRG-MRPT2 implementation is benchmarked on ten naphthyne isomers using basis sets up to quintuple-ζ quality. We find that the singlet-triplet splittings (Δ{sub ST}) of the naphthyne isomers strongly depend onmore » the equilibrium structures. For a consistent set of geometries, the Δ{sub ST} values predicted by the DSRG-MRPT2 are in good agreements with those computed by the reduced multireference coupled cluster theory with singles, doubles, and perturbative triples.« less

  5. Nondynamical correlation energy in model molecular systems

    NASA Astrophysics Data System (ADS)

    Chojnacki, Henryk

    The hypersurfaces for the deprotonation processes have been studied at the nonempirical level for H3O+, NH+4, PH+4, and H3S+ cations within their correlation consistent basis set. The potential energy curves were calculated and nondynamical correlation energies analyzed. We have found that the restricted Hartree-Fock wavefunction leads to the improper dissociation limit and, in the three latest cases requires multireference description. We conclude that these systems may be treated as a good models for interpretation of the proton transfer mechanism as well as for testing one-determinantal or multireference cases.

  6. Molecular Line Lists for Scandium and Titanium Hydride Using the DUO Program

    NASA Astrophysics Data System (ADS)

    Lodi, Lorenzo; Yurchenko, Sergei N.; Tennyson, Jonathan

    2015-06-01

    Transition-metal-containing (TMC) molecules often have very complex electronic spectra because of their large number of low-lying, interacting electronic states, of the large multi-reference character of the electronic states and of the large magnitude of spin-orbit and relativistic effects. As a result, fully ab initio calculations of line positions and intensities of TMC molecules have an accuracy which is considerably worse than the one usually achievable for molecules made up by main-group atoms only. In this presentation we report on new theoretical line lists for scandium hydride ScH and titanium hydride TiH. Scandium and titanium are the lightest transition metal atoms and by virtue of their small number of valence electrons are amenable to high-level electronic-structure treatments and serve as ideal benchmark systems. We report for both systems energy curves, dipole curves and various coupling curves (including spin-orbit) characterising their electronic spectra up to about 20 000 cm-1. Curves were obtained using Internally-Contracted Multi Reference Configuration Interaction (IC-MRCI) as implemented in the quantum chemistry package MOLPRO. The curves where used for the solution of the coupled-surface ro-vibronic problem using the in-house program DUO. DUO is a newly-developed, general program for the spectroscopy of diatomic molecules and its main functionality will be described. The resulting line lists for ScH and TiH are made available as part of the Exomol project. L. Lodi, S. N. Yurchenko and J. Tennyson, Mol. Phys. (Handy special issue) in press. S. N. Yurchenko, L. Lodi, J. Tennyson and A. V. Stolyarov, Computer Phys. Comms., to be submitted.

  7. The role of NH3 and hydrocarbon mixtures in GaN pseudo-halide CVD: a quantum chemical study.

    PubMed

    Gadzhiev, Oleg B; Sennikov, Peter G; Petrov, Alexander I; Kachel, Krzysztof; Golka, Sebastian; Gogova, Daniela; Siche, Dietmar

    2014-11-01

    The prospects of a control for a novel gallium nitride pseudo-halide vapor phase epitaxy (PHVPE) with HCN were thoroughly analyzed for hydrocarbons-NH3-Ga gas phase on the basis of quantum chemical investigation with DFT (B3LYP, B3LYP with D3 empirical correction on dispersion interaction) and ab-initio (CASSCF, coupled clusters, and multireference configuration interaction including MRCI+Q) methods. The computational screening of reactions for different hydrocarbons (CH4, C2H6, C3H8, C2H4, and C2H2) as readily available carbon precursors for HCN formation, potential chemical transport agents, and for controlled carbon doping of deposited GaN was carried out with the B3LYP method in conjunction with basis sets up to aug-cc-pVTZ. The gas phase intermediates for the reactions in the Ga-hydrocarbon systems were predicted at different theory levels. The located π-complexes Ga…C2H2 and Ga…C2H4 were studied to determine a probable catalytic activity in reactions with NH3. A limited influence of the carbon-containing atmosphere was exhibited for the carbon doping of GaN crystal in the conventional GaN chemical vapor deposition (CVD) process with hydrocarbons injected in the gas phase. Our results provide a basis for experimental studies of GaN crystal growth with C2H4 and C2H2 as auxiliary carbon reagents for the Ga-NH3 and Ga-C-NH3 CVD systems and prerequisites for reactor design to enhance and control the PHVPE process through the HCN synthesis.

  8. Exchange Coupling Interactions from the Density Matrix Renormalization Group and N-Electron Valence Perturbation Theory: Application to a Biomimetic Mixed-Valence Manganese Complex.

    PubMed

    Roemelt, Michael; Krewald, Vera; Pantazis, Dimitrios A

    2018-01-09

    The accurate description of magnetic level energetics in oligonuclear exchange-coupled transition-metal complexes remains a formidable challenge for quantum chemistry. The density matrix renormalization group (DMRG) brings such systems for the first time easily within reach of multireference wave function methods by enabling the use of unprecedentedly large active spaces. But does this guarantee systematic improvement in predictive ability and, if so, under which conditions? We identify operational parameters in the use of DMRG using as a test system an experimentally characterized mixed-valence bis-μ-oxo/μ-acetato Mn(III,IV) dimer, a model for the oxygen-evolving complex of photosystem II. A complete active space of all metal 3d and bridge 2p orbitals proved to be the smallest meaningful starting point; this is readily accessible with DMRG and greatly improves on the unrealistic metal-only configuration interaction or complete active space self-consistent field (CASSCF) values. Orbital optimization is critical for stabilizing the antiferromagnetic state, while a state-averaged approach over all spin states involved is required to avoid artificial deviations from isotropic behavior that are associated with state-specific calculations. Selective inclusion of localized orbital subspaces enables probing the relative contributions of different ligands and distinct superexchange pathways. Overall, however, full-valence DMRG-CASSCF calculations fall short of providing a quantitative description of the exchange coupling owing to insufficient recovery of dynamic correlation. Quantitatively accurate results can be achieved through a DMRG implementation of second order N-electron valence perturbation theory (NEVPT2) in conjunction with a full-valence metal and ligand active space. Perspectives for future applications of DMRG-CASSCF/NEVPT2 to exchange coupling in oligonuclear clusters are discussed.

  9. Molecular Spectra of RbSr: Helium Droplet Assisted Preparation of a Diatomic Molecule

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Krois, Günter; Buchsteiner, Thomas; Pototschnig, Johann V.; Ernst, Wolfgang E.

    2014-06-01

    We report on the first spectroscopic investigation of the ground and excited states of RbSr. The molecules are prepared in their vibronic ground state (X^2Σ^+1/2, ν" = 0) in a sequential pickup process on the surface of helium nanodroplets, confined in a cold (0.38 K) and weakly perturbing superfluid environment. Utilizing resonance-enhanced multi-photon ionization time-of-flight (REMPI-TOF) spectroscopy and laser induced fluorescence (LIF) spectroscopy our investigations cover the spectral regime of 11500 cm-1 - 23000 cm-1. The weak interaction between molecules and helium droplets causes a broadening of the observed transitions. For spectrally resolved band systems the helium droplet isolation approach facilitates the determination of molecular constants. Our assignment is assisted by theoretical calculations of potential energy curves based on a multireference configuration interaction (MRCI) approach. Several strong transitions could be identified; the most prominent spectral feature is a vibrational resolved band system at 14000 cm-1. In contrast to the excitation spectra, dispersed fluorescence (DF) spectra are not influenced by the helium environment, because the molecules leave the droplets upon photoexcitation, revealing detailed insights into the electronic structure of the free RbSr molecule. G. Krois, J.V. Pototschnig, F. Lackner and W.E. Ernst, J. Phys. Chem. A, 117 (50), 13719-13731 (2013) C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in: Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, (2011) P.S. Żuchowski, R. Guerout, and O. Dulieu, arXiv preprint arXiv:1402.0702 (2014) B. Pasquiou, A. Bayerle, S.M. Tzanova, S. Stellmer, J. Szczepkowski, M. Parigger, R. Grimm, and F. Schreck, Phys. Rev. A, 88 (2), 023601 (2013).

  10. Theoretical investigation of intersystem crossing in the cyanonitrene molecule, 1NCN → 3NCN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeifle, Mark; Georgievskii, Yuri; Jasper, Ahren W.

    The NCN diradical is an important intermediate of prompt nitric oxide formation in flames. The mechanism of intersystem crossing (ISC) in the NCN molecule formed via pyrolysis or photolysis of NCN 3 is of relevance to the interpretation of experiments that utilize NCN 3 as a precursor for laboratory studies of NCN kinetics. This mechanism has been investigated by means of multi-reference configuration interaction calculations. From the potential energy surfaces for NCN 3 dissociation, it was inferred that both thermal and photo-chemical decomposition initially lead to NCN in its lowest singlet state,more » $$\\tilde{a}^{-1}$$$Δ_g$$, with a possible contribution from the $$\\tilde{b}^{-1}\\Sigma_g^+$$ state at low photolysis wavelengths. Direct formation of the triplet ground state $$\\tilde{X}^{-3}\\Sigma_g^-$$ is also feasible for the photolytic pathway. Ananalysis of surface crossings between $$\\tilde{a}$$ or $$\\tilde{b}$$ and the triplet ground state $$\\tilde{X}^{-3}\\Sigma_g^-$$ in the absence and presence of a helium atom revealed an ISC channel 1NCN ($$\\tilde{a}$$) → 3NCN($$\\tilde{X}$$) via a strongly bent structure. However, its barrier of 38 kcal mol -1 relative to the singlet minimum turned out to be much too high to explain the fast ISC observed in experiments. A rigid-bender model including Renner-Teller interactions was used to examine the occurrence of mixed-multiplicity rovibrational states-so-called gateway states-that could enhance collision-induced ISC. The results of this study indicate that a gateway mechanism is probably not operative in the case of the $$\\tilde{a}$$/$$\\tilde{X}$$pair of states in NCN.« less

  11. Theoretical investigation of intersystem crossing in the cyanonitrene molecule, 1NCN → 3NCN

    DOE PAGES

    Pfeifle, Mark; Georgievskii, Yuri; Jasper, Ahren W.; ...

    2017-08-28

    The NCN diradical is an important intermediate of prompt nitric oxide formation in flames. The mechanism of intersystem crossing (ISC) in the NCN molecule formed via pyrolysis or photolysis of NCN 3 is of relevance to the interpretation of experiments that utilize NCN 3 as a precursor for laboratory studies of NCN kinetics. This mechanism has been investigated by means of multi-reference configuration interaction calculations. From the potential energy surfaces for NCN 3 dissociation, it was inferred that both thermal and photo-chemical decomposition initially lead to NCN in its lowest singlet state,more » $$\\tilde{a}^{-1}$$$Δ_g$$, with a possible contribution from the $$\\tilde{b}^{-1}\\Sigma_g^+$$ state at low photolysis wavelengths. Direct formation of the triplet ground state $$\\tilde{X}^{-3}\\Sigma_g^-$$ is also feasible for the photolytic pathway. Ananalysis of surface crossings between $$\\tilde{a}$$ or $$\\tilde{b}$$ and the triplet ground state $$\\tilde{X}^{-3}\\Sigma_g^-$$ in the absence and presence of a helium atom revealed an ISC channel 1NCN ($$\\tilde{a}$$) → 3NCN($$\\tilde{X}$$) via a strongly bent structure. However, its barrier of 38 kcal mol -1 relative to the singlet minimum turned out to be much too high to explain the fast ISC observed in experiments. A rigid-bender model including Renner-Teller interactions was used to examine the occurrence of mixed-multiplicity rovibrational states-so-called gateway states-that could enhance collision-induced ISC. The results of this study indicate that a gateway mechanism is probably not operative in the case of the $$\\tilde{a}$$/$$\\tilde{X}$$pair of states in NCN.« less

  12. Application of the multireference equation of motion coupled cluster method, including spin-orbit coupling, to the atomic spectra of Cr, Mn, Fe and Co

    NASA Astrophysics Data System (ADS)

    Liu, Zhebing; Huntington, Lee M. J.; Nooijen, Marcel

    2015-10-01

    The recently introduced multireference equation of motion (MR-EOM) approach is combined with a simple treatment of spin-orbit coupling, as implemented in the ORCA program. The resulting multireference equation of motion spin-orbit coupling (MR-EOM-SOC) approach is applied to the first-row transition metal atoms Cr, Mn, Fe and Co, for which experimental data are readily available. Using the MR-EOM-SOC approach, the splittings in each L-S multiplet can be accurately assessed (root mean square (RMS) errors of about 70 cm-1). The RMS errors for J-specific excitation energies range from 414 to 783 cm-1 and are comparable to previously reported J-averaged MR-EOM results using the ACESII program. The MR-EOM approach is highly efficient. A typical MR-EOM calculation of a full spin-orbit spectrum takes about 2 CPU hours on a single processor of a 12-core node, consisting of Intel XEON 2.93 GHz CPUs with 12.3 MB of shared cache memory.

  13. A partitioned correlation function interaction approach for describing electron correlation in atoms

    NASA Astrophysics Data System (ADS)

    Verdebout, S.; Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C.; Godefroid, M.

    2013-04-01

    The traditional multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core-valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the MR function, the variational degrees of freedom in the relative mixing coefficients of the CSFs building the PCFs are inhibited. The constraints on the mixing coefficients lead to small off-sets in computed properties such as hyperfine structure, isotope shift and transition rates, with respect to the correct values. By (partially) deconstraining the mixing coefficients one converges to the correct limits and keeps the tremendous advantage of improved convergence rates that comes from the use of several orbital sets. Reducing ultimately each PCF to a single CSF with its own orbital basis leads to a non-orthogonal CI approach. Various perspectives of the new method are given.

  14. An explicitly spin-free compact open-shell coupled cluster theory using a multireference combinatoric exponential ansatz: formal development and pilot applications.

    PubMed

    Datta, Dipayan; Mukherjee, Debashis

    2009-07-28

    In this paper, we present a comprehensive account of an explicitly spin-free compact state-universal multireference coupled cluster (CC) formalism for computing the state energies of simple open-shell systems, e.g., doublets and biradicals, where the target open-shell states can be described by a few configuration state functions spanning a model space. The cluster operators in this formalism are defined in terms of the spin-free unitary generators with respect to the common closed-shell component of all model functions (core) as vacuum. The spin-free cluster operators are either closed-shell-like n hole-n particle excitations (denoted by T(mu)) or involve excitations from the doubly occupied (nonvalence) orbitals to the singly occupied (valence) orbitals (denoted by S(e)(mu)). In addition, there are cluster operators with exchange spectator scatterings involving the valence orbitals (denoted by S(re)(mu)). We propose a new multireference cluster expansion ansatz for the wave operator with the above generally noncommuting cluster operators which essentially has the same physical content as the Jeziorski-Monkhorst ansatz with the commuting cluster operators defined in the spin-orbital basis. The T(mu) operators in our ansatz are taken to commute with all other operators, while the S(e)(mu) and S(re)(mu) operators are allowed to contract among themselves through the spectator valence orbitals. An important innovation of this ansatz is the choice of an appropriate automorphic factor accompanying each contracted composite of cluster operators in order to ensure that each distinct excitation generated by this composite appears only once in the wave operator. The resulting CC equations consist of two types of terms: a "direct" term and a "normalization" term containing the effective Hamiltonian operator. It is emphasized that the direct term is almost quartic in the cluster amplitudes, barring only a handful of terms and termination of the normalization term depends on the valence rank of the effective Hamiltonian operator and the excitation rank of the cluster operators at which the theory is truncated. Illustrative applications are presented by computing the state energies of neutral doublet radicals and doublet molecular cations and ionization energies of neutral molecules and comparing our results with the other open-shell CC theories, benchmark full CI results (when available) in the same basis, and the experimental results. Highly encouraging results show the efficacy of the method.

  15. The roles of 4f- and 5f-orbitals in bonding: A magnetochemical, crystal field, density functional theory, and multi-reference wavefunction study

    DOE PAGES

    Lukens, Wayne W.; Speldrich, Manfred; Yang, Ping; ...

    2016-05-31

    The electronic structures of 4f 3/5f 3 Cp" 3M and Cp" 3M·alkylisocyanide complexes, where Cp" is 1,3-bis-(trimethylsilyl)cyclopentadienyl, are explored with a focus on the splitting of the f-orbitals, which provides information about the strengths of the metal–ligand interactions. While the f-orbital splitting in many lanthanide complexes has been reported in detail, experimental determination of the f-orbital splitting in actinide complexes remains rare in systems other than halide and oxide compounds, since the experimental approach, crystal field analysis, is generally significantly more difficult for actinide complexes than for lanthanide complexes. In this study, a set of analogous neodymium(III) and uranium(III) tris-cyclopentadienylmore » complexes and their isocyanide adducts was characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility. The crystal field model was parameterized by combined fitting of EPR and susceptibility data, yielding an accurate description of f-orbital splitting. The isocyanide derivatives were also studied using density functional theory, resulting in f-orbital splitting that is consistent with crystal field fitting, and by multi-reference wavefunction calculations that support the electronic structure analysis derived from the crystal-field calculations. The results highlight that the 5f-orbitals, but not the 4f-orbitals, are significantly involved in bonding to the isocyanide ligands. The main interaction between isocyanide ligand and the metal center is a σ-bond, with additional 5f to π* donation for the uranium complexes. As a result, while interaction with the isocyanide π*-orbitals lowers the energies of the 5f xz2 and 5f yz2-orbitals, spin–orbit coupling greatly reduces the population of 5f xz2 and 5f yz2 in the ground state.« less

  16. Pair 2-electron reduced density matrix theory using localized orbitals

    NASA Astrophysics Data System (ADS)

    Head-Marsden, Kade; Mazziotti, David A.

    2017-08-01

    Full configuration interaction (FCI) restricted to a pairing space yields size-extensive correlation energies but its cost scales exponentially with molecular size. Restricting the variational two-electron reduced-density-matrix (2-RDM) method to represent the same pairing space yields an accurate lower bound to the pair FCI energy at a mean-field-like computational scaling of O (r3) where r is the number of orbitals. In this paper, we show that localized molecular orbitals can be employed to generate an efficient, approximately size-extensive pair 2-RDM method. The use of localized orbitals eliminates the substantial cost of optimizing iteratively the orbitals defining the pairing space without compromising accuracy. In contrast to the localized orbitals, the use of canonical Hartree-Fock molecular orbitals is shown to be both inaccurate and non-size-extensive. The pair 2-RDM has the flexibility to describe the spectra of one-electron RDM occupation numbers from all quantum states that are invariant to time-reversal symmetry. Applications are made to hydrogen chains and their dissociation, n-acene from naphthalene through octacene, and cadmium telluride 2-, 3-, and 4-unit polymers. For the hydrogen chains, the pair 2-RDM method recovers the majority of the energy obtained from similar calculations that iteratively optimize the orbitals. The localized-orbital pair 2-RDM method with its mean-field-like computational scaling and its ability to describe multi-reference correlation has important applications to a range of strongly correlated phenomena in chemistry and physics.

  17. Exploring biorthonormal transformations of pair-correlation functions in atomic structure variational calculations

    NASA Astrophysics Data System (ADS)

    Verdebout, S.; Jönsson, P.; Gaigalas, G.; Godefroid, M.; Froese Fischer, C.

    2010-04-01

    Multiconfiguration expansions frequently target valence correlation and correlation between valence electrons and the outermost core electrons. Correlation within the core is often neglected. A large orbital basis is needed to saturate both the valence and core-valence correlation effects. This in turn leads to huge numbers of configuration state functions (CSFs), many of which are unimportant. To avoid the problems inherent to the use of a single common orthonormal orbital basis for all correlation effects in the multiconfiguration Hartree-Fock (MCHF) method, we propose to optimize independent MCHF pair-correlation functions (PCFs), bringing their own orthonormal one-electron basis. Each PCF is generated by allowing single- and double-excitations from a multireference (MR) function. This computational scheme has the advantage of using targeted and optimally localized orbital sets for each PCF. These pair-correlation functions are coupled together and with each component of the MR space through a low dimension generalized eigenvalue problem. Nonorthogonal orbital sets being involved, the interaction and overlap matrices are built using biorthonormal transformation of the coupled basis sets followed by a counter-transformation of the PCF expansions. Applied to the ground state of beryllium, the new method gives total energies that are lower than the ones from traditional complete active space (CAS)-MCHF calculations using large orbital active sets. It is fair to say that we now have the possibility to account for, in a balanced way, correlation deep down in the atomic core in variational calculations.

  18. First principles study of cobalt hydride, CoH, and its ions CoH+ and CoH-

    NASA Astrophysics Data System (ADS)

    Sakellaris, Constantine N.; Mavridis, Aristides

    2012-07-01

    The electronic structure of the diatomic species CoH, CoH+, and CoH- have been studied mainly by multireference configuration interaction (MRCI) methods and basis sets of quintuple quality. The restricted coupled-cluster with iterative singles + doubles + quasi-perturbative connected triples, RCCSD(T), approach was also employed, limited however to the ground states only. At the MRCI level we have constructed 27 (CoH), 24 (CoH+), and 12 (CoH-) potential energy curves correlating adiabatically to six, seven, and two energy channels, respectively. For the ground states scalar relativistic and core-subvalence effects have been taken into account. We report energetics, spectroscopic parameters, dipole moments, excitation energies, and spin-orbit coupling constants. Our CoH calculated results are in accord with experiment, but there is an interesting discrepancy between theory and experiment concerning the dipole moment, the former being significantly larger than the latter. Experimental results on CoH+ and CoH- are scarce. The ground state of CoH, CoH+, and CoH- are definitely of 3Φ, 4Φ, and 4Φ symmetries with calculated (experimental) dissociation energies D_0^0 = 46.4 ± 0.5(45.0 ± 1.2), 49.6(47 ± 2), and 45.6(43.1 ± 1.2) kcal/mol, respectively. In all 24 calculated CoH states, a Co-to-H charge transfer of 0.2-0.3 e- is recorded; in CoH-, however, the negative charge resides almost exclusively on the Co atom.

  19. Static electric dipole polarizabilities of An(5+/6+) and AnO2 (+/2+) (An = U, Np, and Pu) ions.

    PubMed

    Parmar, Payal; Peterson, Kirk A; Clark, Aurora E

    2014-12-21

    The parallel components of static electric dipole polarizabilities have been calculated for the lowest lying spin-orbit states of the penta- and hexavalent oxidation states of the actinides (An) U, Np, and Pu, in both their atomic and molecular diyl ion forms (An(5+/6+) and AnO2 (+/2+)) using the numerical finite-field technique within a four-component relativistic framework. The four-component Dirac-Hartree-Fock method formed the reference for MP2 and CCSD(T) calculations, while multireference Fock space coupled-cluster (FSCC), intermediate Hamiltonian Fock space coupled-cluster (IH-FSCC) and Kramers restricted configuration interaction (KRCI) methods were used to incorporate additional electron correlation. It is observed that electron correlation has significant (∼5 a.u.(3)) impact upon the parallel component of the polarizabilities of the diyls. To the best of our knowledge, these quantities have not been previously reported and they can serve as reference values in the determination of various electronic and response properties (for example intermolecular forces, optical properties, etc.) relevant to the nuclear fuel cycle and material science applications. The highest quality numbers for the parallel components (αzz) of the polarizability for the lowest Ω levels corresponding to the ground electronic states are (in a.u.(3)) 44.15 and 41.17 for UO2 (+) and UO2 (2+), respectively, 45.64 and 41.42 for NpO2 (+) and NpO2 (2+), respectively, and 47.15 for the PuO2 (+) ion.

  20. ExoMol line lists XXIV: a new hot line list for silicon monohydride, SiH

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Sinden, Frances; Lodi, Lorenzo; Hill, Christian; Gorman, Maire N.; Tennyson, Jonathan

    2018-02-01

    SiH has long been observed in the spectrum of our Sun and other cool stars. Computed line lists for the main isotopologues of silicon monohydride, 28SiH, 29SiH, 30SiH and 28SiD are presented. These line lists consider rotation-vibration transitions within the ground X 2Π electronic state as well as transitions to the low-lying A 2Δ and a 4Σ- states. Ab initio potential energy (PECs) and dipole moment curves along with spin-orbit and electronic angular momentum couplings between them are calculated using the multireference configuration interaction level of theory with the MOLPRO package. The PEC for the ground X 2Π state is refined to available experimental data with a typical accuracy of around 0.01 cm-1 or better. The 28SiH line list includes 11 785 rovibronic states and 1724 841 transitions with associated Einstein-A coefficients for angular momentum J up to 82.5 and covering wavenumbers up to 31 340 cm-1 (λ < 0.319 μm). Spectra are simulated using the new line list and comparisons made with various experimental spectra. These line lists are applicable up to temperatures of 5000 K, making them relevant to astrophysical objects such as exoplanetary atmospheres and cool stars and opening up the possibility of detection in the interstellar medium. These line lists, called SiGHTLY, are available at the ExoMol (www.exomol.com) and CDS data base websites.

  1. Ab initio study of the positronation of the CaO and SrO molecules including calculation of annihilation rates.

    PubMed

    Buenker, Robert J; Liebermann, Heinz-Peter

    2012-07-15

    Ab initio multireference single- and double-excitation configuration interaction calculations have been performed to compute potential curves for ground and excited states of the CaO and SrO molecules and their positronic complexes, e(+)CaO, and e(+)SrO. The adiabatic dissociation limit for the (2)Σ(+) lowest states of the latter systems consists of the positive metal ion ground state (M(+)) and the OPs complex (e(+)O(-)), although the lowest energy limit is thought to be e(+)M + O. Good agreement is found between the calculated and experimental spectroscopic constants for the neutral diatomics wherever available. The positron affinity of the closed-shell X (1)Σ(+) ground states of both systems is found to lie in the 0.16-0.19 eV range, less than half the corresponding values for the lighter members of the alkaline earth monoxide series, BeO and MgO. Annihilation rates (ARs) have been calculated for all four positronated systems for the first time. The variation with bond distance is generally similar to what has been found earlier for the alkali monoxide series of positronic complexes, falling off gradually from the OPs AR value at their respective dissociation limits. The e(+)SrO system shows some exceptional behavior, however, with its AR value reaching a minimum at a relatively large bond distance and then rising to more than twice the OPs value close to its equilibrium distance. Copyright © 2012 Wiley Periodicals, Inc.

  2. Single and double carbon vacancies in pyrene as first models for graphene defects: A survey of the chemical reactivity toward hydrogen

    NASA Astrophysics Data System (ADS)

    Nieman, Reed; Das, Anita; Aquino, Adélia J. A.; Amorim, Rodrigo G.; Machado, Francisco B. C.; Lischka, Hans

    2017-01-01

    Graphene is regarded as one of the most promising materials for nanoelectronics applications. Defects play an important role in modulating its electronic properties and also enhance its chemical reactivity. In this work the reactivity of single vacancies (SV) and double vacancies (DV) in reaction with a hydrogen atom Hr is studied. Because of the complicated open shell electronic structures of these defects due to dangling bonds, multireference configuration interaction (MRCI) methods are being used in combination with a previously developed defect model based on pyrene. Comparison of the stability of products derived from Csbnd Hr bond formation with different carbon atoms of the different polyaromatic hydrocarbons is made. In the single vacancy case the most stable structure is the one where the incoming hydrogen is bound to the carbon atom carrying the dangling bond. However, stable Csbnd Hr bonded structures are also observed in the five-membered ring of the single vacancy. In the double vacancy, most stable bonding of the reactant Hr atom is found in the five-membered rings. In total, Csbnd Hr bonds, corresponding to local energy minimum structures, are formed with all carbon atoms in the different defect systems and the pyrene itself. Reaction profiles for the four lowest electronic states show in the case of a single vacancy a complex picture of curve crossings and avoided crossings which will give rise to a complex nonadiabatic reaction dynamics involving several electronic states.

  3. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Sivalingam, Kantharuban; Valeev, Edward F.; Neese, Frank

    2016-03-01

    Multi-reference (MR) electronic structure methods, such as MR configuration interaction or MR perturbation theory, can provide reliable energies and properties for many molecular phenomena like bond breaking, excited states, transition states or magnetic properties of transition metal complexes and clusters. However, owing to their inherent complexity, most MR methods are still too computationally expensive for large systems. Therefore the development of more computationally attractive MR approaches is necessary to enable routine application for large-scale chemical systems. Among the state-of-the-art MR methods, second-order N-electron valence state perturbation theory (NEVPT2) is an efficient, size-consistent, and intruder-state-free method. However, there are still two important bottlenecks in practical applications of NEVPT2 to large systems: (a) the high computational cost of NEVPT2 for large molecules, even with moderate active spaces and (b) the prohibitive cost for treating large active spaces. In this work, we address problem (a) by developing a linear scaling "partially contracted" NEVPT2 method. This development uses the idea of domain-based local pair natural orbitals (DLPNOs) to form a highly efficient algorithm. As shown previously in the framework of single-reference methods, the DLPNO concept leads to an enormous reduction in computational effort while at the same time providing high accuracy (approaching 99.9% of the correlation energy), robustness, and black-box character. In the DLPNO approach, the virtual space is spanned by pair natural orbitals that are expanded in terms of projected atomic orbitals in large orbital domains, while the inactive space is spanned by localized orbitals. The active orbitals are left untouched. Our implementation features a highly efficient "electron pair prescreening" that skips the negligible inactive pairs. The surviving pairs are treated using the partially contracted NEVPT2 formalism. A detailed comparison between the partial and strong contraction schemes is made, with conclusions that discourage the strong contraction scheme as a basis for local correlation methods due to its non-invariance with respect to rotations in the inactive and external subspaces. A minimal set of conservatively chosen truncation thresholds controls the accuracy of the method. With the default thresholds, about 99.9% of the canonical partially contracted NEVPT2 correlation energy is recovered while the crossover of the computational cost with the already very efficient canonical method occurs reasonably early; in linear chain type compounds at a chain length of around 80 atoms. Calculations are reported for systems with more than 300 atoms and 5400 basis functions.

  4. Pseudo Jahn-Teller coupling in trioxides XO3(0,1,-1) with 22 and 23 valence electrons

    NASA Astrophysics Data System (ADS)

    Grein, Friedrich

    2013-05-01

    D3h and C2v geometries and energies, vertical excitation energies, as well as minimal energy paths as function of the O1(z)-X-O2 angle α were obtained for XO3(0,1,-1) (X = B, Al, Ga; C, Si, Ge; N, P, As; S, Se) molecules and ions with 22 and 23 valence electrons (VE), using density functional theory (DFT), coupled cluster with single and double substitutions with noniterative triple excitations (CCSD(T)), equation of motion (EOM)-CCSD, time-dependent DFT, and multi-reference configuration interaction methods. It is shown that pseudo Jahn-Teller (PJT) coupling increases as the central atom X becomes heavier, due to decreases in excitation energies. As is well known for CO3, the excited 1E' states of the 22 VE systems SiO3, GeO3; NO_3 ^ +, PO3+, AsO3+; BO3-, AlO3-, GaO3- have strong vibronic coupling with the 1A1' ground state via the e' vibrational modes, leading to a C2v minimum around α = 145°. For first and second row X atoms, there is an additional D3h minimum (α = 120°). Interacting excited states have minima around 135°. In the 23 VE systems CO3-, SiO3-; NO3, PO3; SO3+, coupling of the excited 2E' with the 2A2' ground state via the e' mode does not generate a C2v state. Minima of interacting excited states are close to 120°. However, due to very strong PJT coupling, a double-well potential is predicted for GeO3-, AsO3, and SeO3+, with a saddle point at D3h symmetry. Interaction of the b2 highest occupied molecular orbital with the b2 lowest unoccupied molecular orbital, both oxygen lone pair molecular orbitals, is seen as the reason for the C2v stabilization of 22 VE molecules.

  5. Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling.

    PubMed

    Grell, Gilbert; Bokarev, Sergey I; Winter, Bernd; Seidel, Robert; Aziz, Emad F; Aziz, Saadullah G; Kühn, Oliver

    2015-08-21

    X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H2O)6](2+) complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments.

  6. Implementation of High-Order Multireference Coupled-Cluster Methods on Intel Many Integrated Core Architecture.

    PubMed

    Aprà, E; Kowalski, K

    2016-03-08

    In this paper we discuss the implementation of multireference coupled-cluster formalism with singles, doubles, and noniterative triples (MRCCSD(T)), which is capable of taking advantage of the processing power of the Intel Xeon Phi coprocessor. We discuss the integration of two levels of parallelism underlying the MRCCSD(T) implementation with computational kernels designed to offload the computationally intensive parts of the MRCCSD(T) formalism to Intel Xeon Phi coprocessors. Special attention is given to the enhancement of the parallel performance by task reordering that has improved load balancing in the noniterative part of the MRCCSD(T) calculations. We also discuss aspects regarding efficient optimization and vectorization strategies.

  7. Combining symmetry breaking and restoration with configuration interaction: A highly accurate many-body scheme applied to the pairing Hamiltonian

    NASA Astrophysics Data System (ADS)

    Ripoche, J.; Lacroix, D.; Gambacurta, D.; Ebran, J.-P.; Duguet, T.

    2017-01-01

    Background: Ab initio many-body methods have been developed over the past ten years to address mid-mass nuclei. In their best current level of implementation, their accuracy is of the order of a few percent error on the ground-state correlation energy. Recently implemented variants of these methods are operating a breakthrough in the description of medium-mass open-shell nuclei at a polynomial computational cost while putting state-of-the-art models of internucleon interactions to the test. Purpose: As progress in the design of internucleon interactions is made, and as questions one wishes to answer are refined in connection with increasingly available experimental data, further efforts must be made to tailor many-body methods that can reach an even higher precision for an even larger number of observable quantum states or nuclei. The objective of the present work is to contribute to such a quest by designing and testing a new many-body scheme. Methods: We formulate a truncated configuration-interaction method that consists of diagonalizing the Hamiltonian in a highly truncated subspace of the total N -body Hilbert space. The reduced Hilbert space is generated via the particle-number projected BCS state along with projected seniority-zero two- and four-quasiparticle excitations. Furthermore, the extent by which the underlying BCS state breaks U(1 ) symmetry is optimized in the presence of the projected two- and four-quasiparticle excitations. This constitutes an extension of the so-called restricted variation after projection method in use within the frame of multireference energy density functional calculations. The quality of the newly designed method is tested against exact solutions of the so-called attractive pairing Hamiltonian problem. Results: By construction, the method reproduces exact results for N =2 and N =4 . For N =(8 ,16 ,20 ) , the error in the ground-state correlation energy is less than (0.006%, 0.1%, 0.15%) across the entire range of internucleon coupling defining the pairing Hamiltonian and driving the normal-to-superfluid quantum phase transition. The presently proposed method offers the advantage of automatic access to the low-lying spectroscopy, which it does with high accuracy. Conclusions: The numerical cost of the newly designed variational method is polynomial (N6) in system size. This method achieves unprecedented accuracy for the ground-state correlation energy, effective pairing gap, and one-body entropy as well as for the excitation energy of low-lying states of the attractive pairing Hamiltonian. This constitutes a sufficiently strong motivation to envision its application to realistic nuclear Hamiltonians in view of providing a complementary, accurate, and versatile ab initio description of mid-mass open-shell nuclei in the future.

  8. Combining two-body density functionals with multiconfigurational wavefunctions: diatomic molecules

    NASA Astrophysics Data System (ADS)

    McDouall, Joseph J. W.

    The MCSCF method provides a correct zero-order wavefunction for all regions of molecular potential energy surfaces. To obtain quantitative accuracy a proper treatment of the dynamic correlation problem must be implemented. Traditionally this has been achieved through multireference variants of perturbation theory, configuration interaction and coupled cluster theory. The computational cost of such techniques makes them prohibitive for all but the smallest molecular problems. Reported here is an investigation into the efficacy of two-body density functionals in providing the dynamic correlation energy for MCSCF reference states. Tests were made on the two-body density functionals of Colle and Salvetti (CS), Moscardó and San-Fabián (MSF), and Moscardó and Pérez-Jiménez (MPJ5) in predicting the equilibrium bond lengths, harmonic frequencies and dissociation energies of fifteen diatomic molecules (3B2, 3BN, 2BS, 1C2, 2CN, 1CO, 1F2, 1FCl, 1N2, 3NCl, 3O2, 1PN, 3Si2, 3SiO, 3SO) using full valence-shell CASSCF reference wavefunctions. Also studied were modifications of these functionals recently suggested by Miehlich, Stoll and Savin (MSS) and Gräfenstein and Cremer (GC). The results obtained show accuracy comparable with and typically superior to the popular Kohn-Sham BLYP and B3LYP methods. However, the latter methods are not applicable in all regions of a potential energy surface, and even predict incorrect ground states for some systems. The use of two-body density functionals with MCSCF reference states does not share this shortcoming.

  9. Electronic Excitations of Alkali-Alkaline Earth Diatomic Molecules - Results from AB Initio Calculations

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Krois, Günter; Lackner, Florian; Ernst, Wolfgang E.

    2014-06-01

    Recently interest in polar diatomic molecules with a magnetic dipole moment has been growing. An example for such molecules is the combination of an alkali metal atom and an alkaline earth metal atom. These systems are quite small, containing only three valence electrons. Nevertheless calculations of excited states are challenging. Ab initio calculations for two sample systems, LiCa and RbSr, will be presented. The potential energy curves and transition dipole moments for the ground state and several excited states were determined, up to 25000 wn for LiCa and up to 22000 wn for RbSr. Multireference configuration interaction calculations (MRCI) based on complete active space self-consistent field wave functions (CASSCF) were used to determine the properties of the system as implemented in the MOLPRO software package. Effective core potentials (ECPs) and core polarization potentials (CCPs) were applied to reduce the computational effort, while retaining accuracy. The similarities and differences of the two systems will be discussed. In both systems the accurate description of the asymptotic values of the PECs corresponding to atomic D-states proved to be difficult. The results will be compared to recent experiments, showing that a combination of theory and experiment gives a reliable description of the systems. G. Krois, J.V. Pototschnig, F. Lackner and W.E. Ernst, J. Phys. Chem. A, 117, 13719-13731 (2013) H.-J. Werner and P. J. Knowles and G. Knizia and F. R. Manby and M. {Schütz} et al., MOLPRO, version 2010.1, see http://www.molpro.net/

  10. Bound-free Spectra for Diatomic Molecules

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    2012-01-01

    It is now recognized that prediction of radiative heating of entering space craft requires explicit treatment of the radiation field from the infrared (IR) to the vacuum ultra violet (VUV). While at low temperatures and longer wavelengths, molecular radiation is well described by bound-bound transitions, in the short wavelength, high temperature regime, bound-free transitions can play an important role. In this work we describe first principles calculations we have carried out for bound-bound and bound-free transitions in N2, O2, C2, CO, CN, NO, and N2+. Compared to bound ]bound transitions, bound-free transitions have several particularities that make them different to deal with. These include more complicated line shapes and a dependence of emission intensity on both bound state diatomic and atomic concentrations. These will be discussed in detail below. The general procedure we used was the same for all species. The first step is to generate potential energy curves, transition moments, and coupling matrix elements by carrying out ab initio electronic structure calculations. These calculations are expensive, and thus approximations need to be made in order to make the calculations tractable. The only practical method we have to carry out these calculations is the internally contracted multi-reference configuration interaction (icMRCI) method as implemented in the program suite Molpro. This is a widely used method for these kinds of calculations, and is capable of generating very accurate results. With this method, we must first of choose which electrons to correlate, the one-electron basis to use, and then how to generate the molecular orbitals.

  11. Theoretical study of the electronic states of newly detected dications. Case of MgS2+ AND SiN2+

    NASA Astrophysics Data System (ADS)

    Khairat, Toufik; Salah, Mohammed; Marakchi, Khadija; Komiha, Najia

    2017-08-01

    The dications MgS2+ and SiN2+, experimentally observed by mass spectroscopy, are theoretically studied here. The potential energy curves of the electronic states of the two dications MgS2+ and SiN2+ are mapped and their spectroscopic parameters determined by analysis of the electronic, vibrational and rotational wave functions obtained by using complete active space self-consistent field (CASSCF) calculations, followed by the internally contracted multi-reference configuration interaction (MRCI)+Q associated with the AV5Z correlation consistent atomic orbitals basis sets. In the following, besides the characterization of the potential energy curves, excitation and dissociation energies, spectroscopic constants and a double-ionization spectra of MgS and SiN are determined using the transition moments values and Franck-Condon factors. The electronic ground states of the two dications appear to be of X3∑-nature for MgS2+ and X4∑- for SiN2+ and shows potential wells of about 1.20 eV and 1.40 eV, respectively. Several excited states of these doubly charged molecules also depicted here are slightly bound. The adiabatic double-ionization energies were deduced, at 21.4 eV and 18.4 eV, respectively, from the potential energy curves of the electronic ground states of the neutral and charged species. The neutral molecules, since involved, are also investigated here. From all these results, the experimental lines of the mass spectra of MgS and SiN could be partly assigned.

  12. Comparative study of inelastic squared form factors of the vibronic states of B 1Σu+ , C 1Πu , and E F 1Σg+ for molecular hydrogen: Inelastic x-ray and electron scattering

    NASA Astrophysics Data System (ADS)

    Xu, Long-Quan; Kang, Xu; Peng, Yi-Geng; Xu, Xin; Liu, Ya-Wei; Wu, Yong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Wang, Jian-Guo; Zhu, Lin-Fan

    2018-03-01

    A joint experimental and theoretical investigation of the valence-shell excitations of hydrogen has been performed by the high-resolution inelastic x-ray scattering and electron scattering as well as the multireference single- and double-excitation configuration-interaction method. Momentum-transfer-dependent inelastic squared form factors for the vibronic series belonging to the B 1Σu+ ,C 1Πu , and E F 1Σg+ electronic states of molecular hydrogen have been derived from the inelastic x-ray scattering method at an impact photon energy around 10 keV, and the electron energy-loss spectra measured at an incident electron energy of 1500 eV. It is found that both the present and the previous calculations cannot satisfactorily reproduce the inelastic squared form-factor profiles for the higher vibronic transitions of the B 1Σu+ state of molecular hydrogen, which may be due to the electronic-vibrational coupling for the higher vibronic states. For the C 1Πu state and some vibronic excitations of E F 1Σg+ state, the present experimental results are in good agreement with the present and previous calculations, while the slight differences between the inelastic x-ray scattering and electron energy-loss spectroscopy results in the larger squared momentum-transfer region may be attributed to the increasing role of the higher-order Born terms in the electron-scattering process.

  13. First principles exploration of NiO and its ions NiO+ and NiO-

    NASA Astrophysics Data System (ADS)

    Sakellaris, Constantine N.; Mavridis, Aristides

    2013-02-01

    We present a high level ab initio study of NiO and its ions, NiO+ and NiO-. Employing variational multireference configuration interaction (MRCI) and single reference coupled-cluster methods combined with basis sets of quintuple quality, 54, 20, and 10 bound states of NiO, NiO+, and NiO- have been studied. For all these states, complete potential energy curves have been constructed at the MRCI level of theory; in addition, for the ground states of the three species core subvalence (3s23p6/Ni) and scalar relativistic effects have been taken into account. We report energetics, spectroscopic parameters, dipole moments, and spin-orbit coupling constants. The agreement with experiment is in the case of NiO good, but certain discrepancies that need further investigation have arisen in the case of the anion whose ground state remains computationally a tantalizing matter. The cation is experimentally almost entirely unexplored, therefore, the study of many states shall prove valuable to further investigators. The ground state symmetry, bond distances, and binding energies of NiO and NiO+ are (existing experimental values in parenthesis), X3Σ-(X3Σ-), re = 1.606 (1.62712) Å, D0 = 88.5 (89.2 ± 0.7) kcal/mol, and X4Σ-(?), re = 1.60(?) Å, D0 = 55 (62.4 ± 2.4) kcal/mol, respectively. The ground state of NiO- is 4Σ- (but 2Π experimentally) with D0 = 85-87 (89.2 ± 0.7) kcal/mol.

  14. Potential energy surfaces of the electronic states of Li{sub 2}F and Li{sub 2}F{sup −}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhowmick, Somnath; Hagebaum-Reignier, Denis, E-mail: denis.hagebaum-reignier@univ-amu.fr; Jeung, Gwang-Hi

    2016-07-21

    The potential energy surfaces of the ground and low-lying excited states for the insertion reaction of atomic fluorine (F) and fluoride (F{sup −}) into the dilithium (Li{sub 2}) molecule have been investigated. We have carried out explicitly correlated multi-reference configuration interaction (MRCI-F12) calculations using Dunning’s augmented correlation-consistent basis sets. For the neutral system, the insertion of F into Li{sub 2} proceeds via a harpoon-type mechanism on the ground state surface, involving a covalent state and an ionic state which avoid each other at long distance. A detailed analysis of the changes in the dipole moment along the reaction coordinate revealsmore » multiple avoided crossings among the excited states and shows that the charge-transfer processes play a pivotal role for the stabilization of the low-lying electronic states of Li{sub 2}F. For the anionic system, which is studied for the first time, the insertion of F{sup −} is barrierless for many states and there is a gradual charge transfer from F{sup −} to Li{sub 2} along the reaction path. We also report the optimized parameters and the spectroscopic properties of the five lowest states of the neutral and seven lowest states of the anionic systems, which are strongly stabilized with respect to their respective Li{sub 2} + F/F{sup −} asymptotes. The observed barrierless insertion mechanisms for both systems make them good candidates for investigation under the ultracold regime.« less

  15. Accurate double many-body expansion potential energy surface of HS2A2A‧) by scaling the external correlation

    NASA Astrophysics Data System (ADS)

    Lu-Lu, Zhang; Yu-Zhi, Song; Shou-Bao, Gao; Yuan, Zhang; Qing-Tian, Meng

    2016-05-01

    A globally accurate single-sheeted double many-body expansion potential energy surface is reported for the first excited state of HS2 by fitting the accurate ab initio energies, which are calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set. By using the double many-body expansion-scaled external correlation method, such calculated ab initio energies are then slightly corrected by scaling their dynamical correlation. A grid of 2767 ab initio energies is used in the least-square fitting procedure with the total root-mean square deviation being 1.406 kcal·mol-1. The topographical features of the HS2(A2A‧) global potential energy surface are examined in detail. The attributes of the stationary points are presented and compared with the corresponding ab initio results as well as experimental and other theoretical data, showing good agreement. The resulting potential energy surface of HS2(A2A‧) can be used as a building block for constructing the global potential energy surfaces of larger S/H molecular systems and recommended for dynamic studies on the title molecular system. Project supported by the National Natural Science Foundation of China (Grant No. 11304185), the Taishan Scholar Project of Shandong Province, China, the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM022), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J15LJ03), the China Postdoctoral Science Foundation (Grant No. 2014M561957), and the Post-doctoral Innovation Project of Shandong Province, China (Grant No. 201402013).

  16. Photophysical and quantum chemical study on a J-aggregate forming perylene bisimide monomer.

    PubMed

    Ambrosek, David; Marciniak, Henning; Lochbrunner, Stefan; Tatchen, Jörg; Li, Xue-Qing; Würthner, Frank; Kühn, Oliver

    2011-10-21

    Perylene bisimides (PBIs) are excellent dyes and versatile building blocks for supramolecular structures. Only recently have PBIs been shown to depict absorption characteristics of J-aggregates. We apply electronic structure calculations and femtosecond pump-probe spectroscopy to the monomeric, bay-substituted building-block of a PBI aggregate in dichloromethane to investigate its electronically excited states in order to provide the ingredients for the description of excitons in the aggregates and their annihilation processes. The PBI S(1)←S(0) absorption spectrum and the S(1)→S(0) emission spectrum have been assigned based on time-dependent Density Functional Theory calculations for the geometry-optimized electronic ground state and excited state structures in the gas phase. The monomeric absorption spectrum contains a strong transition at 580 nm and a broad shoulder between 575-500 nm, both features are attributed to a vibrational progression with an effective vibrational mode of 1415 cm(-1) whose major contributing vibrational normal modes are breathing modes of the perylene body. The effective vibrational mode of the emission spectrum is characterized by a frequency of 1369 cm(-1), whose major contributing vibrational normal modes are characterized by perylene and phenol (bay-substituent) CH bendings. The S(n)←S(1) excited state absorption spectrum is assigned based on Multi-Reference Configuration Interaction methodology. Here, we identify three transitions which give rise to two broad experimental features, one being located between 500 and 600 nm and the other one ranging from 650 to 750 nm. This journal is © the Owner Societies 2011

  17. Kinetic Energy Release of the Singly and Doubly Charged Methylene Chloride Molecule: The Role of Fast Dissociation.

    PubMed

    Alcantara, K F; Rocha, A B; Gomes, A H A; Wolff, W; Sigaud, L; Santos, A C F

    2016-09-01

    The center of mass kinetic energy release distribution (KERD) spectra of selected ionic fragments, formed through dissociative single and double photoionization of CH2Cl2 at photon energies around the Cl 2p edge, were extracted from the shape and width of the experimentally obtained time-of-flight (TOF) distributions. The KERD spectra exhibit either smooth profiles or structures, depending on the moiety and photon energy. In general, the heavier the ionic fragments, the lower their average KERDs are. In contrast, the light H(+) fragments are observed with kinetic energies centered around 4.5-5.5 eV, depending on the photon energy. It was observed that the change in the photon energy involves a change in the KERDs, indicating different processes or transitions taking place in the breakup process. In the particular case of double ionization with the ejection of two charged fragments, the KERDs present have characteristics compatible with the Coulombic fragmentation model. Intending to interpret the experimental data, singlet and triplet states at Cl 2p edge of the CH2Cl2 molecule, corresponding to the Cl (2p → 10a1*) and Cl (2p → 4b1*) transitions, were calculated at multiconfigurational self-consistent field (MCSCF) level and multireference configuration interaction (MRCI). These states were selected to form the spin-orbit coupling matrix elements, which after diagonalization result in a spin-orbit manifold. Minimum energy pathways for dissociation of the molecule were additionally calculated aiming to give support to the presence of the ultrafast dissociation mechanism in the molecular breakup.

  18. An Ab Initio Study of the Low-Lying Doublet States of AgO and AgS

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1990-01-01

    Spectroscopic constants (D(sub o), r(sub e), mu(sub e), T(sub e)) are determined for the doublet states of AgO and AgS below approx. = 30000/cm. Large valence basis sets are employed in conjunction with relativistic effective core potentials (RECPs). Electron correlation is included using the modified coupled-pair functional (MCPF) and multireference configuration interaction (MRCI) methods. The A(sup 2)Sigma(sup +) - X(sup 2)Pi band system is found to occur in the near infrared (approx. = 9000/cm) and to be relatively weak with a radiative lifetime of 900 microns for A(sup 2)Sigma(sup +) (upsilon = 0). The weakly bound C(sup 2)Pi state (our notation), the upper state of the blue system, is found to require high levels of theoretical treatment to determine a quantitatively accurate potential. The red system is assigned as a transition from the C(sup 2)Pi state to the previously unobserved A(sup 2)Sigma(sup +) state. Several additional transitions are identified that should be detectable experimentally. A more limited study is performed for the vertical excitation spectrum of AgS. In addition, a detailed all-electron study of the X(sup 2)Pi and A(sup 2)Sigma(sup +) states of AgO is carried out using large atomic natural orbital (ANO) basis sets. Our best calculated D(sub o) value for AgO is significantly less than the experimental value, which suggests that there may be some systematic error in the experimental determination.

  19. Spectroscopic parameters, vibrational levels, transition dipole moments and transition probabilities of the 9 low-lying states of the NCl+ cation

    NASA Astrophysics Data System (ADS)

    Yin, Yuan; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2018-03-01

    This work calculates the potential energy curves of 9 Λ-S and 28 Ω states of the NCl+ cation. The technique employed is the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson correction. The Λ-S states are X2Π, 12Σ+, 14Π, 14Σ+, 14Σ-, 24Π, 14Δ, 16Σ+, and 16Π, which are yielded from the first two dissociation channels of NCl+ cation. The Ω states are generated from these Λ-S states. The 14Π, 14Δ, 16Σ+, and 16Π states are inverted with the spin-orbit coupling effect included. The 14Σ+, 16Σ+, and 16Π states are very weakly bound, whose well depths are only several-hundred cm- 1. One avoided crossing of PECs occurs between the 12Σ+ and 22Σ+ states. To improve the quality of potential energy curves, core-valence correlation and scalar relativistic corrections are included. The potential energies are extrapolated to the complete basis set limit. The spectroscopic parameters and vibrational levels are calculated. The transition dipole moments are computed. The Franck-Condon factors, Einstein coefficients, and radiative lifetimes of many transitions are determined. The spectroscopic approaches are proposed for observing these states according to the transition probabilities. The spin-orbit coupling effect on the spectroscopic and vibrational properties is evaluated. The spectroscopic parameters, vibrational levels, transition dipole moments, as well as transition probabilities reported in this paper could be considered to be very reliable.

  20. Multireference adaptive noise canceling applied to the EEG.

    PubMed

    James, C J; Hagan, M T; Jones, R D; Bones, P J; Carroll, G J

    1997-08-01

    The technique of multireference adaptive noise canceling (MRANC) is applied to enhance transient nonstationarities in the electroeancephalogram (EEG), with the adaptation implemented by means of a multilayer-perception artificial neural network (ANN). The method was applied to recorded EEG segments and the performance on documented nonstationarities recorded. The results show that the neural network (nonlinear) gives an improvement in performance (i.e., signal-to-noise ratio (SNR) of the nonstationarities) compared to a linear implementation of MRANC. In both cases an improvement in the SNR was obtained. The advantage of the spatial filtering aspect of MRANC is highlighted when the performance of MRANC is compared to that of the inverse auto-regressive filtering of the EEG, a purely temporal filter.

  1. Invited Paper - Density functional theory: coverage of dynamic and non-dynamic electron correlation effects

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter

    The electron correlation effects covered by density functional theory (DFT) can be assessed qualitatively by comparing DFT densities ρ(r) with suitable reference densities obtained with wavefunction theory (WFT) methods that cover typical electron correlation effects. The analysis of difference densities ρ(DFT)-ρ(WFT) reveals that LDA and GGA exchange (X) functionals mimic non-dynamic correlation effects in an unspecified way. It is shown that these long range correlation effects are caused by the self-interaction error (SIE) of standard X functionals. Self-interaction corrected (SIC) DFT exchange gives, similar to exact exchange, for the bonding region a delocalized exchange hole, and does not cover any correlation effects. Hence, the exchange SIE is responsible for the fact that DFT densities often resemble MP4 or MP2 densities. The correlation functional changes X-only DFT densities in a manner observed when higher order coupling effects between lower order N-electron correlation effects are included. Hybrid functionals lead to changes in the density similar to those caused by SICDFT, which simply reflects the fact that hybrid functionals have been developed to cover part of the SIE and its long range correlation effects in a balanced manner. In the case of spin-unrestricted DFT (UDFT), non-dynamic electron correlation effects enter the calculation both via the X functional and via the wavefunction, which may cause a double-counting of correlation effects. The use of UDFT in the form of permuted orbital and broken-symmetry DFT (PO-UDFT, BS-UDFT) can lead to reasonable descriptions of multireference systems provided certain conditions are fulfilled. More reliable, however, is a combination of DFT and WFT methods, which makes the routine description of multireference systems possible. The development of such methods implies a separation of dynamic and non-dynamic correlation effects. Strategies for accomplishing this goal are discussed in general and tested in practice for CAS (complete active space)-DFT.

  2. Laser Spectroscopy and AB Initio Calculations on the TaF Molecule

    NASA Astrophysics Data System (ADS)

    Ng, Kiu Fung; Zou, Wenli; Liu, Wenjian; Cheung, Allan S. C.

    2016-06-01

    Electronic transition spectrum of the tantalum monoflouride (TaF) molecule in the spectral region between 448 and 520 nm has been studied using the technique of laser-ablation/reaction free jet expansion and laser induced fluorescence spectroscopy. TaF molecule was produced by reacting laser-ablated tantalum atoms with sulfur hexafluoride gas seeded in argon. Sixteen vibrational bands with resolved rotational structure have been recorded and analyzed, which were organized into six electronic transition systems and the ground state has been identified to be the X3Σ-(0+) state with bond length, ro, and equilibrium vibrational frequency, ωe, determined to be 1.8209 Å and 700.1 wn respectively. In addition, four vibrational bands belong to another transition system involving lower state with Ω = 2 component has also been analyzed. All observed transitions are with ΔΩ = 0. Least-squares fit of the measured line positions yielded molecular constants for the electronic states involved. The Λ-S and Ω states of TaF were calculated at the state-averaged complete active space self-consistent field (SA-CASSCF) and the subsequent internally contracted multi-reference configuration interaction with singles and doubles and Davidson's cluster correction (MRCISD+Q) levels of theory with the active space of 4 electrons in 6 orbitals, that is, the molecular orbitals corresponding to Ta 5d6s are active. The spin-orbit coupling (SOC) is calculated by the state-interaction approach at the SA-CASSCF level via the relativistic effective core potentials (RECPs) spin-orbit operator, where the diagonal elements of the spin-orbit matrix are replaced by the above MRCISD+Q energies. The spectroscopic properties of the ground and many low-lying electronic states of the TaF molecule will be reported. With respect to the observed electronic states in this work, the calculated results are in good agreement with our experimental determinations. This work represents the first experimental investigation of the molecular structure of the TaF molecule.

  3. A quasiparticle-based multi-reference coupled-cluster method.

    PubMed

    Rolik, Zoltán; Kállay, Mihály

    2014-10-07

    The purpose of this paper is to introduce a quasiparticle-based multi-reference coupled-cluster (MRCC) approach. The quasiparticles are introduced via a unitary transformation which allows us to represent a complete active space reference function and other elements of an orthonormal multi-reference (MR) basis in a determinant-like form. The quasiparticle creation and annihilation operators satisfy the fermion anti-commutation relations. On the basis of these quasiparticles, a generalization of the normal-ordered operator products for the MR case can be introduced as an alternative to the approach of Mukherjee and Kutzelnigg [Recent Prog. Many-Body Theor. 4, 127 (1995); Mukherjee and Kutzelnigg, J. Chem. Phys. 107, 432 (1997)]. Based on the new normal ordering any quasiparticle-based theory can be formulated using the well-known diagram techniques. Beyond the general quasiparticle framework we also present a possible realization of the unitary transformation. The suggested transformation has an exponential form where the parameters, holding exclusively active indices, are defined in a form similar to the wave operator of the unitary coupled-cluster approach. The definition of our quasiparticle-based MRCC approach strictly follows the form of the single-reference coupled-cluster method and retains several of its beneficial properties. Test results for small systems are presented using a pilot implementation of the new approach and compared to those obtained by other MR methods.

  4. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yang; Sivalingam, Kantharuban; Neese, Frank, E-mail: Frank.Neese@cec.mpg.de

    2016-03-07

    Multi-reference (MR) electronic structure methods, such as MR configuration interaction or MR perturbation theory, can provide reliable energies and properties for many molecular phenomena like bond breaking, excited states, transition states or magnetic properties of transition metal complexes and clusters. However, owing to their inherent complexity, most MR methods are still too computationally expensive for large systems. Therefore the development of more computationally attractive MR approaches is necessary to enable routine application for large-scale chemical systems. Among the state-of-the-art MR methods, second-order N-electron valence state perturbation theory (NEVPT2) is an efficient, size-consistent, and intruder-state-free method. However, there are still twomore » important bottlenecks in practical applications of NEVPT2 to large systems: (a) the high computational cost of NEVPT2 for large molecules, even with moderate active spaces and (b) the prohibitive cost for treating large active spaces. In this work, we address problem (a) by developing a linear scaling “partially contracted” NEVPT2 method. This development uses the idea of domain-based local pair natural orbitals (DLPNOs) to form a highly efficient algorithm. As shown previously in the framework of single-reference methods, the DLPNO concept leads to an enormous reduction in computational effort while at the same time providing high accuracy (approaching 99.9% of the correlation energy), robustness, and black-box character. In the DLPNO approach, the virtual space is spanned by pair natural orbitals that are expanded in terms of projected atomic orbitals in large orbital domains, while the inactive space is spanned by localized orbitals. The active orbitals are left untouched. Our implementation features a highly efficient “electron pair prescreening” that skips the negligible inactive pairs. The surviving pairs are treated using the partially contracted NEVPT2 formalism. A detailed comparison between the partial and strong contraction schemes is made, with conclusions that discourage the strong contraction scheme as a basis for local correlation methods due to its non-invariance with respect to rotations in the inactive and external subspaces. A minimal set of conservatively chosen truncation thresholds controls the accuracy of the method. With the default thresholds, about 99.9% of the canonical partially contracted NEVPT2 correlation energy is recovered while the crossover of the computational cost with the already very efficient canonical method occurs reasonably early; in linear chain type compounds at a chain length of around 80 atoms. Calculations are reported for systems with more than 300 atoms and 5400 basis functions.« less

  5. Theoretical hyperfine structures of 19F i and 17O i

    NASA Astrophysics Data System (ADS)

    Aourir, Nouria; Nemouchi, Messaoud; Godefroid, Michel; Jönsson, Per

    2018-03-01

    Multiconfiguration Hartree-Fock (MCHF) and multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations are performed for the 2 p5P2o , 2 p4(3P ) 3 s 4P , 2 p4(3P ) 3 s 2P , and 2 p4(3P ) 3 p 4So states of 19F i to determine their hyperfine constants. Several computing strategies are considered to investigate electron correlation and relativistic effects. High-order correlation contributions are included in MCHF calculations based on single and double multireference expansions. The largest components of the single reference MCHF wave functions are selected to define the multireference (MR) sets. In this scheme, relativistic corrections are evaluated in the Breit-Pauli approximation. A similar strategy is used for the calculation of MCDHF relativistic wave functions and hyperfine parameters. While correlation and relativistic corrections are found to be rather small for the ground state, we highlight large relativistic effects on the hyperfine constant A3 /2 of 2 p4(3P ) 3 p 4So and, to a lesser extent, on A1 /2 of 2 p4(3P ) 3 s 4P . As expected for such a light system, electron correlation effects dominate over relativity in the calculation of the hyperfine interaction of all other levels considered. We also revisit the hyperfine constants of 2 p3(4S ) 3 s S5o and 2 p3(4S ) 3 p 5P in 17O using similar strategies. The results are found to be in excellent agreement with experiment.

  6. Solvatochromic Effects on the Absorption Spectrum of 2-Thiocytosine

    PubMed Central

    2017-01-01

    The solvatochromic effects of six different solvents on the UV absorption spectrum of 2-thiocytosine have been studied by a combination of experimental and theoretical techniques. The steady-state absorption spectra show significant shifts of the absorption bands, where in more polar solvents the first absorption maximum shifts to higher transition energies and the second maximum to lower energies. The observed solvatochromic shifts have been rationalized using three popular solvatochromic scales and with high-level multireference quantum chemistry calculations including implicit and explicit solvent effects. It has been found that the dipole moments of the excited states account for some general shifts in the excitation energies, whereas the explicit solvent interactions explain the differences in the spectra recorded in the different solvents. PMID:28452483

  7. A theoretical study of the reaction of Ti+ with ethane

    NASA Astrophysics Data System (ADS)

    Moc, Jerzy; Fedorov, Dmitri G.; Gordon, Mark S.

    2000-06-01

    The doublet and quartet potential energy surfaces for the Ti++C2H6→TiC2H4++H2 and Ti++C2H6→TiCH2++CH4 reactions are studied using density functional theory (DFT) with the B3LYP functional and ab initio coupled cluster CCSD(T) methods with high quality basis sets. Structures have been optimized at the DFT level and the minima connected to each transition state (TS) by following the intrinsic reaction coordinate (IRC). Relative energies are calculated both at the DFT and coupled-cluster levels of theory. The relevant parts of the potential energy surface, especially key transition states, are also studied using multireference wave functions with the final energetics obtained with multireference second-order perturbation theory.

  8. Noniterative Multireference Coupled Cluster Methods on Heterogeneous CPU-GPU Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaskaran-Nair, Kiran; Ma, Wenjing; Krishnamoorthy, Sriram

    2013-04-09

    A novel parallel algorithm for non-iterative multireference coupled cluster (MRCC) theories, which merges recently introduced reference-level parallelism (RLP) [K. Bhaskaran-Nair, J.Brabec, E. Aprà, H.J.J. van Dam, J. Pittner, K. Kowalski, J. Chem. Phys. 137, 094112 (2012)] with the possibility of accelerating numerical calculations using graphics processing unit (GPU) is presented. We discuss the performance of this algorithm on the example of the MRCCSD(T) method (iterative singles and doubles and perturbative triples), where the corrections due to triples are added to the diagonal elements of the MRCCSD (iterative singles and doubles) effective Hamiltonian matrix. The performance of the combined RLP/GPU algorithmmore » is illustrated on the example of the Brillouin-Wigner (BW) and Mukherjee (Mk) state-specific MRCCSD(T) formulations.« less

  9. The low-lying electronic states of pentacene and their roles in singlet fission.

    PubMed

    Zeng, Tao; Hoffmann, Roald; Ananth, Nandini

    2014-04-16

    We present a detailed study of pentacene monomer and dimer that serves to reconcile extant views of its singlet fission. We obtain the correct ordering of singlet excited-state energy levels in a pentacene molecule (E (S1) < E (D)) from multireference calculations with an appropriate active orbital space and dynamical correlation being incorporated. In order to understand the mechanism of singlet fission in pentacene, we use a well-developed diabatization scheme to characterize the six low-lying singlet states of a pentacene dimer that approximates the unit cell structure of crystalline pentacene. The local, single-excitonic diabats are not directly coupled with the important multiexcitonic state but rather mix through their mutual couplings with one of the charge-transfer configurations. We analyze the mixing of diabats as a function of monomer separation and pentacene rotation. By defining an oscillator strength measure of the coherent population of the multiexcitonic diabat, essential to singlet fission, we find this population can, in principle, be increased by small compression along a specific crystal direction.

  10. reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.

    PubMed

    Müller, Julian; Hartke, Bernd

    2016-08-09

    Mechanochemistry, in particular in the form of single-molecule atomic force microscopy experiments, is difficult to model theoretically, for two reasons: Covalent bond breaking is not captured accurately by single-determinant, single-reference quantum chemistry methods, and experimental times of milliseconds or longer are hard to simulate with any approach. Reactive force fields have the potential to alleviate both problems, as demonstrated in this work: Using nondeterministic global parameter optimization by evolutionary algorithms, we have fitted a reaxFF force field to high-level multireference ab initio data for disulfides. The resulting force field can be used to reliably model large, multifunctional mechanochemistry units with disulfide bonds as designed breaking points. Explorative calculations show that a significant part of the time scale gap between AFM experiments and dynamical simulations can be bridged with this approach.

  11. A statistically harmonized alignment-classification in image space enables accurate and robust alignment of noisy images in single particle analysis.

    PubMed

    Kawata, Masaaki; Sato, Chikara

    2007-06-01

    In determining the three-dimensional (3D) structure of macromolecular assemblies in single particle analysis, a large representative dataset of two-dimensional (2D) average images from huge number of raw images is a key for high resolution. Because alignments prior to averaging are computationally intensive, currently available multireference alignment (MRA) software does not survey every possible alignment. This leads to misaligned images, creating blurred averages and reducing the quality of the final 3D reconstruction. We present a new method, in which multireference alignment is harmonized with classification (multireference multiple alignment: MRMA). This method enables a statistical comparison of multiple alignment peaks, reflecting the similarities between each raw image and a set of reference images. Among the selected alignment candidates for each raw image, misaligned images are statistically excluded, based on the principle that aligned raw images of similar projections have a dense distribution around the correctly aligned coordinates in image space. This newly developed method was examined for accuracy and speed using model image sets with various signal-to-noise ratios, and with electron microscope images of the Transient Receptor Potential C3 and the sodium channel. In every data set, the newly developed method outperformed conventional methods in robustness against noise and in speed, creating 2D average images of higher quality. This statistically harmonized alignment-classification combination should greatly improve the quality of single particle analysis.

  12. Efficient geometry optimization by Hellmann-Feynman forces with the anti-Hermitian contracted Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Foley, Jonathan J.; Mazziotti, David A.

    2010-10-01

    An efficient method for geometry optimization based on solving the anti-Hermitian contracted Schrödinger equation (ACSE) is presented. We formulate a reduced version of the Hellmann-Feynman theorem (HFT) in terms of the two-electron reduced Hamiltonian operator and the two-electron reduced density matrix (2-RDM). The HFT offers a considerable reduction in computational cost over methods which rely on numerical derivatives. While previous geometry optimizations with numerical gradients required 2M evaluations of the ACSE where M is the number of nuclear degrees of freedom, the HFT requires only a single ACSE calculation of the 2-RDM per gradient. Synthesizing geometry optimization techniques with recent extensions of the ACSE theory to arbitrary electronic and spin states provides an important suite of tools for accurately determining equilibrium and transition-state structures of ground- and excited-state molecules in closed- and open-shell configurations. The ability of the ACSE to balance single- and multi-reference correlation is particularly advantageous in the determination of excited-state geometries where the electronic configurations differ greatly from the ground-state reference. Applications are made to closed-shell molecules N2, CO, H2O, the open-shell molecules B2 and CH, and the excited state molecules N2, B2, and BH. We also study the HCN ↔ HNC isomerization and the geometry optimization of hydroxyurea, a molecule which has a significant role in the treatment of sickle-cell anaemia.

  13. Origin of the Strong Interaction between Polar Molecules and Copper(II) Paddle-Wheels in Metal Organic Frameworks.

    PubMed

    Ongari, Daniele; Tiana, Davide; Stoneburner, Samuel J; Gagliardi, Laura; Smit, Berend

    2017-07-20

    The copper paddle-wheel is the building unit of many metal organic frameworks. Because of the ability of the copper cations to attract polar molecules, copper paddle-wheels are promising for carbon dioxide adsorption and separation. They have therefore been studied extensively, both experimentally and computationally. In this work we investigate the copper-CO 2 interaction in HKUST-1 and in two different cluster models of HKUST-1: monocopper Cu(formate) 2 and dicopper Cu 2 (formate) 4 . We show that density functional theory methods severely underestimate the interaction energy between copper paddle-wheels and CO 2 , even including corrections for the dispersion forces. In contrast, a multireference wave function followed by perturbation theory to second order using the CASPT2 method correctly describes this interaction. The restricted open-shell Møller-Plesset 2 method (ROS-MP2, equivalent to (2,2) CASPT2) was also found to be adequate in describing the system and used to develop a novel force field. Our parametrization is able to predict the experimental CO 2 adsorption isotherms in HKUST-1, and it is shown to be transferable to other copper paddle-wheel systems.

  14. Origin of the Strong Interaction between Polar Molecules and Copper(II) Paddle-Wheels in Metal Organic Frameworks

    PubMed Central

    2017-01-01

    The copper paddle-wheel is the building unit of many metal organic frameworks. Because of the ability of the copper cations to attract polar molecules, copper paddle-wheels are promising for carbon dioxide adsorption and separation. They have therefore been studied extensively, both experimentally and computationally. In this work we investigate the copper–CO2 interaction in HKUST-1 and in two different cluster models of HKUST-1: monocopper Cu(formate)2 and dicopper Cu2(formate)4. We show that density functional theory methods severely underestimate the interaction energy between copper paddle-wheels and CO2, even including corrections for the dispersion forces. In contrast, a multireference wave function followed by perturbation theory to second order using the CASPT2 method correctly describes this interaction. The restricted open-shell Møller–Plesset 2 method (ROS-MP2, equivalent to (2,2) CASPT2) was also found to be adequate in describing the system and used to develop a novel force field. Our parametrization is able to predict the experimental CO2 adsorption isotherms in HKUST-1, and it is shown to be transferable to other copper paddle-wheel systems. PMID:28751926

  15. Theoretical calculations of rotationally inelastic collisions of He with NaK(A (1)Σ(+)): Transfer of population, orientation, and alignment.

    PubMed

    Malenda, R F; Price, T J; Stevens, J; Uppalapati, S L; Fragale, A; Weiser, P M; Kuczala, A; Talbi, D; Hickman, A P

    2015-06-14

    We have performed extensive calculations to investigate thermal energy, rotationally inelastic collisions of NaK (A(1)Σ(+)) with He. We determined a potential energy surface using a multi-reference configuration interaction wave function as implemented by the GAMESS electronic structure code, and we have performed coupled channel scattering calculations using the Arthurs and Dalgarno formalism. We also calculate the Grawert coefficients B(λ)(j, j') for each j → j' transition. These coefficients are used to determine the probability that orientation and alignment are preserved in collisions taking place in a cell environment. The calculations include all rotational levels with j or j' between 0 and 50, and total (translational and rotational) energies in the range 0.0002-0.0025 a.u. (∼44-550 cm(-1)). The calculated cross sections for transitions with even values of Δj tend to be larger than those for transitions with odd Δj, in agreement with the recent experiments of Wolfe et al. (J. Chem. Phys. 134, 174301 (2011)). The calculations of the energy dependence of the cross sections and the calculations of the fraction of orientation and alignment preserved in collisions also exhibit distinctly different behaviors for odd and even values of Δj. The calculations also indicate that the average fraction of orientation or alignment preserved in a transition becomes larger as j increases. We interpret this behavior using the semiclassical model of Derouard, which also leads to a simple way of visualizing the distribution of the angles between the initial and final angular momentum vectors j and j'. Finally, we compare the exact quantum results for j → j' transitions with results based on the simpler, energy sudden approximation. That approximation is shown to be quite accurate.

  16. Laser cooling of BH and GaF: insights from an ab initio study.

    PubMed

    Gao, Yu-feng; Gao, Tao

    2015-04-28

    The feasibility of laser cooling BH and GaF is investigated using ab initio quantum chemistry. The ground state X (1)Σ(+) and first two excited states (3)Π and (1)Π of BH and GaF are calculated using the multireference configuration interaction (MRCI) level of theory. For GaF, the spin-orbit coupling effect is also taken into account in the electronic structure calculations at the MRCI level. Calculated spectroscopic constants for BH and GaF show good agreement with available theoretical and experimental results. The highly diagonal Franck-Condon factors (BH: f00 = 0.9992, f11 = 0.9908, f22 = 0.9235; GaF: f00 = 0.997, f11 = 0.989, f22 = 0.958) for the (1)Π (v' = 0-2) → X (1)Σ(+) (v = 0-2) transitions in BH and GaF are determined, which are found to be in good agreement with the theoretical and experimental data. Radiative lifetime calculations of the (1)Π (v' = 0-2) state (BH: 131, 151, and 187 ns; GaF: 2.26, 2.36, and 2.48 ns) are found to be short enough for rapid laser cooling. The proposed laser cooling schemes that drive the (1)Π (v' = 0) → X (1)Σ(+) (v = 0) transition use just one laser wavelength λ00 (BH: 436 nm, GaF: 209 nm). Though the cooling wavelength of GaF is deep in the UVC, a frequency quadrupled Ti:sapphire laser (189-235 nm) could be capable of generating useful quantities of light at this wavelength. The present results indicate that BH and GaF are two good choices of molecules for laser cooling.

  17. An investigation of the sites occupied by atomic barium in solid xenon—A 2D-EE luminescence spectroscopy and molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Davis, Barry M.; Gervais, Benoit; McCaffrey, John G.

    2018-03-01

    A detailed characterisation of the luminescence recorded for the 6p 1P1-6s 1S0 transition of atomic barium isolated in annealed solid xenon has been undertaken using two-dimensional excitation-emission (2D-EE) spectroscopy. In the excitation spectra extracted from the 2D-EE scans, two dominant thermally stable sites were identified, consisting of a classic, three-fold split Jahn-Teller band, labeled the blue site, and an unusual asymmetric 2 + 1 split band, the violet site. A much weaker band has also been identified, whose emission is strongly overlapped by the violet site. The temperature dependence of the luminescence for these sites was monitored revealing that the blue site has a non-radiative channel competing effectively with the fluorescence even at 9.8 K. By contrast, the fluorescence decay time of the violet site was recorded to be 4.3 ns and independent of temperature up to 24 K. The nature of the dominant thermally stable trapping sites was investigated theoretically with Diatomics-in-Molecule (DIM) molecular dynamics simulations. The DIM model was parameterized with ab initio multi-reference configuration interaction calculations for the lowest energy excited states of the BaṡXe pair. The simulated absorption spectra are compared with the experimental results obtained from site-resolved excitation spectroscopy. The simulations allow us to assign the experimental blue feature spectrum to a tetra-vacancy trapping site in the bulk xenon fcc crystal—a site often observed when trapping other metal atoms in rare gas matrices. By contrast, the violet site is assigned to a specific 5-atom vacancy trapping site located at a grain boundary.

  18. Influence of basis-set size on the X Σ 1 /2 +2 , A Π 1 /2 2 , A Π 3 /2 2 , and B Σ 1 /2 +2 potential-energy curves, A Π 3 /2 2 vibrational energies, and D1 and D2 line shapes of Rb+He

    NASA Astrophysics Data System (ADS)

    Blank, L. Aaron; Sharma, Amit R.; Weeks, David E.

    2018-03-01

    The X Σ 1 /2 +2 , A Π 1 /2 2 , A Π 3 /2 2 , and B2Σ1/2 + potential-energy curves for Rb+He are computed at the spin-orbit multireference configuration interaction level of theory using a hierarchy of Gaussian basis sets at the double-zeta (DZ), triple-zeta (TZ), and quadruple-zeta (QZ) levels of valence quality. Counterpoise and Davidson-Silver corrections are employed to remove basis-set superposition error and ameliorate size-consistency error. An extrapolation is performed to obtain a final set of potential-energy curves in the complete basis-set (CBS) limit. This yields four sets of systematically improved X Σ 1 /2 +2 , A Π 1 /2 2 , A Π 3 /2 2 , and B2Σ1/2 + potential-energy curves that are used to compute the A Π 3 /2 2 bound vibrational energies, the position of the D2 blue satellite peak, and the D1 and D2 pressure broadening and shifting coefficients, at the DZ, TZ, QZ, and CBS levels. Results are compared with previous calculations and experimental observation.

  19. Ortho-para interconversion in cation-water complexes: The case of V + (H 2 O) and Nb + (H 2 O) clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, T. B.; Miliordos, E.; Carnegie, P. D.

    Vanadium and niobium cation-water complexes, V+(H2O) and Nb+(H2O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O–H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 1:3 intensity ratios for K = even:odd levels for independent ortho:para nuclearmore » spin states are missing for some complexes. We relied on highly correlated internally contracted Multi-Reference Configuration Interaction (icMRCI) and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to quasi-C2v symmetry with significant probability off the C2 axis, thus explaining the reduced A values. Both vanadium and iobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 106 sec-1).« less

  20. The electronic structure of vanadium monochloride cation (VCl+): Tackling the complexities of transition metal species

    NASA Astrophysics Data System (ADS)

    DeYonker, Nathan J.; Halfen, DeWayne T.; Allen, Wesley D.; Ziurys, Lucy M.

    2014-11-01

    Six electronic states (X 4Σ-, A 4Π, B 4Δ, 2Φ, 2Δ, 2Σ+) of the vanadium monochloride cation (VCl+) are described using large basis set coupled cluster theory. For the two lowest quartet states (X 4Σ- and A 4Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T0) and spectroscopic constants (re, r0, Be, B0, bar De, He, ωe, v0, αe, ωexe) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X 4Σ-), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state (2Γ) has a Te of ˜11 200 cm-1. Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.

  1. Ortho-para interconversion in cation-water complexes: The case of V+(H2O) and Nb+(H2O) clusters.

    PubMed

    Ward, T B; Miliordos, E; Carnegie, P D; Xantheas, S S; Duncan, M A

    2017-06-14

    Vanadium and niobium cation-water complexes, V + (H 2 O) and Nb + (H 2 O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O-H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 3:1 intensity ratios for K = odd:even levels for independent ortho:para nuclear spin states are missing for some complexes. We relied on highly correlated internally contracted multi-reference configuration interaction and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to the quasi-C 2v symmetry with a significant probability off the C 2 axis, thus explaining the reduced A values. Both vanadium and niobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 10 6 s -1 ).

  2. Ortho-para interconversion in cation-water complexes: The case of V+(H2O) and Nb+(H2O) clusters

    NASA Astrophysics Data System (ADS)

    Ward, T. B.; Miliordos, E.; Carnegie, P. D.; Xantheas, S. S.; Duncan, M. A.

    2017-06-01

    Vanadium and niobium cation-water complexes, V+(H2O) and Nb+(H2O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O-H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 3:1 intensity ratios for K = odd:even levels for independent ortho:para nuclear spin states are missing for some complexes. We relied on highly correlated internally contracted multi-reference configuration interaction and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to the quasi-C2v symmetry with a significant probability off the C2 axis, thus explaining the reduced A values. Both vanadium and niobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 106 s-1).

  3. Prediction of neutral noble gas insertion compounds with heavier pnictides: FNgY (Ng = Kr and Xe; Y = As, Sb and Bi).

    PubMed

    Ghosh, Ayan; Manna, Debashree; Ghanty, Tapan K

    2016-04-28

    A novel class of interesting insertion compounds obtained through the insertion of a noble gas atom into the heavier pnictides have been explored by various ab initio quantum chemical techniques. Recently, the first neutral noble gas insertion compounds, FXeY (Y = P, N), were theoretically predicted to be stable; the triplet state was found to be the most stable state, with a high triplet-singlet energy gap, by our group. In this study, we investigated another noble gas inserted compound, FNgY (Ng = Kr and Xe; Y = As, Sb and Bi), with a triplet ground state. Density functional theory (DFT), second order Møller-Plesset perturbation theory (MP2), coupled-cluster theory (CCSD(T)) and multi-reference configuration interaction (MRCI) based techniques have been utilized to investigate the structures, stabilities, harmonic vibrational frequencies, charge distributions and topological properties of these compounds. These predicted species, FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) are found to be energetically stable with respect to all the probable 2-body and 3-body dissociation pathways, except for the 2-body channel leading to the global minimum products (FY + Ng). Nevertheless, the finite barrier height corresponding to the saddle points of the compounds connected to their respective global minima products indicates that these compounds are kinetically stable. The structural parameters, energetics, and charge distribution results as well as atoms-in-molecules (AIM) analysis suggest that these predicted molecules can be best represented as F(-)[(3)NgY](+). Thus, all the aforementioned computed results clearly indicate that it may be possible to experimentally prepare the most stable triplet state of FNgY molecules under cryogenic conditions through a matrix isolation technique.

  4. On the ultraviolet photodissociation of H2Te

    NASA Astrophysics Data System (ADS)

    Alekseyev, Aleksey B.; Liebermann, Heinz-Peter; Wittig, Curt

    2004-11-01

    The photodissociation of H2Te through excitation in the first absorption band is investigated by means of multireference spin-orbit configuration interaction (CI) calculations. Bending potentials for low-lying electronic states of H2Te are obtained in C2v symmetry for Te-H distances fixed at the ground state equilibrium value of 3.14a0, as well as for the minimum energy path constrained to R1=R2. Asymmetric cuts of potential energy surfaces for excited states (at R1=3.14a0 and θ=90.3°) are obtained for the first time. It is shown that vibrational structure in the 380-400 nm region of the long wavelength absorption tail is due to transitions to 3A', which has a shallow minimum at large HTe-H separations. Transitions to this state are polarized in the molecular plane, and this state converges to the excited TeH(2Π1/2)+H(2S) limit. These theoretical data are in accord with the selectivity toward TeH(2Π1/2) relative to TeH(2Π3/2) that has been found experimentally for 355 nm H2Te photodissociation. The calculated 3A'←X˜A' transition dipole moment increases rapidly with HTe-H distance; this explains the observation of 3A' vibrational structure for low vibrational levels, despite unfavorable Franck-Condon factors. According to the calculated vertical energies and transition moment data, the maximum in the first absorption band at ≈245 nm is caused by excitation to 4A″, which has predominantly 21A″ (1B1 in C2v symmetry) character.

  5. Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory.

    PubMed

    Yanai, Takeshi; Kurashige, Yuki; Neuscamman, Eric; Chan, Garnet Kin-Lic

    2010-01-14

    We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate the joint theory in two benchmark systems designed to test the dynamic and static correlation capabilities of the methods, namely, (i) total correlation energies in long polyenes and (ii) the isomerization curve of the [Cu(2)O(2)](2+) core. The largest complete active spaces and atomic orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a (24e,24o) active space and 268 atomic orbitals in the polyenes and a (28e,32o) active space and 278 atomic orbitals in [Cu(2)O(2)](2+).

  6. On the multi-reference nature of plutonium oxides: PuO22+, PuO2, PuO3 and PuO2(OH)2.

    PubMed

    Boguslawski, Katharina; Réal, Florent; Tecmer, Paweł; Duperrouzel, Corinne; Gomes, André Severo Pereira; Legeza, Örs; Ayers, Paul W; Vallet, Valérie

    2017-02-08

    Actinide-containing complexes present formidable challenges for electronic structure methods due to the large number of degenerate or quasi-degenerate electronic states arising from partially occupied 5f and 6d shells. Conventional multi-reference methods can treat active spaces that are often at the upper limit of what is required for a proper treatment of species with complex electronic structures, leaving no room for verifying their suitability. In this work we address the issue of properly defining the active spaces in such calculations, and introduce a protocol to determine optimal active spaces based on the use of the Density Matrix Renormalization Group algorithm and concepts of quantum information theory. We apply the protocol to elucidate the electronic structure and bonding mechanism of volatile plutonium oxides (PuO 3 and PuO 2 (OH) 2 ), species associated with nuclear safety issues for which little is known about the electronic structure and energetics. We show how, within a scalar relativistic framework, orbital-pair correlations can be used to guide the definition of optimal active spaces which provide an accurate description of static/non-dynamic electron correlation, as well as to analyse the chemical bonding beyond a simple orbital model. From this bonding analysis we are able to show that the addition of oxo- or hydroxo-groups to the plutonium dioxide species considerably changes the π-bonding mechanism with respect to the bare triatomics, resulting in bent structures with a considerable multi-reference character.

  7. Block correlated second order perturbation theory with a generalized valence bond reference function.

    PubMed

    Xu, Enhua; Li, Shuhua

    2013-11-07

    The block correlated second-order perturbation theory with a generalized valence bond (GVB) reference (GVB-BCPT2) is proposed. In this approach, each geminal in the GVB reference is considered as a "multi-orbital" block (a subset of spin orbitals), and each occupied or virtual spin orbital is also taken as a single block. The zeroth-order Hamiltonian is set to be the summation of the individual Hamiltonians of all blocks (with explicit two-electron operators within each geminal) so that the GVB reference function and all excited configuration functions are its eigenfunctions. The GVB-BCPT2 energy can be directly obtained without iteration, just like the second order Mo̸ller-Plesset perturbation method (MP2), both of which are size consistent. We have applied this GVB-BCPT2 method to investigate the equilibrium distances and spectroscopic constants of 7 diatomic molecules, conformational energy differences of 8 small molecules, and bond-breaking potential energy profiles in 3 systems. GVB-BCPT2 is demonstrated to have noticeably better performance than MP2 for systems with significant multi-reference character, and provide reasonably accurate results for some systems with large active spaces, which are beyond the capability of all CASSCF-based methods.

  8. Electronic Transitions of Tungsten Monosulfide

    NASA Astrophysics Data System (ADS)

    Tsang, L. F.; Chan, Man-Chor; Zou, Wenli; Cheung, Allan S. C.

    2017-06-01

    Electronic transition spectrum of the tungsten monosulfide (WS) molecule in the near infrared region between 725 nm and 885 nm has been recorded using laser ablation/reaction free-jet expansion and laser induced fluorescence spectroscopy. The WS molecule was produced by reacting laser - ablated tungsten atoms with 1% CS_{2} seeded in argon. Fifteen vibrational bands with resolved rotational structure have been recorded and analyzed, which were organized into seven electronic transition systems. The ground state has been identified to be the X^{3}Σ^{-}(0^{+}) state, and the determined vibrational frequency, ΔG_{1/2} and bond length, r_{0}, are respectively 556.7 cm^{-1} and 2.0676 Å. In addition, vibrational bands belong to another transition system involving lower state with Ω = 1 component have also been analyzed. Least-squares fit of the measured line positions yielded molecular constants for the electronic states involved. The low-lying Λ-S states and Ω sub-states of WS have been calculated using state-averaged complete active space self-consistent field (SA-CASSCF) and followed by MRCISD+Q (internally contracted multi-reference configuration interaction with singles and doubles plus Davidson's cluster correction). The active space consists of 10 electrons in 9 orbitals corresponding to the W 5d6s and S 3p shells. The lower molecular orbitals from W 5s5p and S 3s are inactive but are also correlated, and relativistic effective core potential (RECPs) are adopted to replace the core orbitals with 60 (W) and 10 (S) core electrons, respectively. Spin-orbit coupling (SOC) is calculated via the state-interaction (SI) approach with RECP spin-orbit operators using SA-CASSCF wavefunctions, where the diagonal elements in the SOC matrix are replaced by the corresponding MRCISD+Q energies calculated above. Spectroscopic constants and potential energy curves of the ground and many low-lying Λ-S states and Ω sub-states of the WS molecule are obtained. The calculated spectroscopic constants of the ground and low-lying states are generally in good agreement with our experimental determination. This work represents the first experimental investigation of the electronic and molecular structure of the WS molecule.

  9. Propargyl + O 2 Reaction in Helium Droplets: Entrance Channel Barrier or Not?

    DOE PAGES

    Moradi, Christopher P.; Morrison, Alexander M.; Klippenstein, Stephen J.; ...

    2013-09-09

    A combination of liquid He droplet experiments and multireference electronic structure calculations is used to probe the potential energy surface for the reaction between the propargyl radical and O 2. Infrared laser spectroscopy is used to probe the outcome of the low temperature, liquid He-mediated reaction. Bands in the spectrum are assigned to the acetylenic CH stretch (ν 1), the symmetric CH 2 stretch (ν 2), and the antisymmetric CH 2 stretch (ν 13) of the trans-acetylenic propargyl peroxy radical (•OO—CH 2—C≡CH). The observed band origins are in excellent agreement with previously reported anharmonic frequency computations for this species. Themore » Stark spectrum of the ν 1 band provides further evidence that the reaction leads only to the trans-acetylenic species. There are no other bands in the CH 2 stretching region that can be attributed to any of the other three propargyl peroxy isomers/conformers that are predicted to be minimum energy structures ( gauche-acetylenic, cis-allenic, and trans-allenic). There is also no evidence for the kinetic stabilization of a van der Waals complex between propargyl and O 2. A combination of multireference and coupled-cluster electronic structure calculations is used to probe the potential energy surface in the neighborhood of the transition state connecting reactants with the acetylenic adduct. The multireference based evaluation of the doublet-quartet splitting added to the coupled-cluster calculated quartet state energies yields what are likely the most accurate predictions for the doublet potential curve. As a result, this calculation suggests that there is no saddle point for the addition process, in agreement with the experimental observations. Other calculations suggest the possible presence of a small submerged barrier.« less

  10. Quantum mechanical reaction probability of triplet ketene at the multireference second-order perturbation level of theory.

    PubMed

    Ogihara, Yusuke; Yamamoto, Takeshi; Kato, Shigeki

    2010-09-23

    Triplet ketene exhibits a steplike structure in the experimentally observed dissociation rates, but its mechanism is still unknown despite many theoretical efforts in the past decades. In this paper we revisit this problem by quantum mechanically calculating the reaction probability with multireference-based electronic structure theory. Specifically, we first construct an analytical potential energy surface of triplet state by fitting it to about 6000 ab initio energies computed at the multireference second-order Mller-Plesset perturbation (MRMP2) level. We then evaluate the cumulative reaction probability by using the transition state wave packet method together with an adiabatically constrained Hamiltonian. The result shows that the imaginary barrier frequency on the triplet surface is 328i cm-1, which is close to the CCSD(T) result (321i cm-1) but is likely too large for reproducing the experimentally observed steps. Indeed, our calculated reaction probability exhibits no signature of steps, reflecting too strong tunneling effect along the reaction coordinate. Nevertheless, it is emphasized that the flatness of the potential profile in the transition-state region (which governs the degree of tunneling) depends strongly on the level of electronic structure calculation, thus leaving some possibility that the use of more accurate theories might lead to the observed steps. We also demonstrate that the triplet potential surface differs significantly between the CASSCF and MRMP2 results, particularly in the transition-state region. This fact seems to require more attention when studying the "nonadiabatic" scenario for the steps, in which the crossing seam between S0 and T1 surfaces is assumed to play a central role.

  11. Excited states with internally contracted multireference coupled-cluster linear response theory.

    PubMed

    Samanta, Pradipta Kumar; Mukherjee, Debashis; Hanauer, Matthias; Köhn, Andreas

    2014-04-07

    In this paper, the linear response (LR) theory for the variant of internally contracted multireference coupled cluster (ic-MRCC) theory described by Hanauer and Köhn [J. Chem. Phys. 134, 204211 (2011)] has been formulated and implemented for the computation of the excitation energies relative to a ground state of pronounced multireference character. We find that straightforward application of the linear-response formalism to the time-averaged ic-MRCC Lagrangian leads to unphysical second-order poles. However, the coupling matrix elements that cause this behavior are shown to be negligible whenever the internally contracted approximation as such is justified. Hence, for the numerical implementation of the method, we adopt a Tamm-Dancoff-type approximation and neglect these couplings. This approximation is also consistent with an equation-of-motion based derivation, which neglects these couplings right from the start. We have implemented the linear-response approach in the ic-MRCC singles-and-doubles framework and applied our method to calculate excitation energies for a number of molecules ranging from CH2 to p-benzyne and conjugated polyenes (up to octatetraene). The computed excitation energies are found to be very accurate, even for the notoriously difficult case of doubly excited states. The ic-MRCC-LR theory is also applicable to systems with open-shell ground-state wavefunctions and is by construction not biased towards a particular reference determinant. We have also compared the linear-response approach to the computation of energy differences by direct state-specific ic-MRCC calculations. We finally compare to Mk-MRCC-LR theory for which spurious roots have been reported [T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044116 (2012)], being due to the use of sufficiency conditions to solve the Mk-MRCC equations. No such problem is present in ic-MRCC-LR theory.

  12. A neural network potential energy surface for the NaH2 system and dynamics studies on the H(2S) + NaH(X1Σ+) → Na(2S) + H2(X1Σg+) reaction.

    PubMed

    Wang, Shufen; Yuan, Jiuchuang; Li, Huixing; Chen, Maodu

    2017-08-02

    In order to study the dynamics of the reaction H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ), a new potential energy surface (PES) for the ground state of the NaH 2 system is constructed based on 35 730 ab initio energy points. Using basis sets of quadruple zeta quality, multireference configuration interaction calculations with Davidson correction were carried out to obtain the ab initio energy points. The neural network method is used to fit the PES, and the root mean square error is very small (0.00639 eV). The bond lengths, dissociation energies, zero-point energies and spectroscopic constants of H 2 (X 1 Σ g + ) and NaH(X 1 Σ + ) obtained on the new NaH 2 PES are in good agreement with the experiment data. On the new PES, the reactant coordinate-based time-dependent wave packet method is applied to study the reaction dynamics of H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ), and the reaction probabilities, integral cross-sections (ICSs) and differential cross-sections (DCSs) are obtained. There is no threshold in the reaction due to the absence of an energy barrier on the minimum energy path. When the collision energy increases, the ICSs decrease from a high value at low collision energy. The DCS results show that the angular distribution of the product molecules tends to the forward direction. Compared with the LiH 2 system, the NaH 2 system has a larger mass and the PES has a larger well at the H-NaH configuration, which leads to a higher ICS value in the H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ) reaction. Because the H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ) reaction releases more energy, the product molecules can be excited to a higher vibrational state.

  13. Structure, stability, and properties of the trans peroxo nitrate radical: the importance of nondynamic correlation.

    PubMed

    Dutta, Achintya Kumar; Dar, Manzoor; Vaval, Nayana; Pal, Sourav

    2014-02-27

    We report a comparative single-reference and multireference coupled-cluster investigation on the structure, potential energy surface, and IR spectroscopic properties of the trans peroxo nitrate radical, one of the key intermediates in stratospheric NOX chemistry. The previous single-reference ab initio studies predicted an unbound structure for the trans peroxo nitrate radical. However, our Fock space multireference coupled-cluster calculation confirms a bound structure for the trans peroxo nitrate radical, in accordance with the experimental results reported earlier. Further, the analysis of the potential energy surface in FSMRCC method indicates a well-behaved minima, contrary to the shallow minima predicted by the single-reference coupled-cluster method. The harmonic force field analysis, of various possible isomers of peroxo nitrate also reveals that only the trans structure leads to the experimentally observed IR peak at 1840 cm(-1). The present study highlights the critical importance of nondynamic correlation in predicting the structure and properties of high-energy stratospheric NOx radicals.

  14. A new scheme for perturbative triples correction to (0,1) sector of Fock space multi-reference coupled cluster method: theory, implementation, and examples.

    PubMed

    Dutta, Achintya Kumar; Vaval, Nayana; Pal, Sourav

    2015-01-28

    We propose a new elegant strategy to implement third order triples correction in the light of many-body perturbation theory to the Fock space multi-reference coupled cluster method for the ionization problem. The computational scaling as well as the storage requirement is of key concerns in any many-body calculations. Our proposed approach scales as N(6) does not require the storage of triples amplitudes and gives superior agreement over all the previous attempts made. This approach is capable of calculating multiple roots in a single calculation in contrast to the inclusion of perturbative triples in the equation of motion variant of the coupled cluster theory, where each root needs to be computed in a state-specific way and requires both the left and right state vectors together. The performance of the newly implemented scheme is tested by applying to methylene, boron nitride (B2N) anion, nitrogen, water, carbon monoxide, acetylene, formaldehyde, and thymine monomer, a DNA base.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, D.; Fertitta, E.; Paulus, B.

    Due to the importance of both static and dynamical correlation in the bond formation, low-dimensional beryllium systems constitute interesting case studies to test correlation methods. Aiming to describe the whole dissociation curve of extended Be systems we chose to apply the method of increments (MoI) in its multireference (MR) formalism. To gain insight into the main characteristics of the wave function, we started by focusing on the description of small Be chains using standard quantum chemical methods. In a next step we applied the MoI to larger beryllium systems, starting from the Be{sub 6} ring. The complete active space formalismmore » was employed and the results were used as reference for local MR calculations of the whole dissociation curve. Although this is a well-established approach for systems with limited multireference character, its application regarding the description of whole dissociation curves requires further testing. Subsequent to the discussion of the role of the basis set, the method was finally applied to larger rings and extrapolated to an infinite chain.« less

  16. Novel strategy to implement active-space coupled-cluster methods

    NASA Astrophysics Data System (ADS)

    Rolik, Zoltán; Kállay, Mihály

    2018-03-01

    A new approach is presented for the efficient implementation of coupled-cluster (CC) methods including higher excitations based on a molecular orbital space partitioned into active and inactive orbitals. In the new framework, the string representation of amplitudes and intermediates is used as long as it is beneficial, but the contractions are evaluated as matrix products. Using a new diagrammatic technique, the CC equations are represented in a compact form due to the string notations we introduced. As an application of these ideas, a new automated implementation of the single-reference-based multi-reference CC equations is presented for arbitrary excitation levels. The new program can be considered as an improvement over the previous implementations in many respects; e.g., diagram contributions are evaluated by efficient vectorized subroutines. Timings for test calculations for various complete active-space problems are presented. As an application of the new code, the weak interactions in the Be dimer were studied.

  17. Theoretical calculations of rotationally inelastic collisions of He with NaK(A {sup 1}Σ{sup +}): Transfer of population, orientation, and alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malenda, R. F.; Price, T. J.; Stevens, J.

    2015-06-14

    We have performed extensive calculations to investigate thermal energy, rotationally inelastic collisions of NaK (A{sup 1}Σ{sup +}) with He. We determined a potential energy surface using a multi-reference configuration interaction wave function as implemented by the GAMESS electronic structure code, and we have performed coupled channel scattering calculations using the Arthurs and Dalgarno formalism. We also calculate the Grawert coefficients B{sub λ}(j, j′) for each j → j′ transition. These coefficients are used to determine the probability that orientation and alignment are preserved in collisions taking place in a cell environment. The calculations include all rotational levels with j ormore » j′ between 0 and 50, and total (translational and rotational) energies in the range 0.0002–0.0025 a.u. (∼44–550 cm{sup −1}). The calculated cross sections for transitions with even values of Δj tend to be larger than those for transitions with odd Δj, in agreement with the recent experiments of Wolfe et al. (J. Chem. Phys. 134, 174301 (2011)). The calculations of the energy dependence of the cross sections and the calculations of the fraction of orientation and alignment preserved in collisions also exhibit distinctly different behaviors for odd and even values of Δj. The calculations also indicate that the average fraction of orientation or alignment preserved in a transition becomes larger as j increases. We interpret this behavior using the semiclassical model of Derouard, which also leads to a simple way of visualizing the distribution of the angles between the initial and final angular momentum vectors j and j′. Finally, we compare the exact quantum results for j → j′ transitions with results based on the simpler, energy sudden approximation. That approximation is shown to be quite accurate.« less

  18. Study on the spectroscopic parameters and transition probabilities of 25 low-lying states of the AlC+ cation

    NASA Astrophysics Data System (ADS)

    Zhang, Jicai; Shi, Deheng; Xing, Wei; Sun, Jinfeng; Zhu, Zunlue

    2017-11-01

    This paper investigates the spectroscopic parameters and transition probabilities of 25 low-lying states, which come from the first five dissociation channels of AlC+ cation. The potential energy curves are calculated with the complete active space self-consistent field method, which is followed by the valence internally contracted multireference configuration interaction approach with Davidson correction. Of these 25 states, only the 35Σ-state is repulsive; the c1Σ+, f1Π, and 15Π states have the double well; the first well of c1Σ+ state and the second well of 15Π state are very weakly bound; the first well of c1Σ+ state has no vibrational levels; the 25Π state and the double well of f1Π state have only several vibrational states; the B3Σ-, E3Σ+, D3Π, 15Σ+, 25Σ-, and 15Π states are inverted when the spin-orbit coupling effect is included. The avoided crossings exist between the B3Σ- and 33Σ- states, the c1Σ+ and d1Σ+ states, the f1Π and 31Π states, the 15Π and 25Π states, as well as the 25Π and 35Π states. Core-valence correlation and scalar relativistic corrections are considered. The extrapolation of potential energies to the complete basis set limit is done. The spectroscopic parameters and vibrational levels are determined for all the Λ-S and Ω bound states. The transition dipole moments are calculated. Franck-Condon factors of a great number of electronic transitions are evaluated. On the whole, the spin-orbit coupling effect on the spectroscopic parameters and vibrational levels is small except for very few states. The results determined in this paper could provide some powerful guidelines to observe these states in a spectroscopy experiment.

  19. Studies of singlet Rydberg series of LiH derived from Li(nl) + H(1s), with n ≤ 6 and l ≤ 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gim, Yeongrok; Department of Chemistry, Ajou University, Suwon 443-749; Lee, Chun-Woo, E-mail: clee@ajou.ac.kr

    2014-10-14

    The 50 singlet states of LiH composed of 49 Rydberg states and one non-Rydberg ionic state derivable from Li(nl) + H(1s), with n ≤ 6 and l ≤ 4, are studied using the multi-reference configuration interaction method combined with the Stuttgart/Köln group's effective core potential/core polarization potential method. Basis functions that can yield energy levels up to the 6g orbital of Li have been developed, and they are used with a huge number of universal Kaufmann basis functions for Rydberg states. The systematics and regularities of the physical properties such as potential energies, quantum defects, permanent dipole moments, transition dipolemore » moments, and nonadiabatic coupling matrix elements of the Rydberg series are studied. The behaviors of potential energy curves and quantum defect curves are explained using the Fermi approximation. The permanent dipole moments of the Rydberg series reveal that they are determined by the sizes of the Rydberg orbitals, which are proportional to n{sup 2}. Interesting mirror relationships of the dipole moments are observed between l-mixed Rydberg series, with the rule Δl = ±1, except for s–d mixing, which is also accompanied by n-mixing. The members of the l-mixed Rydberg series have dipole moments with opposite directions. The first derivatives of the dipole moment curves, which show the charge-transfer component, clearly show not only mirror relationships in terms of direction but also oscillations. The transition dipole moment matrix elements of the Rydberg series are determined by the small-r region, with two consequences. One is that the transition dipole moment matrix elements show n{sup −3/2} dependence. The other is that the magnitudes of the transition dipole moment matrix elements decrease rapidly as l increases.« less

  20. Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j').

    PubMed

    Weeks, David E; Niday, Thomas A; Yang, Sang H

    2006-10-28

    Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j') are calculated using the time dependent channel packet method (CPM). The calculation employs 1 2A', 2 2A', and 1 2A" adiabatic electronic potential energy surfaces determined by numerical computation at the multireference configuration-interaction level [M. H. Alexander, J. Chem. Phys. 99, 6041 (1993)]. The 1 2A' and 2 2A', adiabatic electronic potential energy surfaces are transformed to yield diabatic electronic potential energy surfaces that, when combined with the total B+H2 rotational kinetic energy, yield a set of effective potential energy surfaces [M. H. Alexander et al., J. Chem. Phys. 103, 7956 (1995)]. Within the framework of the CPM, the number of effective potential energy surfaces used for the scattering matrix calculation is then determined by the size of the angular momentum basis used as a representation. Twenty basis vectors are employed for these calculations, and the corresponding effective potential energy surfaces are identified in the asymptotic limit by the H2 rotor quantum numbers j=0, 2, 4, 6 and B electronic states 2Pja, ja=1/2, 3/2. Scattering matrix elements are obtained from the Fourier transform of the correlation function between channel packets evolving in time on these effective potential energy surfaces. For these calculations the H2 bond length is constrained to a constant value of req=1.402 a.u. and state to state scattering matrix elements corresponding to a total angular momentum of J=1/2 are discussed for j=0<-->j'=0,2,4 and 2P1/2<-->2P1/2, 2P3/2 over a range of total energy between 0.0 and 0.01 a.u.

  1. Potential energy and dipole moment surfaces of the triplet states of the O2(X3Σg-) - O2(X3Σg-,a1Δg,b1Σg+) complex

    NASA Astrophysics Data System (ADS)

    Karman, Tijs; van der Avoird, Ad; Groenenboom, Gerrit C.

    2017-08-01

    We compute four-dimensional diabatic potential energy surfaces and transition dipole moment surfaces of O2-O2, relevant for the theoretical description of collision-induced absorption in the forbidden X3Σg- → a1Δg and X3Σg- → b1Σg+ bands at 7883 cm-1 and 13 122 cm-1, respectively. We compute potentials at the multi-reference configuration interaction (MRCI) level and dipole surfaces at the MRCI and complete active space self-consistent field (CASSCF) levels of theory. Potentials and dipole surfaces are transformed to a diabatic basis using a recent multiple-property-based diabatization algorithm. We discuss the angular expansion of these surfaces, derive the symmetry constraints on the expansion coefficients, and present working equations for determining the expansion coefficients by numerical integration over the angles. We also present an interpolation scheme with exponential extrapolation to both short and large separations, which is used for representing the O2-O2 distance dependence of the angular expansion coefficients. For the triplet ground state of the complex, the potential energy surface is in reasonable agreement with previous calculations, whereas global excited state potentials are reported here for the first time. The transition dipole moment surfaces are strongly dependent on the level of theory at which they are calculated, as is also shown here by benchmark calculations at high symmetry geometries. Therefore, ab initio calculations of the collision-induced absorption spectra cannot become quantitatively predictive unless more accurate transition dipole surfaces can be computed. This is left as an open question for method development in electronic structure theory. The calculated potential energy and transition dipole moment surfaces are employed in quantum dynamical calculations of collision-induced absorption spectra reported in Paper II [T. Karman et al., J. Chem. Phys. 147, 084307 (2017)].

  2. Optical absorption spectra and g factor of MgO: Mn2+explored by ab initio and semi empirical methods

    NASA Astrophysics Data System (ADS)

    Andreici Eftimie, E.-L.; Avram, C. N.; Brik, M. G.; Avram, N. M.

    2018-02-01

    In this paper we present a methodology for calculations of the optical absorption spectra, ligand field parameters and g factor for the Mn2+ (3d5) ions doped in MgO host crystal. The proposed technique combines two methods: the ab initio multireference (MR) and the semi empirical ligand field (LF) in the framework of the exchange charge model (ECM) respectively. Both methods of calculations are applied to the [MnO6]10-cluster embedded in an extended point charge field of host matrix ligands based on Gellé-Lepetit procedure. The first step of such investigations was the full optimization of the cubic structure of perfect MgO crystal, followed by the structural optimization of the doped of MgO:Mn2+ system, using periodic density functional theory (DFT). The ab initio MR wave functions approaches, such as complete active space self-consistent field (CASSCF), N-electron valence second order perturbation theory (NEVPT2) and spectroscopy oriented configuration interaction (SORCI), are used for the calculations. The scalar relativistic effects have also been taken into account through the second order Douglas-Kroll-Hess (DKH2) procedure. Ab initio ligand field theory (AILFT) allows to extract all LF parameters and spin-orbit coupling constant from such calculations. In addition, the ECM of ligand field theory (LFT) has been used for modelling theoptical absorption spectra. The perturbation theory (PT) was employed for the g factor calculation in the semi empirical LFT. The results of each of the aforementioned types of calculations are discussed and the comparisons between the results obtained and the experimental results show a reasonable agreement, which justifies this new methodology based on the simultaneous use of both methods. This study establishes fundamental principles for the further modelling of larger embedded cluster models of doped metal oxides.

  3. Potential energy and dipole moment surfaces of the triplet states of the O2(X3Σg-) - O2(X3Σg-,a1Δg,b1Σg+) complex.

    PubMed

    Karman, Tijs; van der Avoird, Ad; Groenenboom, Gerrit C

    2017-08-28

    We compute four-dimensional diabatic potential energy surfaces and transition dipole moment surfaces of O 2 -O 2 , relevant for the theoretical description of collision-induced absorption in the forbidden X 3 Σ g -  → a 1 Δ g and X 3 Σ g -  → b 1 Σ g + bands at 7883 cm -1 and 13 122 cm -1 , respectively. We compute potentials at the multi-reference configuration interaction (MRCI) level and dipole surfaces at the MRCI and complete active space self-consistent field (CASSCF) levels of theory. Potentials and dipole surfaces are transformed to a diabatic basis using a recent multiple-property-based diabatization algorithm. We discuss the angular expansion of these surfaces, derive the symmetry constraints on the expansion coefficients, and present working equations for determining the expansion coefficients by numerical integration over the angles. We also present an interpolation scheme with exponential extrapolation to both short and large separations, which is used for representing the O 2 -O 2 distance dependence of the angular expansion coefficients. For the triplet ground state of the complex, the potential energy surface is in reasonable agreement with previous calculations, whereas global excited state potentials are reported here for the first time. The transition dipole moment surfaces are strongly dependent on the level of theory at which they are calculated, as is also shown here by benchmark calculations at high symmetry geometries. Therefore, ab initio calculations of the collision-induced absorption spectra cannot become quantitatively predictive unless more accurate transition dipole surfaces can be computed. This is left as an open question for method development in electronic structure theory. The calculated potential energy and transition dipole moment surfaces are employed in quantum dynamical calculations of collision-induced absorption spectra reported in Paper II [T. Karman et al., J. Chem. Phys. 147, 084307 (2017)].

  4. The electronic structure of vanadium monochloride cation (VCl{sup +}): Tackling the complexities of transition metal species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeYonker, Nathan J., E-mail: ndyonker@memphis.edu; Halfen, DeWayne T.; Ziurys, Lucy M.

    Six electronic states (X {sup 4}Σ{sup −}, A {sup 4}Π, B {sup 4}Δ, {sup 2}Φ, {sup 2}Δ, {sup 2}Σ{sup +}) of the vanadium monochloride cation (VCl{sup +}) are described using large basis set coupled cluster theory. For the two lowest quartet states (X {sup 4}Σ{sup −} and A {sup 4}Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T{sub 0}) and spectroscopic constants (r{sub e}, r{sub 0}, B{sub e}, B{sub 0}, D{sup ¯}{sub e}, H{sub e},more » ω{sub e}, v{sub 0}, α{sub e}, ω{sub e}x{sub e}) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X {sup 4}Σ{sup −}), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state ({sup 2}Γ) has a T{sub e} of ∼11 200 cm{sup −1}. Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.« less

  5. Studies of singlet Rydberg series of LiH derived from Li(nl) + H(1s), with n ≤ 6 and l ≤ 4

    NASA Astrophysics Data System (ADS)

    Gim, Yeongrok; Lee, Chun-Woo

    2014-10-01

    The 50 singlet states of LiH composed of 49 Rydberg states and one non-Rydberg ionic state derivable from Li(nl) + H(1s), with n ≤ 6 and l ≤ 4, are studied using the multi-reference configuration interaction method combined with the Stuttgart/Köln group's effective core potential/core polarization potential method. Basis functions that can yield energy levels up to the 6g orbital of Li have been developed, and they are used with a huge number of universal Kaufmann basis functions for Rydberg states. The systematics and regularities of the physical properties such as potential energies, quantum defects, permanent dipole moments, transition dipole moments, and nonadiabatic coupling matrix elements of the Rydberg series are studied. The behaviors of potential energy curves and quantum defect curves are explained using the Fermi approximation. The permanent dipole moments of the Rydberg series reveal that they are determined by the sizes of the Rydberg orbitals, which are proportional to n2. Interesting mirror relationships of the dipole moments are observed between l-mixed Rydberg series, with the rule Δl = ±1, except for s-d mixing, which is also accompanied by n-mixing. The members of the l-mixed Rydberg series have dipole moments with opposite directions. The first derivatives of the dipole moment curves, which show the charge-transfer component, clearly show not only mirror relationships in terms of direction but also oscillations. The transition dipole moment matrix elements of the Rydberg series are determined by the small-r region, with two consequences. One is that the transition dipole moment matrix elements show n-3/2 dependence. The other is that the magnitudes of the transition dipole moment matrix elements decrease rapidly as l increases.

  6. Quasi-degenerate perturbation theory using matrix product states

    NASA Astrophysics Data System (ADS)

    Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali

    2016-01-01

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner's 2n + 1 rule. Further, our formulation satisfies Granovsky's requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.

  7. Detailed Wave Function Analysis for Multireference Methods: Implementation in the Molcas Program Package and Applications to Tetracene.

    PubMed

    Plasser, Felix; Mewes, Stefanie A; Dreuw, Andreas; González, Leticia

    2017-11-14

    High-level multireference computations on electronically excited and charged states of tetracene are performed, and the results are analyzed using an extensive wave function analysis toolbox that has been newly implemented in the Molcas program package. Aside from verifying the strong effect of dynamic correlation, this study reveals an unexpected critical influence of the atomic orbital basis set. It is shown that different polarized double-ζ basis sets produce significantly different results for energies, densities, and overall wave functions, with the best performance obtained for the atomic natural orbital (ANO) basis set by Pierloot et al. Strikingly, the ANO basis set not only reproduces the energies but also performs exceptionally well in terms of describing the diffuseness of the different states and of their attachment/detachment densities. This study, thus, not only underlines the fact that diffuse basis functions are needed for an accurate description of the electronic wave functions but also shows that, at least for the present example, it is enough to include them implicitly in the contraction scheme.

  8. Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals.

    PubMed

    Sayfutyarova, Elvira R; Sun, Qiming; Chan, Garnet Kin-Lic; Knizia, Gerald

    2017-09-12

    We introduce the atomic valence active space (AVAS), a simple and well-defined automated technique for constructing active orbital spaces for use in multiconfiguration and multireference (MR) electronic structure calculations. Concretely, the technique constructs active molecular orbitals capable of describing all relevant electronic configurations emerging from a targeted set of atomic valence orbitals (e.g., the metal d orbitals in a coordination complex). This is achieved via a linear transformation of the occupied and unoccupied orbital spaces from an easily obtainable single-reference wave function (such as from a Hartree-Fock or Kohn-Sham calculations) based on projectors to targeted atomic valence orbitals. We discuss the premises, theory, and implementation of the idea, and several of its variations are tested. To investigate the performance and accuracy, we calculate the excitation energies for various transition-metal complexes in typical application scenarios. Additionally, we follow the homolytic bond breaking process of a Fenton reaction along its reaction coordinate. While the described AVAS technique is not a universal solution to the active space problem, its premises are fulfilled in many application scenarios of transition-metal chemistry and bond dissociation processes. In these cases the technique makes MR calculations easier to execute, easier to reproduce by any user, and simplifies the determination of the appropriate size of the active space required for accurate results.

  9. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations, phase 1

    NASA Technical Reports Server (NTRS)

    Mraz, M. R.; Hiley, P. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to present two different test techniques. One was a coventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a subscale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously.

  10. Focal plane wavefront sensor achromatization: The multireference self-coherent camera

    NASA Astrophysics Data System (ADS)

    Delorme, J. R.; Galicher, R.; Baudoz, P.; Rousset, G.; Mazoyer, J.; Dupuis, O.

    2016-04-01

    Context. High contrast imaging and spectroscopy provide unique constraints for exoplanet formation models as well as for planetary atmosphere models. But this can be challenging because of the planet-to-star small angular separation (<1 arcsec) and high flux ratio (>105). Recently, optimized instruments like VLT/SPHERE and Gemini/GPI were installed on 8m-class telescopes. These will probe young gazeous exoplanets at large separations (≳1 au) but, because of uncalibrated phase and amplitude aberrations that induce speckles in the coronagraphic images, they are not able to detect older and fainter planets. Aims: There are always aberrations that are slowly evolving in time. They create quasi-static speckles that cannot be calibrated a posteriori with sufficient accuracy. An active correction of these speckles is thus needed to reach very high contrast levels (>106-107). This requires a focal plane wavefront sensor. Our team proposed a self coherent camera, the performance of which was demonstrated in the laboratory. As for all focal plane wavefront sensors, these are sensitive to chromatism and we propose an upgrade that mitigates the chromatism effects. Methods: First, we recall the principle of the self-coherent camera and we explain its limitations in polychromatic light. Then, we present and numerically study two upgrades to mitigate chromatism effects: the optical path difference method and the multireference self-coherent camera. Finally, we present laboratory tests of the latter solution. Results: We demonstrate in the laboratory that the multireference self-coherent camera can be used as a focal plane wavefront sensor in polychromatic light using an 80 nm bandwidth at 640 nm (bandwidth of 12.5%). We reach a performance that is close to the chromatic limitations of our bench: 1σ contrast of 4.5 × 10-8 between 5 and 17 λ0/D. Conclusions: The performance of the MRSCC is promising for future high-contrast imaging instruments that aim to actively minimize the speckle intensity so as to detect and spectrally characterize faint old or light gaseous planets.

  11. Balancing single- and multi-reference correlation in the chemiluminescent reaction of dioxetanone using the anti-Hermitian contracted Schrödinger equation.

    PubMed

    Greenman, Loren; Mazziotti, David A

    2011-05-07

    Direct computation of energies and two-electron reduced density matrices (2-RDMs) from the anti-Hermitian contracted Schrödinger equation (ACSE) [D. A. Mazziotti, Phys. Rev. Lett. 97, 143002 (2006)], it is shown, recovers both single- and multi-reference electron correlation in the chemiluminescent reaction of dioxetanone especially in the vicinity of the conical intersection where strong correlation is important. Dioxetanone, the light-producing moiety of firefly luciferin, efficiently converts chemical energy into light by accessing its excited-state surface via a conical intersection. Our previous active-space 2-RDM study of dioxetanone [L. Greenman and D. A. Mazziotti, J. Chem. Phys. 133, 164110 (2010)] concluded that correlating 16 electrons in 13 (active) orbitals is required for realistic surfaces without correlating the remaining (inactive) orbitals. In this paper we pursue two complementary goals: (i) to correlate the inactive orbitals in 2-RDMs along dioxetanone's reaction coordinate and compare these results with those from multireference second-order perturbation theory (MRPT2) and (ii) to assess the size of the active space-the number of correlated electrons and orbitals-required by both MRPT2 and ACSE for accurate energies and surfaces. While MRPT2 recovers very different amounts of correlation with (4,4) and (16,13) active spaces, the ACSE obtains a similar amount of correlation energy with either active space. Nevertheless, subtle differences in excitation energies near the conical intersection suggest that the (16,13) active space is necessary to determine both energetic details and properties. Strong electron correlation is further assessed through several RDM-based metrics including (i) total and relative energies, (ii) the von Neumann entropy based on the 1-electron RDM, as well as the (iii) infinity and (iv) squared Frobenius norms based on the cumulant 2-RDM.

  12. Complete active space configuration interaction from state-averaged configuration interaction singles natural orbitals: Analytic first derivatives and derivative coupling vectors

    NASA Astrophysics Data System (ADS)

    Fales, B. Scott; Shu, Yinan; Levine, Benjamin G.; Hohenstein, Edward G.

    2017-09-01

    A new complete active space configuration interaction (CASCI) method was recently introduced that uses state-averaged natural orbitals from the configuration interaction singles method (configuration interaction singles natural orbital CASCI, CISNO-CASCI). This method has been shown to perform as well or better than state-averaged complete active space self-consistent field for a variety of systems. However, further development and testing of this method have been limited by the lack of available analytic first derivatives of the CISNO-CASCI energy as well as the derivative coupling between electronic states. In the present work, we present a Lagrangian-based formulation of these derivatives as well as a highly efficient implementation of the resulting equations accelerated with graphical processing units. We demonstrate that the CISNO-CASCI method is practical for dynamical simulations of photochemical processes in molecular systems containing hundreds of atoms.

  13. Complete active space configuration interaction from state-averaged configuration interaction singles natural orbitals: Analytic first derivatives and derivative coupling vectors.

    PubMed

    Fales, B Scott; Shu, Yinan; Levine, Benjamin G; Hohenstein, Edward G

    2017-09-07

    A new complete active space configuration interaction (CASCI) method was recently introduced that uses state-averaged natural orbitals from the configuration interaction singles method (configuration interaction singles natural orbital CASCI, CISNO-CASCI). This method has been shown to perform as well or better than state-averaged complete active space self-consistent field for a variety of systems. However, further development and testing of this method have been limited by the lack of available analytic first derivatives of the CISNO-CASCI energy as well as the derivative coupling between electronic states. In the present work, we present a Lagrangian-based formulation of these derivatives as well as a highly efficient implementation of the resulting equations accelerated with graphical processing units. We demonstrate that the CISNO-CASCI method is practical for dynamical simulations of photochemical processes in molecular systems containing hundreds of atoms.

  14. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 4: Summary

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.; Wallace, H. W.; Hiley, P. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 4 of 4: Final Report- Summary.

  15. The choice of product indicators in latent variable interaction models: post hoc analyses.

    PubMed

    Foldnes, Njål; Hagtvet, Knut Arne

    2014-09-01

    The unconstrained product indicator (PI) approach is a simple and popular approach for modeling nonlinear effects among latent variables. This approach leaves the practitioner to choose the PIs to be included in the model, introducing arbitrariness into the modeling. In contrast to previous Monte Carlo studies, we evaluated the PI approach by 3 post hoc analyses applied to a real-world case adopted from a research effort in social psychology. The measurement design applied 3 and 4 indicators for the 2 latent 1st-order variables, leaving the researcher with a choice among more than 4,000 possible PI configurations. Sixty so-called matched-pair configurations that have been recommended in previous literature are of special interest. In the 1st post hoc analysis we estimated the interaction effect for all PI configurations, keeping the real-world sample fixed. The estimated interaction effect was substantially affected by the choice of PIs, also across matched-pair configurations. Subsequently, a post hoc Monte Carlo study was conducted, with varying sample sizes and data distributions. Convergence, bias, Type I error and power of the interaction test were investigated for each matched-pair configuration and the all-pairs configuration. Variation in estimates across matched-pair configurations for a typical sample was substantial. The choice of specific configuration significantly affected convergence and the interaction test's outcome. The all-pairs configuration performed overall better than the matched-pair configurations. A further advantage of the all-pairs over the matched-pairs approach is its unambiguity. The final study evaluates the all-pairs configuration for small sample sizes and compares it to the non-PI approach of latent moderated structural equations. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  16. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 1: Wind tunnel test pressure data report

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.; Devereaux, P. A.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 1 of 2: Wind Tunnel Test Pressure Data Report.

  17. Activation of Carbon-Hydrogen and Hydrogen-Hydrogen Bonds by Copper-Nitrenes: A Comparison of Density Functional Theory with Single- and Multireference Correlation Consistent Composite Approaches.

    PubMed

    Tekarli, Sammer M; Williams, T Gavin; Cundari, Thomas R

    2009-11-10

    The kinetics and thermodynamics of copper-mediated nitrene insertion into C-H and H-H bonds (the former of methane) have been studied using several levels of theory: B3LYP/6-311++G(d,p), B97-1/cc-pVTZ, PBE1KCIS/cc-pVTZ, and ccCA (correlation consistent Composite Approach). The results show no significant difference among the DFT methods. All three DFT methods predict the ground state of the copper-nitrene model complex, L'Cu(NH), to be a triplet, while single reference ccCA predicts the singlet to be the ground state. The contributions to the total ccCA energy indicate that the singlet state is favored at the MP2/CBS level of theory, while electron correlation beyond this level (CCSD(T)) favors a triplet state, resulting in a close energetic balance between the two states. A multireference ccCA method is applied to the nitrene active species and supports the assignment of a singlet ground state. In general, the largest difference in the model reaction cycles between DFT and ccCA methods is for processes involving radicals and bond dissociation.

  18. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 2: Wind tunnel test force and moment data report

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.

  19. Gas-phase kinetics study of reaction of OH radical with CH3NHNH2 by second-order multireference perturbation theory.

    PubMed

    Sun, Hongyan; Zhang, Peng; Law, Chung K

    2012-05-31

    The gas-phase kinetics of H-abstraction reactions of monomethylhydrazine (MMH) by OH radical was investigated by second-order multireference perturbation theory and two-transition-state kinetic model. It was found that the abstractions of the central and terminal amine H atoms by the OH radical proceed through the formation of two hydrogen bonded preactivated complexes with energies of 6.16 and 5.90 kcal mol(-1) lower than that of the reactants, whereas the abstraction of methyl H atom is direct. Due to the multireference characters of the transition states, the geometries and ro-vibrational frequencies of the reactant, transition states, reactant complexes, and product complexes were optimized by the multireference CASPT2/aug-cc-pVTZ method, and the energies of the stationary points of the potential energy surface were refined at the QCISD(T)/CBS level via extrapolation of the QCISD(T)/cc-pVTZ and QCISD(T)/cc-pVQZ energies. It was found that the abstraction reactions of the central and two terminal amine H atoms of MMH have the submerged energy barriers with energies of 2.95, 2.12, and 1.24 kcal mol(-1) lower than that that of the reactants respectively, and the abstraction of methyl H atom has a real energy barrier of 3.09 kcal mol(-1). Furthermore, four MMH radical-H(2)O complexes were found to connect with product channels and the corresponding transition states. Consequently, the rate coefficients of MMH + OH for the H-abstraction of the amine H atoms were determined on the basis of a two-transition-state model, with the total energy E and angular momentum J conserved between the two transition-state regions. In units of cm(3) molecule(-1) s(-1), the rate coefficient was found to be k(1) = 3.37 × 10(-16)T(1.295) exp(1126.17/T) for the abstraction of the central amine H to form the CH(3)N(•)NH(2) radical, k(2) = 2.34 × 10(-17)T(1.907) exp(1052.26/T) for the abstraction of the terminal amine H to form the trans-CH(3)NHN(•)H radical, k(3) = 7.41 × 10(-20)T(2.428) exp(1343.20/T) for the abstraction of the terminal amine H to form the cis-CH(3)NHN(•)H radical, and k(4) = 9.13 × 10(-21)T(2.964) exp(-114.09/T) for the abstraction of the methyl H atom to form the C(•)H(2)NHNH(2) radical, respectively. Assuming that the rate coefficients are additive, the total rate coefficient of these theoretical predictions quantitatively agrees with the measured rate constant at temperatures of 200-650 K, with no adjustable parameters.

  20. Can the second order multireference perturbation theory be considered a reliable tool to study mixed-valence compounds?

    PubMed

    Pastore, Mariachiara; Helal, Wissam; Evangelisti, Stefano; Leininger, Thierry; Malrieu, Jean-Paul; Maynau, Daniel; Angeli, Celestino; Cimiraglia, Renzo

    2008-05-07

    In this paper, the problem of the calculation of the electronic structure of mixed-valence compounds is addressed in the frame of multireference perturbation theory (MRPT). Using a simple mixed-valence compound (the 5,5(') (4H,4H('))-spirobi[ciclopenta[c]pyrrole] 2,2('),6,6(') tetrahydro cation), and the n-electron valence state perturbation theory (NEVPT2) and CASPT2 approaches, it is shown that the ground state (GS) energy curve presents an unphysical "well" for nuclear coordinates close to the symmetric case, where a maximum is expected. For NEVPT, the correct shape of the energy curve is retrieved by applying the MPRT at the (computationally expensive) third order. This behavior is rationalized using a simple model (the ionized GS of two weakly interacting identical systems, each neutral system being described by two electrons in two orbitals), showing that the unphysical well is due to the canonical orbital energies which at the symmetric (delocalized) conformation lead to a sudden modification of the denominators in the perturbation expansion. In this model, the bias introduced in the second order correction to the energy is almost entirely removed going to the third order. With the results of the model in mind, one can predict that all MRPT methods in which the zero order Hamiltonian is based on canonical orbital energies are prone to present unreasonable energy profiles close to the symmetric situation. However, the model allows a strategy to be devised which can give a correct behavior even at the second order, by simply averaging the orbital energies of the two charge-localized electronic states. Such a strategy is adopted in a NEVPT2 scheme obtaining a good agreement with the third order results based on the canonical orbital energies. The answer to the question reported in the title (is this theoretical approach a reliable tool for a correct description of these systems?) is therefore positive, but care must be exercised, either in defining the orbital energies or by resorting to the third order using for them the standard definition.

  1. On the Interpretation of the level structure of the Ground 3d5 Manifold of Mn III, Fe IV, Co V and Ni VI

    NASA Astrophysics Data System (ADS)

    Leushin, A. M.

    2011-10-01

    The level structure of the ground 3d5 configuration of Mn2+, Fe3+, Co4+ and Ni5+ ions was theoretically interpreted by means of a least-squares fit of the energy parameters to the observed values within the framework of the single-configuration approximation. In the Hamiltonian in addition to real electrostatic, spin-orbit, and spin-spin interactions, electrostatic and spin-orbit interactions correlated by configuration mixing were included. It was shown that the correct positions of almost all the energy levels are determined when the Hamiltonian includes the terms of the lineal (two-body operators) and nonlinear (three-body operators) theory of the configuration interaction. The most correct theoretical description of the experimental spectra was obtained by taking into account relativistic interactions and correlation effects of spin-orbit interactions. Adjustable parameters of the interactions included into the Hamiltonian were found.

  2. Laser Induced Fluorescence Spectroscopy of Jet-Cooled CaOCa

    NASA Astrophysics Data System (ADS)

    Sullivan, Michael N.; Frohman, Daniel J.; Heaven, Michael; Fawzy, Wafaa M.

    2016-06-01

    The group IIA metals have stable hypermetallic oxides of the general form MOM. Theoretical interest in these species is associated with the multi-reference character of the ground states. It is now established that the ground states can be formally assigned to the M+O^{2-M+} configuration, which leaves two electrons in orbitals that are primarily metal-centered ns orbitals. Hence the MOM species are diradicals with very small energy spacings between the lowest energy singlet and triplet states. Previously, we have characterized the lowest energy singlet transition (1Σ^{+u← X1Σ+g}) of BeOBe. In this study we obtained the first electronic spectrum of CaOCa. Jet-cooled laser induced fluorescence spectra were recorded for multiple bands that occured within the 14,800 - 15,900 cm-1 region. Most of the bands exhibited simple P/R branch rotational line patterns that were blue-shaded. Only even rotational levels were observed, consistent with the expected X 1Σ^{+g} symmetry of the ground state (40Ca has zero nuclear spin). A progression of excited bending modes was evident in the spectrum, indicating that the transition is to an upper state that has a bent equilibrium geometry. Molecular constants were extracted from the rovibronic bands using PGOPHER. The experimental results and interpretation of the spectrum, which was guided by the predictions of electronic structure calculation, will be presented.

  3. Laser Induced Fluorescence Spectroscopy of Jet-Cooled MgOMg

    NASA Astrophysics Data System (ADS)

    Sullivan, Michael N.; Frohman, Daniel J.; Heaven, Michael; Fawzy, Wafaa M.

    2017-06-01

    The group IIA metals have stable hypermetallic oxides of the general form MOM. Theoretical interest in these species is associated with the multi-reference character of the ground states. It is now established that the ground states can be formally assigned to the M^{+O^{2-}M^{+}} configuration, which leaves two electrons in orbitals that are primarily metal-centered ns orbitals. Hence the MOM species are diradicals with very small energy spacings between the lowest energy singlet and triplet states. Previously, we have characterized the lowest energy singlet transition (^{1Σ^{+}_{u}← ^{1}Σ^{+}_{g}}) of BeOBe. Preliminary data for the first electronic transition of the isovalent species, CaOCa, was presented previously (71^{st} ISMS, talk RI10). We now report the first electronic spectrum of MgOMg. Jet-cooled laser induced fluorescence spectra were recorded for multiple bands that occurred within the 21,000 - 24,000 cm^{-1} range. Most of the bands exhibited simple P/R branch rotational line patterns that were blue-shaded. Only even rotational levels were observed, consistent with the expected X ^{1Σ^{+}_{g}} symmetry of the ground state (^{24Mg} has zero nuclear spin). Molecular constants were extracted from the rovibronic bands using PGOPHER. The experimental results and interpretation of the spectrum, which was guided by the predictions of electronic structure calculation, will be presented.

  4. General purpose computer program for interacting supersonic configurations: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Crill, W.; Dale, B.

    1977-01-01

    The program ISCON (Interacting Supersonic Configuration) is described. The program is in support of the problem to generate a numerical procedure for determining the unsteady dynamic forces on interacting wings and tails in supersonic flow. Subroutines are presented along with the complete FORTRAN source listing.

  5. An efficient approach to CI: General matrix element formulas for spin-coupled particle-hole excitations

    NASA Astrophysics Data System (ADS)

    Tavan, Paul; Schulten, Klaus

    1980-03-01

    A new, efficient algorithm for the evaluation of the matrix elements of the CI Hamiltonian in the basis of spin-coupled ν-fold excitations (over orthonormal orbitals) is developed for even electron systems. For this purpose we construct an orthonormal, spin-adapted CI basis in the framework of second quantization. As a prerequisite, spin and space parts of the fermion operators have to be separated; this makes it possible to introduce the representation theory of the permutation group. The ν-fold excitation operators are Serber spin-coupled products of particle-hole excitations. This construction is also designed for CI calculations from multireference (open-shell) states. The 2N-electron Hamiltonian is expanded in terms of spin-coupled particle-hole operators which map any ν-fold excitation on ν-, and ν±1-, and ν±2-fold excitations. For the calculation of the CI matrix this leaves one with only the evaluation of overlap matrix elements between spin-coupled excitations. This leads to a set of ten general matrix element formulas which contain Serber representation matrices of the permutation group Sν×Sν as parameters. Because of the Serber structure of the CI basis these group-theoretical parameters are kept to a minimum such that they can be stored readily in the central memory of a computer for ν?4 and even for higher excitations. As the computational effort required to obtain the CI matrix elements from the general formulas is very small, the algorithm presented appears to constitute for even electron systems a promising alternative to existing CI methods for multiply excited configurations, e.g., the unitary group approach. Our method makes possible the adaptation of spatial symmetries and the selection of any subset of configurations. The algorithm has been implemented in a computer program and tested extensively for ν?4 and singlet ground and excited states.

  6. Nonadiabatic Photo-Process Involving the πσ* State in Intramolecular Charge Transfer: a Concerted Spectroscopic and Computational Study 4-(DIMETHYLAMINO)BENZETHYNE and 4-(DIMETHYLAMINO)BENZONITRILE.

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takashige; Segarra-Martí, Javier; Coto, Pedro B.

    2014-06-01

    The ubiquitous nature of the low-lying πσ* state in the photo-excited aromatic molecules or biomolecules is widely recognized to play an important role in nonadiabatic photo-process such as photodissociation or intramolecular charge transfer (ICT). For instance, the O--H elimination channel in phenol is attributed to the state-cross of the repulsive πσ* state that exhibits a conical intersection with the lowest bright ππ* state and with the ground state, leading to ultrafast electronic deactivation. A similar decay pathway has been found in the ICT formation of 4-(dialkylamino)benzonitriles in a polar environment, where an initially photoexcited Frank-Condon state bifurcates in the presence of a dark intermediate πσ* state that crosses the fluorescent ππ* state, followed by a conical intersection with the twisted intramolecular charge transfer (TICT) state. We proposed such a two-fold decay mechanism that πσ*-state highly mediates intramolecular charge transfer in 4-(dialkylamino)benzonitriles, which is supported from both our high-level ab initio calculations and ultrafast laser spectroscopies in the previous study. 4-(Dimethylamino)benzethyne (DMABE) is isoelectronic with 4-(dimethylamino)benzonitrile (DMABN), and the electronic structures and electronic spectra of the two molecules bear very close resemblance. However, DMABN does show the ICT formation in a polar environment, whereas DMABE does not. To probe the photophysical differences among the low-lying excited-state configurations, we performed concerted time-resolved laser spectroscopies and high level ab initio multireference perturbation theory quantum-chemical (CASPT2//CASSCF) computations on the two molecules. In this paper we demonstrate the importance of the bound excited-state of a πσ* configuration that induce highly πσ*-state mediated intramolecular charge transfer in 4-(dialkylamino)benzonitriles.

  7. Electric dipole moment of diatomic molecules by configuration interaction. V - Two states of /2/Sigma/+/ symmetry in CN.

    NASA Technical Reports Server (NTRS)

    Green, S.

    1972-01-01

    Previous accurate dipole moment calculation techniques are modified to be applicable to higher excited states of symmetry. The self-consistent fields and configuration interactions are calculated for the X(2)Sigma(+) and B(2)Sigma(+) states of CN. Spin hyperfine constants and spin density at the nucleus are considered in the context of one-electron operator properties. The values of the self-consistent field and configuration interaction for the spin density are compared with experimental values for several diatomic molecules.

  8. Excitation energies of particle-hole states in {sup 208}Pb and the surface delta interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heusler, A., E-mail: A.Heusler@mpi-hd.mpg.de; Jolos, R. V., E-mail: Jolos@theor.jinr.ru; Brentano, P. von, E-mail: Brentano@ikp.uni-koeln.de

    2013-07-15

    The schematic shell model without residual interaction (SSM) assumes the same excitation energy for all spins in each particle-hole configuration multiplet. In {sup 208}Pb, more than forty states are known to contain almost the full strength of a single particle-hole configuration. The experimental excitation energy for a state with a certain spin differs from the energy predicted by the SSM by -0.2 to +0.6 MeV. The multiplet splitting is calculated with the surface delta interaction; it corresponds to the diagonal matrix element of the residual interaction in the SSM. For states containing more than 90% strength of a certain configurationmore » and for the centroid of several completely observed configurations, the calculated multiplet splitting often approximates the experimental excitation energy within 30 keV. The strong mixing within some pairs of states containing the full strengths of two configurations is explained.« less

  9. Models of S/π interactions in protein structures: Comparison of the H2S–benzene complex with PDB data

    PubMed Central

    Ringer, Ashley L.; Senenko, Anastasia; Sherrill, C. David

    2007-01-01

    S/π interactions are prevalent in biochemistry and play an important role in protein folding and stabilization. Geometries of cysteine/aromatic interactions found in crystal structures from the Brookhaven Protein Data Bank (PDB) are analyzed and compared with the equilibrium configurations predicted by high-level quantum mechanical results for the H2S–benzene complex. A correlation is observed between the energetically favorable configurations on the quantum mechanical potential energy surface of the H2S–benzene model and the cysteine/aromatic configurations most frequently found in crystal structures of the PDB. In contrast to some previous PDB analyses, configurations with the sulfur over the aromatic ring are found to be the most important. Our results suggest that accurate quantum computations on models of noncovalent interactions may be helpful in understanding the structures of proteins and other complex systems. PMID:17766371

  10. Accurate potential energy functions, non-adiabatic and spin-orbit couplings in the ZnH(+) system.

    PubMed

    Liang, Guiying; Liu, Xiaoting; Zhang, Xiaomei; Xu, Haifeng; Yan, Bing

    2016-03-05

    A high-level ab initio calculation on the ZnH(+) cation has been carried out with the multi-reference configuration interaction method plus Davison correction (MRCI+Q). The scalar relativistic effect is included by using the Douglas-Kroll-Hess (DKH) method. The calculated potential energy curves (PECs) of the 7 Λ-S states are associated with the dissociation limits of Zn(+)((2)Sg)+H((2)Sg), Zn((1)Sg)+H(+)((1)Sg), and Zn(+)((2)Pu)+H((2)Sg), respectively (The Λ-S state is labeled as (2S+1)Λ, in which Λ is the quantum number for the projection along the internuclear axis of the total electronic orbital angular momentum and S is the total electron spin). The spectroscopic constants of the bound states are determined and in good agreement with the available theoretical and experimental results. The permanent dipole moments (PDMs) of Λ-S states and the spin-orbit (SO) matrix elements between Λ-S states are also computed. The results show that the abrupt changes of the PDMs and SO matrix elements come into being for the reason of the avoided crossing between the states with the same symmetry. In addition, the non-adiabatic couplings matrix elements between Λ-S states are also evaluated. Finally, the spin-orbit couplings (SOCs) for the low-lying states are considered with Breit-Pauli operator. The SOC effect makes the 7 Λ-S states of the ZnH(+) cation split into 12 Ω states (Ω=Λ+Sz, in which Sz is projection of the total electron spin S along the internuclear Z-axis). For the (3)0(+) state, the two energy minima exhibit in the potential, which could be attributed to the formation of the new avoided crossing point. The transition dipole moments (TDMs), Franck-Condon factors, and the radiative lifetimes of the selected transitions (2)0(+)-X0(+), (3)0(+)-X0(+), (2)1-X0(+) and (3)1-X0(+) have been reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Potential Energy Curves, Transition Dipole Moments, and Franck-Condon Factors of the 12 Low-Lying States of BrO- Anion.

    PubMed

    Yin, Yuan; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2017-11-02

    This work investigates the spectroscopic parameters, vibrational levels, and transition probabilities of 12 low-lying states, which are generated from the first dissociation limit, Br( 2 P u ) + O - ( 2 P u ), of the BrO - anion. The 12 states are X 1 Σ + , 2 1 Σ + , 1 1 Σ - , 1 1 Π, 2 1 Π, 1 1 Δ, a 3 Π, 1 3 Σ + , 2 3 Σ + , 1 3 Σ - , 2 3 Π, and 1 3 Δ. The potential energy curves are calculated with the complete active-space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with Davidson modification. The dissociation energy D 0 of X 1 Σ + state is determined to be approximately 26876.44 cm -1 , which agrees well with the experimental one of 26494.50 cm -1 . Of these 12 states, the 2 1 Σ + , 1 1 Σ - , 2 1 Π, 1 1 Δ, 1 3 Σ + , 2 3 Σ + , 2 3 Π, and 1 3 Δ states are very weakly bound states, whose well depths are only several-hundred cm -1 . The a 3 Π, 2 3 Π, and 1 3 Δ states are inverted and account for the spin-orbit coupling effect. No states are repulsive regardless of whether the spin-orbit coupling effect is included. The spectroscopic parameters and vibrational levels are determined. The transition dipole moments of 12-pair electronic states are calculated. Franck-Condon factors of a number of transitions of more than 20-pair electronic states are evaluated. The electronic transitions are discussed. The spin-orbit coupling effect on the spectroscopic parameters and vibrational properties is profound for all the states except for X 1 Σ + , a 3 Π, and 1 1 Π. The spectroscopic parameters and transition probabilities obtained in this paper can provide some powerful guidelines for observing these states in a proper spectroscopy experiment, in particular the states that have very shallow potential wells.

  12. Atomic Fine-Structure Diagnostic and Cooling Transitions for Far Infrared and Submillimeter Observations

    NASA Astrophysics Data System (ADS)

    Balance, Connor

    Some of the strongest emission lines observed from a variety of astronomical sources originate from transitions between fine-structure levels in the ground term of neutral atoms and lowly-charged ions. These fine-structure levels are populated due to collisions with -, H+, H, He, and/or H2 depending on the temperature and ionization fraction of e the environment. As fine-structure excitation measurements are rare, modeling applications depend on theoretically determined rate coefficients. However, for many ions electron collision studies have not been performed for a decade or more, while over that time period the theoretical/computational methodology has significantly advanced. For heavy-particle collisions, very few systems have been studied. As a result, most models rely on estimates or on low-quality collisional data for fine-structure excitation. To significantly advance the state of fine-structure data for astrophysical models, we propose a collaborative effort in electron collisions, heavy-particle collisions, and quantum chemistry. Using the R-matrix method, fine-structure excitation due to electron collisions will be investigated for C, O, Ne^+, Ne^2+, Ar^+, Ar^2+, Fe, Fe^+, and Fe^2+. Fine-structure excitation due to heavy-particle collisions will be studied with a fully quantum molecular-orbital approach using potential energy surfaces computed with a multireference configuration-interaction method. The systems to be studied include: C/H^+, C/H2, O/H^+, O/H2, Ne^+/H, Ne^+/H2, Ne^2+/H, Ne^2+/H2, Fe/H^+, Fe^+/H, and Fe^2+/H. 2D rigid-rotor surfaces will be constructed for H2 collisions, internuclear distance dependent spin-orbit coupling will be computed in some cases, and all rate coefficients will be obtained for the temperature range 10-2000 K. The availability the proposed fine-structure excitation data will lead to deeper examination and understanding of the properties of many astrophysical environments, including young stellar objects, protoplanetary disks, planetary nebulae, photodissociation regions, active galactic nuclei, and x-ray dominated regions, hence elevating the scientific return from current (SOFIA, Spitzer, Herschel, HST) and upcoming (JWST) NASA IR/Submm astrophysics missions, as well as from ground-based telescopes.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ling-Jian

    A gamma ray detector apparatus comprises a solid state detector that includes a plurality of anode pixels and at least one cathode. The solid state detector is configured for receiving gamma rays during an interaction and inducing a signal in an anode pixel and in a cathode. An anode pixel readout circuit is coupled to the plurality of anode pixels and is configured to read out and process the induced signal in the anode pixel and provide triggering and addressing information. A waveform sampling circuit is coupled to the at least one cathode and configured to read out and processmore » the induced signal in the cathode and determine energy of the interaction, timing of the interaction, and depth of interaction.« less

  14. Ab initio ground and excited state potential energy surfaces for NO-Kr complex and dynamics of Kr solids with NO impurity

    NASA Astrophysics Data System (ADS)

    Castro-Palacios, Juan Carlos; Rubayo-Soneira, Jesús; Ishii, Keisaku; Yamashita, Koichi

    2007-04-01

    The intermolecular potentials for the NO(XΠ2)-Kr and NO(AΣ+2)-Kr systems have been calculated using highly accurate ab initio calculations. The spin-restricted coupled cluster method for the ground 1A'2 state [NO(XΠ2)-Kr ] and the multireference singles and doubles configuration interaction method for the excited 2A'2 state [NO(AΣ+2)-Kr], respectively, were used. The potential energy surfaces (PESs) show two linear wells and one that is almost in the perpendicular position. An analytical representation of the PESs has been constructed for the triatomic systems and used to carry out molecular dynamics (MD) simulations of the NO-doped krypton matrix response after excitation of NO. MD results are shown comparatively for three sets of potentials: (1) anisotropic ab initio potentials [NO molecule direction fixed during the dynamics and considered as a point (its center of mass)], (2) isotropic ab initio potentials (isotropic part in a Legendre polynomial expansion of the PESs), and (3) fitted Kr-NO potentials to the spectroscopic data. An important finding of this work is that the anisotropic and isotropic ab initio potentials calculated for the Kr-NO triatomic system are not suitable for describing the dynamics of structural relaxation upon Rydberg excitation of a NO impurity in the crystal. However, the isotropic ab initio potential in the ground state almost overlaps the published experimental potential, being almost independent of the angle asymmetry. This fact is also manifested in the radial distribution function around NO. However, in the case of the excited state the isotropic ab initio potential differs from the fitted potentials, which indicates that the Kr-NO interaction in the matrix is quite different because of the presence of the surrounding Kr atoms acting on the NO molecule. MD simulations for isotropic potentials reasonably reproduce the experimental observables for the femtosecond response and the bubble size but do not match spectroscopic results. A general overall view of the results suggests that, when the Kr-NO interaction takes place inside the matrix, potentials are rather symmetric and less repulsive than those for the triatomic system. pectroscopy, yields a mean absolute deviation of about 5cm-1 over the 22 levels. The dissociation energy with respect to the lowest vibrational energy is calculated within 30cm-1 of the experimental value of 12953±8cm-1. The reported agreement of the theoretical spectrum and dissociation energy with experiment is contingent upon the inclusion of the effects of core-generated electron correlation, spin-orbit coupling, and scalar relativity. The Dunham analysis [Phys. Rev. 41, 721 (1932)] of the spectrum is found to be very accurate. New values are given for the spectroscopic constants.

  15. Ab initio calculation of diffusion barriers for Cu adatom hopping on Cu(1 0 0) surface and evolution of atomic configurations

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Gan, Jie; Li, Qian; Gao, Kun; Sun, Jian; Xu, Ning; Ying, Zhifeng; Wu, Jiada

    2011-06-01

    The self-diffusion dynamics of Cu adatoms on Cu(1 0 0) surface has been studied based on the calculation of the energy barriers for various hopping events using lattice-gas based approach and a modified model. To simplify the description of the interactions and the calculation of the energy barrier, a three-tier hierarchy of description of atomic configurations was conceived in which the active adatom and its nearest atoms were chosen to constitute basic configuration and taken as a whole to study many-body interactions of the atoms in various atomic configurations, whereas the impacts of the next nearest atoms on the diffusion of the active adatom were considered as multi-site interactions. Besides the simple hopping of single adatoms, the movements of dimers and trimers as the results of multiple hopping events have also been examined. Taking into account the hopping events of all adatoms, the stability of atomic configurations has been examined and the evolution of atomic configurations has also been analyzed.

  16. Multiconfiguration Pair-Density Functional Theory Outperforms Kohn-Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer.

    PubMed

    Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura

    2015-08-11

    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

  17. Primary role of the electrostatic contributions in a rational growth of hysteresis loop in spin-crossover Fe(II) complexes.

    PubMed

    Kepenekian, Mikaël; Le Guennic, Boris; Robert, Vincent

    2009-08-19

    We report a comprehensive analysis of the hysteresis behavior in a series of well-characterized spin-crossover Fe(II) materials. On the basis of the available X-ray data and multireference CASSCF (complete active space self-consistent field) calculations, we show that the growth of the hysteresis loop is controlled by electrostatic contributions. These environment effects turn out to be deeply modified as the crystal structure changes along the spin transition. Our theoretical inspection demonstrates the synergy between weak bonds and electrostatic interactions in the growth of hysteresis behavior. Quantitatively, it is suggested that the electrostatic contributions significantly enhance the cooperativity factor while weak bonds are determinant in the structuration of the 3D networks. Our picture does not rely on any parametrization but uses the microscopic information to derive an expression for the cooperativity parameter. The calculated values are in very good agreement with the experimental observations. Such inspection can thus be carried out to anticipate the hysteresis behavior of this intriguing class of materials.

  18. Micromagnetics of antiskyrmions in ultrathin films

    NASA Astrophysics Data System (ADS)

    Camosi, Lorenzo; Rougemaille, Nicolas; Fruchart, Olivier; Vogel, Jan; Rohart, Stanislas

    2018-04-01

    We present a combined analytical and numerical micromagnetic study of the equilibrium energy, size, and shape of antiskyrmionic magnetic configurations. Antiskyrmions can be stabilized when the Dzyaloshinskii-Moriya interaction has opposite signs along two orthogonal in-plane directions, breaking the magnetic circular symmetry. We compare the equilibrium energy, size, and shape of antiskyrmions and skyrmions that are stabilized in environments with anisotropic and isotropic Dzyaloshinskii-Moriya interactions, respectively, but with the same strength of the magnetic interactions. When the dipolar interactions are neglected, the skyrmion and the antiskyrmion have the same energy, shape, and size in their respective environments. However, when dipolar interactions are considered, the energy of the antiskyrmion is strongly reduced, and its equilibrium size increases with respect to that of the skyrmion. While the skyrmion configuration shows homochiral Néel magnetization rotations, antiskyrmions show partly Néel and partly Bloch rotations. The latter do not produce magnetic charges and thus cost less dipolar energy. Both magnetic configurations are stable when the magnetic energies almost cancel each other, which means that a small variation of one parameter can drastically change their configurations, sizes, and energies.

  19. The stress intensity factors for a periodic array of interacting coplanar penny-shaped cracks

    PubMed Central

    Lekesiz, Huseyin; Katsube, Noriko; Rokhlin, Stanislav I.; Seghi, Robert R.

    2013-01-01

    The effect of crack interactions on stress intensity factors is examined for a periodic array of coplanar penny-shaped cracks. Kachanov’s approximate method for crack interactions (Int. J. Solid. Struct. 1987; 23(1):23–43) is employed to analyze both hexagonal and square crack configurations. In approximating crack interactions, the solution converges when the total truncation number of the cracks is 109. As expected, due to high density packing crack interaction in the hexagonal configuration is stronger than that in the square configuration. Based on the numerical results, convenient fitting equations for quick evaluation of the mode I stress intensity factors are obtained as a function of crack density and angle around the crack edge for both crack configurations. Numerical results for the mode II and III stress intensity factors are presented in the form of contour lines for the case of Poisson’s ratio ν =0.3. Possible errors for these problems due to Kachanov’s approximate method are estimated. Good agreement is observed with the limited number of results available in the literature and obtained by different methods. PMID:27175035

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, Michael H., E-mail: m.h.palmer@ed.ac.uk; Ridley, Trevor, E-mail: tr01@staffmail.ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@shu.edu.cn, E-mail: alberto.baiardi@sns.it, E-mail: kipeters@wsu.edu; Vrønning Hoffmann, Søren, E-mail: tr01@staffmail.ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@shu.edu.cn, E-mail: alberto.baiardi@sns.it, E-mail: kipeters@wsu.edu

    New photoelectron (PE) and ultra violet (UV) and vacuum UV (VUV) spectra have been obtained for chlorobenzene by synchrotron study with higher sensitivity and resolution than previous work and are subjected to detailed analysis. In addition, we report on the mass-resolved (2 + 1) resonance enhanced multiphoton ionization (REMPI) spectra of a jet-cooled sample. Both the VUV and REMPI spectra have enabled identification of a considerable number of Rydberg states for the first time. The use of ab initio calculations, which include both multi-reference multi-root doubles and singles configuration interaction (MRD-CI) and time dependent density functional theoretical (TDDFT) methods, hasmore » led to major advances in interpretation of the vibrational structure of the ionic and electronically excited states. Franck-Condon (FC) analyses of the PE spectra, including both hot and cold bands, indicate much more complex envelopes than previously thought. The sequence of ionic states can be best interpreted by our multi-configuration self-consistent field computations and also by comparison of the calculated vibrational structure of the B and C ionic states with experiment; these conclusions suggest that the leading sequence is the same as that of iodobenzene and bromobenzene, namely: X{sup 2}B{sub 1}(3b{sub 1}{sup −1}) < A{sup 2}A{sub 2}(1a{sub 2}{sup −1}) < B{sup 2}B{sub 2}(6b{sub 2}{sup −1}) < C{sup 2}B{sub 1}(2b{sub 1}{sup −1}). The absorption onset near 4.6 eV has been investigated using MRD-CI and TDDFT calculations; the principal component of this band is {sup 1}B{sub 2} and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. The other low-lying absorption band near 5.8 eV is dominated by a {sup 1}A{sub 1} state, but an underlying weak {sup 1}B{sub 1} state (πσ{sup ∗}) is also found. The strongest band in the VUV spectrum near 6.7 eV is poorly resolved and is analyzed in terms of two ππ{sup ∗} states of {sup 1}A{sub 1} (higher oscillator strength) and {sup 1}B{sub 2} (lower oscillator strength) symmetries, respectively. The calculated vertical excitation energies of these two states are critically dependent upon the presence of Rydberg functions in the basis set, since both manifolds are strongly perturbed by the Rydberg states in this energy range. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene and bromobenzene.« less

  1. Simulations of stellar winds and planetary bodies: Magnetized obstacles in a super-Alfvénic flow with southward IMF

    NASA Astrophysics Data System (ADS)

    Vernisse, Y.; Riousset, J. A.; Motschmann, U.; Glassmeier, K.-H.

    2018-03-01

    This study addresses the issue of the electromagnetic interactions between a stellar wind and planetary magnetospheres with various dipole field strengths by means of hybrid simulations. Focus is placed on the configuration where the upstream plasma magnetic field is parallel to the planetary magnetic moment (also called "Southward-IMF" configuration), leading to anti-parallel magnetic fields in the dayside interaction region. Each type of plasma interaction is characterized by means of currents flowing in the interaction region. Reconnection triggered in the tail in such configuration is shown to affect significantly the structure of the magnetotail at early stages. On the dayside, only the magnetopause current is observable for moderate planetary dipole field amplitude, while both bow-shock and magnetotail currents are identifiable downtail from the terminator. Strong differences in term of temperature for ions are particularly noticeable in the magnetosheath and in the magnetotail, when the present results are compared with our previous study, which focused on "Northward-IMF" configuration.

  2. Evaluation of the performance of single root multireference coupled cluster method for ground and excited states, and its application to geometry optimization.

    PubMed

    Mahapatra, Uttam Sinha; Chattopadhyay, Sudip

    2011-01-28

    The complete model space (CAS) based "genuine" single root multireference (MR) coupled cluster (sr-MRCC) method [Mahapatra and Chattopadhyay, J. Chem. Phys. 133, 074102 (2010)] has been extended to enable geometry optimizations by adopting the numerical gradient scheme. The sr-MRCC theory is designed to treat quasidegeneracies of varying degrees through the computation of essential static and dynamic correlation effects in a balanced way while bypassing the intruder states problem in a size-extensive manner. The efficacy of our sr-MRCC gradient approach has been illustrated by the optimization of the geometries of N(2)H(2),CH(2),C(2)H(4),C(4)H(4),O(3) as well as trimethylenemethane (TMM) molecular systems, since such cases, by virtue of their complexity, warrant truly multireference description. We have explored the capability of the sr-MRCC approach to yield rotational energy surfaces for the ground and first singlet excited states of N(2)H(2). We also intend to explore the ground and the excited state energetics of some model systems (such as P4, H4, and H(8)) for the computation of excitation energies by relying on the sr-MRCC method. An analysis of the results and a comparison with previous pertinent theoretical works including state specific MRCC (SS-MRCC) theory of Mukherjee and co-workers have also been presented. Although in most of the cases, we observe a close behavior between the sr-MRCC and SS-MRCC method, the error in the sr-MRCC is lower than the overall error of the SS-MRCC calculations in the vicinity of the transition region (manifesting a significant quasidegenerate character). The present results show that the sr-MRCC method and its numerical gradient variant are generally applicable to very demanding model and realistic chemical problems at acceptable accuracy and affordable computational expense which together attests the efficacy and viability of the sr-MRCC formalism for handling of static and dynamic correlations simultaneously thereby ensuring a balanced description for bond-breaking and other quasidegenerate situations with a various degree of MR character. Our preliminary results illustrate that our sr-MRCC method is a potential competitor for other state specific MRCC theories.

  3. Development and Applications of Advanced Electronic Structure Methods

    NASA Astrophysics Data System (ADS)

    Bell, Franziska

    This dissertation contributes to three different areas in electronic structure theory. The first part of this thesis advances the fundamentals of orbital active spaces. Orbital active spaces are not only essential in multi-reference approaches, but have also become of interest in single-reference methods as they allow otherwise intractably large systems to be studied. However, despite their great importance, the optimal choice and, more importantly, their physical significance are still not fully understood. In order to address this problem, we studied the higher-order singular value decomposition (HOSVD) in the context of electronic structure methods. We were able to gain a physical understanding of the resulting orbitals and proved a connection to unrelaxed natural orbitals in the case of Moller-Plesset perturbation theory to second order (MP2). In the quest to find the optimal choice of the active space, we proposed a HOSVD for energy-weighted integrals, which yielded the fastest convergence in MP2 correlation energy for small- to medium-sized active spaces to date, and is also potentially transferable to coupled-cluster theory. In the second part, we studied monomeric and dimeric glycerol radical cations and their photo-induced dissociation in collaboration with Prof. Leone and his group. Understanding the mechanistic details involved in these processes are essential for further studies on the combustion of glycerol and carbohydrates. To our surprise, we found that in most cases, the experimentally observed appearance energies arise from the separation of product fragments from one another rather than rearrangement to products. The final chapters of this work focus on the development, assessment, and application of the spin-flip method, which is a single-reference approach, but capable of describing multi-reference problems. Systems exhibiting multi-reference character, which arises from the (near-) degeneracy of orbital energies, are amongst the most interesting in chemistry, biology and materials science, yet amongst the most challenging to study with electronic structure methods. In particular, we explored a substituted dimeric BPBP molecule with potential tetraradical character, which gained attention as one of the most promising candidates for an organic conductor. Furthermore, we extended the spin-flip approach to include variable orbital active spaces and multiple spin-flips. This allowed us to perform wave-function-based studies of ground- and excited-states of polynuclear metal complexes, polyradicals, and bond-dissociation processes involving three or more bonds.

  4. Interaction mining and skill-dependent recommendations for multi-objective team composition

    PubMed Central

    Dorn, Christoph; Skopik, Florian; Schall, Daniel; Dustdar, Schahram

    2011-01-01

    Web-based collaboration and virtual environments supported by various Web 2.0 concepts enable the application of numerous monitoring, mining and analysis tools to study human interactions and team formation processes. The composition of an effective team requires a balance between adequate skill fulfillment and sufficient team connectivity. The underlying interaction structure reflects social behavior and relations of individuals and determines to a large degree how well people can be expected to collaborate. In this paper we address an extended team formation problem that does not only require direct interactions to determine team connectivity but additionally uses implicit recommendations of collaboration partners to support even sparsely connected networks. We provide two heuristics based on Genetic Algorithms and Simulated Annealing for discovering efficient team configurations that yield the best trade-off between skill coverage and team connectivity. Our self-adjusting mechanism aims to discover the best combination of direct interactions and recommendations when deriving connectivity. We evaluate our approach based on multiple configurations of a simulated collaboration network that features close resemblance to real world expert networks. We demonstrate that our algorithm successfully identifies efficient team configurations even when removing up to 40% of experts from various social network configurations. PMID:22298939

  5. Hydrophobicity within the three-dimensional Mercedes-Benz model: potential of mean force.

    PubMed

    Dias, Cristiano L; Hynninen, Teemu; Ala-Nissila, Tapio; Foster, Adam S; Karttunen, Mikko

    2011-02-14

    We use the three-dimensional Mercedes-Benz model for water and Monte Carlo simulations to study the structure and thermodynamics of the hydrophobic interaction. Radial distribution functions are used to classify different cases of the interaction, namely, contact configurations, solvent separated configurations, and desolvation configurations. The temperature dependence of these cases is shown to be in qualitative agreement with atomistic models of water. In particular, while the energy for the formation of contact configurations is favored by entropy, its strengthening with increasing temperature is accounted for by enthalpy. This is consistent with our simulated heat capacity. An important feature of the model is that it can be used to account for well-converged thermodynamics quantities, e.g., the heat capacity of transfer. Microscopic mechanisms for the temperature dependence of the hydrophobic interaction are discussed at the molecular level based on the conceptual simplicity of the model.

  6. Hydrophobicity within the three-dimensional Mercedes-Benz model: Potential of mean force

    NASA Astrophysics Data System (ADS)

    Dias, Cristiano L.; Hynninen, Teemu; Ala-Nissila, Tapio; Foster, Adam S.; Karttunen, Mikko

    2011-02-01

    We use the three-dimensional Mercedes-Benz model for water and Monte Carlo simulations to study the structure and thermodynamics of the hydrophobic interaction. Radial distribution functions are used to classify different cases of the interaction, namely, contact configurations, solvent separated configurations, and desolvation configurations. The temperature dependence of these cases is shown to be in qualitative agreement with atomistic models of water. In particular, while the energy for the formation of contact configurations is favored by entropy, its strengthening with increasing temperature is accounted for by enthalpy. This is consistent with our simulated heat capacity. An important feature of the model is that it can be used to account for well-converged thermodynamics quantities, e.g., the heat capacity of transfer. Microscopic mechanisms for the temperature dependence of the hydrophobic interaction are discussed at the molecular level based on the conceptual simplicity of the model.

  7. Atomic structure considerations for the low-temperature opacity of Sn

    DOE PAGES

    Colgan, J.; Kilcrease, D. P.; Abdallah, J.; ...

    2017-03-31

    Here, we have begun a preliminary investigation into the opacity of Sn at low temperatures (< 50 eV). The emissivity and opacity of Sn is a crucial factor in determining the utility of Sn in EUV lithography, with numerous industrial implications. To this end, we have been exploring the accuracy of some approximations used in opacity models for the relevant ion stages of Sn (neutral through ~ 18 times ionized). We also find that the use of intermediate-coupling, as compared to full configuration-interaction, is not adequate to obtain accurate line positions of the important bound-bound transitions in Sn. One requiresmore » full configuration-interaction to properly describe the strong mixing between the various n=4 sub-shells that give rise to the Δn= 0 transitions that dominate the opacity spectrum at low temperatures. Furthermore, since calculations that include full configuration-interaction for large numbers of configurations quickly become computationally prohibitive, we have explored hybrid calculations, in which full configuration-interaction is retained for the most important transitions, while intermediate-coupling is employed for all other transitions. After extensive exploration of the atomic structure properties, local-thermodynamic-equilibrium (LTE) opacities are generated using the ATOMIC code at selected temperatures and densities and compared to experiment.« less

  8. Atomic structure considerations for the low-temperature opacity of Sn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colgan, J.; Kilcrease, D. P.; Abdallah, J.

    Here, we have begun a preliminary investigation into the opacity of Sn at low temperatures (< 50 eV). The emissivity and opacity of Sn is a crucial factor in determining the utility of Sn in EUV lithography, with numerous industrial implications. To this end, we have been exploring the accuracy of some approximations used in opacity models for the relevant ion stages of Sn (neutral through ~ 18 times ionized). We also find that the use of intermediate-coupling, as compared to full configuration-interaction, is not adequate to obtain accurate line positions of the important bound-bound transitions in Sn. One requiresmore » full configuration-interaction to properly describe the strong mixing between the various n=4 sub-shells that give rise to the Δn= 0 transitions that dominate the opacity spectrum at low temperatures. Furthermore, since calculations that include full configuration-interaction for large numbers of configurations quickly become computationally prohibitive, we have explored hybrid calculations, in which full configuration-interaction is retained for the most important transitions, while intermediate-coupling is employed for all other transitions. After extensive exploration of the atomic structure properties, local-thermodynamic-equilibrium (LTE) opacities are generated using the ATOMIC code at selected temperatures and densities and compared to experiment.« less

  9. Intelligent nanomedicine integrating diagnosis and therapy

    NASA Technical Reports Server (NTRS)

    Li, Na (Inventor); Tan, Winny (Inventor)

    2012-01-01

    A method of controlling the activity of a biologically active compound. The method concerns an oligonucleotide-based compound, comprising a hairpin-forming oligonucleotide, an effector moiety physically associated with the oligonucleotide, where the effector moiety possesses a biological activity, and a regulating moiety physically associated with the oligonucleotide, where the regulating moiety controls the biological activity of the effector moiety by interacting with the effector moiety. The oligonucleotide can assume a hairpin configuration, where the effector and regulating moieties interact, or an open configuration, where the effector and regulating moieties fail to interact. Depending on the nature of the effector and regulating moieties, either configuration can result in the expression of the biological activity of the effector moiety.

  10. Fluxoids configurations in finite superconducting networks

    NASA Astrophysics Data System (ADS)

    Sharon, Omri J.; Haham, Noam; Shaulov, Avner A.; Yeshurun, Yosef

    2017-12-01

    Analysis of superconducting ladders consisting of rectangular loops, yields an Ising like expression for the total energy of the ladders as a function of the loops vorticities and the applied magnetic field. This expression shows that fluxoids can be treated as repulsively interacting objects driven towards the ladder center by the applied field. Distinctive repulsive interactions between fluxoids are obtained depending on the ratio l between the loops length and the common width of adjacent loops. A 'short range' and a 'long range' interactions obtained for l ≳ 1 and l ≪ 1, respectively, give rise to remarkably different fluxoid configurations. The different configurations of fluxoids in different types of ladders are illustrated by simulations.

  11. The controlled formation and cleavage of an intramolecular d8-d8 Pt-Pt interaction in a dinuclear cycloplatinated molecular "pivot-hinge".

    PubMed

    Koo, Chi-Kin; Wong, Ka-Leung; Lau, Kai-Cheung; Wong, Wai-Yeung; Lam, Michael Hon-Wah

    2009-08-03

    The bis(diphenylphosphino)methane (dppm)-bridged dinuclear cycloplatinated complex {[Pt(L)](2)(mu-dppm)}(2+) (Pt(2)dppm; HL: 2-phenyl-6-(1H-pyrazol-3-yl)-pyridine) demonstrates interesting reversible "pivot-hinge"-like intramolecular motions in response to the protonation/deprotonation of L. In its protonated "closed" configuration, the two platinum(II) centers are held in position by intramolecular d(8)-d(8) Pt-Pt interaction. In its deprotonated "open" configuration, such Pt-Pt interaction is cleaved. To further understand the mechanism behind this hingelike motion, an analogous dinuclear cycloplatinated complex, {[Pt(L)](2)(mu-dchpm)}(2+) (Pt(2)dchpm) with bis(dicyclohexylphosphino)methane (dchpm) as the bridging ligand, was synthesized. From its protonation/deprotonation responses, it was revealed that aromatic pi-pi interactions between the phenyl moieties of the mu-dppm and the deprotonated pyrazolyl rings of L was essential to the reversible cleavage of the intramolecular Pt-Pt interaction in Pt(2)dppm. In the case of Pt(2)dchpm, spectroscopic and spectrofluorometric titrations as well as X-ray crystallography indicated that the distance between the two platinum(II) centers shrank upon deprotonation, thus causing a redshift in its room-temperature triplet metal-metal-to-ligand charge-transfer emission from 614 to 625 nm. Ab initio calculations revealed the presence of intramolecular hydrogen bonding between the deprotonated and negatively charged 1-pyrazolyl-N moiety and the methylene CH and phenyl C-H of the mu-dppm. The "open" configuration of the deprotonated Pt(2)dppm was estimated to be 19 kcal mol(-1) more stable than its alternative "closed" configuration. On the other hand, the open configuration of the deprotonated Pt(2)dchpm was 6 kcal mol(-1) less stable than its alternative closed configuration.

  12. Strategies to Engage Students' Production of Electron Configurations in a Prototypical Chemistry Classroom Community

    ERIC Educational Resources Information Center

    Grueber, David J.

    2012-01-01

    This study investigated associations between teacher-student interaction and students' persistence to complete written electron configurations in a high school chemistry classroom. Analyses of the interactions were guided with an Expectancy-Value framework to identify the discourse strategies used by the teacher to build engagement in a classroom…

  13. Internal aerodynamics of a generic three-dimensional scramjet inlet at Mach 10

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1995-01-01

    A combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall compression scramjet inlet configuration at Mach 10 has been performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration. The work proceeded in several phases: the initial inviscid assessment of the internal shock structure, the preliminary computational parametric study, the coupling of the optimized configuration with the physical limitations of the facility, the wind tunnel blockage assessment, and the computational and experimental parametric study of the final configuration. Good agreement between computation and experimentation was observed in the magnitude and location of the interactions, particularly for weakly interacting flow fields. Large-scale forward separations resulted when the interaction strength was increased by increasing the contraction ratio or decreasing the Reynolds number.

  14. Threshold and channel interaction in cochlear implant users: evaluation of the tripolar electrode configuration.

    PubMed

    Bierer, Julie Arenberg

    2007-03-01

    The efficacy of cochlear implants is limited by spatial and temporal interactions among channels. This study explores the spatially restricted tripolar electrode configuration and compares it to bipolar and monopolar stimulation. Measures of threshold and channel interaction were obtained from nine subjects implanted with the Clarion HiFocus-I electrode array. Stimuli were biphasic pulses delivered at 1020 pulses/s. Threshold increased from monopolar to bipolar to tripolar stimulation and was most variable across channels with the tripolar configuration. Channel interaction, quantified by the shift in threshold between single- and two-channel stimulation, occurred for all three configurations but was largest for the monopolar and simultaneous conditions. The threshold shifts with simultaneous tripolar stimulation were slightly smaller than with bipolar and were not as strongly affected by the timing of the two channel stimulation as was monopolar. The subjects' performances on clinical speech tests were correlated with channel-to-channel variability in tripolar threshold, such that greater variability was related to poorer performance. The data suggest that tripolar channels with high thresholds may reveal cochlear regions of low neuron survival or poor electrode placement.

  15. Parametrization of free ion levels of four isoelectronic 4f2 systems: Insights into configuration interaction parameters

    NASA Astrophysics Data System (ADS)

    Yeung, Yau Yuen; Tanner, Peter A.

    2013-12-01

    The experimental free ion 4f2 energy level data sets comprising 12 or 13 J-multiplets of La+, Ce2+, Pr3+ and Nd4+ have been fitted by a semiempirical atomic Hamiltonian comprising 8, 10, or 12 freely-varying parameters. The root mean square errors were 16.1, 1.3, 0.3 and 0.3 cm-1, respectively for fits with 10 parameters. The fitted inter-electronic repulsion and magnetic parameters vary linearly with ionic charge, i, but better linear fits are obtained with (4-i)2, although the reason is unclear at present. The two-body configuration interaction parameters α and β exhibit a linear relation with [ΔE(bc)]-1, where ΔE(bc) is the energy difference between the 4f2 barycentre and that of the interacting configuration, namely 4f6p for La+, Ce2+, and Pr3+, and 5p54f3 for Nd4+. The linear fit provides the rationale for the negative value of α for the case of La+, where the interacting configuration is located below 4f2.

  16. Deterministic alternatives to the full configuration interaction quantum Monte Carlo method for strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Tubman, Norm; Whaley, Birgitta

    The development of exponential scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, allows exact diagonalization through stochastically sampling of determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, together with a stochastic projected wave function, which are used to explore the important parts of Hilbert space. However, a stochastic representation of the wave function is not required to search Hilbert space efficiently and new deterministic approaches have recently been shown to efficiently find the important parts of determinant space. We shall discuss the technique of Adaptive Sampling Configuration Interaction (ASCI) and the related heat-bath Configuration Interaction approach for ground state and excited state simulations. We will present several applications for strongly correlated Hamiltonians. This work was supported through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences.

  17. Interaction of silicene with amino acid analogues—from physical to chemical adsorption in gas and solvated phases

    NASA Astrophysics Data System (ADS)

    Jagvaral, Yesukhei; He, Haiying; Pandey, Ravindra

    2018-01-01

    Silicene is an emerging 2D material, and an understanding of its interaction with amino acids, the basic building blocks of protein, is of fundamental importance. In this paper, we investigate the nature of adsorption of amino-acid analogues on silicene employing density functional theory and an implicit solvation model. Amino acid analogues are defined as CH3-R molecules, where R is the functional group of the amino acid side chain. The calculated results find three distinct groups within the amino-acid analogues considered: (i) group I, which includes MeCH3 and MeSH, interacts with silicene via the van der Waals dispersive terms leading to physisorbed configurations; (ii) group II strongly interacts with silicene forming Si-O/N chemical bonds in the chemisorbed configurations; and (iii) group III, which consists of the phenyl group, interacts with silicene via π-π interactions leading to physisorbed configurations. The results show that the lateral chains of the amino acids intrinsically determine the interactions between protein and silicene at the interface under the given physiological conditions.

  18. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields.

    PubMed

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  19. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klinkusch, Stefan; Tremblay, Jean Christophe

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electronmore » ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.« less

  20. Geometry modeling and multi-block grid generation for turbomachinery configurations

    NASA Technical Reports Server (NTRS)

    Shih, Ming H.; Soni, Bharat K.

    1992-01-01

    An interactive 3D grid generation code, Turbomachinery Interactive Grid genERation (TIGER), was developed for general turbomachinery configurations. TIGER features the automatic generation of multi-block structured grids around multiple blade rows for either internal, external, or internal-external turbomachinery flow fields. Utilization of the Bezier's curves achieves a smooth grid and better orthogonality. TIGER generates the algebraic grid automatically based on geometric information provided by its built-in pseudo-AI algorithm. However, due to the large variation of turbomachinery configurations, this initial grid may not always be as good as desired. TIGER therefore provides graphical user interactions during the process which allow the user to design, modify, as well as manipulate the grid, including the capability of elliptic surface grid generation.

  1. Study of the 190Hg Nucleus: Testing the Existence of U(5) Symmetry

    NASA Astrophysics Data System (ADS)

    Jahangiri Tazekand, Z.; Mohseni, M.; Mohammadi, M. A.; Sabri, H.

    2018-06-01

    In this paper, we have considered the energy spectra, quadrupole transition probabilities, energy surface, charge radii, and quadrupole moment of the190Hg nucleus to describe the interplay between phase transitions and configuration mixing of intruder excitations. To this aim, we have used four different formalisms: (i) interacting boson model including configuration mixing, (ii) Z(5) critical symmetry, (iii) U(6)-based transitional Hamiltonian, and (iv) a transitional interacting boson model Hamiltonian in both interacting boson model (IBM)-1 and IBM-2 versions which are based on affine \\widehat{SU(1,1)} Lie algebra. Results show the advantages of configuration mixing and transitional Hamiltonians, in particular IBM-2 formalism, to reproduce the experimental counterparts when the weight of spherical symmetry increased.

  2. Outstanding performance of configuration interaction singles and doubles using exact exchange Kohn-Sham orbitals in real-space numerical grid method

    NASA Astrophysics Data System (ADS)

    Lim, Jaechang; Choi, Sunghwan; Kim, Jaewook; Kim, Woo Youn

    2016-12-01

    To assess the performance of multi-configuration methods using exact exchange Kohn-Sham (KS) orbitals, we implemented configuration interaction singles and doubles (CISD) in a real-space numerical grid code. We obtained KS orbitals with the exchange-only optimized effective potential under the Krieger-Li-Iafrate (KLI) approximation. Thanks to the distinctive features of KLI orbitals against Hartree-Fock (HF), such as bound virtual orbitals with compact shapes and orbital energy gaps similar to excitation energies; KLI-CISD for small molecules shows much faster convergence as a function of simulation box size and active space (i.e., the number of virtual orbitals) than HF-CISD. The former also gives more accurate excitation energies with a few dominant configurations than the latter, even with many more configurations. The systematic control of basis set errors is straightforward in grid bases. Therefore, grid-based multi-configuration methods using exact exchange KS orbitals provide a promising new way to make accurate electronic structure calculations.

  3. Mixing of the lowest-lying qqq configurations with JP =1/2- in different hyperfine interaction models

    NASA Astrophysics Data System (ADS)

    Chen, Jia; An, Chunsheng; Chen, Hong

    2018-02-01

    We investigate mixing of the lowest-lying qqq configurations with JP = 1/2- caused by the hyperfine interactions between quarks mediated by Goldstone Boson Exchange, One Gluon Exchange, and both Goldstone Boson and One Gluon exchange, respectively. The first orbitally excited nucleon, Σ, Λ and Ξ states are considered. Contributions of both the contact term and tensor term are taken into account. Our numerical results show that mixing of the studied configurations in the two employed hyperfine interaction models are very different. Therefore, the present results, which should affect the strong and electromagnetic decays of baryon resonances, may be used to examine the present employed hyperfine interaction models. Supported by National Natural Science Foundation of China (11675131,11645002), Chongqing Natural Science Foundation (cstc2015jcyjA00032) and Fundamental Research Funds for the Central Universities (SWU115020)

  4. Polymer translocation in solid-state nanopores: Dependence on hydrodynamic interactions and polymer configuration

    NASA Astrophysics Data System (ADS)

    Edmonds, Christopher M.; Hesketh, Peter J.; Nair, Sankar

    2013-11-01

    We present a Brownian dynamics investigation of 3-D Rouse and Zimm polymer translocation through solid-state nanopores. We obtain different scaling exponents α for both polymers using two initial configurations: minimum energy, and 'steady-state'. For forced translocation, Rouse polymers (no hydrodynamic interactions), shows a large dependence of α on initial configuration and voltage. Higher voltages result in crowding at the nanopore exit and reduced α. When the radius of gyration is in equilibrium at the beginning and end of translocation, α = 1 + υ where υ is the Flory exponent. For Zimm polymers (including hydrodynamic interactions), crowding is reduced and α = 2υ. Increased pore diameter does not affect α at moderate voltages that reduce diffusion effects. For unforced translocation using narrow pores, both polymers give α = 1 + 2υ. Due to increased polymer-pore interactions in the narrow pore, hydrodynamic drag effects are reduced, resulting in identical scaling.

  5. Interactions between pyrazole derived enantiomers and Chiralcel OJ: Prediction of enantiomer absolute configurations and elution order by molecular dynamics simulations.

    PubMed

    Hu, Guixiang; Huang, Meilan; Luo, Chengcai; Wang, Qi; Zou, Jian-Wei

    2016-05-01

    The separation of enantiomers and confirmation of their absolute configurations is significant in the development of chiral drugs. The interactions between the enantiomers of chiral pyrazole derivative and polysaccharide-based chiral stationary phase cellulose tris(4-methylbenzoate) (Chiralcel OJ) in seven solvents and under different temperature were studied using molecular dynamics simulations. The results show that solvent effect has remarkable influence on the interactions. Structure analysis discloses that the different interactions between two isomers and chiral stationary phase are dependent on the nature of solvents, which may invert the elution order. The computational method in the present study can be used to predict the elution order and the absolute configurations of enantiomers in HPLC separations and therefore would be valuable in development of chiral drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. TIGER: A user-friendly interactive grid generation system for complicated turbomachinery and axis-symmetric configurations

    NASA Technical Reports Server (NTRS)

    Shih, Ming H.; Soni, Bharat K.

    1993-01-01

    The issue of time efficiency in grid generation is addressed by developing a user friendly graphical interface for interactive/automatic construction of structured grids around complex turbomachinery/axis-symmetric configurations. The accuracy of geometry modeling and its fidelity is accomplished by adapting the nonuniform rational b-spline (NURBS) representation. A customized interactive grid generation code, TIGER, has been developed to facilitate the grid generation process for complicated internal, external, and internal-external turbomachinery fields simulations. The FORMS Library is utilized to build user-friendly graphical interface. The algorithm allows a user to redistribute grid points interactively on curves/surfaces using NURBS formulation with accurate geometric definition. TIGER's features include multiblock, multiduct/shroud, multiblade row, uneven blade count, and patched/overlapping block interfaces. It has been applied to generate grids for various complicated turbomachinery geometries, as well as rocket and missile configurations.

  7. Evaluation of helicopter noise due to b blade-vortex interaction for five tip configurations. [conducted in the Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.

    1979-01-01

    The effect of tip shape modification on blade vortex interaction induced helicopter blade slap noise was investigated. Simulated flight and descent velocities which have been shown to produce blade slap were tested. Aerodynamic performance parameters of the rotor system were monitored to ensure properly matched flight conditions among the tip shapes. The tunnel was operated in the open throat configuration with treatment to improve the acoustic characteristics of the test chamber. Four promising tips were used along with a standard square tip as a baseline configuration. A detailed acoustic evaluation on the same rotor system of the relative applicability of the various tip configurations for blade slap noise reduction is provided.

  8. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan Balasubramanian

    2009-07-18

    This is a continuing DOE-BES funded project on transition metal and actinide containing species, aimed at the electronic structure and spectroscopy of transition metal and actinide containing species. While a long term connection of these species is to catalysis and environmental management of high-level nuclear wastes, the immediate relevance is directly to other DOE-BES funded experimental projects at DOE-National labs and universities. There are a number of ongoing gas-phase spectroscopic studies of these species at various places, and our computational work has been inspired by these experimental studies and we have also inspired other experimental and theoretical studies. Thus ourmore » studies have varied from spectroscopy of diatomic transition metal carbides to large complexes containing transition metals, and actinide complexes that are critical to the environment. In addition, we are continuing to make code enhancements and modernization of ALCHEMY II set of codes and its interface with relativistic configuration interaction (RCI). At present these codes can carry out multi-reference computations that included up to 60 million configurations and multiple states from each such CI expansion. ALCHEMY II codes have been modernized and converted to a variety of platforms such as Windows XP, and Linux. We have revamped the symbolic CI code to automate the MRSDCI technique so that the references are automatically chosen with a given cutoff from the CASSCF and thus we are doing accurate MRSDCI computations with 10,000 or larger reference space of configurations. The RCI code can also handle a large number of reference configurations, which include up to 10,000 reference configurations. Another major progress is in routinely including larger basis sets up to 5g functions in thee computations. Of course higher angular momenta functions can also be handled using Gaussian and other codes with other methods such as DFT, MP2, CCSD(T), etc. We have also calibrated our RECP methods with all-electron Douglas-Kroll relativistic methods. We have the capabilities for computing full CI extrapolations including spin-orbit effects and several one-electron properties and electron density maps including spin-orbit effects. We are continuously collaborating with several experimental groups around the country and at National Labs to carry out computational studies on the DOE-BES funded projects. The past work in the last 3 years was primarily motivated and driven by the concurrent or recent experimental studies on these systems. We were thus significantly benefited by coordinating our computational efforts with experimental studies. The interaction between theory and experiment has resulted in some unique and exciting opportunities. For example, for the very first time ever, the upper spin-orbit component of a heavy trimer such as Au{sub 3} was experimentally observed as a result of our accurate computational study on the upper electronic states of gold trimer. Likewise for the first time AuH{sub 2} could be observed and interpreted clearly due to our computed potential energy surfaces that revealed the existence of a large barrier to convert the isolated AuH{sub 2} back to Au and H{sub 2}. We have also worked on yet to be observed systems and have made predictions for future experiments. We have computed the spectroscopic and thermodynamic properties of transition metal carbides transition metal clusters and compared our electronic states to the anion photodetachment spectra of Lai Sheng Wang. Prof Mike Morse and coworkers(funded also by DOE-BES) and Prof Stimle and coworkers(also funded by DOE-BES) are working on the spectroscopic properties of transition metal carbides and nitrides. Our predictions on the excited states of transition metal clusters such as Hf{sub 3}, Nb{sub 2}{sup +} etc., have been confirmed experimentally by Prof. Lombardi and coworkers using resonance Raman spectroscopy. We have also been studying larger complexes critical to the environmental management of high-level nuclear wastes. In collaboration with experimental colleague Prof Hieno Nitsche (Berkeley) and Dr. Pat Allen (Livermore, EXAFS) we have studied the uranyl complexes with silicates and carbonates. It should be stressed that although our computed ionization potential of uranium oxide was in conflict with the existing experimental data at the time, a subsequent gas-phase experimental work by Prof Mike Haven and coworkers published as communication in JACS confirmed our computed result to within 0.1 eV. This provides considerable confidence that the computed results in large basis sets with highly-correlated wave functions have excellent accuracies and they have the capabilities to predict the excited states also with great accuracy. Computations of actinide complexes (Uranyl and plutonyl complexes) are critical to management of high-level nuclear wastes.« less

  9. Local random configuration-tree theory for string repetition and facilitated dynamics of glass

    NASA Astrophysics Data System (ADS)

    Lam, Chi-Hang

    2018-02-01

    We derive a microscopic theory of glassy dynamics based on the transport of voids by micro-string motions, each of which involves particles arranged in a line hopping simultaneously displacing one another. Disorder is modeled by a random energy landscape quenched in the configuration space of distinguishable particles, but transient in the physical space as expected for glassy fluids. We study the evolution of local regions with m coupled voids. At a low temperature, energetically accessible local particle configurations can be organized into a random tree with nodes and edges denoting configurations and micro-string propagations respectively. Such trees defined in the configuration space naturally describe systems defined in two- or three-dimensional physical space. A micro-string propagation initiated by a void can facilitate similar motions by other voids via perturbing the random energy landscape, realizing path interactions between voids or equivalently string interactions. We obtain explicit expressions of the particle diffusion coefficient and a particle return probability. Under our approximation, as temperature decreases, random trees of energetically accessible configurations exhibit a sequence of percolation transitions in the configuration space, with local regions containing fewer coupled voids entering the non-percolating immobile phase first. Dynamics is dominated by coupled voids of an optimal group size, which increases as temperature decreases. Comparison with a distinguishable-particle lattice model (DPLM) of glass shows very good quantitative agreements using only two adjustable parameters related to typical energy fluctuations and the interaction range of the micro-strings.

  10. An interactive graphics program for manipulation and display of panel method geometry

    NASA Technical Reports Server (NTRS)

    Hall, J. F.; Neuhart, D. H.; Walkley, K. B.

    1983-01-01

    Modern aerodynamic panel methods that handle large, complex geometries have made evident the need to interactively manipulate, modify, and view such configurations. With this purpose in mind, the GEOM program was developed. It is a menu driven, interactive program that uses the Tektronix PLOT 10 graphics software to display geometry configurations which are characterized by an abutting set of networks. These networks are composed of quadrilateral panels which are described by the coordinates of their corners. GEOM is divided into fourteen executive controlled functions. These functions are used to build configurations, scale and rotate networks, transpose networks defining M and N lines, graphically display selected networks, join and split networks, create wake networks, produce symmetric images of networks, repanel and rename networks, display configuration cross sections, and output network geometry in two formats. A data base management system is used to facilitate data transfers in this program. A sample session illustrating various capabilities of the code is included as a guide to program operation.

  11. Evidence for a remodelling of DNA-PK upon autophosphorylation from electron microscopy studies

    PubMed Central

    Morris, Edward P.; Rivera-Calzada, Angel; da Fonseca, Paula C. A.; Llorca, Oscar; Pearl, Laurence H.; Spagnolo, Laura

    2011-01-01

    The multi-subunit DNA-dependent protein kinase (DNA-PK), a crucial player in DNA repair by non-homologous end-joining in higher eukaryotes, consists of a catalytic subunit (DNA-PKcs) and the Ku heterodimer. Ku recruits DNA-PKcs to double-strand breaks, where DNA-PK assembles prior to DNA repair. The interaction of DNA-PK with DNA is regulated via autophosphorylation. Recent SAXS data addressed the conformational changes occurring in the purified catalytic subunit upon autophosphorylation. Here, we present the first structural analysis of the effects of autophosphorylation on the trimeric DNA-PK enzyme, performed by electron microscopy and single particle analysis. We observe a considerable degree of heterogeneity in the autophosphorylated material, which we resolved into subpopulations of intact complex, and separate DNA-PKcs and Ku, by using multivariate statistical analysis and multi-reference alignment on a partitioned particle image data set. The proportion of dimeric oligomers was reduced compared to non-phosphorylated complex, and those dimers remaining showed a substantial variation in mutual monomer orientation. Together, our data indicate a substantial remodelling of DNA-PK holo-enzyme upon autophosphorylation, which is crucial to the release of protein factors from a repaired DNA double-strand break. PMID:21450809

  12. A coupled cluster theory with iterative inclusion of triple excitations and associated equation of motion formulation for excitation energy and ionization potential

    NASA Astrophysics Data System (ADS)

    Maitra, Rahul; Akinaga, Yoshinobu; Nakajima, Takahito

    2017-08-01

    A single reference coupled cluster theory that is capable of including the effect of connected triple excitations has been developed and implemented. This is achieved by regrouping the terms appearing in perturbation theory and parametrizing through two different sets of exponential operators: while one of the exponentials, involving general substitution operators, annihilates the ground state but has a non-vanishing effect when it acts on the excited determinant, the other is the regular single and double excitation operator in the sense of conventional coupled cluster theory, which acts on the Hartree-Fock ground state. The two sets of operators are solved as coupled non-linear equations in an iterative manner without significant increase in computational cost than the conventional coupled cluster theory with singles and doubles excitations. A number of physically motivated and computationally advantageous sufficiency conditions are invoked to arrive at the working equations and have been applied to determine the ground state energies of a number of small prototypical systems having weak multi-reference character. With the knowledge of the correlated ground state, we have reconstructed the triple excitation operator and have performed equation of motion with coupled cluster singles, doubles, and triples to obtain the ionization potential and excitation energies of these molecules as well. Our results suggest that this is quite a reasonable scheme to capture the effect of connected triple excitations as long as the ground state remains weakly multi-reference.

  13. A multi-reference filtered-x-Newton narrowband algorithm for active isolation of vibration and experimental investigations

    NASA Astrophysics Data System (ADS)

    Wang, Chun-yu; He, Lin; Li, Yan; Shuai, Chang-geng

    2018-01-01

    In engineering applications, ship machinery vibration may be induced by multiple rotational machines sharing a common vibration isolation platform and operating at the same time, and multiple sinusoidal components may be excited. These components may be located at frequencies with large differences or at very close frequencies. A multi-reference filtered-x Newton narrowband (MRFx-Newton) algorithm is proposed to control these multiple sinusoidal components in an MIMO (multiple input and multiple output) system, especially for those located at very close frequencies. The proposed MRFx-Newton algorithm can decouple and suppress multiple sinusoidal components located in the same narrow frequency band even though such components cannot be separated from each other by a narrowband-pass filter. Like the Fx-Newton algorithm, good real-time performance is also achieved by the faster convergence speed brought by the 2nd-order inverse secondary-path filter in the time domain. Experiments are also conducted to verify the feasibility and test the performance of the proposed algorithm installed in an active-passive vibration isolation system in suppressing the vibration excited by an artificial source and air compressor/s. The results show that the proposed algorithm not only has comparable convergence rate as the Fx-Newton algorithm but also has better real-time performance and robustness than the Fx-Newton algorithm in active control of the vibration induced by multiple sound sources/rotational machines working on a shared platform.

  14. A Rapid Identification Method for Calamine Using Near-Infrared Spectroscopy Based on Multi-Reference Correlation Coefficient Method and Back Propagation Artificial Neural Network.

    PubMed

    Sun, Yangbo; Chen, Long; Huang, Bisheng; Chen, Keli

    2017-07-01

    As a mineral, the traditional Chinese medicine calamine has a similar shape to many other minerals. Investigations of commercially available calamine samples have shown that there are many fake and inferior calamine goods sold on the market. The conventional identification method for calamine is complicated, therefore as a result of the large scale of calamine samples, a rapid identification method is needed. To establish a qualitative model using near-infrared (NIR) spectroscopy for rapid identification of various calamine samples, large quantities of calamine samples including crude products, counterfeits and processed products were collected and correctly identified using the physicochemical and powder X-ray diffraction method. The NIR spectroscopy method was used to analyze these samples by combining the multi-reference correlation coefficient (MRCC) method and the error back propagation artificial neural network algorithm (BP-ANN), so as to realize the qualitative identification of calamine samples. The accuracy rate of the model based on NIR and MRCC methods was 85%; in addition, the model, which took comprehensive multiple factors into consideration, can be used to identify crude calamine products, its counterfeits and processed products. Furthermore, by in-putting the correlation coefficients of multiple references as the spectral feature data of samples into BP-ANN, a BP-ANN model of qualitative identification was established, of which the accuracy rate was increased to 95%. The MRCC method can be used as a NIR-based method in the process of BP-ANN modeling.

  15. Flexible configuration-interaction shell-model many-body solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Calvin W.; Ormand, W. Erich; McElvain, Kenneth S.

    BIGSTICK Is a flexible configuration-Interaction open-source shell-model code for the many-fermion problem In a shell model (occupation representation) framework. BIGSTICK can generate energy spectra, static and transition one-body densities, and expectation values of scalar operators. Using the built-in Lanczos algorithm one can compute transition probabflity distributions and decompose wave functions into components defined by group theory.

  16. Large-scale configuration interaction description of the structure of nuclei around 100Sn and 208Pb

    NASA Astrophysics Data System (ADS)

    Qi, Chong

    2016-08-01

    In this contribution I would like to discuss briefly the recent developments of the nuclear configuration interaction shell model approach. As examples, we apply the model to calculate the structure and decay properties of low-lying states in neutron-deficient nuclei around 100Sn and 208Pb that are of great experimental and theoretical interests.

  17. The Periodic Table as a Mnemonic Device for Writing Electronic Configurations.

    ERIC Educational Resources Information Center

    Mabrouk, Suzanne T.

    2003-01-01

    Presents an interactive method for using the periodic table as an effective mnemonic for writing electronic configurations. Discusses the intrinsic relevance of configurations to chemistry by building upon past analogies. Addresses pertinent background information, describes the hands-on method, and demonstrates its use. Transforms the traditional…

  18. ESL Students' Computer-Mediated Communication Practices: Context Configuration

    ERIC Educational Resources Information Center

    Shin, Dong-Shin

    2006-01-01

    This paper examines how context is configured in ESL students' language learning practices through computer-mediated communication (CMC). Specifically, I focus on how a group of ESL students jointly constructed the context of their CMC activities through interactional patterns and norms, and how configured affordances within the CMC environment…

  19. Fish-robot interactions in a free-swimming environment: Effects of speed and configuration of robots on live fish

    NASA Astrophysics Data System (ADS)

    Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio

    2014-03-01

    We explore fish-robot interactions in a comprehensive set of experiments designed to highlight the effects of speed and configuration of bioinspired robots on live zebrafish. The robot design and movement is inspired by salient features of attraction in zebrafish and includes enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiformlocomotion. The robots are autonomously controlled to swim in circular trajectories in the presence of live fish. Our results indicate that robot configuration significantly affects both the fish distance to the robots and the time spent near them.

  20. Amino Acid Interaction (INTAA) web server.

    PubMed

    Galgonek, Jakub; Vymetal, Jirí; Jakubec, David; Vondrášek, Jirí

    2017-07-03

    Large biomolecules-proteins and nucleic acids-are composed of building blocks which define their identity, properties and binding capabilities. In order to shed light on the energetic side of interactions of amino acids between themselves and with deoxyribonucleotides, we present the Amino Acid Interaction web server (http://bioinfo.uochb.cas.cz/INTAA/). INTAA offers the calculation of the residue Interaction Energy Matrix for any protein structure (deposited in Protein Data Bank or submitted by the user) and a comprehensive analysis of the interfaces in protein-DNA complexes. The Interaction Energy Matrix web application aims to identify key residues within protein structures which contribute significantly to the stability of the protein. The application provides an interactive user interface enhanced by 3D structure viewer for efficient visualization of pairwise and net interaction energies of individual amino acids, side chains and backbones. The protein-DNA interaction analysis part of the web server allows the user to view the relative abundance of various configurations of amino acid-deoxyribonucleotide pairs found at the protein-DNA interface and the interaction energies corresponding to these configurations calculated using a molecular mechanical force field. The effects of the sugar-phosphate moiety and of the dielectric properties of the solvent on the interaction energies can be studied for the various configurations. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. MRCI study on the spectroscopic parameters, transition dipole moments and transition probabilities of 16 low-lying states of the BeB radical

    NASA Astrophysics Data System (ADS)

    Zhou, Dan; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2018-03-01

    In this work, we calculate the potential energy curves of 16 Λ-S and 36 Ω states of beryllium boride (BeB) radical using the complete active space self-consistent field method, followed by the valence internally contracted multireference configuration interaction approach with Davidson correction. The 16 Λ-S states are the X2Π, A2Σ+, B2Π, C2Δ, D2Ʃ-, E2Σ+, G2Π, I2Σ+, a4Σ-, b4Π, c4Σ-, d4Δ, e4Σ+, g4Π, h4Π, and 24Σ+, which are obtained from the first three dissociation channels of the BeB radical. The Ω states are obtained from the Λ-S states. Of the Λ-S states, the G2Π, I2Σ+, and h4Π states exhibit double well curves. The G2Π, b4Π, and g4Π states are inverted with the spin-orbit coupling effect included. The d4Δ, e4Σ+, and g4Π states as well as the second well of the h4Π state are very weakly bound. Avoided crossings exist between the G2Π and H2Π states, the A2Σ+ and E2Σ+ states, the c4Σ- and f4Σ- states, the g4Π and h4Π states, the I2Σ+ and 42Σ+ states, as well as the 24Σ+ and 34Σ+ states. To improve the quality of the potential energy curves, core-valence correlation and scalar relativistic corrections, as well as the extrapolation of the potential energies to the complete basis set limit, are included. The transition dipole moments are computed. Spectroscopic parameters and vibrational levels are determined along with Franck-Condon factors, Einstein coefficients, and radiative lifetimes of many electronic transitions. The transition probabilities are evaluated. The spin-orbit coupling effect on the spectroscopic parameters and vibrational levels is discussed. The spectroscopic parameters, vibrational levels, and transition probabilities reported in this paper can be considered very reliable and can be employed to predict these states in an appropriate spectroscopy experiment.

  2. Correlation consistent basis sets for actinides. II. The atoms Ac and Np-Lr

    NASA Astrophysics Data System (ADS)

    Feng, Rulin; Peterson, Kirk A.

    2017-08-01

    New correlation consistent basis sets optimized using the all-electron third-order Douglas-Kroll-Hess (DKH3) scalar relativistic Hamiltonian are reported for the actinide elements Ac and Np through Lr. These complete the series of sets reported previously for Th-U [K. A. Peterson, J. Chem. Phys. 142, 074105 (2015); M. Vasiliu et al., J. Phys. Chem. A 119, 11422 (2015)]. The new sets range in size from double- to quadruple-zeta and encompass both those optimized for valence (6s6p5f7s6d) and outer-core electron correlations (valence + 5s5p5d). The final sets have been contracted for both the DKH3 and eXact 2-component (X2C) Hamiltonians, yielding cc-pVnZ-DK3/cc-pVnZ-X2C sets for valence correlation and cc-pwCVnZ-DK3/cc-pwCVnZ-X2C sets for outer-core correlation (n = D, T, Q in each case). In order to test the effectiveness of the new basis sets, both atomic and molecular benchmark calculations have been carried out. In the first case, the first three atomic ionization potentials (IPs) of all the actinide elements Ac-Lr have been calculated using the Feller-Peterson-Dixon (FPD) composite approach, primarily with the multireference configuration interaction (MRCI) method. Excellent convergence towards the respective complete basis set (CBS) limits is achieved with the new sets, leading to good agreement with experiment, where these exist, after accurately accounting for spin-orbit effects using the 4-component Dirac-Hartree-Fock method. For a molecular test, the IP and atomization energy (AE) of PuO2 have been calculated also using the FPD method but using a coupled cluster approach with spin-orbit coupling accounted for using the 4-component MRCI. The present calculations yield an IP0 for PuO2 of 159.8 kcal/mol, which is in excellent agreement with the experimental electron transfer bracketing value of 162 ± 3 kcal/mol. Likewise, the calculated 0 K AE of 305.6 kcal/mol is in very good agreement with the currently accepted experimental value of 303.1 ± 5 kcal/mol. The ground state of PuO2 is predicted to be the 0 g +5Σ state.

  3. Correlation consistent basis sets for actinides. II. The atoms Ac and Np-Lr.

    PubMed

    Feng, Rulin; Peterson, Kirk A

    2017-08-28

    New correlation consistent basis sets optimized using the all-electron third-order Douglas-Kroll-Hess (DKH3) scalar relativistic Hamiltonian are reported for the actinide elements Ac and Np through Lr. These complete the series of sets reported previously for Th-U [K. A. Peterson, J. Chem. Phys. 142, 074105 (2015); M. Vasiliu et al., J. Phys. Chem. A 119, 11422 (2015)]. The new sets range in size from double- to quadruple-zeta and encompass both those optimized for valence (6s6p5f7s6d) and outer-core electron correlations (valence + 5s5p5d). The final sets have been contracted for both the DKH3 and eXact 2-component (X2C) Hamiltonians, yielding cc-pVnZ-DK3/cc-pVnZ-X2C sets for valence correlation and cc-pwCVnZ-DK3/cc-pwCVnZ-X2C sets for outer-core correlation (n = D, T, Q in each case). In order to test the effectiveness of the new basis sets, both atomic and molecular benchmark calculations have been carried out. In the first case, the first three atomic ionization potentials (IPs) of all the actinide elements Ac-Lr have been calculated using the Feller-Peterson-Dixon (FPD) composite approach, primarily with the multireference configuration interaction (MRCI) method. Excellent convergence towards the respective complete basis set (CBS) limits is achieved with the new sets, leading to good agreement with experiment, where these exist, after accurately accounting for spin-orbit effects using the 4-component Dirac-Hartree-Fock method. For a molecular test, the IP and atomization energy (AE) of PuO 2 have been calculated also using the FPD method but using a coupled cluster approach with spin-orbit coupling accounted for using the 4-component MRCI. The present calculations yield an IP 0 for PuO 2 of 159.8 kcal/mol, which is in excellent agreement with the experimental electron transfer bracketing value of 162 ± 3 kcal/mol. Likewise, the calculated 0 K AE of 305.6 kcal/mol is in very good agreement with the currently accepted experimental value of 303.1 ± 5 kcal/mol. The ground state of PuO 2 is predicted to be the Σ0g+5 state.

  4. Control of shock-wave boundary layer interaction using steady micro-jets

    NASA Astrophysics Data System (ADS)

    Verma, S. B.; Manisankar, C.; Akshara, P.

    2015-09-01

    An experimental investigation was conducted to control the amplitude of shock unsteadiness associated with the interaction induced by a cylindrical protuberance on a flat plate in a Mach 2.18 flow. The control was applied in the form of an array of steady micro air-jets of different configurations with variation in pitch and skew angle of the jets. The effect of air-jet supply pressure on control was also studied. Each of the micro-jet configurations was placed 20 boundary layer thicknesses upstream of the leading edge of the cylinder. The overall interaction is seen to get modified for all control configurations and shows a reduction in both separation- and bow-shock strengths and in triple-point height. A significant reduction in the peak rms value is also observed in the intermittent region of separation for each case. For pitched jets placed in a zig-zag configuration, good control effectiveness is achieved at control pressures similar to the stagnation pressure of the freestream. At higher control pressures, however, their obstruction component increases and if these jets are not spaced sufficiently far apart, the effectiveness of their control begins to drop due to the beginning of spanwise jet-to-jet interaction. On the other hand, pitching or skewing the jets to reduces the obstruction component considerably which at lower control pressures shows lower effectiveness. But at higher control pressure, the effectiveness of these configurations continues to increase unlike the pitched jets.

  5. The permanent electric dipole moment of chromium monoxide

    NASA Technical Reports Server (NTRS)

    Steimle, Timothy C.; Nachman, David F.; Shirley, Jeffrey E.; Bauschlicher, Charles W.; Langhoff, Stephen R.

    1989-01-01

    The permanent electric dipole moments for the X 5Pi and B 5pi states of gas-phase CrO have been experimentally determined using the sub-Doppler optical technique of intermodulated fluorescence spectroscopy in conjunction with the Stark effect. The measured values are 3.88 + or - 0.13 and 4.1 + or - 1.8 D for the X and B states, respectively. The theoretical values determined for the X state using multireference CI iterative-natural-orbital and finite-field calculations are in excellent agreement with the experimental value.

  6. Measurement of L-shell transitions in M-shell ions in the laboratory and identification in stellar coronae

    DOE PAGES

    Lepson, J. K.; Beiersdorfer, P.; Hell, N.; ...

    2017-04-04

    Based on laboratory data from the Lawrence Livermore EBIT-I electron beam ion trap and calculations using the relativistic multi-reference Møller-Plesset (MRMP) perturbation theory approach, we identify L-shell transitions of M-shell iron ions in emission spectra of the nearby stars Capella and Procyon. In conclusion, these lines are weaker than the well known, prominent lines from Fe XVII. However, they need to be taken into account when modeling the spectra, especially of cool stars.

  7. Experimental Measurement of RCS Jet Interaction Effects on a Capsule Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.; Watkins, A. Neal; Danehy, Paul M.; Inman, Jennifer A.; Alderfer, David W.; Dyakonov, Artem A.

    2008-01-01

    An investigation was made in NASA Langley Research Center s 31-Inch Mach 10 Tunnel to determine the effects of reaction-control system (RCS) jet interactions on the aft-body of a capsule entry vehicle. The test focused on demonstrating and improving advanced measurement techniques that would aid in the rapid measurement and visualization of jet interaction effects for the Orion Crew Exploration Vehicle while providing data useful for developing engineering models or validation of computational tools used to assess actual flight environments. Measurements included global surface imaging with pressure and temperature sensitive paints and three-dimensional flow visualization with a scanning planar laser induced fluorescence technique. The wind tunnel model was fabricated with interchangeable parts for two different aft-body configurations. The first, an Apollo-like configuration, was used to focus primarily on the forward facing roll and yaw jet interactions which are known to have significant aft-body heating augmentation. The second, an early Orion Crew Module configuration (4-cluster jets), was tested blowing only out of the most windward yaw jet, which was expected to have the maximum heating augmentation for that configuration. Jet chamber pressures and tunnel flow conditions were chosen to approximate early Apollo wind tunnel test conditions. Maximum heating augmentation values measured for the Apollo-like configuration (>10 for forward facing roll jet and 4 for yaw jet) using temperature sensitive paint were shown to be similar to earlier experimental results (Jones and Hunt, 1965) using a phase change paint technique, but were acquired with much higher surface resolution. Heating results for the windward yaw jet on the Orion configuration had similar augmentation levels, but affected much less surface area. Numerical modeling for the Apollo-like yaw jet configuration with laminar flow and uniform jet outflow conditions showed similar heating patterns, qualitatively, but also showed significant variation with jet exit divergence angle, with as much as 25 percent variation in heat flux intensity for a 10 degree divergence angle versus parallel outflow. These results along with the fabrication methods and advanced measurement techniques developed will be used in the next phase of testing and evaluation for the updated Orion RCS configuration.

  8. Stability, diffusion and interactions of nonlinear excitations in a many body system

    NASA Astrophysics Data System (ADS)

    Coste, Christophe; Jean, Michel Saint; Dessup, Tommy

    2017-04-01

    When repelling particles are confined in a quasi-one-dimensional trap by a transverse potential, a configurational phase transition happens. All particles are aligned along the trap axis at large confinement, but below a critical transverse confinement they adopt a staggered row configuration (zigzag phase). This zigzag transition is a subcritical pitchfork bifurcation in extended systems and in systems with cyclic boundary conditions in the longitudinal direction. Among many evidences, phase coexistence is exhibited by localized nonlinear patterns made of a zigzag phase embedded in otherwise aligned particles. We give the normal form at the bifurcation and we show that these patterns can be described as solitary wave envelopes that we call bubbles. They are stable in a large temperature range and can diffuse as quasi-particles, with a diffusion coefficient that may be deduced from the normal form. The potential energy of a bubble is found to be lower than that of the homogeneous bifurcated phase, which explains their stability. We observe also metastable states, that are pairs of solitary wave envelopes which spontaneously evolve toward a stable single bubble. We evidence a strong effect of the discreteness of the underlying particles system and introduce the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive so that the bubbles come closer and eventually merge as a single bubble. In contrast, the bubbles interaction is found to be repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: it is attractive for NF-systems, repulsive for F-systems, and decreases exponentially with the bubbles distance.

  9. Cold and warm swelling of hydrophobic polymers

    NASA Astrophysics Data System (ADS)

    de Los Rios, Paolo; Caldarelli, Guido

    2001-03-01

    We introduce a polymer model where the transition from swollen to compact configurations is due to interactions between the monomers and the solvent. These interactions are the origin of the effective attractive interactions between hydrophobic amino acids in proteins. We find that in the low and high temperature phases polymers are swollen, and there is an intermediate phase where the most favorable configurations are compact. We argue that such a model captures in a single framework both the cold and the warm denaturation experimentally detected for thermosensitive polymers and for proteins.

  10. Phase diagram of the Shastry-Sutherland Kondo lattice model with classical localized spins: a variational calculation study

    NASA Astrophysics Data System (ADS)

    Shahzad, Munir; Sengupta, Pinaki

    2017-08-01

    We study the Shastry-Sutherland Kondo lattice model with additional Dzyaloshinskii-Moriya (DM) interactions, exploring the possible magnetic phases in its multi-dimensional parameter space. Treating the local moments as classical spins and using a variational ansatz, we identify the parameter ranges over which various common magnetic orderings are potentially stabilized. Our results reveal that the competing interactions result in a heightened susceptibility towards a wide range of spin configurations including longitudinal ferromagnetic and antiferromagnetic order, coplanar flux configurations and most interestingly, multiple non-coplanar configurations including a novel canted-flux state as the different Hamiltonian parameters like electron density, interaction strengths and degree of frustration are varied. The non-coplanar and non-collinear magnetic ordering of localized spins behave like emergent electromagnetic fields and drive unusual transport and electronic phenomena.

  11. Using Pot-Magnets to Enable Stable and Scalable Electromagnetic Tactile Displays.

    PubMed

    Zarate, Juan Jose; Shea, Herbert

    2017-01-01

    We present the design, fabrication, characterization, and psychophysical testing of a scalable haptic display based on electromagnetic (EM) actuators. The display consists of a 4 × 4 array of taxels, each of which can be in a raised or a lowered position, thus generating different static configurations. One of the most challenging aspects when designing densely-packed arrays of EM actuators is obtaining large actuation forces while simultaneously generating only weak interactions between neighboring taxels. In this work, we introduce a lightweight and effective magnetic shielding architecture. The moving part of each taxel is a cylindrical permanent magnet embedded in a ferromagnetic pot, forming a pot-magnet. An array of planar microcoils attracts or repels each pot-magnet. This configuration reduces the interaction between neighboring magnets by more than one order of magnitude, while the coil/magnet interaction is only reduced by 10 percent. For 4 mm diameter pins on an 8 mm pitch, we obtained displacements of 0.55 mm and forces of 40 mN using 1.7 W. We measured the accuracy of human perception under two actuation configurations which differed in the force versus displacement curve. We obtained 91 percent of correct answers in pulling configuration and 100 percent in pushing configuration.

  12. Structural propensities and entropy effects in peptide helix-coil transitions

    NASA Astrophysics Data System (ADS)

    Chemmama, Ilan E.; Pelea, Adam Colt; Bhandari, Yuba R.; Chapagain, Prem P.; Gerstman, Bernard S.

    2012-09-01

    The helix-coil transition in peptides is a critical structural transition leading to functioning proteins. Peptide chains have a large number of possible configurations that must be accounted for in statistical mechanical investigations. Using hydrogen bond and local helix propensity interaction terms, we develop a method for obtaining and incorporating the degeneracy factor that allows the exact calculation of the partition function for a peptide as a function of chain length. The partition function is used in calculations for engineered peptide chains of various lengths that allow comparison with a variety of different types of experimentally measured quantities, such as fraction of helicity as a function of both temperature and chain length, heat capacity, and denaturation studies. When experimental sensitivity in helicity measurements is properly accounted for in the calculations, the calculated curves fit well with the experimental curves. We determine values of interaction energies for comparison with known biochemical interactions, as well as quantify the difference in the number of configurations available to an amino acid in a random coil configuration compared to a helical configuration.

  13. A new approach to barrier-top fission dynamics

    NASA Astrophysics Data System (ADS)

    Bertsch, G. F.; Mehlhaff, J. M.

    2016-06-01

    We proposed a calculational framework for describing induced fission that avoids the Bohr-Wheeler assumption of well-defined fission channels. The building blocks of our approach are configurations that form a discrete, orthogonal basis and can be characterized by both energy and shape. The dynamics is to be determined by interaction matrix elements between the states rather than by a Hill-Wheeler construction of a collective coordinate. Within our approach, several simple limits can be seen: diffusion; quantized conductance; and ordinary decay through channels. The specific proposal for the discrete basis is to use the Kπ quantum numbers of the axially symmetric Hartree-Fock approximation to generate the configurations. Fission paths would be determined by hopping from configuration to configuration via the residual interaction. We show as an example the configurations needed to describe a fictitious fission decay 32S → 16 O + 16 O. We also examine the geometry of the path for fission of 236U, measuring distances by the number of jumps needed to go to a new Kπ partition.

  14. Solution of the Euler equations with viscous-inviscid interaction for high Reynolds number transonic flow past wing/body configurations

    NASA Technical Reports Server (NTRS)

    Koenig, Keith

    1986-01-01

    The theoretical and numerical bases of a program for the solution of the Euler equations with viscous-inviscid interaction for high Reynolds number transonic flow past wing/body configurations are explained. The emphasis is upon the logic behind the equation development. The program is fully detailed so that the user can quickly become familiar with its operation.

  15. Fixed-node diffusion Monte Carlo potential energy curve of the fluorine molecule F{sub 2} using selected configuration interaction trial wavefunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giner, Emmanuel; Scemama, Anthony; Caffarel, Michel

    2015-01-28

    The potential energy curve of the F{sub 2} molecule is calculated with Fixed-Node Diffusion Monte Carlo (FN-DMC) using Configuration Interaction (CI)-type trial wavefunctions. To keep the number of determinants reasonable and thus make FN-DMC calculations feasible in practice, the CI expansion is restricted to those determinants that contribute the most to the total energy. The selection of the determinants is made using the CIPSI approach (Configuration Interaction using a Perturbative Selection made Iteratively). The trial wavefunction used in FN-DMC is directly issued from the deterministic CI program; no Jastrow factor is used and no preliminary multi-parameter stochastic optimization of themore » trial wavefunction is performed. The nodes of CIPSI wavefunctions are found to reduce significantly the fixed-node error and to be systematically improved upon increasing the number of selected determinants. To reduce the non-parallelism error of the potential energy curve, a scheme based on the use of a R-dependent number of determinants is introduced. Using Dunning’s cc-pVDZ basis set, the FN-DMC energy curve of F{sub 2} is found to be of a quality similar to that obtained with full configuration interaction/cc-pVQZ.« less

  16. Energy Landscape of All-Atom Protein-Protein Interactions Revealed by Multiscale Enhanced Sampling

    PubMed Central

    Moritsugu, Kei; Terada, Tohru; Kidera, Akinori

    2014-01-01

    Protein-protein interactions are regulated by a subtle balance of complicated atomic interactions and solvation at the interface. To understand such an elusive phenomenon, it is necessary to thoroughly survey the large configurational space from the stable complex structure to the dissociated states using the all-atom model in explicit solvent and to delineate the energy landscape of protein-protein interactions. In this study, we carried out a multiscale enhanced sampling (MSES) simulation of the formation of a barnase-barstar complex, which is a protein complex characterized by an extraordinary tight and fast binding, to determine the energy landscape of atomistic protein-protein interactions. The MSES adopts a multicopy and multiscale scheme to enable for the enhanced sampling of the all-atom model of large proteins including explicit solvent. During the 100-ns MSES simulation of the barnase-barstar system, we observed the association-dissociation processes of the atomistic protein complex in solution several times, which contained not only the native complex structure but also fully non-native configurations. The sampled distributions suggest that a large variety of non-native states went downhill to the stable complex structure, like a fast folding on a funnel-like potential. This funnel landscape is attributed to dominant configurations in the early stage of the association process characterized by near-native orientations, which will accelerate the native inter-molecular interactions. These configurations are guided mostly by the shape complementarity between barnase and barstar, and lead to the fast formation of the final complex structure along the downhill energy landscape. PMID:25340714

  17. Multireference Density Functional Theory with Generalized Auxiliary Systems for Ground and Excited States.

    PubMed

    Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao

    2017-09-21

    To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.

  18. Interaction of the branes in the presence of the background fields: The dynamical, nonintersecting, perpendicular, wrapped-fractional configuration

    NASA Astrophysics Data System (ADS)

    Maghsoodi, Elham; Kamani, Davoud

    2017-05-01

    We shall obtain the interaction of the Dp1- and Dp2-branes in the toroidal-orbifold space-time Tn × ℝ1,d-n-5 × ℂ2/ℤ 2. The configuration of the branes is nonintersecting, perpendicular, moving-rotating, wrapped-fractional with background fields. For this, we calculate the bosonic boundary state corresponding to a dynamical fractional-wrapped Dp-brane in the presence of the Kalb-Ramond field, a U1 gauge potential and an open string tachyon field. The long-range behavior of the interaction amplitude will be extracted.

  19. Fluxoids behavior in superconducting ladders

    NASA Astrophysics Data System (ADS)

    Sharon, Omri J.; Haham, Noam; Shaulov, Avner; Yeshurun, Yosef

    2018-03-01

    The nature of the interaction between fluxoids and between them and the external magnetic field is studied in one-dimensional superconducting networks. An Ising like expression is derived for the energy of a network revealing that fluxoids behave as repulsively interacting objects driven towards the network center by the effective applied field. Competition between these two interactions determines the equilibrium arrangement of fluxoids in the network as a function of the applied field. It is demonstrated that the fluxoids configurations are not always commensurate to the network symmetry. Incommensurate, degenerated configurations may be formed even in networks with an odd number of loops.

  20. Asymmetrical Polyhedral Configuration of Giant Vesicles Induced by Orderly Array of Encapsulated Colloidal Particles

    PubMed Central

    Natsume, Yuno; Toyota, Taro

    2016-01-01

    Giant vesicles (GVs) encapsulating colloidal particles by a specific volume fraction show a characteristic configuration under a hypertonic condition. Several flat faces were formed in GV membrane with orderly array of inner particles. GV shape changed from the spherical to the asymmetrical polyhedral configuration. This shape deformation was derived by entropic interaction between inner particles and GV membrane. Because a part of inner particles became to form an ordered phase in the region neighboring the GV membrane, free volume for the other part of particles increased. Giant vesicles encapsulating colloidal particles were useful for the model of “crowding effect” which is the entropic interaction in the cell. PMID:26752650

  1. Asymmetrical Polyhedral Configuration of Giant Vesicles Induced by Orderly Array of Encapsulated Colloidal Particles.

    PubMed

    Natsume, Yuno; Toyota, Taro

    2016-01-01

    Giant vesicles (GVs) encapsulating colloidal particles by a specific volume fraction show a characteristic configuration under a hypertonic condition. Several flat faces were formed in GV membrane with orderly array of inner particles. GV shape changed from the spherical to the asymmetrical polyhedral configuration. This shape deformation was derived by entropic interaction between inner particles and GV membrane. Because a part of inner particles became to form an ordered phase in the region neighboring the GV membrane, free volume for the other part of particles increased. Giant vesicles encapsulating colloidal particles were useful for the model of "crowding effect" which is the entropic interaction in the cell.

  2. The design of a wind tunnel VSTOL fighter model incorporating turbine powered engine simulators

    NASA Technical Reports Server (NTRS)

    Bailey, R. O.; Maraz, M. R.; Hiley, P. E.

    1981-01-01

    A wind-tunnel model of a supersonic VSTOL fighter aircraft configuration has been developed for use in the evaluation of airframe-propulsion system aerodynamic interactions. The model may be employed with conventional test techniques, where configuration aerodynamics are measured in a flow-through mode and incremental nozzle-airframe interactions are measured in a jet-effects mode, and with the Compact Multimission Aircraft Propulsion Simulator which is capable of the simultaneous simulation of inlet and exhaust nozzle flow fields so as to allow the evaluation of the extent of inlet and nozzle flow field coupling. The basic configuration of the twin-engine model has a geometrically close-coupled canard and wing, and a moderately short nacelle with nonaxisymmetric vectorable exhaust nozzles near the wing trailing edge, and may be converted to a canardless configuration with an extremely short nacelle. Testing is planned to begin in the summer of 1982.

  3. Mechanics of rolling of nanoribbon on tube and sphere.

    PubMed

    Yin, Qifang; Shi, Xinghua

    2013-06-21

    The configuration of graphene nano-ribbon (GNR) assembly on carbon nanotube (CNT) and sphere is studied through theoretical modeling and molecular simulation. The GNR can spontaneously wind onto the CNT due to van der Waals (vdW) interaction and form two basic configurations: helix and scroll. The final configuration arises from the competition among three energy terms: the bending energy of the GNR, the vdW interaction between GNR and CNT, the vdW between the GNR itself. We derive analytical solutions by accounting for the three energy parts, with which we draw phase diagrams and predict the final configuration (helix or scroll) based on the selected parameters. The molecular simulations are conducted to verify the model with the results agree well with the model predicted. Our work can be used to actively control and transfer the tube-like nanoparticles and viruses as well as to assemble ribbon-like nanomaterials.

  4. Aerodynamic interaction between vortical wakes and the viscous flow about a circular cylinder

    NASA Technical Reports Server (NTRS)

    Stremel, P. M.

    1985-01-01

    In the design analysis of conventional aircraft configurations, the prediction of the strong interaction between vortical wakes and the viscous flow field about bodies is of considerable importance. Interactions between vortical wakes and aircraft components are even more common on rotorcraft and configurations with lifting surfaces forward of the wing. An accurate analysis of the vortex-wake interaction with aircraft components is needed for the optimization of the payload and the reduction of vibratory loads. However, the three-dimensional flow field beneath the rotor disk and the interaction of the rotor wake with solid bodies in the flow field are highly complex. The present paper has the objective to provide a basis for the considered interactions by studying a simpler problem. This problem involves the two-dimensional interaction of external wakes with the viscous flow about a circular cylinder.

  5. Creation and Annihilation of Skyrmions in the Frustrated Magnets with Competing Exchange Interactions.

    PubMed

    Hu, Yong; Chi, Xiaodan; Li, Xuesi; Liu, Yan; Du, An

    2017-11-22

    In triangular-lattice magnets, the coexistence of third-neighbor antiferromagnetic and nearest-neighbor ferromagnetic exchange interactions can induce rich magnetic phases including noncoplanar skyrmion crystals. Based on Monte Carlo simulation, we studied the dependence of magnetic phase transition on exchange interaction strength. Under the consideration of uniaxial anisotropy and magnetic field both perpendicular to the film plane, a large antiferromagnetic exchange interaction induces a high frustration. When the value of antiferromagnetic exchange interaction is one and a half times larger than the ferromagnetic one, a magnetic phase composed of canting spin stripes, never observed in the chiral magnets, forms. Interestingly, different canting spin stripes along three 120 degree propagation directions may coexist randomly in a magnetic phase, attesting that the canting spin stripes are three-fold degenerate states akin to helices and the multiple state of canting spin stripes is a circular configuration with zero skyrmion charge number. Moreover, skyrmions and antiskyrmions can be observed simultaneously in the configuration at the low temperature nearly close to 0 K, and their configuration and diameter properties are discussed. Finally, the mechanisms of skyrmion creation and annihilation are properly interpreted by comparing exchange and Zeeman energy terms.

  6. Design of Interactively Time-Pulsed Microfluidic Mixers in Microchips using Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Fu, Lung-Ming; Tsai, Chien-Hsiung

    2007-01-01

    In this paper, we propose a novel technique in which driving voltages are applied interactively to the respective inlet fluid flows of three configurations of a microfluidic device, namely T-shaped, double-T-shaped, and double-cross-shaped configurations, to induce electroosmotic flow (EOF) velocity variations in such a way as to develop a rapid mixing effect in the microchannel. In these configurations a microfluidic mixer apply only one electrokinetic driving force, which drives the sample fluids and simultaneously produces a periodic switching frequency. It requires no other external driving force to induce perturbations to the flow field. The effects of the main applied electric field, the interactive frequency, and the pullback electric field on the mixing performance are thoroughly examined numerically. The optimal interactive frequency range for a given set of micromixer parameters is identified for each type of control mode. The numerical results confirm that micromixers operating at an optimal interactive frequency are capable of delivering a significantly enhanced mixing performance. Furthermore, it is shown that the optimal interactive frequency depends upon the magnitude of the main applied electric field. The interactively pulsed mixers developed in this study have a strong potential for use in lab-on-a-chip systems. They involve a simpler fabrication process than either passive or active on-chip mixers and require less human intervention in operation than their bulky external counterparts.

  7. BPHZ renormalization in configuration space for the A4-model

    NASA Astrophysics Data System (ADS)

    Pottel, Steffen

    2018-02-01

    Recent developments for BPHZ renormalization performed in configuration space are reviewed and applied to the model of a scalar quantum field with quartic self-interaction. An extension of the results regarding the short-distance expansion and the Zimmermann identity is shown for a normal product, which is quadratic in the field operator. The realization of the equation of motion is computed for the interacting field and the relation to parametric differential equations is indicated.

  8. Transition control of Mach to regular reflection induced interaction using an array of micro ramp vane-type vortex generators

    NASA Astrophysics Data System (ADS)

    Verma, Shashi B.; Chidambaranathan, Manisankar

    2015-10-01

    An experimental investigation has been conducted to favorably control/modify a Mach reflection induced interaction in a Mach 2.05 flow on a flat plate using an array of single row mechanical micro vane-type vortex generators (VGs). The objective was to study the variation in (i) control device configuration (trapezoidal and the split-trapezoidal or ramp vane-type), (ii) control device height (h/δ = 0.3, 0.5), and (iii) control location (X/δ = 9, 15 upstream of the interaction) in controlling the overall interaction. The primary aim was to investigate a control location and VG configuration which is able to effectively initiate a transition from Mach reflection to regular reflection with minimum changes to the separation characteristics for no control. While the trapezoidal configuration is seen to move the separation location upstream only slightly, the split-trapezoidal configurations result in a considerable upstream movement that is associated with significant reduction in separation shock strength. The latter flow modification causes the Mach stem to completely disappear resulting in a transition from Mach to regular reflection. The control location of X/δ = 15 seems to be most effective for all control device configurations tested. It is further observed that whilst the effectiveness of the split-trapezoidal configuration of h/δ = 0.3 in controlling the transition improves with increasing X/δ, increasing its height to h/δ = 0.5 not only controls the transition process but is also able to control the extent of separation. All the control devices, however, are seen to increase the flow unsteadiness in the intermittent region of separation for both control locations. From this perspective, increasing the height of the control device seems favorable for the closer control location as it not only completely modifies the Mach reflection but also keeps the peak rms value similar to the baseline case.

  9. Microrheology: Structural evolution under static and dynamic conditions by simultaneous analysis of confocal microscopy and diffusing wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Nicolas, Yves; Paques, Marcel; Knaebel, Alexandra; Steyer, Alain; Munch, Jean-Pierre; Blijdenstein, Theo B. J.; van Aken, George A.

    2003-08-01

    An oscillatory shear configuration was developed to improve understanding of structural evolution during deformation. It combines an inverted confocal scanning laser microscope (CSLM) and a special sample holder that can apply to the sample specific deformation: oscillatory shear or steady strain. In this configuration, a zero-velocity plane is created in the sample by moving two plates in opposite directions, thereby providing stable observation conditions of the structural behavior under deformation. The configuration also includes diffusion wave spectroscopy (DWS) to monitor the network properties via particle mobility under static and dynamic conditions. CSLM and DWS can be performed simultaneously and three-dimensional images can be obtained under static conditions. This configuration is mainly used to study mechanistic phenomena like particle interaction, aggregation, gelation and network disintegration, interactions at interfaces under static and dynamic conditions in semisolid food materials (desserts, dressings, sauces, dairy products) and in nonfood materials (mineral emulsions, etc.). Preliminary data obtained with this new oscillatory shear configuration are described that demonstrate their capabilities and the potential contribution to other areas of application also.

  10. Reactions of electronically excited molecular nitrogen with H2 and H2O molecules: theoretical study

    NASA Astrophysics Data System (ADS)

    Pelevkin, Alexey V.; Sharipov, Alexander S.

    2018-05-01

    Comprehensive quantum chemical analysis with the usage of the second-order perturbation multireference XMCQDPT2 approach was carried out to study the processes in the   +  H2 and   +  H2O systems. The energetically favorable reaction pathways have been revealed based on the exploration of potential energy surfaces. It has been shown that the reactions   +  H2 and   +  H2O occur with small activation barriers and, primarily, lead to the formation of N2H  +  H and N2H  +  OH products, respectively. Further, the interaction of these species could give rise to the ground state and H2 (or H2O) products, however, the estimations, based on RRKM theory and dynamic reaction coordinate calculations, exhibited that the   +  H2 and   +  H2O reactions lead to the dissociative quenching predominately. Appropriate rate constants for revealed reaction channels have been estimated by using a canonical variational theory and capture approximation. Corresponding three-parameter Arrhenius expressions for the temperature range T  =  300  ‑  3000 K were reported.

  11. Insight from first principles into the stability and magnetism of alkali-metal superoxide nanoclusters

    NASA Astrophysics Data System (ADS)

    Arcelus, Oier; Suaud, Nicolas; Katcho, Nebil A.; Carrasco, Javier

    2017-05-01

    Alkali-metal superoxides are gaining increasing interest as 2p magnetic materials for information and energy storage. Despite significant research efforts on bulk materials, gaps in our knowledge of the electronic and magnetic properties at the nanoscale still remain. Here, we focused on the role that structural details play in determining stability, electronic structure, and magnetic couplings of (MO2)n (M = Li, Na, and K, with n = 2-8) clusters. Using first-principles density functional theory based on the Perdew-Burke-Ernzerhof and Heyd-Scuseria-Ernzerhof functionals, we examined the effect of atomic structure on the relative stability of different polymorphs within each investigated cluster size. We found that small clusters prefer to form planar-ring structures, whereas non-planar geometries become more stable when increasing the cluster size. However, the crossover point depends on the nature of the alkali metal. Our analysis revealed that electrostatic interactions govern the highly ionic M-O2 bonding and ultimately control the relative stability between 2-D and 3-D geometries. In addition, we analyzed the weak magnetic couplings between superoxide molecules in (NaO2)4 clusters comparing model Hamiltonian methods based on Wannier function projections onto πg states with wave function-based multi-reference calculations.

  12. State estimation for spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Williamson, Susan H.; Sheble, Gerald B.

    1990-01-01

    A state estimator appropriate for spacecraft power systems is presented. Phasor voltage and current measurements are used to determine the system state. A weighted least squares algorithm with a multireference transmission cable model is used. Bad data are identified and resolved. Once the bad data have been identified, they are removed from the measurement set and the system state can be estimated from the remaining data. An observability analysis is performed on the remaining measurements to determine if the system state can be found from the reduced measurement set. An example of the algorithm for a sample spacecraft power system is presented.

  13. A quantitative quantum chemical model of the Dewar-Knott color rule for cationic diarylmethanes

    NASA Astrophysics Data System (ADS)

    Olsen, Seth

    2012-04-01

    We document the quantitative manifestation of the Dewar-Knott color rule in a four-electron, three-orbital state-averaged complete active space self-consistent field (SA-CASSCF) model of a series of bridge-substituted cationic diarylmethanes. We show that the lowest excitation energies calculated using multireference perturbation theory based on the model are linearly correlated with the development of hole density in an orbital localized on the bridge, and the depletion of pair density in the same orbital. We quantitatively express the correlation in the form of a generalized Hammett equation.

  14. Theoretical studies of UO(2)(OH)(H(2)O)(n) (+), UO(2)(OH)(2)(H(2)O)(n), NpO(2)(OH)(H(2)O)(n), and PuO(2)(OH)(H(2)O)(n) (+) (n

    PubMed

    Cao, Zhiji; Balasubramanian, K

    2009-10-28

    Extensive ab initio calculations have been carried out to study equilibrium structures, vibrational frequencies, and the nature of chemical bonds of hydrated UO(2)(OH)(+), UO(2)(OH)(2), NpO(2)(OH), and PuO(2)(OH)(+) complexes that contain up to 21 water molecules both in first and second hydration spheres in both aqueous solution and the gas phase. The structures have been further optimized by considering long-range solvent effects through a polarizable continuum dielectric model. The hydrolysis reaction Gibbs free energy of UO(2)(H(2)O)(5) (2+) is computed to be 8.11 kcal/mol at the MP2 level in good agreement with experiments. Our results reveal that it is necessary to include water molecules bound to the complex in the first hydration sphere for proper treatment of the hydrated complex and the dielectric cavity although water molecules in the second hydration sphere do not change the coordination complex. Structural reoptimization of the complex in a dielectric cavity seems inevitable to seek subtle structural variations in the solvent and to correlate with the observed spectra and thermodynamic properties in the aqueous environment. Our computations reveal dramatically different equilibrium structures in the gas phase and solution and also confirm the observed facile exchanges between the complex and bulk solvent. Complete active space multiconfiguration self-consistent field followed by multireference singles+doubles CI (MRSDCI) computations on smaller complexes confirm predominantly single-configurational nature of these species and the validity of B3LYP and MP2 techniques for these complexes in their ground states.

  15. Impact of SPR biosensor assay configuration on antibody: Neonatal Fc receptor binding data

    PubMed Central

    Wang, Xiangdan; McKay, Patrick; Dutina, George; Hass, Philip E.; Nijem, Ihsan; Allison, David; Cowan, Kyra J.; Lin, Kevin; Quarmby, Valerie; Yang, Jihong

    2017-01-01

    ABSTRACT Binding interactions with the neonatal Fc receptor (FcRn) are one determinant of pharmacokinetic properties of recombinant human monoclonal antibody (rhumAb) therapeutics, and a conserved binding motif in the crystallizable fragment (Fc) region of IgG molecules interacts with FcRn. Surface plasmon resonance (SPR) biosensor assays are often used to characterize interactions between FcRn and rhumAb therapeutics. In such assays, generally either the rhumAb (format 1) or the FcRn protein (format 2) is immobilized on a biosensor chip. However, because evidence suggests that, in some cases, the variable domains of a rhumAb may also affect FcRn binding, we evaluated the effect of SPR assay configuration on binding data. We sought to assess FcRn binding properties of 2 rhumAbs (rhumAb1 and rhumAb2) to FcRn proteins using these 2 biosensor assay formats. The two rhumAbs have greater than 99% sequence identity in the Fc domain but differ in their Fab regions. rhumAb2 contains a positively charged patch in the variable domain that is absent in rhumAb1. Our results showed that binding of rhumAb1 to FcRn was independent of biosensor assay configuration, while binding of rhumAb2 to FcRn was highly SPR assay configuration dependent. Further investigations revealed that the format dependency of rhumAb2-FcRn binding is linked to the basic residues that form a positively charged patch in the variable domain of rhumAb2. Our work highlights the importance of analyzing rhumAb-FcRn binding interactions using 2 alternate SPR biosensor assay configurations. This approach may also provide a simple way to identify the potential for non-Fc-driven FcRn binding interactions in otherwise typical IgGs. PMID:28001487

  16. Effect of complex configurations on the description of properties of {sup 132}Sn beta decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severyukhin, A. P., E-mail: sever@theor.jinr.ru; Sushenok, E. O.

    2015-07-15

    Gamow–Teller transitions in the beta decay of the {sup 132}Sn neutron-rich nucleus was described microscopically. The coupling of one- and two-phonon components of the wave functions was taken into account on the basis of Skyrme interactions featuring various contributions of the tensor component. A separable approximation of the particle—hole interaction made it possible tohole interaction perform calculations in a large configuration space. It was shown that an increase in the strength of the neutron—proton tensor interaction led to an increase in the energy of Gamow—Teller transitions. In addition, a decrease in the {sup 132}Sn half-life with respect to beta decaymore » was obtained.« less

  17. Control of forward swept wing configurations dominated by flight-dynamic/aeroelastic interactions

    NASA Technical Reports Server (NTRS)

    Rimer, M.; Chipman, R.; Muniz, B.

    1984-01-01

    An active control system concept for an aeroelastic wind-tunnel model of a statically unstable FSW configuration with wing-mounted stores is developed to provide acceptable longitudinal flying qualities while maintaining adequate flutter speed margin. On FSW configurations, the inherent aeroelastic wing divergence tendency causes strong flight-dynamic/aeroelastic interactions that in certain cases can produce a dynamic instability known as body-freedom flutter (BFF). The carriage of wing-mounted stores is shown to severely aggravate this problem. The control system developed combines a canard-based SAS with an Active Divergence/Flutter Suppression (ADFS) system which relies on wing-mounted sensors and a trailing-edge device (flaperon). Synergism between these two systems is exploited to obtain the flying qualities and flutter speed objectives.

  18. Electric dipole moment of diatomic molecules by configuration interaction. IV.

    NASA Technical Reports Server (NTRS)

    Green, S.

    1972-01-01

    The theory of basis set dependence in configuration interaction calculations is discussed, taking into account a perturbation model which is valid for small changes in the self-consistent field orbitals. It is found that basis set corrections are essentially additive through first order. It is shown that an error found in a previously published dipole moment calculation by Green (1972) for the metastable first excited state of CO was indeed due to an inadequate basis set as claimed.

  19. Effects of configuration interaction on photoabsorption spectra in the continuum

    NASA Astrophysics Data System (ADS)

    Komninos, Yannis; Nicolaides, Cleanthes A.

    2004-10-01

    It is pointed out that the proper interpretation of a recently published experimental spectrum from the multilaser photoionization of Sr [Eichmann , Phys. Rev. Lett. 90, 233004 (2003)] must account for a radiative transition between two autoionizing states. The application of orthonormality selection rules and of configuration-interaction theory involving the continuous spectrum and the quasicontinuum of the upper part of Rydberg series explains quantitatively the appearance, the shape, and the variation of heights of the observed peaks of resonances.

  20. Experimental Study of Fillets to Reduce Corner Effects in an Oblique Shock-Wave/Boundary Layer Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.

    2015-01-01

    A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.

  1. Semi-stochastic full configuration interaction quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Holmes, Adam; Petruzielo, Frank; Khadilkar, Mihir; Changlani, Hitesh; Nightingale, M. P.; Umrigar, C. J.

    2012-02-01

    In the recently proposed full configuration interaction quantum Monte Carlo (FCIQMC) [1,2], the ground state is projected out stochastically, using a population of walkers each of which represents a basis state in the Hilbert space spanned by Slater determinants. The infamous fermion sign problem manifests itself in the fact that walkers of either sign can be spawned on a given determinant. We propose an improvement on this method in the form of a hybrid stochastic/deterministic technique, which we expect will improve the efficiency of the algorithm by ameliorating the sign problem. We test the method on atoms and molecules, e.g., carbon, carbon dimer, N2 molecule, and stretched N2. [4pt] [1] Fermion Monte Carlo without fixed nodes: a Game of Life, death and annihilation in Slater Determinant space. George Booth, Alex Thom, Ali Alavi. J Chem Phys 131, 050106, (2009).[0pt] [2] Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo. Deidre Cleland, George Booth, and Ali Alavi. J Chem Phys 132, 041103 (2010).

  2. Identifying Mechanisms of Interfacial Dynamics Using Single-Molecule Tracking

    PubMed Central

    Kastantin, Mark; Walder, Robert; Schwartz, Daniel K.

    2012-01-01

    The “soft” (i.e. non-covalent) interactions between molecules and surfaces are complex and highly-varied (e.g. hydrophobic, hydrogen bonding, ionic) often leading to heterogeneous interfacial behavior. Heterogeneity can arise either from spatial variation of the surface/interface itself or from molecular configurations (i.e. conformation, orientation, aggregation state, etc.). By observing adsorption, diffusion, and desorption of individual fluorescent molecules, single-molecule tracking can characterize these types of heterogeneous interfacial behavior in ways that are inaccessible to traditional ensemble-averaged methods. Moreover, the fluorescence intensity or emission wavelength (in resonance energy transfer experiments) can be used to simultaneously track molecular configuration and directly relate this to the resulting interfacial mobility or affinity. In this feature article, we review recent advances involving the use of single-molecule tracking to characterize heterogeneous molecule-surface interactions including: multiple modes of diffusion and desorption associated with both internal and external molecular configuration, Arrhenius activated interfacial transport, spatially dependent interactions, and many more. PMID:22716995

  3. Interaction, coalescence, and collapse of localized patterns in a quasi-one-dimensional system of interacting particles

    NASA Astrophysics Data System (ADS)

    Dessup, Tommy; Coste, Christophe; Saint Jean, Michel

    2017-01-01

    We study the path toward equilibrium of pairs of solitary wave envelopes (bubbles) that modulate a regular zigzag pattern in an annular channel. We evidence that bubble pairs are metastable states, which spontaneously evolve toward a stable single bubble. We exhibit the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive, whereas it is repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: It is attractive for NF systems and repulsive for F systems and decreases exponentially with the bubbles distance. Moreover, for NF systems, the bubbles come closer and eventually merge as a single bubble, in a coalescence process. We also evidence a collapse process, in which one bubble shrinks in favor of the other one, overcoming an energetic barrier in phase space. This process is relevant for both NF systems and F systems. In NF systems, the coalescence prevails at low temperature, whereas thermally activated jumps make the collapse prevail at high temperature. In F systems, the path toward equilibrium involves a collapse process regardless of the temperature.

  4. Concentration-dependent and configuration-dependent interactions of monovalent ions with an RNA tetraloop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miner, Jacob Carlson; Garcia, Angel Enrique

    Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1–3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients andmore » Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5–3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.« less

  5. Concentration-dependent and configuration-dependent interactions of monovalent ions with an RNA tetraloop

    DOE PAGES

    Miner, Jacob Carlson; Garcia, Angel Enrique

    2018-05-29

    Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1–3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients andmore » Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5–3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.« less

  6. Concentration-dependent and configuration-dependent interactions of monovalent ions with an RNA tetraloop

    NASA Astrophysics Data System (ADS)

    Miner, Jacob Carlson; García, Angel Enrique

    2018-06-01

    Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1-3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients and Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5-3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.

  7. Concentration-dependent and configuration-dependent interactions of monovalent ions with an RNA tetraloop.

    PubMed

    Miner, Jacob Carlson; García, Angel Enrique

    2018-06-14

    Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1-3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients and Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5-3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.

  8. Fractional Factorial Experiment Designs to Minimize Configuration Changes in Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard; Cler, Daniel L.; Graham, Albert B.

    2002-01-01

    This paper serves as a tutorial to introduce the wind tunnel research community to configuration experiment designs that can satisfy resource constraints in a configuration study involving several variables, without arbitrarily eliminating any of them from the experiment initially. The special case of a configuration study featuring variables at two levels is examined in detail. This is the type of study in which each configuration variable has two natural states - 'on or off', 'deployed or not deployed', 'low or high', and so forth. The basic principles are illustrated by results obtained in configuration studies conducted in the Langley National Transonic Facility and in the ViGYAN Low Speed Tunnel in Hampton, Virginia. The crucial role of interactions among configuration variables is highlighted with an illustration of difficulties that can be encountered when they are not properly taken into account.

  9. Substituent Effects in the Benzene Dimer are Due to Direct Interactions of the Substituents with the Unsubstituted Benzene

    PubMed Central

    Wheeler, Steven E.; Houk, K. N.

    2009-01-01

    The prevailing views of substituent effects in the sandwich configuration of the benzene dimer are flawed. For example, in the polar/π model of Cozzi and co-workers (J. Am. Chem. Soc. 1992, 114, 5729), electron-withdrawing substituents enhance binding in the benzene dimer by withdrawing electron density from the π-cloud of the substituted ring, reducing the repulsive electrostatic interaction with the non-substituted benzene. Conversely, electron-donating substituents donate excess electrons into the π-system and diminish the π-stacking interaction. We present computed interaction energies for the sandwich configuration of the benzene dimer and 24 substituted dimers, as well as sandwich complexes of substituted benzenes with perfluorobenzene. While the computed interaction energies correlate well with σm values for the substituents, interaction energies for related model systems demonstrate that this trend is independent of the substituted ring. Instead, the observed trends are consistent with direct electrostatic and dispersive interactions of the substituents with the unsubstituted ring. PMID:18652453

  10. Pauli structures arising from confined particles interacting via a statistical potential

    NASA Astrophysics Data System (ADS)

    Batle, Josep; Ciftja, Orion; Farouk, Ahmed; Alkhambashi, Majid; Abdalla, Soliman

    2017-09-01

    There have been suggestions that the Pauli exclusion principle alone can lead a non-interacting (free) system of identical fermions to form crystalline structures dubbed Pauli crystals. Single-shot imaging experiments for the case of ultra-cold systems of free spin-polarized fermionic atoms in a two-dimensional harmonic trap appear to show geometric arrangements that cannot be characterized as Wigner crystals. This work explores this idea and considers a well-known approach that enables one to treat a quantum system of free fermions as a system of classical particles interacting with a statistical interaction potential. The model under consideration, though classical in nature, incorporates the quantum statistics by endowing the classical particles with an effective interaction potential. The reasonable expectation is that possible Pauli crystal features seen in experiments may manifest in this model that captures the correct quantum statistics as a first order correction. We use the Monte Carlo simulated annealing method to obtain the most stable configurations of finite two-dimensional systems of confined particles that interact with an appropriate statistical repulsion potential. We consider both an isotropic harmonic and a hard-wall confinement potential. Despite minor differences, the most stable configurations observed in our model correspond to the reported Pauli crystals in single-shot imaging experiments of free spin-polarized fermions in a harmonic trap. The crystalline configurations observed appear to be different from the expected classical Wigner crystal structures that would emerge should the confined classical particles had interacted with a pair-wise Coulomb repulsion.

  11. HUGO: Hierarchical mUlti-reference Genome cOmpression for aligned reads

    PubMed Central

    Li, Pinghao; Jiang, Xiaoqian; Wang, Shuang; Kim, Jihoon; Xiong, Hongkai; Ohno-Machado, Lucila

    2014-01-01

    Background and objective Short-read sequencing is becoming the standard of practice for the study of structural variants associated with disease. However, with the growth of sequence data largely surpassing reasonable storage capability, the biomedical community is challenged with the management, transfer, archiving, and storage of sequence data. Methods We developed Hierarchical mUlti-reference Genome cOmpression (HUGO), a novel compression algorithm for aligned reads in the sorted Sequence Alignment/Map (SAM) format. We first aligned short reads against a reference genome and stored exactly mapped reads for compression. For the inexact mapped or unmapped reads, we realigned them against different reference genomes using an adaptive scheme by gradually shortening the read length. Regarding the base quality value, we offer lossy and lossless compression mechanisms. The lossy compression mechanism for the base quality values uses k-means clustering, where a user can adjust the balance between decompression quality and compression rate. The lossless compression can be produced by setting k (the number of clusters) to the number of different quality values. Results The proposed method produced a compression ratio in the range 0.5–0.65, which corresponds to 35–50% storage savings based on experimental datasets. The proposed approach achieved 15% more storage savings over CRAM and comparable compression ratio with Samcomp (CRAM and Samcomp are two of the state-of-the-art genome compression algorithms). The software is freely available at https://sourceforge.net/projects/hierachicaldnac/with a General Public License (GPL) license. Limitation Our method requires having different reference genomes and prolongs the execution time for additional alignments. Conclusions The proposed multi-reference-based compression algorithm for aligned reads outperforms existing single-reference based algorithms. PMID:24368726

  12. Recent advances in spin-free state-specific and state-universal multi-reference coupled cluster formalisms: A unitary group adapted approach

    NASA Astrophysics Data System (ADS)

    Maitra, Rahul; Sinha, Debalina; Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2012-06-01

    We present here the formulations and implementations of Mukherjee's State-Specific and State-Universal Multi-reference Coupled Cluster theories, which are explicitly spin free being obtained via the Unitary Group Adapted (UGA) approach, and thus, do not suffer from spin-contamination. We refer to them as UGA-SSMRCC and UGASUMRCC respectively. We propose a new multi-exponential cluster Ansatz analogous to but different from the one suggested by Jeziorski and Monkhorst (JM). Unlike the JM Ansatz, our choice involves spin-free unitary generators for the cluster operators and we replace the traditional exponential structure for the wave-operator by a suitable normal ordered exponential. We sketch the consequences of choosing our Ansatz, which leads to fully spin-free finite power series structure of the direct term of the MRCC equations. The UGA-SUMRCC follows from a suitable hierarchical generation of the cluster amplitudes of increasing rank, while the UGA-SSMRCC requires suitable sufficiency conditions to arrive at a well-defined set of equations for the cluster amplitudes. We discuss two distinct and inequivalent sufficiency conditions and their pros and cons. We also discuss a variant of the UGA-SSMRCC, where the number of cluster amplitudes can be drastically reduced by internal contraction of the two-body inactive cluster amplitudes. These are the most numerous, and thus a spin-free internally contracted description will lead to a high speed-up factor. We refer to this as ICID-UGA-SSMRCC. Essentially the same mathematical manipulations provide us with the UGA-SUMRCC theory as well. Pilot numerical results are presented to indicate the promise and the efficacy of all the three methods.

  13. Unitary group adapted state specific multireference perturbation theory: Formulation and pilot applications.

    PubMed

    Sen, Avijit; Sen, Sangita; Samanta, Pradipta Kumar; Mukherjee, Debashis

    2015-04-05

    We present here a comprehensive account of the formulation and pilot applications of the second-order perturbative analogue of the recently proposed unitary group adapted state-specific multireference coupled cluster theory (UGA-SSMRCC), which we call as the UGA-SSMRPT2. We also discuss the essential similarities and differences between the UGA-SSMRPT2 and the allied SA-SSMRPT2. Our theory, like its parent UGA-SSMRCC formalism, is size-extensive. However, because of the noninvariance of the theory with respect to the transformation among the active orbitals, it requires the use of localized orbitals to ensure size-consistency. We have demonstrated the performance of the formalism with a set of pilot applications, exploring (a) the accuracy of the potential energy surface (PES) of a set of small prototypical difficult molecules in their various low-lying states, using natural, pseudocanonical and localized orbitals and compared the respective nonparallelity errors (NPE) and the mean average deviations (MAD) vis-a-vis the full CI results with the same basis; (b) the efficacy of localized active orbitals to ensure and demonstrate manifest size-consistency with respect to fragmentation. We found that natural orbitals lead to the best overall PES, as evidenced by the NPE and MAD values. The MRMP2 results for individual states and of the MCQDPT2 for multiple states displaying avoided curve crossings are uniformly poorer as compared with the UGA-SSMRPT2 results. The striking aspect of the size-consistency check is the complete insensitivity of the sum of fragment energies with given fragment spin-multiplicities, which are obtained as the asymptotic limit of super-molecules with different coupled spins. © 2015 Wiley Periodicals, Inc.

  14. The Nuclear Energy Density Functional Formalism

    NASA Astrophysics Data System (ADS)

    Duguet, T.

    The present document focuses on the theoretical foundations of the nuclear energy density functional (EDF) method. As such, it does not aim at reviewing the status of the field, at covering all possible ramifications of the approach or at presenting recent achievements and applications. The objective is to provide a modern account of the nuclear EDF formalism that is at variance with traditional presentations that rely, at one point or another, on a Hamiltonian-based picture. The latter is not general enough to encompass what the nuclear EDF method represents as of today. Specifically, the traditional Hamiltonian-based picture does not allow one to grasp the difficulties associated with the fact that currently available parametrizations of the energy kernel E[g',g] at play in the method do not derive from a genuine Hamilton operator, would the latter be effective. The method is formulated from the outset through the most general multi-reference, i.e. beyond mean-field, implementation such that the single-reference, i.e. "mean-field", derives as a particular case. As such, a key point of the presentation provided here is to demonstrate that the multi-reference EDF method can indeed be formulated in a mathematically meaningful fashion even if E[g',g] does not derive from a genuine Hamilton operator. In particular, the restoration of symmetries can be entirely formulated without making any reference to a projected state, i.e. within a genuine EDF framework. However, and as is illustrated in the present document, a mathematically meaningful formulation does not guarantee that the formalism is sound from a physical standpoint. The price at which the latter can be enforced as well in the future is eventually alluded to.

  15. Numerical Investigation of Dual-Mode Scramjet Combustor with Large Upstream Interaction

    NASA Technical Reports Server (NTRS)

    Mohieldin, T. O.; Tiwari, S. N.; Reubush, David E. (Technical Monitor)

    2004-01-01

    Dual-mode scramjet combustor configuration with significant upstream interaction is investigated numerically, The possibility of scaling the domain to accelerate the convergence and reduce the computational time is explored. The supersonic combustor configuration was selected to provide an understanding of key features of upstream interaction and to identify physical and numerical issues relating to modeling of dual-mode configurations. The numerical analysis was performed with vitiated air at freestream Math number of 2.5 using hydrogen as the sonic injectant. Results are presented for two-dimensional models and a three-dimensional jet-to-jet symmetric geometry. Comparisons are made with experimental results. Two-dimensional and three-dimensional results show substantial oblique shock train reaching upstream of the fuel injectors. Flow characteristics slow numerical convergence, while the upstream interaction slowly increases with further iterations. As the flow field develops, the symmetric assumption breaks down. A large separation zone develops and extends further upstream of the step. This asymmetric flow structure is not seen in the experimental data. Results obtained using a sub-scale domain (both two-dimensional and three-dimensional) qualitatively recover the flow physics obtained from full-scale simulations. All results show that numerical modeling using a scaled geometry provides good agreement with full-scale numerical results and experimental results for this configuration. This study supports the argument that numerical scaling is useful in simulating dual-mode scramjet combustor flowfields and could provide an excellent convergence acceleration technique for dual-mode simulations.

  16. Gauged baby Skyrme model with a Chern-Simons term

    NASA Astrophysics Data System (ADS)

    Samoilenka, A.; Shnir, Ya.

    2017-02-01

    The properties of the multisoliton solutions of the (2 +1 )-dimensional Maxwell-Chern-Simons-Skyrme model are investigated numerically. Coupling to the Chern-Simons term allows for existence of the electrically charge solitons which may also carry magnetic fluxes. Two particular choices of the potential term is considered: (i) the weakly bounded potential and (ii) the double vacuum potential. In the absence of gauge interaction in the former case the individual constituents of the multisoliton configuration are well separated, while in the latter case the rotational invariance of the configuration remains unbroken. It is shown that coupling of the planar multi-Skyrmions to the electric and magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, the energies, angular momenta, electric and magnetic fields of the configurations on the gauge coupling constant g , and the electric potential. It is found that, generically, the coupling to the Chern-Simons term strongly affects the usual pattern of interaction between the skyrmions, in particular the electric repulsion between the solitons may break the multisoliton configuration into partons. We show that as the gauge coupling becomes strong, both the magnetic flux and the electric charge of the solutions become quantized although they are not topological numbers.

  17. Computational Meso-Scale Study of Representative Unit Cubes for Inert Spheres Subject to Intense Shocks

    NASA Astrophysics Data System (ADS)

    Stewart, Cameron; Najjar, Fady; Stewart, D. Scott; Bdzil, John

    2012-11-01

    Modern-engineered high explosive (HE) materials can consist of a matrix of solid, inert particles embedded into an HE charge. When this charge is detonated, intense shock waves are generated. As these intense shocks interact with the inert particles, large deformations occur in the particles while the incident shock diffracts around the particle interface. We will present results from a series of 3-D DNS of an intense shock interacting with unit-cube configurations of inert particles embedded into nitromethane. The LLNL multi-physics massively parallel hydrodynamics code ALE3D is used to carry out high-resolution (4 million nodes) simulations. Three representative unit-cube configurations are considered: primitive cubic, face-centered and body-centered cubic for two particle material types of varying impedance ratios. Previous work has only looked at in-line particles configurations. We investigate the time evolution of the unit cell configurations, vorticity being generated by the shock interaction, as well as the velocity and acceleration of the particles until they reach the quasi-steady regime. LLNL-ABS-567694. CSS was supported by a summer internship through the HEDP program at LLNL. FMN's work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Optimization of levitation and guidance forces in a superconducting Maglev system

    NASA Astrophysics Data System (ADS)

    Yildizer, Irfan; Cansiz, Ahmet; Ozturk, Kemal

    2016-09-01

    Optimization of the levitation for superconducting Maglev systems requires effective use of vertical and guidance forces during the operation. In this respect the levitation and guidance forces in terms of various permanent magnet array configurations are analyzed. The arrangements of permanent magnet arrays interacting with the superconductor are configured for the purpose of increasing the magnetic flux density. According to configurations, modeling the interaction forces between the permanent magnet and the superconductor are established in terms of the frozen image model. The model is complemented with the analytical calculations and provides a reasonable agreement with the experiments. The agreement of the analytical calculation associated with the frozen image model indicates a strong case to establish an optimization, in which provides preliminary analysis before constructing more complex Maglev system.

  19. Orion Launch Abort Vehicle Attitude Control Motor Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Brauckmann, Gregory J.; Paschal, Keith B.; Chan, David T.; Walker, Eric L.; Foley, Robert; Mayfield, David; Cross, Jared

    2011-01-01

    Current Orion Launch Abort Vehicle (LAV) configurations use an eight-jet, solid-fueled Attitude Control Motor (ACM) to provide required vehicle control for all proposed abort trajectories. Due to the forward position of the ACM on the LAV, it is necessary to assess the effects of jet-interactions (JI) between the various ACM nozzle plumes and the external flow along the outside surfaces of the vehicle. These JI-induced changes in flight control characteristics must be accounted for in developing ACM operations and LAV flight characteristics. A test program to generate jet interaction aerodynamic increment data for multiple LAV configurations was conducted in the NASA Ames and NASA Langley Unitary Plan Wind Tunnels from August 2007 through December 2009. Using cold air as the simulant gas, powered subscale models were used to generate interaction data at subsonic, transonic, and supersonic test conditions. This paper presents an overview of the complete ACM JI experimental test program for Orion LAV configurations, highlighting ACM system modeling, nozzle scaling assumptions, experimental test techniques, and data reduction methodologies. Lessons learned are discussed, and sample jet interaction data are shown. These data, in conjunction with computational predictions, were used to create the ACM JI increments for all relevant flight databases.

  20. Imitation by social interaction? Analysis of a minimal agent-based model of the correspondence problem

    PubMed Central

    Froese, Tom; Lenay, Charles; Ikegami, Takashi

    2012-01-01

    One of the major challenges faced by explanations of imitation is the “correspondence problem”: how is an agent able to match its bodily expression to the observed bodily expression of another agent, especially when there is no possibility of external self-observation? Current theories only consider the possibility of an innate or acquired matching mechanism belonging to an isolated individual. In this paper we evaluate an alternative that situates the explanation of imitation in the inter-individual dynamics of the interaction process itself. We implemented a minimal model of two interacting agents based on a recent psychological study of imitative behavior during minimalist perceptual crossing. The agents cannot sense the configuration of their own body, and do not have access to other's body configuration, either. And yet surprisingly they are still capable of converging on matching bodily configurations. Analysis revealed that the agents solved this version of the correspondence problem in terms of collective properties of the interaction process. Contrary to the assumption that such properties merely serve as external input or scaffolding for individual mechanisms, it was found that the behavioral dynamics were distributed across the model as a whole. PMID:23060768

  1. Digital Image Manipulation and Avatar Configuration: Implications for Inclusive Classrooms

    ERIC Educational Resources Information Center

    Oravec, Jo Ann

    2012-01-01

    This paper outlines concerns for inclusive classrooms involving personal digital image modifications and selections, as well as avatar configurations. Classroom interactions incorporate various dimensions of personal appearance; however, educators try to make them primarily about knowledge and wisdom. Students in environments where they can…

  2. Statistical complexity without explicit reference to underlying probabilities

    NASA Astrophysics Data System (ADS)

    Pennini, F.; Plastino, A.

    2018-06-01

    We show that extremely simple systems of a not too large number of particles can be simultaneously thermally stable and complex. To such an end, we extend the statistical complexity's notion to simple configurations of non-interacting particles, without appeal to probabilities, and discuss configurational properties.

  3. Small Au clusters on a defective MgO(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Barcaro, Giovanni; Fortunelli, Alessandro

    2008-05-01

    The lowest energy structures of small T]>rndm where rndm is a random number (Metropolis criterion), the new configuration is accepted, otherwise the old configuration is kept, and the process is iterated. For each size we performed 3-5 BH runs, each one composed of 20-25 Monte Carlo steps, using a value of 0.5 eV as kT in the Metropolis criterion. Previous experience [13-15] shows that this is sufficient to single out the global minimum for adsorbed clusters of this size, and that the BH approach is more efficient as a global optimization algorithm than other techniques such as simulated annealing [18]. The MgO support was described via an (Mg 12O 12) cluster embedded in an array of ±2.0 a.u. point charges and repulsive pseudopotentials on the positive charges in direct contact with the cluster (see Ref. [15] for more details on the method). The atoms of the oxide cluster and the point charges were located at the lattice positions of the MgO rock-salt bulk structure using the experimental lattice constant of 4.208 Å. At variance with the ), evaluated by subtracting the energy of the oxide surface and of the metal cluster, both frozen in their interacting configuration, from the value of the total energy of the system, and by taking the absolute value; (ii) the binding energy of the metal cluster (E), evaluated by subtracting the energy of the isolated metal atoms from the total energy of the metal cluster in its interacting configuration, and by taking the absolute value; (iii) the metal cluster distortion energy (E), which corresponds to the difference between the energy of the metal cluster in the configuration interacting with the surface minus the energy of the cluster in its lowest-energy gas-phase configuration (a positive quantity); (iv) the oxide distortion energy (ΔE), evaluated subtracting the energy of the relaxed isolated defected oxide from the energy of the isolated defected oxide in the interacting configuration; and (v) the total binding energy (E), which is the sum of the binding energy of the metal cluster, the adhesion energy and the oxide distortion energy (E=E+E-ΔE). Note that the total binding energy of gas-phase clusters in their global minima can be obtained by summing E+E.

  4. Ground-state configurations and theoretical soft-x-ray emission of highly charged actinide ions

    NASA Astrophysics Data System (ADS)

    Sheil, J.; Kilbane, D.; O'Sullivan, G.; Liu, L.; Suzuki, C.

    2017-12-01

    It is well known that the lanthanide and actinide elements are formed by the filling of 4 f and 5 f subshells which occurs after the filling of 5 d and 6 d subshells, respectively, has begun. With increasing ionization one expects the energy levels to eventually regroup to their hydrogenic ordering, i.e., in terms of principal quantum number. In the lanthanides, the 4 f electron binding energy overtakes that of 5 p near the 6th or 7th ion stage and 5 s near the 14th or 15th ion stage, leading to dramatic rearrangements of ground-state configurations. In this paper we report on the results of a study to explore the effects of increasing ionization on the ground-state configurations of actinide ions as a result of 5 f and 6 p or 6 s level crossings. It is seen that the effects generally occur later and are more strongly influenced by spin-orbit splitting than in the lanthanides. The near degeneracies of 5 f and 6 l energies in these stages lead to configuration interaction (CI) amongst configurations with variable numbers of 5 f and 6 p electrons. The effects of CI on the level complexity are explored for ions along the Rn I sequence and are found to lead to the formation of "compound states" as predicted for the lanthanides. The extreme ultraviolet and soft x-ray spectra of medium and highly charged lanthanides are dominated by emission from unresolved transition arrays (UTAs) of the type Δ n =0 , 4 p64 dN +1-4 p54 dN +2+4 p64 dN4 f , which, in general, overlap in adjacent ion stages of a particular element. Here, the corresponding Δ n =0 , 5 p65 dN +1-5 p55 dN +2+5 p65 dN5 f UTAs have been studied theoretically with the aid of Hartree-Fock with configuration interaction calculations. As well as predicting the wavelengths and spectral details of the anticipated features, the calculations show that the effects of configuration interaction are quite different for the two different families of Δ n =0 transitions and, once more, spin-orbit interactions play a major role.

  5. Communication: An efficient and accurate perturbative correction to initiator full configuration interaction quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Blunt, Nick S.

    2018-06-01

    We present a perturbative correction within initiator full configuration interaction quantum Monte Carlo (i-FCIQMC). In the existing i-FCIQMC algorithm, a significant number of spawned walkers are discarded due to the initiator criteria. Here we show that these discarded walkers have a form that allows the calculation of a second-order Epstein-Nesbet correction, which may be accumulated in a trivial and inexpensive manner, yet substantially improves i-FCIQMC results. The correction is applied to the Hubbard model and the uniform electron gas and molecular systems.

  6. Relating nanoindentation to macroindentation of wood

    Treesearch

    Robert J. Moon; Joseph E. Jakes; Jim F. Beecher; Charles R. Frihart; Donald S. Stone

    2009-01-01

    Wood has several levels of hierarchical structure, spanning from the configuration of growth-rings down to the configuration of the base polymers (cellulose, hemicellulose, and lignin). The bulk properties of wood result from the culmination of interactions over all length scales. Gaps presently exist in the fundamental knowledge relating the contribution of wood...

  7. Innovation Configurations: Analyzing the Adaptations of Innovations.

    ERIC Educational Resources Information Center

    Hall, Gene E.; Loucks, Susan F.

    When implementing an innovation, a multitude of components interact to change not only the users, but the innovation as well. This guide explains the concept of innovation configurations, or adaptations made in innovations during implementation. After presenting and discussing past research on innovation changes, the report outlines a five step…

  8. Configuration Analysis Tool (CAT). System Description and users guide (revision 1)

    NASA Technical Reports Server (NTRS)

    Decker, W.; Taylor, W.; Mcgarry, F. E.; Merwarth, P.

    1982-01-01

    A system description of, and user's guide for, the Configuration Analysis Tool (CAT) are presented. As a configuration management tool, CAT enhances the control of large software systems by providing a repository for information describing the current status of a project. CAT provides an editing capability to update the information and a reporting capability to present the information. CAT is an interactive program available in versions for the PDP-11/70 and VAX-11/780 computers.

  9. Investigating protein-protein interaction surfaces using a reduced stereochemical and electrostatic model.

    PubMed

    Warwicker, J

    1989-03-20

    A method of calculating the electrostatic potential energy between two molecules, using finite difference potential, is presented. A reduced charge set is used so that the interaction energy can be calculated as the two static molecules explore their full six-dimensional configurational space. The energies are contoured over surfaces fixed to each molecule with an interactive computer graphics program. For two crystal structures (trypsin-trypsin inhibitor and anti-lysozyme Fab-lysozyme), it is found that the complex corresponds to highly favourable interacting regions in the contour plots. These matches arise from a small number of protruding basic residues interacting with enhanced negative potential in each case. The redox pair cytochrome c peroxidase-cytochrome c exhibits an extensive favourably interacting surface within which a possible electron transfer complex may be defined by an increased electrostatic complementarity, but a decreased electrostatic energy. A possible substrate transfer configuration for the glycolytic enzyme pair glyceraldehyde phosphate dehydrogenase-phosphoglycerate kinase is presented.

  10. Ab initio quantum chemistry: methodology and applications.

    PubMed

    Friesner, Richard A

    2005-05-10

    This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods that are discussed include coupled cluster theory, localized second-order Moller-Plesset perturbation theory, multireference perturbation approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade. Incorporation of a condensed-phase environment by means of mixed quantum mechanical/molecular mechanics or self-consistent reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are discussed briefly.

  11. Communication: a density functional with accurate fractional-charge and fractional-spin behaviour for s-electrons.

    PubMed

    Johnson, Erin R; Contreras-García, Julia

    2011-08-28

    We develop a new density-functional approach combining physical insight from chemical structure with treatment of multi-reference character by real-space modeling of the exchange-correlation hole. We are able to recover, for the first time, correct fractional-charge and fractional-spin behaviour for atoms of groups 1 and 2. Based on Becke's non-dynamical correlation functional [A. D. Becke, J. Chem. Phys. 119, 2972 (2003)] and explicitly accounting for core-valence separation and pairing effects, this method is able to accurately describe dissociation and strong correlation in s-shell many-electron systems. © 2011 American Institute of Physics

  12. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    NASA Astrophysics Data System (ADS)

    Egidi, Franco; Segado, Mireia; Koch, Henrik; Cappelli, Chiara; Barone, Vincenzo

    2014-12-01

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π*, π-π*, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  13. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egidi, Franco, E-mail: franco.egidi@sns.it; Segado, Mireia; Barone, Vincenzo, E-mail: vincenzo.barone@sns.it

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  14. Calculations of long-range three-body interactions for He(n0λS )-He(n0λS )-He(n0'λL )

    NASA Astrophysics Data System (ADS)

    Yan, Pei-Gen; Tang, Li-Yan; Yan, Zong-Chao; Babb, James F.

    2018-04-01

    We theoretically investigate long-range interactions between an excited L -state He atom and two identical S -state He atoms for the cases of the three atoms all in spin-singlet states or all in spin-triplet states, denoted by He(n0λS )-He(n0λS )-He(n0'λL ), with n0 and n0' principal quantum numbers, λ =1 or 3 the spin multiplicity, and L the orbital angular momentum of a He atom. Using degenerate perturbation theory for the energies up to second-order, we evaluate the coefficients C3 of the first-order dipolar interactions and the coefficients C6 and C8 of the second-order additive and nonadditive interactions. Both the dipolar and dispersion interaction coefficients, for these three-body degenerate systems, show dependences on the geometrical configurations of the three atoms. The nonadditive interactions start to appear in second-order. To demonstrate the results and for applications, the obtained coefficients Cn are evaluated with highly accurate variationally generated nonrelativistic wave functions in Hylleraas coordinates for He(1 1S ) -He(1 1S ) -He(2 1S ) , He(1 1S ) -He(1 1S ) -He(2 1P ) , He(2 1S ) -He(2 1S ) -He(2 1P ) , and He(2 3S ) -He(2 3S ) -He(2 3P ) . The calculations are given for three like nuclei for the cases of hypothetical infinite mass He nuclei, and of real finite mass 4He or 3He nuclei. The special cases of the three atoms in equilateral triangle configurations are explored in detail, and for the cases in which one of the atoms is in a P state, we also present results for the atoms in an isosceles right triangle configuration or in an equally spaced collinear configuration. The results can be applied to construct potential energy surfaces for three helium atom systems.

  15. Contextual Interactions in Grating Plaid Configurations Are Explained by Natural Image Statistics and Neural Modeling

    PubMed Central

    Ernst, Udo A.; Schiffer, Alina; Persike, Malte; Meinhardt, Günter

    2016-01-01

    Processing natural scenes requires the visual system to integrate local features into global object descriptions. To achieve coherent representations, the human brain uses statistical dependencies to guide weighting of local feature conjunctions. Pairwise interactions among feature detectors in early visual areas may form the early substrate of these local feature bindings. To investigate local interaction structures in visual cortex, we combined psychophysical experiments with computational modeling and natural scene analysis. We first measured contrast thresholds for 2 × 2 grating patch arrangements (plaids), which differed in spatial frequency composition (low, high, or mixed), number of grating patch co-alignments (0, 1, or 2), and inter-patch distances (1° and 2° of visual angle). Contrast thresholds for the different configurations were compared to the prediction of probability summation (PS) among detector families tuned to the four retinal positions. For 1° distance the thresholds for all configurations were larger than predicted by PS, indicating inhibitory interactions. For 2° distance, thresholds were significantly lower compared to PS when the plaids were homogeneous in spatial frequency and orientation, but not when spatial frequencies were mixed or there was at least one misalignment. Next, we constructed a neural population model with horizontal laminar structure, which reproduced the detection thresholds after adaptation of connection weights. Consistent with prior work, contextual interactions were medium-range inhibition and long-range, orientation-specific excitation. However, inclusion of orientation-specific, inhibitory interactions between populations with different spatial frequency preferences were crucial for explaining detection thresholds. Finally, for all plaid configurations we computed their likelihood of occurrence in natural images. The likelihoods turned out to be inversely related to the detection thresholds obtained at larger inter-patch distances. However, likelihoods were almost independent of inter-patch distance, implying that natural image statistics could not explain the crowding-like results at short distances. This failure of natural image statistics to resolve the patch distance modulation of plaid visibility remains a challenge to the approach. PMID:27757076

  16. Objects and mappings: incompatible principles of display design - a critique of Marino and Mahan.

    PubMed

    Bennett, Kevin B

    2005-01-01

    Representation aiding (and similar approaches that share the general orientation) has a great deal of utility, predictive ability, and explanatory power. Marino and Mahan (2005) discuss principles that are critical to the RA approach (configurality, emergent features, and mappings) in a reasonable fashion. However, the application of these principles is far from reasonable. The authors explicitly realize the potential for interactions between nutrients: "The nutritional quality of a food product is a multidimensional concept, and higher order interactions between nutrients may exist" (p. 126). However, they made no effort to discover the nature of these interactions: "No attempt was made to identify contingent interactions between nutrients" (p. 126). Despite not knowing the nature of the interactions between nutrients, they purposely chose a highly configural display that produced numerous emergent features dependent upon these interactions: "A radial spoke display was selected because of the strong configural properties of such display formats (Bennett & Flach, 1992)" (p. 124). Finally, the authors show apparent disdain for the specific mappings among domain, agent, and display that are fundamental to the RA approach: "[O]ther configural display formats could have been used" (p. 124). It is impossible to reconcile these statements and the RA approach to display design. However, these statements make perfect sense if a perceptual object is a guiding principle in one's approach to display design. Marino and Mahan (2005) draw heavily upon the principle of a perceptual object in their design justifications, experimental predictions, and interpretations of results. As we have indicated here and elsewhere (Bennett & Flach, 1992), we believe that these two sets of organizing principles for display design (i.e., objects and mappings) are incompatible. Display design will never be an exact science; there will always be elements of art and creativity. However, the guiding principles have moved well beyond the simple strategy of throwing variables into a geometric object format and relying upon the human agent's powerful perceptual systems to carry the design.

  17. Results of test MA22 in the NASA/LaRC 31-inch CFHT on an 0.010-scale model (32-0) of the space shuttle configuration 3 to determine RCS jet flow field interaction, volume 1. [wind tunnel tests for interactions of aerodynamic heating on jet flow

    NASA Technical Reports Server (NTRS)

    Kanipe, D. B.

    1976-01-01

    A wind tunnel test was conducted in the Langley Research Center 31-inch Continuous Flow Hypersonic Wind Tunnel from May 6, 1975 through June 3, 1975. The primary objectives of this test were the following: (1) to study the ability of the wind tunnel to repeat, on a run-to-run basis, data taken for identical configurations to determine if errors in repeatability could have a significant effect on jet interaction data, (2) to determine the effect of aerodynamic heating of the scale model on jet interaction, (3) to investigate the effects of elevon and body flap deflections on jet interaction, (4) to determine if the effects from jets fired separately along different axes can be added to equal the effects of the jets fired simultaneously (super position effects), (5) to study multiple jet effects, and (6) to investigate area ratio effects, i.e., the effect on jet interaction measurements of using wind tunnel nozzles with different area ratios in the same location. The model used in the test was a .010-scale model of the Space Shuttle Orbiter Configuration 3. The test was conducted at Mach 10.3 and a dynamic pressure of 150 psf. RCS chamber pressure was varied to simulate free flight dynamic pressures of 5, 7.5, 10, and 20 psf.

  18. Computational Aerodynamic Analysis of Offshore Upwind and Downwind Turbines

    DOE PAGES

    Zhao, Qiuying; Sheng, Chunhua; Afjeh, Abdollah

    2014-01-01

    Aerodynamic interactions of the model NREL 5 MW offshore horizontal axis wind turbines (HAWT) are investigated using a high-fidelity computational fluid dynamics (CFD) analysis. Four wind turbine configurations are considered; three-bladed upwind and downwind and two-bladed upwind and downwind configurations, which operate at two different rotor speeds of 12.1 and 16 RPM. In the present study, both steady and unsteady aerodynamic loads, such as the rotor torque, blade hub bending moment, and base the tower bending moment of the tower, are evaluated in detail to provide overall assessment of different wind turbine configurations. Aerodynamic interactions between the rotor and tower are analyzed,more » including the rotor wake development downstream. The computational analysis provides insight into aerodynamic performance of the upwind and downwind, two- and three-bladed horizontal axis wind turbines.« less

  19. The Mechanism of Word Crowding

    PubMed Central

    Yu, Deyue; Akau, Melanie M. U.; Chung, Susana T. L.

    2011-01-01

    Word reading speed in peripheral vision is slower when words are in close proximity of other words (Chung, 2004). This word crowding effect could arise as a consequence of interaction of low-level letter features between words, or the interaction between high-level holistic representations of words. We evaluated these two hypotheses by examining how word crowding changes for five configurations of flanking words: the control condition — flanking words were oriented upright; scrambled — letters in each flanking word were scrambled in order; horizontal-flip — each flanking word was the left-right mirror-image of the original; letter-flip — each letter of the flanking word was the left-right mirror-image of the original; and vertical-flip — each flanking word was the up-down mirror-image of the original. The low-level letter feature interaction hypothesis predicts similar word crowding effect for all the different flanker configurations, while the high-level holistic representation hypothesis predicts less word crowding effect for all the alternative flanker conditions, compared with the control condition. We found that oral reading speed for words flanked above and below by other words, measured at 10° eccentricity in the nasal field, showed the same dependence on the vertical separation between the target and its flanking words, for the various flanker configurations. The result was also similar when we rotated the flanking words by 90° to disrupt the periodic vertical pattern, which presumably is the main structure in words. The remarkably similar word crowding effect irrespective of the flanker configurations suggests that word crowding arises as a consequence of interactions of low-level letter features. PMID:22079315

  20. Accelerating nuclear configuration interaction calculations through a preconditioned block iterative eigensolver

    NASA Astrophysics Data System (ADS)

    Shao, Meiyue; Aktulga, H. Metin; Yang, Chao; Ng, Esmond G.; Maris, Pieter; Vary, James P.

    2018-01-01

    We describe a number of recently developed techniques for improving the performance of large-scale nuclear configuration interaction calculations on high performance parallel computers. We show the benefit of using a preconditioned block iterative method to replace the Lanczos algorithm that has traditionally been used to perform this type of computation. The rapid convergence of the block iterative method is achieved by a proper choice of starting guesses of the eigenvectors and the construction of an effective preconditioner. These acceleration techniques take advantage of special structure of the nuclear configuration interaction problem which we discuss in detail. The use of a block method also allows us to improve the concurrency of the computation, and take advantage of the memory hierarchy of modern microprocessors to increase the arithmetic intensity of the computation relative to data movement. We also discuss the implementation details that are critical to achieving high performance on massively parallel multi-core supercomputers, and demonstrate that the new block iterative solver is two to three times faster than the Lanczos based algorithm for problems of moderate sizes on a Cray XC30 system.

  1. Analytic nuclear forces and molecular properties from full configuration interaction quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Robert E.; Overy, Catherine; Opalka, Daniel

    Unbiased stochastic sampling of the one- and two-body reduced density matrices is achieved in full configuration interaction quantum Monte Carlo with the introduction of a second, “replica” ensemble of walkers, whose population evolves in imaginary time independently from the first and which entails only modest additional computational overheads. The matrices obtained from this approach are shown to be representative of full configuration-interaction quality and hence provide a realistic opportunity to achieve high-quality results for a range of properties whose operators do not necessarily commute with the Hamiltonian. A density-matrix formulated quasi-variational energy estimator having been already proposed and investigated, themore » present work extends the scope of the theory to take in studies of analytic nuclear forces, molecular dipole moments, and polarisabilities, with extensive comparison to exact results where possible. These new results confirm the suitability of the sampling technique and, where sufficiently large basis sets are available, achieve close agreement with experimental values, expanding the scope of the method to new areas of investigation.« less

  2. The convergence of complete active space self-consistent-field configuration interaction including all single and double excitation energies to the complete basis set limit

    NASA Astrophysics Data System (ADS)

    Petersson, George A.; Malick, David K.; Frisch, Michael J.; Braunstein, Matthew

    2006-07-01

    Examination of the convergence of full valence complete active space self-consistent-field configuration interaction including all single and double excitation (CASSCF-CISD) energies with expansion of the one-electron basis set reveals a pattern very similar to the convergence of single determinant energies. Calculations on the lowest four singlet states and the lowest four triplet states of N2 with the sequence of n-tuple-ζ augmented polarized (nZaP) basis sets (n =2, 3, 4, 5, and 6) are used to establish the complete basis set limits. Full configuration-interaction (CI) and core electron contributions must be included for very accurate potential energy surfaces. However, a simple extrapolation scheme that has no adjustable parameters and requires nothing more demanding than CAS(10e -,8orb)-CISD/3ZaP calculations gives the Re, ωe, ωeXe, Te, and De for these eight states with rms errors of 0.0006Å, 4.43cm-1, 0.35cm-1, 0.063eV, and 0.018eV, respectively.

  3. Microelectromechanical (MEMS) manipulators for control of nanoparticle coupling interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Wiederrecht, Gary; Gosztola, David J.

    A nanopositioning system for producing a coupling interaction between a first nanoparticle and a second nanoparticle. A first MEMS positioning assembly includes an electrostatic comb drive actuator configured to selectively displace a first nanoparticle in a first dimension and an electrode configured to selectively displace the first nanoparticle in a second dimensions. Accordingly, the first nanoparticle may be selectively positioned in two dimensions to modulate the distance between the first nanoparticle and a second nanoparticle that may be coupled to a second MEMS positioning assembly. Modulating the distance between the first and second nanoparticles obtains a coupling interaction between themore » nanoparticles that alters at least one material property of the nanoparticles applicable to a variety of sensing and control applications.« less

  4. Computer-aided controllability assessment of generic manned Space Station concepts

    NASA Technical Reports Server (NTRS)

    Ferebee, M. J.; Deryder, L. J.; Heck, M. L.

    1984-01-01

    NASA's Concept Development Group assessment methodology for the on-orbit rigid body controllability characteristics of each generic configuration proposed for the manned space station is presented; the preliminary results obtained represent the first step in the analysis of these eight configurations. Analytical computer models of each configuration were developed by means of the Interactive Design Evaluation of Advanced Spacecraft CAD system, which created three-dimensional geometry models of each configuration to establish dimensional requirements for module connectivity, payload accommodation, and Space Shuttle berthing; mass, center-of-gravity, inertia, and aerodynamic drag areas were then derived. Attention was also given to the preferred flight attitude of each station concept.

  5. Patterns in the Pythagorean Configuration and Some Extensions: The Power of Interactive Geometry Software

    ERIC Educational Resources Information Center

    Contreras, José

    2015-01-01

    In this paper I describe classroom experiences with pre-service secondary mathematics teachers (PSMTs) investigating and extending patterns embedded in the Pythagorean configuration. This geometric figure is a fruitful source of mathematical tasks to help students, including PSMTs, further develop habits of mind such as visualization,…

  6. An Interactive Graphics Program for Investigating Digital Signal Processing.

    ERIC Educational Resources Information Center

    Miller, Billy K.; And Others

    1983-01-01

    Describes development of an interactive computer graphics program for use in teaching digital signal processing. The program allows students to interactively configure digital systems on a monitor display and observe their system's performance by means of digital plots on the system's outputs. A sample program run is included. (JN)

  7. Comparisons of the Maxwell and CLL gas/surface interaction models using DSMC

    NASA Technical Reports Server (NTRS)

    Hedahl, Marc O.; Wilmoth, Richard G.

    1995-01-01

    The behavior of two different models of gas-surface interactions is studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and the Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate represents one of the solar panels on the Magellan spacecraft, and the freestream conditions correspond to those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two-plate system is not representative of the Magellan geometry but is studied to explore possible experiments that might be used to differentiate between the two gas-surface interaction models. The Maxwell and CLL models produce qualitatively similar results for the aerodynamic forces and heat transfer on a single flat plate. However, the flow fields produced with the two models are qualitatively different for both the single-plate and two-plate calculations. These differences in the flowfield lead to predictions of the angle of attack for maximum heat transfer in a two plate configuration that are distinctly different for the two gas-surface interactions models.

  8. SCF and CI calculations of the dipole moment function of ozone. [Self-Consistent Field and Configuration-Interaction

    NASA Technical Reports Server (NTRS)

    Curtiss, L. A.; Langhoff, S. R.; Carney, G. D.

    1979-01-01

    The constant and linear terms in a Taylor series expansion of the dipole moment function of the ground state of ozone are calculated with Cartesian Gaussian basis sets ranging in quality from minimal to double zeta plus polarization. Results are presented at both the self-consistent field and configuration-interaction levels. Although the algebraic signs of the linear dipole moment derivatives are all established to be positive, the absolute magnitudes of these quantities, as well as the infrared intensities calculated from them, vary considerably with the level of theory.

  9. Microchannel plate detector and methods for their fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elam, Jeffrey W.; Mane, Anil U.; Peng, Qing

    A multi-component tunable resistive coating and methods of depositing the coating on the surfaces of a microchannel plate (MCP) detector. The resistive coating composed of a plurality of alternating layers of a metal oxide resistive component layer and a conductive component layer composed of at least one of a metal, a metal nitride and a metal sulfide. The coating may further include an emissive layer configured to produce a secondary electron emission in response to a particle interacting with the MCP and a neutron-absorbing layer configured to respond to a neutron interacting with the MCP.

  10. Photochemistry of Fe:H2O Adducts in Argon Matrixes: A Combined Experimental and Theoretical Study in the Mid-IR and UV-Visible Regions.

    PubMed

    Deguin, Vincent; Mascetti, Joëlle; Simon, Aude; Ben Amor, Nadia; Aupetit, Christian; Latournerie, Sandra; Noble, Jennifer A

    2018-01-18

    The photochemistry of Fe:H 2 O adducts is of interest in fields as diverse as catalysis and astrochemistry. Industrially, iron can be used as a catalyst to convert H 2 O to H 2 , whereas in the interstellar medium it may be an important component of dust grains, influencing the chemistry on their icy surfaces. This study consisted of the deposition and spectral characterization of binary systems of atomic iron with H 2 O in cryogenic argon matrixes. In this way, we were able to obtain information about the interaction of the two species; we observed the formation of adducts of iron monomers and dimers with water molecules in the mid-IR and UV-visible spectral domains. Upon irradiation with a UV radiation source, the iron species were inserted into the water molecules to form HFeOH and HFe 2 OH, leading in some cases to the formation of FeO possibly accompanied by the production of H 2 . DFT and correlated multireference wave function calculations confirmed our attributions. This combination of IR and UV-visible spectroscopy with theoretical calculations allowed us to determine, for the first time, the spectral characteristics of iron adducts and their photoproducts in the UV-visible and in the OH stretching region of the mid-IR domain.

  11. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm

    DOE PAGES

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; ...

    2015-04-01

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less

  12. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less

  13. Experimental research on crossing shock wave boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Settles, G. S.; Garrison, T. J.

    1994-10-01

    An experimental research effort of the Penn State Gas Dynamics Laboratory on the subject of crossing shock wave boundary layer interactions is reported. This three year study was supported by AFOSR Grant 89-0315. A variety of experimental techniques were employed to study the above phenomena including planar laser scattering flowfield visualization, kerosene lampblack surface flow visualization, laser-interferometer skin friction surveys, wall static pressure measurements, and flowfield five-hole probe surveys. For a model configuration producing two intersecting shock waves, measurements were made for a range of oblique shock strengths at freestream Mach numbers of 3.0 and 3.85. Additionally, measurements were made at Mach 3.85 for a configuration producing three intersecting waves. The combined experimental dataset was used to formulate the first detailed flowfield models of the crossing-shock and triple-shock wave/boundary layer interactions. The structure of these interactions was found to be similar over a broad range of interaction strengths and is dominated by a large, separated, viscous flow region.

  14. The Periodic Table as a Mnemonic Device for Writing Electronic Configurations

    NASA Astrophysics Data System (ADS)

    Mabrouk, Suzanne T.

    2003-08-01

    Lectures on electronic configurations often appear boring and intangible to many students. This topic can become engaging and interesting through the use of an interactive method based on the periodic table. Using a periodic table with shell and subshell designations in each square, students learn the patterns or the periodicity to the electronic configurations of the elements. Students are then encouraged to commit these patterns to memory through rehearsal in class. With the standard periodic table and the memorized patterns, students are shown that electronic configurations can be determined. Although students often appear mystified by the topic of electronic configurations, especially when its relevance to chemistry is absent, students' understanding can be improved easily by making connections and using analogy as the activity described here does.

  15. Thermal stability of bubble domains in ferromagnetic discs

    NASA Astrophysics Data System (ADS)

    Hrkac, G.; Bance, S.; Goncharov, A.; Schrefl, T.; Suess, D.

    2007-05-01

    The transition and thermal stability of disc-shaped ferromagnetic particles at the temperature of T = 300 K with a uniaxial anisotropy along the symmetry axis from a bi-domain to a single domain state has been studied. The nudge elastic band method was used to map the energy landscape and to calculate the energy barrier between the transition states. For single FePt disc-shaped particles with perpendicular anisotropy three transition configurations have been found: single domain, stripe- and stable bubble domains at zero applied field. The single domain configuration along the positive anisotropy axis is reached by an annihilation process of the domain wall and the all-down state by a complex domain expansion process. Magnetization configurations in two interacting discs show an increase in thermal stability compared with single disc systems, which is attributed to the interacting magnetostatic energy between the two particles.

  16. Coalescence of viscous drops translating through a capillary tube

    NASA Astrophysics Data System (ADS)

    AlMatroushi, Eisa; Borhan, Ali

    2014-03-01

    An experimental study of the interaction and coalescence of viscous drops moving through a cylindrical capillary tube under low Reynolds number conditions is presented. The combined pressure- and buoyancy-driven motion of drops in a Newtonian continuous phase is examined. The interaction between two drops is quantified using image analysis, and measurements of the coalescence time are reported for various drop size ratios, Bond numbers, and viscosity ratios. The time scale for coalescence in the non-axisymmetric configuration is found to be substantially larger than that for coalescence in the axisymmetric configuration. Measurements of the radius of the liquid film formed between the two drops at the instant of apparent contact are used in conjunction with a planar film drainage model to predict the dependence of the coalescence time on drop size ratio for coalescence of low viscosity-ratio drops in the axisymmetric configuration.

  17. Evaluation of atomic constants for optical radiation, volume 2

    NASA Technical Reports Server (NTRS)

    Kylstra, C. D.; Schneider, R. J.

    1974-01-01

    Various atomic constant for 23 elements from helium to mercury were computed and are presented in tables. The data given for each element start with the element name, its atomic number, its ionic state, and the designation and series limit for each parent configuration. This is followed by information on the energy level, parent configuration, and designation for each term available to the program. The matrix elements subtables are ordered by the sequence numbers, which represent the initial and final levels of the transitions. Each subtable gives the following: configuration of the core or parent, designation and energy level for the reference state, effective principal quantum number, energy of the series limit, value of the matrix element for the reference state interacting with itself, and sum of all of the dipole matrix elements listed in the subtable. Dipole and quadrupole interaction data are also given.

  18. Cis→Trans Isomerization of Pro7 in Oxytocin Regulates Zn2+ Binding

    NASA Astrophysics Data System (ADS)

    Fuller, Daniel R.; Glover, Matthew S.; Pierson, Nicholas A.; Kim, DoYong; Russell, David H.; Clemmer, David E.

    2016-08-01

    Ion mobility/mass spectrometry techniques are employed to investigate the binding of Zn2+ to the nine-residue peptide hormone oxytocin (OT, Cys1-Tyr2-Ile3-Gln4-Asn5-Cys6-Pro7-Leu8-Gly9-NH2, having a disulfide bond between Cys1 and Cys6 residues). Zn2+ binding to OT is known to increase the affinity of OT for its receptor [Pearlmutter, A. F., Soloff, M. S.: Characterization of the metal ion requirement for oxytocin-receptor interaction in rat mammary gland membranes. J. Biol. Chem. 254, 3899-3906 (1979)]. In the absence of Zn2+, we find evidence for two primary OT conformations, which arise because the Cys6-Pro7 peptide bond exists in both the trans- and cis-configurations. Upon addition of Zn2+, we determine binding constants in water of KA = 1.43 ± 0.24 and 0.42 ± 0.12 μM-1, for the trans- and cis-configured populations, respectively. The Zn2+ bound form of OT, having a cross section of Ω = 235 Å2, has Pro7 in the trans-configuration, which agrees with a prior report [Wyttenbach, T., Liu, D., Bowers, M. T.: Interactions of the hormone oxytocin with divalent metal ions. J. Am. Chem. Soc. 130, 5993-6000 (2008)], in which it was proposed that Zn2+ binds to the peptide ring and is further coordinated by interaction of the C-terminal, Pro7-Leu8-Gly9-NH2, tail. The present work shows that the cis-configuration of OT isomerizes to the trans-configuration upon binding Zn2+. In this way, the proline residue regulates Zn2+ binding to OT and, hence, is important in receptor binding.

  19. Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for sulfur-like iron, Fe XI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abou El-Maaref, A., E-mail: aahmh@hotmail.com; Ahmad, Mahmoud; Allam, S.H.

    Energy levels, oscillator strengths, and transition probabilities for transitions among the 14 LS states belonging to configurations of sulfur-like iron, Fe XI, have been calculated. These states are represented by configuration interaction wavefunctions and have configurations 3s{sup 2}3p{sup 4}, 3s3p{sup 5}, 3s{sup 2}3p{sup 3}3d, 3s{sup 2}3p{sup 3}4s, 3s{sup 2}3p{sup 3}4p, and 3s{sup 2}3p{sup 3}4d, which give rise to 123 fine-structure energy levels. Extensive configuration interaction calculations using the CIV3 code have been performed. To assess the importance of relativistic effects, the intermediate coupling scheme by means of the Breit–Pauli Hamiltonian terms, such as the one-body mass correction and Darwin term,more » and spin–orbit, spin–other-orbit, and spin–spin corrections, are incorporated within the code. These incorporations adjusted the energy levels, therefore the calculated values are close to the available experimental data. Comparisons between the present calculated energy levels as well as oscillator strengths and both experimental and theoretical data have been performed. Our results show good agreement with earlier works, and they might be useful in thermonuclear fusion research and astrophysical applications. -- Highlights: •Accurate atomic data of iron ions are needed for identification of solar corona. •Extensive configuration interaction wavefunctions including 123 fine-structure levels have been calculated. •The relativistic effects by means of the Breit–Pauli Hamiltonian terms are incorporated. •This incorporation adjusts the energy levels, therefore the calculated values are close to experimental values.« less

  20. Distinct Adsorption Configurations and Self-Assembly Characteristics of Fibrinogen on Chemically Uniform and Alternating Surfaces including Block Copolymer Nanodomains

    PubMed Central

    2015-01-01

    Understanding protein–surface interactions is crucial to solid-state biomedical applications whose functionality is directly correlated with the precise control of the adsorption configuration, surface packing, loading density, and bioactivity of protein molecules. Because of the small dimensions and highly amphiphilic nature of proteins, investigation of protein adsorption performed on nanoscale topology can shed light on subprotein-level interaction preferences. In this study, we examine the adsorption and assembly behavior of a highly elongated protein, fibrinogen, on both chemically uniform (as-is and buffered HF-treated SiO2/Si, and homopolymers of polystyrene and poly(methyl methacrylate)) and varying (polystyrene-block-poly(methyl methacrylate)) surfaces. By focusing on high-resolution imaging of individual protein molecules whose configurations are influenced by protein–surface rather than protein–protein interactions, fibrinogen conformations characteristic to each surface are identified and statistically analyzed for structural similarities/differences in key protein domains. By exploiting block copolymer nanodomains whose repeat distance is commensurate with the length of the individual protein, we determine that fibrinogen exhibits a more neutral tendency for interaction with both polystyrene and poly(methyl methacrylate) blocks relative to the case of common globular proteins. Factors affecting fibrinogen–polymer interactions are discussed in terms of hydrophobic and electrostatic interactions. In addition, assembly and packing attributes of fibrinogen are determined at different loading conditions. Primary orientations of fibrinogen and its rearrangements with respect to the underlying diblock nanodomains associated with different surface coverage are explained by pertinent protein interaction mechanisms. On the basis of two-dimensional stacking behavior, a protein assembly model is proposed for the formation of an extended fibrinogen network on the diblock copolymer. PMID:24708538

  1. Molecular simulations of the pairwise interaction of monoclonal antibodies.

    PubMed

    Lapelosa, Mauro; Patapoff, Thomas W; Zarraga, Isidro E

    2014-11-20

    Molecular simulations are employed to compute the free energy of pairwise monoclonal antibodies (mAbs) association using a conformational sampling algorithm with a scoring function. The work reported here is aimed at investigating the mAb-mAb association driven by weak interactions with a computational method capable of predicting experimental observations of low binding affinity. The simulations are able to explore the free energy landscape. A steric interaction component, electrostatic interactions, and a nonpolar component of the free energy form the energy scoring function. Electrostatic interactions are calculated by solving the Poisson-Boltzmann equation. The nonpolar component is derived from the van der Waals interactions upon close contact of the protein surfaces. Two mAbs with similar IgG1 framework but with small sequence differences, mAb1 and mAb2, are considered for their different viscosity and propensity to form a weak interacting dimer. mAb1 presents favorable free energy of association at pH 6 with 15 mM of ion concentration reproducing experimental trends of high viscosity and dimer formation at high concentration. Free energy landscape and minimum free energy configurations of the dimer, as well as the second virial coefficient (B22) values are calculated. The energy distributions for mAb1 are obtained, and the most probable configurations are seen to be consistent with experimental measurements. In contrast, mAb2 shows an unfavorable average free energy at the same buffer conditions due to poor electrostatic complementarity, and reversible dimer configurations with favorable free energy are found to be unlikely. Finally, the simulations of the mAb association dynamics provide insights on the self-association responsible for bulk solution behavior and aggregation, which are important to the processing and the quality of biopharmaceuticals.

  2. EIT in resonator chains: similarities and differences with atomic media

    NASA Technical Reports Server (NTRS)

    Matsko, A. B.; Maleki, L.; Savchenkov, A. A.; Ilchenko, V. S.

    2004-01-01

    We theoretically study a parallel configuration of two interacting whispering gallery mode optical resonators and show a narrow-band modal structure as a basis for a widely tunable delay line. For the optimum coupling configuration the system can possess an unusually narrow spectral feature with a much narrower bandwidth than the loaded bandwidth of each individual resonator.

  3. The mechanism of word crowding.

    PubMed

    Yu, Deyue; Akau, Melanie M U; Chung, Susana T L

    2012-01-01

    Word reading speed in peripheral vision is slower when words are in close proximity of other words (Chung, 2004). This word crowding effect could arise as a consequence of interaction of low-level letter features between words, or the interaction between high-level holistic representations of words. We evaluated these two hypotheses by examining how word crowding changes for five configurations of flanking words: the control condition - flanking words were oriented upright; scrambled - letters in each flanking word were scrambled in order; horizontal-flip - each flanking word was the left-right mirror-image of the original; letter-flip - each letter of the flanking word was the left-right mirror-image of the original; and vertical-flip - each flanking word was the up-down mirror-image of the original. The low-level letter feature interaction hypothesis predicts similar word crowding effect for all the different flanker configurations, while the high-level holistic representation hypothesis predicts less word crowding effect for all the alternative flanker conditions, compared with the control condition. We found that oral reading speed for words flanked above and below by other words, measured at 10° eccentricity in the nasal field, showed the same dependence on the vertical separation between the target and its flanking words, for the various flanker configurations. The result was also similar when we rotated the flanking words by 90° to disrupt the periodic vertical pattern, which presumably is the main structure in words. The remarkably similar word crowding effect irrespective of the flanker configurations suggests that word crowding arises as a consequence of interactions of low-level letter features. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Specificity of molecular interactions in transient protein-protein interaction interfaces.

    PubMed

    Cho, Kyu-il; Lee, KiYoung; Lee, Kwang H; Kim, Dongsup; Lee, Doheon

    2006-11-15

    In this study, we investigate what types of interactions are specific to their biological function, and what types of interactions are persistent regardless of their functional category in transient protein-protein heterocomplexes. This is the first approach to analyze protein-protein interfaces systematically at the molecular interaction level in the context of protein functions. We perform systematic analysis at the molecular interaction level using classification and feature subset selection technique prevalent in the field of pattern recognition. To represent the physicochemical properties of protein-protein interfaces, we design 18 molecular interaction types using canonical and noncanonical interactions. Then, we construct input vector using the frequency of each interaction type in protein-protein interface. We analyze the 131 interfaces of transient protein-protein heterocomplexes in PDB: 33 protease-inhibitors, 52 antibody-antigens, 46 signaling proteins including 4 cyclin dependent kinase and 26 G-protein. Using kNN classification and feature subset selection technique, we show that there are specific interaction types based on their functional category, and such interaction types are conserved through the common binding mechanism, rather than through the sequence or structure conservation. The extracted interaction types are C(alpha)-- H...O==C interaction, cation...anion interaction, amine...amine interaction, and amine...cation interaction. With these four interaction types, we achieve the classification success rate up to 83.2% with leave-one-out cross-validation at k = 15. Of these four interaction types, C(alpha)--H...O==C shows binding specificity for protease-inhibitor complexes, while cation-anion interaction is predominant in signaling complexes. The amine ... amine and amine...cation interaction give a minor contribution to the classification accuracy. When combined with these two interactions, they increase the accuracy by 3.8%. In the case of antibody-antigen complexes, the sign is somewhat ambiguous. From the evolutionary perspective, while protease-inhibitors and sig-naling proteins have optimized their interfaces to suit their biological functions, antibody-antigen interactions are the happenstance, implying that antibody-antigen complexes do not show distinctive interaction types. Persistent interaction types such as pi...pi, amide-carbonyl, and hydroxyl-carbonyl interaction, are also investigated. Analyzing the structural orientations of the pi...pi stacking interactions, we find that herringbone shape is a major configuration in transient protein-protein interfaces. This result is different from that of protein core, where parallel-displaced configurations are the major configuration. We also analyze overall trend of amide-carbonyl and hydroxyl-carbonyl interactions. It is noticeable that nearly 82% of the interfaces have at least one hydroxyl-carbonyl interactions. (c) 2006 Wiley-Liss, Inc.

  5. Control of electron spin and orbital resonances in quantum dots through spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Stano, Peter; Fabian, Jaroslav

    2008-01-01

    The influence of a resonant oscillating electromagnetic field on a single electron in coupled lateral quantum dots in the presence of phonon-induced relaxation and decoherence is investigated. Using symmetry arguments, it is shown that the spin and orbital resonances can be efficiently controlled by spin-orbit interactions. The control is possible due to the strong sensitivity of the Rabi frequency to the dot configuration (the orientation of the dot and the applied static magnetic field); the sensitivity is a result of the anisotropy of the spin-orbit interactions. The so-called easy passage configuration is shown to be particularly suitable for a magnetic manipulation of spin qubits, ensuring long spin relaxation times and protecting the spin qubits from electric field disturbances accompanying on-chip manipulations.

  6. Solution to the sign problem in a frustrated quantum impurity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hann, Connor T., E-mail: connor.hann@yale.edu; Huffman, Emilie; Chandrasekharan, Shailesh

    2017-01-15

    In this work we solve the sign problem of a frustrated quantum impurity model consisting of three quantum spin-half chains interacting through an anti-ferromagnetic Heisenberg interaction at one end. We first map the model into a repulsive Hubbard model of spin-half fermions hopping on three independent one dimensional chains that interact through a triangular hopping at one end. We then convert the fermion model into an inhomogeneous one dimensional model and express the partition function as a weighted sum over fermion worldline configurations. By imposing a pairing of fermion worldlines in half the space we show that all negative weightmore » configurations can be eliminated. This pairing naturally leads to the original frustrated quantum spin model at half filling and thus solves its sign problem.« less

  7. Cart3D Analysis of Plume and Shock Interaction Effects on Sonic Boom

    NASA Technical Reports Server (NTRS)

    Castner, Raymond

    2015-01-01

    A plume and shock interaction study was developed to collect data and perform CFD on a configuration where a nozzle plume passed through the shock generated from the wing or tail of a supersonic vehicle. The wing or tail was simulated with a wedge-shaped shock generator. Three configurations were analyzed consisting of two strut mounted wedges and one propulsion pod with an aft deck from a low boom vehicle concept. Research efforts at NASA were intended to enable future supersonic flight over land in the United States. Two of these efforts provided data for regulatory change and enabled design of low boom aircraft. Research has determined that sonic boom is a function of aircraft lift and volume distribution. Through careful tailoring of these variables, the sonic boom of concept vehicles has been reduced. One aspect of vehicle tailoring involved how the aircraft engine exhaust interacted with aft surfaces on a supersonic aircraft, such as the tail and wing trailing edges. In this work, results from Euler CFD simulations are compared to experimental data collected on sub-scale components in a wind tunnel. Three configurations are studied to simulate the nozzle plume interaction with representative wing and tail surfaces. Results demonstrate how the plume and tail shock structure moves with increasing nozzle pressure ratio. The CFD captures the main features of the plume and shock interaction. Differences are observed in the plume and deck shock structure that warrant further research and investigation.

  8. Discourse-voice regulatory strategies in the psychotherapeutic interaction: a state-space dynamics analysis.

    PubMed

    Tomicic, Alemka; Martínez, Claudio; Pérez, J Carola; Hollenstein, Tom; Angulo, Salvador; Gerstmann, Adam; Barroux, Isabelle; Krause, Mariane

    2015-01-01

    This study seeks to provide evidence of the dynamics associated with the configurations of discourse-voice regulatory strategies in patient-therapist interactions in relevant episodes within psychotherapeutic sessions. Its central assumption is that discourses manifest themselves differently in terms of their prosodic characteristics according to their regulatory functions in a system of interactions. The association between discourse and vocal quality in patients and therapists was analyzed in a sample of 153 relevant episodes taken from 164 sessions of five psychotherapies using the state space grid (SSG) method, a graphical tool based on the dynamic systems theory (DST). The results showed eight recurrent and stable discourse-voice regulatory strategies of the patients and three of the therapists. Also, four specific groups of these discourse-voice strategies were identified. The latter were interpreted as regulatory configurations, that is to say, as emergent self-organized groups of discourse-voice regulatory strategies constituting specific interactional systems. Both regulatory strategies and their configurations differed between two types of relevant episodes: Change Episodes and Rupture Episodes. As a whole, these results support the assumption that speaking and listening, as dimensions of the interaction that takes place during therapeutic conversation, occur at different levels. The study not only shows that these dimensions are dependent on each other, but also that they function as a complex and dynamic whole in therapeutic dialog, generating relational offers which allow the patient and the therapist to regulate each other and shape the psychotherapeutic process that characterizes each type of relevant episode.

  9. The effect of tidal forces on the minimum energy configurations of the full three-body problem

    NASA Astrophysics Data System (ADS)

    Levine, Edward

    We investigate the evolution of minimum energy configurations for the Full Three Body Problem (3BP). A stable ternary asteroid system will gradually become unstable due to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect and an unpredictable trajectory will ensue. Through the interaction of tidal torques, energy in the system will dissipate in the form of heat until a stable minimum energy configuration is reached. We present a simulation that describes the dynamical evolution of three bodies under the mutual effects of gravity and tidal torques. Simulations show that bodies do not get stuck in local minima and transition to the predicted minimum energy configuration.

  10. The configuration of residential area in urban structure of the palace in Siak Sri Indrapura - Riau

    NASA Astrophysics Data System (ADS)

    Rijal, Muhammad

    2018-05-01

    This article is part of major research in describing the configuration of waterfront residential area in urban space structure of the palace and related to the Malay Kingdom in the waterside of the Strait of Malacca. This research aimed to identify the configuration of riverfront residential area in Siak Sri Indrapura City based on physical and non-physical aspects. The method used in this research was qualitative rationalistic referring to the components of urban design theory. The results of the research showed that the spatial configuration in Siak Sri Indrapura City is linear and related to the past events and socio-cultural and socio-economic interaction of the society.

  11. A study of an orbital radar mapping mission to Venus. Volume 2: Configuration comparisons and systems evaluation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Configuration comparisons and systems evaluation for the orbital radar mapping mission of the planet Venus are discussed. Designs are recommended which best satisfy the science objectives of the Venus radar mapping concept. Attention is given to the interaction and integration of those specific mission-systems recommendations with one another, and the final proposed designs are presented. The feasibility, cost, and scheduling of these configurations are evaluated against assumptions of reasonable state-of-the-art growth and space funding expectations.

  12. Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    The following reports are presented on this project:A first year progress report on: Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; A second year progress report on: Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design; Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration; and Improving the Aircraft Design Process Using Web-based Modeling and Simulation.

  13. The 4d8-(4d74f + 4d76p + 4p54d9) transitions in the spectrum of five times ionized indium (In VI)

    NASA Astrophysics Data System (ADS)

    Ryabtsev, A. N.; Tauheed, A.; Swapnil; Kildiyarova, R. R.; Kononov, E. Ya

    2018-06-01

    The spectrum of five times ionized indium excited in a vacuum spark has been studied in the wavelength region 180-250 Å using a 3 m grazing incidence spectrograph. Transitions from highly excited interacting configurations 4d74f + 4d76p + 4p54d9 to the ground state 4d8 configuration were studied. 165 spectral lines were identified and 81 levels of the excited configurations were found.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaporozhets, Irina A.; Ivanov, Vladimir V.; Lyakh, Dmitry I.

    The earlier proposed multi-reference state-specific coupled-cluster theory with the complete active space reference suffered from a problem of energy discontinuities when the formal reference state was changing in the calculation of the potential energy curve (PEC). A simple remedy to the discontinuity problem is found and is presented in this work. It involves using natural complete active space self-consistent field active orbitals in the complete active space coupled-cluster calculations. As a result, the approach gives smooth PECs for different types of dissociation problems, as illustrated in the calculations of the dissociation of the single bond in the hydrogen fluorine moleculemore » and of the symmetric double-bond dissociation in the water molecule.« less

  15. Ab initio study of the diatomic fluorides FeF, CoF, NiF, and CuF.

    PubMed

    Koukounas, Constantine; Mavridis, Aristides

    2008-11-06

    The late-3d transition-metal diatomic fluorides MF = FeF, CoF, NiF, and CuF have been studied using variational multireference (MRCI) and coupled-cluster [RCCSD(T)] methods, combined with large to very large basis sets. We examined a total of 35 (2S+1)|Lambda| states, constructing as well 29 full potential energy curves through the MRCI method. All examined states are ionic, diabatically correlating to M(+)+F(-)((1)S). Notwithstanding the "eccentric" character of the 3d transition metals and the difficulties to accurately be described with all-electron ab initio methods, our results are, in general, in very good agreement with available experimental numbers.

  16. A correlated ab initio study of the A2 pi <-- X2 sigma+ transition in MgCCH

    NASA Technical Reports Server (NTRS)

    Woon, D. E.

    1997-01-01

    The A2 pi <-- X2 sigma+ transition in MgCCH was studied with correlation consistent basis sets and single- and multireference correlation methods. The A2 pi excited state was characterized in detail; the x2 sigma+ ground state has been described elsewhere recently. The estimated complete basis set (CBS) limits for valence correlation, including zero-point energy corrections, are 22668, 23191, and 22795 for the RCCSD(T), MRCI, and MRCI + Q methods, respectively. A core-valence correction of +162 cm-1 shifts the RCCSD(T) value to 22830 cm-1, in good agreement with the experimental result of 22807 cm-1.

  17. A MRCC study of the isomerisation of cyclopropane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Jakub; Švaňa, Matej; Demel, Ondřej

    2017-01-19

    Mukherjee’s and Brillouin-Wigner multi-reference coupled cluster methods were used to study the isomerization of cyclopropane to propene through a trimethylene/propylidene diradicals. Main aim was to obtain high quality ab-initio data using advanced methods that treat both static and dynamic correlation in the involved species. The MkCCSD(T)/cc-pVQZ activation energy of cyclopropane isomerization via trimethylene is 65.6 kcal/mol, in a good agreement with experimental values in the range 60-65 kcal/mol. The MkCCSD(T)/cc-pV5Z adiabatic singlet-triplet gap in trimethylene is 0.6 kcal/mol, slightly higher than previous CASPT2 result -0.7 kcal/mol by Skancke et al.

  18. Theoretical study on the photoabsorption in the Herzberg I band system of the O 2 molecule

    NASA Astrophysics Data System (ADS)

    Takegami, Ryuta; Yabushita, Satoshi

    2005-01-01

    The Herzberg I band system of the oxygen molecule is electric-dipole forbidden and its absorption strength has been explained by intensity borrowing models which include the spin-orbit (SO) and L-uncoupling (RO) interactions as perturbations. We employed three different levels of theoretical models to evaluate these two interactions, and obtained the rotational and vibronic absorption strengths using the ab initio method. The first model calculates the transition moments induced by the SO interaction variationally with the SO configuration interaction method (SOCI), and uses the first-order perturbation theory for the RO interaction, and is called SOCI. The second is based on the first-order perturbation theory for both the SO and RO interactions, and is called Pert(Full). The last is a limited version of Pert(Full), in that the first-order perturbation wavefunction for the initial and final state is represented by only one dominant basis, namely the 1 3Π g and B3Σu- state, respectively, as originally used by England et al. [Can. J. Phys. 74 (1996) 185], and is called Pert(England). The vibronic oscillator strengths calculated by these three models were in good agreement with the experimental values. As for the integrated rotational linestrengths, the SOCI and Pert(Full) models reproduced the experimental results very well, however the Pert(England) model did not give satisfactory results. Since the Pert(England) model takes only the 1 3Π g and B3Σu- states into consideration, it cannot contain the complicated configuration interactions with highly excited states induced by the SO and RO interaction, which plays an important role for calculating the delicate integrated rotational linestrength. This result suggests that the configuration interaction with highly excited states due to some perturbations cannot be neglected in the case of very weak absorption band systems.

  19. Interaction between single gold atom and the graphene edge: A study via aberration-corrected transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Hongtao; Li, Kun; Cheng, Yingchun; Wang, Qingxiao; Yao, Yingbang; Schwingenschlögl, Udo; Zhang, Xixiang; Yang, Wei

    2012-04-01

    Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms.Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms. Electronic supplementary information (ESI) available: Additional Figures for characterization of mono-layer CVD graphene samples with free edges and Pt atoms decorations and analysis of the effect of electron irradiation; supporting movie on edge evolution. See DOI: 10.1039/c2nr00059h

  20. Theoretical level energies and transition data for 4p64d4, 4p64d34f and 4p54d5 configurations of W34+ ion

    NASA Astrophysics Data System (ADS)

    Karpuškienė, R.; Bogdanovich, P.; Kisielius, R.

    2017-05-01

    The ab initio quasirelativistic approach developed specifically for the calculation of spectral parameters of highly charged ions was used to derive transition data for the tungsten ion W34+. The configuration interaction method was applied to include electron correlation effects. The relativistic effects were taken into account in the Breit-Pauli approximation. The level energies, radiative lifetimes τ, Landé g-factors are determined for the ground configuration 4p64d4 and two excited configurations 4p64d34f and 4p54d5. The radiative transition wavelengths λ and emission transition probabilities A for the electric dipole, electric quadrupole, electric octupole, magnetic dipole, and magnetic quadrupole transitions among the levels of these configurations are produced.

Top