Sample records for multiresolution hough transform

  1. Guaranteed convergence of the Hough transform

    NASA Astrophysics Data System (ADS)

    Soffer, Menashe; Kiryati, Nahum

    1995-01-01

    The straight-line Hough Transform using normal parameterization with a continuous voting kernel is considered. It transforms the colinearity detection problem to a problem of finding the global maximum of a two dimensional function above a domain in the parameter space. The principle is similar to robust regression using fixed scale M-estimation. Unlike standard M-estimation procedures the Hough Transform does not rely on a good initial estimate of the line parameters: The global optimization problem is approached by exhaustive search on a grid that is usually as fine as computationally feasible. The global maximum of a general function above a bounded domain cannot be found by a finite number of function evaluations. Only if sufficient a-priori knowledge about the smoothness of the objective function is available, convergence to the global maximum can be guaranteed. The extraction of a-priori information and its efficient use are the main challenges in real global optimization problems. The global optimization problem in the Hough Transform is essentially how fine should the parameter space quantization be in order not to miss the true maximum. More than thirty years after Hough patented the basic algorithm, the problem is still essentially open. In this paper an attempt is made to identify a-priori information on the smoothness of the objective (Hough) function and to introduce sufficient conditions for the convergence of the Hough Transform to the global maximum. An image model with several application dependent parameters is defined. Edge point location errors as well as background noise are accounted for. Minimal parameter space quantization intervals that guarantee convergence are obtained. Focusing policies for multi-resolution Hough algorithms are developed. Theoretical support for bottom- up processing is provided. Due to the randomness of errors and noise, convergence guarantees are probabilistic.

  2. Identification of Buried Objects in GPR Using Amplitude Modulated Signals Extracted from Multiresolution Monogenic Signal Analysis

    PubMed Central

    Qiao, Lihong; Qin, Yao; Ren, Xiaozhen; Wang, Qifu

    2015-01-01

    It is necessary to detect the target reflections in ground penetrating radar (GPR) images, so that surface metal targets can be identified successfully. In order to accurately locate buried metal objects, a novel method called the Multiresolution Monogenic Signal Analysis (MMSA) system is applied in ground penetrating radar (GPR) images. This process includes four steps. First the image is decomposed by the MMSA to extract the amplitude component of the B-scan image. The amplitude component enhances the target reflection and suppresses the direct wave and reflective wave to a large extent. Then we use the region of interest extraction method to locate the genuine target reflections from spurious reflections by calculating the normalized variance of the amplitude component. To find the apexes of the targets, a Hough transform is used in the restricted area. Finally, we estimate the horizontal and vertical position of the target. In terms of buried object detection, the proposed system exhibits promising performance, as shown in the experimental results. PMID:26690146

  3. Detection and Estimation of Multi-Pulse LFMCW Radar Signals

    DTIC Science & Technology

    2010-01-01

    the Hough transform (HT) of the Wigner - Ville distribution ( WVD ), has been shown to be equivalent to the generalized likelihood ratio test (GLRT...virginia.edu Abstract— The Wigner - Ville Hough transform (WVHT) has been applied to detect and estimate the parameters of linear frequency-modulated...well studied in the literature. One of the most prominent techniques is the Wigner - Ville Hough Transform [8], [9]. The Wigner - Ville Hough transform (WVHT

  4. Polar exponential sensor arrays unify iconic and Hough space representation

    NASA Technical Reports Server (NTRS)

    Weiman, Carl F. R.

    1990-01-01

    The log-polar coordinate system, inherent in both polar exponential sensor arrays and log-polar remapped video imagery, is identical to the coordinate system of its corresponding Hough transform parameter space. The resulting unification of iconic and Hough domains simplifies computation for line recognition and eliminates the slope quantization problems inherent in the classical Cartesian Hough transform. The geometric organization of the algorithm is more amenable to massively parallel architectures than that of the Cartesian version. The neural architecture of the human visual cortex meets the geometric requirements to execute 'in-place' log-Hough algorithms of the kind described here.

  5. A method to analyze molecular tagging velocimetry data using the Hough transform.

    PubMed

    Sanchez-Gonzalez, R; McManamen, B; Bowersox, R D W; North, S W

    2015-10-01

    The development of a method to analyze molecular tagging velocimetry data based on the Hough transform is presented. This method, based on line fitting, parameterizes the grid lines "written" into a flowfield. Initial proof-of-principle illustration of this method was performed to obtain two-component velocity measurements in the wake of a cylinder in a Mach 4.6 flow, using a data set derived from computational fluid dynamics simulations. The Hough transform is attractive for molecular tagging velocimetry applications since it is capable of discriminating spurious features that can have a biasing effect in the fitting process. Assessment of the precision and accuracy of the method were also performed to show the dependence on analysis window size and signal-to-noise levels. The accuracy of this Hough transform-based method to quantify intersection displacements was determined to be comparable to cross-correlation methods. The employed line parameterization avoids the assumption of linearity in the vicinity of each intersection, which is important in the limit of drastic grid deformations resulting from large velocity gradients common in high-speed flow applications. This Hough transform method has the potential to enable the direct and spatially accurate measurement of local vorticity, which is important in applications involving turbulent flowfields. Finally, two-component velocity determinations using the Hough transform from experimentally obtained images are presented, demonstrating the feasibility of the proposed analysis method.

  6. Vanishing points detection using combination of fast Hough transform and deep learning

    NASA Astrophysics Data System (ADS)

    Sheshkus, Alexander; Ingacheva, Anastasia; Nikolaev, Dmitry

    2018-04-01

    In this paper we propose a novel method for vanishing points detection based on convolutional neural network (CNN) approach and fast Hough transform algorithm. We show how to determine fast Hough transform neural network layer and how to use it in order to increase usability of the neural network approach to the vanishing point detection task. Our algorithm includes CNN with consequence of convolutional and fast Hough transform layers. We are building estimator for distribution of possible vanishing points in the image. This distribution can be used to find candidates of vanishing point. We provide experimental results from tests of suggested method using images collected from videos of road trips. Our approach shows stable result on test images with different projective distortions and noise. Described approach can be effectively implemented for mobile GPU and CPU.

  7. The 3D Hough Transform for plane detection in point clouds: A review and a new accumulator design

    NASA Astrophysics Data System (ADS)

    Borrmann, Dorit; Elseberg, Jan; Lingemann, Kai; Nüchter, Andreas

    2011-03-01

    The Hough Transform is a well-known method for detecting parameterized objects. It is the de facto standard for detecting lines and circles in 2-dimensional data sets. For 3D it has attained little attention so far. Even for the 2D case high computational costs have lead to the development of numerous variations for the Hough Transform. In this article we evaluate different variants of the Hough Transform with respect to their applicability to detect planes in 3D point clouds reliably. Apart from computational costs, the main problem is the representation of the accumulator. Usual implementations favor geometrical objects with certain parameters due to uneven sampling of the parameter space. We present a novel approach to design the accumulator focusing on achieving the same size for each cell and compare it to existing designs. [Figure not available: see fulltext.

  8. Combining convolutional neural networks and Hough Transform for classification of images containing lines

    NASA Astrophysics Data System (ADS)

    Sheshkus, Alexander; Limonova, Elena; Nikolaev, Dmitry; Krivtsov, Valeriy

    2017-03-01

    In this paper, we propose an expansion of convolutional neural network (CNN) input features based on Hough Transform. We perform morphological contrasting of source image followed by Hough Transform, and then use it as input for some convolutional filters. Thus, CNNs computational complexity and the number of units are not affected. Morphological contrasting and Hough Transform are the only additional computational expenses of introduced CNN input features expansion. Proposed approach was demonstrated on the example of CNN with very simple structure. We considered two image recognition problems, that were object classification on CIFAR-10 and printed character recognition on private dataset with symbols taken from Russian passports. Our approach allowed to reach noticeable accuracy improvement without taking much computational effort, which can be extremely important in industrial recognition systems or difficult problems utilising CNNs, like pressure ridge analysis and classification.

  9. Hough transform method for track finding in center drift chamber

    NASA Astrophysics Data System (ADS)

    Azmi, K. A. Mohammad Kamal; Wan Abdullah, W. A. T.; Ibrahim, Zainol Abidin

    2016-01-01

    Hough transform is a global tracking method used which had been expected to be faster approach for tracking the circular pattern of electron moving in Center Drift Chamber (CDC), by transforming the point of hit into a circular curve. This paper present the implementation of hough transform method for the reconstruction of tracks in Center Drift Chamber (CDC) which have been generated by random number in C language programming. Result from implementation of this method shows higher peak of circle parameter value (xc,yc,rc) that indicate the similarity value of the parameter needed for circular track in CDC for charged particles in the region of CDC.

  10. Hough transform method for track finding in center drift chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azmi, K. A. Mohammad Kamal, E-mail: khasmidatul@siswa.um.edu.my; Wan Abdullah, W. A. T., E-mail: wat@um.edu.my; Ibrahim, Zainol Abidin

    Hough transform is a global tracking method used which had been expected to be faster approach for tracking the circular pattern of electron moving in Center Drift Chamber (CDC), by transforming the point of hit into a circular curve. This paper present the implementation of hough transform method for the reconstruction of tracks in Center Drift Chamber (CDC) which have been generated by random number in C language programming. Result from implementation of this method shows higher peak of circle parameter value (xc,yc,rc) that indicate the similarity value of the parameter needed for circular track in CDC for charged particlesmore » in the region of CDC.« less

  11. Search Radar Track-Before-Detect Using the Hough Transform.

    DTIC Science & Technology

    1995-03-01

    before - detect processing method which allows previous data to help in target detection. The technique provides many advantages compared to...improved target detection scheme, applicable to search radars, using the Hough transform image processing technique. The system concept involves a track

  12. Visual texture for automated characterisation of geological features in borehole televiewer imagery

    NASA Astrophysics Data System (ADS)

    Al-Sit, Waleed; Al-Nuaimy, Waleed; Marelli, Matteo; Al-Ataby, Ali

    2015-08-01

    Detailed characterisation of the structure of subsurface fractures is greatly facilitated by digital borehole logging instruments, the interpretation of which is typically time-consuming and labour-intensive. Despite recent advances towards autonomy and automation, the final interpretation remains heavily dependent on the skill, experience, alertness and consistency of a human operator. Existing computational tools fail to detect layers between rocks that do not exhibit distinct fracture boundaries, and often struggle characterising cross-cutting layers and partial fractures. This paper presents a novel approach to the characterisation of planar rock discontinuities from digital images of borehole logs. Multi-resolution texture segmentation and pattern recognition techniques utilising Gabor filters are combined with an iterative adaptation of the Hough transform to enable non-distinct, partial, distorted and steep fractures and layers to be accurately identified and characterised in a fully automated fashion. This approach has successfully detected fractures and layers with high detection accuracy and at a relatively low computational cost.

  13. Extraction of linear features on SAR imagery

    NASA Astrophysics Data System (ADS)

    Liu, Junyi; Li, Deren; Mei, Xin

    2006-10-01

    Linear features are usually extracted from SAR imagery by a few edge detectors derived from the contrast ratio edge detector with a constant probability of false alarm. On the other hand, the Hough Transform is an elegant way of extracting global features like curve segments from binary edge images. Randomized Hough Transform can reduce the computation time and memory usage of the HT drastically. While Randomized Hough Transform will bring about a great deal of cells invalid during the randomized sample. In this paper, we propose a new approach to extract linear features on SAR imagery, which is an almost automatic algorithm based on edge detection and Randomized Hough Transform. The presented improved method makes full use of the directional information of each edge candidate points so as to solve invalid cumulate problems. Applied result is in good agreement with the theoretical study, and the main linear features on SAR imagery have been extracted automatically. The method saves storage space and computational time, which shows its effectiveness and applicability.

  14. Parallel Monte Carlo Search for Hough Transform

    NASA Astrophysics Data System (ADS)

    Lopes, Raul H. C.; Franqueira, Virginia N. L.; Reid, Ivan D.; Hobson, Peter R.

    2017-10-01

    We investigate the problem of line detection in digital image processing and in special how state of the art algorithms behave in the presence of noise and whether CPU efficiency can be improved by the combination of a Monte Carlo Tree Search, hierarchical space decomposition, and parallel computing. The starting point of the investigation is the method introduced in 1962 by Paul Hough for detecting lines in binary images. Extended in the 1970s to the detection of space forms, what came to be known as Hough Transform (HT) has been proposed, for example, in the context of track fitting in the LHC ATLAS and CMS projects. The Hough Transform transfers the problem of line detection, for example, into one of optimization of the peak in a vote counting process for cells which contain the possible points of candidate lines. The detection algorithm can be computationally expensive both in the demands made upon the processor and on memory. Additionally, it can have a reduced effectiveness in detection in the presence of noise. Our first contribution consists in an evaluation of the use of a variation of the Radon Transform as a form of improving theeffectiveness of line detection in the presence of noise. Then, parallel algorithms for variations of the Hough Transform and the Radon Transform for line detection are introduced. An algorithm for Parallel Monte Carlo Search applied to line detection is also introduced. Their algorithmic complexities are discussed. Finally, implementations on multi-GPU and multicore architectures are discussed.

  15. A novel approach to Hough Transform for implementation in fast triggers

    NASA Astrophysics Data System (ADS)

    Pozzobon, Nicola; Montecassiano, Fabio; Zotto, Pierluigi

    2016-10-01

    Telescopes of position sensitive detectors are common layouts in charged particles tracking, and programmable logic devices, such as FPGAs, represent a viable choice for the real-time reconstruction of track segments in such detector arrays. A compact implementation of the Hough Transform for fast triggers in High Energy Physics, exploiting a parameter reduction method, is proposed, targeting the reduction of the needed storage or computing resources in current, or next future, state-of-the-art FPGA devices, while retaining high resolution over a wide range of track parameters. The proposed approach is compared to a Standard Hough Transform with particular emphasis on their application to muon detectors. In both cases, an original readout implementation is modeled.

  16. Hough transform as a tool support building roof detection. (Polish Title: Transformata Hough'a jako narzędzie wspomagające wykrywanie dachów budynków)

    NASA Astrophysics Data System (ADS)

    Borowiec, N.

    2013-12-01

    Gathering information about the roof shapes of the buildings is still current issue. One of the many sources from which we can obtain information about the buildings is the airborne laser scanning. However, detect information from cloud o points about roofs of building automatically is still a complex task. You can perform this task by helping the additional information from other sources, or based only on Lidar data. This article describes how to detect the building roof only from a point cloud. To define the shape of the roof is carried out in three tasks. The first step is to find the location of the building, the second is the precise definition of the edge, while the third is an indication of the roof planes. First step based on the grid analyses. And the next two task based on Hough Transformation. Hough transformation is a method of detecting collinear points, so a perfect match to determine the line describing a roof. To properly determine the shape of the roof is not enough only the edges, but it is necessary to indicate roofs. Thus, in studies Hough Transform, also served as a tool for detection of roof planes. The only difference is that the tool used in this case is a three-dimensional.

  17. Slant rectification in Russian passport OCR system using fast Hough transform

    NASA Astrophysics Data System (ADS)

    Limonova, Elena; Bezmaternykh, Pavel; Nikolaev, Dmitry; Arlazarov, Vladimir

    2017-03-01

    In this paper, we introduce slant detection method based on Fast Hough Transform calculation and demonstrate its application in industrial system for Russian passports recognition. About 1.5% of this kind of documents appear to be slant or italic. This fact reduces recognition rate, because Optical Recognition Systems are normally designed to process normal fonts. Our method uses Fast Hough Transform to analyse vertical strokes of characters extracted with the help of x-derivative of a text line image. To improve the quality of detector we also introduce field grouping rules. The resulting algorithm allowed to reach high detection quality. Almost all errors of considered approach happen on passports of nonstandard fonts, while slant detector works in appropriate way.

  18. Circle Hough transform implementation for dots recognition in braille cells

    NASA Astrophysics Data System (ADS)

    Jacinto Gómez, Edwar; Montiel Ariza, Holman; Martínez Sarmiento, Fredy Hernán.

    2017-02-01

    This paper shows a technique based on CHT (Circle Hough Transform) to achieve the optical Braille recognition (OBR). Unlike other papers developed around the same topic, this one is made by using Hough Transform to process the recognition and transcription of Braille cells, proving CHT to be an appropriate technique to go over different non-systematics factors who can affect the process, as the paper type where the text to traduce is placed, some lightning factors, input image resolution and some flaws derived from the capture process, which is realized using a scanner. Tests are performed with a local database using text generated by visual nondisabled people and some transcripts by sightless people; all of this with the support of National Institute for Blind People (INCI for their Spanish acronym) placed in Colombia.

  19. Shift-, rotation-, and scale-invariant shape recognition system using an optical Hough transform

    NASA Astrophysics Data System (ADS)

    Schmid, Volker R.; Bader, Gerhard; Lueder, Ernst H.

    1998-02-01

    We present a hybrid shape recognition system with an optical Hough transform processor. The features of the Hough space offer a separate cancellation of distortions caused by translations and rotations. Scale invariance is also provided by suitable normalization. The proposed system extends the capabilities of Hough transform based detection from only straight lines to areas bounded by edges. A very compact optical design is achieved by a microlens array processor accepting incoherent light as direct optical input and realizing the computationally expensive connections massively parallel. Our newly developed algorithm extracts rotation and translation invariant normalized patterns of bright spots on a 2D grid. A neural network classifier maps the 2D features via a nonlinear hidden layer onto the classification output vector. We propose initialization of the connection weights according to regions of activity specifically assigned to each neuron in the hidden layer using a competitive network. The presented system is designed for industry inspection applications. Presently we have demonstrated detection of six different machined parts in real-time. Our method yields very promising detection results of more than 96% correctly classified parts.

  20. A Real-Time System for Lane Detection Based on FPGA and DSP

    NASA Astrophysics Data System (ADS)

    Xiao, Jing; Li, Shutao; Sun, Bin

    2016-12-01

    This paper presents a real-time lane detection system including edge detection and improved Hough Transform based lane detection algorithm and its hardware implementation with field programmable gate array (FPGA) and digital signal processor (DSP). Firstly, gradient amplitude and direction information are combined to extract lane edge information. Then, the information is used to determine the region of interest. Finally, the lanes are extracted by using improved Hough Transform. The image processing module of the system consists of FPGA and DSP. Particularly, the algorithms implemented in FPGA are working in pipeline and processing in parallel so that the system can run in real-time. In addition, DSP realizes lane line extraction and display function with an improved Hough Transform. The experimental results show that the proposed system is able to detect lanes under different road situations efficiently and effectively.

  1. A Hough Transform Global Probabilistic Approach to Multiple-Subject Diffusion MRI Tractography

    DTIC Science & Technology

    2010-04-01

    distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT A global probabilistic fiber tracking approach based on the voting process provided by...umn.edu 2 ABSTRACT A global probabilistic fiber tracking approach based on the voting process provided by the Hough transform is introduced in...criteria for aligning curves and particularly tracts. In this work, we present a global probabilistic approach inspired by the voting procedure provided

  2. Iris Location Algorithm Based on the CANNY Operator and Gradient Hough Transform

    NASA Astrophysics Data System (ADS)

    Zhong, L. H.; Meng, K.; Wang, Y.; Dai, Z. Q.; Li, S.

    2017-12-01

    In the iris recognition system, the accuracy of the localization of the inner and outer edges of the iris directly affects the performance of the recognition system, so iris localization has important research meaning. Our iris data contain eyelid, eyelashes, light spot and other noise, even the gray transformation of the images is not obvious, so the general methods of iris location are unable to realize the iris location. The method of the iris location based on Canny operator and gradient Hough transform is proposed. Firstly, the images are pre-processed; then, calculating the gradient information of images, the inner and outer edges of iris are coarse positioned using Canny operator; finally, according to the gradient Hough transform to realize precise localization of the inner and outer edge of iris. The experimental results show that our algorithm can achieve the localization of the inner and outer edges of the iris well, and the algorithm has strong anti-interference ability, can greatly reduce the location time and has higher accuracy and stability.

  3. A novel algorithm for osteoarthritis detection in Hough domain

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sabyasachi; Poria, Nilanjan; Chakraborty, Rajanya; Pratiher, Sawon; Mukherjee, Sukanya; Panigrahi, Prasanta K.

    2018-02-01

    Background subtraction of knee MRI images has been performed, followed by edge detection through canny edge detector. In order to avoid the discontinuities among edges, Daubechies-4 (Db-4) discrete wavelet transform (DWT) methodology is applied for the smoothening of edges identified through canny edge detector. The approximation coefficients of Db-4, having highest energy is selected to get rid of discontinuities in edges. Hough transform is then applied to find imperfect knee locations, as a function of distance (r) and angle (θ). The final outcome of the linear Hough transform is a two-dimensional array i.e., the accumulator space (r, θ) where one dimension of this matrix is the quantized angle θ and the other dimension is the quantized distance r. A novel algorithm has been suggested such that any deviation from the healthy knee bone structure for diseases like osteoarthritis can clearly be depicted on the accumulator space.

  4. Mobile robot motion estimation using Hough transform

    NASA Astrophysics Data System (ADS)

    Aldoshkin, D. N.; Yamskikh, T. N.; Tsarev, R. Yu

    2018-05-01

    This paper proposes an algorithm for estimation of mobile robot motion. The geometry of surrounding space is described with range scans (samples of distance measurements) taken by the mobile robot’s range sensors. A similar sample of space geometry in any arbitrary preceding moment of time or the environment map can be used as a reference. The suggested algorithm is invariant to isotropic scaling of samples or map that allows using samples measured in different units and maps made at different scales. The algorithm is based on Hough transform: it maps from measurement space to a straight-line parameters space. In the straight-line parameters, space the problems of estimating rotation, scaling and translation are solved separately breaking down a problem of estimating mobile robot localization into three smaller independent problems. The specific feature of the algorithm presented is its robustness to noise and outliers inherited from Hough transform. The prototype of the system of mobile robot orientation is described.

  5. Analysis of line structure in handwritten documents using the Hough transform

    NASA Astrophysics Data System (ADS)

    Ball, Gregory R.; Kasiviswanathan, Harish; Srihari, Sargur N.; Narayanan, Aswin

    2010-01-01

    In the analysis of handwriting in documents a central task is that of determining line structure of the text, e.g., number of text lines, location of their starting and end-points, line-width, etc. While simple methods can handle ideal images, real world documents have complexities such as overlapping line structure, variable line spacing, line skew, document skew, noisy or degraded images etc. This paper explores the application of the Hough transform method to handwritten documents with the goal of automatically determining global document line structure in a top-down manner which can then be used in conjunction with a bottom-up method such as connected component analysis. The performance is significantly better than other top-down methods, such as the projection profile method. In addition, we evaluate the performance of skew analysis by the Hough transform on handwritten documents.

  6. SHORT-TERM SOLAR FLARE PREDICTION USING MULTIRESOLUTION PREDICTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Daren; Huang Xin; Hu Qinghua

    2010-01-20

    Multiresolution predictors of solar flares are constructed by a wavelet transform and sequential feature extraction method. Three predictors-the maximum horizontal gradient, the length of neutral line, and the number of singular points-are extracted from Solar and Heliospheric Observatory/Michelson Doppler Imager longitudinal magnetograms. A maximal overlap discrete wavelet transform is used to decompose the sequence of predictors into four frequency bands. In each band, four sequential features-the maximum, the mean, the standard deviation, and the root mean square-are extracted. The multiresolution predictors in the low-frequency band reflect trends in the evolution of newly emerging fluxes. The multiresolution predictors in the high-frequencymore » band reflect the changing rates in emerging flux regions. The variation of emerging fluxes is decoupled by wavelet transform in different frequency bands. The information amount of these multiresolution predictors is evaluated by the information gain ratio. It is found that the multiresolution predictors in the lowest and highest frequency bands contain the most information. Based on these predictors, a C4.5 decision tree algorithm is used to build the short-term solar flare prediction model. It is found that the performance of the short-term solar flare prediction model based on the multiresolution predictors is greatly improved.« less

  7. Textual blocks rectification method based on fast Hough transform analysis in identity documents recognition

    NASA Astrophysics Data System (ADS)

    Bezmaternykh, P. V.; Nikolaev, D. P.; Arlazarov, V. L.

    2018-04-01

    Textual blocks rectification or slant correction is an important stage of document image processing in OCR systems. This paper considers existing methods and introduces an approach for the construction of such algorithms based on Fast Hough Transform analysis. A quality measurement technique is proposed and obtained results are shown for both printed and handwritten textual blocks processing as a part of an industrial system of identity documents recognition on mobile devices.

  8. Automated visual inspection of brake shoe wear

    NASA Astrophysics Data System (ADS)

    Lu, Shengfang; Liu, Zhen; Nan, Guo; Zhang, Guangjun

    2015-10-01

    With the rapid development of high-speed railway, the automated fault inspection is necessary to ensure train's operation safety. Visual technology is paid more attention in trouble detection and maintenance. For a linear CCD camera, Image alignment is the first step in fault detection. To increase the speed of image processing, an improved scale invariant feature transform (SIFT) method is presented. The image is divided into multiple levels of different resolution. Then, we do not stop to extract the feature from the lowest resolution to the highest level until we get sufficient SIFT key points. At that level, the image is registered and aligned quickly. In the stage of inspection, we devote our efforts to finding the trouble of brake shoe, which is one of the key components in brake system on electrical multiple units train (EMU). Its pre-warning on wear limitation is very important in fault detection. In this paper, we propose an automatic inspection approach to detect the fault of brake shoe. Firstly, we use multi-resolution pyramid template matching technology to fast locate the brake shoe. Then, we employ Hough transform to detect the circles of bolts in brake region. Due to the rigid characteristic of structure, we can identify whether the brake shoe has a fault. The experiments demonstrate that the way we propose has a good performance, and can meet the need of practical applications.

  9. Tiled fuzzy Hough transform for crack detection

    NASA Astrophysics Data System (ADS)

    Vaheesan, Kanapathippillai; Chandrakumar, Chanjief; Mathavan, Senthan; Kamal, Khurram; Rahman, Mujib; Al-Habaibeh, Amin

    2015-04-01

    Surface cracks can be the bellwether of the failure of any component under loading as it indicates the component's fracture due to stresses and usage. For this reason, crack detection is indispensable for the condition monitoring and quality control of road surfaces. Pavement images have high levels of intensity variation and texture content, hence the crack detection is difficult. Moreover, shallow cracks result in very low contrast image pixels making their detection difficult. For these reasons, studies on pavement crack detection is active even after years of research. In this paper, the fuzzy Hough transform is employed, for the first time to detect cracks on any surface. The contribution of texture pixels to the accumulator array is reduced by using the tiled version of the Hough transform. Precision values of 78% and a recall of 72% are obtaining for an image set obtained from an industrial imaging system containing very low contrast cracking. When only high contrast crack segments are considered the values move to mid to high 90%.

  10. Estimation of cylinder orientation in three-dimensional point cloud using angular distance-based optimization

    NASA Astrophysics Data System (ADS)

    Su, Yun-Ting; Hu, Shuowen; Bethel, James S.

    2017-05-01

    Light detection and ranging (LIDAR) has become a widely used tool in remote sensing for mapping, surveying, modeling, and a host of other applications. The motivation behind this work is the modeling of piping systems in industrial sites, where cylinders are the most common primitive or shape. We focus on cylinder parameter estimation in three-dimensional point clouds, proposing a mathematical formulation based on angular distance to determine the cylinder orientation. We demonstrate the accuracy and robustness of the technique on synthetically generated cylinder point clouds (where the true axis orientation is known) as well as on real LIDAR data of piping systems. The proposed algorithm is compared with a discrete space Hough transform-based approach as well as a continuous space inlier approach, which iteratively discards outlier points to refine the cylinder parameter estimates. Results show that the proposed method is more computationally efficient than the Hough transform approach and is more accurate than both the Hough transform approach and the inlier method.

  11. Techniques and potential capabilities of multi-resolutional information (knowledge) processing

    NASA Technical Reports Server (NTRS)

    Meystel, A.

    1989-01-01

    A concept of nested hierarchical (multi-resolutional, pyramidal) information (knowledge) processing is introduced for a variety of systems including data and/or knowledge bases, vision, control, and manufacturing systems, industrial automated robots, and (self-programmed) autonomous intelligent machines. A set of practical recommendations is presented using a case study of a multiresolutional object representation. It is demonstrated here that any intelligent module transforms (sometimes, irreversibly) the knowledge it deals with, and this tranformation affects the subsequent computation processes, e.g., those of decision and control. Several types of knowledge transformation are reviewed. Definite conditions are analyzed, satisfaction of which is required for organization and processing of redundant information (knowledge) in the multi-resolutional systems. Providing a definite degree of redundancy is one of these conditions.

  12. A study on multiresolution lossless video coding using inter/intra frame adaptive prediction

    NASA Astrophysics Data System (ADS)

    Nakachi, Takayuki; Sawabe, Tomoko; Fujii, Tetsuro

    2003-06-01

    Lossless video coding is required in the fields of archiving and editing digital cinema or digital broadcasting contents. This paper combines a discrete wavelet transform and adaptive inter/intra-frame prediction in the wavelet transform domain to create multiresolution lossless video coding. The multiresolution structure offered by the wavelet transform facilitates interchange among several video source formats such as Super High Definition (SHD) images, HDTV, SDTV, and mobile applications. Adaptive inter/intra-frame prediction is an extension of JPEG-LS, a state-of-the-art lossless still image compression standard. Based on the image statistics of the wavelet transform domains in successive frames, inter/intra frame adaptive prediction is applied to the appropriate wavelet transform domain. This adaptation offers superior compression performance. This is achieved with low computational cost and no increase in additional information. Experiments on digital cinema test sequences confirm the effectiveness of the proposed algorithm.

  13. Fetal head detection and measurement in ultrasound images by a direct inverse randomized Hough transform

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Tan, Jinglu; Floyd, Randall C.

    2005-04-01

    Object detection in ultrasound fetal images is a challenging task for the relatively low resolution and low signal-to-noise ratio. A direct inverse randomized Hough transform (DIRHT) is developed for filtering and detecting incomplete curves in images with strong noise. The DIRHT combines the advantages of both the inverse and the randomized Hough transforms. In the reverse image, curves are highlighted while a large number of unrelated pixels are removed, demonstrating a "curve-pass filtering" effect. Curves are detected by iteratively applying the DIRHT to the filtered image. The DIRHT was applied to head detection and measurement of the biparietal diameter (BPD) and head circumference (HC). No user input or geometric properties of the head were required for the detection. The detection and measurement took 2 seconds for each image on a PC. The inter-run variations and the differences between the automatic measurements and sonographers" manual measurements were small compared with published inter-observer variations. The results demonstrated that the automatic measurements were consistent and accurate. This method provides a valuable tool for fetal examinations.

  14. Multiresolution motion planning for autonomous agents via wavelet-based cell decompositions.

    PubMed

    Cowlagi, Raghvendra V; Tsiotras, Panagiotis

    2012-10-01

    We present a path- and motion-planning scheme that is "multiresolution" both in the sense of representing the environment with high accuracy only locally and in the sense of addressing the vehicle kinematic and dynamic constraints only locally. The proposed scheme uses rectangular multiresolution cell decompositions, efficiently generated using the wavelet transform. The wavelet transform is widely used in signal and image processing, with emerging applications in autonomous sensing and perception systems. The proposed motion planner enables the simultaneous use of the wavelet transform in both the perception and in the motion-planning layers of vehicle autonomy, thus potentially reducing online computations. We rigorously prove the completeness of the proposed path-planning scheme, and we provide numerical simulation results to illustrate its efficacy.

  15. The coordinate system of the eye in cataract surgery: Performance comparison of the circle Hough transform and Daugman's algorithm

    NASA Astrophysics Data System (ADS)

    Vlachynska, Alzbeta; Oplatkova, Zuzana Kominkova; Sramka, Martin

    2017-07-01

    The aim of the work is to determine the coordinate system of an eye and insert a polar-axis system into images captured by a slip lamp. The image of the eye with the polar axis helps a surgeon accurately implant toric intraocular lens in the required position/rotation during the cataract surgery. In this paper, two common algorithms for pupil detection are compared: the circle Hough transform and Daugman's algorithm. The procedures were tested and analysed on the anonymous data set of 128 eyes captured at Gemini eye clinic in 2015.

  16. Cumulus cloud base height estimation from high spatial resolution Landsat data - A Hough transform approach

    NASA Technical Reports Server (NTRS)

    Berendes, Todd; Sengupta, Sailes K.; Welch, Ron M.; Wielicki, Bruce A.; Navar, Murgesh

    1992-01-01

    A semiautomated methodology is developed for estimating cumulus cloud base heights on the basis of high spatial resolution Landsat MSS data, using various image-processing techniques to match cloud edges with their corresponding shadow edges. The cloud base height is then estimated by computing the separation distance between the corresponding generalized Hough transform reference points. The differences between the cloud base heights computed by these means and a manual verification technique are of the order of 100 m or less; accuracies of 50-70 m may soon be possible via EOS instruments.

  17. Morphological filtering and multiresolution fusion for mammographic microcalcification detection

    NASA Astrophysics Data System (ADS)

    Chen, Lulin; Chen, Chang W.; Parker, Kevin J.

    1997-04-01

    Mammographic images are often of relatively low contrast and poor sharpness with non-stationary background or clutter and are usually corrupted by noise. In this paper, we propose a new method for microcalcification detection using gray scale morphological filtering followed by multiresolution fusion and present a unified general filtering form called the local operating transformation for whitening filtering and adaptive thresholding. The gray scale morphological filters are used to remove all large areas that are considered as non-stationary background or clutter variations, i.e., to prewhiten images. The multiresolution fusion decision is based on matched filter theory. In addition to the normal matched filter, the Laplacian matched filter which is directly related through the wavelet transforms to multiresolution analysis is exploited for microcalcification feature detection. At the multiresolution fusion stage, the region growing techniques are used in each resolution level. The parent-child relations between resolution levels are adopted to make final detection decision. FROC is computed from test on the Nijmegen database.

  18. Aerial Imagery and LIDAR Data Fusion for Unambiguous Extraction of Adjacent Level-Buildings Footprints

    NASA Astrophysics Data System (ADS)

    Mola Ebrahimi, S.; Arefi, H.; Rasti Veis, H.

    2017-09-01

    Our paper aims to present a new approach to identify and extract building footprints using aerial images and LiDAR data. Employing an edge detector algorithm, our method first extracts the outer boundary of buildings, and then by taking advantage of Hough transform and extracting the boundary of connected buildings in a building block, it extracts building footprints located in each block. The proposed method first recognizes the predominant leading orientation of a building block using Hough transform, and then rotates the block according to the inverted complement of the dominant line's angle. Therefore the block poses horizontally. Afterwards, by use of another Hough transform, vertical lines, which might be the building boundaries of interest, are extracted and the final building footprints within a block are obtained. The proposed algorithm is implemented and tested on the urban area of Zeebruges, Belgium(IEEE Contest,2015). The areas of extracted footprints are compared to the corresponding areas in the reference data and mean error is equal to 7.43 m2. Besides, qualitative and quantitative evaluations suggest that the proposed algorithm leads to acceptable results in automated precise extraction of building footprints.

  19. Parallel object-oriented, denoising system using wavelet multiresolution analysis

    DOEpatents

    Kamath, Chandrika; Baldwin, Chuck H.; Fodor, Imola K.; Tang, Nu A.

    2005-04-12

    The present invention provides a data de-noising system utilizing processors and wavelet denoising techniques. Data is read and displayed in different formats. The data is partitioned into regions and the regions are distributed onto the processors. Communication requirements are determined among the processors according to the wavelet denoising technique and the partitioning of the data. The data is transforming onto different multiresolution levels with the wavelet transform according to the wavelet denoising technique, the communication requirements, and the transformed data containing wavelet coefficients. The denoised data is then transformed into its original reading and displaying data format.

  20. Parallel Hough Transform-Based Straight Line Detection and Its FPGA Implementation in Embedded Vision

    PubMed Central

    Lu, Xiaofeng; Song, Li; Shen, Sumin; He, Kang; Yu, Songyu; Ling, Nam

    2013-01-01

    Hough Transform has been widely used for straight line detection in low-definition and still images, but it suffers from execution time and resource requirements. Field Programmable Gate Arrays (FPGA) provide a competitive alternative for hardware acceleration to reap tremendous computing performance. In this paper, we propose a novel parallel Hough Transform (PHT) and FPGA architecture-associated framework for real-time straight line detection in high-definition videos. A resource-optimized Canny edge detection method with enhanced non-maximum suppression conditions is presented to suppress most possible false edges and obtain more accurate candidate edge pixels for subsequent accelerated computation. Then, a novel PHT algorithm exploiting spatial angle-level parallelism is proposed to upgrade computational accuracy by improving the minimum computational step. Moreover, the FPGA based multi-level pipelined PHT architecture optimized by spatial parallelism ensures real-time computation for 1,024 × 768 resolution videos without any off-chip memory consumption. This framework is evaluated on ALTERA DE2-115 FPGA evaluation platform at a maximum frequency of 200 MHz, and it can calculate straight line parameters in 15.59 ms on the average for one frame. Qualitative and quantitative evaluation results have validated the system performance regarding data throughput, memory bandwidth, resource, speed and robustness. PMID:23867746

  1. Parallel Hough Transform-based straight line detection and its FPGA implementation in embedded vision.

    PubMed

    Lu, Xiaofeng; Song, Li; Shen, Sumin; He, Kang; Yu, Songyu; Ling, Nam

    2013-07-17

    Hough Transform has been widely used for straight line detection in low-definition and still images, but it suffers from execution time and resource requirements. Field Programmable Gate Arrays (FPGA) provide a competitive alternative for hardware acceleration to reap tremendous computing performance. In this paper, we propose a novel parallel Hough Transform (PHT) and FPGA architecture-associated framework for real-time straight line detection in high-definition videos. A resource-optimized Canny edge detection method with enhanced non-maximum suppression conditions is presented to suppress most possible false edges and obtain more accurate candidate edge pixels for subsequent accelerated computation. Then, a novel PHT algorithm exploiting spatial angle-level parallelism is proposed to upgrade computational accuracy by improving the minimum computational step. Moreover, the FPGA based multi-level pipelined PHT architecture optimized by spatial parallelism ensures real-time computation for 1,024 × 768 resolution videos without any off-chip memory consumption. This framework is evaluated on ALTERA DE2-115 FPGA evaluation platform at a maximum frequency of 200 MHz, and it can calculate straight line parameters in 15.59 ms on the average for one frame. Qualitative and quantitative evaluation results have validated the system performance regarding data throughput, memory bandwidth, resource, speed and robustness.

  2. Traffic Pattern Detection Using the Hough Transformation for Anomaly Detection to Improve Maritime Domain Awareness

    DTIC Science & Technology

    2013-12-01

    Programming code in the Python language used in AIS data preprocessing is contained in Appendix A. The MATLAB programming code used to apply the Hough...described in Chapter III is applied to archived AIS data in this chapter. The implementation of the method, including programming techniques used, is...is contained in the second. To provide a proof of concept for the algorithm described in Chapter III, the PYTHON programming language was used for

  3. Partial fingerprint identification algorithm based on the modified generalized Hough transform on mobile device

    NASA Astrophysics Data System (ADS)

    Qin, Jin; Tang, Siqi; Han, Congying; Guo, Tiande

    2018-04-01

    Partial fingerprint identification technology which is mainly used in device with small sensor area like cellphone, U disk and computer, has taken more attention in recent years with its unique advantages. However, owing to the lack of sufficient minutiae points, the conventional method do not perform well in the above situation. We propose a new fingerprint matching technique which utilizes ridges as features to deal with partial fingerprint images and combines the modified generalized Hough transform and scoring strategy based on machine learning. The algorithm can effectively meet the real-time and space-saving requirements of the resource constrained devices. Experiments on in-house database indicate that the proposed algorithm have an excellent performance.

  4. Deep learning for classification of islanding and grid disturbance based on multi-resolution singular spectrum entropy

    NASA Astrophysics Data System (ADS)

    Li, Tie; He, Xiaoyang; Tang, Junci; Zeng, Hui; Zhou, Chunying; Zhang, Nan; Liu, Hui; Lu, Zhuoxin; Kong, Xiangrui; Yan, Zheng

    2018-02-01

    Forasmuch as the distinguishment of islanding is easy to be interfered by grid disturbance, island detection device may make misjudgment thus causing the consequence of photovoltaic out of service. The detection device must provide with the ability to differ islanding from grid disturbance. In this paper, the concept of deep learning is introduced into classification of islanding and grid disturbance for the first time. A novel deep learning framework is proposed to detect and classify islanding or grid disturbance. The framework is a hybrid of wavelet transformation, multi-resolution singular spectrum entropy, and deep learning architecture. As a signal processing method after wavelet transformation, multi-resolution singular spectrum entropy combines multi-resolution analysis and spectrum analysis with entropy as output, from which we can extract the intrinsic different features between islanding and grid disturbance. With the features extracted, deep learning is utilized to classify islanding and grid disturbance. Simulation results indicate that the method can achieve its goal while being highly accurate, so the photovoltaic system mistakenly withdrawing from power grids can be avoided.

  5. Fetal head detection and measurement in ultrasound images by an iterative randomized Hough transform

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Tan, Jinglu; Floyd, Randall C.

    2004-05-01

    This paper describes an automatic method for measuring the biparietal diameter (BPD) and head circumference (HC) in ultrasound fetal images. A total of 217 ultrasound images were segmented by using a K-Mean classifier, and the head skull was detected in 214 of the 217 cases by an iterative randomized Hough transform developed for detection of incomplete curves in images with strong noise without user intervention. The automatic measurements were compared with conventional manual measurements by sonographers and a trained panel. The inter-run variations and differences between the automatic and conventional measurements were small compared with published inter-observer variations. The results showed that the automated measurements were as reliable as the expert measurements and more consistent. This method has great potential in clinical applications.

  6. Diaphragm motion quantification in megavoltage cone-beam CT projection images.

    PubMed

    Chen, Mingqing; Siochi, R Alfredo

    2010-05-01

    To quantify diaphragm motion in megavoltage (MV) cone-beam computed tomography (CBCT) projections. User identified ipsilateral hemidiaphragm apex (IHDA) positions in two full exhale and inhale frames were used to create bounding rectangles in all other frames of a CBCT scan. The bounding rectangle was enlarged to create a region of interest (ROI). ROI pixels were associated with a cost function: The product of image gradients and a gradient direction matching function for an ideal hemidiaphragm determined from 40 training sets. A dynamic Hough transform (DHT) models a hemidiaphragm as a contour made of two parabola segments with a common vertex (the IHDA). The images within the ROIs are transformed into Hough space where a contour's Hough value is the sum of the cost function over all contour pixels. Dynamic programming finds the optimal trajectory of the common vertex in Hough space subject to motion constraints between frames, and an active contour model further refines the result. Interpolated ray tracing converts the positions to room coordinates. Root-mean-square (RMS) distances between these positions and those resulting from an expert's identification of the IHDA were determined for 21 Siemens MV CBCT scans. Computation time on a 2.66 GHz CPU was 30 s. The average craniocaudal RMS error was 1.38 +/- 0.67 mm. While much larger errors occurred in a few near-sagittal frames on one patient's scans, adjustments to algorithm constraints corrected them. The DHT based algorithm can compute IHDA trajectories immediately prior to radiation therapy on a daily basis using localization MVCBCT projection data. This has potential for calibrating external motion surrogates against diaphragm motion.

  7. Automatic Detection of Frontal Face Midline by Chain-coded Merlin-Farber Hough Trasform

    NASA Astrophysics Data System (ADS)

    Okamoto, Daichi; Ohyama, Wataru; Wakabayashi, Tetsushi; Kimura, Fumitaka

    We propose a novel approach for detection of the facial midline (facial symmetry axis) from a frontal face image. The facial midline has several applications, for instance reducing computational cost required for facial feature extraction (FFE) and postoperative assessment for cosmetic or dental surgery. The proposed method detects the facial midline of a frontal face from an edge image as the symmetry axis using the Merlin-Faber Hough transformation. And a new performance improvement scheme for midline detection by MFHT is present. The main concept of the proposed scheme is suppression of redundant vote on the Hough parameter space by introducing chain code representation for the binary edge image. Experimental results on the image dataset containing 2409 images from FERET database indicate that the proposed algorithm can improve the accuracy of midline detection from 89.9% to 95.1 % for face images with different scales and rotation.

  8. Multiresolution analysis of Bursa Malaysia KLCI time series

    NASA Astrophysics Data System (ADS)

    Ismail, Mohd Tahir; Dghais, Amel Abdoullah Ahmed

    2017-05-01

    In general, a time series is simply a sequence of numbers collected at regular intervals over a period. Financial time series data processing is concerned with the theory and practice of processing asset price over time, such as currency, commodity data, and stock market data. The primary aim of this study is to understand the fundamental characteristics of selected financial time series by using the time as well as the frequency domain analysis. After that prediction can be executed for the desired system for in sample forecasting. In this study, multiresolution analysis which the assist of discrete wavelet transforms (DWT) and maximal overlap discrete wavelet transform (MODWT) will be used to pinpoint special characteristics of Bursa Malaysia KLCI (Kuala Lumpur Composite Index) daily closing prices and return values. In addition, further case study discussions include the modeling of Bursa Malaysia KLCI using linear ARIMA with wavelets to address how multiresolution approach improves fitting and forecasting results.

  9. Hypothesis Support Mechanism for Mid-Level Visual Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Amador, Jose J (Inventor)

    2007-01-01

    A method of mid-level pattern recognition provides for a pose invariant Hough Transform by parametrizing pairs of points in a pattern with respect to at least two reference points, thereby providing a parameter table that is scale- or rotation-invariant. A corresponding inverse transform may be applied to test hypothesized matches in an image and a distance transform utilized to quantify the level of match.

  10. Automatic needle segmentation in 3D ultrasound images using 3D Hough transform

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Qiu, Wu; Ding, Mingyue; Zhang, Songgeng

    2007-12-01

    3D ultrasound (US) is a new technology that can be used for a variety of diagnostic applications, such as obstetrical, vascular, and urological imaging, and has been explored greatly potential in the applications of image-guided surgery and therapy. Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese woman, and a minimally invasive ablation system using an RF button electrode which is needle-like is being used to destroy tumor cells or stop bleeding currently. Now a 3D US guidance system has been developed to avoid accidents or death of the patient by inaccurate localizations of the electrode and the tumor position during treatment. In this paper, we described two automated techniques, the 3D Hough Transform (3DHT) and the 3D Randomized Hough Transform (3DRHT), which is potentially fast, accurate, and robust to provide needle segmentation in 3D US image for use of 3D US imaging guidance. Based on the representation (Φ , θ , ρ , α ) of straight lines in 3D space, we used the 3DHT algorithm to segment needles successfully assumed that the approximate needle position and orientation are known in priori. The 3DRHT algorithm was developed to detect needles quickly without any information of the 3D US images. The needle segmentation techniques were evaluated using the 3D US images acquired by scanning water phantoms. The experiments demonstrated the feasibility of two 3D needle segmentation algorithms described in this paper.

  11. Lane detection using Randomized Hough Transform

    NASA Astrophysics Data System (ADS)

    Mongkonyong, Peerawat; Nuthong, Chaiwat; Siddhichai, Supakorn; Yamakita, Masaki

    2018-01-01

    According to the report of the Royal Thai Police between 2006 and 2015, lane changing without consciousness is one of the most accident causes. To solve this problem, many methods are considered. Lane Departure Warning System (LDWS) is considered to be one of the potential solutions. LDWS is a mechanism designed to warn the driver when the vehicle begins to move out of its current lane. LDWS contains many parts including lane boundary detection, driver warning and lane marker tracking. This article focuses on the lane boundary detection part. The proposed lane boundary detection detects the lines of the image from the input video and selects the lane marker of the road surface from those lines. Standard Hough Transform (SHT) and Randomized Hough Transform (RHT) are considered in this article. They are used to extract lines of an image. SHT extracts the lines from all of the edge pixels. RHT extracts only the lines randomly picked by the point pairs from edge pixels. RHT algorithm reduces the time and memory usage when compared with SHT. The increase of the threshold value in RHT will increase the voted limit of the line that has a high possibility to be the lane marker, but it also consumes the time and memory. By comparison between SHT and RHT with the different threshold values, 500 frames of input video from the front car camera will be processed. The accuracy and the computational time of RHT are similar to those of SHT in the result of the comparison.

  12. Design of a tight frame of 2D shearlets based on a fast non-iterative analysis and synthesis algorithm

    NASA Astrophysics Data System (ADS)

    Goossens, Bart; Aelterman, Jan; Luong, Hi"p.; Pižurica, Aleksandra; Philips, Wilfried

    2011-09-01

    The shearlet transform is a recent sibling in the family of geometric image representations that provides a traditional multiresolution analysis combined with a multidirectional analysis. In this paper, we present a fast DFT-based analysis and synthesis scheme for the 2D discrete shearlet transform. Our scheme conforms to the continuous shearlet theory to high extent, provides perfect numerical reconstruction (up to floating point rounding errors) in a non-iterative scheme and is highly suitable for parallel implementation (e.g. FPGA, GPU). We show that our discrete shearlet representation is also a tight frame and the redundancy factor of the transform is around 2.6, independent of the number of analysis directions. Experimental denoising results indicate that the transform performs the same or even better than several related multiresolution transforms, while having a significantly lower redundancy factor.

  13. Hough transform for human action recognition

    NASA Astrophysics Data System (ADS)

    Siemon, Mia S. N.

    2016-09-01

    Nowadays, the demand of computer analysis, especially regarding team sports, continues drastically growing. More and more decisions are made by electronic devices for the live to become `easier' to a certain context. There already exist application areas in sports, during which critical situations are being handled by means of digital software. This paper aims at the evaluation and introduction to the necessary foundation which would make it possible to develop a concept similar to that of `hawk-eye', a decision-making program to evaluate the impact of a ball with respect to a target line and to apply it to the sport of volleyball. The pattern recognition process is in this case performed by means of the mathematical model of Hough transform which is able of identifying relevant lines and circles in the image in order to later on use them for the necessary evaluation of the image and the decision-making process.

  14. Semi-automated identification of cones in the human retina using circle Hough transform

    PubMed Central

    Bukowska, Danuta M.; Chew, Avenell L.; Huynh, Emily; Kashani, Irwin; Wan, Sue Ling; Wan, Pak Ming; Chen, Fred K

    2015-01-01

    A large number of human retinal diseases are characterized by a progressive loss of cones, the photoreceptors critical for visual acuity and color perception. Adaptive Optics (AO) imaging presents a potential method to study these cells in vivo. However, AO imaging in ophthalmology is a relatively new phenomenon and quantitative analysis of these images remains difficult and tedious using manual methods. This paper illustrates a novel semi-automated quantitative technique enabling registration of AO images to macular landmarks, cone counting and its radius quantification at specified distances from the foveal center. The new cone counting approach employs the circle Hough transform (cHT) and is compared to automated counting methods, as well as arbitrated manual cone identification. We explore the impact of varying the circle detection parameter on the validity of cHT cone counting and discuss the potential role of using this algorithm in detecting both cones and rods separately. PMID:26713186

  15. A Hough Transform Global Probabilistic Approach to Multiple-Subject Diffusion MRI Tractography

    PubMed Central

    Aganj, Iman; Lenglet, Christophe; Jahanshad, Neda; Yacoub, Essa; Harel, Noam; Thompson, Paul M.; Sapiro, Guillermo

    2011-01-01

    A global probabilistic fiber tracking approach based on the voting process provided by the Hough transform is introduced in this work. The proposed framework tests candidate 3D curves in the volume, assigning to each one a score computed from the diffusion images, and then selects the curves with the highest scores as the potential anatomical connections. The algorithm avoids local minima by performing an exhaustive search at the desired resolution. The technique is easily extended to multiple subjects, considering a single representative volume where the registered high-angular resolution diffusion images (HARDI) from all the subjects are non-linearly combined, thereby obtaining population-representative tracts. The tractography algorithm is run only once for the multiple subjects, and no tract alignment is necessary. We present experimental results on HARDI volumes, ranging from simulated and 1.5T physical phantoms to 7T and 4T human brain and 7T monkey brain datasets. PMID:21376655

  16. Interest rate next-day variation prediction based on hybrid feedforward neural network, particle swarm optimization, and multiresolution techniques

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2016-02-01

    Multiresolution analysis techniques including continuous wavelet transform, empirical mode decomposition, and variational mode decomposition are tested in the context of interest rate next-day variation prediction. In particular, multiresolution analysis techniques are used to decompose interest rate actual variation and feedforward neural network for training and prediction. Particle swarm optimization technique is adopted to optimize its initial weights. For comparison purpose, autoregressive moving average model, random walk process and the naive model are used as main reference models. In order to show the feasibility of the presented hybrid models that combine multiresolution analysis techniques and feedforward neural network optimized by particle swarm optimization, we used a set of six illustrative interest rates; including Moody's seasoned Aaa corporate bond yield, Moody's seasoned Baa corporate bond yield, 3-Month, 6-Month and 1-Year treasury bills, and effective federal fund rate. The forecasting results show that all multiresolution-based prediction systems outperform the conventional reference models on the criteria of mean absolute error, mean absolute deviation, and root mean-squared error. Therefore, it is advantageous to adopt hybrid multiresolution techniques and soft computing models to forecast interest rate daily variations as they provide good forecasting performance.

  17. An efficient multi-resolution GA approach to dental image alignment

    NASA Astrophysics Data System (ADS)

    Nassar, Diaa Eldin; Ogirala, Mythili; Adjeroh, Donald; Ammar, Hany

    2006-02-01

    Automating the process of postmortem identification of individuals using dental records is receiving an increased attention in forensic science, especially with the large volume of victims encountered in mass disasters. Dental radiograph alignment is a key step required for automating the dental identification process. In this paper, we address the problem of dental radiograph alignment using a Multi-Resolution Genetic Algorithm (MR-GA) approach. We use location and orientation information of edge points as features; we assume that affine transformations suffice to restore geometric discrepancies between two images of a tooth, we efficiently search the 6D space of affine parameters using GA progressively across multi-resolution image versions, and we use a Hausdorff distance measure to compute the similarity between a reference tooth and a query tooth subject to a possible alignment transform. Testing results based on 52 teeth-pair images suggest that our algorithm converges to reasonable solutions in more than 85% of the test cases, with most of the error in the remaining cases due to excessive misalignments.

  18. Incoherent optical generalized Hough transform: pattern recognition and feature extraction applications

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel; Ferrari, José A.

    2017-05-01

    Pattern recognition and feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital-only methods. We explore an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a pupil mask implemented on a high-contrast spatial light modulator for orientation/shape variation of the template. Real-time can also be achieved. In addition, by thresholding of the GHT and optically inverse transforming, the previously detected features of interest can be extracted.

  19. Hexagonal wavelet processing of digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Schuler, Sergio; Huda, Walter; Honeyman-Buck, Janice C.; Steinbach, Barbara G.

    1993-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms and used to enhance features of importance to mammography within a continuum of scale-space. We present a method of contrast enhancement based on an overcomplete, non-separable multiscale representation: the hexagonal wavelet transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by local and global non-linear operators. Multiscale edges identified within distinct levels of transform space provide local support for enhancement. We demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.

  20. Geometry-based populated chessboard recognition

    NASA Astrophysics Data System (ADS)

    Xie, Youye; Tang, Gongguo; Hoff, William

    2018-04-01

    Chessboards are commonly used to calibrate cameras, and many robust methods have been developed to recognize the unoccupied boards. However, when the chessboard is populated with chess pieces, such as during an actual game, the problem of recognizing the board is much harder. Challenges include occlusion caused by the chess pieces, the presence of outlier lines and low viewing angles of the chessboard. In this paper, we present a novel approach to address the above challenges and recognize the chessboard. The Canny edge detector and Hough transform are used to capture all possible lines in the scene. The k-means clustering and a k-nearest-neighbors inspired algorithm are applied to cluster and reject the outlier lines based on their Euclidean distances to the nearest neighbors in a scaled Hough transform space. Finally, based on prior knowledge of the chessboard structure, a geometric constraint is used to find the correspondences between image lines and the lines on the chessboard through the homography transformation. The proposed algorithm works for a wide range of the operating angles and achieves high accuracy in experiments.

  1. Wavelet processing techniques for digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu

    1992-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Similar to traditional coarse to fine matching strategies, the radiologist may first choose to look for coarse features (e.g., dominant mass) within low frequency levels of a wavelet transform and later examine finer features (e.g., microcalcifications) at higher frequency levels. In addition, features may be extracted by applying geometric constraints within each level of the transform. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet representations, enhanced by linear, exponential and constant weight functions through scale space. By improving the visualization of breast pathology we can improve the chances of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  2. Laser Spot Tracking Based on Modified Circular Hough Transform and Motion Pattern Analysis

    PubMed Central

    Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan

    2014-01-01

    Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas–Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development. PMID:25350502

  3. Automated Spatiotemporal Analysis of Fibrils and Coronal Rain Using the Rolling Hough Transform

    NASA Astrophysics Data System (ADS)

    Schad, Thomas

    2017-09-01

    A technique is presented that automates the direction characterization of curvilinear features in multidimensional solar imaging datasets. It is an extension of the Rolling Hough Transform (RHT) technique presented by Clark, Peek, and Putman ( Astrophys. J. 789, 82, 2014), and it excels at rapid quantification of spatial and spatiotemporal feature orientation even for applications with a low signal-to-noise ratio. It operates on a pixel-by-pixel basis within a dataset and reliably quantifies orientation even for locations not centered on a feature ridge, which is used here to derive a quasi-continuous map of the chromospheric fine-structure projection angle. For time-series analysis, a procedure is developed that uses a hierarchical application of the RHT to automatically derive the apparent motion of coronal rain observed off-limb. Essential to the success of this technique is the formulation presented in this article for the RHT error analysis as it provides a means to properly filter results.

  4. Determination of mango fruit from binary image using randomized Hough transform

    NASA Astrophysics Data System (ADS)

    Rizon, Mohamed; Najihah Yusri, Nurul Ain; Abdul Kadir, Mohd Fadzil; bin Mamat, Abd. Rasid; Abd Aziz, Azim Zaliha; Nanaa, Kutiba

    2015-12-01

    A method of detecting mango fruit from RGB input image is proposed in this research. From the input image, the image is processed to obtain the binary image using the texture analysis and morphological operations (dilation and erosion). Later, the Randomized Hough Transform (RHT) method is used to find the best ellipse fits to each binary region. By using the texture analysis, the system can detect the mango fruit that is partially overlapped with each other and mango fruit that is partially occluded by the leaves. The combination of texture analysis and morphological operator can isolate the partially overlapped fruit and fruit that are partially occluded by leaves. The parameters derived from RHT method was used to calculate the center of the ellipse. The center of the ellipse acts as the gripping point for the fruit picking robot. As the results, the rate of detection was up to 95% for fruit that is partially overlapped and partially covered by leaves.

  5. A Hough transform global probabilistic approach to multiple-subject diffusion MRI tractography.

    PubMed

    Aganj, Iman; Lenglet, Christophe; Jahanshad, Neda; Yacoub, Essa; Harel, Noam; Thompson, Paul M; Sapiro, Guillermo

    2011-08-01

    A global probabilistic fiber tracking approach based on the voting process provided by the Hough transform is introduced in this work. The proposed framework tests candidate 3D curves in the volume, assigning to each one a score computed from the diffusion images, and then selects the curves with the highest scores as the potential anatomical connections. The algorithm avoids local minima by performing an exhaustive search at the desired resolution. The technique is easily extended to multiple subjects, considering a single representative volume where the registered high-angular resolution diffusion images (HARDI) from all the subjects are non-linearly combined, thereby obtaining population-representative tracts. The tractography algorithm is run only once for the multiple subjects, and no tract alignment is necessary. We present experimental results on HARDI volumes, ranging from simulated and 1.5T physical phantoms to 7T and 4T human brain and 7T monkey brain datasets. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Laser spot tracking based on modified circular Hough transform and motion pattern analysis.

    PubMed

    Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan

    2014-10-27

    Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas-Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development.

  7. A novel rail defect detection method based on undecimated lifting wavelet packet transform and Shannon entropy-improved adaptive line enhancer

    NASA Astrophysics Data System (ADS)

    Hao, Qiushi; Zhang, Xin; Wang, Yan; Shen, Yi; Makis, Viliam

    2018-07-01

    Acoustic emission (AE) technology is sensitive to subliminal rail defects, however strong wheel-rail contact rolling noise under high-speed condition has gravely impeded detecting of rail defects using traditional denoising methods. In this context, the paper develops an adaptive detection method for rail cracks, which combines multiresolution analysis with an improved adaptive line enhancer (ALE). To obtain elaborate multiresolution information of transient crack signals with low computational cost, lifting scheme-based undecimated wavelet packet transform is adopted. In order to feature the impulsive property of crack signals, a Shannon entropy-improved ALE is proposed as a signal enhancing approach, where Shannon entropy is introduced to improve the cost function. Then a rail defect detection plan based on the proposed method for high-speed condition is put forward. From theoretical analysis and experimental verification, it is demonstrated that the proposed method has superior performance in enhancing the rail defect AE signal and reducing the strong background noise, offering an effective multiresolution approach for rail defect detection under high-speed and strong-noise condition.

  8. Steerable dyadic wavelet transform and interval wavelets for enhancement of digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Koren, Iztok; Yang, Wuhai; Taylor, Fred J.

    1995-04-01

    This paper describes two approaches for accomplishing interactive feature analysis by overcomplete multiresolution representations. We show quantitatively that transform coefficients, modified by an adaptive non-linear operator, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. Our results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. We design a filter bank representing a steerable dyadic wavelet transform that can be used for multiresolution analysis along arbitrary orientations. Digital mammograms are enhanced by orientation analysis performed by a steerable dyadic wavelet transform. Arbitrary regions of interest (ROI) are enhanced by Deslauriers-Dubuc interpolation representations on an interval. We demonstrate that our methods can provide radiologists with an interactive capability to support localized processing of selected (suspicion) areas (lesions). Features extracted from multiscale representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology can improve changes of early detection while requiring less time to evaluate mammograms for most patients.

  9. Multiresolution forecasting for futures trading using wavelet decompositions.

    PubMed

    Zhang, B L; Coggins, R; Jabri, M A; Dersch, D; Flower, B

    2001-01-01

    We investigate the effectiveness of a financial time-series forecasting strategy which exploits the multiresolution property of the wavelet transform. A financial series is decomposed into an over complete, shift invariant scale-related representation. In transform space, each individual wavelet series is modeled by a separate multilayer perceptron (MLP). We apply the Bayesian method of automatic relevance determination to choose short past windows (short-term history) for the inputs to the MLPs at lower scales and long past windows (long-term history) at higher scales. To form the overall forecast, the individual forecasts are then recombined by the linear reconstruction property of the inverse transform with the chosen autocorrelation shell representation, or by another perceptron which learns the weight of each scale in the prediction of the original time series. The forecast results are then passed to a money management system to generate trades.

  10. Generalized Hough Transform for Object Classification in the Maritime Domain

    DTIC Science & Technology

    2015-12-01

    and memory storage problems of the GHT in this work . Neural networks have been used to provide excellent solutions to real-world problems in many...1 A. THESIS OBJECTIVE ...............................................................................1 B. RELATED WORK ...SIGNIFICANT CONTRIBUTIONS ......................................................47  B.  RECOMMENDATIONS FOR FUTURE WORK ................................48

  11. Linear- and Repetitive Feature Detection Within Remotely Sensed Imagery

    DTIC Science & Technology

    2017-04-01

    applicable to Python or other pro- gramming languages with image- processing capabilities. 4.1 Classification machine learning The first methodology uses...remotely sensed images that are in panchromatic or true-color formats. Image- processing techniques, in- cluding Hough transforms, machine learning, and...data fusion .................................................................................................... 44 6.3 Context-based processing

  12. Vector coding of wavelet-transformed images

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Zhi, Cheng; Zhou, Yuanhua

    1998-09-01

    Wavelet, as a brand new tool in signal processing, has got broad recognition. Using wavelet transform, we can get octave divided frequency band with specific orientation which combines well with the properties of Human Visual System. In this paper, we discuss the classified vector quantization method for multiresolution represented image.

  13. Gradient-based multiresolution image fusion.

    PubMed

    Petrović, Valdimir S; Xydeas, Costas S

    2004-02-01

    A novel approach to multiresolution signal-level image fusion is presented for accurately transferring visual information from any number of input image signals, into a single fused image without loss of information or the introduction of distortion. The proposed system uses a "fuse-then-decompose" technique realized through a novel, fusion/decomposition system architecture. In particular, information fusion is performed on a multiresolution gradient map representation domain of image signal information. At each resolution, input images are represented as gradient maps and combined to produce new, fused gradient maps. Fused gradient map signals are processed, using gradient filters derived from high-pass quadrature mirror filters to yield a fused multiresolution pyramid representation. The fused output image is obtained by applying, on the fused pyramid, a reconstruction process that is analogous to that of conventional discrete wavelet transform. This new gradient fusion significantly reduces the amount of distortion artefacts and the loss of contrast information usually observed in fused images obtained from conventional multiresolution fusion schemes. This is because fusion in the gradient map domain significantly improves the reliability of the feature selection and information fusion processes. Fusion performance is evaluated through informal visual inspection and subjective psychometric preference tests, as well as objective fusion performance measurements. Results clearly demonstrate the superiority of this new approach when compared to conventional fusion systems.

  14. Automatic extraction of building boundaries using aerial LiDAR data

    NASA Astrophysics Data System (ADS)

    Wang, Ruisheng; Hu, Yong; Wu, Huayi; Wang, Jian

    2016-01-01

    Building extraction is one of the main research topics of the photogrammetry community. This paper presents automatic algorithms for building boundary extractions from aerial LiDAR data. First, segmenting height information generated from LiDAR data, the outer boundaries of aboveground objects are expressed as closed chains of oriented edge pixels. Then, building boundaries are distinguished from nonbuilding ones by evaluating their shapes. The candidate building boundaries are reconstructed as rectangles or regular polygons by applying new algorithms, following the hypothesis verification paradigm. These algorithms include constrained searching in Hough space, enhanced Hough transformation, and the sequential linking technique. The experimental results show that the proposed algorithms successfully extract building boundaries at rates of 97%, 85%, and 92% for three LiDAR datasets with varying scene complexities.

  15. Cadastral Map Assembling Using Generalized Hough Transformation

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Ohyama, Wataru; Wakabayashi, Tetsushi; Kimura, Fumitaka

    There are numerous cadastral maps generated by the past land surveying. The raster digitization of these paper maps is in progress. For effective and efficient use of these maps, we have to assemble the set of maps to make them superimposable on other geographic information in a GIS. The problem can be seen as a complex jigsaw puzzle where the pieces are the cadastral sections extracted from the map. We present an automatic solution to this geographic jigsaw puzzle, based on the generalized Hough transformation that detects the longest common boundary between every piece and its neighbors. The experiments have been conducted using the map of Mie Prefecture, Japan and the French cadastral map. The results of the experiments with the French cadastral maps showed that the proposed method, which consists of a flood filling procedure of internal area and detection and normalization of the north arrow direction, is suitable for assembling the cadastral map. The final goal of the process is to integrate every piece of the puzzle into a national geographic reference frame and database.

  16. Accurately estimating PSF with straight lines detected by Hough transform

    NASA Astrophysics Data System (ADS)

    Wang, Ruichen; Xu, Liangpeng; Fan, Chunxiao; Li, Yong

    2018-04-01

    This paper presents an approach to estimating point spread function (PSF) from low resolution (LR) images. Existing techniques usually rely on accurate detection of ending points of the profile normal to edges. In practice however, it is often a great challenge to accurately localize profiles of edges from a LR image, which hence leads to a poor PSF estimation of the lens taking the LR image. For precisely estimating the PSF, this paper proposes firstly estimating a 1-D PSF kernel with straight lines, and then robustly obtaining the 2-D PSF from the 1-D kernel by least squares techniques and random sample consensus. Canny operator is applied to the LR image for obtaining edges and then Hough transform is utilized to extract straight lines of all orientations. Estimating 1-D PSF kernel with straight lines effectively alleviates the influence of the inaccurate edge detection on PSF estimation. The proposed method is investigated on both natural and synthetic images for estimating PSF. Experimental results show that the proposed method outperforms the state-ofthe- art and does not rely on accurate edge detection.

  17. Sign language indexation within the MPEG-7 framework

    NASA Astrophysics Data System (ADS)

    Zaharia, Titus; Preda, Marius; Preteux, Francoise J.

    1999-06-01

    In this paper, we address the issue of sign language indexation/recognition. The existing tools, like on-like Web dictionaries or other educational-oriented applications, are making exclusive use of textural annotations. However, keyword indexing schemes have strong limitations due to the ambiguity of the natural language and to the huge effort needed to manually annotate a large amount of data. In order to overcome these drawbacks, we tackle sign language indexation issue within the MPEG-7 framework and propose an approach based on linguistic properties and characteristics of sing language. The method developed introduces the concept of over time stable hand configuration instanciated on natural or synthetic prototypes. The prototypes are indexed by means of a shape descriptor which is defined as a translation, rotation and scale invariant Hough transform. A very compact representation is available by considering the Fourier transform of the Hough coefficients. Such an approach has been applied to two data sets consisting of 'Letters' and 'Words' respectively. The accuracy and robustness of the result are discussed and a compete sign language description schema is proposed.

  18. Dim target trajectory-associated detection in bright earth limb background

    NASA Astrophysics Data System (ADS)

    Chen, Penghui; Xu, Xiaojian; He, Xiaoyu; Jiang, Yuesong

    2015-09-01

    The intensive emission of earth limb in the field of view of sensors contributes much to the observation images. Due to the low signal-to-noise ratio (SNR), it is a challenge to detect small targets in earth limb background, especially for the detection of point-like targets from a single frame. To improve the target detection, track before detection (TBD) based on the frame sequence is performed. In this paper, a new technique is proposed to determine the target associated trajectories, which jointly carries out background removing, maximum value projection (MVP) and Hough transform. The background of the bright earth limb in the observation images is removed according to the profile characteristics. For a moving target, the corresponding pixels in the MVP image are shifting approximately regularly in time sequence. And the target trajectory is determined by Hough transform according to the pixel characteristics of the target and the clutter and noise. Comparing with traditional frame-by-frame methods, determining associated trajectories from MVP reduces the computation load. Numerical simulations are presented to demonstrate the effectiveness of the approach proposed.

  19. Pattern recognition and feature extraction with an optical Hough transform

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    2016-09-01

    Pattern recognition and localization along with feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for the recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital- only methods. Starting from the integral representation of the GHT, it is possible to device an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a rotating pupil mask for orientation variation, implemented on a high-contrast spatial light modulator (SLM). Real-time (as limited by the frame rate of the device used to capture the GHT) can also be achieved, allowing for the processing of video sequences. Besides, by thresholding of the GHT (with the aid of another SLM) and inverse transforming (which is optically achieved in the incoherent system under appropriate focusing setting), the previously detected features of interest can be extracted.

  20. Evaluation of GPUs as a level-1 track trigger for the High-Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Mohr, H.; Dritschler, T.; Ardila, L. E.; Balzer, M.; Caselle, M.; Chilingaryan, S.; Kopmann, A.; Rota, L.; Schuh, T.; Vogelgesang, M.; Weber, M.

    2017-04-01

    In this work, we investigate the use of GPUs as a way of realizing a low-latency, high-throughput track trigger, using CMS as a showcase example. The CMS detector at the Large Hadron Collider (LHC) will undergo a major upgrade after the long shutdown from 2024 to 2026 when it will enter the high luminosity era. During this upgrade, the silicon tracker will have to be completely replaced. In the High Luminosity operation mode, luminosities of 5-7 × 1034 cm-2s-1 and pileups averaging at 140 events, with a maximum of up to 200 events, will be reached. These changes will require a major update of the triggering system. The demonstrated systems rely on dedicated hardware such as associative memory ASICs and FPGAs. We investigate the use of GPUs as an alternative way of realizing the requirements of the L1 track trigger. To this end we implemeted a Hough transformation track finding step on GPUs and established a low-latency RDMA connection using the PCIe bus. To showcase the benefits of floating point operations, made possible by the use of GPUs, we present a modified algorithm. It uses hexagonal bins for the parameter space and leads to a more truthful representation of the possible track parameters of the individual hits in Hough space. This leads to fewer duplicate candidates and reduces fake track candidates compared to the regular approach. With data-transfer latencies of 2 μs and processing times for the Hough transformation as low as 3.6 μs, we can show that latencies are not as critical as expected. However, computing throughput proves to be challenging due to hardware limitations.

  1. Perceptual compression of magnitude-detected synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Werness, Susan A.

    1994-01-01

    A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.

  2. Multiresolution image registration in digital x-ray angiography with intensity variation modeling.

    PubMed

    Nejati, Mansour; Pourghassem, Hossein

    2014-02-01

    Digital subtraction angiography (DSA) is a widely used technique for visualization of vessel anatomy in diagnosis and treatment. However, due to unavoidable patient motions, both externally and internally, the subtracted angiography images often suffer from motion artifacts that adversely affect the quality of the medical diagnosis. To cope with this problem and improve the quality of DSA images, registration algorithms are often employed before subtraction. In this paper, a novel elastic registration algorithm for registration of digital X-ray angiography images, particularly for the coronary location, is proposed. This algorithm includes a multiresolution search strategy in which a global transformation is calculated iteratively based on local search in coarse and fine sub-image blocks. The local searches are accomplished in a differential multiscale framework which allows us to capture both large and small scale transformations. The local registration transformation also explicitly accounts for local variations in the image intensities which incorporated into our model as a change of local contrast and brightness. These local transformations are then smoothly interpolated using thin-plate spline interpolation function to obtain the global model. Experimental results with several clinical datasets demonstrate the effectiveness of our algorithm in motion artifact reduction.

  3. Method of center localization for objects containing concentric arcs

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena G.; Shvets, Evgeny A.; Nikolaev, Dmitry P.

    2015-02-01

    This paper proposes a method for automatic center location of objects containing concentric arcs. The method utilizes structure tensor analysis and voting scheme optimized with Fast Hough Transform. Two applications of the proposed method are considered: (i) wheel tracking in video-based system for automatic vehicle classification and (ii) tree growth rings analysis on a tree cross cut image.

  4. Detection of pavement cracks using tiled fuzzy Hough transform

    NASA Astrophysics Data System (ADS)

    Mathavan, Senthan; Vaheesan, Kanapathippillai; Kumar, Akash; Chandrakumar, Chanjief; Kamal, Khurram; Rahman, Mujib; Stonecliffe-Jones, Martyn

    2017-09-01

    Surface cracks can be the bellwether of the failure of a road. Hence, crack detection is indispensable for the condition monitoring and quality control of road surfaces. Pavement images have high levels of intensity variation and texture content; hence, the crack detection is generally difficult. Moreover, shallow cracks are very low contrast, making their detection difficult. Therefore, studies on pavement crack detection are active even after years of research. The fuzzy Hough transform is employed, for the first time, to detect cracks from pavement images. A careful consideration is given to the fact that cracks consist of near straight segments embedded in a surface of considerable texture. In this regard, the fuzzy part of the algorithm tackles the segments that are not perfectly straight. Moreover, tiled detection helps reduce the contribution of texture and noise pixels to the accumulator array. The proposed algorithm is compared against a state-of-the-art algorithm for a number of crack datasets, demonstrating its strengths. Precision and recall values of more than 75% are obtained, on different image sets of varying textures and other effects, captured by industrial pavement imagers. The paper also recommends numerical values for parameters used in the proposed method.

  5. Motion estimation of magnetic resonance cardiac images using the Wigner-Ville and hough transforms

    NASA Astrophysics Data System (ADS)

    Carranza, N.; Cristóbal, G.; Bayerl, P.; Neumann, H.

    2007-12-01

    Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the computation of the optical flow, which is an approximation of the real image motion. This paper presents a new algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach. More specifically it relies on the computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The latter is a well-known line and shape detection method that is highly robust against incomplete data and noise. The rationale of using the HT in this context is that it provides a value of the displacement field from the STF representation. In addition, a probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion detection. Experimental results in the case of synthetic sequences are compared with an implementation of the variational technique for local and global motion estimation, where it is shown that the results are accurate and robust to noise degradations. Results obtained with real cardiac magnetic resonance images are presented.

  6. A Computer Vision Approach to Identify Einstein Rings and Arcs

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Hsiu

    2017-03-01

    Einstein rings are rare gems of strong lensing phenomena; the ring images can be used to probe the underlying lens gravitational potential at every position angles, tightly constraining the lens mass profile. In addition, the magnified images also enable us to probe high-z galaxies with enhanced resolution and signal-to-noise ratios. However, only a handful of Einstein rings have been reported, either from serendipitous discoveries or or visual inspections of hundred thousands of massive galaxies or galaxy clusters. In the era of large sky surveys, an automated approach to identify ring pattern in the big data to come is in high demand. Here, we present an Einstein ring recognition approach based on computer vision techniques. The workhorse is the circle Hough transform that recognise circular patterns or arcs in the images. We propose a two-tier approach by first pre-selecting massive galaxies associated with multiple blue objects as possible lens, than use Hough transform to identify circular pattern. As a proof-of-concept, we apply our approach to SDSS, with a high completeness, albeit with low purity. We also apply our approach to other lenses in DES, HSC-SSP, and UltraVISTA survey, illustrating the versatility of our approach.

  7. Extracting contours of oval-shaped objects by Hough transform and minimal path algorithms

    NASA Astrophysics Data System (ADS)

    Tleis, Mohamed; Verbeek, Fons J.

    2014-04-01

    Circular and oval-like objects are very common in cell and micro biology. These objects need to be analyzed, and to that end, digitized images from the microscope are used so as to come to an automated analysis pipeline. It is essential to detect all the objects in an image as well as to extract the exact contour of each individual object. In this manner it becomes possible to perform measurements on these objects, i.e. shape and texture features. Our measurement objective is achieved by probing contour detection through dynamic programming. In this paper we describe a method that uses Hough transform and two minimal path algorithms to detect contours of (ovoid-like) objects. These algorithms are based on an existing grey-weighted distance transform and a new algorithm to extract the circular shortest path in an image. The methods are tested on an artificial dataset of a 1000 images, with an F1-score of 0.972. In a case study with yeast cells, contours from our methods were compared with another solution using Pratt's figure of merit. Results indicate that our methods were more precise based on a comparison with a ground-truth dataset. As far as yeast cells are concerned, the segmentation and measurement results enable, in future work, to retrieve information from different developmental stages of the cell using complex features.

  8. Logo recognition in video by line profile classification

    NASA Astrophysics Data System (ADS)

    den Hollander, Richard J. M.; Hanjalic, Alan

    2003-12-01

    We present an extension to earlier work on recognizing logos in video stills. The logo instances considered here are rigid planar objects observed at a distance in the scene, so the possible perspective transformation can be approximated by an affine transformation. For this reason we can classify the logos by matching (invariant) line profiles. We enhance our previous method by considering multiple line profiles instead of a single profile of the logo. The positions of the lines are based on maxima in the Hough transform space of the segmented logo foreground image. Experiments are performed on MPEG1 sport video sequences to show the performance of the proposed method.

  9. Multiscale wavelet representations for mammographic feature analysis

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu

    1992-12-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  10. SU-G-IeP1-01: A Novel MRI Post-Processing Algorithm for Visualization of the Prostate LDR Brachytherapy Seeds and Calcifications Based On B0 Field Inhomogeneity Correction and Hough Transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosrati, R; Sunnybrook Health Sciences Centre, Toronto, Ontario; Soliman, A

    Purpose: This study aims at developing an MRI-only workflow for post-implant dosimetry of the prostate LDR brachytherapy seeds. The specific goal here is to develop a post-processing algorithm to produce positive contrast for the seeds and prostatic calcifications and differentiate between them on MR images. Methods: An agar-based phantom incorporating four dummy seeds (I-125) and five calcifications of different sizes (from sheep cortical bone) was constructed. Seeds were placed arbitrarily in the coronal plane. The phantom was scanned with 3T Philips Achieva MR scanner using an 8-channel head coil array. Multi-echo turbo spin echo (ME-TSE) and multi-echo gradient recalled echomore » (ME-GRE) sequences were acquired. Due to minimal susceptibility artifacts around seeds, ME-GRE sequence (flip angle=15; TR/TE=20/2.3/2.3; resolution=0.7×0.7×2mm3) was further processed.The induced field inhomogeneity due to the presence of titaniumencapsulated seeds was corrected using a B0 field map. B0 map was calculated using the ME-GRE sequence by calculating the phase difference at two different echo times. Initially, the product of the first echo and B0 map was calculated. The features corresponding to the seeds were then extracted in three steps: 1) the edge pixels were isolated using “Prewitt” operator; 2) the Hough transform was employed to detect ellipses approximately matching the dimensions of the seeds and 3) at the position and orientation of the detected ellipses an ellipse was drawn on the B0-corrected image. Results: The proposed B0-correction process produced positive contrast for the seeds and calcifications. The Hough transform based on Prewitt edge operator successfully identified all the seeds according to their ellipsoidal shape and dimensions in the edge image. Conclusion: The proposed post-processing algorithm successfully visualized the seeds and calcifications with positive contrast and differentiates between them according to their shapes. Further assessments on more realistic phantoms and patient study are required to validate the outcome.« less

  11. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu Wu; Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario N6A 5K8; Yuchi Ming

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped;more » the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions: The proposed needle segmentation algorithm is accurate, robust, and suitable for 3D TRUS guided prostate transperineal therapy.« less

  12. Geometric shapes inversion method of space targets by ISAR image segmentation

    NASA Astrophysics Data System (ADS)

    Huo, Chao-ying; Xing, Xiao-yu; Yin, Hong-cheng; Li, Chen-guang; Zeng, Xiang-yun; Xu, Gao-gui

    2017-11-01

    The geometric shape of target is an effective characteristic in the process of space targets recognition. This paper proposed a method of shape inversion of space target based on components segmentation from ISAR image. The Radon transformation, Hough transformation, K-means clustering, triangulation will be introduced into ISAR image processing. Firstly, we use Radon transformation and edge detection to extract space target's main body spindle and solar panel spindle from ISAR image. Then the targets' main body, solar panel, rectangular and circular antenna are segmented from ISAR image based on image detection theory. Finally, the sizes of every structural component are computed. The effectiveness of this method is verified using typical targets' simulation data.

  13. Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech.

    NASA Astrophysics Data System (ADS)

    Campo, D.; Quintero, O. L.; Bastidas, M.

    2016-04-01

    We propose a study of the mathematical properties of voice as an audio signal. This work includes signals in which the channel conditions are not ideal for emotion recognition. Multiresolution analysis- discrete wavelet transform - was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states. ANNs proved to be a system that allows an appropriate classification of such states. This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features. Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify.

  14. Variability Extraction and Synthesis via Multi-Resolution Analysis using Distribution Transformer High-Speed Power Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamana, Manohar; Mather, Barry A

    A library of load variability classes is created to produce scalable synthetic data sets using historical high-speed raw data. These data are collected from distribution monitoring units connected at the secondary side of a distribution transformer. Because of the irregular patterns and large volume of historical high-speed data sets, the utilization of current load characterization and modeling techniques are challenging. Multi-resolution analysis techniques are applied to extract the necessary components and eliminate the unnecessary components from the historical high-speed raw data to create the library of classes, which are then utilized to create new synthetic load data sets. A validationmore » is performed to ensure that the synthesized data sets contain the same variability characteristics as the training data sets. The synthesized data sets are intended to be utilized in quasi-static time-series studies for distribution system planning studies on a granular scale, such as detailed PV interconnection studies.« less

  15. Image processing tool for automatic feature recognition and quantification

    DOEpatents

    Chen, Xing; Stoddard, Ryan J.

    2017-05-02

    A system for defining structures within an image is described. The system includes reading of an input file, preprocessing the input file while preserving metadata such as scale information and then detecting features of the input file. In one version the detection first uses an edge detector followed by identification of features using a Hough transform. The output of the process is identified elements within the image.

  16. Efficient iris texture analysis method based on Gabor ordinal measures

    NASA Astrophysics Data System (ADS)

    Tajouri, Imen; Aydi, Walid; Ghorbel, Ahmed; Masmoudi, Nouri

    2017-07-01

    With the remarkably increasing interest directed to the security dimension, the iris recognition process is considered to stand as one of the most versatile technique critically useful for the biometric identification and authentication process. This is mainly due to every individual's unique iris texture. A modestly conceived efficient approach relevant to the feature extraction process is proposed. In the first place, iris zigzag "collarette" is extracted from the rest of the image by means of the circular Hough transform, as it includes the most significant regions lying in the iris texture. In the second place, the linear Hough transform is used for the eyelids' detection purpose while the median filter is applied for the eyelashes' removal. Then, a special technique combining the richness of Gabor features and the compactness of ordinal measures is implemented for the feature extraction process, so that a discriminative feature representation for every individual can be achieved. Subsequently, the modified Hamming distance is used for the matching process. Indeed, the advanced procedure turns out to be reliable, as compared to some of the state-of-the-art approaches, with a recognition rate of 99.98%, 98.12%, and 95.02% on CASIAV1.0, CASIAV3.0, and IIT Delhi V1 iris databases, respectively.

  17. Localized contourlet features in vehicle make and model recognition

    NASA Astrophysics Data System (ADS)

    Zafar, I.; Edirisinghe, E. A.; Acar, B. S.

    2009-02-01

    Automatic vehicle Make and Model Recognition (MMR) systems provide useful performance enhancements to vehicle recognitions systems that are solely based on Automatic Number Plate Recognition (ANPR) systems. Several vehicle MMR systems have been proposed in literature. In parallel to this, the usefulness of multi-resolution based feature analysis techniques leading to efficient object classification algorithms have received close attention from the research community. To this effect, Contourlet transforms that can provide an efficient directional multi-resolution image representation has recently been introduced. Already an attempt has been made in literature to use Curvelet/Contourlet transforms in vehicle MMR. In this paper we propose a novel localized feature detection method in Contourlet transform domain that is capable of increasing the classification rates up to 4%, as compared to the previously proposed Contourlet based vehicle MMR approach in which the features are non-localized and thus results in sub-optimal classification. Further we show that the proposed algorithm can achieve the increased classification accuracy of 96% at significantly lower computational complexity due to the use of Two Dimensional Linear Discriminant Analysis (2DLDA) for dimensionality reduction by preserving the features with high between-class variance and low inter-class variance.

  18. Segmentation-based wavelet transform for still-image compression

    NASA Astrophysics Data System (ADS)

    Mozelle, Gerard; Seghier, Abdellatif; Preteux, Francoise J.

    1996-10-01

    In order to address simultaneously the two functionalities, content-based scalability required by MPEG-4, we introduce a segmentation-based wavelet transform (SBWT). SBWT takes into account both the mathematical properties of multiresolution analysis and the flexibility of region-based approaches for image compression. The associated methodology has two stages: 1) image segmentation into convex and polygonal regions; 2) 2D-wavelet transform of the signal corresponding to each region. In this paper, we have mathematically studied a method for constructing a multiresolution analysis (VjOmega)j (epsilon) N adapted to a polygonal region which provides an adaptive region-based filtering. The explicit construction of scaling functions, pre-wavelets and orthonormal wavelets bases defined on a polygon is carried out by using scaling functions is established by using the theory of Toeplitz operators. The corresponding expression can be interpreted as a location property which allow defining interior and boundary scaling functions. Concerning orthonormal wavelets and pre-wavelets, a similar expansion is obtained by taking advantage of the properties of the orthogonal projector P(V(j(Omega )) perpendicular from the space Vj(Omega ) + 1 onto the space (Vj(Omega )) perpendicular. Finally the mathematical results provide a simple and fast algorithm adapted to polygonal regions.

  19. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.

    PubMed

    Liao, Ke; Zhu, Min; Ding, Lei

    2013-08-01

    The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Rectification of elemental image set and extraction of lens lattice by projective image transformation in integral imaging.

    PubMed

    Hong, Keehoon; Hong, Jisoo; Jung, Jae-Hyun; Park, Jae-Hyeung; Lee, Byoungho

    2010-05-24

    We propose a new method for rectifying a geometrical distortion in the elemental image set and extracting an accurate lens lattice lines by projective image transformation. The information of distortion in the acquired elemental image set is found by Hough transform algorithm. With this initial information of distortions, the acquired elemental image set is rectified automatically without the prior knowledge on the characteristics of pickup system by stratified image transformation procedure. Computer-generated elemental image sets with distortion on purpose are used for verifying the proposed rectification method. Experimentally-captured elemental image sets are optically reconstructed before and after the rectification by the proposed method. The experimental results support the validity of the proposed method with high accuracy of image rectification and lattice extraction.

  1. Automated transformation-invariant shape recognition through wavelet multiresolution

    NASA Astrophysics Data System (ADS)

    Brault, Patrice; Mounier, Hugues

    2001-12-01

    We present here new results in Wavelet Multi-Resolution Analysis (W-MRA) applied to shape recognition in automatic vehicle driving applications. Different types of shapes have to be recognized in this framework. They pertain to most of the objects entering the sensors field of a car. These objects can be road signs, lane separation lines, moving or static obstacles, other automotive vehicles, or visual beacons. The recognition process must be invariant to global, affine or not, transformations which are : rotation, translation and scaling. It also has to be invariant to more local, elastic, deformations like the perspective (in particular with wide angle camera lenses), and also like deformations due to environmental conditions (weather : rain, mist, light reverberation) or optical and electrical signal noises. To demonstrate our method, an initial shape, with a known contour, is compared to the same contour altered by rotation, translation, scaling and perspective. The curvature computed for each contour point is used as a main criterion in the shape matching process. The original part of this work is to use wavelet descriptors, generated with a fast orthonormal W-MRA, rather than Fourier descriptors, in order to provide a multi-resolution description of the contour to be analyzed. In such way, the intrinsic spatial localization property of wavelet descriptors can be used and the recognition process can be speeded up. The most important part of this work is to demonstrate the potential performance of Wavelet-MRA in this application of shape recognition.

  2. Seam tracking with adaptive image capture for fine-tuning of a high power laser welding process

    NASA Astrophysics Data System (ADS)

    Lahdenoja, Olli; Säntti, Tero; Laiho, Mika; Paasio, Ari; Poikonen, Jonne K.

    2015-02-01

    This paper presents the development of methods for real-time fine-tuning of a high power laser welding process of thick steel by using a compact smart camera system. When performing welding in butt-joint configuration, the laser beam's location needs to be adjusted exactly according to the seam line in order to allow the injected energy to be absorbed uniformly into both steel sheets. In this paper, on-line extraction of seam parameters is targeted by taking advantage of a combination of dynamic image intensity compression, image segmentation with a focal-plane processor ASIC, and Hough transform on an associated FPGA. Additional filtering of Hough line candidates based on temporal windowing is further applied to reduce unrealistic frame-to-frame tracking variations. The proposed methods are implemented in Matlab by using image data captured with adaptive integration time. The simulations are performed in a hardware oriented way to allow real-time implementation of the algorithms on the smart camera system.

  3. Multi-resolution Gabor wavelet feature extraction for needle detection in 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Pourtaherian, Arash; Zinger, Svitlana; Mihajlovic, Nenad; de With, Peter H. N.; Huang, Jinfeng; Ng, Gary C.; Korsten, Hendrikus H. M.

    2015-12-01

    Ultrasound imaging is employed for needle guidance in various minimally invasive procedures such as biopsy guidance, regional anesthesia and brachytherapy. Unfortunately, a needle guidance using 2D ultrasound is very challenging, due to a poor needle visibility and a limited field of view. Nowadays, 3D ultrasound systems are available and more widely used. Consequently, with an appropriate 3D image-based needle detection technique, needle guidance and interventions may significantly be improved and simplified. In this paper, we present a multi-resolution Gabor transformation for an automated and reliable extraction of the needle-like structures in a 3D ultrasound volume. We study and identify the best combination of the Gabor wavelet frequencies. High precision in detecting the needle voxels leads to a robust and accurate localization of the needle for the intervention support. Evaluation in several ex-vivo cases shows that the multi-resolution analysis significantly improves the precision of the needle voxel detection from 0.23 to 0.32 at a high recall rate of 0.75 (gain 40%), where a better robustness and confidence were confirmed in the practical experiments.

  4. Wigner-Hough/Radon Transform for GPS Post-Correlation Integration (Preprint)

    DTIC Science & Technology

    2007-09-01

    Wigner - Ville distribution ( WVD ) is a well known method to estimate instantaneous frequency, which appears as a...Barbarossa, 1996]. In this method, the Wigner - Ville distribution ( WVD ) is used to represent the signal energy in the time-frequency plane while the...its Wigner - Ville 4 distribution or WVD is computed as: ∫ +∞ ∞− −−+= τττ τπ detxtxftW fj 2* ) 2 () 2 (),( (4) where * stands for complex

  5. Kamera-basierte Erkennung von Geschwindigkeitsbeschränkungen auf deutschen Straen

    NASA Astrophysics Data System (ADS)

    Nienhüser, Dennis; Ziegenmeyer, Marco; Gumpp, Thomas; Scholl, Kay-Ulrich; Zöllner, J. Marius; Dillmann, Rüdiger

    An Fahrerassistenzsysteme im industriellen Einsatz werden hohe Anforderungen bezüglich Zuverlässigkeit und Robustheit gestellt. In dieser Arbeit wird die Kombination robuster Verfahren wie der Hough-Transformation und Support-Vektor-Maschinen zu einem Gesamtsystem zur Erkennung von Geschwindigkeitsbeschränkungen beschrieben. Es setzt eine Farbvideokamera als Sensorik ein. Die Evaluation auf Testdaten bestätigt durch die ermittelte hohe Korrektklassifikationsrate bei gleichzeitig geringer Zahl Fehlalarme die Zuverlässigkeit des Systems.

  6. Multiresolution Distance Volumes for Progressive Surface Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laney, D E; Bertram, M; Duchaineau, M A

    2002-04-18

    We present a surface compression method that stores surfaces as wavelet-compressed signed-distance volumes. Our approach enables the representation of surfaces with complex topology and arbitrary numbers of components within a single multiresolution data structure. This data structure elegantly handles topological modification at high compression rates. Our method does not require the costly and sometimes infeasible base mesh construction step required by subdivision surface approaches. We present several improvements over previous attempts at compressing signed-distance functions, including an 0(n) distance transform, a zero set initialization method for triangle meshes, and a specialized thresholding algorithm. We demonstrate the potential of sampled distancemore » volumes for surface compression and progressive reconstruction for complex high genus surfaces.« less

  7. Layering extraction from subsurface radargrams over Greenland and the Martian NPLD by combining wavelet analysis with Hough transforms

    NASA Astrophysics Data System (ADS)

    Xiong, Si-Ting; Muller, Jan-Peter

    2017-04-01

    Extracting lines from an imagery is a solved problem in the field of edge detection. Different to images taken by camera, radargrams are a set of radar echo profiles, which record wave energy reflected by subsurface reflectors, at each location of a radar footprint along the satellite's ground track. The radargrams record where there is a dielectric contrast caused by different deposits, and other subsurface features, such as facies, and internal distributions like porosity and fluids. Among the subsurface features, layering is an important one which reflect the sequence of seasonal or yearly deposits on the ground [1-2]. In the field of image processing, line detection methods, such as the Radon Transform or Hough Transform, are able to extract these subsurface layers from rasterised versions of the echograms. However, due to the attenuation of radar waves whilst propagating through geological media, radargrams sometimes suffer from gradient and high background noise. These attributes of radargrams cause errors in detection when conventional line detection methods are directly applied. In this study, we have developed a continuous wavelet analysis technique to be applied directly to the radar echo profiles in a radargram in order to detect segmented lines, and then a conventional line detection method, such as a Hough transform can be applied to connect these segmented lines. This processing chain is tested by using datasets from a radargram acquired by the Multi-channel Coherent Radar Depth Sounder (MCoRDS) on an airborne platform in Greenland and a radargram acquired by the SHAllow RADar (SHARAD) on board the Mars Reconnaissance Orbiter (MRO) [3] over Martian North Polar Layered Deposits (NPLD). Keywords: Subsurface mapping, Radargram, SHARAD, Greenland, Martian NPLD, Subsurface layering, line detection References: [1] Phillips, R. J., et al. "Mars north polar deposits: Stratigraphy, age, and geodynamical response." Science 320.5880 (2008): 1182-1185. [2] Cutts, James A., and Blake H. Lewis. "Models of climate cycles recorded in Martian polar layered deposits." Icarus 50.2 (1982): 216-244. [3] Plaut J J, Picardi G, Safaeinili A, et al. Subsurface radar sounding of the south polar layered deposits of Mars[J]. science, 2007, 316(5821): 92-95. Acknowledgements: Part of the research leading to these results has received funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement No. 607379 as well as from the China Scholarship Council and the UCL Dean of MAPS fund.

  8. A New Adaptive Structural Signature for Symbol Recognition by Using a Galois Lattice as a Classifier.

    PubMed

    Coustaty, M; Bertet, K; Visani, M; Ogier, J

    2011-08-01

    In this paper, we propose a new approach for symbol recognition using structural signatures and a Galois lattice as a classifier. The structural signatures are based on topological graphs computed from segments which are extracted from the symbol images by using an adapted Hough transform. These structural signatures-that can be seen as dynamic paths which carry high-level information-are robust toward various transformations. They are classified by using a Galois lattice as a classifier. The performance of the proposed approach is evaluated based on the GREC'03 symbol database, and the experimental results we obtain are encouraging.

  9. Lane detection based on color probability model and fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Jo, Kang-Hyun

    2018-04-01

    In the vehicle driver assistance systems, the accuracy and speed of lane line detection are the most important. This paper is based on color probability model and Fuzzy Local Information C-Means (FLICM) clustering algorithm. The Hough transform and the constraints of structural road are used to detect the lane line accurately. The global map of the lane line is drawn by the lane curve fitting equation. The experimental results show that the algorithm has good robustness.

  10. Impact of multi-resolution analysis of artificial intelligence models inputs on multi-step ahead river flow forecasting

    NASA Astrophysics Data System (ADS)

    Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.

    2013-12-01

    Discrete wavelet transform was applied to decomposed ANN and ANFIS inputs.Novel approach of WNF with subtractive clustering applied for flow forecasting.Forecasting was performed in 1-5 step ahead, using multi-variate inputs.Forecasting accuracy of peak values and longer lead-time significantly improved.

  11. An algorithm for power line detection and warning based on a millimeter-wave radar video.

    PubMed

    Ma, Qirong; Goshi, Darren S; Shih, Yi-Chi; Sun, Ming-Ting

    2011-12-01

    Power-line-strike accident is a major safety threat for low-flying aircrafts such as helicopters, thus an automatic warning system to power lines is highly desirable. In this paper we propose an algorithm for detecting power lines from radar videos from an active millimeter-wave sensor. Hough Transform is employed to detect candidate lines. The major challenge is that the radar videos are very noisy due to ground return. The noise points could fall on the same line which results in signal peaks after Hough Transform similar to the actual cable lines. To differentiate the cable lines from the noise lines, we train a Support Vector Machine to perform the classification. We exploit the Bragg pattern, which is due to the diffraction of electromagnetic wave on the periodic surface of power lines. We propose a set of features to represent the Bragg pattern for the classifier. We also propose a slice-processing algorithm which supports parallel processing, and improves the detection of cables in a cluttered background. Lastly, an adaptive algorithm is proposed to integrate the detection results from individual frames into a reliable video detection decision, in which temporal correlation of the cable pattern across frames is used to make the detection more robust. Extensive experiments with real-world data validated the effectiveness of our cable detection algorithm. © 2011 IEEE

  12. Precise 3D Lug Pose Detection Sensor for Automatic Robot Welding Using a Structured-Light Vision System

    PubMed Central

    Park, Jae Byung; Lee, Seung Hun; Lee, Il Jae

    2009-01-01

    In this study, we propose a precise 3D lug pose detection sensor for automatic robot welding of a lug to a huge steel plate used in shipbuilding, where the lug is a handle to carry the huge steel plate. The proposed sensor consists of a camera and four laser line diodes, and its design parameters are determined by analyzing its detectable range and resolution. For the lug pose acquisition, four laser lines are projected on both lug and plate, and the projected lines are detected by the camera. For robust detection of the projected lines against the illumination change, the vertical threshold, thinning, Hough transform and separated Hough transform algorithms are successively applied to the camera image. The lug pose acquisition is carried out by two stages: the top view alignment and the side view alignment. The top view alignment is to detect the coarse lug pose relatively far from the lug, and the side view alignment is to detect the fine lug pose close to the lug. After the top view alignment, the robot is controlled to move close to the side of the lug for the side view alignment. By this way, the precise 3D lug pose can be obtained. Finally, experiments with the sensor prototype are carried out to verify the feasibility and effectiveness of the proposed sensor. PMID:22400007

  13. Extraction of membrane structure in eyeball from MR volumes

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Kin, Taichi; Mori, Kensaku

    2017-03-01

    This paper presents an accurate extraction method of spherical shaped membrane structures in the eyeball from MR volumes. In ophthalmic surgery, operation field is limited to a small region. Patient specific surgical simulation is useful to reduce complications. Understanding of tissue structure in the eyeball of a patient is required to achieve patient specific surgical simulations. Previous extraction methods of tissue structure in the eyeball use optical coherence tomography (OCT) images. Although OCT images have high resolution, imaging regions are limited to very small. Global structure extraction of the eyeball is difficult from OCT images. We propose an extraction method of spherical shaped membrane structures including the sclerotic coat, choroid, and retina. This method is applied to a T2 weighted MR volume of the head region. MR volume can capture tissue structure of whole eyeball. Because we use MR volumes, out method extracts whole membrane structures in the eyeball. We roughly extract membrane structures by applying a sheet structure enhancement filter. The rough extraction result includes parts of the membrane structures. Then, we apply the Hough transform to extract a sphere structure from the voxels set of the rough extraction result. The Hough transform finds a sphere structure from the rough extraction result. An experimental result using a T2 weighted MR volume of the head region showed that the proposed method can extract spherical shaped membrane structures accurately.

  14. A novel iris localization algorithm using correlation filtering

    NASA Astrophysics Data System (ADS)

    Pohit, Mausumi; Sharma, Jitu

    2015-06-01

    Fast and efficient segmentation of iris from the eye images is a primary requirement for robust database independent iris recognition. In this paper we have presented a new algorithm for computing the inner and outer boundaries of the iris and locating the pupil centre. Pupil-iris boundary computation is based on correlation filtering approach, whereas iris-sclera boundary is determined through one dimensional intensity mapping. The proposed approach is computationally less extensive when compared with the existing algorithms like Hough transform.

  15. Compact optical processor for Hough and frequency domain features

    NASA Astrophysics Data System (ADS)

    Ott, Peter

    1996-11-01

    Shape recognition is necessary in a broad band of applications such as traffic sign or work piece recognition. It requires not only neighborhood processing of the input image pixels but global interconnection of them. The Hough transform (HT) performs such a global operation and it is well suited in the preprocessing stage of a shape recognition system. Translation invariant features can be easily calculated form the Hough domain. We have implemented on the computer a neural network shape recognition system which contains a HT, a feature extraction, and a classification layer. The advantage of this approach is that the total system can be optimized with well-known learning techniques and that it can explore the parallelism of the algorithms. However, the HT is a time consuming operation. Parallel, optical processing is therefore advantageous. Several systems have been proposed, based on space multiplexing with arrays of holograms and CGH's or time multiplexing with acousto-optic processors or by image rotation with incoherent and coherent astigmatic optical processors. We took up the last mentioned approach because 2D array detectors are read out line by line, so a 2D detector can achieve the same speed and is easier to implement. Coherent processing can allow the implementation of tilers in the frequency domain. Features based on wedge/ring, Gabor, or wavelet filters have been proven to show good discrimination capabilities for texture and shape recognition. The astigmatic lens system which is derived form the mathematical formulation of the HT is long and contains a non-standard, astigmatic element. By methods of lens transformation s for coherent applications we map the original design to a shorter lens with a smaller number of well separated standard elements and with the same coherent system response. The final lens design still contains the frequency plane for filtering and ray-tracing shows diffraction limited performance. Image rotation can be done optically by a rotating prism. We realize it on a fast FLC- SLM of our lab as input device. The filters can be implemented on the same type of SLM with 128 by 128 square pixels of size, resulting in a total length of the lens of less than 50cm.

  16. Infrared and visible image fusion with the target marked based on multi-resolution visual attention mechanisms

    NASA Astrophysics Data System (ADS)

    Huang, Yadong; Gao, Kun; Gong, Chen; Han, Lu; Guo, Yue

    2016-03-01

    During traditional multi-resolution infrared and visible image fusion processing, the low contrast ratio target may be weakened and become inconspicuous because of the opposite DN values in the source images. So a novel target pseudo-color enhanced image fusion algorithm based on the modified attention model and fast discrete curvelet transformation is proposed. The interesting target regions are extracted from source images by introducing the motion features gained from the modified attention model, and source images are performed the gray fusion via the rules based on physical characteristics of sensors in curvelet domain. The final fusion image is obtained by mapping extracted targets into the gray result with the proper pseudo-color instead. The experiments show that the algorithm can highlight dim targets effectively and improve SNR of fusion image.

  17. An ROI multi-resolution compression method for 3D-HEVC

    NASA Astrophysics Data System (ADS)

    Ti, Chunli; Guan, Yudong; Xu, Guodong; Teng, Yidan; Miao, Xinyuan

    2017-09-01

    3D High Efficiency Video Coding (3D-HEVC) provides a significant potential on increasing the compression ratio of multi-view RGB-D videos. However, the bit rate still rises dramatically with the improvement of the video resolution, which will bring challenges to the transmission network, especially the mobile network. This paper propose an ROI multi-resolution compression method for 3D-HEVC to better preserve the information in ROI on condition of limited bandwidth. This is realized primarily through ROI extraction and compression multi-resolution preprocessed video as alternative data according to the network conditions. At first, the semantic contours are detected by the modified structured forests to restrain the color textures inside objects. The ROI is then determined utilizing the contour neighborhood along with the face region and foreground area of the scene. Secondly, the RGB-D videos are divided into slices and compressed via 3D-HEVC under different resolutions for selection by the audiences and applications. Afterwards, the reconstructed low-resolution videos from 3D-HEVC encoder are directly up-sampled via Laplace transformation and used to replace the non-ROI areas of the high-resolution videos. Finally, the ROI multi-resolution compressed slices are obtained by compressing the ROI preprocessed videos with 3D-HEVC. The temporal and special details of non-ROI are reduced in the low-resolution videos, so the ROI will be better preserved by the encoder automatically. Experiments indicate that the proposed method can keep the key high-frequency information with subjective significance while the bit rate is reduced.

  18. Multimodal fusion framework: a multiresolution approach for emotion classification and recognition from physiological signals.

    PubMed

    Verma, Gyanendra K; Tiwary, Uma Shanker

    2014-11-15

    The purpose of this paper is twofold: (i) to investigate the emotion representation models and find out the possibility of a model with minimum number of continuous dimensions and (ii) to recognize and predict emotion from the measured physiological signals using multiresolution approach. The multimodal physiological signals are: Electroencephalogram (EEG) (32 channels) and peripheral (8 channels: Galvanic skin response (GSR), blood volume pressure, respiration pattern, skin temperature, electromyogram (EMG) and electrooculogram (EOG)) as given in the DEAP database. We have discussed the theories of emotion modeling based on i) basic emotions, ii) cognitive appraisal and physiological response approach and iii) the dimensional approach and proposed a three continuous dimensional representation model for emotions. The clustering experiment on the given valence, arousal and dominance values of various emotions has been done to validate the proposed model. A novel approach for multimodal fusion of information from a large number of channels to classify and predict emotions has also been proposed. Discrete Wavelet Transform, a classical transform for multiresolution analysis of signal has been used in this study. The experiments are performed to classify different emotions from four classifiers. The average accuracies are 81.45%, 74.37%, 57.74% and 75.94% for SVM, MLP, KNN and MMC classifiers respectively. The best accuracy is for 'Depressing' with 85.46% using SVM. The 32 EEG channels are considered as independent modes and features from each channel are considered with equal importance. May be some of the channel data are correlated but they may contain supplementary information. In comparison with the results given by others, the high accuracy of 85% with 13 emotions and 32 subjects from our proposed method clearly proves the potential of our multimodal fusion approach. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. A multi-resolution strategy for a multi-objective deformable image registration framework that accommodates large anatomical differences

    NASA Astrophysics Data System (ADS)

    Alderliesten, Tanja; Bosman, Peter A. N.; Sonke, Jan-Jakob; Bel, Arjan

    2014-03-01

    Currently, two major challenges dominate the field of deformable image registration. The first challenge is related to the tuning of the developed methods to specific problems (i.e. how to best combine different objectives such as similarity measure and transformation effort). This is one of the reasons why, despite significant progress, clinical implementation of such techniques has proven to be difficult. The second challenge is to account for large anatomical differences (e.g. large deformations, (dis)appearing structures) that occurred between image acquisitions. In this paper, we study a framework based on multi-objective optimization to improve registration robustness and to simplify tuning for specific applications. Within this framework we specifically consider the use of an advanced model-based evolutionary algorithm for optimization and a dual-dynamic transformation model (i.e. two "non-fixed" grids: one for the source- and one for the target image) to accommodate for large anatomical differences. The framework computes and presents multiple outcomes that represent efficient trade-offs between the different objectives (a so-called Pareto front). In image processing it is common practice, for reasons of robustness and accuracy, to use a multi-resolution strategy. This is, however, only well-established for single-objective registration methods. Here we describe how such a strategy can be realized for our multi-objective approach and compare its results with a single-resolution strategy. For this study we selected the case of prone-supine breast MRI registration. Results show that the well-known advantages of a multi-resolution strategy are successfully transferred to our multi-objective approach, resulting in superior (i.e. Pareto-dominating) outcomes.

  20. Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images

    PubMed Central

    Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong

    2015-01-01

    In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods. PMID:26703596

  1. Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images.

    PubMed

    Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong

    2015-12-12

    In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods.

  2. Hough transform for clustered microcalcifications detection in full-field digital mammograms

    NASA Astrophysics Data System (ADS)

    Fanizzi, A.; Basile, T. M. A.; Losurdo, L.; Amoroso, N.; Bellotti, R.; Bottigli, U.; Dentamaro, R.; Didonna, V.; Fausto, A.; Massafra, R.; Moschetta, M.; Tamborra, P.; Tangaro, S.; La Forgia, D.

    2017-09-01

    Many screening programs use mammography as principal diagnostic tool for detecting breast cancer at a very early stage. Despite the efficacy of the mammograms in highlighting breast diseases, the detection of some lesions is still doubtless for radiologists. In particular, the extremely minute and elongated salt-like particles of microcalcifications are sometimes no larger than 0.1 mm and represent approximately half of all cancer detected by means of mammograms. Hence the need for automatic tools able to support radiologists in their work. Here, we propose a computer assisted diagnostic tool to support radiologists in identifying microcalcifications in full (native) digital mammographic images. The proposed CAD system consists of a pre-processing step, that improves contrast and reduces noise by applying Sobel edge detection algorithm and Gaussian filter, followed by a microcalcification detection step performed by exploiting the circular Hough transform. The procedure performance was tested on 200 images coming from the Breast Cancer Digital Repository (BCDR), a publicly available database. The automatically detected clusters of microcalcifications were evaluated by skilled radiologists which asses the validity of the correctly identified regions of interest as well as the system error in case of missed clustered microcalcifications. The system performance was evaluated in terms of Sensitivity and False Positives per images (FPi) rate resulting comparable to the state-of-art approaches. The proposed model was able to accurately predict the microcalcification clusters obtaining performances (sensibility = 91.78% and FPi rate = 3.99) which favorably compare to other state-of-the-art approaches.

  3. New algorithm for detecting smaller retinal blood vessels in fundus images

    NASA Astrophysics Data System (ADS)

    LeAnder, Robert; Bidari, Praveen I.; Mohammed, Tauseef A.; Das, Moumita; Umbaugh, Scott E.

    2010-03-01

    About 4.1 million Americans suffer from diabetic retinopathy. To help automatically diagnose various stages of the disease, a new blood-vessel-segmentation algorithm based on spatial high-pass filtering was developed to automatically segment blood vessels, including the smaller ones, with low noise. Methods: Image database: Forty, 584 x 565-pixel images were collected from the DRIVE image database. Preprocessing: Green-band extraction was used to obtain better contrast, which facilitated better visualization of retinal blood vessels. A spatial highpass filter of mask-size 11 was applied. A histogram stretch was performed to enhance contrast. A median filter was applied to mitigate noise. At this point, the gray-scale image was converted to a binary image using a binary thresholding operation. Then, a NOT operation was performed by gray-level value inversion between 0 and 255. Postprocessing: The resulting image was AND-ed with its corresponding ring mask to remove the outer-ring (lens-edge) artifact. At this point, the above algorithm steps had extracted most of the major and minor vessels, with some intersections and bifurcations missing. Vessel segments were reintegrated using the Hough transform. Results: After applying the Hough transform, both the average peak SNR and the RMS error improved by 10%. Pratt's Figure of Merit (PFM) was decreased by 6%. Those averages were better than [1] by 10-30%. Conclusions: The new algorithm successfully preserved the details of smaller blood vessels and should prove successful as a segmentation step for automatically identifying diseases that affect retinal blood vessels.

  4. Magnetically aligned H I fibers and the rolling hough transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, S. E.; Putman, M. E.; Peek, J. E. G.

    2014-07-01

    We present observations of a new group of structures in the diffuse Galactic interstellar medium (ISM): slender, linear H I features we dub 'fibers' that extend for many degrees at high Galactic latitude. To characterize and measure the extent and strength of these fibers, we present the Rolling Hough Transform, a new machine vision method for parameterizing the coherent linearity of structures in the image plane. With this powerful new tool we show that the fibers are oriented along the interstellar magnetic field as probed by starlight polarization. We find that these low column density (N{sub H} {sub I}≃5×10{sup 18}more » cm{sup –2}) fiber features are most likely a component of the local cavity wall, about 100 pc away. The H I data we use to demonstrate this alignment at high latitude are from the Galactic Arecibo L-Band Feed Array H I (GALFA-H I) Survey and the Parkes Galactic All Sky Survey. We find better alignment in the higher resolution GALFA-H I data, where the fibers are more visually evident. This trend continues in our investigation of magnetically aligned linear features in the Riegel-Crutcher H I cold cloud, detected in the Southern Galactic Plane Survey. We propose an application of the RHT for estimating the field strength in such a cloud, based on the Chandrasekhar-Fermi method. We conclude that data-driven, quantitative studies of ISM morphology can be very powerful predictors of underlying physical quantities.« less

  5. Extraction of Black Hole Shadows Using Ridge Filtering and the Circle Hough Transform

    NASA Astrophysics Data System (ADS)

    Hennessey, Ryan; Akiyama, Kazunori; Fish, Vincent

    2018-01-01

    Supermassive black holes are widely considered to reside at the center of most large galaxies. One of the foremost tasks in modern astronomy is to image the centers of local galaxies, such as that of Messier 87 (M87) and Sagittarius A* at the center of our own Milky Way, to gain the first glimpses of black holes and their surrounding structures. Using data obtained from the Event Horizon Telescope (EHT), a global collection of millimeter-wavelength telescopes designed to perform very long baseline interferometry, new imaging techniques will likely be able to yield images of these structures at fine enough resolutions to compare with the predictions of general relativity and give us more insight into the formation of black holes, their surrounding jets and accretion disks, and galaxies themselves. Techniques to extract features from these images are already being developed. In this work, we present a new method for measuring the size of the black hole shadow, a feature that encodes information about the black hole mass and spin, using ridge filtering and the circle Hough transform. Previous methods have succeeded in extracting the black hole shadow with an accuracy of about 10- 20%, but using this new technique we are able to measure the shadow size with even finer accuracy. Our work indicates that the EHT will be able to significantly reduce the uncertainty in the estimate of the mass of the supermassive black hole in M87.

  6. Localization of skeletal and aortic landmarks in trauma CT data based on the discriminative generalized Hough transform

    NASA Astrophysics Data System (ADS)

    Lorenz, Cristian; Hansis, Eberhard; Weese, Jürgen; Carolus, Heike

    2016-03-01

    Computed tomography is the modality of choice for poly-trauma patients to assess rapidly skeletal and vascular integrity of the whole body. Often several scans with and without contrast medium or with different spatial resolution are acquired. Efficient reading of the resulting extensive set of image data is vital, since it is often time critical to initiate the necessary therapeutic actions. A set of automatically found landmarks can facilitate navigation in the data and enables anatomy oriented viewing. Following this intention, we selected a comprehensive set of 17 skeletal and 5 aortic landmarks. Landmark localization models for the Discriminative Generalized Hough Transform (DGHT) were automatically created based on a set of about 20 training images with ground truth landmark positions. A hierarchical setup with 4 resolution levels was used. Localization results were evaluated on a separate test set, consisting of 50 to 128 images (depending on the landmark) with available ground truth landmark locations. The image data covers a large amount of variability caused by differences of field-of-view, resolution, contrast agent, patient gender and pathologies. The median localization error for the set of aortic landmarks was 14.4 mm and for the set of skeleton landmarks 5.5 mm. Median localization errors for individual landmarks ranged from 3.0 mm to 31.0 mm. The runtime performance for the whole landmark set is about 5s on a typical PC.

  7. Automatic needle segmentation in 3D ultrasound images using 3D improved Hough transform

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Qiu, Wu; Ding, Mingyue; Zhang, Songgen

    2008-03-01

    3D ultrasound (US) is a new technology that can be used for a variety of diagnostic applications, such as obstetrical, vascular, and urological imaging, and has been explored greatly potential in the applications of image-guided surgery and therapy. Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese woman, and a minimally invasive ablation system using a needle-like RF button electrode is widely used to destroy tumor cells or stop bleeding. To avoid accidents or death of the patient by inaccurate localizations of the electrode and the tumor position during treatment, 3D US guidance system was developed. In this paper, a new automated technique, the 3D Improved Hough Transform (3DIHT) algorithm, which is potentially fast, accurate, and robust to provide needle segmentation in 3D US image for use of 3D US imaging guidance, was presented. Based on the coarse-fine search strategy and a four parameter representation of lines in 3D space, 3DIHT algorithm can segment needles quickly, accurately and robustly. The technique was evaluated using the 3D US images acquired by scanning a water phantom. The segmentation position deviation of the line was less than 2mm and angular deviation was much less than 2°. The average computational time measured on a Pentium IV 2.80GHz PC computer with a 381×381×250 image was less than 2s.

  8. 3-D surface profilometry based on modulation measurement by applying wavelet transform method

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Chen, Feng; Xiao, Chao; Wei, Yongchao

    2017-01-01

    A new analysis of 3-D surface profilometry based on modulation measurement technique by the application of Wavelet Transform method is proposed. As a tool excelling for its multi-resolution and localization in the time and frequency domains, Wavelet Transform method with good localized time-frequency analysis ability and effective de-noizing capacity can extract the modulation distribution more accurately than Fourier Transform method. Especially for the analysis of complex object, more details of the measured object can be well remained. In this paper, the theoretical derivation of Wavelet Transform method that obtains the modulation values from a captured fringe pattern is given. Both computer simulation and elementary experiment are used to show the validity of the proposed method by making a comparison with the results of Fourier Transform method. The results show that the Wavelet Transform method has a better performance than the Fourier Transform method in modulation values retrieval.

  9. Design and Implementation of Pointer-Type Multi Meters Intelligent Recognition Device Based on ARM Platform

    NASA Astrophysics Data System (ADS)

    Cui, Yang; Luo, Wang; Fan, Qiang; Peng, Qiwei; Cai, Yiting; Yao, Yiyang; Xu, Changfu

    2018-01-01

    This paper adopts a low power consumption ARM Hisilicon mobile processing platform and OV4689 camera, combined with a new skeleton extraction based on distance transform algorithm and the improved Hough algorithm for multi meters real-time reading. The design and implementation of the device were completed. Experimental results shows that The average error of measurement was 0.005MPa, and the average reading time was 5s. The device had good stability and high accuracy which meets the needs of practical application.

  10. Image characterization by fractal descriptors in variational mode decomposition domain: Application to brain magnetic resonance

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2016-08-01

    The main purpose of this work is to explore the usefulness of fractal descriptors estimated in multi-resolution domains to characterize biomedical digital image texture. In this regard, three multi-resolution techniques are considered: the well-known discrete wavelet transform (DWT) and the empirical mode decomposition (EMD), and; the newly introduced; variational mode decomposition mode (VMD). The original image is decomposed by the DWT, EMD, and VMD into different scales. Then, Fourier spectrum based fractal descriptors is estimated at specific scales and directions to characterize the image. The support vector machine (SVM) was used to perform supervised classification. The empirical study was applied to the problem of distinguishing between normal and abnormal brain magnetic resonance images (MRI) affected with Alzheimer disease (AD). Our results demonstrate that fractal descriptors estimated in VMD domain outperform those estimated in DWT and EMD domains; and also those directly estimated from the original image.

  11. Towards discrete wavelet transform-based human activity recognition

    NASA Astrophysics Data System (ADS)

    Khare, Manish; Jeon, Moongu

    2017-06-01

    Providing accurate recognition of human activities is a challenging problem for visual surveillance applications. In this paper, we present a simple and efficient algorithm for human activity recognition based on a wavelet transform. We adopt discrete wavelet transform (DWT) coefficients as a feature of human objects to obtain advantages of its multiresolution approach. The proposed method is tested on multiple levels of DWT. Experiments are carried out on different standard action datasets including KTH and i3D Post. The proposed method is compared with other state-of-the-art methods in terms of different quantitative performance measures. The proposed method is found to have better recognition accuracy in comparison to the state-of-the-art methods.

  12. Application of multi-scale wavelet entropy and multi-resolution Volterra models for climatic downscaling

    NASA Astrophysics Data System (ADS)

    Sehgal, V.; Lakhanpal, A.; Maheswaran, R.; Khosa, R.; Sridhar, Venkataramana

    2018-01-01

    This study proposes a wavelet-based multi-resolution modeling approach for statistical downscaling of GCM variables to mean monthly precipitation for five locations at Krishna Basin, India. Climatic dataset from NCEP is used for training the proposed models (Jan.'69 to Dec.'94) and are applied to corresponding CanCM4 GCM variables to simulate precipitation for the validation (Jan.'95-Dec.'05) and forecast (Jan.'06-Dec.'35) periods. The observed precipitation data is obtained from the India Meteorological Department (IMD) gridded precipitation product at 0.25 degree spatial resolution. This paper proposes a novel Multi-Scale Wavelet Entropy (MWE) based approach for clustering climatic variables into suitable clusters using k-means methodology. Principal Component Analysis (PCA) is used to obtain the representative Principal Components (PC) explaining 90-95% variance for each cluster. A multi-resolution non-linear approach combining Discrete Wavelet Transform (DWT) and Second Order Volterra (SoV) is used to model the representative PCs to obtain the downscaled precipitation for each downscaling location (W-P-SoV model). The results establish that wavelet-based multi-resolution SoV models perform significantly better compared to the traditional Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) based frameworks. It is observed that the proposed MWE-based clustering and subsequent PCA, helps reduce the dimensionality of the input climatic variables, while capturing more variability compared to stand-alone k-means (no MWE). The proposed models perform better in estimating the number of precipitation events during the non-monsoon periods whereas the models with clustering without MWE over-estimate the rainfall during the dry season.

  13. A hybrid spatiotemporal and Hough-based motion estimation approach applied to magnetic resonance cardiac images

    NASA Astrophysics Data System (ADS)

    Carranza, N.; Cristóbal, G.; Sroubek, F.; Ledesma-Carbayo, M. J.; Santos, A.

    2006-08-01

    Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the computation of the optical flow, which is an approximation to the real image motion. This paper presents a new algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach, more specifically on the computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The later is a well-known line and shape detection method very robust against incomplete data and noise. The rationale of using the HT in this context is because it provides a value of the displacement field from the STF representation. In addition, a probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion detection. Experimental results with synthetic sequences are compared against an implementation of the variational technique for local and global motion estimation, where it is shown that the results obtained here are accurate and robust to noise degradations. Real cardiac magnetic resonance images have been tested and evaluated with the current method.

  14. Error analysis of the crystal orientations obtained by the dictionary approach to EBSD indexing.

    PubMed

    Ram, Farangis; Wright, Stuart; Singh, Saransh; De Graef, Marc

    2017-10-01

    The efficacy of the dictionary approach to Electron Back-Scatter Diffraction (EBSD) indexing was evaluated through the analysis of the error in the retrieved crystal orientations. EBSPs simulated by the Callahan-De Graef forward model were used for this purpose. Patterns were noised, distorted, and binned prior to dictionary indexing. Patterns with a high level of noise, with optical distortions, and with a 25 × 25 pixel size, when the error in projection center was 0.7% of the pattern width and the error in specimen tilt was 0.8°, were indexed with a 0.8° mean error in orientation. The same patterns, but 60 × 60 pixel in size, were indexed by the standard 2D Hough transform based approach with almost the same orientation accuracy. Optimal detection parameters in the Hough space were obtained by minimizing the orientation error. It was shown that if the error in detector geometry can be reduced to 0.1% in projection center and 0.1° in specimen tilt, the dictionary approach can retrieve a crystal orientation with a 0.2° accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Seismic spectrograms analysis applying the Hough transform to estimate the front speed of mass movements: Application to snow avalanches

    NASA Astrophysics Data System (ADS)

    Flores-Marquez, L.; Suriñach-Cornet, E., Sr.

    2017-12-01

    Seismic signals generated by snow avalanches and other mass movements are analyzed in their spectrogram representation. Spectrogram displays the evolution in time of the frequency content of the signals. The spectrogram of a seismic signal of a station to which a sliding mass, such as a snow avalanche, approaches, exhibits a triangular time / frequency signature. This increase in its higher frequency content over time is a consequence of the attenuation of the waves propagating in a media. Recognition of characteristic footprints in a spectrogram could help to identify and characterize diverse mass movement events such as landslides or snow avalanches. In order to recognize spectrogram features of seismic signals of Alpine snow avalanches, we propose an algorithm based on the Hough transform. The proposed algorithm is applied on an edge representation image of the seismic spectrogram obtained after fixing a threshold filter to the spectrogram, which enhances the most interesting frequencies of the seismogram that appear over time. This enables us to identify parameters (slopes) that correspond to the speeds associated with the type of snow avalanches, such as, powder, dense or transitional snow avalanches. The data analyzed in this work correspond to twenty different seismic signals generated by snow avalanches artificially released in the experimental site of Vallée de la Sionne (VDLS, SLF, Switzerland). The shape of the signal spectrograms are linked to the flow regimes previously identified. Our findings show that some ranges of speeds are inherent to the type of avalanche.

  16. An Automated Method of Scanning Probe Microscopy (SPM) Data Analysis and Reactive Site Tracking for Mineral-Water Interface Reactions Observed at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Campbell, B. D.; Higgins, S. R.

    2008-12-01

    Developing a method for bridging the gap between macroscopic and microscopic measurements of reaction kinetics at the mineral-water interface has important implications in geological and chemical fields. Investigating these reactions on the nanometer scale with SPM is often limited by image analysis and data extraction due to the large quantity of data usually obtained in SPM experiments. Here we present a computer algorithm for automated analysis of mineral-water interface reactions. This algorithm automates the analysis of sequential SPM images by identifying the kinetically active surface sites (i.e., step edges), and by tracking the displacement of these sites from image to image. The step edge positions in each image are readily identified and tracked through time by a standard edge detection algorithm followed by statistical analysis on the Hough Transform of the edge-mapped image. By quantifying this displacement as a function of time, the rate of step edge displacement is determined. Furthermore, the total edge length, also determined from analysis of the Hough Transform, combined with the computed step speed, yields the surface area normalized rate of the reaction. The algorithm was applied to a study of the spiral growth of the calcite(104) surface from supersaturated solutions, yielding results almost 20 times faster than performing this analysis by hand, with results being statistically similar for both analysis methods. This advance in analysis of kinetic data from SPM images will facilitate the building of experimental databases on the microscopic kinetics of mineral-water interface reactions.

  17. Characterizing and understanding the climatic determinism of high- to low-frequency variations in precipitation in northwestern France using a coupled wavelet multiresolution/statistical downscaling approach

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Dieppois, Bastien; Hannah, David; Lavers, David; Fossa, Manuel; Laignel, Benoit; Debret, Maxime

    2017-04-01

    Geophysical signals oscillate over several time-scales that explain different amount of their overall variability and may be related to different physical processes. Characterizing and understanding such variabilities in hydrological variations and investigating their determinism is one important issue in a context of climate change, as these variabilities can be occasionally superimposed to long-term trend possibly due to climate change. It is also important to refine our understanding of time-scale dependent linkages between large-scale climatic variations and hydrological responses on the regional or local-scale. Here we investigate such links by conducting a wavelet multiresolution statistical dowscaling approach of precipitation in northwestern France (Seine river catchment) over 1950-2016 using sea level pressure (SLP) and sea surface temperature (SST) as indicators of atmospheric and oceanic circulations, respectively. Previous results demonstrated that including multiresolution decomposition in a statistical downscaling model (within a so-called multiresolution ESD model) using SLP as large-scale predictor greatly improved simulation of low-frequency, i.e. interannual to interdecadal, fluctuations observed in precipitation. Building on these results, continuous wavelet transform of simulated precipiation using multiresolution ESD confirmed the good performance of the model to better explain variability at all time-scales. A sensitivity analysis of the model to the choice of the scale and wavelet function used was also tested. It appeared that whatever the wavelet used, the model performed similarly. The spatial patterns of SLP found as the best predictors for all time-scales, which resulted from the wavelet decomposition, revealed different structures according to time-scale, showing possible different determinisms. More particularly, some low-frequency components ( 3.2-yr and 19.3-yr) showed a much wide-spread spatial extentsion across the Atlantic. Moreover, in accordance with other previous studies, the wavelet components detected in SLP and precipitation on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation. Current works are now conducted including SST over the Atlantic in order to get further insights into this mechanism.

  18. Multi-slice ultrasound image calibration of an intelligent skin-marker for soft tissue artefact compensation.

    PubMed

    Masum, M A; Pickering, M R; Lambert, A J; Scarvell, J M; Smith, P N

    2017-09-06

    In this paper, a novel multi-slice ultrasound (US) image calibration of an intelligent skin-marker used for soft tissue artefact compensation is proposed to align and orient image slices in an exact H-shaped pattern. Multi-slice calibration is complex, however, in the proposed method, a phantom based visual alignment followed by transform parameters estimation greatly reduces the complexity and provides sufficient accuracy. In this approach, the Hough Transform (HT) is used to further enhance the image features which originate from the image feature enhancing elements integrated into the physical phantom model, thus reducing feature detection uncertainty. In this framework, slice by slice image alignment and calibration are carried out and this provides manual ease and convenience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Stratifying FIA Ground Plots Using A 3-Year Old MRLC Forest Cover Map and Current TM Derived Variables Selected By "Decision Tree" Classification

    Treesearch

    Michael Hoppus; Stan Arner; Andrew Lister

    2001-01-01

    A reduction in variance for estimates of forest area and volume in the state of Connecticut was accomplished by stratifying FIA ground plots using raw, transformed and classified Landsat Thematic Mapper (TM) imagery. A US Geological Survey (USGS) Multi-Resolution Landscape Characterization (MRLC) vegetation cover map for Connecticut was used to produce a forest/non-...

  20. Wavelet feature extraction for reliable discrimination between high explosive and chemical/biological artillery

    NASA Astrophysics Data System (ADS)

    Hohil, Myron E.; Desai, Sachi V.; Bass, Henry E.; Chambers, Jim

    2005-03-01

    Feature extraction methods based on the discrete wavelet transform and multiresolution analysis are used to develop a robust classification algorithm that reliably discriminates between conventional and simulated chemical/biological artillery rounds via acoustic signals produced during detonation. Distinct characteristics arise within the different airburst signatures because high explosive warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. The ensuing blast waves are readily characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. Unique attributes can also be identified that depend upon the properties of the gun tube, projectile speed at the muzzle, and the explosive burn rates of the warhead. In this work, the discrete wavelet transform is used to extract the predominant components of these characteristics from air burst signatures at ranges exceeding 2km. Highly reliable discrimination is achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients and higher frequency details found within different levels of the multiresolution decomposition.

  1. Multi-resolution analysis for ear recognition using wavelet features

    NASA Astrophysics Data System (ADS)

    Shoaib, M.; Basit, A.; Faye, I.

    2016-11-01

    Security is very important and in order to avoid any physical contact, identification of human when they are moving is necessary. Ear biometric is one of the methods by which a person can be identified using surveillance cameras. Various techniques have been proposed to increase the ear based recognition systems. In this work, a feature extraction method for human ear recognition based on wavelet transforms is proposed. The proposed features are approximation coefficients and specific details of level two after applying various types of wavelet transforms. Different wavelet transforms are applied to find the suitable wavelet. Minimum Euclidean distance is used as a matching criterion. Results achieved by the proposed method are promising and can be used in real time ear recognition system.

  2. A new fractional wavelet transform

    NASA Astrophysics Data System (ADS)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-03-01

    The fractional Fourier transform (FRFT) is a potent tool to analyze the time-varying signal. However, it fails in locating the fractional Fourier domain (FRFD)-frequency contents which is required in some applications. A novel fractional wavelet transform (FRWT) is proposed to solve this problem. It displays the time and FRFD-frequency information jointly in the time-FRFD-frequency plane. The definition, basic properties, inverse transform and reproducing kernel of the proposed FRWT are considered. It has been shown that an FRWT with proper order corresponds to the classical wavelet transform (WT). The multiresolution analysis (MRA) associated with the developed FRWT, together with the construction of the orthogonal fractional wavelets are also presented. Three applications are discussed: the analysis of signal with time-varying frequency content, the FRFD spectrum estimation of signals that involving noise, and the construction of fractional Harr wavelet. Simulations verify the validity of the proposed FRWT.

  3. Multiresolution With Super-Compact Wavelets

    NASA Technical Reports Server (NTRS)

    Lee, Dohyung

    2000-01-01

    The solution data computed from large scale simulations are sometimes too big for main memory, for local disks, and possibly even for a remote storage disk, creating tremendous processing time as well as technical difficulties in analyzing the data. The excessive storage demands a corresponding huge penalty in I/O time, rendering time and transmission time between different computer systems. In this paper, a multiresolution scheme is proposed to compress field simulation or experimental data without much loss of important information in the representation. Originally, the wavelet based multiresolution scheme was introduced in image processing, for the purposes of data compression and feature extraction. Unlike photographic image data which has rather simple settings, computational field simulation data needs more careful treatment in applying the multiresolution technique. While the image data sits on a regular spaced grid, the simulation data usually resides on a structured curvilinear grid or unstructured grid. In addition to the irregularity in grid spacing, the other difficulty is that the solutions consist of vectors instead of scalar values. The data characteristics demand more restrictive conditions. In general, the photographic images have very little inherent smoothness with discontinuities almost everywhere. On the other hand, the numerical solutions have smoothness almost everywhere and discontinuities in local areas (shock, vortices, and shear layers). The wavelet bases should be amenable to the solution of the problem at hand and applicable to constraints such as numerical accuracy and boundary conditions. In choosing a suitable wavelet basis for simulation data among a variety of wavelet families, the supercompact wavelets designed by Beam and Warming provide one of the most effective multiresolution schemes. Supercompact multi-wavelets retain the compactness of Haar wavelets, are piecewise polynomial and orthogonal, and can have arbitrary order of approximation. The advantages of the multiresolution algorithm are that no special treatment is required at the boundaries of the interval, and that the application to functions which are only piecewise continuous (internal boundaries) can be efficiently implemented. In this presentation, Beam's supercompact wavelets are generalized to higher dimensions using multidimensional scaling and wavelet functions rather than alternating the directions as in the 1D version. As a demonstration of actual 3D data compression, supercompact wavelet transforms are applied to a 3D data set for wing tip vortex flow solutions (2.5 million grid points). It is shown that high data compression ratio can be achieved (around 50:1 ratio) in both vector and scalar data set.

  4. Dynamically re-configurable CMOS imagers for an active vision system

    NASA Technical Reports Server (NTRS)

    Yang, Guang (Inventor); Pain, Bedabrata (Inventor)

    2005-01-01

    A vision system is disclosed. The system includes a pixel array, at least one multi-resolution window operation circuit, and a pixel averaging circuit. The pixel array has an array of pixels configured to receive light signals from an image having at least one tracking target. The multi-resolution window operation circuits are configured to process the image. Each of the multi-resolution window operation circuits processes each tracking target within a particular multi-resolution window. The pixel averaging circuit is configured to sample and average pixels within the particular multi-resolution window.

  5. Automatic extraction of planetary image features

    NASA Technical Reports Server (NTRS)

    LeMoigne-Stewart, Jacqueline J. (Inventor); Troglio, Giulia (Inventor); Benediktsson, Jon A. (Inventor); Serpico, Sebastiano B. (Inventor); Moser, Gabriele (Inventor)

    2013-01-01

    A method for the extraction of Lunar data and/or planetary features is provided. The feature extraction method can include one or more image processing techniques, including, but not limited to, a watershed segmentation and/or the generalized Hough Transform. According to some embodiments, the feature extraction method can include extracting features, such as, small rocks. According to some embodiments, small rocks can be extracted by applying a watershed segmentation algorithm to the Canny gradient. According to some embodiments, applying a watershed segmentation algorithm to the Canny gradient can allow regions that appear as close contours in the gradient to be segmented.

  6. Terrain Classification of Aster gDEM for Seismic Microzonation of Port-Au Haiti, Using - and - Based Analytic Methods

    NASA Astrophysics Data System (ADS)

    Yong, A.; Hough, S. E.; Cox, B. R.; Rathje, E. M.; Bachhuber, J.; Hulslander, D.; Christiansen, L.; Abrams, M.

    2010-12-01

    The aftermath of the M7.0 Haiti earthquake of 12 January 2010 witnessed an impressive scientific response from the international community. In addition to conventional post-earthquake investigations, there was also an unprecedented reliance on remote-sensing technologies for scientific investigation and damage assessment. These technologies include sensors from both aerial and space-borne observational platforms. As part of the Haiti earthquake response and recovery effort, we develop a seismic zonation map of Port-au-Prince based on high-resolution satellite imagery as well as data from traditional seismographic monitoring stations and geotechnical site characterizations. Our imagery consists of a global digital elevation model (gDEM) of Hispaniola derived from data recorded by NASA-JPL's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument onboard the multi-platform satellite Terra. To develop our model we also consider recorded waveforms from portable seismographic stations (Hough et al., in review) and 36 geotechnical shear-wave velocity surveys (Cox et al., in review). Following a similar approach developed by Yong et al. (2008; Bull. Seism Soc. Am.), we use both pixel- and object- based imaging analytic methods to systematically identify and extract local terrain features that are expected to amplify seismic ground motion. Using histogram-stretching techniques applied to the rDEM values, followed by multi-resolution, segmentations of the imagery into terrain types, we systematically classify the terrains of Hispaniola. By associating available Vs30 (average shear-wave velocity in the upper 30 meter depth) calculated from the MASW (Multi-channel Analysis of Surface Wave) survey method, we develop a first-order site characterization map. Our results indicate that the terrain-based Vs30 estimates are significantly associated with amplitudes recorded at station sites. We also find that the damage distribution inferred from UNOSAT (UNITAR Operational Satellite Applications Program) data matches our estimates. However, the strongest amplifications are observed at two stations on a foothill ridge, where Vs30 values indicate that amplification should be relatively lower. Hough et al. (2010, this session) conclude that the observations can be explained by topographic amplification along a steep, narrow ridge. On the basis of these preliminary results, we conclude that the terrain-based framework, which characterizes topographic amplification as well as sediment-induced amplification, is needed to develop a microzonation map for Port-au-Prince.

  7. First low frequency all-sky search for continuous gravitational wave signals

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Amariutei, D. V.; Andersen, M.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Ashton, G.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Branco, V.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Colombini, M.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Damjanic, M. D.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez, J.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammer, D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hoelscher-Obermaier, J.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jang, H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karlen, J. L.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kerrigan, J.; Key, J. S.; Khalili, F. Y.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J. T.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J. P.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Madden-Fong, D. X.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N. M.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, A.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okounkova, M.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W. E.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C. T.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H. R.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rodger, A. S.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sanchez, E.; Sandberg, V.; Sanders, J. R.; Santiago-Prieto, I.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shaffery, P.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Tse, M.; Turconi, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, M.; Wade, L. E.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, K. J.; Williams, L.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between -1.0 ×10-10 and +1.5 ×10-11 Hz /s , and was based on a hierarchical approach. The starting point was a set of short fast Fourier transforms, of length 8192 s, built from the calibrated strain data. Aggressive data cleaning, in both the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each data set a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer fast Fourier transforms followed by a further incoherent analysis, still based on the FrequencyHough transform. No evidence for continuous gravitational wave signals was found, and therefore we have set a population-based joint VSR2-VSR4 90% confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about 1 0-24 and 2 ×10-23 at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of ˜2 with respect to the results of previous all-sky searches at frequencies below 80 Hz.

  8. Applications of squeezed states: Bogoliubov transformations and wavelets to the statistical mechanics of water and its bubbles

    NASA Technical Reports Server (NTRS)

    Defacio, Brian; Kim, S.-H.; Vannevel, A.

    1994-01-01

    The squeezed states or Bogoliubov transformations and wavelets are applied to two problems in nonrelativistic statistical mechanics: the dielectric response of liquid water, epsilon(q-vector,w), and the bubble formation in water during insonnification. The wavelets are special phase-space windows which cover the domain and range of L(exp 1) intersection of L(exp 2) of classical causal, finite energy solutions. The multiresolution of discrete wavelets in phase space gives a decomposition into regions of time and scales of frequency thereby allowing the renormalization group to be applied to new systems in addition to the tired 'usual suspects' of the Ising models and lattice gasses. The Bogoliubov transformation: squeeze transformation is applied to the dipolaron collective mode in water and to the gas produced by the explosive cavitation process in bubble formation.

  9. Networks for image acquisition, processing and display

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.

    1990-01-01

    The human visual system comprises layers of networks which sample, process, and code images. Understanding these networks is a valuable means of understanding human vision and of designing autonomous vision systems based on network processing. Ames Research Center has an ongoing program to develop computational models of such networks. The models predict human performance in detection of targets and in discrimination of displayed information. In addition, the models are artificial vision systems sharing properties with biological vision that has been tuned by evolution for high performance. Properties include variable density sampling, noise immunity, multi-resolution coding, and fault-tolerance. The research stresses analysis of noise in visual networks, including sampling, photon, and processing unit noises. Specific accomplishments include: models of sampling array growth with variable density and irregularity comparable to that of the retinal cone mosaic; noise models of networks with signal-dependent and independent noise; models of network connection development for preserving spatial registration and interpolation; multi-resolution encoding models based on hexagonal arrays (HOP transform); and mathematical procedures for simplifying analysis of large networks.

  10. OpenCL-based vicinity computation for 3D multiresolution mesh compression

    NASA Astrophysics Data System (ADS)

    Hachicha, Soumaya; Elkefi, Akram; Ben Amar, Chokri

    2017-03-01

    3D multiresolution mesh compression systems are still widely addressed in many domains. These systems are more and more requiring volumetric data to be processed in real-time. Therefore, the performance is becoming constrained by material resources usage and an overall reduction in the computational time. In this paper, our contribution entirely lies on computing, in real-time, triangles neighborhood of 3D progressive meshes for a robust compression algorithm based on the scan-based wavelet transform(WT) technique. The originality of this latter algorithm is to compute the WT with minimum memory usage by processing data as they are acquired. However, with large data, this technique is considered poor in term of computational complexity. For that, this work exploits the GPU to accelerate the computation using OpenCL as a heterogeneous programming language. Experiments demonstrate that, aside from the portability across various platforms and the flexibility guaranteed by the OpenCL-based implementation, this method can improve performance gain in speedup factor of 5 compared to the sequential CPU implementation.

  11. On analysis of electroencephalogram by multiresolution-based energetic approach

    NASA Astrophysics Data System (ADS)

    Sevindir, Hulya Kodal; Yazici, Cuneyt; Siddiqi, A. H.; Aslan, Zafer

    2013-10-01

    Epilepsy is a common brain disorder where the normal neuronal activity gets affected. Electroencephalography (EEG) is the recording of electrical activity along the scalp produced by the firing of neurons within the brain. The main application of EEG is in the case of epilepsy. On a standard EEG some abnormalities indicate epileptic activity. EEG signals like many biomedical signals are highly non-stationary by their nature. For the investigation of biomedical signals, in particular EEG signals, wavelet analysis have found prominent position in the study for their ability to analyze such signals. Wavelet transform is capable of separating the signal energy among different frequency scales and a good compromise between temporal and frequency resolution is obtained. The present study is an attempt for better understanding of the mechanism causing the epileptic disorder and accurate prediction of occurrence of seizures. In the present paper following Magosso's work [12], we identify typical patterns of energy redistribution before and during the seizure using multiresolution wavelet analysis on Kocaeli University's Medical School's data.

  12. Adjusting Wavelet-based Multiresolution Analysis Boundary Conditions for Robust Long-term Streamflow Forecasting Model

    NASA Astrophysics Data System (ADS)

    Maslova, I.; Ticlavilca, A. M.; McKee, M.

    2012-12-01

    There has been an increased interest in wavelet-based streamflow forecasting models in recent years. Often overlooked in this approach are the circularity assumptions of the wavelet transform. We propose a novel technique for minimizing the wavelet decomposition boundary condition effect to produce long-term, up to 12 months ahead, forecasts of streamflow. A simulation study is performed to evaluate the effects of different wavelet boundary rules using synthetic and real streamflow data. A hybrid wavelet-multivariate relevance vector machine model is developed for forecasting the streamflow in real-time for Yellowstone River, Uinta Basin, Utah, USA. The inputs of the model utilize only the past monthly streamflow records. They are decomposed into components formulated in terms of wavelet multiresolution analysis. It is shown that the model model accuracy can be increased by using the wavelet boundary rule introduced in this study. This long-term streamflow modeling and forecasting methodology would enable better decision-making and managing water availability risk.

  13. Application of a Hough Search for Continuous Gravitational Waves on Data from the Fifth LIGO Science Run

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Adams, C.; Adams, T.; Adhikari, R. X.; hide

    2014-01-01

    We report on an all-sky search for periodic gravitational waves in the frequency range 50-1000 Hertz with the first derivative of frequency in the range -8.9 × 10(exp -10) Hertz per second to zero in two years of data collected during LIGO's fifth science run. Our results employ a Hough transform technique, introducing a chi(sup 2) test and analysis of coincidences between the signal levels in years 1 and 2 of observations that offers a significant improvement in the product of strain sensitivity with compute cycles per data sample compared to previously published searches. Since our search yields no surviving candidates, we present results taking the form of frequency dependent, 95% confidence upper limits on the strain amplitude h(sub 0). The most stringent upper limit from year 1 is 1.0 × 10(exp -24) in the 158.00-158.25 Hertz band. In year 2, the most stringent upper limit is 8.9 × 10(exp -25) in the 146.50-146.75 Hertz band. This improved detection pipeline, which is computationally efficient by at least two orders of magnitude better than our flagship Einstein@Home search, will be important for 'quicklook' searches in the Advanced LIGO and Virgo detector era.

  14. Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bersanetti, D.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deleeuw, E.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; EndrHoczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2014-04-01

    We report on an all-sky search for periodic gravitational waves in the frequency range 50-1000 Hz with the first derivative of frequency in the range -8.9 × 10-10 Hz s-1 to zero in two years of data collected during LIGO’s fifth science run. Our results employ a Hough transform technique, introducing a χ2 test and analysis of coincidences between the signal levels in years 1 and 2 of observations that offers a significant improvement in the product of strain sensitivity with compute cycles per data sample compared to previously published searches. Since our search yields no surviving candidates, we present results taking the form of frequency dependent, 95% confidence upper limits on the strain amplitude h0. The most stringent upper limit from year 1 is 1.0 × 10-24 in the 158.00-158.25 Hz band. In year 2, the most stringent upper limit is 8.9 × 10-25 in the 146.50-146.75 Hz band. This improved detection pipeline, which is computationally efficient by at least two orders of magnitude better than our flagship Einstein@Home search, will be important for ‘quick-look’ searches in the Advanced LIGO and Virgo detector era.

  15. Comparison of two hardware-based hit filtering methods for trackers in high-pileup environments

    NASA Astrophysics Data System (ADS)

    Gradin, J.; Mårtensson, M.; Brenner, R.

    2018-04-01

    As experiments in high energy physics aim to measure increasingly rare processes, the experiments continually strive to increase the expected signal yields. In the case of the High Luminosity upgrade of the LHC, the luminosity is raised by increasing the number of simultaneous proton-proton interactions, so-called pile-up. This increases the expected yields of signal and background processes alike. The signal is embedded in a large background of processes that mimic that of signal events. It is therefore imperative for the experiments to develop new triggering methods to effectively distinguish the interesting events from the background. We present a comparison of two methods for filtering detector hits to be used for triggering on particle tracks: one based on a pattern matching technique using Associative Memory (AM) chips and the other based on the Hough transform. Their efficiency and hit rejection are evaluated for proton-proton collisions with varying amounts of pile-up using a simulation of a generic silicon tracking detector. It is found that, while both methods are feasible options for a track trigger with single muon efficiencies around 98–99%, the AM based pattern matching produces a lower number of hit combinations with respect to the Hough transform whilst keeping more of the true signal hits. We also present the effect on the two methods of increasing the amount of support material in the detector and of introducing inefficiencies by deactivating detector modules. The increased support material has negligable effects on the efficiency for both methods, while dropping 5% (10%) of the available modules decreases the efficiency to about 95% (87%) for both methods, irrespective of the amount of pile-up.

  16. Munitions related feature extraction from LIDAR data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Barry L.

    2010-06-01

    The characterization of former military munitions ranges is critical in the identification of areas likely to contain residual unexploded ordnance (UXO). Although these ranges are large, often covering tens-of-thousands of acres, the actual target areas represent only a small fraction of the sites. The challenge is that many of these sites do not have records indicating locations of former target areas. The identification of target areas is critical in the characterization and remediation of these sites. The Strategic Environmental Research and Development Program (SERDP) and Environmental Security Technology Certification Program (ESTCP) of the DoD have been developing and implementing techniquesmore » for the efficient characterization of large munitions ranges. As part of this process, high-resolution LIDAR terrain data sets have been collected over several former ranges. These data sets have been shown to contain information relating to former munitions usage at these ranges, specifically terrain cratering due to high-explosives detonations. The location and relative intensity of crater features can provide information critical in reconstructing the usage history of a range, and indicate areas most likely to contain UXO. We have developed an automated procedure using an adaptation of the Circular Hough Transform for the identification of crater features in LIDAR terrain data. The Circular Hough Transform is highly adept at finding circular features (craters) in noisy terrain data sets. This technique has the ability to find features of a specific radius providing a means of filtering features based on expected scale and providing additional spatial characterization of the identified feature. This method of automated crater identification has been applied to several former munitions ranges with positive results.« less

  17. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Maas, Christian; Schmalzl, Jörg

    2013-08-01

    Ground Penetrating Radar (GPR) is used for the localization of supply lines, land mines, pipes and many other buried objects. These objects can be recognized in the recorded data as reflection hyperbolas with a typical shape depending on depth and material of the object and the surrounding material. To obtain the parameters, the shape of the hyperbola has to be fitted. In the last years several methods were developed to automate this task during post-processing. In this paper we show another approach for the automated localization of reflection hyperbolas in GPR data by solving a pattern recognition problem in grayscale images. In contrast to other methods our detection program is also able to immediately mark potential objects in real-time. For this task we use a version of the Viola-Jones learning algorithm, which is part of the open source library "OpenCV". This algorithm was initially developed for face recognition, but can be adapted to any other simple shape. In our program it is used to narrow down the location of reflection hyperbolas to certain areas in the GPR data. In order to extract the exact location and the velocity of the hyperbolas we apply a simple Hough Transform for hyperbolas. Because the Viola-Jones Algorithm reduces the input for the computational expensive Hough Transform dramatically the detection system can also be implemented on normal field computers, so on-site application is possible. The developed detection system shows promising results and detection rates in unprocessed radargrams. In order to improve the detection results and apply the program to noisy radar images more data of different GPR systems as input for the learning algorithm is necessary.

  18. Automatic drawing for traffic marking with MMS LIDAR intensity

    NASA Astrophysics Data System (ADS)

    Takahashi, G.; Takeda, H.; Shimano, Y.

    2014-05-01

    Upgrading the database of CYBER JAPAN has been strategically promoted because the "Basic Act on Promotion of Utilization of Geographical Information", was enacted in May 2007. In particular, there is a high demand for road information that comprises a framework in this database. Therefore, road inventory mapping work has to be accurate and eliminate variation caused by individual human operators. Further, the large number of traffic markings that are periodically maintained and possibly changed require an efficient method for updating spatial data. Currently, we apply manual photogrammetry drawing for mapping traffic markings. However, this method is not sufficiently efficient in terms of the required productivity, and data variation can arise from individual operators. In contrast, Mobile Mapping Systems (MMS) and high-density Laser Imaging Detection and Ranging (LIDAR) scanners are rapidly gaining popularity. The aim in this study is to build an efficient method for automatically drawing traffic markings using MMS LIDAR data. The key idea in this method is extracting lines using a Hough transform strategically focused on changes in local reflection intensity along scan lines. However, also note that this method processes every traffic marking. In this paper, we discuss a highly accurate and non-human-operator-dependent method that applies the following steps: (1) Binarizing LIDAR points by intensity and extracting higher intensity points; (2) Generating a Triangulated Irregular Network (TIN) from higher intensity points; (3) Deleting arcs by length and generating outline polygons on the TIN; (4) Generating buffers from the outline polygons; (5) Extracting points from the buffers using the original LIDAR points; (6) Extracting local-intensity-changing points along scan lines using the extracted points; (7) Extracting lines from intensity-changing points through a Hough transform; and (8) Connecting lines to generate automated traffic marking mapping data.

  19. Randomized Hough transform filter for echo extraction in DLR

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Chen, Hao; Shen, Ming; Gao, Pengqi; Zhao, You

    2016-11-01

    The signal-to-noise ratio (SNR) of debris laser ranging (DLR) data is extremely low, and the valid returns in the DLR range residuals are distributed on a curve in a long observation time. Therefore, it is hard to extract the signals from noise in the Observed-minus-Calculated (O-C) residuals with low SNR. In order to autonomously extract the valid returns, we propose a new algorithm based on randomized Hough transform (RHT). We firstly pre-process the data using histogram method to find the zonal area that contains all the possible signals to reduce large amount of noise. Then the data is processed with RHT algorithm to find the curve that the signal points are distributed on. A new parameter update strategy is introduced in the RHT to get the best parameters. We also analyze the values of the parameters in the algorithm. We test our algorithm on the 10 Hz repetition rate DLR data from Yunnan Observatory and 100 Hz repetition rate DLR data from Graz SLR station. For 10 Hz DLR data with relative larger and similar range gate, we can process it in real time and extract all the signals autonomously with a few false readings. For 100 Hz DLR data with longer observation time, we autonomously post-process DLR data of 0.9%, 2.7%, 8% and 33% return rate with high reliability. The extracted points contain almost all signals and a low percentage of noise. Additional noise is added to 10 Hz DLR data to get lower return rate data. The valid returns can also be well extracted for DLR data with 0.18% and 0.1% return rate.

  20. Computerized organ localization in abdominal CT volume with context-driven generalized Hough transform

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Li, Qiang

    2014-03-01

    Fast localization of organs is a key step in computer-aided detection of lesions and in image guided radiation therapy. We developed a context-driven Generalized Hough Transform (GHT) for robust localization of organ-of-interests (OOIs) in a CT volume. Conventional GHT locates the center of an organ by looking-up center locations of pre-learned organs with "matching" edges. It often suffers from mislocalization because "similar" edges in vicinity may attract the prelearned organs towards wrong places. The proposed method not only uses information from organ's own shape but also takes advantage of nearby "similar" edge structures. First, multiple GHT co-existing look-up tables (cLUT) were constructed from a set of training shapes of different organs. Each cLUT represented the spatial relationship between the center of the OOI and the shape of a co-existing organ. Second, the OOI center in a test image was determined using GHT with each cLUT separately. Third, the final localization of OOI was based on weighted combination of the centers obtained in the second stage. The training set consisted of 10 CT volumes with manually segmented OOIs including liver, spleen and kidneys. The method was tested on a set of 25 abdominal CT scans. Context-driven GHT correctly located all OOIs in the test image and gave localization errors of 19.5±9.0, 12.8±7.3, 9.4±4.6 and 8.6±4.1 mm for liver, spleen, left and right kidney respectively. Conventional GHT mis-located 8 out of 100 organs and its localization errors were 26.0±32.6, 14.1±10.6, 30.1±42.6 and 23.6±39.7mm for liver, spleen, left and right kidney respectively.

  1. A new method of inshore ship detection in high-resolution optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Hu, Qifeng; Du, Yaling; Jiang, Yunqiu; Ming, Delie

    2015-10-01

    Ship as an important military target and water transportation, of which the detection has great significance. In the military field, the automatic detection of ships can be used to monitor ship dynamic in the harbor and maritime of enemy, and then analyze the enemy naval power. In civilian field, the automatic detection of ships can be used in monitoring transportation of harbor and illegal behaviors such as illegal fishing, smuggling and pirates, etc. In recent years, research of ship detection is mainly concentrated in three categories: forward-looking infrared images, downward-looking SAR image, and optical remote sensing images with sea background. Little research has been done into ship detection of optical remote sensing images with harbor background, as the gray-scale and texture features of ships are similar to the coast in high-resolution optical remote sensing images. In this paper, we put forward an effective harbor ship target detection method. First of all, in order to overcome the shortage of the traditional difference method in obtaining histogram valley as the segmentation threshold, we propose an iterative histogram valley segmentation method which separates the harbor and ships from the water quite well. Secondly, as landing ships in optical remote sensing images usually lead to discontinuous harbor edges, we use Hough Transform method to extract harbor edges. First, lines are detected by Hough Transform. Then, lines that have similar slope are connected into a new line, thus we access continuous harbor edges. Secondary segmentation on the result of the land-and-sea separation, we eventually get the ships. At last, we calculate the aspect ratio of the ROIs, thereby remove those targets which are not ship. The experiment results show that our method has good robustness and can tolerate a certain degree of noise and occlusion.

  2. Multiscale image contrast amplification (MUSICA)

    NASA Astrophysics Data System (ADS)

    Vuylsteke, Pieter; Schoeters, Emile P.

    1994-05-01

    This article presents a novel approach to the problem of detail contrast enhancement, based on multiresolution representation of the original image. The image is decomposed into a weighted sum of smooth, localized, 2D basis functions at multiple scales. Each transform coefficient represents the amount of local detail at some specific scale and at a specific position in the image. Detail contrast is enhanced by non-linear amplification of the transform coefficients. An inverse transform is then applied to the modified coefficients. This yields a uniformly contrast- enhanced image without artefacts. The MUSICA-algorithm is being applied routinely to computed radiography images of chest, skull, spine, shoulder, pelvis, extremities, and abdomen examinations, with excellent acceptance. It is useful for a wide range of applications in the medical, graphical, and industrial area.

  3. On Fusing Recursive Traversals of K-d Trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajbhandari, Samyam; Kim, Jinsung; Krishnamoorthy, Sriram

    Loop fusion is a key program transformation for data locality optimization that is implemented in production compilers. But optimizing compilers currently cannot exploit fusion opportunities across a set of recursive tree traversal computations with producer-consumer relationships. In this paper, we develop a compile-time approach to dependence characterization and program transformation to enable fusion across recursively specified traversals over k-ary trees. We present the FuseT source-to-source code transformation framework to automatically generate fused composite recursive operators from an input program containing a sequence of primitive recursive operators. We use our framework to implement fused operators for MADNESS, Multiresolution Adaptive Numerical Environmentmore » for Scientific Simulation. We show that locality optimization through fusion can offer more than an order of magnitude performance improvement.« less

  4. A novel ship CFAR detection algorithm based on adaptive parameter enhancement and wake-aided detection in SAR images

    NASA Astrophysics Data System (ADS)

    Meng, Siqi; Ren, Kan; Lu, Dongming; Gu, Guohua; Chen, Qian; Lu, Guojun

    2018-03-01

    Synthetic aperture radar (SAR) is an indispensable and useful method for marine monitoring. With the increase of SAR sensors, high resolution images can be acquired and contain more target structure information, such as more spatial details etc. This paper presents a novel adaptive parameter transform (APT) domain constant false alarm rate (CFAR) to highlight targets. The whole method is based on the APT domain value. Firstly, the image is mapped to the new transform domain by the algorithm. Secondly, the false candidate target pixels are screened out by the CFAR detector to highlight the target ships. Thirdly, the ship pixels are replaced by the homogeneous sea pixels. And then, the enhanced image is processed by Niblack algorithm to obtain the wake binary image. Finally, normalized Hough transform (NHT) is used to detect wakes in the binary image, as a verification of the presence of the ships. Experiments on real SAR images validate that the proposed transform does enhance the target structure and improve the contrast of the image. The algorithm has a good performance in the ship and ship wake detection.

  5. Paraxial diffractive elements for space-variant linear transforms

    NASA Astrophysics Data System (ADS)

    Teiwes, Stephan; Schwarzer, Heiko; Gu, Ben-Yuan

    1998-06-01

    Optical linear transform architectures bear good potential for future developments of very powerful hybrid vision systems and neural network classifiers. The optical modules of such systems could be used as pre-processors to solve complex linear operations at very high speed in order to simplify an electronic data post-processing. However, the applicability of linear optical architectures is strongly connected with the fundamental question of how to implement a specific linear transform by optical means and physical imitations. The large majority of publications on this topic focusses on the optical implementation of space-invariant transforms by the well-known 4f-setup. Only few papers deal with approaches to implement selected space-variant transforms. In this paper, we propose a simple algebraic method to design diffractive elements for an optical architecture in order to realize arbitrary space-variant transforms. The design procedure is based on a digital model of scalar, paraxial wave theory and leads to optimal element transmission functions within the model. Its computational and physical limitations are discussed in terms of complexity measures. Finally, the design procedure is demonstrated by some examples. Firstly, diffractive elements for the realization of different rotation operations are computed and, secondly, a Hough transform element is presented. The correct optical functions of the elements are proved in computer simulation experiments.

  6. Interior Reconstruction Using the 3d Hough Transform

    NASA Astrophysics Data System (ADS)

    Dumitru, R.-C.; Borrmann, D.; Nüchter, A.

    2013-02-01

    Laser scanners are often used to create accurate 3D models of buildings for civil engineering purposes, but the process of manually vectorizing a 3D point cloud is time consuming and error-prone (Adan and Huber, 2011). Therefore, the need to characterize and quantify complex environments in an automatic fashion arises, posing challenges for data analysis. This paper presents a system for 3D modeling by detecting planes in 3D point clouds, based on which the scene is reconstructed at a high architectural level through removing automatically clutter and foreground data. The implemented software detects openings, such as windows and doors and completes the 3D model by inpainting.

  7. Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals

    PubMed Central

    Zhao, Ziyue; Liu, Congfeng

    2014-01-01

    In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method. PMID:27382610

  8. Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals.

    PubMed

    Zhao, Ziyue; Liu, Congfeng

    2014-01-01

    In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method.

  9. Iris segmentation using an edge detector based on fuzzy sets theory and cellular learning automata.

    PubMed

    Ghanizadeh, Afshin; Abarghouei, Amir Atapour; Sinaie, Saman; Saad, Puteh; Shamsuddin, Siti Mariyam

    2011-07-01

    Iris-based biometric systems identify individuals based on the characteristics of their iris, since they are proven to remain unique for a long time. An iris recognition system includes four phases, the most important of which is preprocessing in which the iris segmentation is performed. The accuracy of an iris biometric system critically depends on the segmentation system. In this paper, an iris segmentation system using edge detection techniques and Hough transforms is presented. The newly proposed edge detection system enhances the performance of the segmentation in a way that it performs much more efficiently than the other conventional iris segmentation methods.

  10. Automated detection of jet contrails using the AVHRR split window

    NASA Technical Reports Server (NTRS)

    Engelstad, M.; Sengupta, S. K.; Lee, T.; Welch, R. M.

    1992-01-01

    This paper investigates the automated detection of jet contrails using data from the Advanced Very High Resolution Radiometer. A preliminary algorithm subtracts the 11.8-micron image from the 10.8-micron image, creating a difference image on which contrails are enhanced. Then a three-stage algorithm searches the difference image for the nearly-straight line segments which characterize contrails. First, the algorithm searches for elevated, linear patterns called 'ridges'. Second, it applies a Hough transform to the detected ridges to locate nearly-straight lines. Third, the algorithm determines which of the nearly-straight lines are likely to be contrails. The paper applies this technique to several test scenes.

  11. Image processing for safety assessment in civil engineering.

    PubMed

    Ferrer, Belen; Pomares, Juan C; Irles, Ramon; Espinosa, Julian; Mas, David

    2013-06-20

    Behavior analysis of construction safety systems is of fundamental importance to avoid accidental injuries. Traditionally, measurements of dynamic actions in civil engineering have been done through accelerometers, but high-speed cameras and image processing techniques can play an important role in this area. Here, we propose using morphological image filtering and Hough transform on high-speed video sequence as tools for dynamic measurements on that field. The presented method is applied to obtain the trajectory and acceleration of a cylindrical ballast falling from a building and trapped by a thread net. Results show that safety recommendations given in construction codes can be potentially dangerous for workers.

  12. Security Quality Requirements Engineering (SQUARE): Case Study Phase III

    DTIC Science & Technology

    2006-05-01

    Security Quality Requirements Engineering (SQUARE): Case Study Phase III Lydia Chung Frank Hung Eric Hough Don Ojoko-Adams Advisor...Engineering (SQUARE): Case Study Phase III CMU/SEI-2006-SR-003 Lydia Chung Frank Hung Eric Hough Don Ojoko-Adams Advisor Nancy R. Mead...1 1.1 The SQUARE Process ............................................................................... 1 1.2 Case Study Clients

  13. Iris Segmentation and Normalization Algorithm Based on Zigzag Collarette

    NASA Astrophysics Data System (ADS)

    Rizky Faundra, M.; Ratna Sulistyaningrum, Dwi

    2017-01-01

    In this paper, we proposed iris segmentation and normalization algorithm based on the zigzag collarette. First of all, iris images are processed by using Canny Edge Detection to detect pupil edge, then finding the center and the radius of the pupil with the Hough Transform Circle. Next, isolate important part in iris based zigzag collarette area. Finally, Daugman Rubber Sheet Model applied to get the fixed dimensions or normalization iris by transforming cartesian into polar format and thresholding technique to remove eyelid and eyelash. This experiment will be conducted with a grayscale eye image data taken from a database of iris-Chinese Academy of Sciences Institute of Automation (CASIA). Data iris taken is the data reliable and widely used to study the iris biometrics. The result show that specific threshold level is 0.3 have better accuracy than other, so the present algorithm can be used to segmentation and normalization zigzag collarette with accuracy is 98.88%

  14. Pattern recognition of concrete surface cracks and defects using integrated image processing algorithms

    NASA Astrophysics Data System (ADS)

    Balbin, Jessie R.; Hortinela, Carlos C.; Garcia, Ramon G.; Baylon, Sunnycille; Ignacio, Alexander Joshua; Rivera, Marco Antonio; Sebastian, Jaimie

    2017-06-01

    Pattern recognition of concrete surface crack defects is very important in determining stability of structure like building, roads or bridges. Surface crack is one of the subjects in inspection, diagnosis, and maintenance as well as life prediction for the safety of the structures. Traditionally determining defects and cracks on concrete surfaces are done manually by inspection. Moreover, any internal defects on the concrete would require destructive testing for detection. The researchers created an automated surface crack detection for concrete using image processing techniques including Hough transform, LoG weighted, Dilation, Grayscale, Canny Edge Detection and Haar Wavelet Transform. An automatic surface crack detection robot is designed to capture the concrete surface by sectoring method. Surface crack classification was done with the use of Haar trained cascade object detector that uses both positive samples and negative samples which proved that it is possible to effectively identify the surface crack defects.

  15. Wavelet Filter Banks for Super-Resolution SAR Imaging

    NASA Technical Reports Server (NTRS)

    Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess

    2011-01-01

    This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.

  16. Reply to “Comment on ‘Ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake constrained by a detailed assessment of macroseismic data’ by Stacey S. Martin, Susan E. Hough, and Charleen Hung” by Andrea Tertulliani, Laura Graziani, Corrado Castellano, Alessandra Maramai, and Antonio Rossi

    USGS Publications Warehouse

    Martin, Stacey S.; Hough, Susan E.

    2016-01-01

    We thank Andrea Tertulliani and his colleagues for their interest in our article on the 2015 Gorkha earthquake (Martin, Hough, et al., 2015), and for their comments pertaining to our study (Tertulliani et al., 2016). Indeed, as they note, a comprehensive assessment of macroseismic effects for an earthquake with far‐reaching effects as that of Gorkha is not only critically important but is also an extremely difficult undertaking. In the absence of a widely known web‐based system, employing a well‐calibrated algorithm with which to collect and systematically assess macroseismic information (e.g., Wald et al., 1999; Coppola et al., 2010; Bossu et al., 2015) in the Indian subcontinent, one is left with two approaches to characterize effects of an event such as the Gorkha earthquake: a comprehensive ground‐based survey such as the one undertaken in India following the 2001 Bhuj earthquake (Pande and Kayal, 2003), or an assessment such as Martin, Hough, et al. (2015) akin to other contemporary studies (e.g., Nuttli, 1973; Sieh, 1978; Meltzner and Wald, 1998; Martin and Szeliga, 2010; Ambraseys and Bilham, 2012; Mahajan et al., 2012; Gupta et al., 2013; Singh et al., 2013; Hough and Martin, 2015; Martin and Hough, 2015; Martin, Bradley, et al., 2015; Ribeiro et al., 2015), based primarily upon media reports and other available documentary accounts.

  17. The research of edge extraction and target recognition based on inherent feature of objects

    NASA Astrophysics Data System (ADS)

    Xie, Yu-chan; Lin, Yu-chi; Huang, Yin-guo

    2008-03-01

    Current research on computer vision often needs specific techniques for particular problems. Little use has been made of high-level aspects of computer vision, such as three-dimensional (3D) object recognition, that are appropriate for large classes of problems and situations. In particular, high-level vision often focuses mainly on the extraction of symbolic descriptions, and pays little attention to the speed of processing. In order to extract and recognize target intelligently and rapidly, in this paper we developed a new 3D target recognition method based on inherent feature of objects in which cuboid was taken as model. On the basis of analysis cuboid nature contour and greyhound distributing characteristics, overall fuzzy evaluating technique was utilized to recognize and segment the target. Then Hough transform was used to extract and match model's main edges, we reconstruct aim edges by stereo technology in the end. There are three major contributions in this paper. Firstly, the corresponding relations between the parameters of cuboid model's straight edges lines in an image field and in the transform field were summed up. By those, the aimless computations and searches in Hough transform processing can be reduced greatly and the efficiency is improved. Secondly, as the priori knowledge about cuboids contour's geometry character known already, the intersections of the component extracted edges are taken, and assess the geometry of candidate edges matches based on the intersections, rather than the extracted edges. Therefore the outlines are enhanced and the noise is depressed. Finally, a 3-D target recognition method is proposed. Compared with other recognition methods, this new method has a quick response time and can be achieved with high-level computer vision. The method present here can be used widely in vision-guide techniques to strengthen its intelligence and generalization, which can also play an important role in object tracking, port AGV, robots fields. The results of simulation experiments and theory analyzing demonstrate that the proposed method could suppress noise effectively, extracted target edges robustly, and achieve the real time need. Theory analysis and experiment shows the method is reasonable and efficient.

  18. 3D Visual Tracking of an Articulated Robot in Precision Automated Tasks

    PubMed Central

    Alzarok, Hamza; Fletcher, Simon; Longstaff, Andrew P.

    2017-01-01

    The most compelling requirements for visual tracking systems are a high detection accuracy and an adequate processing speed. However, the combination between the two requirements in real world applications is very challenging due to the fact that more accurate tracking tasks often require longer processing times, while quicker responses for the tracking system are more prone to errors, therefore a trade-off between accuracy and speed, and vice versa is required. This paper aims to achieve the two requirements together by implementing an accurate and time efficient tracking system. In this paper, an eye-to-hand visual system that has the ability to automatically track a moving target is introduced. An enhanced Circular Hough Transform (CHT) is employed for estimating the trajectory of a spherical target in three dimensions, the colour feature of the target was carefully selected by using a new colour selection process, the process relies on the use of a colour segmentation method (Delta E) with the CHT algorithm for finding the proper colour of the tracked target, the target was attached to the six degree of freedom (DOF) robot end-effector that performs a pick-and-place task. A cooperation of two Eye-to Hand cameras with their image Averaging filters are used for obtaining clear and steady images. This paper also examines a new technique for generating and controlling the observation search window in order to increase the computational speed of the tracking system, the techniques is named Controllable Region of interest based on Circular Hough Transform (CRCHT). Moreover, a new mathematical formula is introduced for updating the depth information of the vision system during the object tracking process. For more reliable and accurate tracking, a simplex optimization technique was employed for the calculation of the parameters for camera to robotic transformation matrix. The results obtained show the applicability of the proposed approach to track the moving robot with an overall tracking error of 0.25 mm. Also, the effectiveness of CRCHT technique in saving up to 60% of the overall time required for image processing. PMID:28067860

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiolo, M., E-mail: massimo.maiolo@zhaw.ch; ZHAW, Institut für Angewandte Simulation, Grüental, CH-8820 Wädenswil; Vancheri, A., E-mail: alberto.vancheri@supsi.ch

    In this paper, we apply Multiresolution Analysis (MRA) to develop sparse but accurate representations for the Multiscale Coarse-Graining (MSCG) approximation to the many-body potential of mean force. We rigorously framed the MSCG method into MRA so that all the instruments of this theory become available together with a multitude of new basis functions, namely the wavelets. The coarse-grained (CG) force field is hierarchically decomposed at different resolution levels enabling to choose the most appropriate wavelet family for each physical interaction without requiring an a priori knowledge of the details localization. The representation of the CG potential in this new efficientmore » orthonormal basis leads to a compression of the signal information in few large expansion coefficients. The multiresolution property of the wavelet transform allows to isolate and remove the noise from the CG force-field reconstruction by thresholding the basis function coefficients from each frequency band independently. We discuss the implementation of our wavelet-based MSCG approach and demonstrate its accuracy using two different condensed-phase systems, i.e. liquid water and methanol. Simulations of liquid argon have also been performed using a one-to-one mapping between atomistic and CG sites. The latter model allows to verify the accuracy of the method and to test different choices of wavelet families. Furthermore, the results of the computer simulations show that the efficiency and sparsity of the representation of the CG force field can be traced back to the mathematical properties of the chosen family of wavelets. This result is in agreement with what is known from the theory of multiresolution analysis of signals.« less

  20. A sparse reconstruction method for the estimation of multiresolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2014-08-20

    We present a sparse reconstruction scheme that can also be used to ensure non-negativity when fitting wavelet-based random field models to limited observations in non-rectangular geometries. The method is relevant when multiresolution fields are estimated using linear inverse problems. Examples include the estimation of emission fields for many anthropogenic pollutants using atmospheric inversion or hydraulic conductivity in aquifers from flow measurements. The scheme is based on three new developments. Firstly, we extend an existing sparse reconstruction method, Stagewise Orthogonal Matching Pursuit (StOMP), to incorporate prior information on the target field. Secondly, we develop an iterative method that uses StOMP tomore » impose non-negativity on the estimated field. Finally, we devise a method, based on compressive sensing, to limit the estimated field within an irregularly shaped domain. We demonstrate the method on the estimation of fossil-fuel CO 2 (ffCO 2) emissions in the lower 48 states of the US. The application uses a recently developed multiresolution random field model and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of two. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  1. A Misleading Review of Response Bias: Comment on McGrath, Mitchell, Kim, and Hough (2010)

    ERIC Educational Resources Information Center

    Rohling, Martin L.; Larrabee, Glenn J.; Greiffenstein, Manfred F.; Ben-Porath, Yossef S.; Lees-Haley, Paul; Green, Paul; Greve, Kevin W.

    2011-01-01

    In the May 2010 issue of "Psychological Bulletin," R. E. McGrath, M. Mitchell, B. H. Kim, and L. Hough published an article entitled "Evidence for Response Bias as a Source of Error Variance in Applied Assessment" (pp. 450-470). They argued that response bias indicators used in a variety of settings typically have insufficient data to support such…

  2. Locomotive track detection for underground

    NASA Astrophysics Data System (ADS)

    Ma, Zhonglei; Lang, Wenhui; Li, Xiaoming; Wei, Xing

    2017-08-01

    In order to improve the PC-based track detection system, this paper proposes a method to detect linear track for underground locomotive based on DSP + FPGA. Firstly, the analog signal outputted from the camera is sampled by A / D chip. Then the collected digital signal is preprocessed by FPGA. Secondly, the output signal of FPGA is transmitted to DSP via EMIF port. Subsequently, the adaptive threshold edge detection, polar angle and radius constrain based Hough transform are implemented by DSP. Lastly, the detected track information is transmitted to host computer through Ethernet interface. The experimental results show that the system can not only meet the requirements of real-time detection, but also has good robustness.

  3. Learning to segment mouse embryo cells

    NASA Astrophysics Data System (ADS)

    León, Juan; Pardo, Alejandro; Arbeláez, Pablo

    2017-11-01

    Recent advances in microscopy enable the capture of temporal sequences during cell development stages. However, the study of such sequences is a complex task and time consuming task. In this paper we propose an automatic strategy to adders the problem of semantic and instance segmentation of mouse embryos using NYU's Mouse Embryo Tracking Database. We obtain our instance proposals as refined predictions from the generalized hough transform, using prior knowledge of the embryo's locations and their current cell stage. We use two main approaches to learn the priors: Hand crafted features and automatic learned features. Our strategy increases the baseline jaccard index from 0.12 up to 0.24 using hand crafted features and 0.28 by using automatic learned ones.

  4. Comparison of classification algorithms for various methods of preprocessing radar images of the MSTAR base

    NASA Astrophysics Data System (ADS)

    Borodinov, A. A.; Myasnikov, V. V.

    2018-04-01

    The present work is devoted to comparing the accuracy of the known qualification algorithms in the task of recognizing local objects on radar images for various image preprocessing methods. Preprocessing involves speckle noise filtering and normalization of the object orientation in the image by the method of image moments and by a method based on the Hough transform. In comparison, the following classification algorithms are used: Decision tree; Support vector machine, AdaBoost, Random forest. The principal component analysis is used to reduce the dimension. The research is carried out on the objects from the base of radar images MSTAR. The paper presents the results of the conducted studies.

  5. Artificial intelligence tools for pattern recognition

    NASA Astrophysics Data System (ADS)

    Acevedo, Elena; Acevedo, Antonio; Felipe, Federico; Avilés, Pedro

    2017-06-01

    In this work, we present a system for pattern recognition that combines the power of genetic algorithms for solving problems and the efficiency of the morphological associative memories. We use a set of 48 tire prints divided into 8 brands of tires. The images have dimensions of 200 x 200 pixels. We applied Hough transform to obtain lines as main features. The number of lines obtained is 449. The genetic algorithm reduces the number of features to ten suitable lines that give thus the 100% of recognition. Morphological associative memories were used as evaluation function. The selection algorithms were Tournament and Roulette wheel. For reproduction, we applied one-point, two-point and uniform crossover.

  6. Automatic Extraction of Planetary Image Features

    NASA Technical Reports Server (NTRS)

    Troglio, G.; LeMoigne, J.; Moser, G.; Serpico, S. B.; Benediktsson, J. A.

    2009-01-01

    With the launch of several Lunar missions such as the Lunar Reconnaissance Orbiter (LRO) and Chandrayaan-1, a large amount of Lunar images will be acquired and will need to be analyzed. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to Lunar data that often present low contrast and uneven illumination characteristics. In this paper, we propose a new method for the extraction of Lunar features (that can be generalized to other planetary images), based on the combination of several image processing techniques, a watershed segmentation and the generalized Hough Transform. This feature extraction has many applications, among which image registration.

  7. Weighted least squares phase unwrapping based on the wavelet transform

    NASA Astrophysics Data System (ADS)

    Chen, Jiafeng; Chen, Haiqin; Yang, Zhengang; Ren, Haixia

    2007-01-01

    The weighted least squares phase unwrapping algorithm is a robust and accurate method to solve phase unwrapping problem. This method usually leads to a large sparse linear equation system. Gauss-Seidel relaxation iterative method is usually used to solve this large linear equation. However, this method is not practical due to its extremely slow convergence. The multigrid method is an efficient algorithm to improve convergence rate. However, this method needs an additional weight restriction operator which is very complicated. For this reason, the multiresolution analysis method based on the wavelet transform is proposed. By applying the wavelet transform, the original system is decomposed into its coarse and fine resolution levels and an equivalent equation system with better convergence condition can be obtained. Fast convergence in separate coarse resolution levels speeds up the overall system convergence rate. The simulated experiment shows that the proposed method converges faster and provides better result than the multigrid method.

  8. Design and application of discrete wavelet packet transform based multiresolution controller for liquid level system.

    PubMed

    Paul, Rimi; Sengupta, Anindita

    2017-11-01

    A new controller based on discrete wavelet packet transform (DWPT) for liquid level system (LLS) has been presented here. This controller generates control signal using node coefficients of the error signal which interprets many implicit phenomena such as process dynamics, measurement noise and effect of external disturbances. Through simulation results on LLS problem, this controller is shown to perform faster than both the discrete wavelet transform based controller and conventional proportional integral controller. Also, it is more efficient in terms of its ability to provide better noise rejection. To overcome the wind up phenomenon by considering the saturation due to presence of actuator, anti-wind up technique is applied to the conventional PI controller and compared to the wavelet packet transform based controller. In this case also, packet controller is found better than the other ones. This similar work has been extended for analogous first order RC plant as well as second order plant also. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Adaptive multiscale processing for contrast enhancement

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu; Fan, Jian; Huda, Walter; Honeyman, Janice C.; Steinbach, Barbara G.

    1993-07-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms within a continuum of scale space and used to enhance features of importance to mammography. Choosing analyzing functions that are well localized in both space and frequency, results in a powerful methodology for image analysis. We describe methods of contrast enhancement based on two overcomplete (redundant) multiscale representations: (1) Dyadic wavelet transform (2) (phi) -transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by non-linear, logarithmic and constant scale-space weight functions. Multiscale edges identified within distinct levels of transform space provide a local support for enhancement throughout each decomposition. We demonstrate that features extracted from wavelet spaces can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.

  10. Wavelet bases on the L-shaped domain

    NASA Astrophysics Data System (ADS)

    Jouini, Abdellatif; Lemarié-Rieusset, Pierre Gilles

    2013-07-01

    We present in this paper two elementary constructions of multiresolution analyses on the L-shaped domain D. In the first one, we shall describe a direct method to define an orthonormal multiresolution analysis. In the second one, we use the decomposition method for constructing a biorthogonal multiresolution analysis. These analyses are adapted for the study of the Sobolev spaces Hs(D)(s∈N).

  11. Experimental Studies on a Compact Storage Scheme for Wavelet-based Multiresolution Subregion Retrieval

    NASA Technical Reports Server (NTRS)

    Poulakidas, A.; Srinivasan, A.; Egecioglu, O.; Ibarra, O.; Yang, T.

    1996-01-01

    Wavelet transforms, when combined with quantization and a suitable encoding, can be used to compress images effectively. In order to use them for image library systems, a compact storage scheme for quantized coefficient wavelet data must be developed with a support for fast subregion retrieval. We have designed such a scheme and in this paper we provide experimental studies to demonstrate that it achieves good image compression ratios, while providing a natural indexing mechanism that facilitates fast retrieval of portions of the image at various resolutions.

  12. Invisible data matrix detection with smart phone using geometric correction and Hough transform

    NASA Astrophysics Data System (ADS)

    Sun, Halit; Uysalturk, Mahir C.; Karakaya, Mahmut

    2016-04-01

    Two-dimensional data matrices are used in many different areas that provide quick and automatic data entry to the computer system. Their most common usage is to automatically read labeled products (books, medicines, food, etc.) and recognize them. In Turkey, alcohol beverages and tobacco products are labeled and tracked with the invisible data matrices for public safety and tax purposes. In this application, since data matrixes are printed on a special paper with a pigmented ink, it cannot be seen under daylight. When red LEDs are utilized for illumination and reflected light is filtered, invisible data matrices become visible and decoded by special barcode readers. Owing to their physical dimensions, price and requirement of special training to use; cheap, small sized and easily carried domestic mobile invisible data matrix reader systems are required to be delivered to every inspector in the law enforcement units. In this paper, we first developed an apparatus attached to the smartphone including a red LED light and a high pass filter. Then, we promoted an algorithm to process captured images by smartphones and to decode all information stored in the invisible data matrix images. The proposed algorithm mainly involves four stages. In the first step, data matrix code is processed by Hough transform processing to find "L" shaped pattern. In the second step, borders of the data matrix are found by using the convex hull and corner detection methods. Afterwards, distortion of invisible data matrix corrected by geometric correction technique and the size of every module is fixed in rectangular shape. Finally, the invisible data matrix is scanned line by line in the horizontal axis to decode it. Based on the results obtained from the real test images of invisible data matrix captured with a smartphone, the proposed algorithm indicates high accuracy and low error rate.

  13. Discovering biclusters in gene expression data based on high-dimensional linear geometries

    PubMed Central

    Gan, Xiangchao; Liew, Alan Wee-Chung; Yan, Hong

    2008-01-01

    Background In DNA microarray experiments, discovering groups of genes that share similar transcriptional characteristics is instrumental in functional annotation, tissue classification and motif identification. However, in many situations a subset of genes only exhibits consistent pattern over a subset of conditions. Conventional clustering algorithms that deal with the entire row or column in an expression matrix would therefore fail to detect these useful patterns in the data. Recently, biclustering has been proposed to detect a subset of genes exhibiting consistent pattern over a subset of conditions. However, most existing biclustering algorithms are based on searching for sub-matrices within a data matrix by optimizing certain heuristically defined merit functions. Moreover, most of these algorithms can only detect a restricted set of bicluster patterns. Results In this paper, we present a novel geometric perspective for the biclustering problem. The biclustering process is interpreted as the detection of linear geometries in a high dimensional data space. Such a new perspective views biclusters with different patterns as hyperplanes in a high dimensional space, and allows us to handle different types of linear patterns simultaneously by matching a specific set of linear geometries. This geometric viewpoint also inspires us to propose a generic bicluster pattern, i.e. the linear coherent model that unifies the seemingly incompatible additive and multiplicative bicluster models. As a particular realization of our framework, we have implemented a Hough transform-based hyperplane detection algorithm. The experimental results on human lymphoma gene expression dataset show that our algorithm can find biologically significant subsets of genes. Conclusion We have proposed a novel geometric interpretation of the biclustering problem. We have shown that many common types of bicluster are just different spatial arrangements of hyperplanes in a high dimensional data space. An implementation of the geometric framework using the Fast Hough transform for hyperplane detection can be used to discover biologically significant subsets of genes under subsets of conditions for microarray data analysis. PMID:18433477

  14. Innovative tidal notch detection using TLS and fuzzy logic: Implications for palaeo-shorelines from compressional (Crete) and extensional (Gulf of Corinth) tectonic settings

    NASA Astrophysics Data System (ADS)

    Schneiderwind, S.; Boulton, S. J.; Papanikolaou, I.; Reicherter, K.

    2017-04-01

    Tidal notches are a generally accepted sea-level marker and maintain particular interest for palaeoseismic studies since coastal seismic activity potentially displaces them from their genetic position. The result of subsequent seismic events is a notch sequence reflecting the cumulative coastal uplift. In order to evaluate preserved notch sequences, an innovative and interdisciplinary workflow is presented that accurately highlights evidence for palaeo-sea-level markers. The workflow uses data from terrestrial laser scanning and iteratively combines high-resolution curvature analysis, high performance edge detection, and feature extraction. Based on the assumptions that remnants, such as the roof of tidal notches, form convex patterns, edge detection is performed on principal curvature images. In addition, a standard algorithm is compared to edge detection results from a custom Fuzzy logic approach. The results pass through a Hough transform in order to extract continuous line features of an almost horizontal orientation. The workflow was initially developed on a single, distinct, and sheltered exposure in southern Crete and afterwards successfully tested on laser scans of different coastal cliffs from the Perachora Peninsula. This approach allows a detailed examination of otherwise inaccessible locations and the evaluation of lateral and 3D geometries, thus evidence for previously unrecognised sea-level markers can be identified even when poorly developed. High resolution laser scans of entire cliff exposures allow local variations to be quantified. Edge detection aims to reduce information on the surface curvature and Hough transform limits the results towards orientation and continuity. Thus, the presented objective methodology enhances the recognition of tidal notches and supports palaeoseismic studies by contributing spatial information and accurate measurements of horizontal movements, beyond that recognised during traditional surveys. This is especially useful for the identification of palaeo-shorelines in extensional tectonic environments where coseismic footwall uplift (only 1/2 to 1/4 of net slip per event) is unlikely to raise an entire notch above the tidal range.

  15. A Multi-Resolution Data Structure for Two-Dimensional Morse Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bremer, P-T; Edelsbrunner, H; Hamann, B

    2003-07-30

    The efficient construction of simplified models is a central problem in the field of visualization. We combine topological and geometric methods to construct a multi-resolution data structure for functions over two-dimensional domains. Starting with the Morse-Smale complex we build a hierarchy by progressively canceling critical points in pairs. The data structure supports mesh traversal operations similar to traditional multi-resolution representations.

  16. Segmentation of knee cartilage by using a hierarchical active shape model based on multi-resolution transforms in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    León, Madeleine; Escalante-Ramirez, Boris

    2013-11-01

    Knee osteoarthritis (OA) is characterized by the morphological degeneration of cartilage. Efficient segmentation of cartilage is important for cartilage damage diagnosis and to support therapeutic responses. We present a method for knee cartilage segmentation in magnetic resonance images (MRI). Our method incorporates the Hermite Transform to obtain a hierarchical decomposition of contours which describe knee cartilage shapes. Then, we compute a statistical model of the contour of interest from a set of training images. Thereby, our Hierarchical Active Shape Model (HASM) captures a large range of shape variability even from a small group of training samples, improving segmentation accuracy. The method was trained with a training set of 16- MRI of knee and tested with leave-one-out method.

  17. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography.

    PubMed

    Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris

    2011-09-01

    Partial volume effects (PVEs) are consequences of the limited spatial resolution in emission tomography leading to underestimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multiresolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low-resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model, which may introduce artifacts in regions where no significant correlation exists between anatomical and functional details. A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present, the new model outperformed the 2D global approach, avoiding artifacts and significantly improving quality of the corrected images and their quantitative accuracy. A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multiresolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information.

  18. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography

    PubMed Central

    Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E.; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris

    2011-01-01

    Purpose Partial volume effects (PVE) are consequences of the limited spatial resolution in emission tomography leading to under-estimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multi-resolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model which may introduce artefacts in regions where no significant correlation exists between anatomical and functional details. Methods A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Results Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present the new model outperformed the 2D global approach, avoiding artefacts and significantly improving quality of the corrected images and their quantitative accuracy. Conclusions A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multi-resolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information. PMID:21978037

  19. Adaptive multi-resolution Modularity for detecting communities in networks

    NASA Astrophysics Data System (ADS)

    Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He

    2018-02-01

    Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.

  20. Global detection of large lunar craters based on the CE-1 digital elevation model

    NASA Astrophysics Data System (ADS)

    Luo, Lei; Mu, Lingli; Wang, Xinyuan; Li, Chao; Ji, Wei; Zhao, Jinjin; Cai, Heng

    2013-12-01

    Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detection algorithms (CDAs) of the Moon and other planetary bodies has concentrated on detecting them from imagery data, but the computational cost of detecting large craters using images makes these CDAs impractical. This paper presents a new approach to crater detection that utilizes a digital elevation model instead of images; this enables fully automatic global detection of large craters. Craters were delineated by terrain attributes, and then thresholding maps of terrain attributes were used to transform topographic data into a binary image, finally craters were detected by using the Hough Transform from the binary image. By using the proposed algorithm, we produced a catalog of all craters ⩾10 km in diameter on the lunar surface and analyzed their distribution and population characteristics.

  1. Application of image recognition algorithms for statistical description of nano- and microstructured surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mărăscu, V.; Dinescu, G.; Faculty of Physics, University of Bucharest, 405 Atomistilor Street, Bucharest-Magurele

    In this paper we propose a statistical approach for describing the self-assembling of sub-micronic polystyrene beads on silicon surfaces, as well as the evolution of surface topography due to plasma treatments. Algorithms for image recognition are used in conjunction with Scanning Electron Microscopy (SEM) imaging of surfaces. In a first step, greyscale images of the surface covered by the polystyrene beads are obtained. Further, an adaptive thresholding method was applied for obtaining binary images. The next step consisted in automatic identification of polystyrene beads dimensions, by using Hough transform algorithm, according to beads radius. In order to analyze the uniformitymore » of the self–assembled polystyrene beads, the squared modulus of 2-dimensional Fast Fourier Transform (2- D FFT) was applied. By combining these algorithms we obtain a powerful and fast statistical tool for analysis of micro and nanomaterials with aspect features regularly distributed on surface upon SEM examination.« less

  2. Surgical tool detection and tracking in retinal microsurgery

    NASA Astrophysics Data System (ADS)

    Alsheakhali, Mohamed; Yigitsoy, Mehmet; Eslami, Abouzar; Navab, Nassir

    2015-03-01

    Visual tracking of surgical instruments is an essential part of eye surgery, and plays an important role for the surgeons as well as it is a key component of robotics assistance during the operation time. The difficulty of detecting and tracking medical instruments in-vivo images comes from its deformable shape, changes in brightness, and the presence of the instrument shadow. This paper introduces a new approach to detect the tip of surgical tool and its width regardless of its head shape and the presence of the shadows or vessels. The approach relies on integrating structural information about the strong edges from the RGB color model, and the tool location-based information from L*a*b color model. The probabilistic Hough transform was applied to get the strongest straight lines in the RGB-images, and based on information from the L* and a*, one of these candidates lines is selected as the edge of the tool shaft. Based on that line, the tool slope, the tool centerline and the tool tip could be detected. The tracking is performed by keeping track of the last detected tool tip and the tool slope, and filtering the Hough lines within a box around the last detected tool tip based on the slope differences. Experimental results demonstrate the high accuracy achieved in term of detecting the tool tip position, the tool joint point position, and the tool centerline. The approach also meets the real time requirements.

  3. Generation of an Atlas of the Proximal Femur and Its Application to Trabecular Bone Analysis

    PubMed Central

    Carballido-Gamio, Julio; Folkesson, Jenny; Karampinos, Dimitrios C.; Baum, Thomas; Link, Thomas M.; Majumdar, Sharmila; Krug, Roland

    2013-01-01

    Automatic placement of anatomically corresponding volumes of interest and comparison of parameters against a standard of reference are essential components in studies of trabecular bone. Only recently, in vivo MR images of the proximal femur, an important fracture site, could be acquired with high-spatial resolution. The purpose of this MRI trabecular bone study was two-fold: (1) to generate an atlas of the proximal femur to automatically place anatomically corresponding volumes of interest in a population study and (2) to demonstrate how mean models of geodesic topological analysis parameters can be generated to be used as potential standard of reference. Ten females were used to generate the atlas and geodesic topological analysis models, and 10 females were used to demonstrate the atlas-based trabecular bone analysis. All alignments were based on three-dimensional (3D) multiresolution affine transformations followed by 3D multiresolution free-form deformations. Mean distances less than 1 mm between aligned femora, and sharp edges in the atlas and in fused gray-level images of registered femora indicated that the anatomical variability was well accommodated and explained by the free-form deformations. PMID:21432904

  4. Multiresolution analysis over graphs for a motor imagery based online BCI game.

    PubMed

    Asensio-Cubero, Javier; Gan, John Q; Palaniappan, Ramaswamy

    2016-01-01

    Multiresolution analysis (MRA) over graph representation of EEG data has proved to be a promising method for offline brain-computer interfacing (BCI) data analysis. For the first time we aim to prove the feasibility of the graph lifting transform in an online BCI system. Instead of developing a pointer device or a wheel-chair controller as test bed for human-machine interaction, we have designed and developed an engaging game which can be controlled by means of imaginary limb movements. Some modifications to the existing MRA analysis over graphs for BCI have also been proposed, such as the use of common spatial patterns for feature extraction at the different levels of decomposition, and sequential floating forward search as a best basis selection technique. In the online game experiment we obtained for three classes an average classification rate of 63.0% for fourteen naive subjects. The application of a best basis selection method helps significantly decrease the computing resources needed. The present study allows us to further understand and assess the benefits of the use of tailored wavelet analysis for processing motor imagery data and contributes to the further development of BCI for gaming purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A novel method about detecting missing holes on the motor carling

    NASA Astrophysics Data System (ADS)

    Xu, Hongsheng; Tan, Hao; Li, Guirong

    2018-03-01

    After a deep analysis on how to use an image processing system to detect the missing holes on the motor carling, we design the whole system combined with the actual production conditions of the motor carling. Afterwards we explain the whole system's hardware and software in detail. We introduce the general functions for the system's hardware and software. Analyzed these general functions, we discuss the modules of the system's hardware and software and the theory to design these modules in detail. The measurement to confirm the area to image processing, edge detection, randomized Hough transform to circle detecting is explained in detail. Finally, the system result tested in the laboratory and in the factory is given out.

  6. Automatic segmentation of equine larynx for diagnosis of laryngeal hemiplegia

    NASA Astrophysics Data System (ADS)

    Salehin, Md. Musfequs; Zheng, Lihong; Gao, Junbin

    2013-10-01

    This paper presents an automatic segmentation method for delineation of the clinically significant contours of the equine larynx from an endoscopic image. These contours are used to diagnose the most common disease of horse larynx laryngeal hemiplegia. In this study, hierarchal structured contour map is obtained by the state-of-the-art segmentation algorithm, gPb-OWT-UCM. The conic-shaped outer boundary of equine larynx is extracted based on Pascal's theorem. Lastly, Hough Transformation method is applied to detect lines related to the edges of vocal folds. The experimental results show that the proposed approach has better performance in extracting the targeted contours of equine larynx than the results of using only the gPb-OWT-UCM method.

  7. Semantic Information Extraction of Lanes Based on Onboard Camera Videos

    NASA Astrophysics Data System (ADS)

    Tang, L.; Deng, T.; Ren, C.

    2018-04-01

    In the field of autonomous driving, semantic information of lanes is very important. This paper proposes a method of automatic detection of lanes and extraction of semantic information from onboard camera videos. The proposed method firstly detects the edges of lanes by the grayscale gradient direction, and improves the Probabilistic Hough transform to fit them; then, it uses the vanishing point principle to calculate the lane geometrical position, and uses lane characteristics to extract lane semantic information by the classification of decision trees. In the experiment, 216 road video images captured by a camera mounted onboard a moving vehicle were used to detect lanes and extract lane semantic information. The results show that the proposed method can accurately identify lane semantics from video images.

  8. Image recognition of clipped stigma traces in rice seeds

    NASA Astrophysics Data System (ADS)

    Cheng, F.; Ying, YB

    2005-11-01

    The objective of this research is to develop algorithm to recognize clipped stigma traces in rice seeds using image processing. At first, the micro-configuration of clipped stigma traces was observed with electronic scanning microscope. Then images of rice seeds were acquired with a color machine vision system. A digital image-processing algorithm based on morphological operations and Hough transform was developed to inspect the occurrence of clipped stigma traces. Five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and you3207 were evaluated. The algorithm was implemented with all image sets using a Matlab 6.5 procedure. The results showed that the algorithm achieved an average accuracy of 96%. The algorithm was proved to be insensitive to the different rice seed varieties.

  9. Restoration of high-resolution AFM images captured with broken probes

    NASA Astrophysics Data System (ADS)

    Wang, Y. F.; Corrigan, D.; Forman, C.; Jarvis, S.; Kokaram, A.

    2012-03-01

    A type of artefact is induced by damage of the scanning probe when the Atomic Force Microscope (AFM) captures a material surface structure with nanoscale resolution. This artefact has a dramatic form of distortion rather than the traditional blurring artefacts. Practically, it is not easy to prevent the damage of the scanning probe. However, by using natural image deblurring techniques in image processing domain, a comparatively reliable estimation of the real sample surface structure can be generated. This paper introduces a novel Hough Transform technique as well as a Bayesian deblurring algorithm to remove this type of artefact. The deblurring result is successful at removing blur artefacts in the AFM artefact images. And the details of the fibril surface topography are well preserved.

  10. Power line identification of millimeter wave radar based on PCA-GS-SVM

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Zhang, Guifeng; Cheng, Yansheng

    2017-12-01

    Aiming at the problem that the existing detection method can not effectively solve the security of UAV's ultra low altitude flight caused by power line, a power line recognition method based on grid search (GS) and the principal component analysis and support vector machine (PCA-SVM) is proposed. Firstly, the candidate line of Hough transform is reduced by PCA, and the main feature of candidate line is extracted. Then, upport vector machine (SVM is) optimized by grid search method (GS). Finally, using support vector machine classifier optimized parameters to classify the candidate line. MATLAB simulation results show that this method can effectively identify the power line and noise, and has high recognition accuracy and algorithm efficiency.

  11. LIDAR Point Cloud Data Extraction and Establishment of 3D Modeling of Buildings

    NASA Astrophysics Data System (ADS)

    Zhang, Yujuan; Li, Xiuhai; Wang, Qiang; Liu, Jiang; Liang, Xin; Li, Dan; Ni, Chundi; Liu, Yan

    2018-01-01

    This paper takes the method of Shepard’s to deal with the original LIDAR point clouds data, and generate regular grid data DSM, filters the ground point cloud and non ground point cloud through double least square method, and obtains the rules of DSM. By using region growing method for the segmentation of DSM rules, the removal of non building point cloud, obtaining the building point cloud information. Uses the Canny operator to extract the image segmentation is needed after the edges of the building, uses Hough transform line detection to extract the edges of buildings rules of operation based on the smooth and uniform. At last, uses E3De3 software to establish the 3D model of buildings.

  12. Measuring the Performance and Intelligence of Systems: Proceedings of the 2001 PerMIS Workshop

    DTIC Science & Technology

    2001-09-04

    35 1.1 Interval Mathematics for Analysis of Multiresolutional Systems V. Kreinovich, Univ. of Texas, R. Alo, Univ. of Houston-Downtown...the possible combinations. In non-deterministic real- time systems , the problem is compounded by the uncertainty in the execution times of various...multiresolutional, multiscale ) in their essence because of multiresolutional character of the meaning of words [Rieger, 01]. In integrating systems , the presence of a

  13. Analyzing gene expression time-courses based on multi-resolution shape mixture model.

    PubMed

    Li, Ying; He, Ye; Zhang, Yu

    2016-11-01

    Biological processes actually are a dynamic molecular process over time. Time course gene expression experiments provide opportunities to explore patterns of gene expression change over a time and understand the dynamic behavior of gene expression, which is crucial for study on development and progression of biology and disease. Analysis of the gene expression time-course profiles has not been fully exploited so far. It is still a challenge problem. We propose a novel shape-based mixture model clustering method for gene expression time-course profiles to explore the significant gene groups. Based on multi-resolution fractal features and mixture clustering model, we proposed a multi-resolution shape mixture model algorithm. Multi-resolution fractal features is computed by wavelet decomposition, which explore patterns of change over time of gene expression at different resolution. Our proposed multi-resolution shape mixture model algorithm is a probabilistic framework which offers a more natural and robust way of clustering time-course gene expression. We assessed the performance of our proposed algorithm using yeast time-course gene expression profiles compared with several popular clustering methods for gene expression profiles. The grouped genes identified by different methods are evaluated by enrichment analysis of biological pathways and known protein-protein interactions from experiment evidence. The grouped genes identified by our proposed algorithm have more strong biological significance. A novel multi-resolution shape mixture model algorithm based on multi-resolution fractal features is proposed. Our proposed model provides a novel horizons and an alternative tool for visualization and analysis of time-course gene expression profiles. The R and Matlab program is available upon the request. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A vision-based automated guided vehicle system with marker recognition for indoor use.

    PubMed

    Lee, Jeisung; Hyun, Chang-Ho; Park, Mignon

    2013-08-07

    We propose an intelligent vision-based Automated Guided Vehicle (AGV) system using fiduciary markers. In this paper, we explore a low-cost, efficient vehicle guiding method using a consumer grade web camera and fiduciary markers. In the proposed method, the system uses fiduciary markers with a capital letter or triangle indicating direction in it. The markers are very easy to produce, manipulate, and maintain. The marker information is used to guide a vehicle. We use hue and saturation values in the image to extract marker candidates. When the known size fiduciary marker is detected by using a bird's eye view and Hough transform, the positional relation between the marker and the vehicle can be calculated. To recognize the character in the marker, a distance transform is used. The probability of feature matching was calculated by using a distance transform, and a feature having high probability is selected as a captured marker. Four directional signals and 10 alphabet features are defined and used as markers. A 98.87% recognition rate was achieved in the testing phase. The experimental results with the fiduciary marker show that the proposed method is a solution for an indoor AGV system.

  15. [Glossary of terms used by radiologists in image processing].

    PubMed

    Rolland, Y; Collorec, R; Bruno, A; Ramée, A; Morcet, N; Haigron, P

    1995-01-01

    We give the definition of 166 words used in image processing. Adaptivity, aliazing, analog-digital converter, analysis, approximation, arc, artifact, artificial intelligence, attribute, autocorrelation, bandwidth, boundary, brightness, calibration, class, classification, classify, centre, cluster, coding, color, compression, contrast, connectivity, convolution, correlation, data base, decision, decomposition, deconvolution, deduction, descriptor, detection, digitization, dilation, discontinuity, discretization, discrimination, disparity, display, distance, distorsion, distribution dynamic, edge, energy, enhancement, entropy, erosion, estimation, event, extrapolation, feature, file, filter, filter floaters, fitting, Fourier transform, frequency, fusion, fuzzy, Gaussian, gradient, graph, gray level, group, growing, histogram, Hough transform, Houndsfield, image, impulse response, inertia, intensity, interpolation, interpretation, invariance, isotropy, iterative, JPEG, knowledge base, label, laplacian, learning, least squares, likelihood, matching, Markov field, mask, matching, mathematical morphology, merge (to), MIP, median, minimization, model, moiré, moment, MPEG, neural network, neuron, node, noise, norm, normal, operator, optical system, optimization, orthogonal, parametric, pattern recognition, periodicity, photometry, pixel, polygon, polynomial, prediction, pulsation, pyramidal, quantization, raster, reconstruction, recursive, region, rendering, representation space, resolution, restoration, robustness, ROC, thinning, transform, sampling, saturation, scene analysis, segmentation, separable function, sequential, smoothing, spline, split (to), shape, threshold, tree, signal, speckle, spectrum, spline, stationarity, statistical, stochastic, structuring element, support, syntaxic, synthesis, texture, truncation, variance, vision, voxel, windowing.

  16. Performance of the Wavelet Decomposition on Massively Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek A.; LeMoigne, Jacqueline; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    Traditionally, Fourier Transforms have been utilized for performing signal analysis and representation. But although it is straightforward to reconstruct a signal from its Fourier transform, no local description of the signal is included in its Fourier representation. To alleviate this problem, Windowed Fourier transforms and then wavelet transforms have been introduced, and it has been proven that wavelets give a better localization than traditional Fourier transforms, as well as a better division of the time- or space-frequency plane than Windowed Fourier transforms. Because of these properties and after the development of several fast algorithms for computing the wavelet representation of any signal, in particular the Multi-Resolution Analysis (MRA) developed by Mallat, wavelet transforms have increasingly been applied to signal analysis problems, especially real-life problems, in which speed is critical. In this paper we present and compare efficient wavelet decomposition algorithms on different parallel architectures. We report and analyze experimental measurements, using NASA remotely sensed images. Results show that our algorithms achieve significant performance gains on current high performance parallel systems, and meet scientific applications and multimedia requirements. The extensive performance measurements collected over a number of high-performance computer systems have revealed important architectural characteristics of these systems, in relation to the processing demands of the wavelet decomposition of digital images.

  17. The Malpelo Plate Hypothesis and implications for nonclosure of the Cocos-Nazca-Pacific plate motion circuit

    NASA Astrophysics Data System (ADS)

    Zhang, Tuo; Gordon, Richard G.; Mishra, Jay K.; Wang, Chengzu

    2017-08-01

    Using global multiresolution topography, we estimate new transform-fault azimuths along the Cocos-Nazca plate boundary and show that the direction of relative plate motion is 3.3° ± 1.8° (95% confidence limits) clockwise of prior estimates. The new direction of Cocos-Nazca plate motion is, moreover, 4.9° ± 2.7° (95% confidence limits) clockwise of the azimuth of the Panama transform fault. We infer that the plate east of the Panama transform fault is not the Nazca plate but instead is a microplate that we term the Malpelo plate. With the improved transform-fault data, the nonclosure of the Nazca-Cocos-Pacific plate motion circuit is reduced from 15.0 mm a-1 ± 3.8 mm a-1 to 11.6 mm a-1 ± 3.8 mm a-1 (95% confidence limits). The nonclosure seems too large to be due entirely to horizontal thermal contraction of oceanic lithosphere and suggests that one or more additional plate boundaries remain to be discovered.

  18. Multi-focus image fusion based on area-based standard deviation in dual tree contourlet transform domain

    NASA Astrophysics Data System (ADS)

    Dong, Min; Dong, Chenghui; Guo, Miao; Wang, Zhe; Mu, Xiaomin

    2018-04-01

    Multiresolution-based methods, such as wavelet and Contourlet are usually used to image fusion. This work presents a new image fusion frame-work by utilizing area-based standard deviation in dual tree Contourlet trans-form domain. Firstly, the pre-registered source images are decomposed with dual tree Contourlet transform; low-pass and high-pass coefficients are obtained. Then, the low-pass bands are fused with weighted average based on area standard deviation rather than the simple "averaging" rule. While the high-pass bands are merged with the "max-absolute' fusion rule. Finally, the modified low-pass and high-pass coefficients are used to reconstruct the final fused image. The major advantage of the proposed fusion method over conventional fusion is the approximately shift invariance and multidirectional selectivity of dual tree Contourlet transform. The proposed method is compared with wavelet- , Contourletbased methods and other the state-of-the art methods on common used multi focus images. Experiments demonstrate that the proposed fusion framework is feasible and effective, and it performs better in both subjective and objective evaluation.

  19. iSAP: Interactive Sparse Astronomical Data Analysis Packages

    NASA Astrophysics Data System (ADS)

    Fourt, O.; Starck, J.-L.; Sureau, F.; Bobin, J.; Moudden, Y.; Abrial, P.; Schmitt, J.

    2013-03-01

    iSAP consists of three programs, written in IDL, which together are useful for spherical data analysis. MR/S (MultiResolution on the Sphere) contains routines for wavelet, ridgelet and curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and Independent Component Analysis on the Sphere. MR/S has been designed for the PLANCK project, but can be used for many other applications. SparsePol (Polarized Spherical Wavelets and Curvelets) has routines for polarized wavelet, polarized ridgelet and polarized curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and blind source separation on the Sphere. SparsePol has been designed for the PLANCK project. MS-VSTS (Multi-Scale Variance Stabilizing Transform on the Sphere), designed initially for the FERMI project, is useful for spherical mono-channel and multi-channel data analysis when the data are contaminated by a Poisson noise. It contains routines for wavelet/curvelet denoising, wavelet deconvolution, multichannel wavelet denoising and deconvolution.

  20. Built-Up Area Detection from High-Resolution Satellite Images Using Multi-Scale Wavelet Transform and Local Spatial Statistics

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Zhang, Y.; Gao, J.; Yuan, Y.; Lv, Z.

    2018-04-01

    Recently, built-up area detection from high-resolution satellite images (HRSI) has attracted increasing attention because HRSI can provide more detailed object information. In this paper, multi-resolution wavelet transform and local spatial autocorrelation statistic are introduced to model the spatial patterns of built-up areas. First, the input image is decomposed into high- and low-frequency subbands by wavelet transform at three levels. Then the high-frequency detail information in three directions (horizontal, vertical and diagonal) are extracted followed by a maximization operation to integrate the information in all directions. Afterward, a cross-scale operation is implemented to fuse different levels of information. Finally, local spatial autocorrelation statistic is introduced to enhance the saliency of built-up features and an adaptive threshold algorithm is used to achieve the detection of built-up areas. Experiments are conducted on ZY-3 and Quickbird panchromatic satellite images, and the results show that the proposed method is very effective for built-up area detection.

  1. Accurate reconstruction in digital holographic microscopy using Fresnel dual-tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Zhang, Xiangchao; Yuan, He; Zhang, Hao; Xu, Min

    2018-02-01

    Digital holography is a promising measurement method in the fields of bio-medicine and micro-electronics. But the captured images of digital holography are severely polluted by the speckle noise because of optical scattering and diffraction. Via analyzing the properties of Fresnel diffraction and the topographies of micro-structures, a novel reconstruction method based on the dual-tree complex wavelet transform (DT-CWT) is proposed. This algorithm is shiftinvariant and capable of obtaining sparse representations for the diffracted signals of salient features, thus it is well suited for multiresolution processing of the interferometric holograms of directional morphologies. An explicit representation of orthogonal Fresnel DT-CWT bases and a specific filtering method are developed. This method can effectively remove the speckle noise without destroying the salient features. Finally, the proposed reconstruction method is compared with the conventional Fresnel diffraction integration and Fresnel wavelet transform with compressive sensing methods to validate its remarkable superiority on the aspects of topography reconstruction and speckle removal.

  2. MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Robert J.; Beylkin, Gregory; Bischoff, Florian A.

    2016-01-01

    MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.

  3. A multi-resolution approach to electromagnetic modelling

    NASA Astrophysics Data System (ADS)

    Cherevatova, M.; Egbert, G. D.; Smirnov, M. Yu

    2018-07-01

    We present a multi-resolution approach for 3-D magnetotelluric forward modelling. Our approach is motivated by the fact that fine-grid resolution is typically required at shallow levels to adequately represent near surface inhomogeneities, topography and bathymetry, while a much coarser grid may be adequate at depth where the diffusively propagating electromagnetic fields are much smoother. With a conventional structured finite difference grid, the fine discretization required to adequately represent rapid variations near the surface is continued to all depths, resulting in higher computational costs. Increasing the computational efficiency of the forward modelling is especially important for solving regularized inversion problems. We implement a multi-resolution finite difference scheme that allows us to decrease the horizontal grid resolution with depth, as is done with vertical discretization. In our implementation, the multi-resolution grid is represented as a vertical stack of subgrids, with each subgrid being a standard Cartesian tensor product staggered grid. Thus, our approach is similar to the octree discretization previously used for electromagnetic modelling, but simpler in that we allow refinement only with depth. The major difficulty arose in deriving the forward modelling operators on interfaces between adjacent subgrids. We considered three ways of handling the interface layers and suggest a preferable one, which results in similar accuracy as the staggered grid solution, while retaining the symmetry of coefficient matrix. A comparison between multi-resolution and staggered solvers for various models shows that multi-resolution approach improves on computational efficiency without compromising the accuracy of the solution.

  4. Single Channel EEG Artifact Identification Using Two-Dimensional Multi-Resolution Analysis.

    PubMed

    Taherisadr, Mojtaba; Dehzangi, Omid; Parsaei, Hossein

    2017-12-13

    As a diagnostic monitoring approach, electroencephalogram (EEG) signals can be decoded by signal processing methodologies for various health monitoring purposes. However, EEG recordings are contaminated by other interferences, particularly facial and ocular artifacts generated by the user. This is specifically an issue during continuous EEG recording sessions, and is therefore a key step in using EEG signals for either physiological monitoring and diagnosis or brain-computer interface to identify such artifacts from useful EEG components. In this study, we aim to design a new generic framework in order to process and characterize EEG recording as a multi-component and non-stationary signal with the aim of localizing and identifying its component (e.g., artifact). In the proposed method, we gather three complementary algorithms together to enhance the efficiency of the system. Algorithms include time-frequency (TF) analysis and representation, two-dimensional multi-resolution analysis (2D MRA), and feature extraction and classification. Then, a combination of spectro-temporal and geometric features are extracted by combining key instantaneous TF space descriptors, which enables the system to characterize the non-stationarities in the EEG dynamics. We fit a curvelet transform (as a MRA method) to 2D TF representation of EEG segments to decompose the given space to various levels of resolution. Such a decomposition efficiently improves the analysis of the TF spaces with different characteristics (e.g., resolution). Our experimental results demonstrate that the combination of expansion to TF space, analysis using MRA, and extracting a set of suitable features and applying a proper predictive model is effective in enhancing the EEG artifact identification performance. We also compare the performance of the designed system with another common EEG signal processing technique-namely, 1D wavelet transform. Our experimental results reveal that the proposed method outperforms 1D wavelet.

  5. A lane line segmentation algorithm based on adaptive threshold and connected domain theory

    NASA Astrophysics Data System (ADS)

    Feng, Hui; Xu, Guo-sheng; Han, Yi; Liu, Yang

    2018-04-01

    Before detecting cracks and repairs on road lanes, it's necessary to eliminate the influence of lane lines on the recognition result in road lane images. Aiming at the problems caused by lane lines, an image segmentation algorithm based on adaptive threshold and connected domain is proposed. First, by analyzing features like grey level distribution and the illumination of the images, the algorithm uses Hough transform to divide the images into different sections and convert them into binary images separately. It then uses the connected domain theory to amend the outcome of segmentation, remove noises and fill the interior zone of lane lines. Experiments have proved that this method could eliminate the influence of illumination and lane line abrasion, removing noises thoroughly while maintaining high segmentation precision.

  6. The Impact of the Implementation of Edge Detection Methods on the Accuracy of Automatic Voltage Reading

    NASA Astrophysics Data System (ADS)

    Sidor, Kamil; Szlachta, Anna

    2017-04-01

    The article presents the impact of the edge detection method in the image analysis on the reading accuracy of the measured value. In order to ensure the automatic reading of the measured value by an analog meter, a standard webcam and the LabVIEW programme were applied. NI Vision Development tools were used. The Hough transform was used to detect the indicator. The programme output was compared during the application of several methods of edge detection. Those included: the Prewitt operator, the Roberts cross, the Sobel operator and the Canny edge detector. The image analysis was made for an analog meter indicator with the above-mentioned methods, and the results of that analysis were compared with each other and presented.

  7. Offset Printing Plate Quality Sensor on a Low-Cost Processor

    PubMed Central

    Poljak, Jelena; Botella, Guillermo; García, Carlos; Poljaček, Sanja Mahović; Prieto-Matías, Manuel; Tirado, Francisco

    2013-01-01

    The aim of this work is to develop a microprocessor-based sensor that measures the quality of the offset printing plate through the introduction of different image analysis applications. The main features of the presented system are the low cost, the low amount of power consumption, its modularity and easy integration with other industrial modules for printing plates, and its robustness against noise environments. For the sake of clarity, a viability analysis of previous software is presented through different strategies, based on dynamic histogram and Hough transform. This paper provides performance and scalability data compared with existing costly commercial devices. Furthermore, a general overview of quality control possibilities for printing plates is presented and could be useful to a system where such controls are regularly conducted. PMID:24284766

  8. MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation

    DOE PAGES

    Harrison, Robert J.; Beylkin, Gregory; Bischoff, Florian A.; ...

    2016-01-01

    We present MADNESS (multiresolution adaptive numerical environment for scientific simulation) that is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision that are based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.

  9. Multiscale Image Processing of Solar Image Data

    NASA Astrophysics Data System (ADS)

    Young, C.; Myers, D. C.

    2001-12-01

    It is often said that the blessing and curse of solar physics is too much data. Solar missions such as Yohkoh, SOHO and TRACE have shown us the Sun with amazing clarity but have also increased the amount of highly complex data. We have improved our view of the Sun yet we have not improved our analysis techniques. The standard techniques used for analysis of solar images generally consist of observing the evolution of features in a sequence of byte scaled images or a sequence of byte scaled difference images. The determination of features and structures in the images are done qualitatively by the observer. There is little quantitative and objective analysis done with these images. Many advances in image processing techniques have occured in the past decade. Many of these methods are possibly suited for solar image analysis. Multiscale/Multiresolution methods are perhaps the most promising. These methods have been used to formulate the human ability to view and comprehend phenomena on different scales. So these techniques could be used to quantitify the imaging processing done by the observers eyes and brains. In this work we present several applications of multiscale techniques applied to solar image data. Specifically, we discuss uses of the wavelet, curvelet, and related transforms to define a multiresolution support for EIT, LASCO and TRACE images.

  10. Adaptive Diffeomorphic Multiresolution Demons and Their Application to Same Modality Medical Image Registration with Large Deformation

    PubMed Central

    Wang, Chang; Ren, Qiongqiong; Qin, Xin

    2018-01-01

    Diffeomorphic demons can guarantee smooth and reversible deformation and avoid unreasonable deformation. However, the number of iterations needs to be set manually, and this greatly influences the registration result. In order to solve this problem, we proposed adaptive diffeomorphic multiresolution demons in this paper. We used an optimized framework with nonrigid registration and diffeomorphism strategy, designed a similarity energy function based on grey value, and stopped iterations adaptively. This method was tested by synthetic image and same modality medical image. Large deformation was simulated by rotational distortion and extrusion transform, medical image registration with large deformation was performed, and quantitative analyses were conducted using the registration evaluation indexes, and the influence of different driving forces and parameters on the registration result was analyzed. The registration results of same modality medical images were compared with those obtained using active demons, additive demons, and diffeomorphic demons. Quantitative analyses showed that the proposed method's normalized cross-correlation coefficient and structural similarity were the highest and mean square error was the lowest. Medical image registration with large deformation could be performed successfully; evaluation indexes remained stable with an increase in deformation strength. The proposed method is effective and robust, and it can be applied to nonrigid registration of same modality medical images with large deformation.

  11. Adaptive Diffeomorphic Multiresolution Demons and Their Application to Same Modality Medical Image Registration with Large Deformation.

    PubMed

    Wang, Chang; Ren, Qiongqiong; Qin, Xin; Yu, Yi

    2018-01-01

    Diffeomorphic demons can guarantee smooth and reversible deformation and avoid unreasonable deformation. However, the number of iterations needs to be set manually, and this greatly influences the registration result. In order to solve this problem, we proposed adaptive diffeomorphic multiresolution demons in this paper. We used an optimized framework with nonrigid registration and diffeomorphism strategy, designed a similarity energy function based on grey value, and stopped iterations adaptively. This method was tested by synthetic image and same modality medical image. Large deformation was simulated by rotational distortion and extrusion transform, medical image registration with large deformation was performed, and quantitative analyses were conducted using the registration evaluation indexes, and the influence of different driving forces and parameters on the registration result was analyzed. The registration results of same modality medical images were compared with those obtained using active demons, additive demons, and diffeomorphic demons. Quantitative analyses showed that the proposed method's normalized cross-correlation coefficient and structural similarity were the highest and mean square error was the lowest. Medical image registration with large deformation could be performed successfully; evaluation indexes remained stable with an increase in deformation strength. The proposed method is effective and robust, and it can be applied to nonrigid registration of same modality medical images with large deformation.

  12. Using discrete wavelet transform features to discriminate between noise and phases in seismic waveforms

    NASA Astrophysics Data System (ADS)

    Forrest, R.; Ray, J.; Hansen, C. W.

    2017-12-01

    Currently, simple polarization metrics such as the horizontal-to-vertical ratio are used to discriminate between noise and various phases in three-component seismic waveform data collected at regional distances. Accurately establishing the identity and arrival of these waves in adverse signal-to-noise environments is helpful in detecting and locating the seismic events. In this work, we explore the use of multiresolution decompositions to discriminate between noise and event arrivals. A segment of the waveform lying inside a time-window that spans the coda of an arrival is subjected to a discrete wavelet decomposition. Multi-resolution classification features as well as statistical tests are derived from these wavelet decomposition quantities to quantify their discriminating power. Furthermore, we move to streaming data and address the problem of false positives by introducing ensembles of classifiers. We describe in detail results of these methods tuned from data obtained from Coronel Fontana, Argentina (CFAA), as well as Stephens Creek, Australia (STKA). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  13. Multi-resolution analysis using integrated microscopic configuration with local patterns for benign-malignant mass classification

    NASA Astrophysics Data System (ADS)

    Rabidas, Rinku; Midya, Abhishek; Chakraborty, Jayasree; Sadhu, Anup; Arif, Wasim

    2018-02-01

    In this paper, Curvelet based local attributes, Curvelet-Local configuration pattern (C-LCP), is introduced for the characterization of mammographic masses as benign or malignant. Amid different anomalies such as micro- calcification, bilateral asymmetry, architectural distortion, and masses, the reason for targeting the mass lesions is due to their variation in shape, size, and margin which makes the diagnosis a challenging task. Being efficient in classification, multi-resolution property of the Curvelet transform is exploited and local information is extracted from the coefficients of each subband using Local configuration pattern (LCP). The microscopic measures in concatenation with the local textural information provide more discriminating capability than individual. The measures embody the magnitude information along with the pixel-wise relationships among the neighboring pixels. The performance analysis is conducted with 200 mammograms of the DDSM database containing 100 mass cases of each benign and malignant. The optimal set of features is acquired via stepwise logistic regression method and the classification is carried out with Fisher linear discriminant analysis. The best area under the receiver operating characteristic curve and accuracy of 0.95 and 87.55% are achieved with the proposed method, which is further compared with some of the state-of-the-art competing methods.

  14. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering.

    PubMed

    Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus

    2014-12-01

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  15. A Robust Zero-Watermarking Algorithm for Audio

    NASA Astrophysics Data System (ADS)

    Chen, Ning; Zhu, Jie

    2007-12-01

    In traditional watermarking algorithms, the insertion of watermark into the host signal inevitably introduces some perceptible quality degradation. Another problem is the inherent conflict between imperceptibility and robustness. Zero-watermarking technique can solve these problems successfully. Instead of embedding watermark, the zero-watermarking technique extracts some essential characteristics from the host signal and uses them for watermark detection. However, most of the available zero-watermarking schemes are designed for still image and their robustness is not satisfactory. In this paper, an efficient and robust zero-watermarking technique for audio signal is presented. The multiresolution characteristic of discrete wavelet transform (DWT), the energy compression characteristic of discrete cosine transform (DCT), and the Gaussian noise suppression property of higher-order cumulant are combined to extract essential features from the host audio signal and they are then used for watermark recovery. Simulation results demonstrate the effectiveness of our scheme in terms of inaudibility, detection reliability, and robustness.

  16. On wavelet analysis of auditory evoked potentials.

    PubMed

    Bradley, A P; Wilson, W J

    2004-05-01

    To determine a preferred wavelet transform (WT) procedure for multi-resolution analysis (MRA) of auditory evoked potentials (AEP). A number of WT algorithms, mother wavelets, and pre-processing techniques were examined by way of critical theoretical discussion followed by experimental testing of key points using real and simulated auditory brain-stem response (ABR) waveforms. Conclusions from these examinations were then tested on a normative ABR dataset. The results of the various experiments are reported in detail. Optimal AEP WT MRA is most likely to occur when an over-sampled discrete wavelet transformation (DWT) is used, utilising a smooth (regularity >or=3) and symmetrical (linear phase) mother wavelet, and a reflection boundary extension policy. This study demonstrates the practical importance of, and explains how to minimize potential artefacts due to, 4 inter-related issues relevant to AEP WT MRA, namely shift variance, phase distortion, reconstruction smoothness, and boundary artefacts.

  17. Fingerprint recognition of wavelet-based compressed images by neuro-fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Liu, Ti C.; Mitra, Sunanda

    1996-06-01

    Image compression plays a crucial role in many important and diverse applications requiring efficient storage and transmission. This work mainly focuses on a wavelet transform (WT) based compression of fingerprint images and the subsequent classification of the reconstructed images. The algorithm developed involves multiresolution wavelet decomposition, uniform scalar quantization, entropy and run- length encoder/decoder and K-means clustering of the invariant moments as fingerprint features. The performance of the WT-based compression algorithm has been compared with JPEG current image compression standard. Simulation results show that WT outperforms JPEG in high compression ratio region and the reconstructed fingerprint image yields proper classification.

  18. Volcanoes Distribution in Linear Segmentation of Mariana Arc

    NASA Astrophysics Data System (ADS)

    Andikagumi, H.; Macpherson, C.; McCaffrey, K. J. W.

    2016-12-01

    A new method has been developed to describe better volcanoes distribution pattern within Mariana Arc. A previous study assumed the distribution of volcanoes in the Mariana Arc is described by a small circle distribution which reflects the melting processes in a curved subduction zone. The small circle fit to this dataset used in the study, comprised 12 -mainly subaerial- volcanoes from Smithsonian Institute Global Volcanism Program, was reassessed by us to have a root-mean-square misfit of 2.5 km. The same method applied to a more complete dataset from Baker et al. (2008), consisting 37 subaerial and submarine volcanoes, resulted in an 8.4 km misfit. However, using the Hough Transform method on the larger dataset, lower misfits of great circle segments were achieved (3.1 and 3.0 km) for two possible segments combination. The results indicate that the distribution of volcanoes in the Mariana Arc is better described by a great circle pattern, instead of small circle. Variogram and cross-variogram analysis on volcano spacing and volume shows that there is spatial correlation between volcanoes between 420 and 500 km which corresponds to the maximum segmentation lengths from Hough Transform (320 km). Further analysis of volcano spacing by the coefficient of variation (Cv), shows a tendency toward not-random distribution as the Cv values are closer to zero than one. These distributions are inferred to be associated with the development of normal faults at the back arc as their Cv values also tend towards zero. To analyse whether volcano spacing is random or not, Cv values were simulated using a Monte Carlo method with random input. Only the southernmost segment has allowed us to reject the null hypothesis that volcanoes are randomly spaced at 95% confidence level by 0.007 estimated probability. This result shows infrequent regularity in volcano spacing by chance so that controlling factor in lithospheric scale should be analysed with different approach (not from random number generator). Sunda Arc which has been studied to have en enchelon segmentation and larger number of volcanoes will be further studied to understand particular upper plate influence in volcanoes distribution.

  19. Automated infrasound signal detection algorithms implemented in MatSeis - Infra Tool.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Darren

    2004-07-01

    MatSeis's infrasound analysis tool, Infra Tool, uses frequency slowness processing to deconstruct the array data into three outputs per processing step: correlation, azimuth and slowness. Until now, an experienced analyst trained to recognize a pattern observed in outputs from signal processing manually accomplished infrasound signal detection. Our goal was to automate the process of infrasound signal detection. The critical aspect of infrasound signal detection is to identify consecutive processing steps where the azimuth is constant (flat) while the time-lag correlation of the windowed waveform is above background value. These two statements describe the arrival of a correlated set of wavefrontsmore » at an array. The Hough Transform and Inverse Slope methods are used to determine the representative slope for a specified number of azimuth data points. The representative slope is then used in conjunction with associated correlation value and azimuth data variance to determine if and when an infrasound signal was detected. A format for an infrasound signal detection output file is also proposed. The detection output file will list the processed array element names, followed by detection characteristics for each method. Each detection is supplied with a listing of frequency slowness processing characteristics: human time (YYYY/MM/DD HH:MM:SS.SSS), epochal time, correlation, fstat, azimuth (deg) and trace velocity (km/s). As an example, a ground truth event was processed using the four-element DLIAR infrasound array located in New Mexico. The event is known as the Watusi chemical explosion, which occurred on 2002/09/28 at 21:25:17 with an explosive yield of 38,000 lb TNT equivalent. Knowing the source and array location, the array-to-event distance was computed to be approximately 890 km. This test determined the station-to-event azimuth (281.8 and 282.1 degrees) to within 1.6 and 1.4 degrees for the Inverse Slope and Hough Transform detection algorithms, respectively, and the detection window closely correlated to the theoretical stratospheric arrival time. Further testing will be required for tuning of detection threshold parameters for different types of infrasound events.« less

  20. Quantitative analysis of vascular parameters for micro-CT imaging of vascular networks with multi-resolution.

    PubMed

    Zhao, Fengjun; Liang, Jimin; Chen, Xueli; Liu, Junting; Chen, Dongmei; Yang, Xiang; Tian, Jie

    2016-03-01

    Previous studies showed that all the vascular parameters from both the morphological and topological parameters were affected with the altering of imaging resolutions. However, neither the sensitivity analysis of the vascular parameters at multiple resolutions nor the distinguishability estimation of vascular parameters from different data groups has been discussed. In this paper, we proposed a quantitative analysis method of vascular parameters for vascular networks of multi-resolution, by analyzing the sensitivity of vascular parameters at multiple resolutions and estimating the distinguishability of vascular parameters from different data groups. Combining the sensitivity and distinguishability, we designed a hybrid formulation to estimate the integrated performance of vascular parameters in a multi-resolution framework. Among the vascular parameters, degree of anisotropy and junction degree were two insensitive parameters that were nearly irrelevant with resolution degradation; vascular area, connectivity density, vascular length, vascular junction and segment number were five parameters that could better distinguish the vascular networks from different groups and abide by the ground truth. Vascular area, connectivity density, vascular length and segment number not only were insensitive to multi-resolution but could also better distinguish vascular networks from different groups, which provided guidance for the quantification of the vascular networks in multi-resolution frameworks.

  1. Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots.

    PubMed

    Wang, Junpeng; Liu, Xiaotong; Shen, Han-Wei; Lin, Guang

    2017-01-01

    Due to the uncertain nature of weather prediction, climate simulations are usually performed multiple times with different spatial resolutions. The outputs of simulations are multi-resolution spatial temporal ensembles. Each simulation run uses a unique set of values for multiple convective parameters. Distinct parameter settings from different simulation runs in different resolutions constitute a multi-resolution high-dimensional parameter space. Understanding the correlation between the different convective parameters, and establishing a connection between the parameter settings and the ensemble outputs are crucial to domain scientists. The multi-resolution high-dimensional parameter space, however, presents a unique challenge to the existing correlation visualization techniques. We present Nested Parallel Coordinates Plot (NPCP), a new type of parallel coordinates plots that enables visualization of intra-resolution and inter-resolution parameter correlations. With flexible user control, NPCP integrates superimposition, juxtaposition and explicit encodings in a single view for comparative data visualization and analysis. We develop an integrated visual analytics system to help domain scientists understand the connection between multi-resolution convective parameters and the large spatial temporal ensembles. Our system presents intricate climate ensembles with a comprehensive overview and on-demand geographic details. We demonstrate NPCP, along with the climate ensemble visualization system, based on real-world use-cases from our collaborators in computational and predictive science.

  2. Predict Brain MR Image Registration via Sparse Learning of Appearance and Transformation

    PubMed Central

    Wang, Qian; Kim, Minjeong; Shi, Yonghong; Wu, Guorong; Shen, Dinggang

    2014-01-01

    We propose a new approach to register the subject image with the template by leveraging a set of intermediate images that are pre-aligned to the template. We argue that, if points in the subject and the intermediate images share similar local appearances, they may have common correspondence in the template. In this way, we learn the sparse representation of a certain subject point to reveal several similar candidate points in the intermediate images. Each selected intermediate candidate can bridge the correspondence from the subject point to the template space, thus predicting the transformation associated with the subject point at the confidence level that relates to the learned sparse coefficient. Following this strategy, we first predict transformations at selected key points, and retain multiple predictions on each key point, instead of allowing only a single correspondence. Then, by utilizing all key points and their predictions with varying confidences, we adaptively reconstruct the dense transformation field that warps the subject to the template. We further embed the prediction-reconstruction protocol above into a multi-resolution hierarchy. In the final, we refine our estimated transformation field via existing registration method in effective manners. We apply our method to registering brain MR images, and conclude that the proposed framework is competent to improve registration performances substantially. PMID:25476412

  3. A multi-resolution approach to electromagnetic modeling.

    NASA Astrophysics Data System (ADS)

    Cherevatova, M.; Egbert, G. D.; Smirnov, M. Yu

    2018-04-01

    We present a multi-resolution approach for three-dimensional magnetotelluric forward modeling. Our approach is motivated by the fact that fine grid resolution is typically required at shallow levels to adequately represent near surface inhomogeneities, topography, and bathymetry, while a much coarser grid may be adequate at depth where the diffusively propagating electromagnetic fields are much smoother. This is especially true for forward modeling required in regularized inversion, where conductivity variations at depth are generally very smooth. With a conventional structured finite-difference grid the fine discretization required to adequately represent rapid variations near the surface are continued to all depths, resulting in higher computational costs. Increasing the computational efficiency of the forward modeling is especially important for solving regularized inversion problems. We implement a multi-resolution finite-difference scheme that allows us to decrease the horizontal grid resolution with depth, as is done with vertical discretization. In our implementation, the multi-resolution grid is represented as a vertical stack of sub-grids, with each sub-grid being a standard Cartesian tensor product staggered grid. Thus, our approach is similar to the octree discretization previously used for electromagnetic modeling, but simpler in that we allow refinement only with depth. The major difficulty arose in deriving the forward modeling operators on interfaces between adjacent sub-grids. We considered three ways of handling the interface layers and suggest a preferable one, which results in similar accuracy as the staggered grid solution, while retaining the symmetry of coefficient matrix. A comparison between multi-resolution and staggered solvers for various models show that multi-resolution approach improves on computational efficiency without compromising the accuracy of the solution.

  4. Multi-resolution statistical image reconstruction for mitigation of truncation effects: application to cone-beam CT of the head

    NASA Astrophysics Data System (ADS)

    Dang, Hao; Webster Stayman, J.; Sisniega, Alejandro; Zbijewski, Wojciech; Xu, Jennifer; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassilis E.; Siewerdsen, Jeffrey H.

    2017-01-01

    A prototype cone-beam CT (CBCT) head scanner featuring model-based iterative reconstruction (MBIR) has been recently developed and demonstrated the potential for reliable detection of acute intracranial hemorrhage (ICH), which is vital to diagnosis of traumatic brain injury and hemorrhagic stroke. However, data truncation (e.g. due to the head holder) can result in artifacts that reduce image uniformity and challenge ICH detection. We propose a multi-resolution MBIR method with an extended reconstruction field of view (RFOV) to mitigate truncation effects in CBCT of the head. The image volume includes a fine voxel size in the (inner) nontruncated region and a coarse voxel size in the (outer) truncated region. This multi-resolution scheme allows extension of the RFOV to mitigate truncation effects while introducing minimal increase in computational complexity. The multi-resolution method was incorporated in a penalized weighted least-squares (PWLS) reconstruction framework previously developed for CBCT of the head. Experiments involving an anthropomorphic head phantom with truncation due to a carbon-fiber holder were shown to result in severe artifacts in conventional single-resolution PWLS, whereas extending the RFOV within the multi-resolution framework strongly reduced truncation artifacts. For the same extended RFOV, the multi-resolution approach reduced computation time compared to the single-resolution approach (viz. time reduced by 40.7%, 83.0%, and over 95% for an image volume of 6003, 8003, 10003 voxels). Algorithm parameters (e.g. regularization strength, the ratio of the fine and coarse voxel size, and RFOV size) were investigated to guide reliable parameter selection. The findings provide a promising method for truncation artifact reduction in CBCT and may be useful for other MBIR methods and applications for which truncation is a challenge.

  5. Unconstrained handwritten numeral recognition based on radial basis competitive and cooperative networks with spatio-temporal feature representation.

    PubMed

    Lee, S; Pan, J J

    1996-01-01

    This paper presents a new approach to representation and recognition of handwritten numerals. The approach first transforms a two-dimensional (2-D) spatial representation of a numeral into a three-dimensional (3-D) spatio-temporal representation by identifying the tracing sequence based on a set of heuristic rules acting as transformation operators. A multiresolution critical-point segmentation method is then proposed to extract local feature points, at varying degrees of scale and coarseness. A new neural network architecture, referred to as radial-basis competitive and cooperative network (RCCN), is presented especially for handwritten numeral recognition. RCCN is a globally competitive and locally cooperative network with the capability of self-organizing hidden units to progressively achieve desired network performance, and functions as a universal approximator of arbitrary input-output mappings. Three types of RCCNs are explored: input-space RCCN (IRCCN), output-space RCCN (ORCCN), and bidirectional RCCN (BRCCN). Experiments against handwritten zip code numerals acquired by the U.S. Postal Service indicated that the proposed method is robust in terms of variations, deformations, transformations, and corruption, achieving about 97% recognition rate.

  6. Implementation of an algorithm for cylindrical object identification using range data

    NASA Technical Reports Server (NTRS)

    Bozeman, Sylvia T.; Martin, Benjamin J.

    1989-01-01

    One of the problems in 3-D object identification and localization is addressed. In robotic and navigation applications the vision system must be able to distinguish cylindrical or spherical objects as well as those of other geometric shapes. An algorithm was developed to identify cylindrical objects in an image when range data is used. The algorithm incorporates the Hough transform for line detection using edge points which emerge from a Sobel mask. Slices of the data are examined to locate arcs of circles using the normal equations of an over-determined linear system. Current efforts are devoted to testing the computer implementation of the algorithm. Refinements are expected to continue in order to accommodate cylinders in various positions. A technique is sought which is robust in the presence of noise and partial occlusions.

  7. Geodesic Distance Algorithm for Extracting the Ascending Aorta from 3D CT Images

    PubMed Central

    Jang, Yeonggul; Jung, Ho Yub; Hong, Youngtaek; Cho, Iksung; Shim, Hackjoon; Chang, Hyuk-Jae

    2016-01-01

    This paper presents a method for the automatic 3D segmentation of the ascending aorta from coronary computed tomography angiography (CCTA). The segmentation is performed in three steps. First, the initial seed points are selected by minimizing a newly proposed energy function across the Hough circles. Second, the ascending aorta is segmented by geodesic distance transformation. Third, the seed points are effectively transferred through the next axial slice by a novel transfer function. Experiments are performed using a database composed of 10 patients' CCTA images. For the experiment, the ground truths are annotated manually on the axial image slices by a medical expert. A comparative evaluation with state-of-the-art commercial aorta segmentation algorithms shows that our approach is computationally more efficient and accurate under the DSC (Dice Similarity Coefficient) measurements. PMID:26904151

  8. Autonomous navigation method for substation inspection robot based on travelling deviation

    NASA Astrophysics Data System (ADS)

    Yang, Guoqing; Xu, Wei; Li, Jian; Fu, Chongguang; Zhou, Hao; Zhang, Chuanyou; Shao, Guangting

    2017-06-01

    A new method of edge detection is proposed in substation environment, which can realize the autonomous navigation of the substation inspection robot. First of all, the road image and information are obtained by using an image acquisition device. Secondly, the noise in the region of interest which is selected in the road image, is removed with the digital image processing algorithm, the road edge is extracted by Canny operator, and the road boundaries are extracted by Hough transform. Finally, the distance between the robot and the left and the right boundaries is calculated, and the travelling distance is obtained. The robot's walking route is controlled according to the travel deviation and the preset threshold. Experimental results show that the proposed method can detect the road area in real time, and the algorithm has high accuracy and stable performance.

  9. Extraction and Classification of Human Gait Features

    NASA Astrophysics Data System (ADS)

    Ng, Hu; Tan, Wooi-Haw; Tong, Hau-Lee; Abdullah, Junaidi; Komiya, Ryoichi

    In this paper, a new approach is proposed for extracting human gait features from a walking human based on the silhouette images. The approach consists of six stages: clearing the background noise of image by morphological opening; measuring of the width and height of the human silhouette; dividing the enhanced human silhouette into six body segments based on anatomical knowledge; applying morphological skeleton to obtain the body skeleton; applying Hough transform to obtain the joint angles from the body segment skeletons; and measuring the distance between the bottom of right leg and left leg from the body segment skeletons. The angles of joints, step-size together with the height and width of the human silhouette are collected and used for gait analysis. The experimental results have demonstrated that the proposed system is feasible and achieved satisfactory results.

  10. Cherry recognition in natural environment based on the vision of picking robot

    NASA Astrophysics Data System (ADS)

    Zhang, Qirong; Chen, Shanxiong; Yu, Tingzhong; Wang, Yan

    2017-04-01

    In order to realize the automatic recognition of cherry in the natural environment, this paper designed a robot vision system recognition method. The first step of this method is to pre-process the cherry image by median filtering. The second step is to identify the colour of the cherry through the 0.9R-G colour difference formula, and then use the Otsu algorithm for threshold segmentation. The third step is to remove noise by using the area threshold. The fourth step is to remove the holes in the cherry image by morphological closed and open operation. The fifth step is to obtain the centroid and contour of cherry by using the smallest external rectangular and the Hough transform. Through this recognition process, we can successfully identify 96% of the cherry without blocking and adhesion.

  11. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering

    PubMed Central

    Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus

    2015-01-01

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs. PMID:26146475

  12. Multispectral multisensor image fusion using wavelet transforms

    USGS Publications Warehouse

    Lemeshewsky, George P.

    1999-01-01

    Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.

  13. On Gamma Ray Instrument On-Board Data Processing Real-Time Computational Algorithm for Cosmic Ray Rejection

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Hunter, Stanley D.; Hanu, Andrei R.; Sheets, Teresa B.

    2016-01-01

    Richard O. Duda and Peter E. Hart of Stanford Research Institute in [1] described the recurring problem in computer image processing as the detection of straight lines in digitized images. The problem is to detect the presence of groups of collinear or almost collinear figure points. It is clear that the problem can be solved to any desired degree of accuracy by testing the lines formed by all pairs of points. However, the computation required for n=NxM points image is approximately proportional to n2 or O(n2), becoming prohibitive for large images or when data processing cadence time is in milliseconds. Rosenfeld in [2] described an ingenious method due to Hough [3] for replacing the original problem of finding collinear points by a mathematically equivalent problem of finding concurrent lines. This method involves transforming each of the figure points into a straight line in a parameter space. Hough chose to use the familiar slope-intercept parameters, and thus his parameter space was the two-dimensional slope-intercept plane. A parallel Hough transform running on multi-core processors was elaborated in [4]. There are many other proposed methods of solving a similar problem, such as sampling-up-the-ramp algorithm (SUTR) [5] and algorithms involving artificial swarm intelligence techniques [6]. However, all state-of-the-art algorithms lack in real time performance. Namely, they are slow for large images that require performance cadence of a few dozens of milliseconds (50ms). This problem arises in spaceflight applications such as near real-time analysis of gamma ray measurements contaminated by overwhelming amount of traces of cosmic rays (CR). Future spaceflight instruments such as the Advanced Energetic Pair Telescope instrument (AdEPT) [7-9] for cosmos gamma ray survey employ large detector readout planes registering multitudes of cosmic ray interference events and sparse science gamma ray event traces' projections. The AdEPT science of interest is in the gamma ray events and the problem is to detect and reject the much more voluminous cosmic ray projections, so that the remaining science data can be telemetered to the ground over the constrained communication link. The state-of-the-art in cosmic rays detection and rejection does not provide an adequate computational solution. This paper presents a novel approach to the AdEPT on-board data processing burdened with the CR detection top pole bottleneck problem. This paper is introducing the data processing object, demonstrates object segmentation and distribution for processing among many processing elements (PEs) and presents solution algorithm for the processing bottleneck - the CR-Algorithm. The algorithm is based on the a priori knowledge that a CR pierces the entire instrument pressure vessel. This phenomenon is also the basis for a straightforward CR simulator, allowing the CR-Algorithm performance testing. Parallel processing of the readout image's (2(N+M) - 4) peripheral voxels is detecting all CRs, resulting in O(n) computational complexity. This algorithm near real-time performance is making AdEPT class spaceflight instruments feasible.

  14. Survey and analysis of multiresolution methods for turbulence data

    DOE PAGES

    Pulido, Jesus; Livescu, Daniel; Woodring, Jonathan; ...

    2015-11-10

    This paper compares the effectiveness of various multi-resolution geometric representation methods, such as B-spline, Daubechies, Coiflet and Dual-tree wavelets, curvelets and surfacelets, to capture the structure of fully developed turbulence using a truncated set of coefficients. The turbulence dataset is obtained from a Direct Numerical Simulation of buoyancy driven turbulence on a 512 3 mesh size, with an Atwood number, A = 0.05, and turbulent Reynolds number, Re t = 1800, and the methods are tested against quantities pertaining to both velocities and active scalar (density) fields and their derivatives, spectra, and the properties of constant density surfaces. The comparisonsmore » between the algorithms are given in terms of performance, accuracy, and compression properties. The results should provide useful information for multi-resolution analysis of turbulence, coherent feature extraction, compression for large datasets handling, as well as simulations algorithms based on multi-resolution methods. In conclusion, the final section provides recommendations for best decomposition algorithms based on several metrics related to computational efficiency and preservation of turbulence properties using a reduced set of coefficients.« less

  15. Multiresolution saliency map based object segmentation

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Wang, Xin; Dai, ZhenYou

    2015-11-01

    Salient objects' detection and segmentation are gaining increasing research interest in recent years. A saliency map can be obtained from different models presented in previous studies. Based on this saliency map, the most salient region (MSR) in an image can be extracted. This MSR, generally a rectangle, can be used as the initial parameters for object segmentation algorithms. However, to our knowledge, all of those saliency maps are represented in a unitary resolution although some models have even introduced multiscale principles in the calculation process. Furthermore, some segmentation methods, such as the well-known GrabCut algorithm, need more iteration time or additional interactions to get more precise results without predefined pixel types. A concept of a multiresolution saliency map is introduced. This saliency map is provided in a multiresolution format, which naturally follows the principle of the human visual mechanism. Moreover, the points in this map can be utilized to initialize parameters for GrabCut segmentation by labeling the feature pixels automatically. Both the computing speed and segmentation precision are evaluated. The results imply that this multiresolution saliency map-based object segmentation method is simple and efficient.

  16. Time-frequency feature representation using multi-resolution texture analysis and acoustic activity detector for real-life speech emotion recognition.

    PubMed

    Wang, Kun-Ching

    2015-01-14

    The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI). In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII). The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a speech signal. The motivation is that we have to consider emotions have different intensity values in different frequency bands. In terms of human visual perceptual, the texture property on multi-resolution of emotional speech spectrogram should be a good feature set for emotion classification in speech. Furthermore, the multi-resolution analysis on texture can give a clearer discrimination between each emotion than uniform-resolution analysis on texture. In order to provide high accuracy of emotional discrimination especially in real-life, an acoustic activity detection (AAD) algorithm must be applied into the MRTII-based feature extraction. Considering the presence of many blended emotions in real life, in this paper make use of two corpora of naturally-occurring dialogs recorded in real-life call centers. Compared with the traditional Mel-scale Frequency Cepstral Coefficients (MFCC) and the state-of-the-art features, the MRTII features also can improve the correct classification rates of proposed systems among different language databases. Experimental results show that the proposed MRTII-based feature information inspired by human visual perception of the spectrogram image can provide significant classification for real-life emotional recognition in speech.

  17. Lane Detection on the iPhone

    NASA Astrophysics Data System (ADS)

    Ren, Feixiang; Huang, Jinsheng; Terauchi, Mutsuhiro; Jiang, Ruyi; Klette, Reinhard

    A robust and efficient lane detection system is an essential component of Lane Departure Warning Systems, which are commonly used in many vision-based Driver Assistance Systems (DAS) in intelligent transportation. Various computation platforms have been proposed in the past few years for the implementation of driver assistance systems (e.g., PC, laptop, integrated chips, PlayStation, and so on). In this paper, we propose a new platform for the implementation of lane detection, which is based on a mobile phone (the iPhone). Due to physical limitations of the iPhone w.r.t. memory and computing power, a simple and efficient lane detection algorithm using a Hough transform is developed and implemented on the iPhone, as existing algorithms developed based on the PC platform are not suitable for mobile phone devices (currently). Experiments of the lane detection algorithm are made both on PC and on iPhone.

  18. Time frequency analysis for automated sleep stage identification in fullterm and preterm neonates.

    PubMed

    Fraiwan, Luay; Lweesy, Khaldon; Khasawneh, Natheer; Fraiwan, Mohammad; Wenz, Heinrich; Dickhaus, Hartmut

    2011-08-01

    This work presents a new methodology for automated sleep stage identification in neonates based on the time frequency distribution of single electroencephalogram (EEG) recording and artificial neural networks (ANN). Wigner-Ville distribution (WVD), Hilbert-Hough spectrum (HHS) and continuous wavelet transform (CWT) time frequency distributions were used to represent the EEG signal from which features were extracted using time frequency entropy. The classification of features was done using feed forward back-propagation ANN. The system was trained and tested using data taken from neonates of post-conceptual age of 40 weeks for both preterm (14 recordings) and fullterm (15 recordings). The identification of sleep stages was successfully implemented and the classification based on the WVD outperformed the approaches based on CWT and HHS. The accuracy and kappa coefficient were found to be 0.84 and 0.65 respectively for the fullterm neonates' recordings and 0.74 and 0.50 respectively for preterm neonates' recordings.

  19. Fast traffic sign recognition with a rotation invariant binary pattern based feature.

    PubMed

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-19

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.

  20. Extracting cardiac myofiber orientations from high frequency ultrasound images

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Jiang, Rong; Shen, Ming; Wagner, Mary B.; Kirshbom, Paul; Fei, Baowei

    2013-03-01

    Cardiac myofiber plays an important role in stress mechanism during heart beating periods. The orientation of myofibers decides the effects of the stress distribution and the whole heart deformation. It is important to image and quantitatively extract these orientations for understanding the cardiac physiological and pathological mechanism and for diagnosis of chronic diseases. Ultrasound has been wildly used in cardiac diagnosis because of its ability of performing dynamic and noninvasive imaging and because of its low cost. An extraction method is proposed to automatically detect the cardiac myofiber orientations from high frequency ultrasound images. First, heart walls containing myofibers are imaged by B-mode high frequency (<20 MHz) ultrasound imaging. Second, myofiber orientations are extracted from ultrasound images using the proposed method that combines a nonlinear anisotropic diffusion filter, Canny edge detector, Hough transform, and K-means clustering. This method is validated by the results of ultrasound data from phantoms and pig hearts.

  1. Inferring Biological Structures from Super-Resolution Single Molecule Images Using Generative Models

    PubMed Central

    Maji, Suvrajit; Bruchez, Marcel P.

    2012-01-01

    Localization-based super resolution imaging is presently limited by sampling requirements for dynamic measurements of biological structures. Generating an image requires serial acquisition of individual molecular positions at sufficient density to define a biological structure, increasing the acquisition time. Efficient analysis of biological structures from sparse localization data could substantially improve the dynamic imaging capabilities of these methods. Using a feature extraction technique called the Hough Transform simple biological structures are identified from both simulated and real localization data. We demonstrate that these generative models can efficiently infer biological structures in the data from far fewer localizations than are required for complete spatial sampling. Analysis at partial data densities revealed efficient recovery of clathrin vesicle size distributions and microtubule orientation angles with as little as 10% of the localization data. This approach significantly increases the temporal resolution for dynamic imaging and provides quantitatively useful biological information. PMID:22629348

  2. Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)

    NASA Astrophysics Data System (ADS)

    Britton, T. B.; Hickey, J. L. R.

    2018-01-01

    High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.

  3. Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature

    PubMed Central

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-01

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217

  4. Building Facade Reconstruction by Fusing Terrestrial Laser Points and Images

    PubMed Central

    Pu, Shi; Vosselman, George

    2009-01-01

    Laser data and optical data have a complementary nature for three dimensional feature extraction. Efficient integration of the two data sources will lead to a more reliable and automated extraction of three dimensional features. This paper presents a semiautomatic building facade reconstruction approach, which efficiently combines information from terrestrial laser point clouds and close range images. A building facade's general structure is discovered and established using the planar features from laser data. Then strong lines in images are extracted using Canny extractor and Hough transformation, and compared with current model edges for necessary improvement. Finally, textures with optimal visibility are selected and applied according to accurate image orientations. Solutions to several challenge problems throughout the collaborated reconstruction, such as referencing between laser points and multiple images and automated texturing, are described. The limitations and remaining works of this approach are also discussed. PMID:22408539

  5. Track vertex reconstruction with neural networks at the first level trigger of Belle II

    NASA Astrophysics Data System (ADS)

    Neuhaus, Sara; Skambraks, Sebastian; Kiesling, Christian

    2017-08-01

    The track trigger is one of the main components of the Belle II first level trigger, taking input from the Central Drift Chamber (CDC). It consists of several stages, first combining hits to track segments, followed by a 2D track finding in the transverse plane and finally a 3D track reconstruction. The results of the track trigger are the track multiplicity, the momentum vector of each track and the longitudinal displacement of the origin or production vertex of each track ("z-vertex"). The latter allows to reject background tracks from outside of the interaction region and thus to suppress a large fraction of the machine background. This contribution focuses on the track finding stage using Hough transforms and on the z-vertex reconstruction with neural networks. We describe the algorithms and show performance studies on simulated events.

  6. Robust vehicle detection in different weather conditions: Using MIPM

    PubMed Central

    Menéndez, José Manuel; Jiménez, David

    2018-01-01

    Intelligent Transportation Systems (ITS) allow us to have high quality traffic information to reduce the risk of potentially critical situations. Conventional image-based traffic detection methods have difficulties acquiring good images due to perspective and background noise, poor lighting and weather conditions. In this paper, we propose a new method to accurately segment and track vehicles. After removing perspective using Modified Inverse Perspective Mapping (MIPM), Hough transform is applied to extract road lines and lanes. Then, Gaussian Mixture Models (GMM) are used to segment moving objects and to tackle car shadow effects, we apply a chromacity-based strategy. Finally, performance is evaluated through three different video benchmarks: own recorded videos in Madrid and Tehran (with different weather conditions at urban and interurban areas); and two well-known public datasets (KITTI and DETRAC). Our results indicate that the proposed algorithms are robust, and more accurate compared to others, especially when facing occlusions, lighting variations and weather conditions. PMID:29513664

  7. Localized Dictionaries Based Orientation Field Estimation for Latent Fingerprints.

    PubMed

    Xiao Yang; Jianjiang Feng; Jie Zhou

    2014-05-01

    Dictionary based orientation field estimation approach has shown promising performance for latent fingerprints. In this paper, we seek to exploit stronger prior knowledge of fingerprints in order to further improve the performance. Realizing that ridge orientations at different locations of fingerprints have different characteristics, we propose a localized dictionaries-based orientation field estimation algorithm, in which noisy orientation patch at a location output by a local estimation approach is replaced by real orientation patch in the local dictionary at the same location. The precondition of applying localized dictionaries is that the pose of the latent fingerprint needs to be estimated. We propose a Hough transform-based fingerprint pose estimation algorithm, in which the predictions about fingerprint pose made by all orientation patches in the latent fingerprint are accumulated. Experimental results on challenging latent fingerprint datasets show the proposed method outperforms previous ones markedly.

  8. Investigation of the detection of shallow tunnels using electromagnetic and seismic waves

    NASA Astrophysics Data System (ADS)

    Counts, Tegan; Larson, Gregg; Gürbüz, Ali Cafer; McClellan, James H.; Scott, Waymond R., Jr.

    2007-04-01

    Multimodal detection of subsurface targets such as tunnels, pipes, reinforcement bars, and structures has been investigated using both ground-penetrating radar (GPR) and seismic sensors with signal processing techniques to enhance localization capabilities. Both systems have been tested in bi-static configurations but the GPR has been expanded to a multi-static configuration for improved performance. The use of two compatible sensors that sense different phenomena (GPR detects changes in electrical properties while the seismic system measures mechanical properties) increases the overall system's effectiveness in a wider range of soils and conditions. Two experimental scenarios have been investigated in a laboratory model with nearly homogeneous sand. Images formed from the raw data have been enhanced using beamforming inversion techniques and Hough Transform techniques to specifically address the detection of linear targets. The processed data clearly indicate the locations of the buried targets of various sizes at a range of depths.

  9. Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features

    NASA Astrophysics Data System (ADS)

    Rezaeian, A.; Homayouni, S.; Safari, A.

    2015-12-01

    Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  10. Time-frequency analysis of electric motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentley, C.L.; Dunn, M.E.; Mattingly, J.K.

    1995-12-31

    Physical signals such as the current of an electric motor become nonstationary as a consequence of degraded operation and broken parts. In this instance, their power spectral densities become time dependent, and time-frequency analysis techniques become the appropriate tools for signal analysis. The first among these techniques, generally called the short-time Fourier transform (STFT) method, is the Gabor transform 2 (GT) of a signal S(t), which decomposes the signal into time-local frequency modes: where the window function, {Phi}(t-{tau}), is a normalized Gaussian. Alternatively, one can decompose the signal into its multi-resolution representation at different levels of magnification. This representation ismore » achieved by the continuous wavelet transform (CWT) where the function g(t) is a kernel of zero average belonging to a family of scaled and shifted wavelet kernels. The CWT can be interpreted as the action of a microscope that locates the signal by the shift parameter b and adjusts its magnification by changing the scale parameter a. The Fourier-transformed CWT, W,{sub g}(a, {omega}), acts as a filter that places the high-frequency content of a signal into the lower end of the scale spectrum and vice versa for the low frequencies. Signals from a motor in three different states were analyzed.« less

  11. Smart grid initialization reduces the computational complexity of multi-objective image registration based on a dual-dynamic transformation model to account for large anatomical differences

    NASA Astrophysics Data System (ADS)

    Bosman, Peter A. N.; Alderliesten, Tanja

    2016-03-01

    We recently demonstrated the strong potential of using dual-dynamic transformation models when tackling deformable image registration problems involving large anatomical differences. Dual-dynamic transformation models employ two moving grids instead of the common single moving grid for the target image (and single fixed grid for the source image). We previously employed powerful optimization algorithms to make use of the additional flexibility offered by a dual-dynamic transformation model with good results, directly obtaining insight into the trade-off between important registration objectives as a result of taking a multi-objective approach to optimization. However, optimization has so far been initialized using two regular grids, which still leaves a great potential of dual-dynamic transformation models untapped: a-priori grid alignment with image structures/areas that are expected to deform more. This allows (far) less grid points to be used, compared to using a sufficiently refined regular grid, leading to (far) more efficient optimization, or, equivalently, more accurate results using the same number of grid points. We study the implications of exploiting this potential by experimenting with two new smart grid initialization procedures: one manual expert-based and one automated image-feature-based. We consider a CT test case with large differences in bladder volume with and without a multi-resolution scheme and find a substantial benefit of using smart grid initialization.

  12. Target recognition for ladar range image using slice image

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Wang, Liang

    2015-12-01

    A shape descriptor and a complete shape-based recognition system using slice images as geometric feature descriptor for ladar range images are introduced. A slice image is a two-dimensional image generated by three-dimensional Hough transform and the corresponding mathematical transformation. The system consists of two processes, the model library construction and recognition. In the model library construction process, a series of range images are obtained after the model object is sampled at preset attitude angles. Then, all the range images are converted into slice images. The number of slice images is reduced by clustering analysis and finding a representation to reduce the size of the model library. In the recognition process, the slice image of the scene is compared with the slice image in the model library. The recognition results depend on the comparison. Simulated ladar range images are used to analyze the recognition and misjudgment rates, and comparison between the slice image representation method and moment invariants representation method is performed. The experimental results show that whether in conditions without noise or with ladar noise, the system has a high recognition rate and low misjudgment rate. The comparison experiment demonstrates that the slice image has better representation ability than moment invariants.

  13. Image-based spectroscopy for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Bachmakov, Eduard; Molina, Carolyn; Wynne, Rosalind

    2014-03-01

    An image-processing algorithm for use with a nano-featured spectrometer chemical agent detection configuration is presented. The spectrometer chip acquired from Nano-Optic DevicesTM can reduce the size of the spectrometer down to a coin. The nanospectrometer chip was aligned with a 635nm laser source, objective lenses, and a CCD camera. The images from a nanospectrometer chip were collected and compared to reference spectra. Random background noise contributions were isolated and removed from the diffraction pattern image analysis via a threshold filter. Results are provided for the image-based detection of the diffraction pattern produced by the nanospectrometer. The featured PCF spectrometer has the potential to measure optical absorption spectra in order to detect trace amounts of contaminants. MATLAB tools allow for implementation of intelligent, automatic detection of the relevant sub-patterns in the diffraction patterns and subsequent extraction of the parameters using region-detection algorithms such as the generalized Hough transform, which detects specific shapes within the image. This transform is a method for detecting curves by exploiting the duality between points on a curve and parameters of that curve. By employing this imageprocessing technique, future sensor systems will benefit from new applications such as unsupervised environmental monitoring of air or water quality.

  14. Assessment of multiresolution segmentation for delimiting drumlins in digital elevation models.

    PubMed

    Eisank, Clemens; Smith, Mike; Hillier, John

    2014-06-01

    Mapping or "delimiting" landforms is one of geomorphology's primary tools. Computer-based techniques such as land-surface segmentation allow the emulation of the process of manual landform delineation. Land-surface segmentation exhaustively subdivides a digital elevation model (DEM) into morphometrically-homogeneous irregularly-shaped regions, called terrain segments. Terrain segments can be created from various land-surface parameters (LSP) at multiple scales, and may therefore potentially correspond to the spatial extents of landforms such as drumlins. However, this depends on the segmentation algorithm, the parameterization, and the LSPs. In the present study we assess the widely used multiresolution segmentation (MRS) algorithm for its potential in providing terrain segments which delimit drumlins. Supervised testing was based on five 5-m DEMs that represented a set of 173 synthetic drumlins at random but representative positions in the same landscape. Five LSPs were tested, and four variants were computed for each LSP to assess the impact of median filtering of DEMs, and logarithmic transformation of LSPs. The testing scheme (1) employs MRS to partition each LSP exhaustively into 200 coarser scales of terrain segments by increasing the scale parameter ( SP ), (2) identifies the spatially best matching terrain segment for each reference drumlin, and (3) computes four segmentation accuracy metrics for quantifying the overall spatial match between drumlin segments and reference drumlins. Results of 100 tests showed that MRS tends to perform best on LSPs that are regionally derived from filtered DEMs, and then log-transformed. MRS delineated 97% of the detected drumlins at SP values between 1 and 50. Drumlin delimitation rates with values up to 50% are in line with the success of manual interpretations. Synthetic DEMs are well-suited for assessing landform quantification methods such as MRS, since subjectivity in the reference data is avoided which increases the reliability, validity and applicability of results.

  15. Region based feature extraction from non-cooperative iris images using triplet half-band filter bank

    NASA Astrophysics Data System (ADS)

    Barpanda, Soubhagya Sankar; Majhi, Banshidhar; Sa, Pankaj Kumar

    2015-09-01

    In this paper, we have proposed energy based features using a multi-resolution analysis (MRA) on iris template. The MRA is based on our suggested triplet half-band filter bank (THFB). The THFB derivation process is discussed in detail. The iris template is divided into six equispaced sub-templates and two level decomposition has been made to each sub-template using THFB except second one. The reason for discarding the second template is due to the fact that it mostly contains the noise due to eyelids, eyelashes, and occlusion due to segmentation failure. Subsequently, energy features are derived from the decomposed coefficients of each sub-template. The proposed feature has been experimented on standard databases like CASIAv3, UBIRISv1, and IITD and mostly on iris images which encounter a segmentation failure. Comparative analysis has been done with existing features based on Gabor transform, Fourier transform, and CDF 9/7 filter bank. The proposed scheme shows superior performance with respect to FAR, GAR and AUC.

  16. Spectral information enhancement using wavelet-based iterative filtering for in vivo gamma spectrometry.

    PubMed

    Paul, Sabyasachi; Sarkar, P K

    2013-04-01

    Use of wavelet transformation in stationary signal processing has been demonstrated for denoising the measured spectra and characterisation of radionuclides in the in vivo monitoring analysis, where difficulties arise due to very low activity level to be estimated in biological systems. The large statistical fluctuations often make the identification of characteristic gammas from radionuclides highly uncertain, particularly when interferences from progenies are also present. A new wavelet-based noise filtering methodology has been developed for better detection of gamma peaks in noisy data. This sequential, iterative filtering method uses the wavelet multi-resolution approach for noise rejection and an inverse transform after soft 'thresholding' over the generated coefficients. Analyses of in vivo monitoring data of (235)U and (238)U were carried out using this method without disturbing the peak position and amplitude while achieving a 3-fold improvement in the signal-to-noise ratio, compared with the original measured spectrum. When compared with other data-filtering techniques, the wavelet-based method shows the best results.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudgins, L.H.

    After a brief review of the elementary properties of Fourier Transforms, the Wavelet Transform is defined in Part I. Basic results are given for admissable wavelets. The Multiresolution Analysis, or MRA (a mathematical structure which unifies a large class of wavelets with Quadrature Mirror Filters) is then introduced. Some fundamental aspects of wavelet design are then explored. The Discrete Wavelet Transform is discussed and, in the context of an MRA, is seen to supply a Fast Wavelet Transform which competes with the Fast Fourier Transform for efficiency. In Part II, the Wavelet Transform is developed in terms of the scalemore » number variable s instead of the scale length variable a where a = 1/s. Basic results such as the admissibility condition, conservation of energy, and the reconstruction theorem are proven in this context. After reviewing some motivation for the usual Fourier power spectrum, a definition is given for the wavelet power spectrum. This `spectral density` is then intepreted in the context of spectral estimation theory. Parseval`s theorem for Wavelets then leads naturally to the Wavelet Cross Spectrum, Wavelet Cospectrum, and Wavelet Quadrature Spectrum. Wavelet Transforms are then applied in Part III to the analysis of atmospheric turbulence. Data collected over the ocean is examined in the wavelet transform domain for underlying structure. A brief overview of atmospheric turbulence is provided. Then the overall method of applying Wavelet Transform techniques to time series data is described. A trace study is included, showing some of the aspects of choosing the computational algorithm, and selection of a specific analyzing wavelet. A model for generating synthetic turbulence data is developed, and seen to yield useful results in comparing with real data for structural transitions. Results from the theory of Wavelet Spectral Estimation and Wavelength Cross-Transforms are applied to studying the momentum transport and the heat flux.« less

  18. The Multi-Resolution Land Characteristics (MRLC) Consortium - 20 Years of Development and Integration of U.S. National Land Cover Data

    EPA Science Inventory

    The Multi-Resolution Land Characteristics (MRLC) Consortium is a good example of the national benefits of federal collaboration. It started in the mid-1990s as a small group of federal agencies with the straightforward goal of compiling a comprehensive national Landsat dataset t...

  19. Automatic brain tumor detection in MRI: methodology and statistical validation

    NASA Astrophysics Data System (ADS)

    Iftekharuddin, Khan M.; Islam, Mohammad A.; Shaik, Jahangheer; Parra, Carlos; Ogg, Robert

    2005-04-01

    Automated brain tumor segmentation and detection are immensely important in medical diagnostics because it provides information associated to anatomical structures as well as potential abnormal tissue necessary to delineate appropriate surgical planning. In this work, we propose a novel automated brain tumor segmentation technique based on multiresolution texture information that combines fractal Brownian motion (fBm) and wavelet multiresolution analysis. Our wavelet-fractal technique combines the excellent multiresolution localization property of wavelets to texture extraction of fractal. We prove the efficacy of our technique by successfully segmenting pediatric brain MR images (MRIs) from St. Jude Children"s Research Hospital. We use self-organizing map (SOM) as our clustering tool wherein we exploit both pixel intensity and multiresolution texture features to obtain segmented tumor. Our test results show that our technique successfully segments abnormal brain tissues in a set of T1 images. In the next step, we design a classifier using Feed-Forward (FF) neural network to statistically validate the presence of tumor in MRI using both the multiresolution texture and the pixel intensity features. We estimate the corresponding receiver operating curve (ROC) based on the findings of true positive fractions and false positive fractions estimated from our classifier at different threshold values. An ROC, which can be considered as a gold standard to prove the competence of a classifier, is obtained to ascertain the sensitivity and specificity of our classifier. We observe that at threshold 0.4 we achieve true positive value of 1.0 (100%) sacrificing only 0.16 (16%) false positive value for the set of 50 T1 MRI analyzed in this experiment.

  20. Time-Frequency Feature Representation Using Multi-Resolution Texture Analysis and Acoustic Activity Detector for Real-Life Speech Emotion Recognition

    PubMed Central

    Wang, Kun-Ching

    2015-01-01

    The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI). In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII). The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a speech signal. The motivation is that we have to consider emotions have different intensity values in different frequency bands. In terms of human visual perceptual, the texture property on multi-resolution of emotional speech spectrogram should be a good feature set for emotion classification in speech. Furthermore, the multi-resolution analysis on texture can give a clearer discrimination between each emotion than uniform-resolution analysis on texture. In order to provide high accuracy of emotional discrimination especially in real-life, an acoustic activity detection (AAD) algorithm must be applied into the MRTII-based feature extraction. Considering the presence of many blended emotions in real life, in this paper make use of two corpora of naturally-occurring dialogs recorded in real-life call centers. Compared with the traditional Mel-scale Frequency Cepstral Coefficients (MFCC) and the state-of-the-art features, the MRTII features also can improve the correct classification rates of proposed systems among different language databases. Experimental results show that the proposed MRTII-based feature information inspired by human visual perception of the spectrogram image can provide significant classification for real-life emotional recognition in speech. PMID:25594590

  1. LOD map--A visual interface for navigating multiresolution volume visualization.

    PubMed

    Wang, Chaoli; Shen, Han-Wei

    2006-01-01

    In multiresolution volume visualization, a visual representation of level-of-detail (LOD) quality is important for us to examine, compare, and validate different LOD selection algorithms. While traditional methods rely on ultimate images for quality measurement, we introduce the LOD map--an alternative representation of LOD quality and a visual interface for navigating multiresolution data exploration. Our measure for LOD quality is based on the formulation of entropy from information theory. The measure takes into account the distortion and contribution of multiresolution data blocks. A LOD map is generated through the mapping of key LOD ingredients to a treemap representation. The ordered treemap layout is used for relative stable update of the LOD map when the view or LOD changes. This visual interface not only indicates the quality of LODs in an intuitive way, but also provides immediate suggestions for possible LOD improvement through visually-striking features. It also allows us to compare different views and perform rendering budget control. A set of interactive techniques is proposed to make the LOD adjustment a simple and easy task. We demonstrate the effectiveness and efficiency of our approach on large scientific and medical data sets.

  2. Multi-resolution MPS method

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayuki; Cardoso, Rui; Bahai, Hamid

    2018-04-01

    In this work, the Moving Particle Semi-implicit (MPS) method is enhanced for multi-resolution problems with different resolutions at different parts of the domain utilising a particle splitting algorithm for the finer resolution and a particle merging algorithm for the coarser resolution. The Least Square MPS (LSMPS) method is used for higher stability and accuracy. Novel boundary conditions are developed for the treatment of wall and pressure boundaries for the Multi-Resolution LSMPS method. A wall is represented by polygons for effective simulations of fluid flows with complex wall geometries and the pressure boundary condition allows arbitrary inflow and outflow, making the method easier to be used in flow simulations of channel flows. By conducting simulations of channel flows and free surface flows, the accuracy of the proposed method was verified.

  3. Multiresolution and Explicit Methods for Vector Field Analysis and Visualization

    NASA Technical Reports Server (NTRS)

    Nielson, Gregory M.

    1997-01-01

    This is a request for a second renewal (3d year of funding) of a research project on the topic of multiresolution and explicit methods for vector field analysis and visualization. In this report, we describe the progress made on this research project during the second year and give a statement of the planned research for the third year. There are two aspects to this research project. The first is concerned with the development of techniques for computing tangent curves for use in visualizing flow fields. The second aspect of the research project is concerned with the development of multiresolution methods for curvilinear grids and their use as tools for visualization, analysis and archiving of flow data. We report on our work on the development of numerical methods for tangent curve computation first.

  4. Spider-web inspired multi-resolution graphene tactile sensor.

    PubMed

    Liu, Lu; Huang, Yu; Li, Fengyu; Ma, Ying; Li, Wenbo; Su, Meng; Qian, Xin; Ren, Wanjie; Tang, Kanglai; Song, Yanlin

    2018-05-08

    Multi-dimensional accurate response and smooth signal transmission are critical challenges in the advancement of multi-resolution recognition and complex environment analysis. Inspired by the structure-activity relationship between discrepant microstructures of the spiral and radial threads in a spider web, we designed and printed graphene with porous and densely-packed microstructures to integrate into a multi-resolution graphene tactile sensor. The three-dimensional (3D) porous graphene structure performs multi-dimensional deformation responses. The laminar densely-packed graphene structure contributes excellent conductivity with flexible stability. The spider-web inspired printed pattern inherits orientational and locational kinesis tracking. The multi-structure construction with homo-graphene material can integrate discrepant electronic properties with remarkable flexibility, which will attract enormous attention for electronic skin, wearable devices and human-machine interactions.

  5. Characterization of large-scale fluctuations and short-term variability of Seine river daily streamflow (France) over the period 1950-2008 by empirical mode decomposition and the Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Massei, N.; Fournier, M.

    2010-12-01

    Daily Seine river flow from 1950 to 2008 was analyzed using Hilbert-Huang Tranform (HHT). For the last ten years, this method which combines the so-called Empirical Mode Decomposition (EMD) multiresolution analysis and the Hilbert transform has proven its efficiency for the analysis of transient oscillatory signals, although the mathematical definition of the EMD is not totally established yet. HHT also provides an interesting alternative to other time-frequency or time-scale analysis of non-stationary signals, the most famous of which being wavelet-based approaches. In this application of HHT to the analysis of the hydrological variability of the Seine river, we seek to characterize the interannual patterns of daily flow, differenciate them from the short-term dynamics and eventually interpret them in the context of regional climate regime fluctuations. In this aim, HHT is also applied to the North-Atlantic Oscillation (NAO) through the annual winter-months NAO index time series. For both hydrological and climatic signals, dominant variability scales are extracted and their temporal variations analyzed by determination of the intantaneous frequency of each component. When compared to previous ones obtained from continuous wavelet transform (CWT) on the same data, HHT results highlighted the same scales and somewhat the same internal components for each signal. However, HHT allowed the identification and extraction of much more similar features during the 1950-2008 period (e.g., around 7-yr, between NAO and Seine flow than what was obtained from CWT, which comes to say that variability scales in flow likely to originate from climatic regime fluctuations were much properly identified in river flow. In addition, a more accurate determination of singularities in the natural processes analyzed were authorized by HHT compared to CWT, in which case the time-frequency resolution partly depends on the basic properties of the filter (i.e., the reference wavelet chosen initially). Compared to CWT or even to discrete wavelet multiresolution analysis, HHT is auto-adaptive, non-parametric, allows an orthogonal decomposition of the signal analyzed and provides a more accurate estimation of changing variability scales across time for highly transient signals.

  6. Multiresolution Local Binary Pattern texture analysis for false positive reduction in computerized detection of breast masses on mammograms

    NASA Astrophysics Data System (ADS)

    Choi, Jae Young; Kim, Dae Hoe; Choi, Seon Hyeong; Ro, Yong Man

    2012-03-01

    We investigated the feasibility of using multiresolution Local Binary Pattern (LBP) texture analysis to reduce falsepositive (FP) detection in a computerized mass detection framework. A new and novel approach for extracting LBP features is devised to differentiate masses and normal breast tissue on mammograms. In particular, to characterize the LBP texture patterns of the boundaries of masses, as well as to preserve the spatial structure pattern of the masses, two individual LBP texture patterns are then extracted from the core region and the ribbon region of pixels of the respective ROI regions, respectively. These two texture patterns are combined to produce the so-called multiresolution LBP feature of a given ROI. The proposed LBP texture analysis of the information in mass core region and its margin has clearly proven to be significant and is not sensitive to the precise location of the boundaries of masses. In this study, 89 mammograms were collected from the public MAIS database (DB). To perform a more realistic assessment of FP reduction process, the LBP texture analysis was applied directly to a total of 1,693 regions of interest (ROIs) automatically segmented by computer algorithm. Support Vector Machine (SVM) was applied for the classification of mass ROIs from ROIs containing normal tissue. Receiver Operating Characteristic (ROC) analysis was conducted to evaluate the classification accuracy and its improvement using multiresolution LBP features. With multiresolution LBP features, the classifier achieved an average area under the ROC curve, , z A of 0.956 during testing. In addition, the proposed LBP features outperform other state-of-the-arts features designed for false positive reduction.

  7. Multi-resolution simulation of focused ultrasound propagation through ovine skull from a single-element transducer

    NASA Astrophysics Data System (ADS)

    Yoon, Kyungho; Lee, Wonhye; Croce, Phillip; Cammalleri, Amanda; Yoo, Seung-Schik

    2018-05-01

    Transcranial focused ultrasound (tFUS) is emerging as a non-invasive brain stimulation modality. Complicated interactions between acoustic pressure waves and osseous tissue introduce many challenges in the accurate targeting of an acoustic focus through the cranium. Image-guidance accompanied by a numerical simulation is desired to predict the intracranial acoustic propagation through the skull; however, such simulations typically demand heavy computation, which warrants an expedited processing method to provide on-site feedback for the user in guiding the acoustic focus to a particular brain region. In this paper, we present a multi-resolution simulation method based on the finite-difference time-domain formulation to model the transcranial propagation of acoustic waves from a single-element transducer (250 kHz). The multi-resolution approach improved computational efficiency by providing the flexibility in adjusting the spatial resolution. The simulation was also accelerated by utilizing parallelized computation through the graphic processing unit. To evaluate the accuracy of the method, we measured the actual acoustic fields through ex vivo sheep skulls with different sonication incident angles. The measured acoustic fields were compared to the simulation results in terms of focal location, dimensions, and pressure levels. The computational efficiency of the presented method was also assessed by comparing simulation speeds at various combinations of resolution grid settings. The multi-resolution grids consisting of 0.5 and 1.0 mm resolutions gave acceptable accuracy (under 3 mm in terms of focal position and dimension, less than 5% difference in peak pressure ratio) with a speed compatible with semi real-time user feedback (within 30 s). The proposed multi-resolution approach may serve as a novel tool for simulation-based guidance for tFUS applications.

  8. Multi-resolution simulation of focused ultrasound propagation through ovine skull from a single-element transducer.

    PubMed

    Yoon, Kyungho; Lee, Wonhye; Croce, Phillip; Cammalleri, Amanda; Yoo, Seung-Schik

    2018-05-10

    Transcranial focused ultrasound (tFUS) is emerging as a non-invasive brain stimulation modality. Complicated interactions between acoustic pressure waves and osseous tissue introduce many challenges in the accurate targeting of an acoustic focus through the cranium. Image-guidance accompanied by a numerical simulation is desired to predict the intracranial acoustic propagation through the skull; however, such simulations typically demand heavy computation, which warrants an expedited processing method to provide on-site feedback for the user in guiding the acoustic focus to a particular brain region. In this paper, we present a multi-resolution simulation method based on the finite-difference time-domain formulation to model the transcranial propagation of acoustic waves from a single-element transducer (250 kHz). The multi-resolution approach improved computational efficiency by providing the flexibility in adjusting the spatial resolution. The simulation was also accelerated by utilizing parallelized computation through the graphic processing unit. To evaluate the accuracy of the method, we measured the actual acoustic fields through ex vivo sheep skulls with different sonication incident angles. The measured acoustic fields were compared to the simulation results in terms of focal location, dimensions, and pressure levels. The computational efficiency of the presented method was also assessed by comparing simulation speeds at various combinations of resolution grid settings. The multi-resolution grids consisting of 0.5 and 1.0 mm resolutions gave acceptable accuracy (under 3 mm in terms of focal position and dimension, less than 5% difference in peak pressure ratio) with a speed compatible with semi real-time user feedback (within 30 s). The proposed multi-resolution approach may serve as a novel tool for simulation-based guidance for tFUS applications.

  9. Boundary element based multiresolution shape optimisation in electrostatics

    NASA Astrophysics Data System (ADS)

    Bandara, Kosala; Cirak, Fehmi; Of, Günther; Steinbach, Olaf; Zapletal, Jan

    2015-09-01

    We consider the shape optimisation of high-voltage devices subject to electrostatic field equations by combining fast boundary elements with multiresolution subdivision surfaces. The geometry of the domain is described with subdivision surfaces and different resolutions of the same geometry are used for optimisation and analysis. The primal and adjoint problems are discretised with the boundary element method using a sufficiently fine control mesh. For shape optimisation the geometry is updated starting from the coarsest control mesh with increasingly finer control meshes. The multiresolution approach effectively prevents the appearance of non-physical geometry oscillations in the optimised shapes. Moreover, there is no need for mesh regeneration or smoothing during the optimisation due to the absence of a volume mesh. We present several numerical experiments and one industrial application to demonstrate the robustness and versatility of the developed approach.

  10. A multiresolution approach to iterative reconstruction algorithms in X-ray computed tomography.

    PubMed

    De Witte, Yoni; Vlassenbroeck, Jelle; Van Hoorebeke, Luc

    2010-09-01

    In computed tomography, the application of iterative reconstruction methods in practical situations is impeded by their high computational demands. Especially in high resolution X-ray computed tomography, where reconstruction volumes contain a high number of volume elements (several giga voxels), this computational burden prevents their actual breakthrough. Besides the large amount of calculations, iterative algorithms require the entire volume to be kept in memory during reconstruction, which quickly becomes cumbersome for large data sets. To overcome this obstacle, we present a novel multiresolution reconstruction, which greatly reduces the required amount of memory without significantly affecting the reconstructed image quality. It is shown that, combined with an efficient implementation on a graphical processing unit, the multiresolution approach enables the application of iterative algorithms in the reconstruction of large volumes at an acceptable speed using only limited resources.

  11. Content Preserving Watermarking for Medical Images Using Shearlet Transform and SVD

    NASA Astrophysics Data System (ADS)

    Favorskaya, M. N.; Savchina, E. I.

    2017-05-01

    Medical Image Watermarking (MIW) is a special field of a watermarking due to the requirements of the Digital Imaging and COmmunications in Medicine (DICOM) standard since 1993. All 20 parts of the DICOM standard are revised periodically. The main idea of the MIW is to embed various types of information including the doctor's digital signature, fragile watermark, electronic patient record, and main watermark in a view of region of interest for the doctor into the host medical image. These four types of information are represented in different forms; some of them are encrypted according to the DICOM requirements. However, all types of information ought to be resulted into the generalized binary stream for embedding. The generalized binary stream may have a huge volume. Therefore, not all watermarking methods can be applied successfully. Recently, the digital shearlet transform had been introduced as a rigorous mathematical framework for the geometric representation of multi-dimensional data. Some modifications of the shearlet transform, particularly the non-subsampled shearlet transform, can be associated to a multi-resolution analysis that provides a fully shift-invariant, multi-scale, and multi-directional expansion. During experiments, a quality of the extracted watermarks under the JPEG compression and typical internet attacks was estimated using several metrics, including the peak signal to noise ratio, structural similarity index measure, and bit error rate.

  12. Geological disaster survey based on Curvelet transform with borehole Ground Penetrating Radar in Tonglushan old mine site.

    PubMed

    Tang, Xinjian; Sun, Tao; Tang, Zhijie; Zhou, Zenghui; Wei, Baoming

    2011-06-01

    Tonglushan old mine site located in Huangshi City, China, is very famous in the world. However, some of the ruins had suffered from geological disasters such as local deformation, surface cracking, in recent years. Structural abnormalities of rock-mass in deep underground were surveyed with borehole ground penetrating radar (GPR) to find out whether there were any mined galleries or mined-out areas below the ruins. With both the multiresolution analysis and sub-band directional of Curvelet transform, the feature information of targets' GPR signals were studied on Curvelet transform domain. Heterogeneity of geotechnical media and clutter jamming of complicated background of GPR signals could be conquered well, and the singularity characteristic information of typical rock mass signals could be extracted. Random noise had be removed by thresholding combined with Curvelet and the statistical characteristics of wanted signals and the noise, then direct wave suppression and the spatial distribution feature extraction could obtain a better result by making use of Curvelet transform directional. GprMax numerical modeling and analyzing of the sample data have verified the feasibility and effectiveness of our method. It is important and applicable for the analyzing of the geological structure and the disaster development about the Tonglushan old mine site. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  13. Inferring Species Richness and Turnover by Statistical Multiresolution Texture Analysis of Satellite Imagery

    DTIC Science & Technology

    2012-10-24

    representative pdf’s via the Kullback - Leibler divergence (KL). Species turnover, or b diversity, is estimated using both this KL divergence and the...multiresolution analysis provides a means for estimating divergence between two textures, specifically the Kullback - Leibler divergence between the pair of ...and open challenges. Ecological Informatics 5: 318–329. 19. Ludovisi A, TaticchiM(2006) Investigating beta diversity by kullback - leibler information

  14. Crack Identification in CFRP Laminated Beams Using Multi-Resolution Modal Teager–Kaiser Energy under Noisy Environments

    PubMed Central

    Xu, Wei; Cao, Maosen; Ding, Keqin; Radzieński, Maciej; Ostachowicz, Wiesław

    2017-01-01

    Carbon fiber reinforced polymer laminates are increasingly used in the aerospace and civil engineering fields. Identifying cracks in carbon fiber reinforced polymer laminated beam components is of considerable significance for ensuring the integrity and safety of the whole structures. With the development of high-resolution measurement technologies, mode-shape-based crack identification in such laminated beam components has become an active research focus. Despite its sensitivity to cracks, however, this method is susceptible to noise. To address this deficiency, this study proposes a new concept of multi-resolution modal Teager–Kaiser energy, which is the Teager–Kaiser energy of a mode shape represented in multi-resolution, for identifying cracks in carbon fiber reinforced polymer laminated beams. The efficacy of this concept is analytically demonstrated by identifying cracks in Timoshenko beams with general boundary conditions; and its applicability is validated by diagnosing cracks in a carbon fiber reinforced polymer laminated beam, whose mode shapes are precisely acquired via non-contact measurement using a scanning laser vibrometer. The analytical and experimental results show that multi-resolution modal Teager–Kaiser energy is capable of designating the presence and location of cracks in these beams under noisy environments. This proposed method holds promise for developing crack identification systems for carbon fiber reinforced polymer laminates. PMID:28773016

  15. Multiresolution persistent homology for excessively large biomolecular datasets

    NASA Astrophysics Data System (ADS)

    Xia, Kelin; Zhao, Zhixiong; Wei, Guo-Wei

    2015-10-01

    Although persistent homology has emerged as a promising tool for the topological simplification of complex data, it is computationally intractable for large datasets. We introduce multiresolution persistent homology to handle excessively large datasets. We match the resolution with the scale of interest so as to represent large scale datasets with appropriate resolution. We utilize flexibility-rigidity index to access the topological connectivity of the data set and define a rigidity density for the filtration analysis. By appropriately tuning the resolution of the rigidity density, we are able to focus the topological lens on the scale of interest. The proposed multiresolution topological analysis is validated by a hexagonal fractal image which has three distinct scales. We further demonstrate the proposed method for extracting topological fingerprints from DNA molecules. In particular, the topological persistence of a virus capsid with 273 780 atoms is successfully analyzed which would otherwise be inaccessible to the normal point cloud method and unreliable by using coarse-grained multiscale persistent homology. The proposed method has also been successfully applied to the protein domain classification, which is the first time that persistent homology is used for practical protein domain analysis, to our knowledge. The proposed multiresolution topological method has potential applications in arbitrary data sets, such as social networks, biological networks, and graphs.

  16. Multi-resolution extension for transmission of geodata in a mobile context

    NASA Astrophysics Data System (ADS)

    Follin, Jean-Michel; Bouju, Alain; Bertrand, Frédéric; Boursier, Patrice

    2005-03-01

    A solution is proposed for the management of multi-resolution vector data in a mobile spatial information visualization system. The client-server architecture and the models of data and transfer of the system are presented first. The aim of this system is to reduce data exchanged between client and server by reusing data already present on the client side. Then, an extension of this system to multi-resolution data is proposed. Our solution is based on the use of increments in a multi-scale database. A database architecture where data sets for different predefined scales are precomputed and stored on the server side is adopted. In this model, each object representing the same real world entities at different levels of detail has to be linked beforehand. Increments correspond to the difference between two datasets with different levels of detail. They are transmitted in order to increase (or decrease) the detail to the client upon request. They include generalization and refinement operators allowing transitions between the different levels. Finally, a framework suited to the transfer of multi-resolution data in a mobile context is presented. This allows reuse of data locally available at different levels of detail and, in this way, reduces the amount of data transferred between client and server.

  17. Hydrometeorological variability on a large french catchment and its relation to large-scale circulation across temporal scales

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David

    2015-04-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating large-scale/local-scale correlation, enmpirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the large-scale/local-scale links were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach which integrated discrete wavelet multiresolution analysis for reconstructing local hydrometeorological processes (predictand : precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector) on a monthly time-step. This approach basically consisted in 1- decomposing both signals (SLP field and precipitation or streamflow) using discrete wavelet multiresolution analysis and synthesis, 2- generating one statistical downscaling model per time-scale, 3- summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD ; in addition, the scale-dependent spatial patterns associated to the model matched quite well those obtained from scale-dependent composite analysis. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either prepciptation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with flood and extremely low-flow/drought periods (e.g., winter 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. Further investigations would be required to address the issue of the stationarity of the large-scale/local-scale relationships and to test the capability of the multiresolution ESD model for interannual-to-interdecadal forecasting. In terms of methodological approach, further investigations may concern a fully comprehensive sensitivity analysis of the modeling to the parameter of the multiresolution approach (different families of scaling and wavelet functions used, number of coefficients/degree of smoothness, etc.).

  18. Tuning Fractures With Dynamic Data

    NASA Astrophysics Data System (ADS)

    Yao, Mengbi; Chang, Haibin; Li, Xiang; Zhang, Dongxiao

    2018-02-01

    Flow in fractured porous media is crucial for production of oil/gas reservoirs and exploitation of geothermal energy. Flow behaviors in such media are mainly dictated by the distribution of fractures. Measuring and inferring the distribution of fractures is subject to large uncertainty, which, in turn, leads to great uncertainty in the prediction of flow behaviors. Inverse modeling with dynamic data may assist to constrain fracture distributions, thus reducing the uncertainty of flow prediction. However, inverse modeling for flow in fractured reservoirs is challenging, owing to the discrete and non-Gaussian distribution of fractures, as well as strong nonlinearity in the relationship between flow responses and model parameters. In this work, building upon a series of recent advances, an inverse modeling approach is proposed to efficiently update the flow model to match the dynamic data while retaining geological realism in the distribution of fractures. In the approach, the Hough-transform method is employed to parameterize non-Gaussian fracture fields with continuous parameter fields, thus rendering desirable properties required by many inverse modeling methods. In addition, a recently developed forward simulation method, the embedded discrete fracture method (EDFM), is utilized to model the fractures. The EDFM maintains computational efficiency while preserving the ability to capture the geometrical details of fractures because the matrix is discretized as structured grid, while the fractures being handled as planes are inserted into the matrix grids. The combination of Hough representation of fractures with the EDFM makes it possible to tune the fractures (through updating their existence, location, orientation, length, and other properties) without requiring either unstructured grids or regridding during updating. Such a treatment is amenable to numerous inverse modeling approaches, such as the iterative inverse modeling method employed in this study, which is capable of dealing with strongly nonlinear problems. A series of numerical case studies with increasing complexity are set up to examine the performance of the proposed approach.

  19. Optic cup segmentation: type-II fuzzy thresholding approach and blood vessel extraction

    PubMed Central

    Almazroa, Ahmed; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2017-01-01

    We introduce here a new technique for segmenting optic cup using two-dimensional fundus images. Cup segmentation is the most challenging part of image processing of the optic nerve head due to the complexity of its structure. Using the blood vessels to segment the cup is important. Here, we report on blood vessel extraction using first a top-hat transform and Otsu’s segmentation function to detect the curves in the blood vessels (kinks) which indicate the cup boundary. This was followed by an interval type-II fuzzy entropy procedure. Finally, the Hough transform was applied to approximate the cup boundary. The algorithm was evaluated on 550 fundus images from a large dataset, which contained three different sets of images, where the cup was manually marked by six ophthalmologists. On one side, the accuracy of the algorithm was tested on the three image sets independently. The final cup detection accuracy in terms of area and centroid was calculated to be 78.2% of 441 images. Finally, we compared the algorithm performance with manual markings done by the six ophthalmologists. The agreement was determined between the ophthalmologists as well as the algorithm. The best agreement was between ophthalmologists one, two and five in 398 of 550 images, while the algorithm agreed with them in 356 images. PMID:28515636

  20. Optic cup segmentation: type-II fuzzy thresholding approach and blood vessel extraction.

    PubMed

    Almazroa, Ahmed; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2017-01-01

    We introduce here a new technique for segmenting optic cup using two-dimensional fundus images. Cup segmentation is the most challenging part of image processing of the optic nerve head due to the complexity of its structure. Using the blood vessels to segment the cup is important. Here, we report on blood vessel extraction using first a top-hat transform and Otsu's segmentation function to detect the curves in the blood vessels (kinks) which indicate the cup boundary. This was followed by an interval type-II fuzzy entropy procedure. Finally, the Hough transform was applied to approximate the cup boundary. The algorithm was evaluated on 550 fundus images from a large dataset, which contained three different sets of images, where the cup was manually marked by six ophthalmologists. On one side, the accuracy of the algorithm was tested on the three image sets independently. The final cup detection accuracy in terms of area and centroid was calculated to be 78.2% of 441 images. Finally, we compared the algorithm performance with manual markings done by the six ophthalmologists. The agreement was determined between the ophthalmologists as well as the algorithm. The best agreement was between ophthalmologists one, two and five in 398 of 550 images, while the algorithm agreed with them in 356 images.

  1. Shape Adaptive, Robust Iris Feature Extraction from Noisy Iris Images

    PubMed Central

    Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah

    2013-01-01

    In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate. PMID:24696801

  2. Shape adaptive, robust iris feature extraction from noisy iris images.

    PubMed

    Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah

    2013-10-01

    In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate.

  3. Hammerstein system represention of financial volatility processes

    NASA Astrophysics Data System (ADS)

    Capobianco, E.

    2002-05-01

    We show new modeling aspects of stock return volatility processes, by first representing them through Hammerstein Systems, and by then approximating the observed and transformed dynamics with wavelet-based atomic dictionaries. We thus propose an hybrid statistical methodology for volatility approximation and non-parametric estimation, and aim to use the information embedded in a bank of volatility sources obtained by decomposing the observed signal with multiresolution techniques. Scale dependent information refers both to market activity inherent to different temporally aggregated trading horizons, and to a variable degree of sparsity in representing the signal. A decomposition of the expansion coefficients in least dependent coordinates is then implemented through Independent Component Analysis. Based on the described steps, the features of volatility can be more effectively detected through global and greedy algorithms.

  4. Subband directional vector quantization in radiological image compression

    NASA Astrophysics Data System (ADS)

    Akrout, Nabil M.; Diab, Chaouki; Prost, Remy; Goutte, Robert; Amiel, Michel

    1992-05-01

    The aim of this paper is to propose a new scheme for image compression. The method is very efficient for images which have directional edges such as the tree-like structure of the coronary vessels in digital angiograms. This method involves two steps. First, the original image is decomposed at different resolution levels using a pyramidal subband decomposition scheme. For decomposition/reconstruction of the image, free of aliasing and boundary errors, we use an ideal band-pass filter bank implemented in the Discrete Cosine Transform domain (DCT). Second, the high-frequency subbands are vector quantized using a multiresolution codebook with vertical and horizontal codewords which take into account the edge orientation of each subband. The proposed method reduces the blocking effect encountered at low bit rates in conventional vector quantization.

  5. A stethoscope with wavelet separation of cardiac and respiratory sounds for real time telemedicine implemented on field-programmable gate array

    NASA Astrophysics Data System (ADS)

    Castro, Víctor M.; Muñoz, Nestor A.; Salazar, Antonio J.

    2015-01-01

    Auscultation is one of the most utilized physical examination procedures for listening to lung, heart and intestinal sounds during routine consults and emergencies. Heart and lung sounds overlap in the thorax. An algorithm was used to separate them based on the discrete wavelet transform with multi-resolution analysis, which decomposes the signal into approximations and details. The algorithm was implemented in software and in hardware to achieve real-time signal separation. The heart signal was found in detail eight and the lung signal in approximation six. The hardware was used to separate the signals with a delay of 256 ms. Sending wavelet decomposition data - instead of the separated full signa - allows telemedicine applications to function in real time over low-bandwidth communication channels.

  6. The multi-resolution land characteristics (MRLC) consortium–20 years of development and integration of USA national land cover data

    Treesearch

    James Wickham; Collin Homer; James Vogelmann; Alexa McKerrow; Rick Mueler; Nate Herold; John Coulston

    2014-01-01

    The Multi-Resolution Land Characteristics (MRLC) Consortium demonstrates the national benefits of USA Federal collaboration. Starting in the mid-1990s as a small group with the straightforward goal of compiling a comprehensive national Landsat dataset that could be used to meet agencies’ needs, MRLC has grown into a group of 10 USA Federal Agencies that coordinate the...

  7. An Optimised System for Generating Multi-Resolution Dtms Using NASA Mro Datasets

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Muller, J.-P.; Sidiropoulos, P.; Veitch-Michaelis, J.; Yershov, V.

    2016-06-01

    Within the EU FP-7 iMars project, a fully automated multi-resolution DTM processing chain, called Co-registration ASP-Gotcha Optimised (CASP-GO) has been developed, based on the open source NASA Ames Stereo Pipeline (ASP). CASP-GO includes tiepoint based multi-resolution image co-registration and an adaptive least squares correlation-based sub-pixel refinement method called Gotcha. The implemented system guarantees global geo-referencing compliance with respect to HRSC (and thence to MOLA), provides refined stereo matching completeness and accuracy based on the ASP normalised cross-correlation. We summarise issues discovered from experimenting with the use of the open-source ASP DTM processing chain and introduce our new working solutions. These issues include global co-registration accuracy, de-noising, dealing with failure in matching, matching confidence estimation, outlier definition and rejection scheme, various DTM artefacts, uncertainty estimation, and quality-efficiency trade-offs.

  8. Correlative weighted stacking for seismic data in the wavelet domain

    USGS Publications Warehouse

    Zhang, S.; Xu, Y.; Xia, J.; ,

    2004-01-01

    Horizontal stacking plays a crucial role for modern seismic data processing, for it not only compresses random noise and multiple reflections, but also provides a foundational data for subsequent migration and inversion. However, a number of examples showed that random noise in adjacent traces exhibits correlation and coherence. The average stacking and weighted stacking based on the conventional correlative function all result in false events, which are caused by noise. Wavelet transform and high order statistics are very useful methods for modern signal processing. The multiresolution analysis in wavelet theory can decompose signal on difference scales, and high order correlative function can inhibit correlative noise, for which the conventional correlative function is of no use. Based on the theory of wavelet transform and high order statistics, high order correlative weighted stacking (HOCWS) technique is presented in this paper. Its essence is to stack common midpoint gathers after the normal moveout correction by weight that is calculated through high order correlative statistics in the wavelet domain. Synthetic examples demonstrate its advantages in improving the signal to noise (S/N) ration and compressing the correlative random noise.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa-Paredes, Gilberto; Prieto-Guerrero, Alfonso; Nunez-Carrera, Alejandro

    This paper introduces a wavelet-based method to analyze instability events in a boiling water reactor (BWR) during transient phenomena. The methodology to analyze BWR signals includes the following: (a) the short-time Fourier transform (STFT) analysis, (b) decomposition using the continuous wavelet transform (CWT), and (c) application of multiresolution analysis (MRA) using discrete wavelet transform (DWT). STFT analysis permits the study, in time, of the spectral content of analyzed signals. The CWT provides information about ruptures, discontinuities, and fractal behavior. To detect these important features in the signal, a mother wavelet has to be chosen and applied at several scales tomore » obtain optimum results. MRA allows fast implementation of the DWT. Features like important frequencies, discontinuities, and transients can be detected with analysis at different levels of detail coefficients. The STFT was used to provide a comparison between a classic method and the wavelet-based method. The damping ratio, which is an important stability parameter, was calculated as a function of time. The transient behavior can be detected by analyzing the maximum contained in detail coefficients at different levels in the signal decomposition. This method allows analysis of both stationary signals and highly nonstationary signals in the timescale plane. This methodology has been tested with the benchmark power instability event of Laguna Verde nuclear power plant (NPP) Unit 1, which is a BWR-5 NPP.« less

  10. Detection of the nipple in automated 3D breast ultrasound using coronal slab-average-projection and cumulative probability map

    NASA Astrophysics Data System (ADS)

    Kim, Hannah; Hong, Helen

    2014-03-01

    We propose an automatic method for nipple detection on 3D automated breast ultrasound (3D ABUS) images using coronal slab-average-projection and cumulative probability map. First, to identify coronal images that appeared remarkable distinction between nipple-areola region and skin, skewness of each coronal image is measured and the negatively skewed images are selected. Then, coronal slab-average-projection image is reformatted from selected images. Second, to localize nipple-areola region, elliptical ROI covering nipple-areola region is detected using Hough ellipse transform in coronal slab-average-projection image. Finally, to separate the nipple from areola region, 3D Otsu's thresholding is applied to the elliptical ROI and cumulative probability map in the elliptical ROI is generated by assigning high probability to low intensity region. False detected small components are eliminated using morphological opening and the center point of detected nipple region is calculated. Experimental results show that our method provides 94.4% nipple detection rate.

  11. Vanishing Point Extraction and Refinement for Robust Camera Calibration

    PubMed Central

    Tsai, Fuan

    2017-01-01

    This paper describes a flexible camera calibration method using refined vanishing points without prior information. Vanishing points are estimated from human-made features like parallel lines and repeated patterns. With the vanishing points extracted from the three mutually orthogonal directions, the interior and exterior orientation parameters can be further calculated using collinearity condition equations. A vanishing point refinement process is proposed to reduce the uncertainty caused by vanishing point localization errors. The fine-tuning algorithm is based on the divergence of grouped feature points projected onto the reference plane, minimizing the standard deviation of each of the grouped collinear points with an O(1) computational complexity. This paper also presents an automated vanishing point estimation approach based on the cascade Hough transform. The experiment results indicate that the vanishing point refinement process can significantly improve camera calibration parameters and the root mean square error (RMSE) of the constructed 3D model can be reduced by about 30%. PMID:29280966

  12. Object recognition and localization from 3D point clouds by maximum-likelihood estimation

    NASA Astrophysics Data System (ADS)

    Dantanarayana, Harshana G.; Huntley, Jonathan M.

    2017-08-01

    We present an algorithm based on maximum-likelihood analysis for the automated recognition of objects, and estimation of their pose, from 3D point clouds. Surfaces segmented from depth images are used as the features, unlike `interest point'-based algorithms which normally discard such data. Compared to the 6D Hough transform, it has negligible memory requirements, and is computationally efficient compared to iterative closest point algorithms. The same method is applicable to both the initial recognition/pose estimation problem as well as subsequent pose refinement through appropriate choice of the dispersion of the probability density functions. This single unified approach therefore avoids the usual requirement for different algorithms for these two tasks. In addition to the theoretical description, a simple 2 degrees of freedom (d.f.) example is given, followed by a full 6 d.f. analysis of 3D point cloud data from a cluttered scene acquired by a projected fringe-based scanner, which demonstrated an RMS alignment error as low as 0.3 mm.

  13. The algorithm of motion blur image restoration based on PSF half-blind estimation

    NASA Astrophysics Data System (ADS)

    Chen, Da-Ke; Lin, Zhe

    2011-08-01

    A novel algorithm of motion blur image restoration based on PSF half-blind estimation with Hough transform was introduced on the basis of full analysis of the principle of TDICCD camera, with the problem that vertical uniform linear motion estimation used by IBD algorithm as the original value of PSF led to image restoration distortion. Firstly, the mathematical model of image degradation was established with the transcendental information of multi-frame images, and then two parameters (movement blur length and angle) that have crucial influence on PSF estimation was set accordingly. Finally, the ultimate restored image can be acquired through multiple iterative of the initial value of PSF estimation in Fourier domain, which the initial value was gained by the above method. Experimental results show that the proposal algorithm can not only effectively solve the image distortion problem caused by relative motion between TDICCD camera and movement objects, but also the details characteristics of original image are clearly restored.

  14. Remote Sensing of Mars: Detection of Impact Craters on the Mars Global Surveyor DTM by Integrating Edge- and Region-Based Algorithms

    NASA Astrophysics Data System (ADS)

    Athanassas, C. D.; Vaiopoulos, A.; Kolokoussis, P.; Argialas, D.

    2018-03-01

    This study integrates two different computer vision approaches, namely the circular Hough transform (CHT) and the determinant of Hessian (DoH), to detect automatically the largest number possible of craters of any size on the digital terrain model (DTM) generated by the Mars Global Surveyor mission. Specifically, application of the standard version of CHT to the DTM captured a great number of craters with diameter smaller than 50 km only, failing to capture larger craters. On the other hand, DoH was successful in detecting craters that were undetected by CHT, but its performance was deterred by the irregularity of the topographic surface encompassed: strongly undulated and inclined (trended) topographies hindered crater detection. When run on a de-trended DTM (and keeping the topology unaltered) DoH scored higher. Current results, although not optimal, encourage combined use of CHT and DoH for routine crater detection undertakings.

  15. Shape from texture: an evaluation of visual cues

    NASA Astrophysics Data System (ADS)

    Mueller, Wolfgang; Hildebrand, Axel

    1994-05-01

    In this paper an integrated approach is presented to understand and control the influence of texture on shape perception. Following Gibson's hypotheses, which states that texture is a mathematically and psychological sufficient stimulus for surface perception, we evaluate different perceptual cues. Starting out from a perception-based texture classification introduced by Tamura et al., we build up a uniform sampled parameter space. For the synthesis of some of our textures we use the texture description language HiLDTe. To acquire the desired texture specification we take advantage of a genetic algorithm. Employing these textures we practice a number of psychological tests to evaluate the significance of the different texture features. A comprehension of the results derived from the psychological tests is done to constitute new shape analyzing techniques. Since the vanishing point seems to be an important visual cue we introduce the Hough transform. A prospective of future work within the field of visual computing is provided within the final section.

  16. Automatic Feature Extraction from Planetary Images

    NASA Technical Reports Server (NTRS)

    Troglio, Giulia; Le Moigne, Jacqueline; Benediktsson, Jon A.; Moser, Gabriele; Serpico, Sebastiano B.

    2010-01-01

    With the launch of several planetary missions in the last decade, a large amount of planetary images has already been acquired and much more will be available for analysis in the coming years. The image data need to be analyzed, preferably by automatic processing techniques because of the huge amount of data. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to planetary data that often present low contrast and uneven illumination characteristics. Different methods have already been presented for crater extraction from planetary images, but the detection of other types of planetary features has not been addressed yet. Here, we propose a new unsupervised method for the extraction of different features from the surface of the analyzed planet, based on the combination of several image processing techniques, including a watershed segmentation and the generalized Hough Transform. The method has many applications, among which image registration and can be applied to arbitrary planetary images.

  17. A real-time photogrammetric algorithm for sensor and synthetic image fusion with application to aviation combined vision

    NASA Astrophysics Data System (ADS)

    Lebedev, M. A.; Stepaniants, D. G.; Komarov, D. V.; Vygolov, O. V.; Vizilter, Yu. V.; Zheltov, S. Yu.

    2014-08-01

    The paper addresses a promising visualization concept related to combination of sensor and synthetic images in order to enhance situation awareness of a pilot during an aircraft landing. A real-time algorithm for a fusion of a sensor image, acquired by an onboard camera, and a synthetic 3D image of the external view, generated in an onboard computer, is proposed. The pixel correspondence between the sensor and the synthetic images is obtained by an exterior orientation of a "virtual" camera using runway points as a geospatial reference. The runway points are detected by the Projective Hough Transform, which idea is to project the edge map onto a horizontal plane in the object space (the runway plane) and then to calculate intensity projections of edge pixels on different directions of intensity gradient. The performed experiments on simulated images show that on a base glide path the algorithm provides image fusion with pixel accuracy, even in the case of significant navigation errors.

  18. Automatic road sign detecion and classification based on support vector machines and HOG descriptos

    NASA Astrophysics Data System (ADS)

    Adam, A.; Ioannidis, C.

    2014-05-01

    This paper examines the detection and classification of road signs in color-images acquired by a low cost camera mounted on a moving vehicle. A new method for the detection and classification of road signs is proposed based on color based detection, in order to locate regions of interest. Then, a circular Hough transform is applied to complete detection taking advantage of the shape properties of the road signs. The regions of interest are finally represented using HOG descriptors and are fed into trained Support Vector Machines (SVMs) in order to be recognized. For the training procedure, a database with several training examples depicting Greek road sings has been developed. Many experiments have been conducted and are presented, to measure the efficiency of the proposed methodology especially under adverse weather conditions and poor illumination. For the experiments training datasets consisting of different number of examples were used and the results are presented, along with some possible extensions of this work.

  19. An improved algorithm of laser spot center detection in strong noise background

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Wang, Qianqian; Cui, Xutai; Zhao, Yu; Peng, Zhong

    2018-01-01

    Laser spot center detection is demanded in many applications. The common algorithms for laser spot center detection such as centroid and Hough transform method have poor anti-interference ability and low detection accuracy in the condition of strong background noise. In this paper, firstly, the median filtering was used to remove the noise while preserving the edge details of the image. Secondly, the binarization of the laser facula image was carried out to extract target image from background. Then the morphological filtering was performed to eliminate the noise points inside and outside the spot. At last, the edge of pretreated facula image was extracted and the laser spot center was obtained by using the circle fitting method. In the foundation of the circle fitting algorithm, the improved algorithm added median filtering, morphological filtering and other processing methods. This method could effectively filter background noise through theoretical analysis and experimental verification, which enhanced the anti-interference ability of laser spot center detection and also improved the detection accuracy.

  20. Semi-automatic image analysis methodology for the segmentation of bubbles and drops in complex dispersions occurring in bioreactors

    NASA Astrophysics Data System (ADS)

    Taboada, B.; Vega-Alvarado, L.; Córdova-Aguilar, M. S.; Galindo, E.; Corkidi, G.

    2006-09-01

    Characterization of multiphase systems occurring in fermentation processes is a time-consuming and tedious process when manual methods are used. This work describes a new semi-automatic methodology for the on-line assessment of diameters of oil drops and air bubbles occurring in a complex simulated fermentation broth. High-quality digital images were obtained from the interior of a mechanically stirred tank. These images were pre-processed to find segments of edges belonging to the objects of interest. The contours of air bubbles and oil drops were then reconstructed using an improved Hough transform algorithm which was tested in two, three and four-phase simulated fermentation model systems. The results were compared against those obtained manually by a trained observer, showing no significant statistical differences. The method was able to reduce the total processing time for the measurements of bubbles and drops in different systems by 21-50% and the manual intervention time for the segmentation procedure by 80-100%.

  1. Towards photometry pipeline of the Indonesian space surveillance system

    NASA Astrophysics Data System (ADS)

    Priyatikanto, Rhorom; Religia, Bahar; Rachman, Abdul; Dani, Tiar

    2015-09-01

    Optical observation through sub-meter telescope equipped with CCD camera becomes alternative method for increasing orbital debris detection and surveillance. This observational mode is expected to eye medium-sized objects in higher orbits (e.g. MEO, GTO, GSO & GEO), beyond the reach of usual radar system. However, such observation of fast moving objects demands special treatment and analysis technique. In this study, we performed photometric analysis of the satellite track images photographed using rehabilitated Schmidt Bima Sakti telescope in Bosscha Observatory. The Hough transformation was implemented to automatically detect linear streak from the images. From this analysis and comparison to USSPACECOM catalog, two satellites were identified and associated with inactive Thuraya-3 satellite and Satcom-3 debris which are located at geostationary orbit. Further aperture photometry analysis revealed the periodicity of tumbling Satcom-3 debris. In the near future, it is not impossible to apply similar scheme to establish an analysis pipeline for optical space surveillance system hosted in Indonesia.

  2. Use of zerotree coding in a high-speed pyramid image multiresolution decomposition

    NASA Astrophysics Data System (ADS)

    Vega-Pineda, Javier; Cabrera, Sergio D.; Lucero, Aldo

    1995-03-01

    A Zerotree (ZT) coding scheme is applied as a post-processing stage to avoid transmitting zero data in the High-Speed Pyramid (HSP) image compression algorithm. This algorithm has features that increase the capability of the ZT coding to give very high compression rates. In this paper the impact of the ZT coding scheme is analyzed and quantified. The HSP algorithm creates a discrete-time multiresolution analysis based on a hierarchical decomposition technique that is a subsampling pyramid. The filters used to create the image residues and expansions can be related to wavelet representations. According to the pixel coordinates and the level in the pyramid, N2 different wavelet basis functions of various sizes and rotations are linearly combined. The HSP algorithm is computationally efficient because of the simplicity of the required operations, and as a consequence, it can be very easily implemented with VLSI hardware. This is the HSP's principal advantage over other compression schemes. The ZT coding technique transforms the different quantized image residual levels created by the HSP algorithm into a bit stream. The use of ZT's compresses even further the already compressed image taking advantage of parent-child relationships (trees) between the pixels of the residue images at different levels of the pyramid. Zerotree coding uses the links between zeros along the hierarchical structure of the pyramid, to avoid transmission of those that form branches of all zeros. Compression performance and algorithm complexity of the combined HSP-ZT method are compared with those of the JPEG standard technique.

  3. Classification and Compression of Multi-Resolution Vectors: A Tree Structured Vector Quantizer Approach

    DTIC Science & Technology

    2002-01-01

    their expression profile and for classification of cells into tumerous and non- tumerous classes. Then we will present a parallel tree method for... cancerous cells. We will use the same dataset and use tree structured classifiers with multi-resolution analysis for classifying cancerous from non- cancerous ...cells. We have the expressions of 4096 genes from 98 different cell types. Of these 98, 72 are cancerous while 26 are non- cancerous . We are interested

  4. Assessment of Multiresolution Segmentation for Extracting Greenhouses from WORLDVIEW-2 Imagery

    NASA Astrophysics Data System (ADS)

    Aguilar, M. A.; Aguilar, F. J.; García Lorca, A.; Guirado, E.; Betlej, M.; Cichon, P.; Nemmaoui, A.; Vallario, A.; Parente, C.

    2016-06-01

    The latest breed of very high resolution (VHR) commercial satellites opens new possibilities for cartographic and remote sensing applications. In this way, object based image analysis (OBIA) approach has been proved as the best option when working with VHR satellite imagery. OBIA considers spectral, geometric, textural and topological attributes associated with meaningful image objects. Thus, the first step of OBIA, referred to as segmentation, is to delineate objects of interest. Determination of an optimal segmentation is crucial for a good performance of the second stage in OBIA, the classification process. The main goal of this work is to assess the multiresolution segmentation algorithm provided by eCognition software for delineating greenhouses from WorldView- 2 multispectral orthoimages. Specifically, the focus is on finding the optimal parameters of the multiresolution segmentation approach (i.e., Scale, Shape and Compactness) for plastic greenhouses. The optimum Scale parameter estimation was based on the idea of local variance of object heterogeneity within a scene (ESP2 tool). Moreover, different segmentation results were attained by using different combinations of Shape and Compactness values. Assessment of segmentation quality based on the discrepancy between reference polygons and corresponding image segments was carried out to identify the optimal setting of multiresolution segmentation parameters. Three discrepancy indices were used: Potential Segmentation Error (PSE), Number-of-Segments Ratio (NSR) and Euclidean Distance 2 (ED2).

  5. Cross-Layer Design for Video Transmission over Wireless Rician Slow-Fading Channels Using an Adaptive Multiresolution Modulation and Coding Scheme

    NASA Astrophysics Data System (ADS)

    Pei, Yong; Modestino, James W.

    2007-12-01

    We describe a multilayered video transport scheme for wireless channels capable of adapting to channel conditions in order to maximize end-to-end quality of service (QoS). This scheme combines a scalable H.263+ video source coder with unequal error protection (UEP) across layers. The UEP is achieved by employing different channel codes together with a multiresolution modulation approach to transport the different priority layers. Adaptivity to channel conditions is provided through a joint source-channel coding (JSCC) approach which attempts to jointly optimize the source and channel coding rates together with the modulation parameters to obtain the maximum achievable end-to-end QoS for the prevailing channel conditions. In this work, we model the wireless links as slow-fading Rician channel where the channel conditions can be described in terms of the channel signal-to-noise ratio (SNR) and the ratio of specular-to-diffuse energy[InlineEquation not available: see fulltext.]. The multiresolution modulation/coding scheme consists of binary rate-compatible punctured convolutional (RCPC) codes used together with nonuniform phase-shift keyed (PSK) signaling constellations. Results indicate that this adaptive JSCC scheme employing scalable video encoding together with a multiresolution modulation/coding approach leads to significant improvements in delivered video quality for specified channel conditions. In particular, the approach results in considerably improved graceful degradation properties for decreasing channel SNR.

  6. Interactive Volume Exploration of Petascale Microscopy Data Streams Using a Visualization-Driven Virtual Memory Approach.

    PubMed

    Hadwiger, M; Beyer, J; Jeong, Won-Ki; Pfister, H

    2012-12-01

    This paper presents the first volume visualization system that scales to petascale volumes imaged as a continuous stream of high-resolution electron microscopy images. Our architecture scales to dense, anisotropic petascale volumes because it: (1) decouples construction of the 3D multi-resolution representation required for visualization from data acquisition, and (2) decouples sample access time during ray-casting from the size of the multi-resolution hierarchy. Our system is designed around a scalable multi-resolution virtual memory architecture that handles missing data naturally, does not pre-compute any 3D multi-resolution representation such as an octree, and can accept a constant stream of 2D image tiles from the microscopes. A novelty of our system design is that it is visualization-driven: we restrict most computations to the visible volume data. Leveraging the virtual memory architecture, missing data are detected during volume ray-casting as cache misses, which are propagated backwards for on-demand out-of-core processing. 3D blocks of volume data are only constructed from 2D microscope image tiles when they have actually been accessed during ray-casting. We extensively evaluate our system design choices with respect to scalability and performance, compare to previous best-of-breed systems, and illustrate the effectiveness of our system for real microscopy data from neuroscience.

  7. Reliable classification of high explosive and chemical/biological artillery using acoustic sensors

    NASA Astrophysics Data System (ADS)

    Desai, Sachi V.; Hohil, Myron E.; Bass, Henry E.; Chambers, Jim

    2005-05-01

    Feature extraction methods based on the discrete wavelet transform and multiresolution analysis are used to develop a robust classification algorithm that reliably discriminates between conventional and simulated chemical/biological artillery rounds via acoustic signals produced during detonation utilizing a generic acoustic sensor. Based on the transient properties of the signature blast distinct characteristics arise within the different acoustic signatures because high explosive warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. The ensuing blast waves are readily characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. Unique attributes can also be identified that depend upon the properties of the gun tube, projectile speed at the muzzle, and the explosive burn rates of the warhead. The algorithm enables robust classification of various airburst signatures using acoustics. It is capable of being integrated within an existing chemical/biological sensor, a stand-alone generic sensor, or a part of a disparate sensor suite. When emplaced in high-threat areas, this added capability would further provide field personal with advanced battlefield knowledge without the aide of so-called "sniffer" sensors that rely upon air particle information based on direct contact with possible contaminated air. In this work, the discrete wavelet transform is used to extract the predominant components of these characteristics from air burst signatures at ranges exceeding 2km while maintaining temporal sequence of the data to keep relevance to the transient differences of the airburst signatures. Highly reliable discrimination is achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients and higher frequency details found within different levels of the multiresolution decomposition the neural network then is capable of classifying new airburst signatures as Chemical/Biological or High Explosive.

  8. A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms

    PubMed Central

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise. PMID:22163672

  9. A rigid image registration based on the nonsubsampled contourlet transform and genetic algorithms.

    PubMed

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.

  10. A multi-resolution approach for optimal mass transport

    NASA Astrophysics Data System (ADS)

    Dominitz, Ayelet; Angenent, Sigurd; Tannenbaum, Allen

    2007-09-01

    Optimal mass transport is an important technique with numerous applications in econometrics, fluid dynamics, automatic control, statistical physics, shape optimization, expert systems, and meteorology. Motivated by certain problems in image registration and medical image visualization, in this note, we describe a simple gradient descent methodology for computing the optimal L2 transport mapping which may be easily implemented using a multiresolution scheme. We also indicate how the optimal transport map may be computed on the sphere. A numerical example is presented illustrating our ideas.

  11. Biomolecular surface construction by PDE transform

    PubMed Central

    Zheng, Qiong; Yang, Siyang; Wei, Guo-Wei

    2011-01-01

    This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high order PDEs. As a consequence, the time integration of high order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and the MSMS approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, i.e., surface area, surface enclosed volume, solvation free energy and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform based surface method, we solve the Poisson-Nernst-Planck (PNP) equations with a PDE transform surface of a protein. Second order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform based surface generation method, we apply it to the construction of an excessively large biomolecule, a virus surface capsid. Virus surface morphologies of different resolutions are attained by adjusting the propagation time. Therefore, the present PDE transform provides a multiresolution analysis in the surface visualization. Extensive numerical experiment and comparison with an established surface model indicate that the present PDE transform is a robust, stable and efficient approach for biomolecular surface generation in Cartesian meshes. PMID:22582140

  12. Texture analysis based on the Hermite transform for image classification and segmentation

    NASA Astrophysics Data System (ADS)

    Estudillo-Romero, Alfonso; Escalante-Ramirez, Boris; Savage-Carmona, Jesus

    2012-06-01

    Texture analysis has become an important task in image processing because it is used as a preprocessing stage in different research areas including medical image analysis, industrial inspection, segmentation of remote sensed imaginary, multimedia indexing and retrieval. In order to extract visual texture features a texture image analysis technique is presented based on the Hermite transform. Psychovisual evidence suggests that the Gaussian derivatives fit the receptive field profiles of mammalian visual systems. The Hermite transform describes locally basic texture features in terms of Gaussian derivatives. Multiresolution combined with several analysis orders provides detection of patterns that characterizes every texture class. The analysis of the local maximum energy direction and steering of the transformation coefficients increase the method robustness against the texture orientation. This method presents an advantage over classical filter bank design because in the latter a fixed number of orientations for the analysis has to be selected. During the training stage, a subset of the Hermite analysis filters is chosen in order to improve the inter-class separability, reduce dimensionality of the feature vectors and computational cost during the classification stage. We exhaustively evaluated the correct classification rate of real randomly selected training and testing texture subsets using several kinds of common used texture features. A comparison between different distance measurements is also presented. Results of the unsupervised real texture segmentation using this approach and comparison with previous approaches showed the benefits of our proposal.

  13. The algorithm of fast image stitching based on multi-feature extraction

    NASA Astrophysics Data System (ADS)

    Yang, Chunde; Wu, Ge; Shi, Jing

    2018-05-01

    This paper proposed an improved image registration method combining Hu-based invariant moment contour information and feature points detection, aiming to solve the problems in traditional image stitching algorithm, such as time-consuming feature points extraction process, redundant invalid information overload and inefficiency. First, use the neighborhood of pixels to extract the contour information, employing the Hu invariant moment as similarity measure to extract SIFT feature points in those similar regions. Then replace the Euclidean distance with Hellinger kernel function to improve the initial matching efficiency and get less mismatching points, further, estimate affine transformation matrix between the images. Finally, local color mapping method is adopted to solve uneven exposure, using the improved multiresolution fusion algorithm to fuse the mosaic images and realize seamless stitching. Experimental results confirm high accuracy and efficiency of method proposed in this paper.

  14. The Incremental Multiresolution Matrix Factorization Algorithm

    PubMed Central

    Ithapu, Vamsi K.; Kondor, Risi; Johnson, Sterling C.; Singh, Vikas

    2017-01-01

    Multiresolution analysis and matrix factorization are foundational tools in computer vision. In this work, we study the interface between these two distinct topics and obtain techniques to uncover hierarchical block structure in symmetric matrices – an important aspect in the success of many vision problems. Our new algorithm, the incremental multiresolution matrix factorization, uncovers such structure one feature at a time, and hence scales well to large matrices. We describe how this multiscale analysis goes much farther than what a direct “global” factorization of the data can identify. We evaluate the efficacy of the resulting factorizations for relative leveraging within regression tasks using medical imaging data. We also use the factorization on representations learned by popular deep networks, providing evidence of their ability to infer semantic relationships even when they are not explicitly trained to do so. We show that this algorithm can be used as an exploratory tool to improve the network architecture, and within numerous other settings in vision. PMID:29416293

  15. Community detection for fluorescent lifetime microscopy image segmentation

    NASA Astrophysics Data System (ADS)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Achilefu, Samuel; Nussinov, Zohar

    2014-03-01

    Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs against a background or "solvent" in FLT imaging microscopy (FLIM) images derived using NIR fluorescent dyes. We have identified significant multiresolution structures using replica correlations in these images, where such correlations are manifested by information theoretic overlaps of the independent solutions ("replicas") attained using the multiresolution CD method from different starting points. In this paper, our method is found to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian distributions. It offers more than 1:25 times diversity based on Shannon index than the latter method, in selecting clusters with distinct average FLTs in NIR FLIM images.

  16. Analysis of Fundus Fluorescein Angiogram Based on the Hessian Matrix of Directional Curvelet Sub-bands and Distance Regularized Level Set Evolution.

    PubMed

    Soltanipour, Asieh; Sadri, Saeed; Rabbani, Hossein; Akhlaghi, Mohammad Reza

    2015-01-01

    This paper presents a new procedure for automatic extraction of the blood vessels and optic disk (OD) in fundus fluorescein angiogram (FFA). In order to extract blood vessel centerlines, the algorithm of vessel extraction starts with the analysis of directional images resulting from sub-bands of fast discrete curvelet transform (FDCT) in the similar directions and different scales. For this purpose, each directional image is processed by using information of the first order derivative and eigenvalues obtained from the Hessian matrix. The final vessel segmentation is obtained using a simple region growing algorithm iteratively, which merges centerline images with the contents of images resulting from modified top-hat transform followed by bit plane slicing. After extracting blood vessels from FFA image, candidates regions for OD are enhanced by removing blood vessels from the FFA image, using multi-structure elements morphology, and modification of FDCT coefficients. Then, canny edge detector and Hough transform are applied to the reconstructed image to extract the boundary of candidate regions. At the next step, the information of the main arc of the retinal vessels surrounding the OD region is used to extract the actual location of the OD. Finally, the OD boundary is detected by applying distance regularized level set evolution. The proposed method was tested on the FFA images from angiography unit of Isfahan Feiz Hospital, containing 70 FFA images from different diabetic retinopathy stages. The experimental results show the accuracy more than 93% for vessel segmentation and more than 87% for OD boundary extraction.

  17. Analysis of Fundus Fluorescein Angiogram Based on the Hessian Matrix of Directional Curvelet Sub-bands and Distance Regularized Level Set Evolution

    PubMed Central

    Soltanipour, Asieh; Sadri, Saeed; Rabbani, Hossein; Akhlaghi, Mohammad Reza

    2015-01-01

    This paper presents a new procedure for automatic extraction of the blood vessels and optic disk (OD) in fundus fluorescein angiogram (FFA). In order to extract blood vessel centerlines, the algorithm of vessel extraction starts with the analysis of directional images resulting from sub-bands of fast discrete curvelet transform (FDCT) in the similar directions and different scales. For this purpose, each directional image is processed by using information of the first order derivative and eigenvalues obtained from the Hessian matrix. The final vessel segmentation is obtained using a simple region growing algorithm iteratively, which merges centerline images with the contents of images resulting from modified top-hat transform followed by bit plane slicing. After extracting blood vessels from FFA image, candidates regions for OD are enhanced by removing blood vessels from the FFA image, using multi-structure elements morphology, and modification of FDCT coefficients. Then, canny edge detector and Hough transform are applied to the reconstructed image to extract the boundary of candidate regions. At the next step, the information of the main arc of the retinal vessels surrounding the OD region is used to extract the actual location of the OD. Finally, the OD boundary is detected by applying distance regularized level set evolution. The proposed method was tested on the FFA images from angiography unit of Isfahan Feiz Hospital, containing 70 FFA images from different diabetic retinopathy stages. The experimental results show the accuracy more than 93% for vessel segmentation and more than 87% for OD boundary extraction. PMID:26284170

  18. Application of diffusion barriers to the refractory fibers of tungsten, columbium, carbon and aluminum oxide

    NASA Technical Reports Server (NTRS)

    Douglas, F. C.; Paradis, E. L.; Veltri, R. D.

    1973-01-01

    A radio frequency powered ion-plating system was used to plate protective layers of refractory oxides and carbide onto high strength fiber substrates. Subsequent overplating of these combinations with nickel and titanium was made to determine the effectiveness of such barrier layers in preventing diffusion of the overcoat metal into the fibers with consequent loss of fiber strength. Four substrates, five coatings, and two metal matrix materials were employed for a total of forty material combinations. The substrates were tungsten, niobium, NASA-Hough carbon, and Tyco sapphire. The diffusion-barrier coatings were aluminum oxide, yttrium oxide, titanium carbide, tungsten carbide with 14% cobalt addition, and zirconium carbide. The metal matrix materials were IN 600 nickel and Ti 6/4 titanium. Adhesion of the coatings to all substrates was good except for the NASA-Hough carbon, where flaking off of the oxide coatings in particular was observed.

  19. A morphologically preserved multi-resolution TIN surface modeling and visualization method for virtual globes

    NASA Astrophysics Data System (ADS)

    Zheng, Xianwei; Xiong, Hanjiang; Gong, Jianya; Yue, Linwei

    2017-07-01

    Virtual globes play an important role in representing three-dimensional models of the Earth. To extend the functioning of a virtual globe beyond that of a "geobrowser", the accuracy of the geospatial data in the processing and representation should be of special concern for the scientific analysis and evaluation. In this study, we propose a method for the processing of large-scale terrain data for virtual globe visualization and analysis. The proposed method aims to construct a morphologically preserved multi-resolution triangulated irregular network (TIN) pyramid for virtual globes to accurately represent the landscape surface and simultaneously satisfy the demands of applications at different scales. By introducing cartographic principles, the TIN model in each layer is controlled with a data quality standard to formulize its level of detail generation. A point-additive algorithm is used to iteratively construct the multi-resolution TIN pyramid. The extracted landscape features are also incorporated to constrain the TIN structure, thus preserving the basic morphological shapes of the terrain surface at different levels. During the iterative construction process, the TIN in each layer is seamlessly partitioned based on a virtual node structure, and tiled with a global quadtree structure. Finally, an adaptive tessellation approach is adopted to eliminate terrain cracks in the real-time out-of-core spherical terrain rendering. The experiments undertaken in this study confirmed that the proposed method performs well in multi-resolution terrain representation, and produces high-quality underlying data that satisfy the demands of scientific analysis and evaluation.

  20. Multi-resolution analysis for region of interest extraction in thermographic nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Ortiz-Jaramillo, B.; Fandiño Toro, H. A.; Benitez-Restrepo, H. D.; Orjuela-Vargas, S. A.; Castellanos-Domínguez, G.; Philips, W.

    2012-03-01

    Infrared Non-Destructive Testing (INDT) is known as an effective and rapid method for nondestructive inspection. It can detect a broad range of near-surface structuring flaws in metallic and composite components. Those flaws are modeled as a smooth contour centered at peaks of stored thermal energy, termed Regions of Interest (ROI). Dedicated methodologies must detect the presence of those ROIs. In this paper, we present a methodology for ROI extraction in INDT tasks. The methodology deals with the difficulties due to the non-uniform heating. The non-uniform heating affects low spatial/frequencies and hinders the detection of relevant points in the image. In this paper, a methodology for ROI extraction in INDT using multi-resolution analysis is proposed, which is robust to ROI low contrast and non-uniform heating. The former methodology includes local correlation, Gaussian scale analysis and local edge detection. In this methodology local correlation between image and Gaussian window provides interest points related to ROIs. We use a Gaussian window because thermal behavior is well modeled by Gaussian smooth contours. Also, the Gaussian scale is used to analyze details in the image using multi-resolution analysis avoiding low contrast, non-uniform heating and selection of the Gaussian window size. Finally, local edge detection is used to provide a good estimation of the boundaries in the ROI. Thus, we provide a methodology for ROI extraction based on multi-resolution analysis that is better or equal compared with the other dedicate algorithms proposed in the state of art.

  1. Text, photo, and line extraction in scanned documents

    NASA Astrophysics Data System (ADS)

    Erkilinc, M. Sezer; Jaber, Mustafa; Saber, Eli; Bauer, Peter; Depalov, Dejan

    2012-07-01

    We propose a page layout analysis algorithm to classify a scanned document into different regions such as text, photo, or strong lines. The proposed scheme consists of five modules. The first module performs several image preprocessing techniques such as image scaling, filtering, color space conversion, and gamma correction to enhance the scanned image quality and reduce the computation time in later stages. Text detection is applied in the second module wherein wavelet transform and run-length encoding are employed to generate and validate text regions, respectively. The third module uses a Markov random field based block-wise segmentation that employs a basis vector projection technique with maximum a posteriori probability optimization to detect photo regions. In the fourth module, methods for edge detection, edge linking, line-segment fitting, and Hough transform are utilized to detect strong edges and lines. In the last module, the resultant text, photo, and edge maps are combined to generate a page layout map using K-Means clustering. The proposed algorithm has been tested on several hundred documents that contain simple and complex page layout structures and contents such as articles, magazines, business cards, dictionaries, and newsletters, and compared against state-of-the-art page-segmentation techniques with benchmark performance. The results indicate that our methodology achieves an average of ˜89% classification accuracy in text, photo, and background regions.

  2. Photoacoustic image reconstruction: a quantitative analysis

    NASA Astrophysics Data System (ADS)

    Sperl, Jonathan I.; Zell, Karin; Menzenbach, Peter; Haisch, Christoph; Ketzer, Stephan; Marquart, Markus; Koenig, Hartmut; Vogel, Mika W.

    2007-07-01

    Photoacoustic imaging is a promising new way to generate unprecedented contrast in ultrasound diagnostic imaging. It differs from other medical imaging approaches, in that it provides spatially resolved information about optical absorption of targeted tissue structures. Because the data acquisition process deviates from standard clinical ultrasound, choice of the proper image reconstruction method is crucial for successful application of the technique. In the literature, multiple approaches have been advocated, and the purpose of this paper is to compare four reconstruction techniques. Thereby, we focused on resolution limits, stability, reconstruction speed, and SNR. We generated experimental and simulated data and reconstructed images of the pressure distribution using four different methods: delay-and-sum (DnS), circular backprojection (CBP), generalized 2D Hough transform (HTA), and Fourier transform (FTA). All methods were able to depict the point sources properly. DnS and CBP produce blurred images containing typical superposition artifacts. The HTA provides excellent SNR and allows a good point source separation. The FTA is the fastest and shows the best FWHM. In our study, we found the FTA to show the best overall performance. It allows a very fast and theoretically exact reconstruction. Only a hardware-implemented DnS might be faster and enable real-time imaging. A commercial system may also perform several methods to fully utilize the new contrast mechanism and guarantee optimal resolution and fidelity.

  3. Fully automatic detection and visualization of patient specific coronary supply regions

    NASA Astrophysics Data System (ADS)

    Fritz, Dominik; Wiedemann, Alexander; Dillmann, Ruediger; Scheuering, Michael

    2008-03-01

    Coronary territory maps, which associate myocardial regions with the corresponding coronary artery that supply them, are a common visualization technique to assist the physician in the diagnosis of coronary artery disease. However, the commonly used visualization is based on the AHA-17-segment model, which is an empirical population based model. Therefore, it does not necessarily cope with the often highly individual coronary anatomy of a specific patient. In this paper we introduce a novel fully automatic approach to compute the patient individual coronary supply regions in CTA datasets. This approach is divided in three consecutive steps. First, the aorta is fully automatically located in the dataset with a combination of a Hough transform and a cylindrical model matching approach. Having the location of the aorta, a segmentation and skeletonization of the coronary tree is triggered. In the next step, the three main branches (LAD, LCX and RCX) are automatically labeled, based on the knowledge of the pose of the aorta and the left ventricle. In the last step the labeled coronary tree is projected on the left ventricular surface, which can afterward be subdivided into the coronary supply regions, based on a Voronoi transform. The resulting supply regions can be either shown in 3D on the epicardiac surface of the left ventricle, or as a subdivision of a polarmap.

  4. Design of near-field irregular diffractive optical elements by use of a multiresolution direct binary search method.

    PubMed

    Li, Jia-Han; Webb, Kevin J; Burke, Gerald J; White, Daniel A; Thompson, Charles A

    2006-05-01

    A multiresolution direct binary search iterative procedure is used to design small dielectric irregular diffractive optical elements that have subwavelength features and achieve near-field focusing below the diffraction limit. Designs with a single focus or with two foci, depending on wavelength or polarization, illustrate the possible functionalities available from the large number of degrees of freedom. These examples suggest that the concept of such elements may find applications in near-field lithography, wavelength-division multiplexing, spectral analysis, and polarization beam splitters.

  5. Multiresolution image gathering and restoration

    NASA Technical Reports Server (NTRS)

    Fales, Carl L.; Huck, Friedrich O.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur

    1992-01-01

    In this paper we integrate multiresolution decomposition with image gathering and restoration. This integration leads to a Wiener-matrix filter that accounts for the aliasing, blurring, and noise in image gathering, together with the digital filtering and decimation in signal decomposition. Moreover, as implemented here, the Wiener-matrix filter completely suppresses the blurring and raster effects of the image-display device. We demonstrate that this filter can significantly improve the fidelity and visual quality produced by conventional image reconstruction. The extent of this improvement, in turn, depends on the design of the image-gathering device.

  6. MR-CDF: Managing multi-resolution scientific data

    NASA Technical Reports Server (NTRS)

    Salem, Kenneth

    1993-01-01

    MR-CDF is a system for managing multi-resolution scientific data sets. It is an extension of the popular CDF (Common Data Format) system. MR-CDF provides a simple functional interface to client programs for storage and retrieval of data. Data is stored so that low resolution versions of the data can be provided quickly. Higher resolutions are also available, but not as quickly. By managing data with MR-CDF, an application can be relieved of the low-level details of data management, and can easily trade data resolution for improved access time.

  7. Mortar and artillery variants classification by exploiting characteristics of the acoustic signature

    NASA Astrophysics Data System (ADS)

    Hohil, Myron E.; Grasing, David; Desai, Sachi; Morcos, Amir

    2007-10-01

    Feature extraction methods based on the discrete wavelet transform and multiresolution analysis facilitate the development of a robust classification algorithm that reliably discriminates mortar and artillery variants via acoustic signals produced during the launch/impact events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants. Distinct characteristics arise within the different mortar variants because varying HE mortar payloads and related charges emphasize concussive and shrapnel effects upon impact employing varying magnitude explosions. The different mortar variants are characterized by variations in the resulting waveform of the event. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing techniques can employed to classify a given set. The DWT and other readily available signal processing techniques will be used to extract the predominant components of these characteristics from the acoustic signatures at ranges exceeding 2km. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients, frequency spectrum, and higher frequency details found within different levels of the multiresolution decomposition. The process that will be described herein extends current technologies, which emphasis multi modal sensor fusion suites to provide such situational awareness. A two fold problem of energy consumption and line of sight arise with the multi modal sensor suites. The process described within will exploit the acoustic properties of the event to provide variant classification as added situational awareness to the solider.

  8. S2LET: A code to perform fast wavelet analysis on the sphere

    NASA Astrophysics Data System (ADS)

    Leistedt, B.; McEwen, J. D.; Vandergheynst, P.; Wiaux, Y.

    2013-10-01

    We describe S2LET, a fast and robust implementation of the scale-discretised wavelet transform on the sphere. Wavelets are constructed through a tiling of the harmonic line and can be used to probe spatially localised, scale-dependent features of signals on the sphere. The reconstruction of a signal from its wavelets coefficients is made exact here through the use of a sampling theorem on the sphere. Moreover, a multiresolution algorithm is presented to capture all information of each wavelet scale in the minimal number of samples on the sphere. In addition S2LET supports the HEALPix pixelisation scheme, in which case the transform is not exact but nevertheless achieves good numerical accuracy. The core routines of S2LET are written in C and have interfaces in Matlab, IDL and Java. Real signals can be written to and read from FITS files and plotted as Mollweide projections. The S2LET code is made publicly available, is extensively documented, and ships with several examples in the four languages supported. At present the code is restricted to axisymmetric wavelets but will be extended to directional, steerable wavelets in a future release.

  9. Singularity analysis based on wavelet transform of fractal measures for identifying geochemical anomaly in mineral exploration

    NASA Astrophysics Data System (ADS)

    Chen, Guoxiong; Cheng, Qiuming

    2016-02-01

    Multi-resolution and scale-invariance have been increasingly recognized as two closely related intrinsic properties endowed in geofields such as geochemical and geophysical anomalies, and they are commonly investigated by using multiscale- and scaling-analysis methods. In this paper, the wavelet-based multiscale decomposition (WMD) method was proposed to investigate the multiscale natures of geochemical pattern from large scale to small scale. In the light of the wavelet transformation of fractal measures, we demonstrated that the wavelet approximation operator provides a generalization of box-counting method for scaling analysis of geochemical patterns. Specifically, the approximation coefficient acts as the generalized density-value in density-area fractal modeling of singular geochemical distributions. Accordingly, we presented a novel local singularity analysis (LSA) using the WMD algorithm which extends the conventional moving averaging to a kernel-based operator for implementing LSA. Finally, the novel LSA was validated using a case study dealing with geochemical data (Fe2O3) in stream sediments for mineral exploration in Inner Mongolia, China. In comparison with the LSA implemented using the moving averaging method the novel LSA using WMD identified improved weak geochemical anomalies associated with mineralization in covered area.

  10. Adaptively synchronous scalable spread spectrum (A4S) data-hiding strategy for three-dimensional visualization

    NASA Astrophysics Data System (ADS)

    Hayat, Khizar; Puech, William; Gesquière, Gilles

    2010-04-01

    We propose an adaptively synchronous scalable spread spectrum (A4S) data-hiding strategy to integrate disparate data, needed for a typical 3-D visualization, into a single JPEG2000 format file. JPEG2000 encoding provides a standard format on one hand and the needed multiresolution for scalability on the other. The method has the potential of being imperceptible and robust at the same time. While the spread spectrum (SS) methods are known for the high robustness they offer, our data-hiding strategy is removable at the same time, which ensures highest possible visualization quality. The SS embedding of the discrete wavelet transform (DWT)-domain depth map is carried out in transform domain YCrCb components from the JPEG2000 coding stream just after the DWT stage. To maintain synchronization, the embedding is carried out while taking into account the correspondence of subbands. Since security is not the immediate concern, we are at liberty with the strength of embedding. This permits us to increase the robustness and bring the reversibility of our method. To estimate the maximum tolerable error in the depth map according to a given viewpoint, a human visual system (HVS)-based psychovisual analysis is also presented.

  11. Multiresolution quantum chemistry in multiwavelet bases: excited states from time-dependent Hartree–Fock and density functional theory via linear response

    DOE PAGES

    Yanai, Takeshi; Fann, George I.; Beylkin, Gregory; ...

    2015-02-25

    Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using amore » numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H 2, Be, N 2, H 2O, and C 2H 4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.« less

  12. Mapping and characterizing selected canopy tree species at the Angkor World Heritage site in Cambodia using aerial data.

    PubMed

    Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean

    2015-01-01

    At present, there is very limited information on the ecology, distribution, and structure of Cambodia's tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman's rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables.

  13. Mapping and Characterizing Selected Canopy Tree Species at the Angkor World Heritage Site in Cambodia Using Aerial Data

    PubMed Central

    Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean

    2015-01-01

    At present, there is very limited information on the ecology, distribution, and structure of Cambodia’s tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman’s rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables. PMID:25902148

  14. A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringler, Todd; Ju, Lili; Gunzburger, Max

    2008-11-14

    During the next decade and beyond, climate system models will be challenged to resolve scales and processes that are far beyond their current scope. Each climate system component has its prototypical example of an unresolved process that may strongly influence the global climate system, ranging from eddy activity within ocean models, to ice streams within ice sheet models, to surface hydrological processes within land system models, to cloud processes within atmosphere models. These new demands will almost certainly result in the develop of multiresolution schemes that are able, at least regionally, to faithfully simulate these fine-scale processes. Spherical centroidal Voronoimore » tessellations (SCVTs) offer one potential path toward the development of a robust, multiresolution climate system model components. SCVTs allow for the generation of high quality Voronoi diagrams and Delaunay triangulations through the use of an intuitive, user-defined density function. In each of the examples provided, this method results in high-quality meshes where the quality measures are guaranteed to improve as the number of nodes is increased. Real-world examples are developed for the Greenland ice sheet and the North Atlantic ocean. Idealized examples are developed for ocean–ice shelf interaction and for regional atmospheric modeling. In addition to defining, developing, and exhibiting SCVTs, we pair this mesh generation technique with a previously developed finite-volume method. Our numerical example is based on the nonlinear, shallow water equations spanning the entire surface of the sphere. This example is used to elucidate both the potential benefits of this multiresolution method and the challenges ahead.« less

  15. Shuttle Data Center File-Processing Tool in Java

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Miller, Walter H.

    2006-01-01

    A Java-language computer program has been written to facilitate mining of data in files in the Shuttle Data Center (SDC) archives. This program can be executed on a variety of workstations or via Web-browser programs. This program is partly similar to prior C-language programs used for the same purpose, while differing from those programs in that it exploits the platform-neutrality of Java in implementing several features that are important for analysis of large sets of time-series data. The program supports regular expression queries of SDC archive files, reads the files, interleaves the time-stamped samples according to a chosen output, then transforms the results into that format. A user can choose among a variety of output file formats that are useful for diverse purposes, including plotting, Markov modeling, multivariate density estimation, and wavelet multiresolution analysis, as well as for playback of data in support of simulation and testing.

  16. Short-term wind speed prediction based on the wavelet transformation and Adaboost neural network

    NASA Astrophysics Data System (ADS)

    Hai, Zhou; Xiang, Zhu; Haijian, Shao; Ji, Wu

    2018-03-01

    The operation of the power grid will be affected inevitably with the increasing scale of wind farm due to the inherent randomness and uncertainty, so the accurate wind speed forecasting is critical for the stability of the grid operation. Typically, the traditional forecasting method does not take into account the frequency characteristics of wind speed, which cannot reflect the nature of the wind speed signal changes result from the low generality ability of the model structure. AdaBoost neural network in combination with the multi-resolution and multi-scale decomposition of wind speed is proposed to design the model structure in order to improve the forecasting accuracy and generality ability. The experimental evaluation using the data from a real wind farm in Jiangsu province is given to demonstrate the proposed strategy can improve the robust and accuracy of the forecasted variable.

  17. The Palazzo della Ragione in Padua: Representation and Communication of Art, Architecture, and Astrology of a Civic Monument

    NASA Astrophysics Data System (ADS)

    Borgherini, M.; Garbin, E.

    2011-06-01

    Eight centuries of the history of art and of Padua's scientific and technological culture deposited on the stones and frescoes of its Palace of Law ("Palazzo della Ragione") make this great work of urban architecture a part of the city's collective identity. This "palimpsest", legible only to a restricted circle of specialists, should be accessible to a vaster public interested in understanding this object symbol of local culture. The project planned for interactive exploration on the web is a series of digital models, employing tomographic-endoscopic visualizations and, in future, multi-resolution images. The various models devised allow the visitor to superimpose the Palace's current conditions on the various transformations undergone over the centuries. Similarly, comparisons can be made between the astrological fresco cycle with maps of the heavens, cosmological hypotheses, ancient and contemporary astrological treatises, and the related exchange of knowledge between the Orient and the Occident.

  18. A multiresolution approach for the convergence acceleration of multivariate curve resolution methods.

    PubMed

    Sawall, Mathias; Kubis, Christoph; Börner, Armin; Selent, Detlef; Neymeyr, Klaus

    2015-09-03

    Modern computerized spectroscopic instrumentation can result in high volumes of spectroscopic data. Such accurate measurements rise special computational challenges for multivariate curve resolution techniques since pure component factorizations are often solved via constrained minimization problems. The computational costs for these calculations rapidly grow with an increased time or frequency resolution of the spectral measurements. The key idea of this paper is to define for the given high-dimensional spectroscopic data a sequence of coarsened subproblems with reduced resolutions. The multiresolution algorithm first computes a pure component factorization for the coarsest problem with the lowest resolution. Then the factorization results are used as initial values for the next problem with a higher resolution. Good initial values result in a fast solution on the next refined level. This procedure is repeated and finally a factorization is determined for the highest level of resolution. The described multiresolution approach allows a considerable convergence acceleration. The computational procedure is analyzed and is tested for experimental spectroscopic data from the rhodium-catalyzed hydroformylation together with various soft and hard models. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. New Journalism.

    ERIC Educational Resources Information Center

    Fishwick, Marshall, Ed.

    This volume contains a selection of articles which examine, critique, and help to define the phenomenon of new journalism. Included are "Popular Culture and the New Journalism" (Marshall Fishwick), "Entrance" (Richard A. Kallan), "How 'New'?" (George A. Hough III), "Journalistic Primitivism" (Everette E. Dennis), "Wherein Lies the Value?" (Michael…

  20. Image classification of unlabeled malaria parasites in red blood cells.

    PubMed

    Zheng Zhang; Ong, L L Sharon; Kong Fang; Matthew, Athul; Dauwels, Justin; Ming Dao; Asada, Harry

    2016-08-01

    This paper presents a method to detect unlabeled malaria parasites in red blood cells. The current "gold standard" for malaria diagnosis is microscopic examination of thick blood smear, a time consuming process requiring extensive training. Our goal is to develop an automate process to identify malaria infected red blood cells. Major issues in automated analysis of microscopy images of unstained blood smears include overlapping cells and oddly shaped cells. Our approach creates robust templates to detect infected and uninfected red cells. Histogram of Oriented Gradients (HOGs) features are extracted from templates and used to train a classifier offline. Next, the ViolaJones object detection framework is applied to detect infected and uninfected red cells and the image background. Results show our approach out-performs classification approaches with PCA features by 50% and cell detection algorithms applying Hough transforms by 24%. Majority of related work are designed to automatically detect stained parasites in blood smears where the cells are fixed. Although it is more challenging to design algorithms for unstained parasites, our methods will allow analysis of parasite progression in live cells under different drug treatments.

  1. Natural Inspired Intelligent Visual Computing and Its Application to Viticulture.

    PubMed

    Ang, Li Minn; Seng, Kah Phooi; Ge, Feng Lu

    2017-05-23

    This paper presents an investigation of natural inspired intelligent computing and its corresponding application towards visual information processing systems for viticulture. The paper has three contributions: (1) a review of visual information processing applications for viticulture; (2) the development of natural inspired computing algorithms based on artificial immune system (AIS) techniques for grape berry detection; and (3) the application of the developed algorithms towards real-world grape berry images captured in natural conditions from vineyards in Australia. The AIS algorithms in (2) were developed based on a nature-inspired clonal selection algorithm (CSA) which is able to detect the arcs in the berry images with precision, based on a fitness model. The arcs detected are then extended to perform the multiple arcs and ring detectors information processing for the berry detection application. The performance of the developed algorithms were compared with traditional image processing algorithms like the circular Hough transform (CHT) and other well-known circle detection methods. The proposed AIS approach gave a Fscore of 0.71 compared with Fscores of 0.28 and 0.30 for the CHT and a parameter-free circle detection technique (RPCD) respectively.

  2. Automatic extraction of via in the CT image of PCB

    NASA Astrophysics Data System (ADS)

    Liu, Xifeng; Hu, Yuwei

    2018-04-01

    In modern industry, the nondestructive testing of printed circuit board (PCB) can prevent effectively the system failure and is becoming more and more important. In order to detect the via in the PCB base on the CT image automatically accurately and reliably, a novel algorithm for via extraction based on weighting stack combining the morphologic character of via is designed. Every slice data in the vertical direction of the PCB is superimposed to enhanced vias target. The OTSU algorithm is used to segment the slice image. OTSU algorithm of thresholding gray level images is efficient for separating an image into two classes where two types of fairly distinct classes exist in the image. Randomized Hough Transform was used to locate the region of via in the segmented binary image. Then the 3D reconstruction of via based on sequence slice images was done by volume rendering. The accuracy of via positioning and detecting from a CT images of PCB was demonstrated by proposed algorithm. It was found that the method is good in veracity and stability for detecting of via in three dimensional.

  3. Using a Smartphone Camera for Nanosatellite Attitude Determination

    NASA Astrophysics Data System (ADS)

    Shimmin, R.

    2014-09-01

    The PhoneSat project at NASA Ames Research Center has repeatedly flown a commercial cellphone in space. As this project continues, additional utility is being extracted from the cell phone hardware to enable more complex missions. The camera in particular shows great potential as an instrument for position and attitude determination, but this requires complex image processing. This paper outlines progress towards that image processing capability. Initial tests on a small collection of sample images have demonstrated the determination of a Moon vector from an image by automatic thresholding and centroiding, allowing the calibration of existing attitude control systems. Work has been undertaken on a further set of sample images towards horizon detection using a variety of techniques including thresholding, edge detection, applying a Hough transform, and circle fitting. Ultimately it is hoped this will allow calculation of an Earth vector for attitude determination and an approximate altitude. A quick discussion of work towards using the camera as a star tracker is then presented, followed by an introduction to further applications of the camera on space missions.

  4. Event reconstruction for the CBM-RICH prototype beamtest data in 2014

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höhne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Patel, V.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Schetinin, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.

    2017-12-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will investigate the QCD phase diagram at high net baryon densities and moderate temperatures in A+A collisions from 2 to 11 AGeV (SIS100). Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). A real size prototype of the RICH detector was tested together with other CBM groups at the CERN PS/T9 beam line in 2014. For the first time the data format used the FLESnet protocol from CBM delivering free streaming data. The analysis was fully performed within the CBMROOT framework. In this contribution the data analysis and the event reconstruction methods which were used for obtained data are discussed. Rings were reconstructed using an algorithm based on the Hough Transform method and their parameters were derived with high accuracy by circle and ellipse fitting procedures. We present results of the application of the presented algorithms. In particular we compare results with and without Wavelength shifting (WLS) coating.

  5. Automated Coronal Loop Identification Using Digital Image Processing Techniques

    NASA Technical Reports Server (NTRS)

    Lee, Jong K.; Gary, G. Allen; Newman, Timothy S.

    2003-01-01

    The results of a master thesis project on a study of computer algorithms for automatic identification of optical-thin, 3-dimensional solar coronal loop centers from extreme ultraviolet and X-ray 2-dimensional images will be presented. These center splines are proxies of associated magnetic field lines. The project is pattern recognition problems in which there are no unique shapes or edges and in which photon and detector noise heavily influence the images. The study explores extraction techniques using: (1) linear feature recognition of local patterns (related to the inertia-tensor concept), (2) parametric space via the Hough transform, and (3) topological adaptive contours (snakes) that constrains curvature and continuity as possible candidates for digital loop detection schemes. We have developed synthesized images for the coronal loops to test the various loop identification algorithms. Since the topology of these solar features is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information in the identification process. Results from both synthesized and solar images will be presented.

  6. Detection of image structures using the Fisher information and the Rao metric.

    PubMed

    Maybank, Stephen J

    2004-12-01

    In many detection problems, the structures to be detected are parameterized by the points of a parameter space. If the conditional probability density function for the measurements is known, then detection can be achieved by sampling the parameter space at a finite number of points and checking each point to see if the corresponding structure is supported by the data. The number of samples and the distances between neighboring samples are calculated using the Rao metric on the parameter space. The Rao metric is obtained from the Fisher information which is, in turn, obtained from the conditional probability density function. An upper bound is obtained for the probability of a false detection. The calculations are simplified in the low noise case by making an asymptotic approximation to the Fisher information. An application to line detection is described. Expressions are obtained for the asymptotic approximation to the Fisher information, the volume of the parameter space, and the number of samples. The time complexity for line detection is estimated. An experimental comparison is made with a Hough transform-based method for detecting lines.

  7. Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Langley, A.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Lhuillier, V.; Li, J.; Li, T. G. F.; Lindquist, P. E.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Logue, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenberg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Palladino, L.; Palomba, C.; Pan, Y.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pihlaja, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Poux, C.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saracco, E.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; Anderson, D. P.

    2013-02-01

    This paper presents results of an all-sky search for periodic gravitational waves in the frequency range [50,1190]Hz and with frequency derivative range of ˜[-20,1.1]×10-10Hzs-1 for the fifth LIGO science run (S5). The search uses a noncoherent Hough-transform method to combine the information from coherent searches on time scales of about one day. Because these searches are very computationally intensive, they have been carried out with the Einstein@Home volunteer distributed computing project. Postprocessing identifies eight candidate signals; deeper follow-up studies rule them out. Hence, since no gravitational wave signals have been found, we report upper limits on the intrinsic gravitational wave strain amplitude h0. For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h0 greater than 7.6×10-25 at a 90% confidence level. This search is about a factor 3 more sensitive than the previous Einstein@Home search of early S5 LIGO data.

  8. Non-intrusive practitioner pupil detection for unmodified microscope oculars.

    PubMed

    Fuhl, Wolfgang; Santini, Thiago; Reichert, Carsten; Claus, Daniel; Herkommer, Alois; Bahmani, Hamed; Rifai, Katharina; Wahl, Siegfried; Kasneci, Enkelejda

    2016-12-01

    Modern microsurgery is a long and complex task requiring the surgeon to handle multiple microscope controls while performing the surgery. Eye tracking provides an additional means of interaction for the surgeon that could be used to alleviate this situation, diminishing surgeon fatigue and surgery time, thus decreasing risks of infection and human error. In this paper, we introduce a novel algorithm for pupil detection tailored for eye images acquired through an unmodified microscope ocular. The proposed approach, the Hough transform, and six state-of-the-art pupil detection algorithms were evaluated on over 4000 hand-labeled images acquired from a digital operating microscope with a non-intrusive monitoring system for the surgeon eyes integrated. Our results show that the proposed method reaches detection rates up to 71% for an error of ≈3% w.r.t the input image diagonal; none of the state-of-the-art pupil detection algorithms performed satisfactorily. The algorithm and hand-labeled data set can be downloaded at:: www.ti.uni-tuebingen.de/perception. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Segmentation of optic disc and optic cup in retinal fundus images using shape regression.

    PubMed

    Sedai, Suman; Roy, Pallab K; Mahapatra, Dwarikanath; Garnavi, Rahil

    2016-08-01

    Glaucoma is one of the leading cause of blindness. The manual examination of optic cup and disc is a standard procedure used for detecting glaucoma. This paper presents a fully automatic regression based method which accurately segments optic cup and disc in retinal colour fundus image. First, we roughly segment optic disc using circular hough transform. The approximated optic disc is then used to compute the initial optic disc and cup shapes. We propose a robust and efficient cascaded shape regression method which iteratively learns the final shape of the optic cup and disc from a given initial shape. Gradient boosted regression trees are employed to learn each regressor in the cascade. A novel data augmentation approach is proposed to improve the regressors performance by generating synthetic training data. The proposed optic cup and disc segmentation method is applied on an image set of 50 patients and demonstrate high segmentation accuracy for optic cup and disc with dice metric of 0.95 and 0.85 respectively. Comparative study shows that our proposed method outperforms state of the art optic cup and disc segmentation methods.

  10. Crop Row Detection in Maize Fields Inspired on the Human Visual Perception

    PubMed Central

    Romeo, J.; Pajares, G.; Montalvo, M.; Guerrero, J. M.; Guijarro, M.; Ribeiro, A.

    2012-01-01

    This paper proposes a new method, oriented to image real-time processing, for identifying crop rows in maize fields in the images. The vision system is designed to be installed onboard a mobile agricultural vehicle, that is, submitted to gyros, vibrations, and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of two main processes: image segmentation and crop row detection. The first one applies a threshold to separate green plants or pixels (crops and weeds) from the rest (soil, stones, and others). It is based on a fuzzy clustering process, which allows obtaining the threshold to be applied during the normal operation process. The crop row detection applies a method based on image perspective projection that searches for maximum accumulation of segmented green pixels along straight alignments. They determine the expected crop lines in the images. The method is robust enough to work under the above-mentioned undesired effects. It is favorably compared against the well-tested Hough transformation for line detection. PMID:22623899

  11. Pattern recognition applied to infrared images for early alerts in fog

    NASA Astrophysics Data System (ADS)

    Boucher, Vincent; Marchetti, Mario; Dumoulin, Jean; Cord, Aurélien

    2014-09-01

    Fog conditions are the cause of severe car accidents in western countries because of the poor induced visibility. Its forecast and intensity are still very difficult to predict by weather services. Infrared cameras allow to detect and to identify objects in fog while visibility is too low for eye detection. Over the past years, the implementation of cost effective infrared cameras on some vehicles has enabled such detection. On the other hand pattern recognition algorithms based on Canny filters and Hough transformation are a common tool applied to images. Based on these facts, a joint research program between IFSTTAR and Cerema has been developed to study the benefit of infrared images obtained in a fog tunnel during its natural dissipation. Pattern recognition algorithms have been applied, specifically on road signs which shape is usually associated to a specific meaning (circular for a speed limit, triangle for an alert, …). It has been shown that road signs were detected early enough in images, with respect to images in the visible spectrum, to trigger useful alerts for Advanced Driver Assistance Systems.

  12. Multi-Patches IRIS Based Person Authentication System Using Particle Swarm Optimization and Fuzzy C-Means Clustering

    NASA Astrophysics Data System (ADS)

    Shekar, B. H.; Bhat, S. S.

    2017-05-01

    Locating the boundary parameters of pupil and iris and segmenting the noise free iris portion are the most challenging phases of an automated iris recognition system. In this paper, we have presented person authentication frame work which uses particle swarm optimization (PSO) to locate iris region and circular hough transform (CHT) to device the boundary parameters. To undermine the effect of the noise presented in the segmented iris region we have divided the candidate region into N patches and used Fuzzy c-means clustering (FCM) to classify the patches into best iris region and not so best iris region (noisy region) based on the probability density function of each patch. Weighted mean Hammimng distance is adopted to find the dissimilarity score between the two candidate irises. We have used Log-Gabor, Riesz and Taylor's series expansion (TSE) filters and combinations of these three for iris feature extraction. To justify the feasibility of the proposed method, we experimented on the three publicly available data sets IITD, MMU v-2 and CASIA v-4 distance.

  13. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques.

    PubMed

    Aquino, Arturo; Gegundez-Arias, Manuel Emilio; Marin, Diego

    2010-11-01

    Optic disc (OD) detection is an important step in developing systems for automated diagnosis of various serious ophthalmic pathologies. This paper presents a new template-based methodology for segmenting the OD from digital retinal images. This methodology uses morphological and edge detection techniques followed by the Circular Hough Transform to obtain a circular OD boundary approximation. It requires a pixel located within the OD as initial information. For this purpose, a location methodology based on a voting-type algorithm is also proposed. The algorithms were evaluated on the 1200 images of the publicly available MESSIDOR database. The location procedure succeeded in 99% of cases, taking an average computational time of 1.67 s. with a standard deviation of 0.14 s. On the other hand, the segmentation algorithm rendered an average common area overlapping between automated segmentations and true OD regions of 86%. The average computational time was 5.69 s with a standard deviation of 0.54 s. Moreover, a discussion on advantages and disadvantages of the models more generally used for OD segmentation is also presented in this paper.

  14. Biomolecular surface construction by PDE transform.

    PubMed

    Zheng, Qiong; Yang, Siyang; Wei, Guo-Wei

    2012-03-01

    This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high-order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high-order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high-order PDEs. As a consequence, the time integration of high-order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two-dimensional and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and a standard approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, that is, surface area, surface-enclosed volume, solvation free energy, and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform-based surface method, we solve the Poisson-Nernst-Planck equations with a PDE transform surface of a protein. Second-order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform-based surface generation method, we apply it to the construction of an excessively large biomolecule, a virus surface capsid. Virus surface morphologies of different resolutions are attained by adjusting the propagation time. Therefore, the present PDE transform provides a multiresolution analysis in the surface visualization. Extensive numerical experiment and comparison with an established surface model indicate that the present PDE transform is a robust, stable, and efficient approach for biomolecular surface generation in Cartesian meshes. Copyright © 2012 John Wiley & Sons, Ltd.

  15. A space-based climatology of diurnal MLT tidal winds, temperatures and densities from UARS wind measurements

    NASA Astrophysics Data System (ADS)

    Svoboda, Aaron A.; Forbes, Jeffrey M.; Miyahara, Saburo

    2005-11-01

    A self-consistent global tidal climatology, useful for comparing and interpreting radar observations from different locations around the globe, is created from space-based Upper Atmosphere Research Satellite (UARS) horizontal wind measurements. The climatology created includes tidal structures for horizontal winds, temperature and relative density, and is constructed by fitting local (in latitude and height) UARS wind data at 95 km to a set of basis functions called Hough mode extensions (HMEs). These basis functions are numerically computed modifications to Hough modes and are globally self-consistent in wind, temperature, and density. We first demonstrate this self-consistency with a proxy data set from the Kyushu University General Circulation Model, and then use a linear weighted superposition of the HMEs obtained from monthly fits to the UARS data to extrapolate the global, multi-variable tidal structure. A brief explanation of the HMEs’ origin is provided as well as information about a public website that has been set up to make the full extrapolated data sets available.

  16. Attention in western Nevada: Preliminary results from earthquake and explosion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hough, S.E.; Anderson, J.G.; Patton, H.J.

    1989-02-01

    We present preliminary results from a study of the attenuation of regional seismic waves at frequencies between 1 and 15 Hz and distances up to 250 km in Western Nevada. Following the methods of Anderson and Hough (1984) and Hough et al. (1988), we parameterize the asymptote of the high frequency acceleration spectrum by the two-parameter model. We relate the model parameters to a two-layer model for Q/sub i/ and Q/sub d/, the freuqency-independent and the frequency dependent components of the quality factor. We compare our results to previously published Q studies in the Basin and Range and find thatmore » our estimate of total Q, Q/sub t/, in the shallow crust is consistent with shear wave Q at close distances with previous estimates of coda Q (Singh and Hermann, 1983) and LgQ (Chavez and Priestley, 1986), suggesting that both coda Q and LgQ are insensitive to near-surface contributions to attenuation.« less

  17. Proof-of-concept demonstration of a miniaturized three-channel multiresolution imaging system

    NASA Astrophysics Data System (ADS)

    Belay, Gebirie Y.; Ottevaere, Heidi; Meuret, Youri; Vervaeke, Michael; Van Erps, Jürgen; Thienpont, Hugo

    2014-05-01

    Multichannel imaging systems have several potential applications such as multimedia, surveillance, medical imaging and machine vision, and have therefore been a hot research topic in recent years. Such imaging systems, inspired by natural compound eyes, have many channels, each covering only a portion of the total field-of-view of the system. As a result, these systems provide a wide field-of-view (FOV) while having a small volume and a low weight. Different approaches have been employed to realize a multichannel imaging system. We demonstrated that the different channels of the imaging system can be designed in such a way that they can have each different imaging properties (angular resolution, FOV, focal length). Using optical ray-tracing software (CODE V), we have designed a miniaturized multiresolution imaging system that contains three channels each consisting of four aspherical lens surfaces fabricated from PMMA material through ultra-precision diamond tooling. The first channel possesses the largest angular resolution (0.0096°) and narrowest FOV (7°), whereas the third channel has the widest FOV (80°) and the smallest angular resolution (0.078°). The second channel has intermediate properties. Such a multiresolution capability allows different image processing algorithms to be implemented on the different segments of an image sensor. This paper presents the experimental proof-of-concept demonstration of the imaging system using a commercial CMOS sensor and gives an in-depth analysis of the obtained results. Experimental images captured with the three channels are compared with the corresponding simulated images. The experimental MTF of the channels have also been calculated from the captured images of a slanted edge target test. This multichannel multiresolution approach opens the opportunity for low-cost compact imaging systems that can be equipped with smart imaging capabilities.

  18. Rapid production of optimal-quality reduced-resolution representations of very large databases

    DOEpatents

    Sigeti, David E.; Duchaineau, Mark; Miller, Mark C.; Wolinsky, Murray; Aldrich, Charles; Mineev-Weinstein, Mark B.

    2001-01-01

    View space representation data is produced in real time from a world space database representing terrain features. The world space database is first preprocessed. A database is formed having one element for each spatial region corresponding to a finest selected level of detail. A multiresolution database is then formed by merging elements and a strict error metric is computed for each element at each level of detail that is independent of parameters defining the view space. The multiresolution database and associated strict error metrics are then processed in real time for real time frame representations. View parameters for a view volume comprising a view location and field of view are selected. The error metric with the view parameters is converted to a view-dependent error metric. Elements with the coarsest resolution are chosen for an initial representation. Data set first elements from the initial representation data set are selected that are at least partially within the view volume. The first elements are placed in a split queue ordered by the value of the view-dependent error metric. If the number of first elements in the queue meets or exceeds a predetermined number of elements or whether the largest error metric is less than or equal to a selected upper error metric bound, the element at the head of the queue is force split and the resulting elements are inserted into the queue. Force splitting is continued until the determination is positive to form a first multiresolution set of elements. The first multiresolution set of elements is then outputted as reduced resolution view space data representing the terrain features.

  19. Multispectral image sharpening using a shift-invariant wavelet transform and adaptive processing of multiresolution edges

    USGS Publications Warehouse

    Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.

    2002-01-01

    Enhanced false color images from mid-IR, near-IR (NIR), and visible bands of the Landsat thematic mapper (TM) are commonly used for visually interpreting land cover type. Described here is a technique for sharpening or fusion of NIR with higher resolution panchromatic (Pan) that uses a shift-invariant implementation of the discrete wavelet transform (SIDWT) and a reported pixel-based selection rule to combine coefficients. There can be contrast reversals (e.g., at soil-vegetation boundaries between NIR and visible band images) and consequently degraded sharpening and edge artifacts. To improve performance for these conditions, I used a local area-based correlation technique originally reported for comparing image-pyramid-derived edges for the adaptive processing of wavelet-derived edge data. Also, using the redundant data of the SIDWT improves edge data generation. There is additional improvement because sharpened subband imagery is used with the edge-correlation process. A reported technique for sharpening three-band spectral imagery used forward and inverse intensity, hue, and saturation transforms and wavelet-based sharpening of intensity. This technique had limitations with opposite contrast data, and in this study sharpening was applied to single-band multispectral-Pan image pairs. Sharpening used simulated 30-m NIR imagery produced by degrading the spatial resolution of a higher resolution reference. Performance, evaluated by comparison between sharpened and reference image, was improved when sharpened subband data were used with the edge correlation.

  20. Reliable structural information from multiscale decomposition with the Mellor-Brady filter

    NASA Astrophysics Data System (ADS)

    Szilágyi, Tünde; Brady, Michael

    2009-08-01

    Image-based medical diagnosis typically relies on the (poorly reproducible) subjective classification of textures in order to differentiate between diseased and healthy pathology. Clinicians claim that significant benefits would arise from quantitative measures to inform clinical decision making. The first step in generating such measures is to extract local image descriptors - from noise corrupted and often spatially and temporally coarse resolution medical signals - that are invariant to illumination, translation, scale and rotation of the features. The Dual-Tree Complex Wavelet Transform (DT-CWT) provides a wavelet multiresolution analysis (WMRA) tool e.g. in 2D with good properties, but has limited rotational selectivity. Also, it requires computationally-intensive steering due to the inherently 1D operations performed. The monogenic signal, which is defined in n >= 2D with the Riesz transform gives excellent orientation information without the need for steering. Recent work has suggested the Monogenic Riesz-Laplace wavelet transform as a possible tool for integrating these two concepts into a coherent mathematical framework. We have found that the proposed construction suffers from a lack of rotational invariance and is not optimal for retrieving local image descriptors. In this paper we show: 1. Local frequency and local phase from the monogenic signal are not equivalent, especially in the phase congruency model of a "feature", and so they are not interchangeable for medical image applications. 2. The accuracy of local phase computation may be improved by estimating the denoising parameters while maximizing a new measure of "featureness".

  1. Surface registration technique for close-range mapping applications

    NASA Astrophysics Data System (ADS)

    Habib, Ayman F.; Cheng, Rita W. T.

    2006-08-01

    Close-range mapping applications such as cultural heritage restoration, virtual reality modeling for the entertainment industry, and anatomical feature recognition for medical activities require 3D data that is usually acquired by high resolution close-range laser scanners. Since these datasets are typically captured from different viewpoints and/or at different times, accurate registration is a crucial procedure for 3D modeling of mapped objects. Several registration techniques are available that work directly with the raw laser points or with extracted features from the point cloud. Some examples include the commonly known Iterative Closest Point (ICP) algorithm and a recently proposed technique based on matching spin-images. This research focuses on developing a surface matching algorithm that is based on the Modified Iterated Hough Transform (MIHT) and ICP to register 3D data. The proposed algorithm works directly with the raw 3D laser points and does not assume point-to-point correspondence between two laser scans. The algorithm can simultaneously establish correspondence between two surfaces and estimates the transformation parameters relating them. Experiment with two partially overlapping laser scans of a small object is performed with the proposed algorithm and shows successful registration. A high quality of fit between the two scans is achieved and improvement is found when compared to the results obtained using the spin-image technique. The results demonstrate the feasibility of the proposed algorithm for registering 3D laser scanning data in close-range mapping applications to help with the generation of complete 3D models.

  2. Mobile-based text recognition from water quality devices

    NASA Astrophysics Data System (ADS)

    Dhakal, Shanti; Rahnemoonfar, Maryam

    2015-03-01

    Measuring water quality of bays, estuaries, and gulfs is a complicated and time-consuming process. YSI Sonde is an instrument used to measure water quality parameters such as pH, temperature, salinity, and dissolved oxygen. This instrument is taken to water bodies in a boat trip and researchers note down different parameters displayed by the instrument's display monitor. In this project, a mobile application is developed for Android platform that allows a user to take a picture of the YSI Sonde monitor, extract text from the image and store it in a file on the phone. The image captured by the application is first processed to remove perspective distortion. Probabilistic Hough line transform is used to identify lines in the image and the corner of the image is then obtained by determining the intersection of the detected horizontal and vertical lines. The image is warped using the perspective transformation matrix, obtained from the corner points of the source image and the destination image, hence, removing the perspective distortion. Mathematical morphology operation, black-hat is used to correct the shading of the image. The image is binarized using Otsu's binarization technique and is then passed to the Optical Character Recognition (OCR) software for character recognition. The extracted information is stored in a file on the phone and can be retrieved later for analysis. The algorithm was tested on 60 different images of YSI Sonde with different perspective features and shading. Experimental results, in comparison to ground-truth results, demonstrate the effectiveness of the proposed method.

  3. Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms

    NASA Technical Reports Server (NTRS)

    Kurdila, Andrew J.; Sharpley, Robert C.

    1999-01-01

    This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.

  4. Improved optical flow motion estimation for digital image stabilization

    NASA Astrophysics Data System (ADS)

    Lai, Lijun; Xu, Zhiyong; Zhang, Xuyao

    2015-11-01

    Optical flow is the instantaneous motion vector at each pixel in the image frame at a time instant. The gradient-based approach for optical flow computation can't work well when the video motion is too large. To alleviate such problem, we incorporate this algorithm into a pyramid multi-resolution coarse-to-fine search strategy. Using pyramid strategy to obtain multi-resolution images; Using iterative relationship from the highest level to the lowest level to obtain inter-frames' affine parameters; Subsequence frames compensate back to the first frame to obtain stabilized sequence. The experiment results demonstrate that the promoted method has good performance in global motion estimation.

  5. Active pixel sensor array with multiresolution readout

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor); Pain, Bedabrata (Inventor)

    1999-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. The imaging device can also include an electronic shutter formed on the substrate adjacent the photogate, and/or a storage section to allow for simultaneous integration. In addition, the imaging device can include a multiresolution imaging circuit to provide images of varying resolution. The multiresolution circuit could also be employed in an array where the photosensitive portion of each pixel cell is a photodiode. This latter embodiment could further be modified to facilitate low light imaging.

  6. Multiscale geometric modeling of macromolecules II: Lagrangian representation

    PubMed Central

    Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2013-01-01

    Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR and cryo-EM, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger’s functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, while our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599

  7. Automatic segmentation of fluorescence lifetime microscopy images of cells using multiresolution community detection--a first study.

    PubMed

    Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z

    2014-01-01

    Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  8. Adaptive multiresolution modeling of groundwater flow in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Malenica, Luka; Gotovac, Hrvoje; Srzic, Veljko; Andric, Ivo

    2016-04-01

    Proposed methodology was originally developed by our scientific team in Split who designed multiresolution approach for analyzing flow and transport processes in highly heterogeneous porous media. The main properties of the adaptive Fup multi-resolution approach are: 1) computational capabilities of Fup basis functions with compact support capable to resolve all spatial and temporal scales, 2) multi-resolution presentation of heterogeneity as well as all other input and output variables, 3) accurate, adaptive and efficient strategy and 4) semi-analytical properties which increase our understanding of usually complex flow and transport processes in porous media. The main computational idea behind this approach is to separately find the minimum number of basis functions and resolution levels necessary to describe each flow and transport variable with the desired accuracy on a particular adaptive grid. Therefore, each variable is separately analyzed, and the adaptive and multi-scale nature of the methodology enables not only computational efficiency and accuracy, but it also describes subsurface processes closely related to their understood physical interpretation. The methodology inherently supports a mesh-free procedure, avoiding the classical numerical integration, and yields continuous velocity and flux fields, which is vitally important for flow and transport simulations. In this paper, we will show recent improvements within the proposed methodology. Since "state of the art" multiresolution approach usually uses method of lines and only spatial adaptive procedure, temporal approximation was rarely considered as a multiscale. Therefore, novel adaptive implicit Fup integration scheme is developed, resolving all time scales within each global time step. It means that algorithm uses smaller time steps only in lines where solution changes are intensive. Application of Fup basis functions enables continuous time approximation, simple interpolation calculations across different temporal lines and local time stepping control. Critical aspect of time integration accuracy is construction of spatial stencil due to accurate calculation of spatial derivatives. Since common approach applied for wavelets and splines uses a finite difference operator, we developed here collocation one including solution values and differential operator. In this way, new improved algorithm is adaptive in space and time enabling accurate solution for groundwater flow problems, especially in highly heterogeneous porous media with large lnK variances and different correlation length scales. In addition, differences between collocation and finite volume approaches are discussed. Finally, results show application of methodology to the groundwater flow problems in highly heterogeneous confined and unconfined aquifers.

  9. RESTORING NATURE IN THE CITY: PUGET SOUND EXPERIENCES. (R825284)

    EPA Science Inventory

    Restoring nature within American urban areas seems basic to sustainability both in theory (Hough, 1995) and in practice (Sustainable Seattle, 1993). In addition to applicable science, restoration of urban green areas requires two com...

  10. The identity of Calliphora bezzii Zumpt, 1956 (Diptera, Calliphoridae).

    PubMed

    Rognes, Knut

    2016-09-26

    The holotype male of a nominal species described from Italy, Calliphora bezzii Zumpt, 1956, including a microscope slide of its terminalia, was examined. The holotype is shown to belong to the Nearctic taxon Calliphora latifrons Hough, 1899. Thus, Calliphora bezzii is a junior synonym of C. latifrons, syn. nov.

  11. Personality, Political Skill, and Job Performance

    ERIC Educational Resources Information Center

    Blickle, Gerhard; Meurs, James A.; Zettler, Ingo; Solga, Jutta; Noethen, Daniela; Kramer, Jochen; Ferris, Gerald R.

    2008-01-01

    Based on the socioanalytic perspective of performance prediction [Hogan, R. (1991). Personality and personality assessment. In M. D. Dunnette, L. Hough, (Eds.), "Handbook of industrial and organizational psychology" (2nd ed., pp. 873-919). Chicago: Rand McNally; Hogan, R., & Shelton, D. (1998). A socioanalytic perspective on job performance.…

  12. Three United States Army Manhunts: Insights From the Past

    DTIC Science & Technology

    2004-06-17

    raid ( Toulmin 1935, 85-88). Another source of guides and information were the Americans living in the state of Chihuahua, many of whom worked for...Harrisburg: The Military Service Publishing Company. Toulmin , H. A. 1935. With Pershing in Mexico. With a foreword by Benson W. Hough. Harrisburg: The

  13. The Value of Action Research in Middle Grades Education

    ERIC Educational Resources Information Center

    Caskey, Micki M.

    2006-01-01

    Action research is one of the relevant methodologies for addressing research questions and issues in middle grades education. Accounting for nearly 20% of published middle grades research studies (Hough, 2003), action research has emerged as an important and appropriate research method. In addition to reviewing the historical context, this article…

  14. Multi-time-scale hydroclimate dynamics of a regional watershed and links to large-scale atmospheric circulation: Application to the Seine river catchment, France

    NASA Astrophysics Data System (ADS)

    Massei, N.; Dieppois, B.; Hannah, D. M.; Lavers, D. A.; Fossa, M.; Laignel, B.; Debret, M.

    2017-03-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating correlation between large and local scales, empirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: (i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and (ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the links between large and local scales were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach, which integrated discrete wavelet multiresolution analysis for reconstructing monthly regional hydrometeorological processes (predictand: precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector). This approach basically consisted in three steps: 1 - decomposing large-scale climate and hydrological signals (SLP field, precipitation or streamflow) using discrete wavelet multiresolution analysis, 2 - generating a statistical downscaling model per time-scale, 3 - summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either precipitation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with alternating flood and extremely low-flow/drought periods (e.g., winter/spring 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. In accordance with previous studies, the wavelet components detected in SLP, precipitation and streamflow on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation.

  15. An innovative approach for characteristic analysis and state-of-health diagnosis for a Li-ion cell based on the discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Kim, Jonghoon; Cho, B. H.

    2014-08-01

    This paper introduces an innovative approach to analyze electrochemical characteristics and state-of-health (SOH) diagnosis of a Li-ion cell based on the discrete wavelet transform (DWT). In this approach, the DWT has been applied as a powerful tool in the analysis of the discharging/charging voltage signal (DCVS) with non-stationary and transient phenomena for a Li-ion cell. Specifically, DWT-based multi-resolution analysis (MRA) is used for extracting information on the electrochemical characteristics in both time and frequency domain simultaneously. Through using the MRA with implementation of the wavelet decomposition, the information on the electrochemical characteristics of a Li-ion cell can be extracted from the DCVS over a wide frequency range. Wavelet decomposition based on the selection of the order 3 Daubechies wavelet (dB3) and scale 5 as the best wavelet function and the optimal decomposition scale is implemented. In particular, this present approach develops these investigations one step further by showing low and high frequency components (approximation component An and detail component Dn, respectively) extracted from variable Li-ion cells with different electrochemical characteristics caused by aging effect. Experimental results show the clearness of the DWT-based approach for the reliable diagnosis of the SOH for a Li-ion cell.

  16. A novel analysis method for near infrared spectroscopy based on Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenyu; Yang, Hongyu; Liu, Yun; Ruan, Zongcai; Luo, Qingming; Gong, Hui; Lu, Zuhong

    2007-05-01

    Near Infrared Imager (NIRI) has been widely used to access the brain functional activity non-invasively. We use a portable, multi-channel and continuous-wave NIR topography instrument to measure the concentration changes of each hemoglobin species and map cerebral cortex functional activation. By extracting some essential features from the BOLD signals, optical tomography is able to be a new way of neuropsychological studies. Fourier spectral analysis provides a common framework for examining the distribution of global energy in the frequency domain. However, this method assumes that the signal should be stationary, which limits its application in non-stationary system. The hemoglobin species concentration changes are of such kind. In this work we develop a new signal processing method using Hilbert-Huang transform to perform spectral analysis of the functional NIRI signals. Compared with wavelet based multi-resolution analysis (MRA), we demonstrated the extraction of task related signal for observation of activation in the prefrontal cortex (PFC) in vision stimulation experiment. This method provides a new analysis tool for functional NIRI signals. Our experimental results show that the proposed approach provides the unique method for reconstructing target signal without losing original information and enables us to understand the episode of functional NIRI more precisely.

  17. Texture feature extraction based on wavelet transform and gray-level co-occurrence matrices applied to osteosarcoma diagnosis.

    PubMed

    Hu, Shan; Xu, Chao; Guan, Weiqiao; Tang, Yong; Liu, Yana

    2014-01-01

    Osteosarcoma is the most common malignant bone tumor among children and adolescents. In this study, image texture analysis was made to extract texture features from bone CR images to evaluate the recognition rate of osteosarcoma. To obtain the optimal set of features, Sym4 and Db4 wavelet transforms and gray-level co-occurrence matrices were applied to the image, with statistical methods being used to maximize the feature selection. To evaluate the performance of these methods, a support vector machine algorithm was used. The experimental results demonstrated that the Sym4 wavelet had a higher classification accuracy (93.44%) than the Db4 wavelet with respect to osteosarcoma occurrence in the epiphysis, whereas the Db4 wavelet had a higher classification accuracy (96.25%) for osteosarcoma occurrence in the diaphysis. Results including accuracy, sensitivity, specificity and ROC curves obtained using the wavelets were all higher than those obtained using the features derived from the GLCM method. It is concluded that, a set of texture features can be extracted from the wavelets and used in computer-aided osteosarcoma diagnosis systems. In addition, this study also confirms that multi-resolution analysis is a useful tool for texture feature extraction during bone CR image processing.

  18. Multiresolution 3-D reconstruction from side-scan sonar images.

    PubMed

    Coiras, Enrique; Petillot, Yvan; Lane, David M

    2007-02-01

    In this paper, a new method for the estimation of seabed elevation maps from side-scan sonar images is presented. The side-scan image formation process is represented by a Lambertian diffuse model, which is then inverted by a multiresolution optimization procedure inspired by expectation-maximization to account for the characteristics of the imaged seafloor region. On convergence of the model, approximations for seabed reflectivity, side-scan beam pattern, and seabed altitude are obtained. The performance of the system is evaluated against a real structure of known dimensions. Reconstruction results for images acquired by different sonar sensors are presented. Applications to augmented reality for the simulation of targets in sonar imagery are also discussed.

  19. Multiresolution Wavelet Analysis of Heartbeat Intervals Discriminates Healthy Patients from Those with Cardiac Pathology

    NASA Astrophysics Data System (ADS)

    Thurner, Stefan; Feurstein, Markus C.; Teich, Malvin C.

    1998-02-01

    We applied multiresolution wavelet analysis to the sequence of times between human heartbeats ( R-R intervals) and have found a scale window, between 16 and 32 heartbeat intervals, over which the widths of the R-R wavelet coefficients fall into disjoint sets for normal and heart-failure patients. This has enabled us to correctly classify every patient in a standard data set as belonging either to the heart-failure or normal group with 100% accuracy, thereby providing a clinically significant measure of the presence of heart failure from the R-R intervals alone. Comparison is made with previous approaches, which have provided only statistically significant measures.

  20. Admiral Raymond A. Spruance: Lessons in Adaptation from the Pacific

    DTIC Science & Technology

    2010-04-30

    Association of the Class of 1907, 342. 54 Hough, 237. 55 Vlahos , Michael. The Blue Sword: The Naval War College and the American Mission, 1919-1941...Warfare: Theory and Practice. Newport, RI: U.S. Naval War College, 2009. Vlahos , Michael. The Blue Sword: The Naval War College and the American

  1. Arms Control and the Strategic Defense Initiative: Three Perspectives. Occasional Paper 36.

    ERIC Educational Resources Information Center

    Hough, Jerry F.; And Others

    Three perspectives on President Ronald Reagan's Strategic Defense Initiative (SDI), which is intended to defend U.S. targets from a Soviet nuclear attack, are presented in separate sections. In the first section, "Soviet Interpretation and Response," Jerry F. Hough examines possible reasons for Soviet preoccupation with SDI. He discusses…

  2. Hazardous sign detection for safety applications in traffic monitoring

    NASA Astrophysics Data System (ADS)

    Benesova, Wanda; Kottman, Michal; Sidla, Oliver

    2012-01-01

    The transportation of hazardous goods in public streets systems can pose severe safety threats in case of accidents. One of the solutions for these problems is an automatic detection and registration of vehicles which are marked with dangerous goods signs. We present a prototype system which can detect a trained set of signs in high resolution images under real-world conditions. This paper compares two different methods for the detection: bag of visual words (BoW) procedure and our approach presented as pairs of visual words with Hough voting. The results of an extended series of experiments are provided in this paper. The experiments show that the size of visual vocabulary is crucial and can significantly affect the recognition success rate. Different code-book sizes have been evaluated for this detection task. The best result of the first method BoW was 67% successfully recognized hazardous signs, whereas the second method proposed in this paper - pairs of visual words and Hough voting - reached 94% of correctly detected signs. The experiments are designed to verify the usability of the two proposed approaches in a real-world scenario.

  3. The multi-resolution capability of Tchebichef moments and its applications to the analysis of fluorescence excitation-emission spectra

    NASA Astrophysics Data System (ADS)

    Li, Bao Qiong; Wang, Xue; Li Xu, Min; Zhai, Hong Lin; Chen, Jing; Liu, Jin Jin

    2018-01-01

    Fluorescence spectroscopy with an excitation-emission matrix (EEM) is a fast and inexpensive technique and has been applied to the detection of a very wide range of analytes. However, serious scattering and overlapping signals hinder the applications of EEM spectra. In this contribution, the multi-resolution capability of Tchebichef moments was investigated in depth and applied to the analysis of two EEM data sets (data set 1 consisted of valine-tyrosine-valine, tryptophan-glycine and phenylalanine, and data set 2 included vitamin B1, vitamin B2 and vitamin B6) for the first time. By means of the Tchebichef moments with different orders, the different information in the EEM spectra can be represented. It is owing to this multi-resolution capability that the overlapping problem was solved, and the information of chemicals and scatterings were separated. The obtained results demonstrated that the Tchebichef moment method is very effective, which provides a promising tool for the analysis of EEM spectra. It is expected that the applications of Tchebichef moment method could be developed and extended in complex systems such as biological fluids, food, environment and others to deal with the practical problems (overlapped peaks, unknown interferences, baseline drifts, and so on) with other spectra.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Kelin; Zhao, Zhixiong; Wei, Guo-Wei, E-mail: wei@math.msu.edu

    Although persistent homology has emerged as a promising tool for the topological simplification of complex data, it is computationally intractable for large datasets. We introduce multiresolution persistent homology to handle excessively large datasets. We match the resolution with the scale of interest so as to represent large scale datasets with appropriate resolution. We utilize flexibility-rigidity index to access the topological connectivity of the data set and define a rigidity density for the filtration analysis. By appropriately tuning the resolution of the rigidity density, we are able to focus the topological lens on the scale of interest. The proposed multiresolution topologicalmore » analysis is validated by a hexagonal fractal image which has three distinct scales. We further demonstrate the proposed method for extracting topological fingerprints from DNA molecules. In particular, the topological persistence of a virus capsid with 273 780 atoms is successfully analyzed which would otherwise be inaccessible to the normal point cloud method and unreliable by using coarse-grained multiscale persistent homology. The proposed method has also been successfully applied to the protein domain classification, which is the first time that persistent homology is used for practical protein domain analysis, to our knowledge. The proposed multiresolution topological method has potential applications in arbitrary data sets, such as social networks, biological networks, and graphs.« less

  5. Filtering and left ventricle segmentation of the fetal heart in ultrasound images

    NASA Astrophysics Data System (ADS)

    Vargas-Quintero, Lorena; Escalante-Ramírez, Boris

    2013-11-01

    In this paper, we propose to use filtering methods and a segmentation algorithm for the analysis of fetal heart in ultrasound images. Since noise speckle makes difficult the analysis of ultrasound images, the filtering process becomes a useful task in these types of applications. The filtering techniques consider in this work assume that the speckle noise is a random variable with a Rayleigh distribution. We use two multiresolution methods: one based on wavelet decomposition and the another based on the Hermite transform. The filtering process is used as way to strengthen the performance of the segmentation tasks. For the wavelet-based approach, a Bayesian estimator at subband level for pixel classification is employed. The Hermite method computes a mask to find those pixels that are corrupted by speckle. On the other hand, we picked out a method based on a deformable model or "snake" to evaluate the influence of the filtering techniques in the segmentation task of left ventricle in fetal echocardiographic images.

  6. Cost-efficient speckle interferometry with plastic optical fiber for unobtrusive monitoring of human vital signs.

    PubMed

    Podbreznik, Peter; Đonlagić, Denis; Lešnik, Dejan; Cigale, Boris; Zazula, Damjan

    2013-10-01

    A cost-efficient plastic optical fiber (POF) system for unobtrusive monitoring of human vital signs is presented. The system is based on speckle interferometry. A laser diode is butt-coupled to the POF whose exit face projects speckle patterns onto a linear optical sensor array. Sequences of acquired speckle images are transformed into one-dimensional signals by using the phase-shifting method. The signals are analyzed by band-pass filtering and a Morlet-wavelet-based multiresolutional approach for the detection of cardiac and respiratory activities, respectively. The system is tested with 10 healthy nonhospitalized persons, lying supine on a mattress with the embedded POF. Experimental results are assessed statistically: precisions of 98.8% ± 1.5% and 97.9% ± 2.3%, sensitivities of 99.4% ± 0.6% and 95.3% ± 3%, and mean delays between interferometric detections and corresponding referential signals of 116.6 ± 55.5 and 1299.2 ± 437.3 ms for the heartbeat and respiration are obtained, respectively.

  7. Motion Tracking and Identification of Unrestraint Gait Rehabilitation by Use of Elderly Support Robot

    NASA Astrophysics Data System (ADS)

    Nokata, Makoto; Hirai, Wataru; Itatani, Ryosuke

    This paper presents a robotic training system that can exercise the user without bodily restraint, neither markers nor sensors are attached to the trainee. We developed the robot system that has a total of four mounted components: a laser sensor, a camera, a cushion, and an electric motor. This paper have showed the method used for determining whether the trainee was bending forward or backward while walking, and the extent of the tilt, using the recorded image of the back of the trainee's head. A characteristic of our software algorithms has been that the image was divided into 9 quadrants, and each quadrant undergoes Hough transformation. We have verified experimentally that by using our algorithms for the four patterns of forward, backward, diagonally, and crouching, the tilt of the trainee's body have been accurately determined. We created a flowchart for determining the direction of movement according to experimental results. By adjusting the values used to make the distinction according to the position and the angle of the camera, and the width of the back of the trainee's head, we were able to accurately determine the walking condition of the trainee, and achieve early detection of the start of a fall.

  8. Real-time polarization imaging algorithm for camera-based polarization navigation sensors.

    PubMed

    Lu, Hao; Zhao, Kaichun; You, Zheng; Huang, Kaoli

    2017-04-10

    Biologically inspired polarization navigation is a promising approach due to its autonomous nature, high precision, and robustness. Many researchers have built point source-based and camera-based polarization navigation prototypes in recent years. Camera-based prototypes can benefit from their high spatial resolution but incur a heavy computation load. The pattern recognition algorithm in most polarization imaging algorithms involves several nonlinear calculations that impose a significant computation burden. In this paper, the polarization imaging and pattern recognition algorithms are optimized through reduction to several linear calculations by exploiting the orthogonality of the Stokes parameters without affecting precision according to the features of the solar meridian and the patterns of the polarized skylight. The algorithm contains a pattern recognition algorithm with a Hough transform as well as orientation measurement algorithms. The algorithm was loaded and run on a digital signal processing system to test its computational complexity. The test showed that the running time decreased to several tens of milliseconds from several thousand milliseconds. Through simulations and experiments, it was found that the algorithm can measure orientation without reducing precision. It can hence satisfy the practical demands of low computational load and high precision for use in embedded systems.

  9. Observing Bridge Dynamic Deflection in Green Time by Information Technology

    NASA Astrophysics Data System (ADS)

    Yu, Chengxin; Zhang, Guojian; Zhao, Yongqian; Chen, Mingzhi

    2018-01-01

    As traditional surveying methods are limited to observe bridge dynamic deflection; information technology is adopted to observe bridge dynamic deflection in Green time. Information technology used in this study means that we use digital cameras to photograph the bridge in red time as a zero image. Then, a series of successive images are photographed in green time. Deformation point targets are identified and located by Hough transform. With reference to the control points, the deformation values of these deformation points are obtained by differencing the successive images with a zero image, respectively. Results show that the average measurement accuracies of C0 are 0.46 pixels, 0.51 pixels and 0.74 pixels in X, Z and comprehensive direction. The average measurement accuracies of C1 are 0.43 pixels, 0.43 pixels and 0.67 pixels in X, Z and comprehensive direction in these tests. The maximal bridge deflection is 44.16mm, which is less than 75mm (Bridge deflection tolerance value). Information technology in this paper can monitor bridge dynamic deflection and depict deflection trend curves of the bridge in real time. It can provide data support for the site decisions to the bridge structure safety.

  10. Development of a novel constellation based landmark detection algorithm

    NASA Astrophysics Data System (ADS)

    Ghayoor, Ali; Vaidya, Jatin G.; Johnson, Hans J.

    2013-03-01

    Anatomical landmarks such as the anterior commissure (AC) and posterior commissure (PC) are commonly used by researchers for co-registration of images. In this paper, we present a novel, automated approach for landmark detection that combines morphometric constraining and statistical shape models to provide accurate estimation of landmark points. This method is made robust to large rotations in initial head orientation by extracting extra information of the eye centers using a radial Hough transform and exploiting the centroid of head mass (CM) using a novel estimation approach. To evaluate the effectiveness of this method, the algorithm is trained on a set of 20 images with manually selected landmarks, and a test dataset is used to compare the automatically detected against the manually detected landmark locations of the AC, PC, midbrain-pons junction (MPJ), and fourth ventricle notch (VN4). The results show that the proposed method is accurate as the average error between the automatically and manually labeled landmark points is less than 1 mm. Also, the algorithm is highly robust as it was successfully run on a large dataset that included different kinds of images with various orientation, spacing, and origin.

  11. Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing.

    PubMed

    Rahim, Sarni Suhaila; Palade, Vasile; Shuttleworth, James; Jayne, Chrisina

    2016-12-01

    Digital retinal imaging is a challenging screening method for which effective, robust and cost-effective approaches are still to be developed. Regular screening for diabetic retinopathy and diabetic maculopathy diseases is necessary in order to identify the group at risk of visual impairment. This paper presents a novel automatic detection of diabetic retinopathy and maculopathy in eye fundus images by employing fuzzy image processing techniques. The paper first introduces the existing systems for diabetic retinopathy screening, with an emphasis on the maculopathy detection methods. The proposed medical decision support system consists of four parts, namely: image acquisition, image preprocessing including four retinal structures localisation, feature extraction and the classification of diabetic retinopathy and maculopathy. A combination of fuzzy image processing techniques, the Circular Hough Transform and several feature extraction methods are implemented in the proposed system. The paper also presents a novel technique for the macula region localisation in order to detect the maculopathy. In addition to the proposed detection system, the paper highlights a novel online dataset and it presents the dataset collection, the expert diagnosis process and the advantages of our online database compared to other public eye fundus image databases for diabetic retinopathy purposes.

  12. Rear-end vision-based collision detection system for motorcyclists

    NASA Astrophysics Data System (ADS)

    Muzammel, Muhammad; Yusoff, Mohd Zuki; Meriaudeau, Fabrice

    2017-05-01

    In many countries, the motorcyclist fatality rate is much higher than that of other vehicle drivers. Among many other factors, motorcycle rear-end collisions are also contributing to these biker fatalities. To increase the safety of motorcyclists and minimize their road fatalities, this paper introduces a vision-based rear-end collision detection system. The binary road detection scheme contributes significantly to reduce the negative false detections and helps to achieve reliable results even though shadows and different lane markers are present on the road. The methodology is based on Harris corner detection and Hough transform. To validate this methodology, two types of dataset are used: (1) self-recorded datasets (obtained by placing a camera at the rear end of a motorcycle) and (2) online datasets (recorded by placing a camera at the front of a car). This method achieved 95.1% accuracy for the self-recorded dataset and gives reliable results for the rear-end vehicle detections under different road scenarios. This technique also performs better for the online car datasets. The proposed technique's high detection accuracy using a monocular vision camera coupled with its low computational complexity makes it a suitable candidate for a motorbike rear-end collision detection system.

  13. Automatic segmentation of coronary arteries from computed tomography angiography data cloud using optimal thresholding

    NASA Astrophysics Data System (ADS)

    Ansari, Muhammad Ahsan; Zai, Sammer; Moon, Young Shik

    2017-01-01

    Manual analysis of the bulk data generated by computed tomography angiography (CTA) is time consuming, and interpretation of such data requires previous knowledge and expertise of the radiologist. Therefore, an automatic method that can isolate the coronary arteries from a given CTA dataset is required. We present an automatic yet effective segmentation method to delineate the coronary arteries from a three-dimensional CTA data cloud. Instead of a region growing process, which is usually time consuming and prone to leakages, the method is based on the optimal thresholding, which is applied globally on the Hessian-based vesselness measure in a localized way (slice by slice) to track the coronaries carefully to their distal ends. Moreover, to make the process automatic, we detect the aorta using the Hough transform technique. The proposed segmentation method is independent of the starting point to initiate its process and is fast in the sense that coronary arteries are obtained without any preprocessing or postprocessing steps. We used 12 real clinical datasets to show the efficiency and accuracy of the presented method. Experimental results reveal that the proposed method achieves 95% average accuracy.

  14. Estimation of Bridge Height over Water from Polarimetric SAR Image Data Using Mapping and Projection Algorithm and De-Orientation Theory

    NASA Astrophysics Data System (ADS)

    Wang, Haipeng; Xu, Feng; Jin, Ya-Qiu; Ouchi, Kazuo

    An inversion method of bridge height over water by polarimetric synthetic aperture radar (SAR) is developed. A geometric ray description to illustrate scattering mechanism of a bridge over water surface is identified by polarimetric image analysis. Using the mapping and projecting algorithm, a polarimetric SAR image of a bridge model is first simulated and shows that scattering from a bridge over water can be identified by three strip lines corresponding to single-, double-, and triple-order scattering, respectively. A set of polarimetric parameters based on the de-orientation theory is applied to analysis of three types scattering, and the thinning-clustering algorithm and Hough transform are then employed to locate the image positions of these strip lines. These lines are used to invert the bridge height. Fully polarimetric image data of airborne Pi-SAR at X-band are applied to inversion of the height and width of the Naruto Bridge in Japan. Based on the same principle, this approach is also applicable to spaceborne ALOSPALSAR single-polarization data of the Eastern Ocean Bridge in China. The results show good feasibility to realize the bridge height inversion.

  15. Complete Vision-Based Traffic Sign Recognition Supported by an I2V Communication System

    PubMed Central

    García-Garrido, Miguel A.; Ocaña, Manuel; Llorca, David F.; Arroyo, Estefanía; Pozuelo, Jorge; Gavilán, Miguel

    2012-01-01

    This paper presents a complete traffic sign recognition system based on vision sensor onboard a moving vehicle which detects and recognizes up to one hundred of the most important road signs, including circular and triangular signs. A restricted Hough transform is used as detection method from the information extracted in contour images, while the proposed recognition system is based on Support Vector Machines (SVM). A novel solution to the problem of discarding detected signs that do not pertain to the host road is proposed. For that purpose infrastructure-to-vehicle (I2V) communication and a stereo vision sensor are used. Furthermore, the outputs provided by the vision sensor and the data supplied by the CAN Bus and a GPS sensor are combined to obtain the global position of the detected traffic signs, which is used to identify a traffic sign in the I2V communication. This paper presents plenty of tests in real driving conditions, both day and night, in which an average detection rate over 95% and an average recognition rate around 93% were obtained with an average runtime of 35 ms that allows real-time performance. PMID:22438704

  16. Complete vision-based traffic sign recognition supported by an I2V communication system.

    PubMed

    García-Garrido, Miguel A; Ocaña, Manuel; Llorca, David F; Arroyo, Estefanía; Pozuelo, Jorge; Gavilán, Miguel

    2012-01-01

    This paper presents a complete traffic sign recognition system based on vision sensor onboard a moving vehicle which detects and recognizes up to one hundred of the most important road signs, including circular and triangular signs. A restricted Hough transform is used as detection method from the information extracted in contour images, while the proposed recognition system is based on Support Vector Machines (SVM). A novel solution to the problem of discarding detected signs that do not pertain to the host road is proposed. For that purpose infrastructure-to-vehicle (I2V) communication and a stereo vision sensor are used. Furthermore, the outputs provided by the vision sensor and the data supplied by the CAN Bus and a GPS sensor are combined to obtain the global position of the detected traffic signs, which is used to identify a traffic sign in the I2V communication. This paper presents plenty of tests in real driving conditions, both day and night, in which an average detection rate over 95% and an average recognition rate around 93% were obtained with an average runtime of 35 ms that allows real-time performance.

  17. Robust Spacecraft Component Detection in Point Clouds.

    PubMed

    Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng

    2018-03-21

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  18. Energy-weighted dynamical scattering simulations of electron diffraction modalities in the scanning electron microscope.

    PubMed

    Pascal, Elena; Singh, Saransh; Callahan, Patrick G; Hourahine, Ben; Trager-Cowan, Carol; Graef, Marc De

    2018-04-01

    Transmission Kikuchi diffraction (TKD) has been gaining momentum as a high resolution alternative to electron back-scattered diffraction (EBSD), adding to the existing electron diffraction modalities in the scanning electron microscope (SEM). The image simulation of any of these measurement techniques requires an energy dependent diffraction model for which, in turn, knowledge of electron energies and diffraction distances distributions is required. We identify the sample-detector geometry and the effect of inelastic events on the diffracting electron beam as the important factors to be considered when predicting these distributions. However, tractable models taking into account inelastic scattering explicitly are lacking. In this study, we expand the Monte Carlo (MC) energy-weighting dynamical simulations models used for EBSD [1] and ECP [2] to the TKD case. We show that the foil thickness in TKD can be used as a means of energy filtering and compare band sharpness in the different modalities. The current model is shown to correctly predict TKD patterns and, through the dictionary indexing approach, to produce higher quality indexed TKD maps than conventional Hough transform approach, especially close to grain boundaries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Computer-Aided Diagnosis of Anterior Segment Eye Abnormalities using Visible Wavelength Image Analysis Based Machine Learning.

    PubMed

    S V, Mahesh Kumar; R, Gunasundari

    2018-06-02

    Eye disease is a major health problem among the elderly people. Cataract and corneal arcus are the major abnormalities that exist in the anterior segment eye region of aged people. Hence, computer-aided diagnosis of anterior segment eye abnormalities will be helpful for mass screening and grading in ophthalmology. In this paper, we propose a multiclass computer-aided diagnosis (CAD) system using visible wavelength (VW) eye images to diagnose anterior segment eye abnormalities. In the proposed method, the input VW eye images are pre-processed for specular reflection removal and the iris circle region is segmented using a circular Hough Transform (CHT)-based approach. The first-order statistical features and wavelet-based features are extracted from the segmented iris circle and used for classification. The Support Vector Machine (SVM) by Sequential Minimal Optimization (SMO) algorithm was used for the classification. In experiments, we used 228 VW eye images that belong to three different classes of anterior segment eye abnormalities. The proposed method achieved a predictive accuracy of 96.96% with 97% sensitivity and 99% specificity. The experimental results show that the proposed method has significant potential for use in clinical applications.

  20. Image processing-based framework for continuous lane recognition in mountainous roads for driver assistance system

    NASA Astrophysics Data System (ADS)

    Manoharan, Kodeeswari; Daniel, Philemon

    2017-11-01

    This paper presents a robust lane detection technique for roads on hilly terrain. The target of this paper is to utilize image processing strategies to recognize lane lines on structured mountain roads with the help of improved Hough transform. Vision-based approach is used as it performs well in a wide assortment of circumstances by abstracting valuable information contrasted with other sensors. The proposed strategy processes the live video stream, which is a progression of pictures, and concentrates on the position of lane markings in the wake of sending the edges through different channels and legitimate thresholding. The algorithm is tuned for Indian mountainous curved and paved roads. A technique of computation is utilized to discard the disturbing lines other than the credible lane lines and show just the required prevailing lane lines. This technique will consequently discover two lane lines that are nearest to the vehicle in a picture as right on time as could reasonably be expected. Various video sequences on hilly terrain are tested to verify the effectiveness of our method, and it has shown good performance with a detection accuracy of 91.89%.

  1. Robust Spacecraft Component Detection in Point Clouds

    PubMed Central

    Wei, Quanmao; Jiang, Zhiguo

    2018-01-01

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density. PMID:29561828

  2. A VidEo-Based Intelligent Recognition and Decision System for the Phacoemulsification Cataract Surgery.

    PubMed

    Tian, Shu; Yin, Xu-Cheng; Wang, Zhi-Bin; Zhou, Fang; Hao, Hong-Wei

    2015-01-01

    The phacoemulsification surgery is one of the most advanced surgeries to treat cataract. However, the conventional surgeries are always with low automatic level of operation and over reliance on the ability of surgeons. Alternatively, one imaginative scene is to use video processing and pattern recognition technologies to automatically detect the cataract grade and intelligently control the release of the ultrasonic energy while operating. Unlike cataract grading in the diagnosis system with static images, complicated background, unexpected noise, and varied information are always introduced in dynamic videos of the surgery. Here we develop a Video-Based Intelligent Recognitionand Decision (VeBIRD) system, which breaks new ground by providing a generic framework for automatically tracking the operation process and classifying the cataract grade in microscope videos of the phacoemulsification cataract surgery. VeBIRD comprises a robust eye (iris) detector with randomized Hough transform to precisely locate the eye in the noise background, an effective probe tracker with Tracking-Learning-Detection to thereafter track the operation probe in the dynamic process, and an intelligent decider with discriminative learning to finally recognize the cataract grade in the complicated video. Experiments with a variety of real microscope videos of phacoemulsification verify VeBIRD's effectiveness.

  3. A VidEo-Based Intelligent Recognition and Decision System for the Phacoemulsification Cataract Surgery

    PubMed Central

    Yin, Xu-Cheng; Wang, Zhi-Bin; Zhou, Fang; Hao, Hong-Wei

    2015-01-01

    The phacoemulsification surgery is one of the most advanced surgeries to treat cataract. However, the conventional surgeries are always with low automatic level of operation and over reliance on the ability of surgeons. Alternatively, one imaginative scene is to use video processing and pattern recognition technologies to automatically detect the cataract grade and intelligently control the release of the ultrasonic energy while operating. Unlike cataract grading in the diagnosis system with static images, complicated background, unexpected noise, and varied information are always introduced in dynamic videos of the surgery. Here we develop a Video-Based Intelligent Recognitionand Decision (VeBIRD) system, which breaks new ground by providing a generic framework for automatically tracking the operation process and classifying the cataract grade in microscope videos of the phacoemulsification cataract surgery. VeBIRD comprises a robust eye (iris) detector with randomized Hough transform to precisely locate the eye in the noise background, an effective probe tracker with Tracking-Learning-Detection to thereafter track the operation probe in the dynamic process, and an intelligent decider with discriminative learning to finally recognize the cataract grade in the complicated video. Experiments with a variety of real microscope videos of phacoemulsification verify VeBIRD's effectiveness. PMID:26693249

  4. Estimating the coordinates of pillars and posts in the parking lots for intelligent parking assist system

    NASA Astrophysics Data System (ADS)

    Choi, Jae Hyung; Kuk, Jung Gap; Kim, Young Il; Cho, Nam Ik

    2012-01-01

    This paper proposes an algorithm for the detection of pillars or posts in the video captured by a single camera implemented on the fore side of a room mirror in a car. The main purpose of this algorithm is to complement the weakness of current ultrasonic parking assist system, which does not well find the exact position of pillars or does not recognize narrow posts. The proposed algorithm is consisted of three steps: straight line detection, line tracking, and the estimation of 3D position of pillars. In the first step, the strong lines are found by the Hough transform. Second step is the combination of detection and tracking, and the third is the calculation of 3D position of the line by the analysis of trajectory of relative positions and the parameters of camera. Experiments on synthetic and real images show that the proposed method successfully locates and tracks the position of pillars, which helps the ultrasonic system to correctly locate the edges of pillars. It is believed that the proposed algorithm can also be employed as a basic element for vision based autonomous driving system.

  5. Automatic detection of zebra crossings from mobile LiDAR data

    NASA Astrophysics Data System (ADS)

    Riveiro, B.; González-Jorge, H.; Martínez-Sánchez, J.; Díaz-Vilariño, L.; Arias, P.

    2015-07-01

    An algorithm for the automatic detection of zebra crossings from mobile LiDAR data is developed and tested to be applied for road management purposes. The algorithm consists of several subsequent processes starting with road segmentation by performing a curvature analysis for each laser cycle. Then, intensity images are created from the point cloud using rasterization techniques, in order to detect zebra crossing using the Standard Hough Transform and logical constrains. To optimize the results, image processing algorithms are applied to the intensity images from the point cloud. These algorithms include binarization to separate the painting area from the rest of the pavement, median filtering to avoid noisy points, and mathematical morphology to fill the gaps between the pixels in the border of white marks. Once the road marking is detected, its position is calculated. This information is valuable for inventorying purposes of road managers that use Geographic Information Systems. The performance of the algorithm has been evaluated over several mobile LiDAR strips accounting for a total of 30 zebra crossings. That test showed a completeness of 83%. Non-detected marks mainly come from painting deterioration of the zebra crossing or by occlusions in the point cloud produced by other vehicles on the road.

  6. Assessing Multiple Methods for Determining Active Source Travel Times in a Dense Array

    NASA Astrophysics Data System (ADS)

    Parker, L.; Zeng, X.; Thurber, C. H.; Team, P.

    2016-12-01

    238 three-component nodal seismometers were deployed at the Brady Hot Springs geothermal field in Nevada to characterize changes in the subsurface as a result of changes in pumping conditions. The array consisted of a 500 meter by 1600 meter irregular grid with 50 meter spacing centered in an approximately rectangular 1200 meter by 1600 meter grid with 200 meter spacing. A large vibroseis truck (T-Rex) was deployed as an active seismic source at 216 locations. Over the course of 15 days, the truck occupied each location up to four times. At each location a swept-frequency source between 5 and 80 Hz over 20 seconds was produced using three vibration modes: longitudinal S-wave, transverse S-wave, and P-wave. Seismic wave arrivals were identified using three methods: cross-correlation, deconvolution, and Wigner-Ville distribution (WVD) plus the Hough Transform (HT). Surface wave arrivals were clear for all three modes of vibration using all three methods. Preliminary tomographic models will be presented, using the arrivals of the identified phases. This analysis is part of the PoroTomo project: Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology; http://geoscience.wisc.edu/feigl/porotomo.

  7. Extensions of algebraic image operators: An approach to model-based vision

    NASA Technical Reports Server (NTRS)

    Lerner, Bao-Ting; Morelli, Michael V.

    1990-01-01

    Researchers extend their previous research on a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets. Addition and multiplication are defined for the set of all grey-level images, which can then be described as polynomials of two variables. Utilizing this new algebraic structure, researchers devised an innovative, efficient edge detection scheme. An accurate method for deriving gradient component information from this edge detector is presented. Based upon this new edge detection system researchers developed a robust method for linear feature extraction by combining the techniques of a Hough transform and a line follower. The major advantage of this feature extractor is its general, object-independent nature. Target attributes, such as line segment lengths, intersections, angles of intersection, and endpoints are derived by the feature extraction algorithm and employed during model matching. The algebraic operators are global operations which are easily reconfigured to operate on any size or shape region. This provides a natural platform from which to pursue dynamic scene analysis. A method for optimizing the linear feature extractor which capitalizes on the spatially reconfiguration nature of the edge detector/gradient component operator is discussed.

  8. Portable bacterial identification system based on elastic light scatter patterns.

    PubMed

    Bae, Euiwon; Ying, Dawei; Kramer, Donald; Patsekin, Valery; Rajwa, Bartek; Holdman, Cheryl; Sturgis, Jennifer; Davisson, V Jo; Robinson, J Paul

    2012-08-28

    Conventional diagnosis and identification of bacteria requires shipment of samples to a laboratory for genetic and biochemical analysis. This process can take days and imposes significant delay to action in situations where timely intervention can save lives and reduce associated costs. To enable faster response to an outbreak, a low-cost, small-footprint, portable microbial-identification instrument using forward scatterometry has been developed. This device, weighing 9 lb and measuring 12 × 6 × 10.5 in., utilizes elastic light scatter (ELS) patterns to accurately capture bacterial colony characteristics and delivers the classification results via wireless access. The overall system consists of two CCD cameras, one rotational and one translational stage, and a 635-nm laser diode. Various software algorithms such as Hough transform, 2-D geometric moments, and the traveling salesman problem (TSP) have been implemented to provide colony count and circularity, centering process, and minimized travel time among colonies. Experiments were conducted with four bacteria genera using pure and mixed plate and as proof of principle a field test was conducted in four different locations where the average classification rate ranged between 95 and 100%.

  9. Iris Recognition Using Feature Extraction of Box Counting Fractal Dimension

    NASA Astrophysics Data System (ADS)

    Khotimah, C.; Juniati, D.

    2018-01-01

    Biometrics is a science that is now growing rapidly. Iris recognition is a biometric modality which captures a photo of the eye pattern. The markings of the iris are distinctive that it has been proposed to use as a means of identification, instead of fingerprints. Iris recognition was chosen for identification in this research because every human has a special feature that each individual is different and the iris is protected by the cornea so that it will have a fixed shape. This iris recognition consists of three step: pre-processing of data, feature extraction, and feature matching. Hough transformation is used in the process of pre-processing to locate the iris area and Daugman’s rubber sheet model to normalize the iris data set into rectangular blocks. To find the characteristics of the iris, it was used box counting method to get the fractal dimension value of the iris. Tests carried out by used k-fold cross method with k = 5. In each test used 10 different grade K of K-Nearest Neighbor (KNN). The result of iris recognition was obtained with the best accuracy was 92,63 % for K = 3 value on K-Nearest Neighbor (KNN) method.

  10. Triadic split-merge sampler

    NASA Astrophysics Data System (ADS)

    van Rossum, Anne C.; Lin, Hai Xiang; Dubbeldam, Johan; van der Herik, H. Jaap

    2018-04-01

    In machine vision typical heuristic methods to extract parameterized objects out of raw data points are the Hough transform and RANSAC. Bayesian models carry the promise to optimally extract such parameterized objects given a correct definition of the model and the type of noise at hand. A category of solvers for Bayesian models are Markov chain Monte Carlo methods. Naive implementations of MCMC methods suffer from slow convergence in machine vision due to the complexity of the parameter space. Towards this blocked Gibbs and split-merge samplers have been developed that assign multiple data points to clusters at once. In this paper we introduce a new split-merge sampler, the triadic split-merge sampler, that perform steps between two and three randomly chosen clusters. This has two advantages. First, it reduces the asymmetry between the split and merge steps. Second, it is able to propose a new cluster that is composed out of data points from two different clusters. Both advantages speed up convergence which we demonstrate on a line extraction problem. We show that the triadic split-merge sampler outperforms the conventional split-merge sampler. Although this new MCMC sampler is demonstrated in this machine vision context, its application extend to the very general domain of statistical inference.

  11. The effect of different control point sampling sequences on convergence of VMAT inverse planning

    NASA Astrophysics Data System (ADS)

    Pardo Montero, Juan; Fenwick, John D.

    2011-04-01

    A key component of some volumetric-modulated arc therapy (VMAT) optimization algorithms is the progressive addition of control points to the optimization. This idea was introduced in Otto's seminal VMAT paper, in which a coarse sampling of control points was used at the beginning of the optimization and new control points were progressively added one at a time. A different form of the methodology is also present in the RapidArc optimizer, which adds new control points in groups called 'multiresolution levels', each doubling the number of control points in the optimization. This progressive sampling accelerates convergence, improving the results obtained, and has similarities with the ordered subset algorithm used to accelerate iterative image reconstruction. In this work we have used a VMAT optimizer developed in-house to study the performance of optimization algorithms which use different control point sampling sequences, most of which fall into three different classes: doubling sequences, which add new control points in groups such that the number of control points in the optimization is (roughly) doubled; Otto-like progressive sampling which adds one control point at a time, and equi-length sequences which contain several multiresolution levels each with the same number of control points. Results are presented in this study for two clinical geometries, prostate and head-and-neck treatments. A dependence of the quality of the final solution on the number of starting control points has been observed, in agreement with previous works. We have found that some sequences, especially E20 and E30 (equi-length sequences with 20 and 30 multiresolution levels, respectively), generate better results than a 5 multiresolution level RapidArc-like sequence. The final value of the cost function is reduced up to 20%, such reductions leading to small improvements in dosimetric parameters characterizing the treatments—slightly more homogeneous target doses and better sparing of the organs at risk.

  12. A multiresolution prostate representation for automatic segmentation in magnetic resonance images.

    PubMed

    Alvarez, Charlens; Martínez, Fabio; Romero, Eduardo

    2017-04-01

    Accurate prostate delineation is necessary in radiotherapy processes for concentrating the dose onto the prostate and reducing side effects in neighboring organs. Currently, manual delineation is performed over magnetic resonance imaging (MRI) taking advantage of its high soft tissue contrast property. Nevertheless, as human intervention is a consuming task with high intra- and interobserver variability rates, (semi)-automatic organ delineation tools have emerged to cope with these challenges, reducing the time spent for these tasks. This work presents a multiresolution representation that defines a novel metric and allows to segment a new prostate by combining a set of most similar prostates in a dataset. The proposed method starts by selecting the set of most similar prostates with respect to a new one using the proposed multiresolution representation. This representation characterizes the prostate through a set of salient points, extracted from a region of interest (ROI) that encloses the organ and refined using structural information, allowing to capture main relevant features of the organ boundary. Afterward, the new prostate is automatically segmented by combining the nonrigidly registered expert delineations associated to the previous selected similar prostates using a weighted patch-based strategy. Finally, the prostate contour is smoothed based on morphological operations. The proposed approach was evaluated with respect to the expert manual segmentation under a leave-one-out scheme using two public datasets, obtaining averaged Dice coefficients of 82% ± 0.07 and 83% ± 0.06, and demonstrating a competitive performance with respect to atlas-based state-of-the-art methods. The proposed multiresolution representation provides a feature space that follows a local salient point criteria and a global rule of the spatial configuration among these points to find out the most similar prostates. This strategy suggests an easy adaptation in the clinical routine, as supporting tool for annotation. © 2017 American Association of Physicists in Medicine.

  13. SU-E-J-88: Deformable Registration Using Multi-Resolution Demons Algorithm for 4DCT.

    PubMed

    Li, Dengwang; Yin, Yong

    2012-06-01

    In order to register 4DCT efficiently, we propose an improved deformable registration algorithm based on improved multi-resolution demons strategy to improve the efficiency of the algorithm. 4DCT images of lung cancer patients are collected from a General Electric Discovery ST CT scanner from our cancer hospital. All of the images are sorted into groups and reconstructed according to their phases, and eachrespiratory cycle is divided into 10 phases with the time interval of 10%. Firstly, in our improved demons algorithm we use gradients of both reference and floating images as deformation forces and also redistribute the forces according to the proportion of the two forces. Furthermore, we introduce intermediate variable to cost function for decreasing the noise in registration process. At the same time, Gaussian multi-resolution strategy and BFGS method for optimization are used to improve speed and accuracy of the registration. To validate the performance of the algorithm, we register the previous 10 phase-images. We compared the difference of floating and reference images before and after registered where two landmarks are decided by experienced clinician. We registered 10 phase-images of 4D-CT which is lung cancer patient from cancer hospital and choose images in exhalationas the reference images, and all other images were registered into the reference images. This method has a good accuracy demonstrated by a higher similarity measure for registration of 4D-CT and it can register a large deformation precisely. Finally, we obtain the tumor target achieved by the deformation fields using proposed method, which is more accurately than the internal margin (IM) expanded by the Gross Tumor Volume (GTV). Furthermore, we achieve tumor and normal tissue tracking and dose accumulation using 4DCT data. An efficient deformable registration algorithm was proposed by using multi-resolution demons algorithm for 4DCT. © 2012 American Association of Physicists in Medicine.

  14. Inferring Species Richness and Turnover by Statistical Multiresolution Texture Analysis of Satellite Imagery

    PubMed Central

    Convertino, Matteo; Mangoubi, Rami S.; Linkov, Igor; Lowry, Nathan C.; Desai, Mukund

    2012-01-01

    Background The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover. Methodology/Principal Findings We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf) model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures' representative pdf's via the Kullback-Leibler divergence (KL). Species turnover, or diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species richness, or diversity, based on the Shannon entropy of pixel intensity.To test our approach, we specifically use the green band of Landsat images for a water conservation area in the Florida Everglades. We validate our predictions against data of species occurrences for a twenty-eight years long period for both wet and dry seasons. Our method correctly predicts 73% of species richness. For species turnover, the newly proposed KL divergence prediction performance is near 100% accurate. This represents a significant improvement over the more conventional Shannon entropy difference, which provides 85% accuracy. Furthermore, we find that changes in soil and water patterns, as measured by fluctuations of the Shannon entropy for the red and blue bands respectively, are positively correlated with changes in vegetation. The fluctuations are smaller in the wet season when compared to the dry season. Conclusions/Significance Texture-based statistical multiresolution image analysis is a promising method for quantifying interseasonal differences and, consequently, the degree to which vegetation, soil, and water patterns vary. The proposed automated method for quantifying species richness and turnover can also provide analysis at higher spatial and temporal resolution than is currently obtainable from expensive monitoring campaigns, thus enabling more prompt, more cost effective inference and decision making support regarding anomalous variations in biodiversity. Additionally, a matrix-based visualization of the statistical multiresolution analysis is presented to facilitate both insight and quick recognition of anomalous data. PMID:23115629

  15. FLICC/FEDLINK Conference on Making Library Automation Choices (Washington, D.C., May 6, 1986).

    ERIC Educational Resources Information Center

    Landrum, Hollis

    This report of a conference convened by the Federal Library and Information Center Committee (FLICC) Subcommittee on Education provides brief summaries of four panel discussions conducted by 15 federal librarians who had assembled automation systems for their agencies' libraries and information centers. The first panel, consisting of Dean Hough,…

  16. Towards Online Multiresolution Community Detection in Large-Scale Networks

    PubMed Central

    Huang, Jianbin; Sun, Heli; Liu, Yaguang; Song, Qinbao; Weninger, Tim

    2011-01-01

    The investigation of community structure in networks has aroused great interest in multiple disciplines. One of the challenges is to find local communities from a starting vertex in a network without global information about the entire network. Many existing methods tend to be accurate depending on a priori assumptions of network properties and predefined parameters. In this paper, we introduce a new quality function of local community and present a fast local expansion algorithm for uncovering communities in large-scale networks. The proposed algorithm can detect multiresolution community from a source vertex or communities covering the whole network. Experimental results show that the proposed algorithm is efficient and well-behaved in both real-world and synthetic networks. PMID:21887325

  17. A qualitative multiresolution model for counterterrorism

    NASA Astrophysics Data System (ADS)

    Davis, Paul K.

    2006-05-01

    This paper describes a prototype model for exploring counterterrorism issues related to the recruiting effectiveness of organizations such as al Qaeda. The prototype demonstrates how a model can be built using qualitative input variables appropriate to representation of social-science knowledge, and how a multiresolution design can allow a user to think and operate at several levels - such as first conducting low-resolution exploratory analysis and then zooming into several layers of detail. The prototype also motivates and introduces a variety of nonlinear mathematical methods for representing how certain influences combine. This has value for, e.g., representing collapse phenomena underlying some theories of victory, and for explanations of historical results. The methodology is believed to be suitable for more extensive system modeling of terrorism and counterterrorism.

  18. Fully automatic segmentation of the femur from 3D-CT images using primitive shape recognition and statistical shape models.

    PubMed

    Ben Younes, Lassad; Nakajima, Yoshikazu; Saito, Toki

    2014-03-01

    Femur segmentation is well established and widely used in computer-assisted orthopedic surgery. However, most of the robust segmentation methods such as statistical shape models (SSM) require human intervention to provide an initial position for the SSM. In this paper, we propose to overcome this problem and provide a fully automatic femur segmentation method for CT images based on primitive shape recognition and SSM. Femur segmentation in CT scans was performed using primitive shape recognition based on a robust algorithm such as the Hough transform and RANdom SAmple Consensus. The proposed method is divided into 3 steps: (1) detection of the femoral head as sphere and the femoral shaft as cylinder in the SSM and the CT images, (2) rigid registration between primitives of SSM and CT image to initialize the SSM into the CT image, and (3) fitting of the SSM to the CT image edge using an affine transformation followed by a nonlinear fitting. The automated method provided good results even with a high number of outliers. The difference of segmentation error between the proposed automatic initialization method and a manual initialization method is less than 1 mm. The proposed method detects primitive shape position to initialize the SSM into the target image. Based on primitive shapes, this method overcomes the problem of inter-patient variability. Moreover, the results demonstrate that our method of primitive shape recognition can be used for 3D SSM initialization to achieve fully automatic segmentation of the femur.

  19. Lane Level Localization; Using Images and HD Maps to Mitigate the Lateral Error

    NASA Astrophysics Data System (ADS)

    Hosseinyalamdary, S.; Peter, M.

    2017-05-01

    In urban canyon where the GNSS signals are blocked by buildings, the accuracy of measured position significantly deteriorates. GIS databases have been frequently utilized to improve the accuracy of measured position using map matching approaches. In map matching, the measured position is projected to the road links (centerlines) in this approach and the lateral error of measured position is reduced. By the advancement in data acquision approaches, high definition maps which contain extra information, such as road lanes are generated. These road lanes can be utilized to mitigate the positional error and improve the accuracy in position. In this paper, the image content of a camera mounted on the platform is utilized to detect the road boundaries in the image. We apply color masks to detect the road marks, apply the Hough transform to fit lines to the left and right road boundaries, find the corresponding road segment in GIS database, estimate the homography transformation between the global and image coordinates of the road boundaries, and estimate the camera pose with respect to the global coordinate system. The proposed approach is evaluated on a benchmark. The position is measured by a smartphone's GPS receiver, images are taken from smartphone's camera and the ground truth is provided by using Real-Time Kinematic (RTK) technique. Results show the proposed approach significantly improves the accuracy of measured GPS position. The error in measured GPS position with average and standard deviation of 11.323 and 11.418 meters is reduced to the error in estimated postion with average and standard deviation of 6.725 and 5.899 meters.

  20. Automatic Coregistration for Multiview SAR Images in Urban Areas

    NASA Astrophysics Data System (ADS)

    Xiang, Y.; Kang, W.; Wang, F.; You, H.

    2017-09-01

    Due to the high resolution property and the side-looking mechanism of SAR sensors, complex buildings structures make the registration of SAR images in urban areas becomes very hard. In order to solve the problem, an automatic and robust coregistration approach for multiview high resolution SAR images is proposed in the paper, which consists of three main modules. First, both the reference image and the sensed image are segmented into two parts, urban areas and nonurban areas. Urban areas caused by double or multiple scattering in a SAR image have a tendency to show higher local mean and local variance values compared with general homogeneous regions due to the complex structural information. Based on this criterion, building areas are extracted. After obtaining the target regions, L-shape structures are detected using the SAR phase congruency model and Hough transform. The double bounce scatterings formed by wall and ground are shown as strong L- or T-shapes, which are usually taken as the most reliable indicator for building detection. According to the assumption that buildings are rectangular and flat models, planimetric buildings are delineated using the L-shapes, then the reconstructed target areas are obtained. For the orignal areas and the reconstructed target areas, the SAR-SIFT matching algorithm is implemented. Finally, correct corresponding points are extracted by the fast sample consensus (FSC) and the transformation model is also derived. The experimental results on a pair of multiview TerraSAR images with 1-m resolution show that the proposed approach gives a robust and precise registration performance, compared with the orignal SAR-SIFT method.

  1. Multiscale Analysis of Solar Image Data

    NASA Astrophysics Data System (ADS)

    Young, C. A.; Myers, D. C.

    2001-12-01

    It is often said that the blessing and curse of solar physics is that there is too much data. Solar missions such as Yohkoh, SOHO and TRACE have shown us the Sun with amazing clarity but have also cursed us with an increased amount of higher complexity data than previous missions. We have improved our view of the Sun yet we have not improved our analysis techniques. The standard techniques used for analysis of solar images generally consist of observing the evolution of features in a sequence of byte scaled images or a sequence of byte scaled difference images. The determination of features and structures in the images are done qualitatively by the observer. There is little quantitative and objective analysis done with these images. Many advances in image processing techniques have occured in the past decade. Many of these methods are possibly suited for solar image analysis. Multiscale/Multiresolution methods are perhaps the most promising. These methods have been used to formulate the human ability to view and comprehend phenomena on different scales. So these techniques could be used to quantitify the imaging processing done by the observers eyes and brains. In this work we present a preliminary analysis of multiscale techniques applied to solar image data. Specifically, we explore the use of the 2-d wavelet transform and related transforms with EIT, LASCO and TRACE images. This work was supported by NASA contract NAS5-00220.

  2. Pet fur color and texture classification

    NASA Astrophysics Data System (ADS)

    Yen, Jonathan; Mukherjee, Debarghar; Lim, SukHwan; Tretter, Daniel

    2007-01-01

    Object segmentation is important in image analysis for imaging tasks such as image rendering and image retrieval. Pet owners have been known to be quite vocal about how important it is to render their pets perfectly. We present here an algorithm for pet (mammal) fur color classification and an algorithm for pet (animal) fur texture classification. Per fur color classification can be applied as a necessary condition for identifying the regions in an image that may contain pets much like the skin tone classification for human flesh detection. As a result of the evolution, fur coloration of all mammals is caused by a natural organic pigment called Melanin and Melanin has only very limited color ranges. We have conducted a statistical analysis and concluded that mammal fur colors can be only in levels of gray or in two colors after the proper color quantization. This pet fur color classification algorithm has been applied for peteye detection. We also present here an algorithm for animal fur texture classification using the recently developed multi-resolution directional sub-band Contourlet transform. The experimental results are very promising as these transforms can identify regions of an image that may contain fur of mammals, scale of reptiles and feather of birds, etc. Combining the color and texture classification, one can have a set of strong classifiers for identifying possible animals in an image.

  3. Multi-resolution Shape Analysis via Non-Euclidean Wavelets: Applications to Mesh Segmentation and Surface Alignment Problems.

    PubMed

    Kim, Won Hwa; Chung, Moo K; Singh, Vikas

    2013-01-01

    The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.

  4. Buildings Change Detection Based on Shape Matching for Multi-Resolution Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Abdessetar, M.; Zhong, Y.

    2017-09-01

    Buildings change detection has the ability to quantify the temporal effect, on urban area, for urban evolution study or damage assessment in disaster cases. In this context, changes analysis might involve the utilization of the available satellite images with different resolutions for quick responses. In this paper, to avoid using traditional method with image resampling outcomes and salt-pepper effect, building change detection based on shape matching is proposed for multi-resolution remote sensing images. Since the object's shape can be extracted from remote sensing imagery and the shapes of corresponding objects in multi-scale images are similar, it is practical for detecting buildings changes in multi-scale imagery using shape analysis. Therefore, the proposed methodology can deal with different pixel size for identifying new and demolished buildings in urban area using geometric properties of objects of interest. After rectifying the desired multi-dates and multi-resolutions images, by image to image registration with optimal RMS value, objects based image classification is performed to extract buildings shape from the images. Next, Centroid-Coincident Matching is conducted, on the extracted building shapes, based on the Euclidean distance measurement between shapes centroid (from shape T0 to shape T1 and vice versa), in order to define corresponding building objects. Then, New and Demolished buildings are identified based on the obtained distances those are greater than RMS value (No match in the same location).

  5. Multisensor multiresolution data fusion for improvement in classification

    NASA Astrophysics Data System (ADS)

    Rubeena, V.; Tiwari, K. C.

    2016-04-01

    The rapid advancements in technology have facilitated easy availability of multisensor and multiresolution remote sensing data. Multisensor, multiresolution data contain complementary information and fusion of such data may result in application dependent significant information which may otherwise remain trapped within. The present work aims at improving classification by fusing features of coarse resolution hyperspectral (1 m) LWIR and fine resolution (20 cm) RGB data. The classification map comprises of eight classes. The class names are Road, Trees, Red Roof, Grey Roof, Concrete Roof, Vegetation, bare Soil and Unclassified. The processing methodology for hyperspectral LWIR data comprises of dimensionality reduction, resampling of data by interpolation technique for registering the two images at same spatial resolution, extraction of the spatial features to improve classification accuracy. In the case of fine resolution RGB data, the vegetation index is computed for classifying the vegetation class and the morphological building index is calculated for buildings. In order to extract the textural features, occurrence and co-occurence statistics is considered and the features will be extracted from all the three bands of RGB data. After extracting the features, Support Vector Machine (SVMs) has been used for training and classification. To increase the classification accuracy, post processing steps like removal of any spurious noise such as salt and pepper noise is done which is followed by filtering process by majority voting within the objects for better object classification.

  6. Multi-resolution model-based traffic sign detection and tracking

    NASA Astrophysics Data System (ADS)

    Marinas, Javier; Salgado, Luis; Camplani, Massimo

    2012-06-01

    In this paper we propose an innovative approach to tackle the problem of traffic sign detection using a computer vision algorithm and taking into account real-time operation constraints, trying to establish intelligent strategies to simplify as much as possible the algorithm complexity and to speed up the process. Firstly, a set of candidates is generated according to a color segmentation stage, followed by a region analysis strategy, where spatial characteristic of previously detected objects are taken into account. Finally, temporal coherence is introduced by means of a tracking scheme, performed using a Kalman filter for each potential candidate. Taking into consideration time constraints, efficiency is achieved two-fold: on the one side, a multi-resolution strategy is adopted for segmentation, where global operation will be applied only to low-resolution images, increasing the resolution to the maximum only when a potential road sign is being tracked. On the other side, we take advantage of the expected spacing between traffic signs. Namely, the tracking of objects of interest allows to generate inhibition areas, which are those ones where no new traffic signs are expected to appear due to the existence of a TS in the neighborhood. The proposed solution has been tested with real sequences in both urban areas and highways, and proved to achieve higher computational efficiency, especially as a result of the multi-resolution approach.

  7. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations.

    PubMed

    Lohse, Christian; Bassett, Danielle S; Lim, Kelvin O; Carlson, Jean M

    2014-10-01

    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.

  8. A general CFD framework for fault-resilient simulations based on multi-resolution information fusion

    NASA Astrophysics Data System (ADS)

    Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em

    2017-10-01

    We develop a general CFD framework for multi-resolution simulations to target multiscale problems but also resilience in exascale simulations, where faulty processors may lead to gappy, in space-time, simulated fields. We combine approximation theory and domain decomposition together with statistical learning techniques, e.g. coKriging, to estimate boundary conditions and minimize communications by performing independent parallel runs. To demonstrate this new simulation approach, we consider two benchmark problems. First, we solve the heat equation (a) on a small number of spatial "patches" distributed across the domain, simulated by finite differences at fine resolution and (b) on the entire domain simulated at very low resolution, thus fusing multi-resolution models to obtain the final answer. Second, we simulate the flow in a lid-driven cavity in an analogous fashion, by fusing finite difference solutions obtained with fine and low resolution assuming gappy data sets. We investigate the influence of various parameters for this framework, including the correlation kernel, the size of a buffer employed in estimating boundary conditions, the coarseness of the resolution of auxiliary data, and the communication frequency across different patches in fusing the information at different resolution levels. In addition to its robustness and resilience, the new framework can be employed to generalize previous multiscale approaches involving heterogeneous discretizations or even fundamentally different flow descriptions, e.g. in continuum-atomistic simulations.

  9. Fourier-based quantification of renal glomeruli size using Hough transform and shape descriptors.

    PubMed

    Najafian, Sohrab; Beigzadeh, Borhan; Riahi, Mohammad; Khadir Chamazkoti, Fatemeh; Pouramir, Mahdi

    2017-11-01

    Analysis of glomeruli geometry is important in histopathological evaluation of renal microscopic images. Due to the shape and size disparity of even glomeruli of same kidney, automatic detection of these renal objects is not an easy task. Although manual measurements are time consuming and at times are not very accurate, it is commonly used in medical centers. In this paper, a new method based on Fourier transform following usage of some shape descriptors is proposed to detect these objects and their geometrical parameters. Reaching the goal, a database of 400 regions are selected randomly. 200 regions of which are part of glomeruli and the other 200 regions are not belong to renal corpuscles. ROC curve is used to decide which descriptor could classify two groups better. f_measure, which is a combination of both tpr (true positive rate) and fpr (false positive rate), is also proposed to select optimal threshold for descriptors. Combination of three parameters (solidity, eccentricity, and also mean squared error of fitted ellipse) provided better result in terms of f_measure to distinguish desired regions. Then, Fourier transform of outer edges is calculated to form a complete curve out of separated region(s). The generality of proposed model is verified by use of cross validation method, which resulted tpr of 94%, and fpr of 5%. Calculation of glomerulus' and Bowman's space with use of the algorithm are also compared with a non-automatic measurement done by a renal pathologist, and errors of 5.9%, 5.4%, and 6.26% are resulted in calculation of Capsule area, Bowman space, and glomeruli area, respectively. Having tested different glomeruli with various shapes, the experimental consequences show robustness and reliability of our method. Therefore, it could be used to illustrate renal diseases and glomerular disorders by measuring the morphological changes accurately and expeditiously. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Assessing Native American disturbances in mixed oak forests of the Allegheny Plateau

    Treesearch

    Charles M. Ruffner; Andrew Sluyter; Marc D. Abrams; Charlie Crothers; Jack McLaughlin; Richard Kandare

    1997-01-01

    Although much has been written concerning the ecology and disturbance history of hemlock - white pine - northern hardwood (Nichols 1935; Braun 1950) forests of the Allegheny Plateau (Lutz 1930a; Morey 1936; Hough and Forbes 1943; Runkle 1981 ; Whitney 1990; Abrams and Owig 1996) few studies have investigated the distribution and successional dynamics of oak in this...

  11. Can a District-Level Teacher Salary Incentive Policy Improve Teacher Recruitment and Retention? Policy Brief 13-4

    ERIC Educational Resources Information Center

    Hough, Heather J.; Loeb, Susanna

    2013-01-01

    In this policy brief, Heather Hough and Susanna Loeb examine the effect of the Quality Teacher and Education Act of 2008 (QTEA) on teacher recruitment, retention, and overall teacher quality in the San Francisco Unified School District (SFUSD). They provide evidence that a salary increase can improve a school district's attractiveness within their…

  12. Hierarchical graphical-based human pose estimation via local multi-resolution convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhu, Aichun; Wang, Tian; Snoussi, Hichem

    2018-03-01

    This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN). Firstly, a Relative Mixture Deformable Model (RMDM) is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN) is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.

  13. Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models.

    PubMed

    Lee, Wen-Li; Chang, Koyin; Hsieh, Kai-Sheng

    2016-09-01

    Segmenting lung fields in a chest radiograph is essential for automatically analyzing an image. We present an unsupervised method based on multiresolution fractal feature vector. The feature vector characterizes the lung field region effectively. A fuzzy c-means clustering algorithm is then applied to obtain a satisfactory initial contour. The final contour is obtained by deformable models. The results show the feasibility and high performance of the proposed method. Furthermore, based on the segmentation of lung fields, the cardiothoracic ratio (CTR) can be measured. The CTR is a simple index for evaluating cardiac hypertrophy. After identifying a suspicious symptom based on the estimated CTR, a physician can suggest that the patient undergoes additional extensive tests before a treatment plan is finalized.

  14. Ray Casting of Large Multi-Resolution Volume Datasets

    NASA Astrophysics Data System (ADS)

    Lux, C.; Fröhlich, B.

    2009-04-01

    High quality volume visualization through ray casting on graphics processing units (GPU) has become an important approach for many application domains. We present a GPU-based, multi-resolution ray casting technique for the interactive visualization of massive volume data sets commonly found in the oil and gas industry. Large volume data sets are represented as a multi-resolution hierarchy based on an octree data structure. The original volume data is decomposed into small bricks of a fixed size acting as the leaf nodes of the octree. These nodes are the highest resolution of the volume. Coarser resolutions are represented through inner nodes of the hierarchy which are generated by down sampling eight neighboring nodes on a finer level. Due to limited memory resources of current desktop workstations and graphics hardware only a limited working set of bricks can be locally maintained for a frame to be displayed. This working set is chosen to represent the whole volume at different local resolution levels depending on the current viewer position, transfer function and distinct areas of interest. During runtime the working set of bricks is maintained in CPU- and GPU memory and is adaptively updated by asynchronously fetching data from external sources like hard drives or a network. The CPU memory hereby acts as a secondary level cache for these sources from which the GPU representation is updated. Our volume ray casting algorithm is based on a 3D texture-atlas in GPU memory. This texture-atlas contains the complete working set of bricks of the current multi-resolution representation of the volume. This enables the volume ray casting algorithm to access the whole working set of bricks through only a single 3D texture. For traversing rays through the volume, information about the locations and resolution levels of visited bricks are required for correct compositing computations. We encode this information into a small 3D index texture which represents the current octree subdivision on its finest level and spatially organizes the bricked data. This approach allows us to render a bricked multi-resolution volume data set utilizing only a single rendering pass with no loss of compositing precision. In contrast most state-of-the art volume rendering systems handle the bricked data as individual 3D textures, which are rendered one at a time while the results are composited into a lower precision frame buffer. Furthermore, our method enables us to integrate advanced volume rendering techniques like empty-space skipping, adaptive sampling and preintegrated transfer functions in a very straightforward manner with virtually no extra costs. Our interactive volume ray tracing implementation allows high quality visualizations of massive volume data sets of tens of Gigabytes in size on standard desktop workstations.

  15. Corner-point criterion for assessing nonlinear image processing imagers

    NASA Astrophysics Data System (ADS)

    Landeau, Stéphane; Pigois, Laurent; Foing, Jean-Paul; Deshors, Gilles; Swiathy, Greggory

    2017-10-01

    Range performance modeling of optronics imagers attempts to characterize the ability to resolve details in the image. Today, digital image processing is systematically used in conjunction with the optoelectronic system to correct its defects or to exploit tiny detection signals to increase performance. In order to characterize these processing having adaptive and non-linear properties, it becomes necessary to stimulate the imagers with test patterns whose properties are similar to the actual scene image ones, in terms of dynamic range, contours, texture and singular points. This paper presents an approach based on a Corner-Point (CP) resolution criterion, derived from the Probability of Correct Resolution (PCR) of binary fractal patterns. The fundamental principle lies in the respectful perception of the CP direction of one pixel minority value among the majority value of a 2×2 pixels block. The evaluation procedure considers the actual image as its multi-resolution CP transformation, taking the role of Ground Truth (GT). After a spatial registration between the degraded image and the original one, the degradation is statistically measured by comparing the GT with the degraded image CP transformation, in terms of localized PCR at the region of interest. The paper defines this CP criterion and presents the developed evaluation techniques, such as the measurement of the number of CP resolved on the target, the transformation CP and its inverse transform that make it possible to reconstruct an image of the perceived CPs. Then, this criterion is compared with the standard Johnson criterion, in the case of a linear blur and noise degradation. The evaluation of an imaging system integrating an image display and a visual perception is considered, by proposing an analysis scheme combining two methods: a CP measurement for the highly non-linear part (imaging) with real signature test target and conventional methods for the more linear part (displaying). The application to color imaging is proposed, with a discussion about the choice of the working color space depending on the type of image enhancement processing used.

  16. The Great Tunes of the Hough: Music and Song in Alan Garner's "The Stone Book Quartet "

    ERIC Educational Resources Information Center

    Godek, Sarah

    2004-01-01

    Although song and music are often elements in children's books, little critical attention has gone into examining their literary uses. Alan Garner's "The Stone Book Quartet" is an example of four texts for children in which music plays a vital role. The several snatches of traditional songs found throughout the quartet bring to life the culture of…

  17. FILM FORMAT AND FIDUCIAL MARKS OF THE 20$sub 4$ BUBBLE CHAMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, E.L.

    1962-12-31

    A description is given of the 20-in. bubble chamber film format. The film format consists of: chamber image; Arabic picture number; binary data box; Arabic view number; and the Hough-Powell road fiducial marks. The fiducial marks and their relation to the chamber optical constants are discussed. The constants are based on the standard measuring fiducials a and d. (P.C.H.)

  18. Development and Evaluation of a Success Index for Professionals in Postgraduate Training Programs

    DTIC Science & Technology

    1993-02-26

    15 Predicting Success among Program Participants .... ......... .. 16 AEGD Success and Career Success .......... ................ .. 16...10), and general career success (8). Hough applied the principle of behavioral consistency and aspects of the biographical inventory to develop and...the opportunity to evaluate how measures of success in AEGD translate into career success . The 90 AERs were reviewed by two experienced senior dental

  19. InSight Prelaunch Briefing

    NASA Image and Video Library

    2018-05-03

    Col. Michael Hough, Commander 30th Space Wing, Vandenberg Air Force Base, discusses NASA's InSight mission during a prelaunch media briefing, Thursday, May 3, 2018, at Vandenberg Air Force Base in California. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is a Mars lander designed to study the "inner space" of Mars: its crust, mantle, and core. Photo Credit: (NASA/Bill Ingalls)

  20. A Multi-Resolution Nonlinear Mapping Technique for Design and Analysis Applications

    NASA Technical Reports Server (NTRS)

    Phan, Minh Q.

    1998-01-01

    This report describes a nonlinear mapping technique where the unknown static or dynamic system is approximated by a sum of dimensionally increasing functions (one-dimensional curves, two-dimensional surfaces, etc.). These lower dimensional functions are synthesized from a set of multi-resolution basis functions, where the resolutions specify the level of details at which the nonlinear system is approximated. The basis functions also cause the parameter estimation step to become linear. This feature is taken advantage of to derive a systematic procedure to determine and eliminate basis functions that are less significant for the particular system under identification. The number of unknown parameters that must be estimated is thus reduced and compact models obtained. The lower dimensional functions (identified curves and surfaces) permit a kind of "visualization" into the complexity of the nonlinearity itself.

  1. Marker optimization for facial motion acquisition and deformation.

    PubMed

    Le, Binh H; Zhu, Mingyang; Deng, Zhigang

    2013-11-01

    A long-standing problem in marker-based facial motion capture is what are the optimal facial mocap marker layouts. Despite its wide range of potential applications, this problem has not yet been systematically explored to date. This paper describes an approach to compute optimized marker layouts for facial motion acquisition as optimization of characteristic control points from a set of high-resolution, ground-truth facial mesh sequences. Specifically, the thin-shell linear deformation model is imposed onto the example pose reconstruction process via optional hard constraints such as symmetry and multiresolution constraints. Through our experiments and comparisons, we validate the effectiveness, robustness, and accuracy of our approach. Besides guiding minimal yet effective placement of facial mocap markers, we also describe and demonstrate its two selected applications: marker-based facial mesh skinning and multiresolution facial performance capture.

  2. Optimization as a Tool for Consistency Maintenance in Multi-Resolution Simulation

    NASA Technical Reports Server (NTRS)

    Drewry, Darren T; Reynolds, Jr , Paul F; Emanuel, William R

    2006-01-01

    The need for new approaches to the consistent simulation of related phenomena at multiple levels of resolution is great. While many fields of application would benefit from a complete and approachable solution to this problem, such solutions have proven extremely difficult. We present a multi-resolution simulation methodology that uses numerical optimization as a tool for maintaining external consistency between models of the same phenomena operating at different levels of temporal and/or spatial resolution. Our approach follows from previous work in the disparate fields of inverse modeling and spacetime constraint-based animation. As a case study, our methodology is applied to two environmental models of forest canopy processes that make overlapping predictions under unique sets of operating assumptions, and which execute at different temporal resolutions. Experimental results are presented and future directions are addressed.

  3. A Multi-Resolution Nonlinear Mapping Technique for Design and Analysis Application

    NASA Technical Reports Server (NTRS)

    Phan, Minh Q.

    1997-01-01

    This report describes a nonlinear mapping technique where the unknown static or dynamic system is approximated by a sum of dimensionally increasing functions (one-dimensional curves, two-dimensional surfaces, etc.). These lower dimensional functions are synthesized from a set of multi-resolution basis functions, where the resolutions specify the level of details at which the nonlinear system is approximated. The basis functions also cause the parameter estimation step to become linear. This feature is taken advantage of to derive a systematic procedure to determine and eliminate basis functions that are less significant for the particular system under identification. The number of unknown parameters that must be estimated is thus reduced and compact models obtained. The lower dimensional functions (identified curves and surfaces) permit a kind of "visualization" into the complexity of the nonlinearity itself.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanai, Takeshi; Fann, George I.; Beylkin, Gregory

    Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using amore » numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H 2, Be, N 2, H 2O, and C 2H 4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.« less

  5. A new FOD recognition algorithm based on multi-source information fusion and experiment analysis

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xiao, Gang

    2011-08-01

    Foreign Object Debris (FOD) is a kind of substance, debris or article alien to an aircraft or system, which would potentially cause huge damage when it appears on the airport runway. Due to the airport's complex circumstance, quick and precise detection of FOD target on the runway is one of the important protections for airplane's safety. A multi-sensor system including millimeter-wave radar and Infrared image sensors is introduced and a developed new FOD detection and recognition algorithm based on inherent feature of FOD is proposed in this paper. Firstly, the FOD's location and coordinate can be accurately obtained by millimeter-wave radar, and then according to the coordinate IR camera will take target images and background images. Secondly, in IR image the runway's edges which are straight lines can be extracted by using Hough transformation method. The potential target region, that is, runway region, can be segmented from the whole image. Thirdly, background subtraction is utilized to localize the FOD target in runway region. Finally, in the detailed small images of FOD target, a new characteristic is discussed and used in target classification. The experiment results show that this algorithm can effectively reduce the computational complexity, satisfy the real-time requirement and possess of high detection and recognition probability.

  6. A cyclostrophic transformed Eulerian zonal mean model for the middle atmosphere of slowly rotating planets

    NASA Astrophysics Data System (ADS)

    Li, K. F.; Yao, K.; Taketa, C.; Zhang, X.; Liang, M. C.; Jiang, X.; Newman, C. E.; Tung, K. K.; Yung, Y. L.

    2015-12-01

    With the advance of modern computers, studies of planetary atmospheres have heavily relied on general circulation models (GCMs). Because these GCMs are usually very complicated, the simulations are sometimes difficult to understand. Here we develop a semi-analytic zonally averaged, cyclostrophic residual Eulerian model to illustrate how some of the large-scale structures of the middle atmospheric circulation can be explained qualitatively in terms of simple thermal (e.g. solar heating) and mechanical (the Eliassen-Palm flux divergence) forcings. This model is a generalization of that for fast rotating planets such as the Earth, where geostrophy dominates (Andrews and McIntyre 1987). The solution to this semi-analytic model consists of a set of modified Hough functions of the generalized Laplace's tidal equation with the cyclostrohpic terms. As examples, we apply this model to Titan and Venus. We show that the seasonal variations of the temperature and the circulation of these slowly-rotating planets can be well reproduced by adjusting only three parameters in the model: the Brunt-Väisälä bouyancy frequency, the Newtonian radiative cooling rate, and the Rayleigh friction damping rate. We will also discuss the application of this model to study the meridional transport of photochemically produced tracers that can be observed by space instruments.

  7. Feature extraction and classification of clouds in high resolution panchromatic satellite imagery

    NASA Astrophysics Data System (ADS)

    Sharghi, Elan

    The development of sophisticated remote sensing sensors is rapidly increasing, and the vast amount of satellite imagery collected is too much to be analyzed manually by a human image analyst. It has become necessary for a tool to be developed to automate the job of an image analyst. This tool would need to intelligently detect and classify objects of interest through computer vision algorithms. Existing software called the Rapid Image Exploitation Resource (RAPIER®) was designed by engineers at Space and Naval Warfare Systems Center Pacific (SSC PAC) to perform exactly this function. This software automatically searches for anomalies in the ocean and reports the detections as a possible ship object. However, if the image contains a high percentage of cloud coverage, a high number of false positives are triggered by the clouds. The focus of this thesis is to explore various feature extraction and classification methods to accurately distinguish clouds from ship objects. An examination of a texture analysis method, line detection using the Hough transform, and edge detection using wavelets are explored as possible feature extraction methods. The features are then supplied to a K-Nearest Neighbors (KNN) or Support Vector Machine (SVM) classifier. Parameter options for these classifiers are explored and the optimal parameters are determined.

  8. Assessment of cluster yield components by image analysis.

    PubMed

    Diago, Maria P; Tardaguila, Javier; Aleixos, Nuria; Millan, Borja; Prats-Montalban, Jose M; Cubero, Sergio; Blasco, Jose

    2015-04-01

    Berry weight, berry number and cluster weight are key parameters for yield estimation for wine and tablegrape industry. Current yield prediction methods are destructive, labour-demanding and time-consuming. In this work, a new methodology, based on image analysis was developed to determine cluster yield components in a fast and inexpensive way. Clusters of seven different red varieties of grapevine (Vitis vinifera L.) were photographed under laboratory conditions and their cluster yield components manually determined after image acquisition. Two algorithms based on the Canny and the logarithmic image processing approaches were tested to find the contours of the berries in the images prior to berry detection performed by means of the Hough Transform. Results were obtained in two ways: by analysing either a single image of the cluster or using four images per cluster from different orientations. The best results (R(2) between 69% and 95% in berry detection and between 65% and 97% in cluster weight estimation) were achieved using four images and the Canny algorithm. The model's capability based on image analysis to predict berry weight was 84%. The new and low-cost methodology presented here enabled the assessment of cluster yield components, saving time and providing inexpensive information in comparison with current manual methods. © 2014 Society of Chemical Industry.

  9. Automatic firearm class identification from cartridge cases

    NASA Astrophysics Data System (ADS)

    Kamalakannan, Sridharan; Mann, Christopher J.; Bingham, Philip R.; Karnowski, Thomas P.; Gleason, Shaun S.

    2011-03-01

    We present a machine vision system for automatic identification of the class of firearms by extracting and analyzing two significant properties from spent cartridge cases, namely the Firing Pin Impression (FPI) and the Firing Pin Aperture Outline (FPAO). Within the framework of the proposed machine vision system, a white light interferometer is employed to image the head of the spent cartridge cases. As a first step of the algorithmic procedure, the Primer Surface Area (PSA) is detected using a circular Hough transform. Once the PSA is detected, a customized statistical region-based parametric active contour model is initialized around the center of the PSA and evolved to segment the FPI. Subsequently, the scaled version of the segmented FPI is used to initialize a customized Mumford-Shah based level set model in order to segment the FPAO. Once the shapes of FPI and FPAO are extracted, a shape-based level set method is used in order to compare these extracted shapes to an annotated dataset of FPIs and FPAOs from varied firearm types. A total of 74 cartridge case images non-uniformly distributed over five different firearms are processed using the aforementioned scheme and the promising nature of the results (95% classification accuracy) demonstrate the efficacy of the proposed approach.

  10. Efficient and automatic image reduction framework for space debris detection based on GPU technology

    NASA Astrophysics Data System (ADS)

    Diprima, Francesco; Santoni, Fabio; Piergentili, Fabrizio; Fortunato, Vito; Abbattista, Cristoforo; Amoruso, Leonardo

    2018-04-01

    In the last years, the increasing number of space debris has triggered the need of a distributed monitoring system for the prevention of possible space collisions. Space surveillance based on ground telescope allows the monitoring of the traffic of the Resident Space Objects (RSOs) in the Earth orbit. This space debris surveillance has several applications such as orbit prediction and conjunction assessment. In this paper is proposed an optimized and performance-oriented pipeline for sources extraction intended to the automatic detection of space debris in optical data. The detection method is based on the morphological operations and Hough Transform for lines. Near real-time detection is obtained using General Purpose computing on Graphics Processing Units (GPGPU). The high degree of processing parallelism provided by GPGPU allows to split data analysis over thousands of threads in order to process big datasets with a limited computational time. The implementation has been tested on a large and heterogeneous images data set, containing both imaging satellites from different orbit ranges and multiple observation modes (i.e. sidereal and object tracking). These images were taken during an observation campaign performed from the EQUO (EQUatorial Observatory) observatory settled at the Broglio Space Center (BSC) in Kenya, which is part of the ASI-Sapienza Agreement.

  11. An Efficient Method for Automatic Road Extraction Based on Multiple Features from LiDAR Data

    NASA Astrophysics Data System (ADS)

    Li, Y.; Hu, X.; Guan, H.; Liu, P.

    2016-06-01

    The road extraction in urban areas is difficult task due to the complicated patterns and many contextual objects. LiDAR data directly provides three dimensional (3D) points with less occlusions and smaller shadows. The elevation information and surface roughness are distinguishing features to separate roads. However, LiDAR data has some disadvantages are not beneficial to object extraction, such as the irregular distribution of point clouds and lack of clear edges of roads. For these problems, this paper proposes an automatic road centerlines extraction method which has three major steps: (1) road center point detection based on multiple feature spatial clustering for separating road points from ground points, (2) local principal component analysis with least squares fitting for extracting the primitives of road centerlines, and (3) hierarchical grouping for connecting primitives into complete roads network. Compared with MTH (consist of Mean shift algorithm, Tensor voting, and Hough transform) proposed in our previous article, this method greatly reduced the computational cost. To evaluate the proposed method, the Vaihingen data set, a benchmark testing data provided by ISPRS for "Urban Classification and 3D Building Reconstruction" project, was selected. The experimental results show that our method achieve the same performance by less time in road extraction using LiDAR data.

  12. 3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR

    PubMed Central

    Krůček, Martin; Vrška, Tomáš; Král, Kamil

    2017-01-01

    Terrestrial laser scanning is a powerful technology for capturing the three-dimensional structure of forests with a high level of detail and accuracy. Over the last decade, many algorithms have been developed to extract various tree parameters from terrestrial laser scanning data. Here we present 3D Forest, an open-source non-platform-specific software application with an easy-to-use graphical user interface with the compilation of algorithms focused on the forest environment and extraction of tree parameters. The current version (0.42) extracts important parameters of forest structure from the terrestrial laser scanning data, such as stem positions (X, Y, Z), tree heights, diameters at breast height (DBH), as well as more advanced parameters such as tree planar projections, stem profiles or detailed crown parameters including convex and concave crown surface and volume. Moreover, 3D Forest provides quantitative measures of between-crown interactions and their real arrangement in 3D space. 3D Forest also includes an original algorithm of automatic tree segmentation and crown segmentation. Comparison with field data measurements showed no significant difference in measuring DBH or tree height using 3D Forest, although for DBH only the Randomized Hough Transform algorithm proved to be sufficiently resistant to noise and provided results comparable to traditional field measurements. PMID:28472167

  13. Diffuse optical tomography using semiautomated coregistered ultrasound measurements

    NASA Astrophysics Data System (ADS)

    Mostafa, Atahar; Vavadi, Hamed; Uddin, K. M. Shihab; Zhu, Quing

    2017-12-01

    Diffuse optical tomography (DOT) has demonstrated huge potential in breast cancer diagnosis and treatment monitoring. DOT image reconstruction guided by ultrasound (US) improves the diffused light localization and lesion reconstruction accuracy. However, DOT reconstruction depends on tumor geometry provided by coregistered US. Experienced operators can manually measure these lesion parameters; however, training and measurement time are needed. The wide clinical use of this technique depends on its robustness and faster imaging reconstruction capability. This article introduces a semiautomated procedure that automatically extracts lesion information from US images and incorporates it into the optical reconstruction. An adaptive threshold-based image segmentation is used to obtain tumor boundaries. For some US images, posterior shadow can extend to the chest wall and make the detection of deeper lesion boundary difficult. This problem can be solved using a Hough transform. The proposed procedure was validated from data of 20 patients. Optical reconstruction results using the proposed procedure were compared with those reconstructed using extracted tumor information from an experienced user. Mean optical absorption obtained from manual measurement was 0.21±0.06 cm-1 for malignant and 0.12±0.06 cm-1 for benign cases, whereas for the proposed method it was 0.24±0.08 cm-1 and 0.12±0.05 cm-1, respectively.

  14. Development of advanced image analysis techniques for the in situ characterization of multiphase dispersions occurring in bioreactors.

    PubMed

    Galindo, Enrique; Larralde-Corona, C Patricia; Brito, Teresa; Córdova-Aguilar, Ma Soledad; Taboada, Blanca; Vega-Alvarado, Leticia; Corkidi, Gabriel

    2005-03-30

    Fermentation bioprocesses typically involve two liquid phases (i.e. water and organic compounds) and one gas phase (air), together with suspended solids (i.e. biomass), which are the components to be dispersed. Characterization of multiphase dispersions is required as it determines mass transfer efficiency and bioreactor homogeneity. It is also needed for the appropriate design of contacting equipment, helping in establishing optimum operational conditions. This work describes the development of image analysis based techniques with advantages (in terms of data acquisition and processing), for the characterization of oil drops and bubble diameters in complex simulated fermentation broths. The system consists of fully digital acquisition of in situ images obtained from the inside of a mixing tank using a CCD camera synchronized with a stroboscopic light source, which are processed with a versatile commercial software. To improve the automation of particle recognition and counting, the Hough transform (HT) was used, so bubbles and oil drops were automatically detected and the processing time was reduced by 55% without losing accuracy with respect to a fully manual analysis. The system has been used for the detailed characterization of a number of operational conditions, including oil content, biomass morphology, presence of surfactants (such as proteins) and viscosity of the aqueous phase.

  15. Performance-scalable volumetric data classification for online industrial inspection

    NASA Astrophysics Data System (ADS)

    Abraham, Aby J.; Sadki, Mustapha; Lea, R. M.

    2002-03-01

    Non-intrusive inspection and non-destructive testing of manufactured objects with complex internal structures typically requires the enhancement, analysis and visualization of high-resolution volumetric data. Given the increasing availability of fast 3D scanning technology (e.g. cone-beam CT), enabling on-line detection and accurate discrimination of components or sub-structures, the inherent complexity of classification algorithms inevitably leads to throughput bottlenecks. Indeed, whereas typical inspection throughput requirements range from 1 to 1000 volumes per hour, depending on density and resolution, current computational capability is one to two orders-of-magnitude less. Accordingly, speeding up classification algorithms requires both reduction of algorithm complexity and acceleration of computer performance. A shape-based classification algorithm, offering algorithm complexity reduction, by using ellipses as generic descriptors of solids-of-revolution, and supporting performance-scalability, by exploiting the inherent parallelism of volumetric data, is presented. A two-stage variant of the classical Hough transform is used for ellipse detection and correlation of the detected ellipses facilitates position-, scale- and orientation-invariant component classification. Performance-scalability is achieved cost-effectively by accelerating a PC host with one or more COTS (Commercial-Off-The-Shelf) PCI multiprocessor cards. Experimental results are reported to demonstrate the feasibility and cost-effectiveness of the data-parallel classification algorithm for on-line industrial inspection applications.

  16. A new code for automatic detection and analysis of the lineament patterns for geophysical and geological purposes (ADALGEO)

    NASA Astrophysics Data System (ADS)

    Soto-Pinto, C.; Arellano-Baeza, A.; Sánchez, G.

    2013-08-01

    We present a new numerical method for automatic detection and analysis of changes in lineament patterns caused by seismic and volcanic activities. The method is implemented as a series of modules: (i) normalization of the image contrast, (ii) extraction of small linear features (stripes) through convolution of the part of the image in the vicinity of each pixel with a circular mask or through Canny algorithm, and (iii) posterior detection of main lineaments using the Hough transform. We demonstrate that our code reliably detects changes in the lineament patterns related to the stress evolution in the Earth's crust: specifically, a significant number of new lineaments appear approximately one month before an earthquake, while one month after the earthquake the lineament configuration returns to its initial state. Application of our software to the deformations caused by volcanic activity yields the opposite results: the number of lineaments decreases with the onset of microseismicity. This discrepancy can be explained assuming that the plate tectonic earthquakes are caused by the compression and accumulation of stress in the Earth's crust due to subduction of tectonic plates, whereas in the case of volcanic activity we deal with the inflation of a volcano edifice due to elevation of pressure and magma intrusion and the resulting stretching of the surface.

  17. Online Data Reduction for the Belle II Experiment using DATCON

    NASA Astrophysics Data System (ADS)

    Bernlochner, Florian; Deschamps, Bruno; Dingfelder, Jochen; Marinas, Carlos; Wessel, Christian

    2017-08-01

    The new Belle II experiment at the asymmetric e+e-accelerator SuperKEKB at KEK in Japan is designed to deliver a peak luminosity of 8 × 1035cm-2s-1. To perform high-precision track reconstruction, e.g. for measurements of time-dependent CP-violating decays and secondary vertices, the Belle II detector is equipped with a highly segmented pixel detector (PXD). The high instantaneous luminosity and short bunch crossing times result in a large stream of data in the PXD, which needs to be significantly reduced for offline storage. The data reduction is performed using an FPGA-based Data Acquisition Tracking and Concentrator Online Node (DATCON), which uses information from the Belle II silicon strip vertex detector (SVD) surrounding the PXD to carry out online track reconstruction, extrapolation to the PXD, and Region of Interest (ROI) determination on the PXD. The data stream is reduced by a factor of ten with an ROI finding efficiency of >90% for PXD hits inside the ROI down to 50MeV in pT of the stable particles. We will present the current status of the implementation of the track reconstruction using Hough transformations, and the results obtained for simulated ϒ(4S) → BB¯ events.

  18. A cyclostrophic transformed Eulerian zonal mean model for the middle atmosphere of slowly rotating planets

    NASA Astrophysics Data System (ADS)

    Li, King-Fai; Yao, Kaixuan; Taketa, Cameron; Zhang, Xi; Liang, Mao-Chang; Jiang, Xun; Newman, Claire; Tung, Ka-Kit; Yung, Yuk L.

    2016-04-01

    With the advance of modern computers, studies of planetary atmospheres have heavily relied on general circulation models (GCMs). Because these GCMs are usually very complicated, the simulations are sometimes difficult to understand. Here we develop a semi-analytic zonally averaged, cyclostrophic residual Eulerian model to illustrate how some of the large-scale structures of the middle atmospheric circulation can be explained qualitatively in terms of simple thermal (e.g. solar heating) and mechanical (the Eliassen-Palm flux divergence) forcings. This model is a generalization of that for fast rotating planets such as the Earth, where geostrophy dominates (Andrews and McIntyre 1987). The solution to this semi-analytic model consists of a set of modified Hough functions of the generalized Laplace's tidal equation with the cyclostrohpic terms. As an example, we apply this model to Titan. We show that the seasonal variations of the temperature and the circulation of these slowly-rotating planets can be well reproduced by adjusting only three parameters in the model: the Brunt-Väisälä bouyancy frequency, the Newtonian radiative cooling rate, and the Rayleigh friction damping rate. We will also discuss an application of this model to study the meridional transport of photochemically produced tracers that can be observed by space instruments.

  19. Quasi real-time analysis of mixed-phase clouds using interferometric out-of-focus imaging: development of an algorithm to assess liquid and ice water content

    NASA Astrophysics Data System (ADS)

    Lemaitre, P.; Brunel, M.; Rondeau, A.; Porcheron, E.; Gréhan, G.

    2015-12-01

    According to changes in aircraft certifications rules, instrumentation has to be developed to alert the flight crews of potential icing conditions. The technique developed needs to measure in real time the amount of ice and liquid water encountered by the plane. Interferometric imaging offers an interesting solution: It is currently used to measure the size of regular droplets, and it can further measure the size of irregular particles from the analysis of their speckle-like out-of-focus images. However, conventional image processing needs to be speeded up to be compatible with the real-time detection of icing conditions. This article presents the development of an optimised algorithm to accelerate image processing. The algorithm proposed is based on the detection of each interferogram with the use of the gradient pair vector method. This method is shown to be 13 times faster than the conventional Hough transform. The algorithm is validated on synthetic images of mixed phase clouds, and finally tested and validated in laboratory conditions. This algorithm should have important applications in the size measurement of droplets and ice particles for aircraft safety, cloud microphysics investigation, and more generally in the real-time analysis of triphasic flows using interferometric particle imaging.

  20. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System.

    PubMed

    Jaya, T; Dheeba, J; Singh, N Albert

    2015-12-01

    Diabetic retinopathy is a major cause of vision loss in diabetic patients. Currently, there is a need for making decisions using intelligent computer algorithms when screening a large volume of data. This paper presents an expert decision-making system designed using a fuzzy support vector machine (FSVM) classifier to detect hard exudates in fundus images. The optic discs in the colour fundus images are segmented to avoid false alarms using morphological operations and based on circular Hough transform. To discriminate between the exudates and the non-exudates pixels, colour and texture features are extracted from the images. These features are given as input to the FSVM classifier. The classifier analysed 200 retinal images collected from diabetic retinopathy screening programmes. The tests made on the retinal images show that the proposed detection system has better discriminating power than the conventional support vector machine. With the best combination of FSVM and features sets, the area under the receiver operating characteristic curve reached 0.9606, which corresponds to a sensitivity of 94.1% with a specificity of 90.0%. The results suggest that detecting hard exudates using FSVM contribute to computer-assisted detection of diabetic retinopathy and as a decision support system for ophthalmologists.

  1. Fisheye-Based Method for GPS Localization Improvement in Unknown Semi-Obstructed Areas

    PubMed Central

    Moreau, Julien; Ambellouis, Sébastien; Ruichek, Yassine

    2017-01-01

    A precise GNSS (Global Navigation Satellite System) localization is vital for autonomous road vehicles, especially in cluttered or urban environments where satellites are occluded, preventing accurate positioning. We propose to fuse GPS (Global Positioning System) data with fisheye stereovision to face this problem independently to additional data, possibly outdated, unavailable, and needing correlation with reality. Our stereoscope is sky-facing with 360° × 180° fisheye cameras to observe surrounding obstacles. We propose a 3D modelling and plane extraction through following steps: stereoscope self-calibration for decalibration robustness, stereo matching considering neighbours epipolar curves to compute 3D, and robust plane fitting based on generated cartography and Hough transform. We use these 3D data with GPS raw data to estimate NLOS (Non Line Of Sight) reflected signals pseudorange delay. We exploit extracted planes to build a visibility mask for NLOS detection. A simplified 3D canyon model allows to compute reflections pseudorange delays. In the end, GPS positioning is computed considering corrected pseudoranges. With experimentations on real fixed scenes, we show generated 3D models reaching metric accuracy and improvement of horizontal GPS positioning accuracy by more than 50%. The proposed procedure is effective, and the proposed NLOS detection outperforms CN0-based methods (Carrier-to-receiver Noise density). PMID:28106746

  2. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    PubMed

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  3. Automatic detection and recognition of signs from natural scenes.

    PubMed

    Chen, Xilin; Yang, Jie; Zhang, Jing; Waibel, Alex

    2004-01-01

    In this paper, we present an approach to automatic detection and recognition of signs from natural scenes, and its application to a sign translation task. The proposed approach embeds multiresolution and multiscale edge detection, adaptive searching, color analysis, and affine rectification in a hierarchical framework for sign detection, with different emphases at each phase to handle the text in different sizes, orientations, color distributions and backgrounds. We use affine rectification to recover deformation of the text regions caused by an inappropriate camera view angle. The procedure can significantly improve text detection rate and optical character recognition (OCR) accuracy. Instead of using binary information for OCR, we extract features from an intensity image directly. We propose a local intensity normalization method to effectively handle lighting variations, followed by a Gabor transform to obtain local features, and finally a linear discriminant analysis (LDA) method for feature selection. We have applied the approach in developing a Chinese sign translation system, which can automatically detect and recognize Chinese signs as input from a camera, and translate the recognized text into English.

  4. Analysis of framelets for breast cancer diagnosis.

    PubMed

    Thivya, K S; Sakthivel, P; Venkata Sai, P M

    2016-01-01

    Breast cancer is the second threatening tumor among the women. The effective way of reducing breast cancer is its early detection which helps to improve the diagnosing process. Digital mammography plays a significant role in mammogram screening at earlier stage of breast carcinoma. Even though, it is very difficult to find accurate abnormality in prevalent screening by radiologists. But the possibility of precise breast cancer screening is encouraged by predicting the accurate type of abnormality through Computer Aided Diagnosis (CAD) systems. The two most important indicators of breast malignancy are microcalcifications and masses. In this study, framelet transform, a multiresolutional analysis is investigated for the classification of the above mentioned two indicators. The statistical and co-occurrence features are extracted from the framelet decomposed mammograms with different resolution levels and support vector machine is employed for classification with k-fold cross validation. This system achieves 94.82% and 100% accuracy in normal/abnormal classification (stage I) and benign/malignant classification (stage II) of mass classification system and 98.57% and 100% for microcalcification system when using the MIAS database.

  5. Continuous EEG signal analysis for asynchronous BCI application.

    PubMed

    Hsu, Wei-Yen

    2011-08-01

    In this study, we propose a two-stage recognition system for continuous analysis of electroencephalogram (EEG) signals. An independent component analysis (ICA) and correlation coefficient are used to automatically eliminate the electrooculography (EOG) artifacts. Based on the continuous wavelet transform (CWT) and Student's two-sample t-statistics, active segment selection then detects the location of active segment in the time-frequency domain. Next, multiresolution fractal feature vectors (MFFVs) are extracted with the proposed modified fractal dimension from wavelet data. Finally, the support vector machine (SVM) is adopted for the robust classification of MFFVs. The EEG signals are continuously analyzed in 1-s segments, and every 0.5 second moves forward to simulate asynchronous BCI works in the two-stage recognition architecture. The segment is first recognized as lifted or not in the first stage, and then is classified as left or right finger lifting at stage two if the segment is recognized as lifting in the first stage. Several statistical analyses are used to evaluate the performance of the proposed system. The results indicate that it is a promising system in the applications of asynchronous BCI work.

  6. Analyze the dynamic features of rat EEG using wavelet entropy.

    PubMed

    Feng, Zhouyan; Chen, Hang

    2005-01-01

    Wavelet entropy (WE), a new method of complexity measure for non-stationary signals, was used to investigate the dynamic features of rat EEGs under three vigilance states. The EEGs of the freely moving rats were recorded with implanted electrodes and were decomposed into four components of delta, theta, alpha and beta by using multi-resolution wavelet transform. Then, the wavelet entropy curves were calculated as a function of time. The results showed that there were significant differences among the average WEs of EEGs recorded under the vigilance states of waking, slow wave sleep (SWS) and rapid eye movement (REM) sleep. The changes of WE had different relationships with the four power components under different states. Moreover, there was evident rhythm in EEG WEs of SWS sleep for most experimental rats, which indicated a reciprocal relationship between slow waves and sleep spindles in the micro-states of SWS sleep. Therefore, WE can be used not only to distinguish the long-term changes in EEG complexity, but also to reveal the short-term changes in EEG micro-state.

  7. Information recovery through image sequence fusion under wavelet transformation

    NASA Astrophysics Data System (ADS)

    He, Qiang

    2010-04-01

    Remote sensing is widely applied to provide information of areas with limited ground access with applications such as to assess the destruction from natural disasters and to plan relief and recovery operations. However, the data collection of aerial digital images is constrained by bad weather, atmospheric conditions, and unstable camera or camcorder. Therefore, how to recover the information from the low-quality remote sensing images and how to enhance the image quality becomes very important for many visual understanding tasks, such like feature detection, object segmentation, and object recognition. The quality of remote sensing imagery can be improved through meaningful combination of the employed images captured from different sensors or from different conditions through information fusion. Here we particularly address information fusion to remote sensing images under multi-resolution analysis in the employed image sequences. The image fusion is to recover complete information by integrating multiple images captured from the same scene. Through image fusion, a new image with high-resolution or more perceptive for human and machine is created from a time series of low-quality images based on image registration between different video frames.

  8. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a manner similar to that of a baseline hyperspectral- image-compression method. The mean values are encoded in the compressed bit stream and added back to the data at the appropriate decompression step. The overhead incurred by encoding the mean values only a few bits per spectral band is negligible with respect to the huge size of a typical hyperspectral data set. The other method is denoted modified decomposition. This method is so named because it involves a modified version of a commonly used multiresolution wavelet decomposition, known in the art as the 3D Mallat decomposition, in which (a) the first of multiple stages of a 3D wavelet transform is applied to the entire dataset and (b) subsequent stages are applied only to the horizontally-, vertically-, and spectrally-low-pass subband from the preceding stage. In the modified decomposition, in stages after the first, not only is the spatially-low-pass, spectrally-low-pass subband further decomposed, but also spatially-low-pass, spectrally-high-pass subbands are further decomposed spatially. Either method can be used alone to improve the quality of a reconstructed image (see figure). Alternatively, the two methods can be combined by first performing modified decomposition, then subtracting the mean values from spatial planes of spatially-low-pass subbands.

  9. Performance Assessment and Geometric Calibration of RESOURCESAT-2

    NASA Astrophysics Data System (ADS)

    Radhadevi, P. V.; Solanki, S. S.; Akilan, A.; Jyothi, M. V.; Nagasubramanian, V.

    2016-06-01

    Resourcesat-2 (RS-2) has successfully completed five years of operations in its orbit. This satellite has multi-resolution and multi-spectral capabilities in a single platform. A continuous and autonomous co-registration, geo-location and radiometric calibration of image data from different sensors with widely varying view angles and resolution was one of the challenges of RS-2 data processing. On-orbit geometric performance of RS-2 sensors has been widely assessed and calibrated during the initial phase operations. Since then, as an ongoing activity, various geometric performance data are being generated periodically. This is performed with sites of dense ground control points (GCPs). These parameters are correlated to the direct geo-location accuracy of the RS-2 sensors and are monitored and validated to maintain the performance. This paper brings out the geometric accuracy assessment, calibration and validation done for about 500 datasets of RS-2. The objectives of this study are to ensure the best absolute and relative location accuracy of different cameras, location performance with payload steering and co-registration of multiple bands. This is done using a viewing geometry model, given ephemeris and attitude data, precise camera geometry and datum transformation. In the model, the forward and reverse transformations between the coordinate systems associated with the focal plane, payload, body, orbit and ground are rigorously and explicitly defined. System level tests using comparisons to ground check points have validated the operational geo-location accuracy performance and the stability of the calibration parameters.

  10. Cost Per Flying Hour Analysis of the C-141

    DTIC Science & Technology

    1997-09-01

    Government Printing Office, 1996. Horngren , Charles T. Cost Accounting : A Managerial Emphasis (Eighth Edition). New Jersey: Prentice Hall, 1994. Hough...standard accounting techniques. This analysis of AMC’s current costs and their applicability to the price charged to the customer shall be the focus of... Horngren et al.,1994:864). There are three generally recognized methods of determining a transfer price (Arnstein and Gilabert, 1980:189). Cost based

  11. U.S. Army Classification Research Panel: Conclusions and Recommendations on Classification Research Strategies

    DTIC Science & Technology

    2007-05-01

    criteria, specifically occupational and organizational retention criteria; and (c) indices of career success (cf. Barrick & Mount, 1991; Hogan & Holland... career success (cf. Barrick & Mount, 1991; Hogan & Holland, 2003; Hough & Furnham, 2003; Hurtz & Donovan, 2000; Judge et al., 1999; Ozer, & Benet...traits, general mental ability, and career success across the life span. Personnel Psychology, 52, 621-652. Knapp, D. J., & Campbell, R. C. (Eds.) (2006

  12. Literature Review: Cognitive Abilities--Theory, History, and Validity

    DTIC Science & Technology

    1991-02-01

    Note 88-13. (AD A193 558) Literature Review: Utility of Temperament, Biodata. and Interest Assessment for Predicting Job Performance by Leaetta M. Hough...predicting soldiers’ job performance, and then to develop new measures for those attributes. These Research Notes, however, have usefulness beyond that...organization or taxonomy of the constructs in each area, and the validities of the various measures for different types of job perfor- mance criteria. Second

  13. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman

    2015-01-01

    A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE-MAP algorithm resulted in comparable regional mean values to those from the maximum likelihood algorithm while reducing noise. Achieving robust performance in various noise-level simulation and patient studies, the WJE-MAP algorithm demonstrates its potential in clinical quantitative PET imaging.

  14. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitrios

    Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A totalmore » of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A new wavelet-based EFCM clustering model was introduced toward noise reduction and detail preservation. The proposed method improves the overall US image quality, which in turn could affect the decision-making on whether additional imaging and/or intervention is needed.« less

  15. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction.

    PubMed

    Tsantis, Stavros; Spiliopoulos, Stavros; Skouroliakou, Aikaterini; Karnabatidis, Dimitrios; Hazle, John D; Kagadis, George C

    2014-07-01

    Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. A total of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists' qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. A new wavelet-based EFCM clustering model was introduced toward noise reduction and detail preservation. The proposed method improves the overall US image quality, which in turn could affect the decision-making on whether additional imaging and/or intervention is needed.

  16. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2015-04-29

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO 2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) andmore » fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO 2 (ffCO 2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO 2 emissions and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of 2. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  17. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, J.; Lee, J.; Yadav, V.

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO 2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) andmore » fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO 2 (ffCO 2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO 2 emissions and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of 2. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  18. Framework for multi-resolution analyses of advanced traffic management strategies [summary].

    DOT National Transportation Integrated Search

    2017-01-01

    Transportation planning relies extensively on software that can simulate and predict travel behavior in response to alternative transportation networks. However, different software packages view traffic at different scales. Some programs are based on...

  19. Machine Learning Predictions of a Multiresolution Climate Model Ensemble

    NASA Astrophysics Data System (ADS)

    Anderson, Gemma J.; Lucas, Donald D.

    2018-05-01

    Statistical models of high-resolution climate models are useful for many purposes, including sensitivity and uncertainty analyses, but building them can be computationally prohibitive. We generated a unique multiresolution perturbed parameter ensemble of a global climate model. We use a novel application of a machine learning technique known as random forests to train a statistical model on the ensemble to make high-resolution model predictions of two important quantities: global mean top-of-atmosphere energy flux and precipitation. The random forests leverage cheaper low-resolution simulations, greatly reducing the number of high-resolution simulations required to train the statistical model. We demonstrate that high-resolution predictions of these quantities can be obtained by training on an ensemble that includes only a small number of high-resolution simulations. We also find that global annually averaged precipitation is more sensitive to resolution changes than to any of the model parameters considered.

  20. A multiresolution hierarchical classification algorithm for filtering airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Chen, Chuanfa; Li, Yanyan; Li, Wei; Dai, Honglei

    2013-08-01

    We presented a multiresolution hierarchical classification (MHC) algorithm for differentiating ground from non-ground LiDAR point cloud based on point residuals from the interpolated raster surface. MHC includes three levels of hierarchy, with the simultaneous increase of cell resolution and residual threshold from the low to the high level of the hierarchy. At each level, the surface is iteratively interpolated towards the ground using thin plate spline (TPS) until no ground points are classified, and the classified ground points are used to update the surface in the next iteration. 15 groups of benchmark dataset, provided by the International Society for Photogrammetry and Remote Sensing (ISPRS) commission, were used to compare the performance of MHC with those of the 17 other publicized filtering methods. Results indicated that MHC with the average total error and average Cohen’s kappa coefficient of 4.11% and 86.27% performs better than all other filtering methods.

Top