Sample records for multiresolution wavelet decomposition

  1. Multiresolution motion planning for autonomous agents via wavelet-based cell decompositions.

    PubMed

    Cowlagi, Raghvendra V; Tsiotras, Panagiotis

    2012-10-01

    We present a path- and motion-planning scheme that is "multiresolution" both in the sense of representing the environment with high accuracy only locally and in the sense of addressing the vehicle kinematic and dynamic constraints only locally. The proposed scheme uses rectangular multiresolution cell decompositions, efficiently generated using the wavelet transform. The wavelet transform is widely used in signal and image processing, with emerging applications in autonomous sensing and perception systems. The proposed motion planner enables the simultaneous use of the wavelet transform in both the perception and in the motion-planning layers of vehicle autonomy, thus potentially reducing online computations. We rigorously prove the completeness of the proposed path-planning scheme, and we provide numerical simulation results to illustrate its efficacy.

  2. Wavelet bases on the L-shaped domain

    NASA Astrophysics Data System (ADS)

    Jouini, Abdellatif; Lemarié-Rieusset, Pierre Gilles

    2013-07-01

    We present in this paper two elementary constructions of multiresolution analyses on the L-shaped domain D. In the first one, we shall describe a direct method to define an orthonormal multiresolution analysis. In the second one, we use the decomposition method for constructing a biorthogonal multiresolution analysis. These analyses are adapted for the study of the Sobolev spaces Hs(D)(s∈N).

  3. Multiscale wavelet representations for mammographic feature analysis

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu

    1992-12-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  4. Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech.

    NASA Astrophysics Data System (ADS)

    Campo, D.; Quintero, O. L.; Bastidas, M.

    2016-04-01

    We propose a study of the mathematical properties of voice as an audio signal. This work includes signals in which the channel conditions are not ideal for emotion recognition. Multiresolution analysis- discrete wavelet transform - was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states. ANNs proved to be a system that allows an appropriate classification of such states. This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features. Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify.

  5. Characterizing and understanding the climatic determinism of high- to low-frequency variations in precipitation in northwestern France using a coupled wavelet multiresolution/statistical downscaling approach

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Dieppois, Bastien; Hannah, David; Lavers, David; Fossa, Manuel; Laignel, Benoit; Debret, Maxime

    2017-04-01

    Geophysical signals oscillate over several time-scales that explain different amount of their overall variability and may be related to different physical processes. Characterizing and understanding such variabilities in hydrological variations and investigating their determinism is one important issue in a context of climate change, as these variabilities can be occasionally superimposed to long-term trend possibly due to climate change. It is also important to refine our understanding of time-scale dependent linkages between large-scale climatic variations and hydrological responses on the regional or local-scale. Here we investigate such links by conducting a wavelet multiresolution statistical dowscaling approach of precipitation in northwestern France (Seine river catchment) over 1950-2016 using sea level pressure (SLP) and sea surface temperature (SST) as indicators of atmospheric and oceanic circulations, respectively. Previous results demonstrated that including multiresolution decomposition in a statistical downscaling model (within a so-called multiresolution ESD model) using SLP as large-scale predictor greatly improved simulation of low-frequency, i.e. interannual to interdecadal, fluctuations observed in precipitation. Building on these results, continuous wavelet transform of simulated precipiation using multiresolution ESD confirmed the good performance of the model to better explain variability at all time-scales. A sensitivity analysis of the model to the choice of the scale and wavelet function used was also tested. It appeared that whatever the wavelet used, the model performed similarly. The spatial patterns of SLP found as the best predictors for all time-scales, which resulted from the wavelet decomposition, revealed different structures according to time-scale, showing possible different determinisms. More particularly, some low-frequency components ( 3.2-yr and 19.3-yr) showed a much wide-spread spatial extentsion across the Atlantic. Moreover, in accordance with other previous studies, the wavelet components detected in SLP and precipitation on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation. Current works are now conducted including SST over the Atlantic in order to get further insights into this mechanism.

  6. Adjusting Wavelet-based Multiresolution Analysis Boundary Conditions for Robust Long-term Streamflow Forecasting Model

    NASA Astrophysics Data System (ADS)

    Maslova, I.; Ticlavilca, A. M.; McKee, M.

    2012-12-01

    There has been an increased interest in wavelet-based streamflow forecasting models in recent years. Often overlooked in this approach are the circularity assumptions of the wavelet transform. We propose a novel technique for minimizing the wavelet decomposition boundary condition effect to produce long-term, up to 12 months ahead, forecasts of streamflow. A simulation study is performed to evaluate the effects of different wavelet boundary rules using synthetic and real streamflow data. A hybrid wavelet-multivariate relevance vector machine model is developed for forecasting the streamflow in real-time for Yellowstone River, Uinta Basin, Utah, USA. The inputs of the model utilize only the past monthly streamflow records. They are decomposed into components formulated in terms of wavelet multiresolution analysis. It is shown that the model model accuracy can be increased by using the wavelet boundary rule introduced in this study. This long-term streamflow modeling and forecasting methodology would enable better decision-making and managing water availability risk.

  7. Wavelet processing techniques for digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu

    1992-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Similar to traditional coarse to fine matching strategies, the radiologist may first choose to look for coarse features (e.g., dominant mass) within low frequency levels of a wavelet transform and later examine finer features (e.g., microcalcifications) at higher frequency levels. In addition, features may be extracted by applying geometric constraints within each level of the transform. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet representations, enhanced by linear, exponential and constant weight functions through scale space. By improving the visualization of breast pathology we can improve the chances of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  8. Using discrete wavelet transform features to discriminate between noise and phases in seismic waveforms

    NASA Astrophysics Data System (ADS)

    Forrest, R.; Ray, J.; Hansen, C. W.

    2017-12-01

    Currently, simple polarization metrics such as the horizontal-to-vertical ratio are used to discriminate between noise and various phases in three-component seismic waveform data collected at regional distances. Accurately establishing the identity and arrival of these waves in adverse signal-to-noise environments is helpful in detecting and locating the seismic events. In this work, we explore the use of multiresolution decompositions to discriminate between noise and event arrivals. A segment of the waveform lying inside a time-window that spans the coda of an arrival is subjected to a discrete wavelet decomposition. Multi-resolution classification features as well as statistical tests are derived from these wavelet decomposition quantities to quantify their discriminating power. Furthermore, we move to streaming data and address the problem of false positives by introducing ensembles of classifiers. We describe in detail results of these methods tuned from data obtained from Coronel Fontana, Argentina (CFAA), as well as Stephens Creek, Australia (STKA). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  9. Multiresolution forecasting for futures trading using wavelet decompositions.

    PubMed

    Zhang, B L; Coggins, R; Jabri, M A; Dersch, D; Flower, B

    2001-01-01

    We investigate the effectiveness of a financial time-series forecasting strategy which exploits the multiresolution property of the wavelet transform. A financial series is decomposed into an over complete, shift invariant scale-related representation. In transform space, each individual wavelet series is modeled by a separate multilayer perceptron (MLP). We apply the Bayesian method of automatic relevance determination to choose short past windows (short-term history) for the inputs to the MLPs at lower scales and long past windows (long-term history) at higher scales. To form the overall forecast, the individual forecasts are then recombined by the linear reconstruction property of the inverse transform with the chosen autocorrelation shell representation, or by another perceptron which learns the weight of each scale in the prediction of the original time series. The forecast results are then passed to a money management system to generate trades.

  10. Interest rate next-day variation prediction based on hybrid feedforward neural network, particle swarm optimization, and multiresolution techniques

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2016-02-01

    Multiresolution analysis techniques including continuous wavelet transform, empirical mode decomposition, and variational mode decomposition are tested in the context of interest rate next-day variation prediction. In particular, multiresolution analysis techniques are used to decompose interest rate actual variation and feedforward neural network for training and prediction. Particle swarm optimization technique is adopted to optimize its initial weights. For comparison purpose, autoregressive moving average model, random walk process and the naive model are used as main reference models. In order to show the feasibility of the presented hybrid models that combine multiresolution analysis techniques and feedforward neural network optimized by particle swarm optimization, we used a set of six illustrative interest rates; including Moody's seasoned Aaa corporate bond yield, Moody's seasoned Baa corporate bond yield, 3-Month, 6-Month and 1-Year treasury bills, and effective federal fund rate. The forecasting results show that all multiresolution-based prediction systems outperform the conventional reference models on the criteria of mean absolute error, mean absolute deviation, and root mean-squared error. Therefore, it is advantageous to adopt hybrid multiresolution techniques and soft computing models to forecast interest rate daily variations as they provide good forecasting performance.

  11. Performance of the Wavelet Decomposition on Massively Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek A.; LeMoigne, Jacqueline; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    Traditionally, Fourier Transforms have been utilized for performing signal analysis and representation. But although it is straightforward to reconstruct a signal from its Fourier transform, no local description of the signal is included in its Fourier representation. To alleviate this problem, Windowed Fourier transforms and then wavelet transforms have been introduced, and it has been proven that wavelets give a better localization than traditional Fourier transforms, as well as a better division of the time- or space-frequency plane than Windowed Fourier transforms. Because of these properties and after the development of several fast algorithms for computing the wavelet representation of any signal, in particular the Multi-Resolution Analysis (MRA) developed by Mallat, wavelet transforms have increasingly been applied to signal analysis problems, especially real-life problems, in which speed is critical. In this paper we present and compare efficient wavelet decomposition algorithms on different parallel architectures. We report and analyze experimental measurements, using NASA remotely sensed images. Results show that our algorithms achieve significant performance gains on current high performance parallel systems, and meet scientific applications and multimedia requirements. The extensive performance measurements collected over a number of high-performance computer systems have revealed important architectural characteristics of these systems, in relation to the processing demands of the wavelet decomposition of digital images.

  12. Image characterization by fractal descriptors in variational mode decomposition domain: Application to brain magnetic resonance

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2016-08-01

    The main purpose of this work is to explore the usefulness of fractal descriptors estimated in multi-resolution domains to characterize biomedical digital image texture. In this regard, three multi-resolution techniques are considered: the well-known discrete wavelet transform (DWT) and the empirical mode decomposition (EMD), and; the newly introduced; variational mode decomposition mode (VMD). The original image is decomposed by the DWT, EMD, and VMD into different scales. Then, Fourier spectrum based fractal descriptors is estimated at specific scales and directions to characterize the image. The support vector machine (SVM) was used to perform supervised classification. The empirical study was applied to the problem of distinguishing between normal and abnormal brain magnetic resonance images (MRI) affected with Alzheimer disease (AD). Our results demonstrate that fractal descriptors estimated in VMD domain outperform those estimated in DWT and EMD domains; and also those directly estimated from the original image.

  13. An innovative approach for characteristic analysis and state-of-health diagnosis for a Li-ion cell based on the discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Kim, Jonghoon; Cho, B. H.

    2014-08-01

    This paper introduces an innovative approach to analyze electrochemical characteristics and state-of-health (SOH) diagnosis of a Li-ion cell based on the discrete wavelet transform (DWT). In this approach, the DWT has been applied as a powerful tool in the analysis of the discharging/charging voltage signal (DCVS) with non-stationary and transient phenomena for a Li-ion cell. Specifically, DWT-based multi-resolution analysis (MRA) is used for extracting information on the electrochemical characteristics in both time and frequency domain simultaneously. Through using the MRA with implementation of the wavelet decomposition, the information on the electrochemical characteristics of a Li-ion cell can be extracted from the DCVS over a wide frequency range. Wavelet decomposition based on the selection of the order 3 Daubechies wavelet (dB3) and scale 5 as the best wavelet function and the optimal decomposition scale is implemented. In particular, this present approach develops these investigations one step further by showing low and high frequency components (approximation component An and detail component Dn, respectively) extracted from variable Li-ion cells with different electrochemical characteristics caused by aging effect. Experimental results show the clearness of the DWT-based approach for the reliable diagnosis of the SOH for a Li-ion cell.

  14. Fingerprint recognition of wavelet-based compressed images by neuro-fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Liu, Ti C.; Mitra, Sunanda

    1996-06-01

    Image compression plays a crucial role in many important and diverse applications requiring efficient storage and transmission. This work mainly focuses on a wavelet transform (WT) based compression of fingerprint images and the subsequent classification of the reconstructed images. The algorithm developed involves multiresolution wavelet decomposition, uniform scalar quantization, entropy and run- length encoder/decoder and K-means clustering of the invariant moments as fingerprint features. The performance of the WT-based compression algorithm has been compared with JPEG current image compression standard. Simulation results show that WT outperforms JPEG in high compression ratio region and the reconstructed fingerprint image yields proper classification.

  15. The nexus between geopolitical uncertainty and crude oil markets: An entropy-based wavelet analysis

    NASA Astrophysics Data System (ADS)

    Uddin, Gazi Salah; Bekiros, Stelios; Ahmed, Ali

    2018-04-01

    The global financial crisis and the subsequent geopolitical turbulence in energy markets have brought increased attention to the proper statistical modeling especially of the crude oil markets. In particular, we utilize a time-frequency decomposition approach based on wavelet analysis to explore the inherent dynamics and the casual interrelationships between various types of geopolitical, economic and financial uncertainty indices and oil markets. Via the introduction of a mixed discrete-continuous multiresolution analysis, we employ the entropic criterion for the selection of the optimal decomposition level of a MODWT as well as the continuous-time coherency and phase measures for the detection of business cycle (a)synchronization. Overall, a strong heterogeneity in the revealed interrelationships is detected over time and across scales.

  16. An Application of Rotation- and Translation-Invariant Overcomplete Wavelets to the registration of Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Zavorine, Ilya

    1999-01-01

    A wavelet-based image registration approach has previously been proposed by the authors. In this work, wavelet coefficient maxima obtained from an orthogonal wavelet decomposition using Daubechies filters were utilized to register images in a multi-resolution fashion. Tested on several remote sensing datasets, this method gave very encouraging results. Despite the lack of translation-invariance of these filters, we showed that when using cross-correlation as a feature matching technique, features of size larger than twice the size of the filters are correctly registered by using the low-frequency subbands of the Daubechies wavelet decomposition. Nevertheless, high-frequency subbands are still sensitive to translation effects. In this work, we are considering a rotation- and translation-invariant representation developed by E. Simoncelli and integrate it in our image registration scheme. The two types of filters, Daubechies and Simoncelli filters, are then being compared from a registration point of view, utilizing synthetic data as well as data from the Landsat/ Thematic Mapper (TM) and from the NOAA Advanced Very High Resolution Radiometer (AVHRR).

  17. An Application of Rotation- and Translation-Invariant Overcomplete Wavelets to the Registration of Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Zavorine, Ilya

    1999-01-01

    A wavelet-based image registration approach has previously been proposed by the authors. In this work, wavelet coefficient maxima obtained from an orthogonal wavelet decomposition using Daubechies filters were utilized to register images in a multi-resolution fashion. Tested on several remote sensing datasets, this method gave very encouraging results. Despite the lack of translation-invariance of these filters, we showed that when using cross-correlation as a feature matching technique, features of size larger than twice the size of the filters are correctly registered by using the low-frequency subbands of the Daubechies wavelet decomposition. Nevertheless, high-frequency subbands are still sensitive to translation effects. In this work, we are considering a rotation- and translation-invariant representation developed by E. Simoncelli and integrate it in our image registration scheme. The two types of filters, Daubechies and Simoncelli filters, are then being compared from a registration point of view, utilizing synthetic data as well as data from the Landsat/ Thematic Mapper (TM) and from the NOAA Advanced Very High Resolution Radiometer (AVHRR).

  18. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a manner similar to that of a baseline hyperspectral- image-compression method. The mean values are encoded in the compressed bit stream and added back to the data at the appropriate decompression step. The overhead incurred by encoding the mean values only a few bits per spectral band is negligible with respect to the huge size of a typical hyperspectral data set. The other method is denoted modified decomposition. This method is so named because it involves a modified version of a commonly used multiresolution wavelet decomposition, known in the art as the 3D Mallat decomposition, in which (a) the first of multiple stages of a 3D wavelet transform is applied to the entire dataset and (b) subsequent stages are applied only to the horizontally-, vertically-, and spectrally-low-pass subband from the preceding stage. In the modified decomposition, in stages after the first, not only is the spatially-low-pass, spectrally-low-pass subband further decomposed, but also spatially-low-pass, spectrally-high-pass subbands are further decomposed spatially. Either method can be used alone to improve the quality of a reconstructed image (see figure). Alternatively, the two methods can be combined by first performing modified decomposition, then subtracting the mean values from spatial planes of spatially-low-pass subbands.

  19. Wavelet feature extraction for reliable discrimination between high explosive and chemical/biological artillery

    NASA Astrophysics Data System (ADS)

    Hohil, Myron E.; Desai, Sachi V.; Bass, Henry E.; Chambers, Jim

    2005-03-01

    Feature extraction methods based on the discrete wavelet transform and multiresolution analysis are used to develop a robust classification algorithm that reliably discriminates between conventional and simulated chemical/biological artillery rounds via acoustic signals produced during detonation. Distinct characteristics arise within the different airburst signatures because high explosive warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. The ensuing blast waves are readily characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. Unique attributes can also be identified that depend upon the properties of the gun tube, projectile speed at the muzzle, and the explosive burn rates of the warhead. In this work, the discrete wavelet transform is used to extract the predominant components of these characteristics from air burst signatures at ranges exceeding 2km. Highly reliable discrimination is achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients and higher frequency details found within different levels of the multiresolution decomposition.

  20. Applications of squeezed states: Bogoliubov transformations and wavelets to the statistical mechanics of water and its bubbles

    NASA Technical Reports Server (NTRS)

    Defacio, Brian; Kim, S.-H.; Vannevel, A.

    1994-01-01

    The squeezed states or Bogoliubov transformations and wavelets are applied to two problems in nonrelativistic statistical mechanics: the dielectric response of liquid water, epsilon(q-vector,w), and the bubble formation in water during insonnification. The wavelets are special phase-space windows which cover the domain and range of L(exp 1) intersection of L(exp 2) of classical causal, finite energy solutions. The multiresolution of discrete wavelets in phase space gives a decomposition into regions of time and scales of frequency thereby allowing the renormalization group to be applied to new systems in addition to the tired 'usual suspects' of the Ising models and lattice gasses. The Bogoliubov transformation: squeeze transformation is applied to the dipolaron collective mode in water and to the gas produced by the explosive cavitation process in bubble formation.

  1. Progressive Precision Surface Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchaineau, M; Joy, KJ

    2002-01-11

    We introduce a novel wavelet decomposition algorithm that makes a number of powerful new surface design operations practical. Wavelets, and hierarchical representations generally, have held promise to facilitate a variety of design tasks in a unified way by approximating results very precisely, thus avoiding a proliferation of undergirding mathematical representations. However, traditional wavelet decomposition is defined from fine to coarse resolution, thus limiting its efficiency for highly precise surface manipulation when attempting to create new non-local editing methods. Our key contribution is the progressive wavelet decomposition algorithm, a general-purpose coarse-to-fine method for hierarchical fitting, based in this paper on anmore » underlying multiresolution representation called dyadic splines. The algorithm requests input via a generic interval query mechanism, allowing a wide variety of non-local operations to be quickly implemented. The algorithm performs work proportionate to the tiny compressed output size, rather than to some arbitrarily high resolution that would otherwise be required, thus increasing performance by several orders of magnitude. We describe several design operations that are made tractable because of the progressive decomposition. Free-form pasting is a generalization of the traditional control-mesh edit, but for which the shape of the change is completely general and where the shape can be placed using a free-form deformation within the surface domain. Smoothing and roughening operations are enhanced so that an arbitrary loop in the domain specifies the area of effect. Finally, the sculpting effect of moving a tool shape along a path is simulated.« less

  2. A stethoscope with wavelet separation of cardiac and respiratory sounds for real time telemedicine implemented on field-programmable gate array

    NASA Astrophysics Data System (ADS)

    Castro, Víctor M.; Muñoz, Nestor A.; Salazar, Antonio J.

    2015-01-01

    Auscultation is one of the most utilized physical examination procedures for listening to lung, heart and intestinal sounds during routine consults and emergencies. Heart and lung sounds overlap in the thorax. An algorithm was used to separate them based on the discrete wavelet transform with multi-resolution analysis, which decomposes the signal into approximations and details. The algorithm was implemented in software and in hardware to achieve real-time signal separation. The heart signal was found in detail eight and the lung signal in approximation six. The hardware was used to separate the signals with a delay of 256 ms. Sending wavelet decomposition data - instead of the separated full signa - allows telemedicine applications to function in real time over low-bandwidth communication channels.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa-Paredes, Gilberto; Prieto-Guerrero, Alfonso; Nunez-Carrera, Alejandro

    This paper introduces a wavelet-based method to analyze instability events in a boiling water reactor (BWR) during transient phenomena. The methodology to analyze BWR signals includes the following: (a) the short-time Fourier transform (STFT) analysis, (b) decomposition using the continuous wavelet transform (CWT), and (c) application of multiresolution analysis (MRA) using discrete wavelet transform (DWT). STFT analysis permits the study, in time, of the spectral content of analyzed signals. The CWT provides information about ruptures, discontinuities, and fractal behavior. To detect these important features in the signal, a mother wavelet has to be chosen and applied at several scales tomore » obtain optimum results. MRA allows fast implementation of the DWT. Features like important frequencies, discontinuities, and transients can be detected with analysis at different levels of detail coefficients. The STFT was used to provide a comparison between a classic method and the wavelet-based method. The damping ratio, which is an important stability parameter, was calculated as a function of time. The transient behavior can be detected by analyzing the maximum contained in detail coefficients at different levels in the signal decomposition. This method allows analysis of both stationary signals and highly nonstationary signals in the timescale plane. This methodology has been tested with the benchmark power instability event of Laguna Verde nuclear power plant (NPP) Unit 1, which is a BWR-5 NPP.« less

  4. Hydrometeorological variability on a large french catchment and its relation to large-scale circulation across temporal scales

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David

    2015-04-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating large-scale/local-scale correlation, enmpirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the large-scale/local-scale links were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach which integrated discrete wavelet multiresolution analysis for reconstructing local hydrometeorological processes (predictand : precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector) on a monthly time-step. This approach basically consisted in 1- decomposing both signals (SLP field and precipitation or streamflow) using discrete wavelet multiresolution analysis and synthesis, 2- generating one statistical downscaling model per time-scale, 3- summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD ; in addition, the scale-dependent spatial patterns associated to the model matched quite well those obtained from scale-dependent composite analysis. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either prepciptation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with flood and extremely low-flow/drought periods (e.g., winter 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. Further investigations would be required to address the issue of the stationarity of the large-scale/local-scale relationships and to test the capability of the multiresolution ESD model for interannual-to-interdecadal forecasting. In terms of methodological approach, further investigations may concern a fully comprehensive sensitivity analysis of the modeling to the parameter of the multiresolution approach (different families of scaling and wavelet functions used, number of coefficients/degree of smoothness, etc.).

  5. Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images

    PubMed Central

    Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong

    2015-01-01

    In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods. PMID:26703596

  6. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography.

    PubMed

    Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris

    2011-09-01

    Partial volume effects (PVEs) are consequences of the limited spatial resolution in emission tomography leading to underestimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multiresolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low-resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model, which may introduce artifacts in regions where no significant correlation exists between anatomical and functional details. A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present, the new model outperformed the 2D global approach, avoiding artifacts and significantly improving quality of the corrected images and their quantitative accuracy. A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multiresolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information.

  7. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography

    PubMed Central

    Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E.; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris

    2011-01-01

    Purpose Partial volume effects (PVE) are consequences of the limited spatial resolution in emission tomography leading to under-estimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multi-resolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model which may introduce artefacts in regions where no significant correlation exists between anatomical and functional details. Methods A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Results Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present the new model outperformed the 2D global approach, avoiding artefacts and significantly improving quality of the corrected images and their quantitative accuracy. Conclusions A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multi-resolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information. PMID:21978037

  8. Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images.

    PubMed

    Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong

    2015-12-12

    In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods.

  9. An Automated Parallel Image Registration Technique Based on the Correlation of Wavelet Features

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Campbell, William J.; Cromp, Robert F.; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    With the increasing importance of multiple platform/multiple remote sensing missions, fast and automatic integration of digital data from disparate sources has become critical to the success of these endeavors. Our work utilizes maxima of wavelet coefficients to form the basic features of a correlation-based automatic registration algorithm. Our wavelet-based registration algorithm is tested successfully with data from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and the Landsat/Thematic Mapper(TM), which differ by translation and/or rotation. By the choice of high-frequency wavelet features, this method is similar to an edge-based correlation method, but by exploiting the multi-resolution nature of a wavelet decomposition, our method achieves higher computational speeds for comparable accuracies. This algorithm has been implemented on a Single Instruction Multiple Data (SIMD) massively parallel computer, the MasPar MP-2, as well as on the CrayT3D, the Cray T3E and a Beowulf cluster of Pentium workstations.

  10. Automatic multiresolution age-related macular degeneration detection from fundus images

    NASA Astrophysics Data System (ADS)

    Garnier, Mickaël.; Hurtut, Thomas; Ben Tahar, Houssem; Cheriet, Farida

    2014-03-01

    Age-related Macular Degeneration (AMD) is a leading cause of legal blindness. As the disease progress, visual loss occurs rapidly, therefore early diagnosis is required for timely treatment. Automatic, fast and robust screening of this widespread disease should allow an early detection. Most of the automatic diagnosis methods in the literature are based on a complex segmentation of the drusen, targeting a specific symptom of the disease. In this paper, we present a preliminary study for AMD detection from color fundus photographs using a multiresolution texture analysis. We analyze the texture at several scales by using a wavelet decomposition in order to identify all the relevant texture patterns. Textural information is captured using both the sign and magnitude components of the completed model of Local Binary Patterns. An image is finally described with the textural pattern distributions of the wavelet coefficient images obtained at each level of decomposition. We use a Linear Discriminant Analysis for feature dimension reduction, to avoid the curse of dimensionality problem, and image classification. Experiments were conducted on a dataset containing 45 images (23 healthy and 22 diseased) of variable quality and captured by different cameras. Our method achieved a recognition rate of 93:3%, with a specificity of 95:5% and a sensitivity of 91:3%. This approach shows promising results at low costs that in agreement with medical experts as well as robustness to both image quality and fundus camera model.

  11. Survey and analysis of multiresolution methods for turbulence data

    DOE PAGES

    Pulido, Jesus; Livescu, Daniel; Woodring, Jonathan; ...

    2015-11-10

    This paper compares the effectiveness of various multi-resolution geometric representation methods, such as B-spline, Daubechies, Coiflet and Dual-tree wavelets, curvelets and surfacelets, to capture the structure of fully developed turbulence using a truncated set of coefficients. The turbulence dataset is obtained from a Direct Numerical Simulation of buoyancy driven turbulence on a 512 3 mesh size, with an Atwood number, A = 0.05, and turbulent Reynolds number, Re t = 1800, and the methods are tested against quantities pertaining to both velocities and active scalar (density) fields and their derivatives, spectra, and the properties of constant density surfaces. The comparisonsmore » between the algorithms are given in terms of performance, accuracy, and compression properties. The results should provide useful information for multi-resolution analysis of turbulence, coherent feature extraction, compression for large datasets handling, as well as simulations algorithms based on multi-resolution methods. In conclusion, the final section provides recommendations for best decomposition algorithms based on several metrics related to computational efficiency and preservation of turbulence properties using a reduced set of coefficients.« less

  12. Parallel object-oriented, denoising system using wavelet multiresolution analysis

    DOEpatents

    Kamath, Chandrika; Baldwin, Chuck H.; Fodor, Imola K.; Tang, Nu A.

    2005-04-12

    The present invention provides a data de-noising system utilizing processors and wavelet denoising techniques. Data is read and displayed in different formats. The data is partitioned into regions and the regions are distributed onto the processors. Communication requirements are determined among the processors according to the wavelet denoising technique and the partitioning of the data. The data is transforming onto different multiresolution levels with the wavelet transform according to the wavelet denoising technique, the communication requirements, and the transformed data containing wavelet coefficients. The denoised data is then transformed into its original reading and displaying data format.

  13. Multi-time-scale hydroclimate dynamics of a regional watershed and links to large-scale atmospheric circulation: Application to the Seine river catchment, France

    NASA Astrophysics Data System (ADS)

    Massei, N.; Dieppois, B.; Hannah, D. M.; Lavers, D. A.; Fossa, M.; Laignel, B.; Debret, M.

    2017-03-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating correlation between large and local scales, empirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: (i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and (ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the links between large and local scales were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach, which integrated discrete wavelet multiresolution analysis for reconstructing monthly regional hydrometeorological processes (predictand: precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector). This approach basically consisted in three steps: 1 - decomposing large-scale climate and hydrological signals (SLP field, precipitation or streamflow) using discrete wavelet multiresolution analysis, 2 - generating a statistical downscaling model per time-scale, 3 - summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either precipitation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with alternating flood and extremely low-flow/drought periods (e.g., winter/spring 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. In accordance with previous studies, the wavelet components detected in SLP, precipitation and streamflow on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    I. W. Ginsberg

    Multiresolutional decompositions known as spectral fingerprints are often used to extract spectral features from multispectral/hyperspectral data. In this study, the authors investigate the use of wavelet-based algorithms for generating spectral fingerprints. The wavelet-based algorithms are compared to the currently used method, traditional convolution with first-derivative Gaussian filters. The comparison analyses consists of two parts: (a) the computational expense of the new method is compared with the computational costs of the current method and (b) the outputs of the wavelet-based methods are compared with those of the current method to determine any practical differences in the resulting spectral fingerprints. The resultsmore » show that the wavelet-based algorithms can greatly reduce the computational expense of generating spectral fingerprints, while practically no differences exist in the resulting fingerprints. The analysis is conducted on a database of hyperspectral signatures, namely, Hyperspectral Digital Image Collection Experiment (HYDICE) signatures. The reduction in computational expense is by a factor of about 30, and the average Euclidean distance between resulting fingerprints is on the order of 0.02.« less

  15. A study on multiresolution lossless video coding using inter/intra frame adaptive prediction

    NASA Astrophysics Data System (ADS)

    Nakachi, Takayuki; Sawabe, Tomoko; Fujii, Tetsuro

    2003-06-01

    Lossless video coding is required in the fields of archiving and editing digital cinema or digital broadcasting contents. This paper combines a discrete wavelet transform and adaptive inter/intra-frame prediction in the wavelet transform domain to create multiresolution lossless video coding. The multiresolution structure offered by the wavelet transform facilitates interchange among several video source formats such as Super High Definition (SHD) images, HDTV, SDTV, and mobile applications. Adaptive inter/intra-frame prediction is an extension of JPEG-LS, a state-of-the-art lossless still image compression standard. Based on the image statistics of the wavelet transform domains in successive frames, inter/intra frame adaptive prediction is applied to the appropriate wavelet transform domain. This adaptation offers superior compression performance. This is achieved with low computational cost and no increase in additional information. Experiments on digital cinema test sequences confirm the effectiveness of the proposed algorithm.

  16. Gradient-based multiresolution image fusion.

    PubMed

    Petrović, Valdimir S; Xydeas, Costas S

    2004-02-01

    A novel approach to multiresolution signal-level image fusion is presented for accurately transferring visual information from any number of input image signals, into a single fused image without loss of information or the introduction of distortion. The proposed system uses a "fuse-then-decompose" technique realized through a novel, fusion/decomposition system architecture. In particular, information fusion is performed on a multiresolution gradient map representation domain of image signal information. At each resolution, input images are represented as gradient maps and combined to produce new, fused gradient maps. Fused gradient map signals are processed, using gradient filters derived from high-pass quadrature mirror filters to yield a fused multiresolution pyramid representation. The fused output image is obtained by applying, on the fused pyramid, a reconstruction process that is analogous to that of conventional discrete wavelet transform. This new gradient fusion significantly reduces the amount of distortion artefacts and the loss of contrast information usually observed in fused images obtained from conventional multiresolution fusion schemes. This is because fusion in the gradient map domain significantly improves the reliability of the feature selection and information fusion processes. Fusion performance is evaluated through informal visual inspection and subjective psychometric preference tests, as well as objective fusion performance measurements. Results clearly demonstrate the superiority of this new approach when compared to conventional fusion systems.

  17. SHORT-TERM SOLAR FLARE PREDICTION USING MULTIRESOLUTION PREDICTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Daren; Huang Xin; Hu Qinghua

    2010-01-20

    Multiresolution predictors of solar flares are constructed by a wavelet transform and sequential feature extraction method. Three predictors-the maximum horizontal gradient, the length of neutral line, and the number of singular points-are extracted from Solar and Heliospheric Observatory/Michelson Doppler Imager longitudinal magnetograms. A maximal overlap discrete wavelet transform is used to decompose the sequence of predictors into four frequency bands. In each band, four sequential features-the maximum, the mean, the standard deviation, and the root mean square-are extracted. The multiresolution predictors in the low-frequency band reflect trends in the evolution of newly emerging fluxes. The multiresolution predictors in the high-frequencymore » band reflect the changing rates in emerging flux regions. The variation of emerging fluxes is decoupled by wavelet transform in different frequency bands. The information amount of these multiresolution predictors is evaluated by the information gain ratio. It is found that the multiresolution predictors in the lowest and highest frequency bands contain the most information. Based on these predictors, a C4.5 decision tree algorithm is used to build the short-term solar flare prediction model. It is found that the performance of the short-term solar flare prediction model based on the multiresolution predictors is greatly improved.« less

  18. Multiresolution With Super-Compact Wavelets

    NASA Technical Reports Server (NTRS)

    Lee, Dohyung

    2000-01-01

    The solution data computed from large scale simulations are sometimes too big for main memory, for local disks, and possibly even for a remote storage disk, creating tremendous processing time as well as technical difficulties in analyzing the data. The excessive storage demands a corresponding huge penalty in I/O time, rendering time and transmission time between different computer systems. In this paper, a multiresolution scheme is proposed to compress field simulation or experimental data without much loss of important information in the representation. Originally, the wavelet based multiresolution scheme was introduced in image processing, for the purposes of data compression and feature extraction. Unlike photographic image data which has rather simple settings, computational field simulation data needs more careful treatment in applying the multiresolution technique. While the image data sits on a regular spaced grid, the simulation data usually resides on a structured curvilinear grid or unstructured grid. In addition to the irregularity in grid spacing, the other difficulty is that the solutions consist of vectors instead of scalar values. The data characteristics demand more restrictive conditions. In general, the photographic images have very little inherent smoothness with discontinuities almost everywhere. On the other hand, the numerical solutions have smoothness almost everywhere and discontinuities in local areas (shock, vortices, and shear layers). The wavelet bases should be amenable to the solution of the problem at hand and applicable to constraints such as numerical accuracy and boundary conditions. In choosing a suitable wavelet basis for simulation data among a variety of wavelet families, the supercompact wavelets designed by Beam and Warming provide one of the most effective multiresolution schemes. Supercompact multi-wavelets retain the compactness of Haar wavelets, are piecewise polynomial and orthogonal, and can have arbitrary order of approximation. The advantages of the multiresolution algorithm are that no special treatment is required at the boundaries of the interval, and that the application to functions which are only piecewise continuous (internal boundaries) can be efficiently implemented. In this presentation, Beam's supercompact wavelets are generalized to higher dimensions using multidimensional scaling and wavelet functions rather than alternating the directions as in the 1D version. As a demonstration of actual 3D data compression, supercompact wavelet transforms are applied to a 3D data set for wing tip vortex flow solutions (2.5 million grid points). It is shown that high data compression ratio can be achieved (around 50:1 ratio) in both vector and scalar data set.

  19. Characterization of large-scale fluctuations and short-term variability of Seine river daily streamflow (France) over the period 1950-2008 by empirical mode decomposition and the Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Massei, N.; Fournier, M.

    2010-12-01

    Daily Seine river flow from 1950 to 2008 was analyzed using Hilbert-Huang Tranform (HHT). For the last ten years, this method which combines the so-called Empirical Mode Decomposition (EMD) multiresolution analysis and the Hilbert transform has proven its efficiency for the analysis of transient oscillatory signals, although the mathematical definition of the EMD is not totally established yet. HHT also provides an interesting alternative to other time-frequency or time-scale analysis of non-stationary signals, the most famous of which being wavelet-based approaches. In this application of HHT to the analysis of the hydrological variability of the Seine river, we seek to characterize the interannual patterns of daily flow, differenciate them from the short-term dynamics and eventually interpret them in the context of regional climate regime fluctuations. In this aim, HHT is also applied to the North-Atlantic Oscillation (NAO) through the annual winter-months NAO index time series. For both hydrological and climatic signals, dominant variability scales are extracted and their temporal variations analyzed by determination of the intantaneous frequency of each component. When compared to previous ones obtained from continuous wavelet transform (CWT) on the same data, HHT results highlighted the same scales and somewhat the same internal components for each signal. However, HHT allowed the identification and extraction of much more similar features during the 1950-2008 period (e.g., around 7-yr, between NAO and Seine flow than what was obtained from CWT, which comes to say that variability scales in flow likely to originate from climatic regime fluctuations were much properly identified in river flow. In addition, a more accurate determination of singularities in the natural processes analyzed were authorized by HHT compared to CWT, in which case the time-frequency resolution partly depends on the basic properties of the filter (i.e., the reference wavelet chosen initially). Compared to CWT or even to discrete wavelet multiresolution analysis, HHT is auto-adaptive, non-parametric, allows an orthogonal decomposition of the signal analyzed and provides a more accurate estimation of changing variability scales across time for highly transient signals.

  20. Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms

    NASA Technical Reports Server (NTRS)

    Kurdila, Andrew J.; Sharpley, Robert C.

    1999-01-01

    This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.

  1. Analysis of Visual Illusions Using Multiresolution Wavelet Decomposition Based Models

    DTIC Science & Technology

    1991-12-01

    1962). 22. Hubel , David H. "The Visual Cortex of The Brain," Scientific American, 209(5):54-62 (November 1963). 23. Hubel , David H. and Torsten N...model the visual system. In 1990, Oberndorf, a masters student at the Air Force Institrt, of Technology, tested the Gabor theo y on visual illusion...represento d by x2 + y2 = r 2 in Cartesian space is now more easily expressed by p = r in polar space. The coordinates x and y or p and 0 provide alternate

  2. Inferring Species Richness and Turnover by Statistical Multiresolution Texture Analysis of Satellite Imagery

    PubMed Central

    Convertino, Matteo; Mangoubi, Rami S.; Linkov, Igor; Lowry, Nathan C.; Desai, Mukund

    2012-01-01

    Background The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover. Methodology/Principal Findings We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf) model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures' representative pdf's via the Kullback-Leibler divergence (KL). Species turnover, or diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species richness, or diversity, based on the Shannon entropy of pixel intensity.To test our approach, we specifically use the green band of Landsat images for a water conservation area in the Florida Everglades. We validate our predictions against data of species occurrences for a twenty-eight years long period for both wet and dry seasons. Our method correctly predicts 73% of species richness. For species turnover, the newly proposed KL divergence prediction performance is near 100% accurate. This represents a significant improvement over the more conventional Shannon entropy difference, which provides 85% accuracy. Furthermore, we find that changes in soil and water patterns, as measured by fluctuations of the Shannon entropy for the red and blue bands respectively, are positively correlated with changes in vegetation. The fluctuations are smaller in the wet season when compared to the dry season. Conclusions/Significance Texture-based statistical multiresolution image analysis is a promising method for quantifying interseasonal differences and, consequently, the degree to which vegetation, soil, and water patterns vary. The proposed automated method for quantifying species richness and turnover can also provide analysis at higher spatial and temporal resolution than is currently obtainable from expensive monitoring campaigns, thus enabling more prompt, more cost effective inference and decision making support regarding anomalous variations in biodiversity. Additionally, a matrix-based visualization of the statistical multiresolution analysis is presented to facilitate both insight and quick recognition of anomalous data. PMID:23115629

  3. Wavelet multiresolution complex network for decoding brain fatigued behavior from P300 signals

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Wang, Zi-Bo; Yang, Yu-Xuan; Li, Shan; Dang, Wei-Dong; Mao, Xiao-Qian

    2018-09-01

    Brain-computer interface (BCI) enables users to interact with the environment without relying on neural pathways and muscles. P300 based BCI systems have been extensively used to achieve human-machine interaction. However, the appearance of fatigue symptoms during operation process leads to the decline in classification accuracy of P300. Characterizing brain cognitive process underlying normal and fatigue conditions constitutes a problem of vital importance in the field of brain science. We in this paper propose a novel wavelet decomposition based complex network method to efficiently analyze the P300 signals recorded in the image stimulus test based on classical 'Oddball' paradigm. Initially, multichannel EEG signals are decomposed into wavelet coefficient series. Then we construct complex network by treating electrodes as nodes and determining the connections according to the 2-norm distances between wavelet coefficient series. The analysis of topological structure and statistical index indicates that the properties of brain network demonstrate significant distinctions between normal status and fatigue status. More specifically, the brain network reconfiguration in response to the cognitive task in fatigue status is reflected as the enhancement of the small-worldness.

  4. Wavefront reconstruction method based on wavelet fractal interpolation for coherent free space optical communication

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Zhao, Qi; Wang, Lei; Wan, Xiongfeng

    2018-03-01

    Existing wavefront reconstruction methods are usually low in resolution, restricted by structure characteristics of the Shack Hartmann wavefront sensor (SH WFS) and the deformable mirror (DM) in the adaptive optics (AO) system, thus, resulting in weak homodyne detection efficiency for free space optical (FSO) communication. In order to solve this problem, we firstly validate the feasibility of liquid crystal spatial light modulator (LC SLM) using in an AO system. Then, wavefront reconstruction method based on wavelet fractal interpolation is proposed after self-similarity analysis of wavefront distortion caused by atmospheric turbulence. Fast wavelet decomposition is operated to multiresolution analyze the wavefront phase spectrum, during which soft threshold denoising is carried out. The resolution of estimated wavefront phase is then improved by fractal interpolation. Finally, fast wavelet reconstruction is taken to recover wavefront phase. Simulation results reflect the superiority of our method in homodyne detection. Compared with minimum variance estimation (MVE) method based on interpolation techniques, the proposed method could obtain superior homodyne detection efficiency with lower operation complexity. Our research findings have theoretical significance in the design of coherent FSO communication system.

  5. Use of zerotree coding in a high-speed pyramid image multiresolution decomposition

    NASA Astrophysics Data System (ADS)

    Vega-Pineda, Javier; Cabrera, Sergio D.; Lucero, Aldo

    1995-03-01

    A Zerotree (ZT) coding scheme is applied as a post-processing stage to avoid transmitting zero data in the High-Speed Pyramid (HSP) image compression algorithm. This algorithm has features that increase the capability of the ZT coding to give very high compression rates. In this paper the impact of the ZT coding scheme is analyzed and quantified. The HSP algorithm creates a discrete-time multiresolution analysis based on a hierarchical decomposition technique that is a subsampling pyramid. The filters used to create the image residues and expansions can be related to wavelet representations. According to the pixel coordinates and the level in the pyramid, N2 different wavelet basis functions of various sizes and rotations are linearly combined. The HSP algorithm is computationally efficient because of the simplicity of the required operations, and as a consequence, it can be very easily implemented with VLSI hardware. This is the HSP's principal advantage over other compression schemes. The ZT coding technique transforms the different quantized image residual levels created by the HSP algorithm into a bit stream. The use of ZT's compresses even further the already compressed image taking advantage of parent-child relationships (trees) between the pixels of the residue images at different levels of the pyramid. Zerotree coding uses the links between zeros along the hierarchical structure of the pyramid, to avoid transmission of those that form branches of all zeros. Compression performance and algorithm complexity of the combined HSP-ZT method are compared with those of the JPEG standard technique.

  6. Multiresolution MAP despeckling of SAR images based on locally adaptive generalized Gaussian pdf modeling.

    PubMed

    Argenti, Fabrizio; Bianchi, Tiziano; Alparone, Luciano

    2006-11-01

    In this paper, a new despeckling method based on undecimated wavelet decomposition and maximum a posteriori MIAP) estimation is proposed. Such a method relies on the assumption that the probability density function (pdf) of each wavelet coefficient is generalized Gaussian (GG). The major novelty of the proposed approach is that the parameters of the GG pdf are taken to be space-varying within each wavelet frame. Thus, they may be adjusted to spatial image context, not only to scale and orientation. Since the MAP equation to be solved is a function of the parameters of the assumed pdf model, the variance and shape factor of the GG function are derived from the theoretical moments, which depend on the moments and joint moments of the observed noisy signal and on the statistics of speckle. The solution of the MAP equation yields the MAP estimate of the wavelet coefficients of the noise-free image. The restored SAR image is synthesized from such coefficients. Experimental results, carried out on both synthetic speckled images and true SAR images, demonstrate that MAP filtering can be successfully applied to SAR images represented in the shift-invariant wavelet domain, without resorting to a logarithmic transformation.

  7. Analyzing gene expression time-courses based on multi-resolution shape mixture model.

    PubMed

    Li, Ying; He, Ye; Zhang, Yu

    2016-11-01

    Biological processes actually are a dynamic molecular process over time. Time course gene expression experiments provide opportunities to explore patterns of gene expression change over a time and understand the dynamic behavior of gene expression, which is crucial for study on development and progression of biology and disease. Analysis of the gene expression time-course profiles has not been fully exploited so far. It is still a challenge problem. We propose a novel shape-based mixture model clustering method for gene expression time-course profiles to explore the significant gene groups. Based on multi-resolution fractal features and mixture clustering model, we proposed a multi-resolution shape mixture model algorithm. Multi-resolution fractal features is computed by wavelet decomposition, which explore patterns of change over time of gene expression at different resolution. Our proposed multi-resolution shape mixture model algorithm is a probabilistic framework which offers a more natural and robust way of clustering time-course gene expression. We assessed the performance of our proposed algorithm using yeast time-course gene expression profiles compared with several popular clustering methods for gene expression profiles. The grouped genes identified by different methods are evaluated by enrichment analysis of biological pathways and known protein-protein interactions from experiment evidence. The grouped genes identified by our proposed algorithm have more strong biological significance. A novel multi-resolution shape mixture model algorithm based on multi-resolution fractal features is proposed. Our proposed model provides a novel horizons and an alternative tool for visualization and analysis of time-course gene expression profiles. The R and Matlab program is available upon the request. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Multiresolution analysis of Bursa Malaysia KLCI time series

    NASA Astrophysics Data System (ADS)

    Ismail, Mohd Tahir; Dghais, Amel Abdoullah Ahmed

    2017-05-01

    In general, a time series is simply a sequence of numbers collected at regular intervals over a period. Financial time series data processing is concerned with the theory and practice of processing asset price over time, such as currency, commodity data, and stock market data. The primary aim of this study is to understand the fundamental characteristics of selected financial time series by using the time as well as the frequency domain analysis. After that prediction can be executed for the desired system for in sample forecasting. In this study, multiresolution analysis which the assist of discrete wavelet transforms (DWT) and maximal overlap discrete wavelet transform (MODWT) will be used to pinpoint special characteristics of Bursa Malaysia KLCI (Kuala Lumpur Composite Index) daily closing prices and return values. In addition, further case study discussions include the modeling of Bursa Malaysia KLCI using linear ARIMA with wavelets to address how multiresolution approach improves fitting and forecasting results.

  9. Data Mining and Optimization Tools for Developing Engine Parameters Tools

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.

    1998-01-01

    This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. From the total budget of $5,000, Tricia and I studied the problem domain for developing ail Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy datasets. From the study and discussion with NASA LERC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of the data for GA based multi-resolution optimal search. Wavelet processing is proposed to create a coarse resolution representation of data providing two advantages in GA based search: 1. We will have less data to begin with to make search sub-spaces. 2. It will have robustness against the noise because at every level of wavelet based decomposition, we will be decomposing the signal into low pass and high pass filters.

  10. Theory of wavelet-based coarse-graining hierarchies for molecular dynamics.

    PubMed

    Rinderspacher, Berend Christopher; Bardhan, Jaydeep P; Ismail, Ahmed E

    2017-07-01

    We present a multiresolution approach to compressing the degrees of freedom and potentials associated with molecular dynamics, such as the bond potentials. The approach suggests a systematic way to accelerate large-scale molecular simulations with more than two levels of coarse graining, particularly applications of polymeric materials. In particular, we derive explicit models for (arbitrarily large) linear (homo)polymers and iterative methods to compute large-scale wavelet decompositions from fragment solutions. This approach does not require explicit preparation of atomistic-to-coarse-grained mappings, but instead uses the theory of diffusion wavelets for graph Laplacians to develop system-specific mappings. Our methodology leads to a hierarchy of system-specific coarse-grained degrees of freedom that provides a conceptually clear and mathematically rigorous framework for modeling chemical systems at relevant model scales. The approach is capable of automatically generating as many coarse-grained model scales as necessary, that is, to go beyond the two scales in conventional coarse-grained strategies; furthermore, the wavelet-based coarse-grained models explicitly link time and length scales. Furthermore, a straightforward method for the reintroduction of omitted degrees of freedom is presented, which plays a major role in maintaining model fidelity in long-time simulations and in capturing emergent behaviors.

  11. Singularity analysis based on wavelet transform of fractal measures for identifying geochemical anomaly in mineral exploration

    NASA Astrophysics Data System (ADS)

    Chen, Guoxiong; Cheng, Qiuming

    2016-02-01

    Multi-resolution and scale-invariance have been increasingly recognized as two closely related intrinsic properties endowed in geofields such as geochemical and geophysical anomalies, and they are commonly investigated by using multiscale- and scaling-analysis methods. In this paper, the wavelet-based multiscale decomposition (WMD) method was proposed to investigate the multiscale natures of geochemical pattern from large scale to small scale. In the light of the wavelet transformation of fractal measures, we demonstrated that the wavelet approximation operator provides a generalization of box-counting method for scaling analysis of geochemical patterns. Specifically, the approximation coefficient acts as the generalized density-value in density-area fractal modeling of singular geochemical distributions. Accordingly, we presented a novel local singularity analysis (LSA) using the WMD algorithm which extends the conventional moving averaging to a kernel-based operator for implementing LSA. Finally, the novel LSA was validated using a case study dealing with geochemical data (Fe2O3) in stream sediments for mineral exploration in Inner Mongolia, China. In comparison with the LSA implemented using the moving averaging method the novel LSA using WMD identified improved weak geochemical anomalies associated with mineralization in covered area.

  12. Multiresolution Wavelet Analysis of Heartbeat Intervals Discriminates Healthy Patients from Those with Cardiac Pathology

    NASA Astrophysics Data System (ADS)

    Thurner, Stefan; Feurstein, Markus C.; Teich, Malvin C.

    1998-02-01

    We applied multiresolution wavelet analysis to the sequence of times between human heartbeats ( R-R intervals) and have found a scale window, between 16 and 32 heartbeat intervals, over which the widths of the R-R wavelet coefficients fall into disjoint sets for normal and heart-failure patients. This has enabled us to correctly classify every patient in a standard data set as belonging either to the heart-failure or normal group with 100% accuracy, thereby providing a clinically significant measure of the presence of heart failure from the R-R intervals alone. Comparison is made with previous approaches, which have provided only statistically significant measures.

  13. Application of multi-scale wavelet entropy and multi-resolution Volterra models for climatic downscaling

    NASA Astrophysics Data System (ADS)

    Sehgal, V.; Lakhanpal, A.; Maheswaran, R.; Khosa, R.; Sridhar, Venkataramana

    2018-01-01

    This study proposes a wavelet-based multi-resolution modeling approach for statistical downscaling of GCM variables to mean monthly precipitation for five locations at Krishna Basin, India. Climatic dataset from NCEP is used for training the proposed models (Jan.'69 to Dec.'94) and are applied to corresponding CanCM4 GCM variables to simulate precipitation for the validation (Jan.'95-Dec.'05) and forecast (Jan.'06-Dec.'35) periods. The observed precipitation data is obtained from the India Meteorological Department (IMD) gridded precipitation product at 0.25 degree spatial resolution. This paper proposes a novel Multi-Scale Wavelet Entropy (MWE) based approach for clustering climatic variables into suitable clusters using k-means methodology. Principal Component Analysis (PCA) is used to obtain the representative Principal Components (PC) explaining 90-95% variance for each cluster. A multi-resolution non-linear approach combining Discrete Wavelet Transform (DWT) and Second Order Volterra (SoV) is used to model the representative PCs to obtain the downscaled precipitation for each downscaling location (W-P-SoV model). The results establish that wavelet-based multi-resolution SoV models perform significantly better compared to the traditional Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) based frameworks. It is observed that the proposed MWE-based clustering and subsequent PCA, helps reduce the dimensionality of the input climatic variables, while capturing more variability compared to stand-alone k-means (no MWE). The proposed models perform better in estimating the number of precipitation events during the non-monsoon periods whereas the models with clustering without MWE over-estimate the rainfall during the dry season.

  14. Vector coding of wavelet-transformed images

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Zhi, Cheng; Zhou, Yuanhua

    1998-09-01

    Wavelet, as a brand new tool in signal processing, has got broad recognition. Using wavelet transform, we can get octave divided frequency band with specific orientation which combines well with the properties of Human Visual System. In this paper, we discuss the classified vector quantization method for multiresolution represented image.

  15. Investigation of the scaling characteristics of LANDSAT temperature and vegetation data: a wavelet-based approach

    NASA Astrophysics Data System (ADS)

    Rathinasamy, Maheswaran; Bindhu, V. M.; Adamowski, Jan; Narasimhan, Balaji; Khosa, Rakesh

    2017-10-01

    An investigation of the scaling characteristics of vegetation and temperature data derived from LANDSAT data was undertaken for a heterogeneous area in Tamil Nadu, India. A wavelet-based multiresolution technique decomposed the data into large-scale mean vegetation and temperature fields and fluctuations in horizontal, diagonal, and vertical directions at hierarchical spatial resolutions. In this approach, the wavelet coefficients were used to investigate whether the normalized difference vegetation index (NDVI) and land surface temperature (LST) fields exhibited self-similar scaling behaviour. In this study, l-moments were used instead of conventional simple moments to understand scaling behaviour. Using the first six moments of the wavelet coefficients through five levels of dyadic decomposition, the NDVI data were shown to be statistically self-similar, with a slope of approximately -0.45 in each of the horizontal, vertical, and diagonal directions of the image, over scales ranging from 30 to 960 m. The temperature data were also shown to exhibit self-similarity with slopes ranging from -0.25 in the diagonal direction to -0.20 in the vertical direction over the same scales. These findings can help develop appropriate up- and down-scaling schemes of remotely sensed NDVI and LST data for various hydrologic and environmental modelling applications. A sensitivity analysis was also undertaken to understand the effect of mother wavelets on the scaling characteristics of LST and NDVI images.

  16. Adapted wavelet transform improves time-frequency representations: a study of auditory elicited P300-like event-related potentials in rats.

    PubMed

    Richard, Nelly; Laursen, Bettina; Grupe, Morten; Drewes, Asbjørn M; Graversen, Carina; Sørensen, Helge B D; Bastlund, Jesper F

    2017-04-01

    Active auditory oddball paradigms are simple tone discrimination tasks used to study the P300 deflection of event-related potentials (ERPs). These ERPs may be quantified by time-frequency analysis. As auditory stimuli cause early high frequency and late low frequency ERP oscillations, the continuous wavelet transform (CWT) is often chosen for decomposition due to its multi-resolution properties. However, as the conventional CWT traditionally applies only one mother wavelet to represent the entire spectrum, the time-frequency resolution is not optimal across all scales. To account for this, we developed and validated a novel method specifically refined to analyse P300-like ERPs in rats. An adapted CWT (aCWT) was implemented to preserve high time-frequency resolution across all scales by commissioning of multiple wavelets operating at different scales. First, decomposition of simulated ERPs was illustrated using the classical CWT and the aCWT. Next, the two methods were applied to EEG recordings obtained from prefrontal cortex in rats performing a two-tone auditory discrimination task. While only early ERP frequency changes between responses to target and non-target tones were detected by the CWT, both early and late changes were successfully described with strong accuracy by the aCWT in rat ERPs. Increased frontal gamma power and phase synchrony was observed particularly within theta and gamma frequency bands during deviant tones. The study suggests superior performance of the aCWT over the CWT in terms of detailed quantification of time-frequency properties of ERPs. Our methodological investigation indicates that accurate and complete assessment of time-frequency components of short-time neural signals is feasible with the novel analysis approach which may be advantageous for characterisation of several types of evoked potentials in particularly rodents.

  17. Perceptual compression of magnitude-detected synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Werness, Susan A.

    1994-01-01

    A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.

  18. Filtering and left ventricle segmentation of the fetal heart in ultrasound images

    NASA Astrophysics Data System (ADS)

    Vargas-Quintero, Lorena; Escalante-Ramírez, Boris

    2013-11-01

    In this paper, we propose to use filtering methods and a segmentation algorithm for the analysis of fetal heart in ultrasound images. Since noise speckle makes difficult the analysis of ultrasound images, the filtering process becomes a useful task in these types of applications. The filtering techniques consider in this work assume that the speckle noise is a random variable with a Rayleigh distribution. We use two multiresolution methods: one based on wavelet decomposition and the another based on the Hermite transform. The filtering process is used as way to strengthen the performance of the segmentation tasks. For the wavelet-based approach, a Bayesian estimator at subband level for pixel classification is employed. The Hermite method computes a mask to find those pixels that are corrupted by speckle. On the other hand, we picked out a method based on a deformable model or "snake" to evaluate the influence of the filtering techniques in the segmentation task of left ventricle in fetal echocardiographic images.

  19. WAKES: Wavelet Adaptive Kinetic Evolution Solvers

    NASA Astrophysics Data System (ADS)

    Mardirian, Marine; Afeyan, Bedros; Larson, David

    2016-10-01

    We are developing a general capability to adaptively solve phase space evolution equations mixing particle and continuum techniques in an adaptive manner. The multi-scale approach is achieved using wavelet decompositions which allow phase space density estimation to occur with scale dependent increased accuracy and variable time stepping. Possible improvements on the SFK method of Larson are discussed, including the use of multiresolution analysis based Richardson-Lucy Iteration, adaptive step size control in explicit vs implicit approaches. Examples will be shown with KEEN waves and KEEPN (Kinetic Electrostatic Electron Positron Nonlinear) waves, which are the pair plasma generalization of the former, and have a much richer span of dynamical behavior. WAKES techniques are well suited for the study of driven and released nonlinear, non-stationary, self-organized structures in phase space which have no fluid, limit nor a linear limit, and yet remain undamped and coherent well past the drive period. The work reported here is based on the Vlasov-Poisson model of plasma dynamics. Work supported by a Grant from the AFOSR.

  20. Remote visual analysis of large turbulence databases at multiple scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulido, Jesus; Livescu, Daniel; Kanov, Kalin

    The remote analysis and visualization of raw large turbulence datasets is challenging. Current accurate direct numerical simulations (DNS) of turbulent flows generate datasets with billions of points per time-step and several thousand time-steps per simulation. Until recently, the analysis and visualization of such datasets was restricted to scientists with access to large supercomputers. The public Johns Hopkins Turbulence database simplifies access to multi-terabyte turbulence datasets and facilitates the computation of statistics and extraction of features through the use of commodity hardware. In this paper, we present a framework designed around wavelet-based compression for high-speed visualization of large datasets and methodsmore » supporting multi-resolution analysis of turbulence. By integrating common technologies, this framework enables remote access to tools available on supercomputers and over 230 terabytes of DNS data over the Web. Finally, the database toolset is expanded by providing access to exploratory data analysis tools, such as wavelet decomposition capabilities and coherent feature extraction.« less

  1. Remote visual analysis of large turbulence databases at multiple scales

    DOE PAGES

    Pulido, Jesus; Livescu, Daniel; Kanov, Kalin; ...

    2018-06-15

    The remote analysis and visualization of raw large turbulence datasets is challenging. Current accurate direct numerical simulations (DNS) of turbulent flows generate datasets with billions of points per time-step and several thousand time-steps per simulation. Until recently, the analysis and visualization of such datasets was restricted to scientists with access to large supercomputers. The public Johns Hopkins Turbulence database simplifies access to multi-terabyte turbulence datasets and facilitates the computation of statistics and extraction of features through the use of commodity hardware. In this paper, we present a framework designed around wavelet-based compression for high-speed visualization of large datasets and methodsmore » supporting multi-resolution analysis of turbulence. By integrating common technologies, this framework enables remote access to tools available on supercomputers and over 230 terabytes of DNS data over the Web. Finally, the database toolset is expanded by providing access to exploratory data analysis tools, such as wavelet decomposition capabilities and coherent feature extraction.« less

  2. Adaptive multiscale processing for contrast enhancement

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu; Fan, Jian; Huda, Walter; Honeyman, Janice C.; Steinbach, Barbara G.

    1993-07-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms within a continuum of scale space and used to enhance features of importance to mammography. Choosing analyzing functions that are well localized in both space and frequency, results in a powerful methodology for image analysis. We describe methods of contrast enhancement based on two overcomplete (redundant) multiscale representations: (1) Dyadic wavelet transform (2) (phi) -transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by non-linear, logarithmic and constant scale-space weight functions. Multiscale edges identified within distinct levels of transform space provide a local support for enhancement throughout each decomposition. We demonstrate that features extracted from wavelet spaces can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.

  3. Component separation for cosmic microwave background radiation

    NASA Astrophysics Data System (ADS)

    Fernández-Cobos, R.; Vielva, P.; Barreiro, R. B.; Martínez-González, E.

    2011-11-01

    Cosmic microwave background (CMB) radiation data obtained by different experiments contains, besides the desired signal, a superposition of microwave sky contributions mainly due to, on the one hand, synchrotron radiation, free-free emission and re-emission of dust clouds in our galaxy; and, on the other hand, extragalactic sources. We present an analytical method, using a wavelet decomposition on the sphere, to recover the CMB signal from microwave maps. Being applied to both temperature and polarization data, it is shown as a significant powerful tool when it is used in particularly polluted regions of the sky. The applied wavelet has the advantages of requiring little computering time in its calculations being adapted to the HEALPix pixelization scheme (which is the format that the community uses to report the CMB data) and offering the possibility of multi-resolution analysis. The decomposition is implemented as part of a template fitting method, minimizing the variance of the resulting map. The method was tested with simulations of WMAP data and results have been positive, with improvements up to 12% in the variance of the resulting full sky map and about 3% in low contaminate regions. Finally, we also present some preliminary results with WMAP data in the form of an angular cross power spectrum C_ℓ^{TE}, consistent with the spectrum offered by WMAP team.

  4. Segmentation-based wavelet transform for still-image compression

    NASA Astrophysics Data System (ADS)

    Mozelle, Gerard; Seghier, Abdellatif; Preteux, Francoise J.

    1996-10-01

    In order to address simultaneously the two functionalities, content-based scalability required by MPEG-4, we introduce a segmentation-based wavelet transform (SBWT). SBWT takes into account both the mathematical properties of multiresolution analysis and the flexibility of region-based approaches for image compression. The associated methodology has two stages: 1) image segmentation into convex and polygonal regions; 2) 2D-wavelet transform of the signal corresponding to each region. In this paper, we have mathematically studied a method for constructing a multiresolution analysis (VjOmega)j (epsilon) N adapted to a polygonal region which provides an adaptive region-based filtering. The explicit construction of scaling functions, pre-wavelets and orthonormal wavelets bases defined on a polygon is carried out by using scaling functions is established by using the theory of Toeplitz operators. The corresponding expression can be interpreted as a location property which allow defining interior and boundary scaling functions. Concerning orthonormal wavelets and pre-wavelets, a similar expansion is obtained by taking advantage of the properties of the orthogonal projector P(V(j(Omega )) perpendicular from the space Vj(Omega ) + 1 onto the space (Vj(Omega )) perpendicular. Finally the mathematical results provide a simple and fast algorithm adapted to polygonal regions.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiolo, M., E-mail: massimo.maiolo@zhaw.ch; ZHAW, Institut für Angewandte Simulation, Grüental, CH-8820 Wädenswil; Vancheri, A., E-mail: alberto.vancheri@supsi.ch

    In this paper, we apply Multiresolution Analysis (MRA) to develop sparse but accurate representations for the Multiscale Coarse-Graining (MSCG) approximation to the many-body potential of mean force. We rigorously framed the MSCG method into MRA so that all the instruments of this theory become available together with a multitude of new basis functions, namely the wavelets. The coarse-grained (CG) force field is hierarchically decomposed at different resolution levels enabling to choose the most appropriate wavelet family for each physical interaction without requiring an a priori knowledge of the details localization. The representation of the CG potential in this new efficientmore » orthonormal basis leads to a compression of the signal information in few large expansion coefficients. The multiresolution property of the wavelet transform allows to isolate and remove the noise from the CG force-field reconstruction by thresholding the basis function coefficients from each frequency band independently. We discuss the implementation of our wavelet-based MSCG approach and demonstrate its accuracy using two different condensed-phase systems, i.e. liquid water and methanol. Simulations of liquid argon have also been performed using a one-to-one mapping between atomistic and CG sites. The latter model allows to verify the accuracy of the method and to test different choices of wavelet families. Furthermore, the results of the computer simulations show that the efficiency and sparsity of the representation of the CG force field can be traced back to the mathematical properties of the chosen family of wavelets. This result is in agreement with what is known from the theory of multiresolution analysis of signals.« less

  6. Automatic brain tumor detection in MRI: methodology and statistical validation

    NASA Astrophysics Data System (ADS)

    Iftekharuddin, Khan M.; Islam, Mohammad A.; Shaik, Jahangheer; Parra, Carlos; Ogg, Robert

    2005-04-01

    Automated brain tumor segmentation and detection are immensely important in medical diagnostics because it provides information associated to anatomical structures as well as potential abnormal tissue necessary to delineate appropriate surgical planning. In this work, we propose a novel automated brain tumor segmentation technique based on multiresolution texture information that combines fractal Brownian motion (fBm) and wavelet multiresolution analysis. Our wavelet-fractal technique combines the excellent multiresolution localization property of wavelets to texture extraction of fractal. We prove the efficacy of our technique by successfully segmenting pediatric brain MR images (MRIs) from St. Jude Children"s Research Hospital. We use self-organizing map (SOM) as our clustering tool wherein we exploit both pixel intensity and multiresolution texture features to obtain segmented tumor. Our test results show that our technique successfully segments abnormal brain tissues in a set of T1 images. In the next step, we design a classifier using Feed-Forward (FF) neural network to statistically validate the presence of tumor in MRI using both the multiresolution texture and the pixel intensity features. We estimate the corresponding receiver operating curve (ROC) based on the findings of true positive fractions and false positive fractions estimated from our classifier at different threshold values. An ROC, which can be considered as a gold standard to prove the competence of a classifier, is obtained to ascertain the sensitivity and specificity of our classifier. We observe that at threshold 0.4 we achieve true positive value of 1.0 (100%) sacrificing only 0.16 (16%) false positive value for the set of 50 T1 MRI analyzed in this experiment.

  7. Automated transformation-invariant shape recognition through wavelet multiresolution

    NASA Astrophysics Data System (ADS)

    Brault, Patrice; Mounier, Hugues

    2001-12-01

    We present here new results in Wavelet Multi-Resolution Analysis (W-MRA) applied to shape recognition in automatic vehicle driving applications. Different types of shapes have to be recognized in this framework. They pertain to most of the objects entering the sensors field of a car. These objects can be road signs, lane separation lines, moving or static obstacles, other automotive vehicles, or visual beacons. The recognition process must be invariant to global, affine or not, transformations which are : rotation, translation and scaling. It also has to be invariant to more local, elastic, deformations like the perspective (in particular with wide angle camera lenses), and also like deformations due to environmental conditions (weather : rain, mist, light reverberation) or optical and electrical signal noises. To demonstrate our method, an initial shape, with a known contour, is compared to the same contour altered by rotation, translation, scaling and perspective. The curvature computed for each contour point is used as a main criterion in the shape matching process. The original part of this work is to use wavelet descriptors, generated with a fast orthonormal W-MRA, rather than Fourier descriptors, in order to provide a multi-resolution description of the contour to be analyzed. In such way, the intrinsic spatial localization property of wavelet descriptors can be used and the recognition process can be speeded up. The most important part of this work is to demonstrate the potential performance of Wavelet-MRA in this application of shape recognition.

  8. WaveJava: Wavelet-based network computing

    NASA Astrophysics Data System (ADS)

    Ma, Kun; Jiao, Licheng; Shi, Zhuoer

    1997-04-01

    Wavelet is a powerful theory, but its successful application still needs suitable programming tools. Java is a simple, object-oriented, distributed, interpreted, robust, secure, architecture-neutral, portable, high-performance, multi- threaded, dynamic language. This paper addresses the design and development of a cross-platform software environment for experimenting and applying wavelet theory. WaveJava, a wavelet class library designed by the object-orient programming, is developed to take advantage of the wavelets features, such as multi-resolution analysis and parallel processing in the networking computing. A new application architecture is designed for the net-wide distributed client-server environment. The data are transmitted with multi-resolution packets. At the distributed sites around the net, these data packets are done the matching or recognition processing in parallel. The results are fed back to determine the next operation. So, the more robust results can be arrived quickly. The WaveJava is easy to use and expand for special application. This paper gives a solution for the distributed fingerprint information processing system. It also fits for some other net-base multimedia information processing, such as network library, remote teaching and filmless picture archiving and communications.

  9. Deep learning for classification of islanding and grid disturbance based on multi-resolution singular spectrum entropy

    NASA Astrophysics Data System (ADS)

    Li, Tie; He, Xiaoyang; Tang, Junci; Zeng, Hui; Zhou, Chunying; Zhang, Nan; Liu, Hui; Lu, Zhuoxin; Kong, Xiangrui; Yan, Zheng

    2018-02-01

    Forasmuch as the distinguishment of islanding is easy to be interfered by grid disturbance, island detection device may make misjudgment thus causing the consequence of photovoltaic out of service. The detection device must provide with the ability to differ islanding from grid disturbance. In this paper, the concept of deep learning is introduced into classification of islanding and grid disturbance for the first time. A novel deep learning framework is proposed to detect and classify islanding or grid disturbance. The framework is a hybrid of wavelet transformation, multi-resolution singular spectrum entropy, and deep learning architecture. As a signal processing method after wavelet transformation, multi-resolution singular spectrum entropy combines multi-resolution analysis and spectrum analysis with entropy as output, from which we can extract the intrinsic different features between islanding and grid disturbance. With the features extracted, deep learning is utilized to classify islanding and grid disturbance. Simulation results indicate that the method can achieve its goal while being highly accurate, so the photovoltaic system mistakenly withdrawing from power grids can be avoided.

  10. Steerable dyadic wavelet transform and interval wavelets for enhancement of digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Koren, Iztok; Yang, Wuhai; Taylor, Fred J.

    1995-04-01

    This paper describes two approaches for accomplishing interactive feature analysis by overcomplete multiresolution representations. We show quantitatively that transform coefficients, modified by an adaptive non-linear operator, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. Our results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. We design a filter bank representing a steerable dyadic wavelet transform that can be used for multiresolution analysis along arbitrary orientations. Digital mammograms are enhanced by orientation analysis performed by a steerable dyadic wavelet transform. Arbitrary regions of interest (ROI) are enhanced by Deslauriers-Dubuc interpolation representations on an interval. We demonstrate that our methods can provide radiologists with an interactive capability to support localized processing of selected (suspicion) areas (lesions). Features extracted from multiscale representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology can improve changes of early detection while requiring less time to evaluate mammograms for most patients.

  11. Wavelet and adaptive methods for time dependent problems and applications in aerosol dynamics

    NASA Astrophysics Data System (ADS)

    Guo, Qiang

    Time dependent partial differential equations (PDEs) are widely used as mathematical models of environmental problems. Aerosols are now clearly identified as an important factor in many environmental aspects of climate and radiative forcing processes, as well as in the health effects of air quality. The mathematical models for the aerosol dynamics with respect to size distribution are nonlinear partial differential and integral equations, which describe processes of condensation, coagulation and deposition. Simulating the general aerosol dynamic equations on time, particle size and space exhibits serious difficulties because the size dimension ranges from a few nanometer to several micrometer while the spatial dimension is usually described with kilometers. Therefore, it is an important and challenging task to develop efficient techniques for solving time dependent dynamic equations. In this thesis, we develop and analyze efficient wavelet and adaptive methods for the time dependent dynamic equations on particle size and further apply them to the spatial aerosol dynamic systems. Wavelet Galerkin method is proposed to solve the aerosol dynamic equations on time and particle size due to the fact that aerosol distribution changes strongly along size direction and the wavelet technique can solve it very efficiently. Daubechies' wavelets are considered in the study due to the fact that they possess useful properties like orthogonality, compact support, exact representation of polynomials to a certain degree. Another problem encountered in the solution of the aerosol dynamic equations results from the hyperbolic form due to the condensation growth term. We propose a new characteristic-based fully adaptive multiresolution numerical scheme for solving the aerosol dynamic equation, which combines the attractive advantages of adaptive multiresolution technique and the characteristics method. On the aspect of theoretical analysis, the global existence and uniqueness of solutions of continuous time wavelet numerical methods for the nonlinear aerosol dynamics are proved by using Schauder's fixed point theorem and the variational technique. Optimal error estimates are derived for both continuous and discrete time wavelet Galerkin schemes. We further derive reliable and efficient a posteriori error estimate which is based on stable multiresolution wavelet bases and an adaptive space-time algorithm for efficient solution of linear parabolic differential equations. The adaptive space refinement strategies based on the locality of corresponding multiresolution processes are proved to converge. At last, we develop efficient numerical methods by combining the wavelet methods proposed in previous parts and the splitting technique to solve the spatial aerosol dynamic equations. Wavelet methods along the particle size direction and the upstream finite difference method along the spatial direction are alternately used in each time interval. Numerical experiments are taken to show the effectiveness of our developed methods.

  12. Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies.

    PubMed

    Gharekhan, Anita H; Arora, Siddharth; Oza, Ashok N; Sureshkumar, Mundan B; Pradhan, Asima; Panigrahi, Prasanta K

    2011-08-01

    Using the multiresolution ability of wavelets and effectiveness of singular value decomposition (SVD) to identify statistically robust parameters, we find a number of local and global features, capturing spectral correlations in the co- and cross-polarized channels, at different scales (of human breast tissues). The copolarized component, being sensitive to intrinsic fluorescence, shows different behavior for normal, benign, and cancerous tissues, in the emission domain of known fluorophores, whereas the perpendicular component, being more prone to the diffusive effect of scattering, points out differences in the Kernel-Smoother density estimate employed to the principal components, between malignant, normal, and benign tissues. The eigenvectors, corresponding to the dominant eigenvalues of the correlation matrix in SVD, also exhibit significant differences between the three tissue types, which clearly reflects the differences in the spectral correlation behavior. Interestingly, the most significant distinguishing feature manifests in the perpendicular component, corresponding to porphyrin emission range in the cancerous tissue. The fact that perpendicular component is strongly influenced by depolarization, and porphyrin emissions in cancerous tissue has been found to be strongly depolarized, may be the possible cause of the above observation.

  13. Storm Motion Tracking Over The Arno River Basin Through Multiscale Radar Reflectivity Classification and Correlation

    NASA Astrophysics Data System (ADS)

    Facheris, L.; Tanelli, S.; Giuli, D.

    A method is presented for analyzing the storm motion through the application of a nowcasting technique based on radar echoes tracking through multiscale correlation. The application of the correlation principle to weather radar image processing - the so called TREC (Tracking Radar Echoes by Correlation) and derived algorithms - is de- scribed in [1] and in references cited therein. The block matching approach exploited there is typical of video compression applications, whose purpose is to remove the temporal correlation between two subsequent frames of a sequence of images. In par- ticular, the wavelet decomposition approach to motion estimation seems particularly suitable for weather radar maps. In fact, block matching is particularly efficient when the images have a sufficient level of contrast. Though this does not hold for original resolution radar maps, it can be easily obtained by changing the resolution level by means of the wavelet decomposition. The technique first proposed in [2] (TREMC - Tracking of Radar Echoes by means of Multiscale Correlation) adopts a multiscale, multiresolution, and partially overlapped, block grid which adapts to the radar reflec- tivity pattern. Multiresolution decomposition is performed through 2D wavelet based filtering. Correlation coefficients are calculated taking after preliminary screening of unreliable data (e.g. those affected by ground clutter or beam shielding), so as to avoid strong undesired motion estimation biases due to the presence of stationary features. Such features are detected by a previous analysis carried out as discussed in [2]. In this paper, motion fields obtained by analyzing precipitation events over the Arno river basin are compared to the related Doppler velocity fields in order to identify growth and decay areas and orographic effects. Data presented have been collected by the weather radar station POLAR 55C sited in Montagnana (Firenze-Italy), a polarimetric C-band system providing absolute and differential reflectivity maps, mean Doppler velocity and Doppler spread maps with a resolution of 125/250 m [3]. [1] Li L. Schmid W. and Joss J., Nowcasting of motion and growth of precipitation with radar over a complex orography Journal of Applied Meteorology, vol. 34, pp. 1286-1300, 1995. [2] L.Facheris, S. Tanelli, F. Argenti, D.Giuli, SWavelet Applica- & cedil;tions to Multiparameter Weather Radar AnalysisT, to be published on SInformation & cedil;Processing for Remote SensingT, Prof. C.H. Chen Ed. for World Scientific Publish- 1 ing Co., pagg. 187-207, 1999 [3] Scarchilli G. Gorgucci E. Giuli D. Facheris L. Freni A. and Vezzani G., Arno Project: Radar System and objectives., Proceedings 25th In- ternational Conference on Radar Meteorology, Paris, France, 24-28 June 1991, pp. 805-808 2

  14. Multiresolution analysis over graphs for a motor imagery based online BCI game.

    PubMed

    Asensio-Cubero, Javier; Gan, John Q; Palaniappan, Ramaswamy

    2016-01-01

    Multiresolution analysis (MRA) over graph representation of EEG data has proved to be a promising method for offline brain-computer interfacing (BCI) data analysis. For the first time we aim to prove the feasibility of the graph lifting transform in an online BCI system. Instead of developing a pointer device or a wheel-chair controller as test bed for human-machine interaction, we have designed and developed an engaging game which can be controlled by means of imaginary limb movements. Some modifications to the existing MRA analysis over graphs for BCI have also been proposed, such as the use of common spatial patterns for feature extraction at the different levels of decomposition, and sequential floating forward search as a best basis selection technique. In the online game experiment we obtained for three classes an average classification rate of 63.0% for fourteen naive subjects. The application of a best basis selection method helps significantly decrease the computing resources needed. The present study allows us to further understand and assess the benefits of the use of tailored wavelet analysis for processing motor imagery data and contributes to the further development of BCI for gaming purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A wavelet based method for automatic detection of slow eye movements: a pilot study.

    PubMed

    Magosso, Elisa; Provini, Federica; Montagna, Pasquale; Ursino, Mauro

    2006-11-01

    Electro-oculographic (EOG) activity during the wake-sleep transition is characterized by the appearance of slow eye movements (SEM). The present work describes an algorithm for the automatic localisation of SEM events from EOG recordings. The algorithm is based on a wavelet multiresolution analysis of the difference between right and left EOG tracings, and includes three main steps: (i) wavelet decomposition down to 10 detail levels (i.e., 10 scales), using Daubechies order 4 wavelet; (ii) computation of energy in 0.5s time steps at any level of decomposition; (iii) construction of a non-linear discriminant function expressing the relative energy of high-scale details to both high- and low-scale details. The main assumption is that the value of the discriminant function increases above a given threshold during SEM episodes due to energy redistribution toward higher scales. Ten EOG recordings from ten male patients with obstructive sleep apnea syndrome were used. All tracings included a period from pre-sleep wakefulness to stage 2 sleep. Two experts inspected the tracings separately to score SEMs. A reference set of SEM (gold standard) were obtained by joint examination by both experts. Parameters of the discriminant function were assigned on three tracings (design set) to minimize the disagreement between the system classification and classification by the two experts; the algorithm was then tested on the remaining seven tracings (test set). Results show that the agreement between the algorithm and the gold standard was 80.44+/-4.09%, the sensitivity of the algorithm was 67.2+/-7.37% and the selectivity 83.93+/-8.65%. However, most errors were not caused by an inability of the system to detect intervals with SEM activity against NON-SEM intervals, but were due to a different localisation of the beginning and end of some SEM episodes. The proposed method may be a valuable tool for computerized EOG analysis.

  16. Adapted wavelet transform improves time-frequency representations: a study of auditory elicited P300-like event-related potentials in rats

    NASA Astrophysics Data System (ADS)

    Richard, Nelly; Laursen, Bettina; Grupe, Morten; Drewes, Asbjørn M.; Graversen, Carina; Sørensen, Helge B. D.; Bastlund, Jesper F.

    2017-04-01

    Objective. Active auditory oddball paradigms are simple tone discrimination tasks used to study the P300 deflection of event-related potentials (ERPs). These ERPs may be quantified by time-frequency analysis. As auditory stimuli cause early high frequency and late low frequency ERP oscillations, the continuous wavelet transform (CWT) is often chosen for decomposition due to its multi-resolution properties. However, as the conventional CWT traditionally applies only one mother wavelet to represent the entire spectrum, the time-frequency resolution is not optimal across all scales. To account for this, we developed and validated a novel method specifically refined to analyse P300-like ERPs in rats. Approach. An adapted CWT (aCWT) was implemented to preserve high time-frequency resolution across all scales by commissioning of multiple wavelets operating at different scales. First, decomposition of simulated ERPs was illustrated using the classical CWT and the aCWT. Next, the two methods were applied to EEG recordings obtained from prefrontal cortex in rats performing a two-tone auditory discrimination task. Main results. While only early ERP frequency changes between responses to target and non-target tones were detected by the CWT, both early and late changes were successfully described with strong accuracy by the aCWT in rat ERPs. Increased frontal gamma power and phase synchrony was observed particularly within theta and gamma frequency bands during deviant tones. Significance. The study suggests superior performance of the aCWT over the CWT in terms of detailed quantification of time-frequency properties of ERPs. Our methodological investigation indicates that accurate and complete assessment of time-frequency components of short-time neural signals is feasible with the novel analysis approach which may be advantageous for characterisation of several types of evoked potentials in particularly rodents.

  17. Hammerstein system represention of financial volatility processes

    NASA Astrophysics Data System (ADS)

    Capobianco, E.

    2002-05-01

    We show new modeling aspects of stock return volatility processes, by first representing them through Hammerstein Systems, and by then approximating the observed and transformed dynamics with wavelet-based atomic dictionaries. We thus propose an hybrid statistical methodology for volatility approximation and non-parametric estimation, and aim to use the information embedded in a bank of volatility sources obtained by decomposing the observed signal with multiresolution techniques. Scale dependent information refers both to market activity inherent to different temporally aggregated trading horizons, and to a variable degree of sparsity in representing the signal. A decomposition of the expansion coefficients in least dependent coordinates is then implemented through Independent Component Analysis. Based on the described steps, the features of volatility can be more effectively detected through global and greedy algorithms.

  18. Wavelets and molecular structure

    NASA Astrophysics Data System (ADS)

    Carson, Mike

    1996-08-01

    The wavelet method offers possibilities for display, editing, and topological comparison of proteins at a user-specified level of detail. Wavelets are a mathematical tool that first found application in signal processing. The multiresolution analysis of a signal via wavelets provides a hierarchical series of `best' lower-resolution approximations. B-spline ribbons model the protein fold, with one control point per residue. Wavelet analysis sets limits on the information required to define the winding of the backbone through space, suggesting a recognizable fold is generated from a number of points equal to 1/4 or less the number of residues. Wavelets applied to surfaces and volumes show promise in structure-based drug design.

  19. Wavelet-based hierarchical surface approximation from height fields

    Treesearch

    Sang-Mook Lee; A. Lynn Abbott; Daniel L. Schmoldt

    2004-01-01

    This paper presents a novel hierarchical approach to triangular mesh generation from height fields. A wavelet-based multiresolution analysis technique is used to estimate local shape information at different levels of resolution. Using predefined templates at the coarsest level, the method constructs an initial triangulation in which underlying object shapes are well...

  20. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.

    PubMed

    Liao, Ke; Zhu, Min; Ding, Lei

    2013-08-01

    The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Single Channel EEG Artifact Identification Using Two-Dimensional Multi-Resolution Analysis.

    PubMed

    Taherisadr, Mojtaba; Dehzangi, Omid; Parsaei, Hossein

    2017-12-13

    As a diagnostic monitoring approach, electroencephalogram (EEG) signals can be decoded by signal processing methodologies for various health monitoring purposes. However, EEG recordings are contaminated by other interferences, particularly facial and ocular artifacts generated by the user. This is specifically an issue during continuous EEG recording sessions, and is therefore a key step in using EEG signals for either physiological monitoring and diagnosis or brain-computer interface to identify such artifacts from useful EEG components. In this study, we aim to design a new generic framework in order to process and characterize EEG recording as a multi-component and non-stationary signal with the aim of localizing and identifying its component (e.g., artifact). In the proposed method, we gather three complementary algorithms together to enhance the efficiency of the system. Algorithms include time-frequency (TF) analysis and representation, two-dimensional multi-resolution analysis (2D MRA), and feature extraction and classification. Then, a combination of spectro-temporal and geometric features are extracted by combining key instantaneous TF space descriptors, which enables the system to characterize the non-stationarities in the EEG dynamics. We fit a curvelet transform (as a MRA method) to 2D TF representation of EEG segments to decompose the given space to various levels of resolution. Such a decomposition efficiently improves the analysis of the TF spaces with different characteristics (e.g., resolution). Our experimental results demonstrate that the combination of expansion to TF space, analysis using MRA, and extracting a set of suitable features and applying a proper predictive model is effective in enhancing the EEG artifact identification performance. We also compare the performance of the designed system with another common EEG signal processing technique-namely, 1D wavelet transform. Our experimental results reveal that the proposed method outperforms 1D wavelet.

  2. Mortar and artillery variants classification by exploiting characteristics of the acoustic signature

    NASA Astrophysics Data System (ADS)

    Hohil, Myron E.; Grasing, David; Desai, Sachi; Morcos, Amir

    2007-10-01

    Feature extraction methods based on the discrete wavelet transform and multiresolution analysis facilitate the development of a robust classification algorithm that reliably discriminates mortar and artillery variants via acoustic signals produced during the launch/impact events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants. Distinct characteristics arise within the different mortar variants because varying HE mortar payloads and related charges emphasize concussive and shrapnel effects upon impact employing varying magnitude explosions. The different mortar variants are characterized by variations in the resulting waveform of the event. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing techniques can employed to classify a given set. The DWT and other readily available signal processing techniques will be used to extract the predominant components of these characteristics from the acoustic signatures at ranges exceeding 2km. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients, frequency spectrum, and higher frequency details found within different levels of the multiresolution decomposition. The process that will be described herein extends current technologies, which emphasis multi modal sensor fusion suites to provide such situational awareness. A two fold problem of energy consumption and line of sight arise with the multi modal sensor suites. The process described within will exploit the acoustic properties of the event to provide variant classification as added situational awareness to the solider.

  3. On analysis of electroencephalogram by multiresolution-based energetic approach

    NASA Astrophysics Data System (ADS)

    Sevindir, Hulya Kodal; Yazici, Cuneyt; Siddiqi, A. H.; Aslan, Zafer

    2013-10-01

    Epilepsy is a common brain disorder where the normal neuronal activity gets affected. Electroencephalography (EEG) is the recording of electrical activity along the scalp produced by the firing of neurons within the brain. The main application of EEG is in the case of epilepsy. On a standard EEG some abnormalities indicate epileptic activity. EEG signals like many biomedical signals are highly non-stationary by their nature. For the investigation of biomedical signals, in particular EEG signals, wavelet analysis have found prominent position in the study for their ability to analyze such signals. Wavelet transform is capable of separating the signal energy among different frequency scales and a good compromise between temporal and frequency resolution is obtained. The present study is an attempt for better understanding of the mechanism causing the epileptic disorder and accurate prediction of occurrence of seizures. In the present paper following Magosso's work [12], we identify typical patterns of energy redistribution before and during the seizure using multiresolution wavelet analysis on Kocaeli University's Medical School's data.

  4. Statistical methods for change-point detection in surface temperature records

    NASA Astrophysics Data System (ADS)

    Pintar, A. L.; Possolo, A.; Zhang, N. F.

    2013-09-01

    We describe several statistical methods to detect possible change-points in a time series of values of surface temperature measured at a meteorological station, and to assess the statistical significance of such changes, taking into account the natural variability of the measured values, and the autocorrelations between them. These methods serve to determine whether the record may suffer from biases unrelated to the climate signal, hence whether there may be a need for adjustments as considered by M. J. Menne and C. N. Williams (2009) "Homogenization of Temperature Series via Pairwise Comparisons", Journal of Climate 22 (7), 1700-1717. We also review methods to characterize patterns of seasonality (seasonal decomposition using monthly medians or robust local regression), and explain the role they play in the imputation of missing values, and in enabling robust decompositions of the measured values into a seasonal component, a possible climate signal, and a station-specific remainder. The methods for change-point detection that we describe include statistical process control, wavelet multi-resolution analysis, adaptive weights smoothing, and a Bayesian procedure, all of which are applicable to single station records.

  5. Scalability of a Low-Cost Multi-Teraflop Linux Cluster for High-End Classical Atomistic and Quantum Mechanical Simulations

    NASA Technical Reports Server (NTRS)

    Kikuchi, Hideaki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki; Saini, Subhash

    2003-01-01

    Scalability of a low-cost, Intel Xeon-based, multi-Teraflop Linux cluster is tested for two high-end scientific applications: Classical atomistic simulation based on the molecular dynamics method and quantum mechanical calculation based on the density functional theory. These scalable parallel applications use space-time multiresolution algorithms and feature computational-space decomposition, wavelet-based adaptive load balancing, and spacefilling-curve-based data compression for scalable I/O. Comparative performance tests are performed on a 1,024-processor Linux cluster and a conventional higher-end parallel supercomputer, 1,184-processor IBM SP4. The results show that the performance of the Linux cluster is comparable to that of the SP4. We also study various effects, such as the sharing of memory and L2 cache among processors, on the performance.

  6. Wavelet multiresolution analyses adapted for the fast solution of boundary value ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Jawerth, Bjoern; Sweldens, Wim

    1993-01-01

    We present ideas on how to use wavelets in the solution of boundary value ordinary differential equations. Rather than using classical wavelets, we adapt their construction so that they become (bi)orthogonal with respect to the inner product defined by the operator. The stiffness matrix in a Galerkin method then becomes diagonal and can thus be trivially inverted. We show how one can construct an O(N) algorithm for various constant and variable coefficient operators.

  7. Multi-resolution Shape Analysis via Non-Euclidean Wavelets: Applications to Mesh Segmentation and Surface Alignment Problems.

    PubMed

    Kim, Won Hwa; Chung, Moo K; Singh, Vikas

    2013-01-01

    The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.

  8. Extracting fingerprint of wireless devices based on phase noise and multiple level wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Zhao, Weichen; Sun, Zhuo; Kong, Song

    2016-10-01

    Wireless devices can be identified by the fingerprint extracted from the signal transmitted, which is useful in wireless communication security and other fields. This paper presents a method that extracts fingerprint based on phase noise of signal and multiple level wavelet decomposition. The phase of signal will be extracted first and then decomposed by multiple level wavelet decomposition. The statistic value of each wavelet coefficient vector is utilized for constructing fingerprint. Besides, the relationship between wavelet decomposition level and recognition accuracy is simulated. And advertised decomposition level is revealed as well. Compared with previous methods, our method is simpler and the accuracy of recognition remains high when Signal Noise Ratio (SNR) is low.

  9. Multi-resolution Gabor wavelet feature extraction for needle detection in 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Pourtaherian, Arash; Zinger, Svitlana; Mihajlovic, Nenad; de With, Peter H. N.; Huang, Jinfeng; Ng, Gary C.; Korsten, Hendrikus H. M.

    2015-12-01

    Ultrasound imaging is employed for needle guidance in various minimally invasive procedures such as biopsy guidance, regional anesthesia and brachytherapy. Unfortunately, a needle guidance using 2D ultrasound is very challenging, due to a poor needle visibility and a limited field of view. Nowadays, 3D ultrasound systems are available and more widely used. Consequently, with an appropriate 3D image-based needle detection technique, needle guidance and interventions may significantly be improved and simplified. In this paper, we present a multi-resolution Gabor transformation for an automated and reliable extraction of the needle-like structures in a 3D ultrasound volume. We study and identify the best combination of the Gabor wavelet frequencies. High precision in detecting the needle voxels leads to a robust and accurate localization of the needle for the intervention support. Evaluation in several ex-vivo cases shows that the multi-resolution analysis significantly improves the precision of the needle voxel detection from 0.23 to 0.32 at a high recall rate of 0.75 (gain 40%), where a better robustness and confidence were confirmed in the practical experiments.

  10. A novel rail defect detection method based on undecimated lifting wavelet packet transform and Shannon entropy-improved adaptive line enhancer

    NASA Astrophysics Data System (ADS)

    Hao, Qiushi; Zhang, Xin; Wang, Yan; Shen, Yi; Makis, Viliam

    2018-07-01

    Acoustic emission (AE) technology is sensitive to subliminal rail defects, however strong wheel-rail contact rolling noise under high-speed condition has gravely impeded detecting of rail defects using traditional denoising methods. In this context, the paper develops an adaptive detection method for rail cracks, which combines multiresolution analysis with an improved adaptive line enhancer (ALE). To obtain elaborate multiresolution information of transient crack signals with low computational cost, lifting scheme-based undecimated wavelet packet transform is adopted. In order to feature the impulsive property of crack signals, a Shannon entropy-improved ALE is proposed as a signal enhancing approach, where Shannon entropy is introduced to improve the cost function. Then a rail defect detection plan based on the proposed method for high-speed condition is put forward. From theoretical analysis and experimental verification, it is demonstrated that the proposed method has superior performance in enhancing the rail defect AE signal and reducing the strong background noise, offering an effective multiresolution approach for rail defect detection under high-speed and strong-noise condition.

  11. Image wavelet decomposition and applications

    NASA Technical Reports Server (NTRS)

    Treil, N.; Mallat, S.; Bajcsy, R.

    1989-01-01

    The general problem of computer vision has been investigated for more that 20 years and is still one of the most challenging fields in artificial intelligence. Indeed, taking a look at the human visual system can give us an idea of the complexity of any solution to the problem of visual recognition. This general task can be decomposed into a whole hierarchy of problems ranging from pixel processing to high level segmentation and complex objects recognition. Contrasting an image at different representations provides useful information such as edges. An example of low level signal and image processing using the theory of wavelets is introduced which provides the basis for multiresolution representation. Like the human brain, we use a multiorientation process which detects features independently in different orientation sectors. So, images of the same orientation but of different resolutions are contrasted to gather information about an image. An interesting image representation using energy zero crossings is developed. This representation is shown to be experimentally complete and leads to some higher level applications such as edge and corner finding, which in turn provides two basic steps to image segmentation. The possibilities of feedback between different levels of processing are also discussed.

  12. Hexagonal wavelet processing of digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Schuler, Sergio; Huda, Walter; Honeyman-Buck, Janice C.; Steinbach, Barbara G.

    1993-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms and used to enhance features of importance to mammography within a continuum of scale-space. We present a method of contrast enhancement based on an overcomplete, non-separable multiscale representation: the hexagonal wavelet transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by local and global non-linear operators. Multiscale edges identified within distinct levels of transform space provide local support for enhancement. We demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.

  13. On the Effective Construction of Compactly Supported Wavelets Satisfying Homogenous Boundary Conditions on the Interval

    NASA Technical Reports Server (NTRS)

    Chiavassa, G.; Liandrat, J.

    1996-01-01

    We construct compactly supported wavelet bases satisfying homogeneous boundary conditions on the interval (0,1). The maximum features of multiresolution analysis on the line are retained, including polynomial approximation and tree algorithms. The case of H(sub 0)(sup 1)(0, 1)is detailed, and numerical values, required for the implementation, are provided for the Neumann and Dirichlet boundary conditions.

  14. Reliable classification of high explosive and chemical/biological artillery using acoustic sensors

    NASA Astrophysics Data System (ADS)

    Desai, Sachi V.; Hohil, Myron E.; Bass, Henry E.; Chambers, Jim

    2005-05-01

    Feature extraction methods based on the discrete wavelet transform and multiresolution analysis are used to develop a robust classification algorithm that reliably discriminates between conventional and simulated chemical/biological artillery rounds via acoustic signals produced during detonation utilizing a generic acoustic sensor. Based on the transient properties of the signature blast distinct characteristics arise within the different acoustic signatures because high explosive warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. The ensuing blast waves are readily characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. Unique attributes can also be identified that depend upon the properties of the gun tube, projectile speed at the muzzle, and the explosive burn rates of the warhead. The algorithm enables robust classification of various airburst signatures using acoustics. It is capable of being integrated within an existing chemical/biological sensor, a stand-alone generic sensor, or a part of a disparate sensor suite. When emplaced in high-threat areas, this added capability would further provide field personal with advanced battlefield knowledge without the aide of so-called "sniffer" sensors that rely upon air particle information based on direct contact with possible contaminated air. In this work, the discrete wavelet transform is used to extract the predominant components of these characteristics from air burst signatures at ranges exceeding 2km while maintaining temporal sequence of the data to keep relevance to the transient differences of the airburst signatures. Highly reliable discrimination is achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients and higher frequency details found within different levels of the multiresolution decomposition the neural network then is capable of classifying new airburst signatures as Chemical/Biological or High Explosive.

  15. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques

    NASA Astrophysics Data System (ADS)

    Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.

    2015-01-01

    Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.

  16. Experimental Studies on a Compact Storage Scheme for Wavelet-based Multiresolution Subregion Retrieval

    NASA Technical Reports Server (NTRS)

    Poulakidas, A.; Srinivasan, A.; Egecioglu, O.; Ibarra, O.; Yang, T.

    1996-01-01

    Wavelet transforms, when combined with quantization and a suitable encoding, can be used to compress images effectively. In order to use them for image library systems, a compact storage scheme for quantized coefficient wavelet data must be developed with a support for fast subregion retrieval. We have designed such a scheme and in this paper we provide experimental studies to demonstrate that it achieves good image compression ratios, while providing a natural indexing mechanism that facilitates fast retrieval of portions of the image at various resolutions.

  17. On the wavelet optimized finite difference method

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1994-01-01

    When one considers the effect in the physical space, Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small scale structure exists. Adding a wavelet basis function at a given scale and location where one has a correspondingly large wavelet coefficient is, essentially, equivalent to adding a grid point, or two, at the same location and at a grid density which corresponds to the wavelet scale. This paper introduces a wavelet optimized finite difference method which is equivalent to a wavelet method in its multiresolution approach but which does not suffer from difficulties with nonlinear terms and boundary conditions, since all calculations are done in the physical space. With this method one can obtain an arbitrarily good approximation to a conservative difference method for solving nonlinear conservation laws.

  18. Short-term wind speed prediction based on the wavelet transformation and Adaboost neural network

    NASA Astrophysics Data System (ADS)

    Hai, Zhou; Xiang, Zhu; Haijian, Shao; Ji, Wu

    2018-03-01

    The operation of the power grid will be affected inevitably with the increasing scale of wind farm due to the inherent randomness and uncertainty, so the accurate wind speed forecasting is critical for the stability of the grid operation. Typically, the traditional forecasting method does not take into account the frequency characteristics of wind speed, which cannot reflect the nature of the wind speed signal changes result from the low generality ability of the model structure. AdaBoost neural network in combination with the multi-resolution and multi-scale decomposition of wind speed is proposed to design the model structure in order to improve the forecasting accuracy and generality ability. The experimental evaluation using the data from a real wind farm in Jiangsu province is given to demonstrate the proposed strategy can improve the robust and accuracy of the forecasted variable.

  19. Development of a low cost test rig for standalone WECS subject to electrical faults.

    PubMed

    Himani; Dahiya, Ratna

    2016-11-01

    In this paper, a contribution to the development of low-cost wind turbine (WT) test rig for stator fault diagnosis of wind turbine generator is proposed. The test rig is developed using a 2.5kW, 1750 RPM DC motor coupled to a 1.5kW, 1500 RPM self-excited induction generator interfaced with a WT mathematical model in LabVIEW. The performance of the test rig is benchmarked with already proven wind turbine test rigs. In order to detect the stator faults using non-stationary signals in self-excited induction generator, an online fault diagnostic technique of DWT-based multi-resolution analysis is proposed. It has been experimentally proven that for varying wind conditions wavelet decomposition allows good differentiation between faulty and healthy conditions leading to an effective diagnostic procedure for wind turbine condition monitoring. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Multi-resolution analysis for ear recognition using wavelet features

    NASA Astrophysics Data System (ADS)

    Shoaib, M.; Basit, A.; Faye, I.

    2016-11-01

    Security is very important and in order to avoid any physical contact, identification of human when they are moving is necessary. Ear biometric is one of the methods by which a person can be identified using surveillance cameras. Various techniques have been proposed to increase the ear based recognition systems. In this work, a feature extraction method for human ear recognition based on wavelet transforms is proposed. The proposed features are approximation coefficients and specific details of level two after applying various types of wavelet transforms. Different wavelet transforms are applied to find the suitable wavelet. Minimum Euclidean distance is used as a matching criterion. Results achieved by the proposed method are promising and can be used in real time ear recognition system.

  1. Reliable structural information from multiscale decomposition with the Mellor-Brady filter

    NASA Astrophysics Data System (ADS)

    Szilágyi, Tünde; Brady, Michael

    2009-08-01

    Image-based medical diagnosis typically relies on the (poorly reproducible) subjective classification of textures in order to differentiate between diseased and healthy pathology. Clinicians claim that significant benefits would arise from quantitative measures to inform clinical decision making. The first step in generating such measures is to extract local image descriptors - from noise corrupted and often spatially and temporally coarse resolution medical signals - that are invariant to illumination, translation, scale and rotation of the features. The Dual-Tree Complex Wavelet Transform (DT-CWT) provides a wavelet multiresolution analysis (WMRA) tool e.g. in 2D with good properties, but has limited rotational selectivity. Also, it requires computationally-intensive steering due to the inherently 1D operations performed. The monogenic signal, which is defined in n >= 2D with the Riesz transform gives excellent orientation information without the need for steering. Recent work has suggested the Monogenic Riesz-Laplace wavelet transform as a possible tool for integrating these two concepts into a coherent mathematical framework. We have found that the proposed construction suffers from a lack of rotational invariance and is not optimal for retrieving local image descriptors. In this paper we show: 1. Local frequency and local phase from the monogenic signal are not equivalent, especially in the phase congruency model of a "feature", and so they are not interchangeable for medical image applications. 2. The accuracy of local phase computation may be improved by estimating the denoising parameters while maximizing a new measure of "featureness".

  2. Morphological filtering and multiresolution fusion for mammographic microcalcification detection

    NASA Astrophysics Data System (ADS)

    Chen, Lulin; Chen, Chang W.; Parker, Kevin J.

    1997-04-01

    Mammographic images are often of relatively low contrast and poor sharpness with non-stationary background or clutter and are usually corrupted by noise. In this paper, we propose a new method for microcalcification detection using gray scale morphological filtering followed by multiresolution fusion and present a unified general filtering form called the local operating transformation for whitening filtering and adaptive thresholding. The gray scale morphological filters are used to remove all large areas that are considered as non-stationary background or clutter variations, i.e., to prewhiten images. The multiresolution fusion decision is based on matched filter theory. In addition to the normal matched filter, the Laplacian matched filter which is directly related through the wavelet transforms to multiresolution analysis is exploited for microcalcification feature detection. At the multiresolution fusion stage, the region growing techniques are used in each resolution level. The parent-child relations between resolution levels are adopted to make final detection decision. FROC is computed from test on the Nijmegen database.

  3. The design and implementation of signal decomposition system of CL multi-wavelet transform based on DSP builder

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Wang, Zhihui

    2015-12-01

    With the development of FPGA, DSP Builder is widely applied to design system-level algorithms. The algorithm of CL multi-wavelet is more advanced and effective than scalar wavelets in processing signal decomposition. Thus, a system of CL multi-wavelet based on DSP Builder is designed for the first time in this paper. The system mainly contains three parts: a pre-filtering subsystem, a one-level decomposition subsystem and a two-level decomposition subsystem. It can be converted into hardware language VHDL by the Signal Complier block that can be used in Quartus II. After analyzing the energy indicator, it shows that this system outperforms Daubenchies wavelet in signal decomposition. Furthermore, it has proved to be suitable for the implementation of signal fusion based on SoPC hardware, and it will become a solid foundation in this new field.

  4. The Wavelet Element Method. Part 2; Realization and Additional Features in 2D and 3D

    NASA Technical Reports Server (NTRS)

    Canuto, Claudio; Tabacco, Anita; Urban, Karsten

    1998-01-01

    The Wavelet Element Method (WEM) provides a construction of multiresolution systems and biorthogonal wavelets on fairly general domains. These are split into subdomains that are mapped to a single reference hypercube. Tensor products of scaling functions and wavelets defined on the unit interval are used on the reference domain. By introducing appropriate matching conditions across the interelement boundaries, a globally continuous biorthogonal wavelet basis on the general domain is obtained. This construction does not uniquely define the basis functions but rather leaves some freedom for fulfilling additional features. In this paper we detail the general construction principle of the WEM to the 1D, 2D and 3D cases. We address additional features such as symmetry, vanishing moments and minimal support of the wavelet functions in each particular dimension. The construction is illustrated by using biorthogonal spline wavelets on the interval.

  5. Developing a New Computer-Aided Clinical Decision Support System for Prediction of Successful Postcardioversion Patients with Persistent Atrial Fibrillation.

    PubMed

    Sterling, Mark; Huang, David T; Ghoraani, Behnaz

    2015-01-01

    We propose a new algorithm to predict the outcome of direct-current electric (DCE) cardioversion for atrial fibrillation (AF) patients. AF is the most common cardiac arrhythmia and DCE cardioversion is a noninvasive treatment to end AF and return the patient to sinus rhythm (SR). Unfortunately, there is a high risk of AF recurrence in persistent AF patients; hence clinically it is important to predict the DCE outcome in order to avoid the procedure's side effects. This study develops a feature extraction and classification framework to predict AF recurrence patients from the underlying structure of atrial activity (AA). A multiresolution signal decomposition technique, based on matching pursuit (MP), was used to project the AA over a dictionary of wavelets. Seven novel features were derived from the decompositions and were employed in a quadratic discrimination analysis classification to predict the success of post-DCE cardioversion in 40 patients with persistent AF. The proposed algorithm achieved 100% sensitivity and 95% specificity, indicating that the proposed computational approach captures detailed structural information about the underlying AA and could provide reliable information for effective management of AF.

  6. Iterative filtering decomposition based on local spectral evolution kernel

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    The synthesizing information, achieving understanding, and deriving insight from increasingly massive, time-varying, noisy and possibly conflicting data sets are some of most challenging tasks in the present information age. Traditional technologies, such as Fourier transform and wavelet multi-resolution analysis, are inadequate to handle all of the above-mentioned tasks. The empirical model decomposition (EMD) has emerged as a new powerful tool for resolving many challenging problems in data processing and analysis. Recently, an iterative filtering decomposition (IFD) has been introduced to address the stability and efficiency problems of the EMD. Another data analysis technique is the local spectral evolution kernel (LSEK), which provides a near prefect low pass filter with desirable time-frequency localizations. The present work utilizes the LSEK to further stabilize the IFD, and offers an efficient, flexible and robust scheme for information extraction, complexity reduction, and signal and image understanding. The performance of the present LSEK based IFD is intensively validated over a wide range of data processing tasks, including mode decomposition, analysis of time-varying data, information extraction from nonlinear dynamic systems, etc. The utility, robustness and usefulness of the proposed LESK based IFD are demonstrated via a large number of applications, such as the analysis of stock market data, the decomposition of ocean wave magnitudes, the understanding of physiologic signals and information recovery from noisy images. The performance of the proposed method is compared with that of existing methods in the literature. Our results indicate that the LSEK based IFD improves both the efficiency and the stability of conventional EMD algorithms. PMID:22350559

  7. Multiresolution Wavelet Based Adaptive Numerical Dissipation Control for Shock-Turbulence Computations

    NASA Technical Reports Server (NTRS)

    Sjoegreen, B.; Yee, H. C.

    2001-01-01

    The recently developed essentially fourth-order or higher low dissipative shock-capturing scheme of Yee, Sandham and Djomehri (1999) aimed at minimizing nu- merical dissipations for high speed compressible viscous flows containing shocks, shears and turbulence. To detect non smooth behavior and control the amount of numerical dissipation to be added, Yee et al. employed an artificial compression method (ACM) of Harten (1978) but utilize it in an entirely different context than Harten originally intended. The ACM sensor consists of two tuning parameters and is highly physical problem dependent. To minimize the tuning of parameters and physical problem dependence, new sensors with improved detection properties are proposed. The new sensors are derived from utilizing appropriate non-orthogonal wavelet basis functions and they can be used to completely switch to the extra numerical dissipation outside shock layers. The non-dissipative spatial base scheme of arbitrarily high order of accuracy can be maintained without compromising its stability at all parts of the domain where the solution is smooth. Two types of redundant non-orthogonal wavelet basis functions are considered. One is the B-spline wavelet (Mallat & Zhong 1992) used by Gerritsen and Olsson (1996) in an adaptive mesh refinement method, to determine regions where re nement should be done. The other is the modification of the multiresolution method of Harten (1995) by converting it to a new, redundant, non-orthogonal wavelet. The wavelet sensor is then obtained by computing the estimated Lipschitz exponent of a chosen physical quantity (or vector) to be sensed on a chosen wavelet basis function. Both wavelet sensors can be viewed as dual purpose adaptive methods leading to dynamic numerical dissipation control and improved grid adaptation indicators. Consequently, they are useful not only for shock-turbulence computations but also for computational aeroacoustics and numerical combustion. In addition, these sensors are scheme independent and can be stand alone options for numerical algorithm other than the Yee et al. scheme.

  8. iSAP: Interactive Sparse Astronomical Data Analysis Packages

    NASA Astrophysics Data System (ADS)

    Fourt, O.; Starck, J.-L.; Sureau, F.; Bobin, J.; Moudden, Y.; Abrial, P.; Schmitt, J.

    2013-03-01

    iSAP consists of three programs, written in IDL, which together are useful for spherical data analysis. MR/S (MultiResolution on the Sphere) contains routines for wavelet, ridgelet and curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and Independent Component Analysis on the Sphere. MR/S has been designed for the PLANCK project, but can be used for many other applications. SparsePol (Polarized Spherical Wavelets and Curvelets) has routines for polarized wavelet, polarized ridgelet and polarized curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and blind source separation on the Sphere. SparsePol has been designed for the PLANCK project. MS-VSTS (Multi-Scale Variance Stabilizing Transform on the Sphere), designed initially for the FERMI project, is useful for spherical mono-channel and multi-channel data analysis when the data are contaminated by a Poisson noise. It contains routines for wavelet/curvelet denoising, wavelet deconvolution, multichannel wavelet denoising and deconvolution.

  9. Multiresolution image gathering and restoration

    NASA Technical Reports Server (NTRS)

    Fales, Carl L.; Huck, Friedrich O.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur

    1992-01-01

    In this paper we integrate multiresolution decomposition with image gathering and restoration. This integration leads to a Wiener-matrix filter that accounts for the aliasing, blurring, and noise in image gathering, together with the digital filtering and decimation in signal decomposition. Moreover, as implemented here, the Wiener-matrix filter completely suppresses the blurring and raster effects of the image-display device. We demonstrate that this filter can significantly improve the fidelity and visual quality produced by conventional image reconstruction. The extent of this improvement, in turn, depends on the design of the image-gathering device.

  10. Lattice functions, wavelet aliasing, and SO(3) mappings of orthonormal filters

    NASA Astrophysics Data System (ADS)

    John, Sarah

    1998-01-01

    A formulation of multiresolution in terms of a family of dyadic lattices {Sj;j∈Z} and filter matrices Mj⊂U(2)⊂GL(2,C) illuminates the role of aliasing in wavelets and provides exact relations between scaling and wavelet filters. By showing the {DN;N∈Z+} collection of compactly supported, orthonormal wavelet filters to be strictly SU(2)⊂U(2), its representation in the Euler angles of the rotation group SO(3) establishes several new results: a 1:1 mapping of the {DN} filters onto a set of orbits on the SO(3) manifold; an equivalence of D∞ to the Shannon filter; and a simple new proof for a criterion ruling out pathologically scaled nonorthonormal filters.

  11. Wavelet and receiver operating characteristic analysis of heart rate variability

    NASA Astrophysics Data System (ADS)

    McCaffery, G.; Griffith, T. M.; Naka, K.; Frennaux, M. P.; Matthai, C. C.

    2002-02-01

    Multiresolution wavelet analysis has been used to study the heart rate variability in two classes of patients with different pathological conditions. The scale dependent measure of Thurner et al. was found to be statistically significant in discriminating patients suffering from hypercardiomyopathy from a control set of normal subjects. We have performed Receiver Operating Characteristc (ROC) analysis and found the ROC area to be a useful measure by which to label the significance of the discrimination, as well as to describe the severity of heart dysfunction.

  12. Time Domain Propagation of Quantum and Classical Systems using a Wavelet Basis Set Method

    NASA Astrophysics Data System (ADS)

    Lombardini, Richard; Nowara, Ewa; Johnson, Bruce

    2015-03-01

    The use of an orthogonal wavelet basis set (Optimized Maximum-N Generalized Coiflets) to effectively model physical systems in the time domain, in particular the electromagnetic (EM) pulse and quantum mechanical (QM) wavefunction, is examined in this work. Although past research has demonstrated the benefits of wavelet basis sets to handle computationally expensive problems due to their multiresolution properties, the overlapping supports of neighboring wavelet basis functions poses problems when dealing with boundary conditions, especially with material interfaces in the EM case. Specifically, this talk addresses this issue using the idea of derivative matching creating fictitious grid points (T.A. Driscoll and B. Fornberg), but replaces the latter element with fictitious wavelet projections in conjunction with wavelet reconstruction filters. Two-dimensional (2D) systems are analyzed, EM pulse incident on silver cylinders and the QM electron wave packet circling the proton in a hydrogen atom system (reduced to 2D), and the new wavelet method is compared to the popular finite-difference time-domain technique.

  13. F-wave decomposition for time of arrival profile estimation.

    PubMed

    Han, Zhixiu; Kong, Xuan

    2007-01-01

    F-waves are distally recorded muscle responses that result from "backfiring" of motor neurons following stimulation of peripheral nerves. Each F-wave response is a superposition of several motor unit responses (F-wavelets). Initial deflection of the earliest F-wavelet defines the traditional F-wave latency (FWL) and earlier F-wavelet may mask F-wavelets traveling along slower (and possibly diseased) fibers. Unmasking the time of arrival (TOA) of late F-wavelets could improve the diagnostic value of the F-waves. An algorithm for F-wavelet decomposition is presented, followed by results of experimental data analysis.

  14. Wavelet synthetic method for turbulent flow.

    PubMed

    Zhou, Long; Rauh, Cornelia; Delgado, Antonio

    2015-07-01

    Based on the idea of random cascades on wavelet dyadic trees and the energy cascade model known as the wavelet p model, a series of velocity increments in two-dimensional space are constructed in different levels of scale. The dynamics is imposed on the generated scales by solving the Euler equation in the Lagrangian framework. A dissipation model is used in order to cover the shortage of the p model, which only predicts in inertial range. Wavelet reconstruction as well as the multiresolution analysis are then performed on each scales. As a result, a type of isotropic velocity field is created. The statistical properties show that the constructed velocity fields share many important features with real turbulence. The pertinence of this approach in the prediction of flow intermittency is also discussed.

  15. Use of the Morlet mother wavelet in the frequency-scale domain decomposition technique for the modal identification of ambient vibration responses

    NASA Astrophysics Data System (ADS)

    Le, Thien-Phu

    2017-10-01

    The frequency-scale domain decomposition technique has recently been proposed for operational modal analysis. The technique is based on the Cauchy mother wavelet. In this paper, the approach is extended to the Morlet mother wavelet, which is very popular in signal processing due to its superior time-frequency localization. Based on the regressive form and an appropriate norm of the Morlet mother wavelet, the continuous wavelet transform of the power spectral density of ambient responses enables modes in the frequency-scale domain to be highlighted. Analytical developments first demonstrate the link between modal parameters and the local maxima of the continuous wavelet transform modulus. The link formula is then used as the foundation of the proposed modal identification method. Its practical procedure, combined with the singular value decomposition algorithm, is presented step by step. The proposition is finally verified using numerical examples and a laboratory test.

  16. An Intelligent Pattern Recognition System Based on Neural Network and Wavelet Decomposition for Interpretation of Heart Sounds

    DTIC Science & Technology

    2001-10-25

    wavelet decomposition of signals and classification using neural network. Inputs to the system are the heart sound signals acquired by a stethoscope in a...Proceedings. pp. 415–418, 1990. [3] G. Ergun, “An intelligent diagnostic system for interpretation of arterpartum fetal heart rate tracings based on ANNs and...AN INTELLIGENT PATTERN RECOGNITION SYSTEM BASED ON NEURAL NETWORK AND WAVELET DECOMPOSITION FOR INTERPRETATION OF HEART SOUNDS I. TURKOGLU1, A

  17. A new fractional wavelet transform

    NASA Astrophysics Data System (ADS)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-03-01

    The fractional Fourier transform (FRFT) is a potent tool to analyze the time-varying signal. However, it fails in locating the fractional Fourier domain (FRFD)-frequency contents which is required in some applications. A novel fractional wavelet transform (FRWT) is proposed to solve this problem. It displays the time and FRFD-frequency information jointly in the time-FRFD-frequency plane. The definition, basic properties, inverse transform and reproducing kernel of the proposed FRWT are considered. It has been shown that an FRWT with proper order corresponds to the classical wavelet transform (WT). The multiresolution analysis (MRA) associated with the developed FRWT, together with the construction of the orthogonal fractional wavelets are also presented. Three applications are discussed: the analysis of signal with time-varying frequency content, the FRFD spectrum estimation of signals that involving noise, and the construction of fractional Harr wavelet. Simulations verify the validity of the proposed FRWT.

  18. An improved wavelet-Galerkin method for dynamic response reconstruction and parameter identification of shear-type frames

    NASA Astrophysics Data System (ADS)

    Bu, Haifeng; Wang, Dansheng; Zhou, Pin; Zhu, Hongping

    2018-04-01

    An improved wavelet-Galerkin (IWG) method based on the Daubechies wavelet is proposed for reconstructing the dynamic responses of shear structures. The proposed method flexibly manages wavelet resolution level according to excitation, thereby avoiding the weakness of the wavelet-Galerkin multiresolution analysis (WGMA) method in terms of resolution and the requirement of external excitation. IWG is implemented by this work in certain case studies, involving single- and n-degree-of-freedom frame structures subjected to a determined discrete excitation. Results demonstrate that IWG performs better than WGMA in terms of accuracy and computation efficiency. Furthermore, a new method for parameter identification based on IWG and an optimization algorithm are also developed for shear frame structures, and a simultaneous identification of structural parameters and excitation is implemented. Numerical results demonstrate that the proposed identification method is effective for shear frame structures.

  19. On wavelet analysis of auditory evoked potentials.

    PubMed

    Bradley, A P; Wilson, W J

    2004-05-01

    To determine a preferred wavelet transform (WT) procedure for multi-resolution analysis (MRA) of auditory evoked potentials (AEP). A number of WT algorithms, mother wavelets, and pre-processing techniques were examined by way of critical theoretical discussion followed by experimental testing of key points using real and simulated auditory brain-stem response (ABR) waveforms. Conclusions from these examinations were then tested on a normative ABR dataset. The results of the various experiments are reported in detail. Optimal AEP WT MRA is most likely to occur when an over-sampled discrete wavelet transformation (DWT) is used, utilising a smooth (regularity >or=3) and symmetrical (linear phase) mother wavelet, and a reflection boundary extension policy. This study demonstrates the practical importance of, and explains how to minimize potential artefacts due to, 4 inter-related issues relevant to AEP WT MRA, namely shift variance, phase distortion, reconstruction smoothness, and boundary artefacts.

  20. 3-D surface profilometry based on modulation measurement by applying wavelet transform method

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Chen, Feng; Xiao, Chao; Wei, Yongchao

    2017-01-01

    A new analysis of 3-D surface profilometry based on modulation measurement technique by the application of Wavelet Transform method is proposed. As a tool excelling for its multi-resolution and localization in the time and frequency domains, Wavelet Transform method with good localized time-frequency analysis ability and effective de-noizing capacity can extract the modulation distribution more accurately than Fourier Transform method. Especially for the analysis of complex object, more details of the measured object can be well remained. In this paper, the theoretical derivation of Wavelet Transform method that obtains the modulation values from a captured fringe pattern is given. Both computer simulation and elementary experiment are used to show the validity of the proposed method by making a comparison with the results of Fourier Transform method. The results show that the Wavelet Transform method has a better performance than the Fourier Transform method in modulation values retrieval.

  1. Towards discrete wavelet transform-based human activity recognition

    NASA Astrophysics Data System (ADS)

    Khare, Manish; Jeon, Moongu

    2017-06-01

    Providing accurate recognition of human activities is a challenging problem for visual surveillance applications. In this paper, we present a simple and efficient algorithm for human activity recognition based on a wavelet transform. We adopt discrete wavelet transform (DWT) coefficients as a feature of human objects to obtain advantages of its multiresolution approach. The proposed method is tested on multiple levels of DWT. Experiments are carried out on different standard action datasets including KTH and i3D Post. The proposed method is compared with other state-of-the-art methods in terms of different quantitative performance measures. The proposed method is found to have better recognition accuracy in comparison to the state-of-the-art methods.

  2. Wavelet Filter Banks for Super-Resolution SAR Imaging

    NASA Technical Reports Server (NTRS)

    Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess

    2011-01-01

    This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.

  3. Classification of EEG Signals Based on Pattern Recognition Approach.

    PubMed

    Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed

    2017-01-01

    Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90-7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11-89.63% and 91.60-81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy.

  4. Classification of EEG Signals Based on Pattern Recognition Approach

    PubMed Central

    Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed

    2017-01-01

    Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a “pattern recognition” approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90–7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11–89.63% and 91.60–81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy. PMID:29209190

  5. A wavelet analysis of scaling laws and long-memory in stock market volatility

    NASA Astrophysics Data System (ADS)

    Vuorenmaa, Tommi A.

    2005-05-01

    This paper studies the time-varying behavior of scaling laws and long-memory. This is motivated by the earlier finding that in the FX markets a single scaling factor might not always be sufficient across all relevant timescales: a different region may exist for intradaily time-scales and for larger time-scales. In specific, this paper investigates (i) if different scaling regions appear in stock market as well, (ii) if the scaling factor systematically differs from the Brownian, (iii) if the scaling factor is constant in time, and (iv) if the behavior can be explained by the heterogenuity of the players in the market and/or by intraday volatility periodicity. Wavelet method is used because it delivers a multiresolution decomposition and has excellent local adaptiviness properties. As a consequence, a wavelet-based OLS method allows for consistent estimation of long-memory. Thus issues (i)-(iv) shed light on the magnitude and behavior of a long-memory parameter, as well. The data are the 5-minute volatility series of Nokia Oyj at the Helsinki Stock Exchange around the burst of the IT-bubble. Period one represents the era of "irrational exuberance" and another the time after it. The results show that different scaling regions (i.e. multiscaling) may appear in the stock markets and not only in the FX markets, the scaling factor and the long-memory parameter are systematically different from the Brownian and they do not have to be constant in time, and that the behavior can be explained for a significant part by an intraday volatility periodicity called the New York effect. This effect was magnified by the frenzy trading of short-term speculators in the bubble period. The found stronger long-memory is also attributable to irrational exuberance.

  6. Spectral information enhancement using wavelet-based iterative filtering for in vivo gamma spectrometry.

    PubMed

    Paul, Sabyasachi; Sarkar, P K

    2013-04-01

    Use of wavelet transformation in stationary signal processing has been demonstrated for denoising the measured spectra and characterisation of radionuclides in the in vivo monitoring analysis, where difficulties arise due to very low activity level to be estimated in biological systems. The large statistical fluctuations often make the identification of characteristic gammas from radionuclides highly uncertain, particularly when interferences from progenies are also present. A new wavelet-based noise filtering methodology has been developed for better detection of gamma peaks in noisy data. This sequential, iterative filtering method uses the wavelet multi-resolution approach for noise rejection and an inverse transform after soft 'thresholding' over the generated coefficients. Analyses of in vivo monitoring data of (235)U and (238)U were carried out using this method without disturbing the peak position and amplitude while achieving a 3-fold improvement in the signal-to-noise ratio, compared with the original measured spectrum. When compared with other data-filtering techniques, the wavelet-based method shows the best results.

  7. Impact of multi-resolution analysis of artificial intelligence models inputs on multi-step ahead river flow forecasting

    NASA Astrophysics Data System (ADS)

    Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.

    2013-12-01

    Discrete wavelet transform was applied to decomposed ANN and ANFIS inputs.Novel approach of WNF with subtractive clustering applied for flow forecasting.Forecasting was performed in 1-5 step ahead, using multi-variate inputs.Forecasting accuracy of peak values and longer lead-time significantly improved.

  8. Multiscale Support Vector Learning With Projection Operator Wavelet Kernel for Nonlinear Dynamical System Identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2016-02-03

    A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.

  9. Harmonic analysis of electric locomotive and traction power system based on wavelet singular entropy

    NASA Astrophysics Data System (ADS)

    Dun, Xiaohong

    2018-05-01

    With the rapid development of high-speed railway and heavy-haul transport, the locomotive and traction power system has become the main harmonic source of China's power grid. In response to this phenomenon, the system's power quality issues need timely monitoring, assessment and governance. Wavelet singular entropy is an organic combination of wavelet transform, singular value decomposition and information entropy theory, which combines the unique advantages of the three in signal processing: the time-frequency local characteristics of wavelet transform, singular value decomposition explores the basic modal characteristics of data, and information entropy quantifies the feature data. Based on the theory of singular value decomposition, the wavelet coefficient matrix after wavelet transform is decomposed into a series of singular values that can reflect the basic characteristics of the original coefficient matrix. Then the statistical properties of information entropy are used to analyze the uncertainty of the singular value set, so as to give a definite measurement of the complexity of the original signal. It can be said that wavelet entropy has a good application prospect in fault detection, classification and protection. The mat lab simulation shows that the use of wavelet singular entropy on the locomotive and traction power system harmonic analysis is effective.

  10. S2LET: A code to perform fast wavelet analysis on the sphere

    NASA Astrophysics Data System (ADS)

    Leistedt, B.; McEwen, J. D.; Vandergheynst, P.; Wiaux, Y.

    2013-10-01

    We describe S2LET, a fast and robust implementation of the scale-discretised wavelet transform on the sphere. Wavelets are constructed through a tiling of the harmonic line and can be used to probe spatially localised, scale-dependent features of signals on the sphere. The reconstruction of a signal from its wavelets coefficients is made exact here through the use of a sampling theorem on the sphere. Moreover, a multiresolution algorithm is presented to capture all information of each wavelet scale in the minimal number of samples on the sphere. In addition S2LET supports the HEALPix pixelisation scheme, in which case the transform is not exact but nevertheless achieves good numerical accuracy. The core routines of S2LET are written in C and have interfaces in Matlab, IDL and Java. Real signals can be written to and read from FITS files and plotted as Mollweide projections. The S2LET code is made publicly available, is extensively documented, and ships with several examples in the four languages supported. At present the code is restricted to axisymmetric wavelets but will be extended to directional, steerable wavelets in a future release.

  11. Classification of glioblastoma and metastasis for neuropathology intraoperative diagnosis: a multi-resolution textural approach to model the background

    NASA Astrophysics Data System (ADS)

    Ahmad Fauzi, Mohammad Faizal; Gokozan, Hamza Numan; Elder, Brad; Puduvalli, Vinay K.; Otero, Jose J.; Gurcan, Metin N.

    2014-03-01

    Brain cancer surgery requires intraoperative consultation by neuropathology to guide surgical decisions regarding the extent to which the tumor undergoes gross total resection. In this context, the differential diagnosis between glioblastoma and metastatic cancer is challenging as the decision must be made during surgery in a short time-frame (typically 30 minutes). We propose a method to classify glioblastoma versus metastatic cancer based on extracting textural features from the non-nuclei region of cytologic preparations. For glioblastoma, these regions of interest are filled with glial processes between the nuclei, which appear as anisotropic thin linear structures. For metastasis, these regions correspond to a more homogeneous appearance, thus suitable texture features can be extracted from these regions to distinguish between the two tissue types. In our work, we use the Discrete Wavelet Frames to characterize the underlying texture due to its multi-resolution capability in modeling underlying texture. The textural characterization is carried out in primarily the non-nuclei regions after nuclei regions are segmented by adapting our visually meaningful decomposition segmentation algorithm to this problem. k-nearest neighbor method was then used to classify the features into glioblastoma or metastasis cancer class. Experiment on 53 images (29 glioblastomas and 24 metastases) resulted in average accuracy as high as 89.7% for glioblastoma, 87.5% for metastasis and 88.7% overall. Further studies are underway to incorporate nuclei region features into classification on an expanded dataset, as well as expanding the classification to more types of cancers.

  12. Wavelet-based statistical classification of skin images acquired with reflectance confocal microscopy

    PubMed Central

    Halimi, Abdelghafour; Batatia, Hadj; Le Digabel, Jimmy; Josse, Gwendal; Tourneret, Jean Yves

    2017-01-01

    Detecting skin lentigo in reflectance confocal microscopy images is an important and challenging problem. This imaging modality has not yet been widely investigated for this problem and there are a few automatic processing techniques. They are mostly based on machine learning approaches and rely on numerous classical image features that lead to high computational costs given the very large resolution of these images. This paper presents a detection method with very low computational complexity that is able to identify the skin depth at which the lentigo can be detected. The proposed method performs multiresolution decomposition of the image obtained at each skin depth. The distribution of image pixels at a given depth can be approximated accurately by a generalized Gaussian distribution whose parameters depend on the decomposition scale, resulting in a very-low-dimension parameter space. SVM classifiers are then investigated to classify the scale parameter of this distribution allowing real-time detection of lentigo. The method is applied to 45 healthy and lentigo patients from a clinical study, where sensitivity of 81.4% and specificity of 83.3% are achieved. Our results show that lentigo is identifiable at depths between 50μm and 60μm, corresponding to the average location of the the dermoepidermal junction. This result is in agreement with the clinical practices that characterize the lentigo by assessing the disorganization of the dermoepidermal junction. PMID:29296480

  13. Investigations of homologous disaccharides by elastic incoherent neutron scattering and wavelet multiresolution analysis

    NASA Astrophysics Data System (ADS)

    Magazù, S.; Migliardo, F.; Vertessy, B. G.; Caccamo, M. T.

    2013-10-01

    In the present paper the results of a wavevector and thermal analysis of Elastic Incoherent Neutron Scattering (EINS) data collected on water mixtures of three homologous disaccharides through a wavelet approach are reported. The wavelet analysis allows to compare both the spatial properties of the three systems in the wavevector range of Q = 0.27 Å-1 ÷ 4.27 Å-1. It emerges that, differently from previous analyses, for trehalose the scalograms are constantly lower and sharper in respect to maltose and sucrose, giving rise to a global spectral density along the wavevector range markedly less extended. As far as the thermal analysis is concerned, the global scattered intensity profiles suggest a higher thermal restrain of trehalose in respect to the other two homologous disaccharides.

  14. Defect Detection in Textures through the Use of Entropy as a Means for Automatically Selecting the Wavelet Decomposition Level.

    PubMed

    Navarro, Pedro J; Fernández-Isla, Carlos; Alcover, Pedro María; Suardíaz, Juan

    2016-07-27

    This paper presents a robust method for defect detection in textures, entropy-based automatic selection of the wavelet decomposition level (EADL), based on a wavelet reconstruction scheme, for detecting defects in a wide variety of structural and statistical textures. Two main features are presented. One of the new features is an original use of the normalized absolute function value (NABS) calculated from the wavelet coefficients derived at various different decomposition levels in order to identify textures where the defect can be isolated by eliminating the texture pattern in the first decomposition level. The second is the use of Shannon's entropy, calculated over detail subimages, for automatic selection of the band for image reconstruction, which, unlike other techniques, such as those based on the co-occurrence matrix or on energy calculation, provides a lower decomposition level, thus avoiding excessive degradation of the image, allowing a more accurate defect segmentation. A metric analysis of the results of the proposed method with nine different thresholding algorithms determined that selecting the appropriate thresholding method is important to achieve optimum performance in defect detection. As a consequence, several different thresholding algorithms depending on the type of texture are proposed.

  15. Morphological Feature Extraction for Automatic Registration of Multispectral Images

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.

    2007-01-01

    The task of image registration can be divided into two major components, i.e., the extraction of control points or features from images, and the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual extraction of control features can be subjective and extremely time consuming, and often results in few usable points. On the other hand, automated feature extraction allows using invariant target features such as edges, corners, and line intersections as relevant landmarks for registration purposes. In this paper, we present an extension of a recently developed morphological approach for automatic extraction of landmark chips and corresponding windows in a fully unsupervised manner for the registration of multispectral images. Once a set of chip-window pairs is obtained, a (hierarchical) robust feature matching procedure, based on a multiresolution overcomplete wavelet decomposition scheme, is used for registration purposes. The proposed method is validated on a pair of remotely sensed scenes acquired by the Advanced Land Imager (ALI) multispectral instrument and the Hyperion hyperspectral instrument aboard NASA's Earth Observing-1 satellite.

  16. Dynamic Bayesian wavelet transform: New methodology for extraction of repetitive transients

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tsui, Kwok-Leung

    2017-05-01

    Thanks to some recent research works, dynamic Bayesian wavelet transform as new methodology for extraction of repetitive transients is proposed in this short communication to reveal fault signatures hidden in rotating machine. The main idea of the dynamic Bayesian wavelet transform is to iteratively estimate posterior parameters of wavelet transform via artificial observations and dynamic Bayesian inference. First, a prior wavelet parameter distribution can be established by one of many fast detection algorithms, such as the fast kurtogram, the improved kurtogram, the enhanced kurtogram, the sparsogram, the infogram, continuous wavelet transform, discrete wavelet transform, wavelet packets, multiwavelets, empirical wavelet transform, empirical mode decomposition, local mean decomposition, etc.. Second, artificial observations can be constructed based on one of many metrics, such as kurtosis, the sparsity measurement, entropy, approximate entropy, the smoothness index, a synthesized criterion, etc., which are able to quantify repetitive transients. Finally, given artificial observations, the prior wavelet parameter distribution can be posteriorly updated over iterations by using dynamic Bayesian inference. More importantly, the proposed new methodology can be extended to establish the optimal parameters required by many other signal processing methods for extraction of repetitive transients.

  17. Wavelet-based 3-D inversion for frequency-domain airborne EM data

    NASA Astrophysics Data System (ADS)

    Liu, Yunhe; Farquharson, Colin G.; Yin, Changchun; Baranwal, Vikas C.

    2018-04-01

    In this paper, we propose a new wavelet-based 3-D inversion method for frequency-domain airborne electromagnetic (FDAEM) data. Instead of inverting the model in the space domain using a smoothing constraint, this new method recovers the model in the wavelet domain based on a sparsity constraint. In the wavelet domain, the model is represented by two types of coefficients, which contain both large- and fine-scale informations of the model, meaning the wavelet-domain inversion has inherent multiresolution. In order to accomplish a sparsity constraint, we minimize an L1-norm measure in the wavelet domain that mostly gives a sparse solution. The final inversion system is solved by an iteratively reweighted least-squares method. We investigate different orders of Daubechies wavelets to accomplish our inversion algorithm, and test them on synthetic frequency-domain AEM data set. The results show that higher order wavelets having larger vanishing moments and regularity can deliver a more stable inversion process and give better local resolution, while the lower order wavelets are simpler and less smooth, and thus capable of recovering sharp discontinuities if the model is simple. At last, we test this new inversion algorithm on a frequency-domain helicopter EM (HEM) field data set acquired in Byneset, Norway. Wavelet-based 3-D inversion of HEM data is compared to L2-norm-based 3-D inversion's result to further investigate the features of the new method.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudgins, L.H.

    After a brief review of the elementary properties of Fourier Transforms, the Wavelet Transform is defined in Part I. Basic results are given for admissable wavelets. The Multiresolution Analysis, or MRA (a mathematical structure which unifies a large class of wavelets with Quadrature Mirror Filters) is then introduced. Some fundamental aspects of wavelet design are then explored. The Discrete Wavelet Transform is discussed and, in the context of an MRA, is seen to supply a Fast Wavelet Transform which competes with the Fast Fourier Transform for efficiency. In Part II, the Wavelet Transform is developed in terms of the scalemore » number variable s instead of the scale length variable a where a = 1/s. Basic results such as the admissibility condition, conservation of energy, and the reconstruction theorem are proven in this context. After reviewing some motivation for the usual Fourier power spectrum, a definition is given for the wavelet power spectrum. This `spectral density` is then intepreted in the context of spectral estimation theory. Parseval`s theorem for Wavelets then leads naturally to the Wavelet Cross Spectrum, Wavelet Cospectrum, and Wavelet Quadrature Spectrum. Wavelet Transforms are then applied in Part III to the analysis of atmospheric turbulence. Data collected over the ocean is examined in the wavelet transform domain for underlying structure. A brief overview of atmospheric turbulence is provided. Then the overall method of applying Wavelet Transform techniques to time series data is described. A trace study is included, showing some of the aspects of choosing the computational algorithm, and selection of a specific analyzing wavelet. A model for generating synthetic turbulence data is developed, and seen to yield useful results in comparing with real data for structural transitions. Results from the theory of Wavelet Spectral Estimation and Wavelength Cross-Transforms are applied to studying the momentum transport and the heat flux.« less

  19. Correlative weighted stacking for seismic data in the wavelet domain

    USGS Publications Warehouse

    Zhang, S.; Xu, Y.; Xia, J.; ,

    2004-01-01

    Horizontal stacking plays a crucial role for modern seismic data processing, for it not only compresses random noise and multiple reflections, but also provides a foundational data for subsequent migration and inversion. However, a number of examples showed that random noise in adjacent traces exhibits correlation and coherence. The average stacking and weighted stacking based on the conventional correlative function all result in false events, which are caused by noise. Wavelet transform and high order statistics are very useful methods for modern signal processing. The multiresolution analysis in wavelet theory can decompose signal on difference scales, and high order correlative function can inhibit correlative noise, for which the conventional correlative function is of no use. Based on the theory of wavelet transform and high order statistics, high order correlative weighted stacking (HOCWS) technique is presented in this paper. Its essence is to stack common midpoint gathers after the normal moveout correction by weight that is calculated through high order correlative statistics in the wavelet domain. Synthetic examples demonstrate its advantages in improving the signal to noise (S/N) ration and compressing the correlative random noise.

  20. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals.

    PubMed

    Li, Suyi; Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji; Diao, Shu

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO 2 ) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO 2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  1. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    PubMed Central

    Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO2) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis. PMID:29250135

  2. Signal processing method and system for noise removal and signal extraction

    DOEpatents

    Fu, Chi Yung; Petrich, Loren

    2009-04-14

    A signal processing method and system combining smooth level wavelet pre-processing together with artificial neural networks all in the wavelet domain for signal denoising and extraction. Upon receiving a signal corrupted with noise, an n-level decomposition of the signal is performed using a discrete wavelet transform to produce a smooth component and a rough component for each decomposition level. The n.sup.th level smooth component is then inputted into a corresponding neural network pre-trained to filter out noise in that component by pattern recognition in the wavelet domain. Additional rough components, beginning at the highest level, may also be retained and inputted into corresponding neural networks pre-trained to filter out noise in those components also by pattern recognition in the wavelet domain. In any case, an inverse discrete wavelet transform is performed on the combined output from all the neural networks to recover a clean signal back in the time domain.

  3. Multispectral Image Enhancement Through Adaptive Wavelet Fusion

    DTIC Science & Technology

    2016-09-14

    13. SUPPLEMENTARY NOTES 14. ABSTRACT This research developed a multiresolution image fusion scheme based on guided filtering . Guided filtering can...effectively reduce noise while preserving detail boundaries. When applied in an iterative mode, guided filtering selectively eliminates small scale...details while restoring larger scale edges. The proposed multi-scale image fusion scheme achieves spatial consistency by using guided filtering both at

  4. Fifth SIAM conference on geometric design 97: Final program and abstracts. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    The meeting was divided into the following sessions: (1) CAD/CAM; (2) Curve/Surface Design; (3) Geometric Algorithms; (4) Multiresolution Methods; (5) Robotics; (6) Solid Modeling; and (7) Visualization. This report contains the abstracts of papers presented at the meeting. Proceding the conference there was a short course entitled ``Wavelets for Geometric Modeling and Computer Graphics``.

  5. Design and application of discrete wavelet packet transform based multiresolution controller for liquid level system.

    PubMed

    Paul, Rimi; Sengupta, Anindita

    2017-11-01

    A new controller based on discrete wavelet packet transform (DWPT) for liquid level system (LLS) has been presented here. This controller generates control signal using node coefficients of the error signal which interprets many implicit phenomena such as process dynamics, measurement noise and effect of external disturbances. Through simulation results on LLS problem, this controller is shown to perform faster than both the discrete wavelet transform based controller and conventional proportional integral controller. Also, it is more efficient in terms of its ability to provide better noise rejection. To overcome the wind up phenomenon by considering the saturation due to presence of actuator, anti-wind up technique is applied to the conventional PI controller and compared to the wavelet packet transform based controller. In this case also, packet controller is found better than the other ones. This similar work has been extended for analogous first order RC plant as well as second order plant also. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Multiresolution Distance Volumes for Progressive Surface Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laney, D E; Bertram, M; Duchaineau, M A

    2002-04-18

    We present a surface compression method that stores surfaces as wavelet-compressed signed-distance volumes. Our approach enables the representation of surfaces with complex topology and arbitrary numbers of components within a single multiresolution data structure. This data structure elegantly handles topological modification at high compression rates. Our method does not require the costly and sometimes infeasible base mesh construction step required by subdivision surface approaches. We present several improvements over previous attempts at compressing signed-distance functions, including an 0(n) distance transform, a zero set initialization method for triangle meshes, and a specialized thresholding algorithm. We demonstrate the potential of sampled distancemore » volumes for surface compression and progressive reconstruction for complex high genus surfaces.« less

  7. Exact reconstruction with directional wavelets on the sphere

    NASA Astrophysics Data System (ADS)

    Wiaux, Y.; McEwen, J. D.; Vandergheynst, P.; Blanc, O.

    2008-08-01

    A new formalism is derived for the analysis and exact reconstruction of band-limited signals on the sphere with directional wavelets. It represents an evolution of a previously developed wavelet formalism developed by Antoine & Vandergheynst and Wiaux et al. The translations of the wavelets at any point on the sphere and their proper rotations are still defined through the continuous three-dimensional rotations. The dilations of the wavelets are directly defined in harmonic space through a new kernel dilation, which is a modification of an existing harmonic dilation. A family of factorized steerable functions with compact harmonic support which are suitable for this kernel dilation are first identified. A scale-discretized wavelet formalism is then derived, relying on this dilation. The discrete nature of the analysis scales allows the exact reconstruction of band-limited signals. A corresponding exact multi-resolution algorithm is finally described and an implementation is tested. The formalism is of interest notably for the denoising or the deconvolution of signals on the sphere with a sparse expansion in wavelets. In astrophysics, it finds a particular application for the identification of localized directional features in the cosmic microwave background data, such as the imprint of topological defects, in particular, cosmic strings, and for their reconstruction after separation from the other signal components.

  8. Texture feature extraction based on wavelet transform and gray-level co-occurrence matrices applied to osteosarcoma diagnosis.

    PubMed

    Hu, Shan; Xu, Chao; Guan, Weiqiao; Tang, Yong; Liu, Yana

    2014-01-01

    Osteosarcoma is the most common malignant bone tumor among children and adolescents. In this study, image texture analysis was made to extract texture features from bone CR images to evaluate the recognition rate of osteosarcoma. To obtain the optimal set of features, Sym4 and Db4 wavelet transforms and gray-level co-occurrence matrices were applied to the image, with statistical methods being used to maximize the feature selection. To evaluate the performance of these methods, a support vector machine algorithm was used. The experimental results demonstrated that the Sym4 wavelet had a higher classification accuracy (93.44%) than the Db4 wavelet with respect to osteosarcoma occurrence in the epiphysis, whereas the Db4 wavelet had a higher classification accuracy (96.25%) for osteosarcoma occurrence in the diaphysis. Results including accuracy, sensitivity, specificity and ROC curves obtained using the wavelets were all higher than those obtained using the features derived from the GLCM method. It is concluded that, a set of texture features can be extracted from the wavelets and used in computer-aided osteosarcoma diagnosis systems. In addition, this study also confirms that multi-resolution analysis is a useful tool for texture feature extraction during bone CR image processing.

  9. Automatic Image Registration of Multimodal Remotely Sensed Data with Global Shearlet Features

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2015-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone.

  10. Automatic Image Registration of Multi-Modal Remotely Sensed Data with Global Shearlet Features

    PubMed Central

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2017-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone. PMID:29123329

  11. The ssWavelets package

    Treesearch

    Jeffrey H. Gove

    2017-01-01

    This package adds several classes, generics and associated methods as well as a few various functions to help with wavelet decomposition of sampling surfaces generated using sampSurf. As such, it can be thought of as an extension to sampSurf for wavelet analysis.

  12. Short-term forecasting of urban rail transit ridership based on ARIMA and wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Wang, Xuemei; Zhang, Ning; Chen, Ying; Zhang, Yunlong

    2018-05-01

    Due to different functions and land use types, there are significant differences in ridership patterns among different urban rail transit stations. Considering the characteristics of different ridership and coping with the uncertainty, periodical and stochastic natures of short-term passenger flow, and this paper proposes a novel hybrid methodology that combines the autoregressive integrated moving average (ARIMA) model and wavelet decomposition, which has strong strengths in signal processing, to short-term ridership forecasting. The seasonal ARIMA is used to represent the relatively stable and regular ridership patterns while the wavelet decomposition is used to capture the stochastic or sometimes drastic changing characteristics of ridership patterns. The inclusion of wavelet decomposition and reconstruction provides the hybrid model with a unique strength in capturing sudden change in ridership patterns associated with certain rail stations. The case study is carried out by analyzing real ridership data of Metro Line 1 in Nanjing, China. The experimental results indicate that the hybrid method is superior to the individual ARIMA model for all ridership patterns, but particularly advantageous in predicting ridership at stations often associated with sudden pattern changes due to special events.

  13. A user's guide to the ssWavelets package

    Treesearch

    J.H. ​Gove

    2017-01-01

    ssWavelets is an R package that is meant to be used in conjunction with the sampSurf package (Gove, 2012) to perform wavelet decomposition on the results of a sampling surface simulation. In general, the wavelet filter decomposes the sampSurf simulation results by scale (distance), with each scale corresponding to a different level of the...

  14. Frequency hopping signal detection based on wavelet decomposition and Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Zheng, Yang; Chen, Xihao; Zhu, Rui

    2017-07-01

    Frequency hopping (FH) signal is widely adopted by military communications as a kind of low probability interception signal. Therefore, it is very important to research the FH signal detection algorithm. The existing detection algorithm of FH signals based on the time-frequency analysis cannot satisfy the time and frequency resolution requirement at the same time due to the influence of window function. In order to solve this problem, an algorithm based on wavelet decomposition and Hilbert-Huang transform (HHT) was proposed. The proposed algorithm removes the noise of the received signals by wavelet decomposition and detects the FH signals by Hilbert-Huang transform. Simulation results show the proposed algorithm takes into account both the time resolution and the frequency resolution. Correspondingly, the accuracy of FH signals detection can be improved.

  15. Tree-ring-based estimates of long-term seasonal precipitation in the Souris River Region of Saskatchewan, North Dakota and Manitoba

    USGS Publications Warehouse

    Ryberg, Karen R.; Vecchia, Aldo V.; Akyüz, F. Adnan; Lin, Wei

    2016-01-01

    Historically unprecedented flooding occurred in the Souris River Basin of Saskatchewan, North Dakota and Manitoba in 2011, during a longer term period of wet conditions in the basin. In order to develop a model of future flows, there is a need to evaluate effects of past multidecadal climate variability and/or possible climate change on precipitation. In this study, tree-ring chronologies and historical precipitation data in a four-degree buffer around the Souris River Basin were analyzed to develop regression models that can be used for predicting long-term variations of precipitation. To focus on longer term variability, 12-year moving average precipitation was modeled in five subregions (determined through cluster analysis of measures of precipitation) of the study area over three seasons (November–February, March–June and July–October). The models used multiresolution decomposition (an additive decomposition based on powers of two using a discrete wavelet transform) of tree-ring chronologies from Canada and the US and seasonal 12-year moving average precipitation based on Adjusted and Homogenized Canadian Climate Data and US Historical Climatology Network data. Results show that precipitation varies on long-term (multidecadal) time scales of 16, 32 and 64 years. Past extended pluvial and drought events, which can vary greatly with season and subregion, were highlighted by the models. Results suggest that the recent wet period may be a part of natural variability on a very long time scale.

  16. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, I: Basic Theory

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, H. C.

    2003-01-01

    The objective of this paper is to extend our recently developed highly parallelizable nonlinear stable high order schemes for complex multiscale hydrodynamic applications to the viscous MHD equations. These schemes employed multiresolution wavelets as adaptive numerical dissipation controls t o limit the amount of and to aid the selection and/or blending of the appropriate types of dissipation to be used. The new scheme is formulated for both the conservative and non-conservative form of the MHD equations in curvilinear grids. The four advantages of the present approach over existing MHD schemes reported in the open literature are as follows. First, the scheme is constructed for long-time integrations of shock/turbulence/combustion MHD flows. Available schemes are too diffusive for long-time integrations and/or turbulence/combustion problems. Second, unlike exist- ing schemes for the conservative MHD equations which suffer from ill-conditioned eigen- decompositions, the present scheme makes use of a well-conditioned eigen-decomposition obtained from a minor modification of the eigenvectors of the non-conservative MHD equations t o solve the conservative form of the MHD equations. Third, this approach of using the non-conservative eigensystem when solving the conservative equations also works well in the context of standard shock-capturing schemes for the MHD equations. Fourth, a new approach to minimize the numerical error of the divergence-free magnetic condition for high order schemes is introduced. Numerical experiments with typical MHD model problems revealed the applicability of the newly developed schemes for the MHD equations.

  17. Weighted least squares phase unwrapping based on the wavelet transform

    NASA Astrophysics Data System (ADS)

    Chen, Jiafeng; Chen, Haiqin; Yang, Zhengang; Ren, Haixia

    2007-01-01

    The weighted least squares phase unwrapping algorithm is a robust and accurate method to solve phase unwrapping problem. This method usually leads to a large sparse linear equation system. Gauss-Seidel relaxation iterative method is usually used to solve this large linear equation. However, this method is not practical due to its extremely slow convergence. The multigrid method is an efficient algorithm to improve convergence rate. However, this method needs an additional weight restriction operator which is very complicated. For this reason, the multiresolution analysis method based on the wavelet transform is proposed. By applying the wavelet transform, the original system is decomposed into its coarse and fine resolution levels and an equivalent equation system with better convergence condition can be obtained. Fast convergence in separate coarse resolution levels speeds up the overall system convergence rate. The simulated experiment shows that the proposed method converges faster and provides better result than the multigrid method.

  18. Harmonic analysis of traction power supply system based on wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Dun, Xiaohong

    2018-05-01

    With the rapid development of high-speed railway and heavy-haul transport, AC drive electric locomotive and EMU large-scale operation in the country on the ground, the electrified railway has become the main harmonic source of China's power grid. In response to this phenomenon, the need for timely monitoring of power quality problems of electrified railway, assessment and governance. Wavelet transform is developed on the basis of Fourier analysis, the basic idea comes from the harmonic analysis, with a rigorous theoretical model, which has inherited and developed the local thought of Garbor transformation, and has overcome the disadvantages such as window fixation and lack of discrete orthogonally, so as to become a more recently studied spectral analysis tool. The wavelet analysis takes the gradual and precise time domain step in the high frequency part so as to focus on any details of the signal being analyzed, thereby comprehensively analyzing the harmonics of the traction power supply system meanwhile use the pyramid algorithm to increase the speed of wavelet decomposition. The matlab simulation shows that the use of wavelet decomposition of the traction power supply system for harmonic spectrum analysis is effective.

  19. Measuring Glial Metabolism in Repetitive Brain Trauma and Alzheimer’s Disease

    DTIC Science & Technology

    2016-09-01

    Six methods: Single value decomposition (SVD), wavelet, sliding window, sliding window with Gaussian weighting, spline and spectral improvements...comparison of a range of different denoising methods for dynamic MRS. Six denoising methods were considered: Single value decomposition (SVD), wavelet...project by improving the software required for the data analysis by developing six different denoising methods. He also assisted with the testing

  20. Terascale Visualization: Multi-resolution Aspirin for Big-Data Headaches

    NASA Astrophysics Data System (ADS)

    Duchaineau, Mark

    2001-06-01

    Recent experience on the Accelerated Strategic Computing Initiative (ASCI) computers shows that computational physicists are successfully producing a prodigious collection of numbers on several thousand processors. But with this wealth of numbers comes an unprecedented difficulty in processing and moving them to provide useful insight and analysis. In this talk, a few simulations are highlighted where recent advancements in multiple-resolution mathematical representations and algorithms have provided some hope of seeing most of the physics of interest while keeping within the practical limits of the post-simulation storage and interactive data-exploration resources. A whole host of visualization research activities was spawned by the 1999 Gordon Bell Prize-winning computation of a shock-tube experiment showing Richtmyer-Meshkov turbulent instabilities. This includes efforts for the entire data pipeline from running simulation to interactive display: wavelet compression of field data, multi-resolution volume rendering and slice planes, out-of-core extraction and simplification of mixing-interface surfaces, shrink-wrapping to semi-regularize the surfaces, semi-structured surface wavelet compression, and view-dependent display-mesh optimization. More recently on the 12 TeraOps ASCI platform, initial results from a 5120-processor, billion-atom molecular dynamics simulation showed that 30-to-1 reductions in storage size can be achieved with no human-observable errors for the analysis required in simulations of supersonic crack propagation. This made it possible to store the 25 trillion bytes worth of simulation numbers in the available storage, which was under 1 trillion bytes. While multi-resolution methods and related systems are still in their infancy, for the largest-scale simulations there is often no other choice should the science require detailed exploration of the results.

  1. Lifting wavelet method of target detection

    NASA Astrophysics Data System (ADS)

    Han, Jun; Zhang, Chi; Jiang, Xu; Wang, Fang; Zhang, Jin

    2009-11-01

    Image target recognition plays a very important role in the areas of scientific exploration, aeronautics and space-to-ground observation, photography and topographic mapping. Complex environment of the image noise, fuzzy, all kinds of interference has always been to affect the stability of recognition algorithm. In this paper, the existence of target detection in real-time, accuracy problems, as well as anti-interference ability, using lifting wavelet image target detection methods. First of all, the use of histogram equalization, the goal difference method to obtain the region, on the basis of adaptive threshold and mathematical morphology operations to deal with the elimination of the background error. Secondly, the use of multi-channel wavelet filter wavelet transform of the original image de-noising and enhancement, to overcome the general algorithm of the noise caused by the sensitive issue of reducing the rate of miscarriage of justice will be the multi-resolution characteristics of wavelet and promotion of the framework can be designed directly in the benefits of space-time region used in target detection, feature extraction of targets. The experimental results show that the design of lifting wavelet has solved the movement of the target due to the complexity of the context of the difficulties caused by testing, which can effectively suppress noise, and improve the efficiency and speed of detection.

  2. Multiscale asymmetric orthogonal wavelet kernel for linear programming support vector learning and nonlinear dynamic systems identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2014-05-01

    Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.

  3. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitrios

    Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A totalmore » of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A new wavelet-based EFCM clustering model was introduced toward noise reduction and detail preservation. The proposed method improves the overall US image quality, which in turn could affect the decision-making on whether additional imaging and/or intervention is needed.« less

  4. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction.

    PubMed

    Tsantis, Stavros; Spiliopoulos, Stavros; Skouroliakou, Aikaterini; Karnabatidis, Dimitrios; Hazle, John D; Kagadis, George C

    2014-07-01

    Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. A total of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists' qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. A new wavelet-based EFCM clustering model was introduced toward noise reduction and detail preservation. The proposed method improves the overall US image quality, which in turn could affect the decision-making on whether additional imaging and/or intervention is needed.

  5. Wavelet transforms with discrete-time continuous-dilation wavelets

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Rao, Raghuveer M.

    1999-03-01

    Wavelet constructions and transforms have been confined principally to the continuous-time domain. Even the discrete wavelet transform implemented through multirate filter banks is based on continuous-time wavelet functions that provide orthogonal or biorthogonal decompositions. This paper provides a novel wavelet transform construction based on the definition of discrete-time wavelets that can undergo continuous parameter dilations. The result is a transformation that has the advantage of discrete-time or digital implementation while circumventing the problem of inadequate scaling resolution seen with conventional dyadic or M-channel constructions. Examples of constructing such wavelets are presented.

  6. Multi-resolutional shape features via non-Euclidean wavelets: Applications to statistical analysis of cortical thickness

    PubMed Central

    Kim, Won Hwa; Singh, Vikas; Chung, Moo K.; Hinrichs, Chris; Pachauri, Deepti; Okonkwo, Ozioma C.; Johnson, Sterling C.

    2014-01-01

    Statistical analysis on arbitrary surface meshes such as the cortical surface is an important approach to understanding brain diseases such as Alzheimer’s disease (AD). Surface analysis may be able to identify specific cortical patterns that relate to certain disease characteristics or exhibit differences between groups. Our goal in this paper is to make group analysis of signals on surfaces more sensitive. To do this, we derive multi-scale shape descriptors that characterize the signal around each mesh vertex, i.e., its local context, at varying levels of resolution. In order to define such a shape descriptor, we make use of recent results from harmonic analysis that extend traditional continuous wavelet theory from the Euclidean to a non-Euclidean setting (i.e., a graph, mesh or network). Using this descriptor, we conduct experiments on two different datasets, the Alzheimer’s Disease NeuroImaging Initiative (ADNI) data and images acquired at the Wisconsin Alzheimer’s Disease Research Center (W-ADRC), focusing on individuals labeled as having Alzheimer’s disease (AD), mild cognitive impairment (MCI) and healthy controls. In particular, we contrast traditional univariate methods with our multi-resolution approach which show increased sensitivity and improved statistical power to detect a group-level effects. We also provide an open source implementation. PMID:24614060

  7. Windowed and Wavelet Analysis of Marine Stratocumulus Cloud Inhomogeneity

    NASA Technical Reports Server (NTRS)

    Gollmer, Steven M.; Harshvardhan; Cahalan, Robert F.; Snider, Jack B.

    1995-01-01

    To improve radiative transfer calculations for inhomogeneous clouds, a consistent means of modeling inhomogeneity is needed. One current method of modeling cloud inhomogeneity is through the use of fractal parameters. This method is based on the supposition that cloud inhomogeneity over a large range of scales is related. An analysis technique named wavelet analysis provides a means of studying the multiscale nature of cloud inhomogeneity. In this paper, the authors discuss the analysis and modeling of cloud inhomogeneity through the use of wavelet analysis. Wavelet analysis as well as other windowed analysis techniques are used to study liquid water path (LWP) measurements obtained during the marine stratocumulus phase of the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment. Statistics obtained using analysis windows, which are translated to span the LWP dataset, are used to study the local (small scale) properties of the cloud field as well as their time dependence. The LWP data are transformed onto an orthogonal wavelet basis that represents the data as a number of times series. Each of these time series lies within a frequency band and has a mean frequency that is half the frequency of the previous band. Wavelet analysis combined with translated analysis windows reveals that the local standard deviation of each frequency band is correlated with the local standard deviation of the other frequency bands. The ratio between the standard deviation of adjacent frequency bands is 0.9 and remains constant with respect to time. This ratio defined as the variance coupling parameter is applicable to all of the frequency bands studied and appears to be related to the slope of the data's power spectrum. Similar analyses are performed on two cloud inhomogeneity models, which use fractal-based concepts to introduce inhomogeneity into a uniform cloud field. The bounded cascade model does this by iteratively redistributing LWP at each scale using the value of the local mean. This model is reformulated into a wavelet multiresolution framework, thereby presenting a number of variants of the bounded cascade model. One variant introduced in this paper is the 'variance coupled model,' which redistributes LWP using the local standard deviation and the variance coupling parameter. While the bounded cascade model provides an elegant two- parameter model for generating cloud inhomogeneity, the multiresolution framework provides more flexibility at the expense of model complexity. Comparisons are made with the results from the LWP data analysis to demonstrate both the strengths and weaknesses of these models.

  8. Analyze the dynamic features of rat EEG using wavelet entropy.

    PubMed

    Feng, Zhouyan; Chen, Hang

    2005-01-01

    Wavelet entropy (WE), a new method of complexity measure for non-stationary signals, was used to investigate the dynamic features of rat EEGs under three vigilance states. The EEGs of the freely moving rats were recorded with implanted electrodes and were decomposed into four components of delta, theta, alpha and beta by using multi-resolution wavelet transform. Then, the wavelet entropy curves were calculated as a function of time. The results showed that there were significant differences among the average WEs of EEGs recorded under the vigilance states of waking, slow wave sleep (SWS) and rapid eye movement (REM) sleep. The changes of WE had different relationships with the four power components under different states. Moreover, there was evident rhythm in EEG WEs of SWS sleep for most experimental rats, which indicated a reciprocal relationship between slow waves and sleep spindles in the micro-states of SWS sleep. Therefore, WE can be used not only to distinguish the long-term changes in EEG complexity, but also to reveal the short-term changes in EEG micro-state.

  9. A novel neural-wavelet approach for process diagnostics and complex system modeling

    NASA Astrophysics Data System (ADS)

    Gao, Rong

    Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.

  10. Heuristic-driven graph wavelet modeling of complex terrain

    NASA Astrophysics Data System (ADS)

    Cioacǎ, Teodor; Dumitrescu, Bogdan; Stupariu, Mihai-Sorin; Pǎtru-Stupariu, Ileana; Nǎpǎrus, Magdalena; Stoicescu, Ioana; Peringer, Alexander; Buttler, Alexandre; Golay, François

    2015-03-01

    We present a novel method for building a multi-resolution representation of large digital surface models. The surface points coincide with the nodes of a planar graph which can be processed using a critically sampled, invertible lifting scheme. To drive the lazy wavelet node partitioning, we employ an attribute aware cost function based on the generalized quadric error metric. The resulting algorithm can be applied to multivariate data by storing additional attributes at the graph's nodes. We discuss how the cost computation mechanism can be coupled with the lifting scheme and examine the results by evaluating the root mean square error. The algorithm is experimentally tested using two multivariate LiDAR sets representing terrain surface and vegetation structure with different sampling densities.

  11. Tomographic reconstruction of tokamak plasma light emission using wavelet-vaguelette decomposition

    NASA Astrophysics Data System (ADS)

    Schneider, Kai; Nguyen van Yen, Romain; Fedorczak, Nicolas; Brochard, Frederic; Bonhomme, Gerard; Farge, Marie; Monier-Garbet, Pascale

    2012-10-01

    Images acquired by cameras installed in tokamaks are difficult to interpret because the three-dimensional structure of the plasma is flattened in a non-trivial way. Nevertheless, taking advantage of the slow variation of the fluctuations along magnetic field lines, the optical transformation may be approximated by a generalized Abel transform, for which we proposed in Nguyen van yen et al., Nucl. Fus., 52 (2012) 013005, an inversion technique based on the wavelet-vaguelette decomposition. After validation of the new method using an academic test case and numerical data obtained with the Tokam 2D code, we present an application to an experimental movie obtained in the tokamak Tore Supra. A comparison with a classical regularization technique for ill-posed inverse problems, the singular value decomposition, allows us to assess the efficiency. The superiority of the wavelet-vaguelette technique is reflected in preserving local features, such as blobs and fronts, in the denoised emissivity map.

  12. Tomographic reconstruction of tokamak plasma light emission from single image using wavelet-vaguelette decomposition

    NASA Astrophysics Data System (ADS)

    Nguyen van yen, R.; Fedorczak, N.; Brochard, F.; Bonhomme, G.; Schneider, K.; Farge, M.; Monier-Garbet, P.

    2012-01-01

    Images acquired by cameras installed in tokamaks are difficult to interpret because the three-dimensional structure of the plasma is flattened in a non-trivial way. Nevertheless, taking advantage of the slow variation of the fluctuations along magnetic field lines, the optical transformation may be approximated by a generalized Abel transform, for which we propose an inversion technique based on the wavelet-vaguelette decomposition. After validation of the new method using an academic test case and numerical data obtained with the Tokam 2D code, we present an application to an experimental movie obtained in the tokamak Tore Supra. A comparison with a classical regularization technique for ill-posed inverse problems, the singular value decomposition, allows us to assess the efficiency. The superiority of the wavelet-vaguelette technique is reflected in preserving local features, such as blobs and fronts, in the denoised emissivity map.

  13. A study of stationarity in time series by using wavelet transform

    NASA Astrophysics Data System (ADS)

    Dghais, Amel Abdoullah Ahmed; Ismail, Mohd Tahir

    2014-07-01

    In this work the core objective is to apply discrete wavelet transform (DWT) functions namely Haar, Daubechies, Symmlet, Coiflet and discrete approximation of the meyer wavelets in non-stationary financial time series data from US stock market (DJIA30). The data consists of 2048 daily data of closing index starting from December 17, 2004 until October 23, 2012. From the unit root test the results show that the data is non stationary in the level. In order to study the stationarity of a time series, the autocorrelation function (ACF) is used. Results indicate that, Haar function is the lowest function to obtain noisy series as compared to Daubechies, Symmlet, Coiflet and discrete approximation of the meyer wavelets. In addition, the original data after decomposition by DWT is less noisy series than decomposition by DWT for return time series.

  14. Homogenization via Sequential Projection to Nested Subspaces Spanned by Orthogonal Scaling and Wavelet Orthonormal Families of Functions

    DTIC Science & Technology

    2008-07-01

    operators in Hilbert spaces. The homogenization procedure through successive multi- resolution projections is presented, followed by a numerical example of...is intended to be essentially self-contained. The mathematical ( Greenberg 1978; Gilbert 2006) and signal processing (Strang and Nguyen 1995...literature listed in the references. The ideas behind multi-resolution analysis unfold from the theory of linear operators in Hilbert spaces (Davis 1975

  15. Application of wavelet multi-resolution analysis for correction of seismic acceleration records

    NASA Astrophysics Data System (ADS)

    Ansari, Anooshiravan; Noorzad, Assadollah; Zare, Mehdi

    2007-12-01

    During an earthquake, many stations record the ground motion, but only a few of them could be corrected using conventional high-pass and low-pass filtering methods and the others were identified as highly contaminated by noise and as a result useless. There are two major problems associated with these noisy records. First, since the signal to noise ratio (S/N) is low, it is not possible to discriminate between the original signal and noise either in the frequency domain or in the time domain. Consequently, it is not possible to cancel out noise using conventional filtering methods. The second problem is the non-stationary characteristics of the noise. In other words, in many cases the characteristics of the noise are varied over time and in these situations, it is not possible to apply frequency domain correction schemes. When correcting acceleration signals contaminated with high-level non-stationary noise, there is an important question whether it is possible to estimate the state of the noise in different bands of time and frequency. Wavelet multi-resolution analysis decomposes a signal into different time-frequency components, and besides introducing a suitable criterion for identification of the noise among each component, also provides the required mathematical tool for correction of highly noisy acceleration records. In this paper, the characteristics of the wavelet de-noising procedures are examined through the correction of selected real and synthetic acceleration time histories. It is concluded that this method provides a very flexible and efficient tool for the correction of very noisy and non-stationary records of ground acceleration. In addition, a two-step correction scheme is proposed for long period correction of the acceleration records. This method has the advantage of stable results in displacement time history and response spectrum.

  16. Multi-scale Methods in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Polyzou, W. N.; Michlin, Tracie; Bulut, Fatih

    2018-05-01

    Daubechies wavelets are used to make an exact multi-scale decomposition of quantum fields. For reactions that involve a finite energy that take place in a finite volume, the number of relevant quantum mechanical degrees of freedom is finite. The wavelet decomposition has natural resolution and volume truncations that can be used to isolate the relevant degrees of freedom. The application of flow equation methods to construct effective theories that decouple coarse and fine scale degrees of freedom is examined.

  17. Wavelets and Elman Neural Networks for monitoring environmental variables

    NASA Astrophysics Data System (ADS)

    Ciarlini, Patrizia; Maniscalco, Umberto

    2008-11-01

    An application in cultural heritage is introduced. Wavelet decomposition and Neural Networks like virtual sensors are jointly used to simulate physical and chemical measurements in specific locations of a monument. Virtual sensors, suitably trained and tested, can substitute real sensors in monitoring the monument surface quality, while the real ones should be installed for a long time and at high costs. The application of the wavelet decomposition to the environmental data series allows getting the treatment of underlying temporal structure at low frequencies. Consequently a separate training of suitable Elman Neural Networks for high/low components can be performed, thus improving the networks convergence in learning time and measurement accuracy in working time.

  18. Multi-level basis selection of wavelet packet decomposition tree for heart sound classification.

    PubMed

    Safara, Fatemeh; Doraisamy, Shyamala; Azman, Azreen; Jantan, Azrul; Abdullah Ramaiah, Asri Ranga

    2013-10-01

    Wavelet packet transform decomposes a signal into a set of orthonormal bases (nodes) and provides opportunities to select an appropriate set of these bases for feature extraction. In this paper, multi-level basis selection (MLBS) is proposed to preserve the most informative bases of a wavelet packet decomposition tree through removing less informative bases by applying three exclusion criteria: frequency range, noise frequency, and energy threshold. MLBS achieved an accuracy of 97.56% for classifying normal heart sound, aortic stenosis, mitral regurgitation, and aortic regurgitation. MLBS is a promising basis selection to be suggested for signals with a small range of frequencies. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation

    NASA Technical Reports Server (NTRS)

    Liandrat, J.; Tchamitchian, PH.

    1990-01-01

    The Burgers equation with a small viscosity term, initial and periodic boundary conditions is resolved using a spatial approximation constructed from an orthonormal basis of wavelets. The algorithm is directly derived from the notions of multiresolution analysis and tree algorithms. Before the numerical algorithm is described these notions are first recalled. The method uses extensively the localization properties of the wavelets in the physical and Fourier spaces. Moreover, the authors take advantage of the fact that the involved linear operators have constant coefficients. Finally, the algorithm can be considered as a time marching version of the tree algorithm. The most important point is that an adaptive version of the algorithm exists: it allows one to reduce in a significant way the number of degrees of freedom required for a good computation of the solution. Numerical results and description of the different elements of the algorithm are provided in combination with different mathematical comments on the method and some comparison with more classical numerical algorithms.

  20. Built-Up Area Detection from High-Resolution Satellite Images Using Multi-Scale Wavelet Transform and Local Spatial Statistics

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Zhang, Y.; Gao, J.; Yuan, Y.; Lv, Z.

    2018-04-01

    Recently, built-up area detection from high-resolution satellite images (HRSI) has attracted increasing attention because HRSI can provide more detailed object information. In this paper, multi-resolution wavelet transform and local spatial autocorrelation statistic are introduced to model the spatial patterns of built-up areas. First, the input image is decomposed into high- and low-frequency subbands by wavelet transform at three levels. Then the high-frequency detail information in three directions (horizontal, vertical and diagonal) are extracted followed by a maximization operation to integrate the information in all directions. Afterward, a cross-scale operation is implemented to fuse different levels of information. Finally, local spatial autocorrelation statistic is introduced to enhance the saliency of built-up features and an adaptive threshold algorithm is used to achieve the detection of built-up areas. Experiments are conducted on ZY-3 and Quickbird panchromatic satellite images, and the results show that the proposed method is very effective for built-up area detection.

  1. Accurate reconstruction in digital holographic microscopy using Fresnel dual-tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Zhang, Xiangchao; Yuan, He; Zhang, Hao; Xu, Min

    2018-02-01

    Digital holography is a promising measurement method in the fields of bio-medicine and micro-electronics. But the captured images of digital holography are severely polluted by the speckle noise because of optical scattering and diffraction. Via analyzing the properties of Fresnel diffraction and the topographies of micro-structures, a novel reconstruction method based on the dual-tree complex wavelet transform (DT-CWT) is proposed. This algorithm is shiftinvariant and capable of obtaining sparse representations for the diffracted signals of salient features, thus it is well suited for multiresolution processing of the interferometric holograms of directional morphologies. An explicit representation of orthogonal Fresnel DT-CWT bases and a specific filtering method are developed. This method can effectively remove the speckle noise without destroying the salient features. Finally, the proposed reconstruction method is compared with the conventional Fresnel diffraction integration and Fresnel wavelet transform with compressive sensing methods to validate its remarkable superiority on the aspects of topography reconstruction and speckle removal.

  2. Characterization of cancer and normal tissue fluorescence through wavelet transform and singular value decomposition

    NASA Astrophysics Data System (ADS)

    Gharekhan, Anita H.; Biswal, Nrusingh C.; Gupta, Sharad; Pradhan, Asima; Sureshkumar, M. B.; Panigrahi, Prasanta K.

    2008-02-01

    The statistical and characteristic features of the polarized fluorescence spectra from cancer, normal and benign human breast tissues are studied through wavelet transform and singular value decomposition. The discrete wavelets enabled one to isolate high and low frequency spectral fluctuations, which revealed substantial randomization in the cancerous tissues, not present in the normal cases. In particular, the fluctuations fitted well with a Gaussian distribution for the cancerous tissues in the perpendicular component. One finds non-Gaussian behavior for normal and benign tissues' spectral variations. The study of the difference of intensities in parallel and perpendicular channels, which is free from the diffusive component, revealed weak fluorescence activity in the 630nm domain, for the cancerous tissues. This may be ascribable to porphyrin emission. The role of both scatterers and fluorophores in the observed minor intensity peak for the cancer case is experimentally confirmed through tissue-phantom experiments. Continuous Morlet wavelet also highlighted this domain for the cancerous tissue fluorescence spectra. Correlation in the spectral fluctuation is further studied in different tissue types through singular value decomposition. Apart from identifying different domains of spectral activity for diseased and non-diseased tissues, we found random matrix support for the spectral fluctuations. The small eigenvalues of the perpendicular polarized fluorescence spectra of cancerous tissues fitted remarkably well with random matrix prediction for Gaussian random variables, confirming our observations about spectral fluctuations in the wavelet domain.

  3. Wavelet Decomposition for Discrete Probability Maps

    DTIC Science & Technology

    2007-08-01

    using other wavelet basis functions, such as those mentioned in Section 7 15 DSTO–TN–0760 References 1. P. M. Bentley and J . T . E. McDonnell. Wavelet...84, 1995. 0272-1716. 18. E. J . Stollnitz, T . D. DeRose, and D. H. Salesin. Wavelets for computer graphics: a primer. 2. Computer Graphics and...and Computer Modelling in 2006 from the University of South Australia, Mawson Lakes. Part of this de- gree was undertaken at the University of Twente

  4. Energy-Based Wavelet De-Noising of Hydrologic Time Series

    PubMed Central

    Sang, Yan-Fang; Liu, Changming; Wang, Zhonggen; Wen, Jun; Shang, Lunyu

    2014-01-01

    De-noising is a substantial issue in hydrologic time series analysis, but it is a difficult task due to the defect of methods. In this paper an energy-based wavelet de-noising method was proposed. It is to remove noise by comparing energy distribution of series with the background energy distribution, which is established from Monte-Carlo test. Differing from wavelet threshold de-noising (WTD) method with the basis of wavelet coefficient thresholding, the proposed method is based on energy distribution of series. It can distinguish noise from deterministic components in series, and uncertainty of de-noising result can be quantitatively estimated using proper confidence interval, but WTD method cannot do this. Analysis of both synthetic and observed series verified the comparable power of the proposed method and WTD, but de-noising process by the former is more easily operable. The results also indicate the influences of three key factors (wavelet choice, decomposition level choice and noise content) on wavelet de-noising. Wavelet should be carefully chosen when using the proposed method. The suitable decomposition level for wavelet de-noising should correspond to series' deterministic sub-signal which has the smallest temporal scale. If too much noise is included in a series, accurate de-noising result cannot be obtained by the proposed method or WTD, but the series would show pure random but not autocorrelation characters, so de-noising is no longer needed. PMID:25360533

  5. State University of New York Institute of Technology (SUNYIT) Summer Scholar Program

    DTIC Science & Technology

    2009-10-01

    COVERED (From - To) March 2007 – April 2009 4 . TITLE AND SUBTITLE STATE UNIVERSITY OF NEW YORK INSTITUTE OF TECHNOLOGY (SUNYIT) SUMMER SCHOLAR...Even with access to the Arctic Regional Supercomputer Center (ARSC), evolving a 9/7 wavelet with four multi-resolution levels (MRA 4 ) involves...evaluated over the multiple processing elements in the Cell processor. It was tested on Cell processors in a Sony Playstation 3 and on an IBM QS20 blade

  6. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-06-01

    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80o and energies in excess of 4 EeV (4 × 1018 eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p-values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10-5 in the case of the angular power spectrum, and 2.5 × 10-3 in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.

  7. Discrete wavelet transform: a tool in smoothing kinematic data.

    PubMed

    Ismail, A R; Asfour, S S

    1999-03-01

    Motion analysis systems typically introduce noise to the displacement data recorded. Butterworth digital filters have been used to smooth the displacement data in order to obtain smoothed velocities and accelerations. However, this technique does not yield satisfactory results, especially when dealing with complex kinematic motions that occupy the low- and high-frequency bands. The use of the discrete wavelet transform, as an alternative to digital filters, is presented in this paper. The transform passes the original signal through two complementary low- and high-pass FIR filters and decomposes the signal into an approximation function and a detail function. Further decomposition of the signal results in transforming the signal into a hierarchy set of orthogonal approximation and detail functions. A reverse process is employed to perfectly reconstruct the signal (inverse transform) back from its approximation and detail functions. The discrete wavelet transform was applied to the displacement data recorded by Pezzack et al., 1977. The smoothed displacement data were twice differentiated and compared to Pezzack et al.'s acceleration data in order to choose the most appropriate filter coefficients and decomposition level on the basis of maximizing the percentage of retained energy (PRE) and minimizing the root mean square error (RMSE). Daubechies wavelet of the fourth order (Db4) at the second decomposition level showed better results than both the biorthogonal and Coiflet wavelets (PRE = 97.5%, RMSE = 4.7 rad s-2). The Db4 wavelet was then used to compress complex displacement data obtained from a noisy mathematically generated function. Results clearly indicate superiority of this new smoothing approach over traditional filters.

  8. Wavelet-domain de-noising of OCT images of human brain malignant glioma

    NASA Astrophysics Data System (ADS)

    Dolganova, I. N.; Aleksandrova, P. V.; Beshplav, S.-I. T.; Chernomyrdin, N. V.; Dubyanskaya, E. N.; Goryaynov, S. A.; Kurlov, V. N.; Reshetov, I. V.; Potapov, A. A.; Tuchin, V. V.; Zaytsev, K. I.

    2018-04-01

    We have proposed a wavelet-domain de-noising technique for imaging of human brain malignant glioma by optical coherence tomography (OCT). It implies OCT image decomposition using the direct fast wavelet transform, thresholding of the obtained wavelet spectrum and further inverse fast wavelet transform for image reconstruction. By selecting both wavelet basis and thresholding procedure, we have found an optimal wavelet filter, which application improves differentiation of the considered brain tissue classes - i.e. malignant glioma and normal/intact tissue. Namely, it allows reducing the scattering noise in the OCT images and retaining signal decrement for each tissue class. Therefore, the observed results reveals the wavelet-domain de-noising as a prospective tool for improved characterization of biological tissue using the OCT.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liakh, Dmitry I

    While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locallymore » supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).« less

  10. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  11. Using dynamic mode decomposition for real-time background/foreground separation in video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutz, Jose Nathan; Grosek, Jacob; Brunton, Steven

    The technique of dynamic mode decomposition (DMD) is disclosed herein for the purpose of robustly separating video frames into background (low-rank) and foreground (sparse) components in real-time. Foreground/background separation is achieved at the computational cost of just one singular value decomposition (SVD) and one linear equation solve, thus producing results orders of magnitude faster than robust principal component analysis (RPCA). Additional techniques, including techniques for analyzing the video for multi-resolution time-scale components, and techniques for reusing computations to allow processing of streaming video in real time, are also described herein.

  12. Wake acoustic analysis and image decomposition via beamforming of microphone signal projections on wavelet subspaces

    DOT National Transportation Integrated Search

    2006-05-08

    This paper describes the integration of wavelet analysis and time-domain beamforming : of microphone array output signals for analyzing the acoustic emissions from airplane : generated wake vortices. This integrated process provides visual and quanti...

  13. Texture Analysis of Recurrence Plots Based on Wavelets and PSO for Laryngeal Pathologies Detection.

    PubMed

    Souza, Taciana A; Vieira, Vinícius J D; Correia, Suzete E N; Costa, Silvana L N C; de A Costa, Washington C; Souza, Micael A

    2015-01-01

    This paper deals with the discrimination between healthy and pathological speech signals using recurrence plots and wavelet transform with texture features. Approximation and detail coefficients are obtained from the recurrence plots using Haar wavelet transform, considering one decomposition level. The considered laryngeal pathologies are: paralysis, Reinke's edema and nodules. Accuracy rates above 86% were obtained by means of the employed method.

  14. Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure

    NASA Astrophysics Data System (ADS)

    Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Shi, Yue; Thornton, S.

    2014-08-01

    Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, are all characterized by large sizes and complex topologies in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudospectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. Methods: The numerical method is based on the multi-resolution and computational harmonic analysis techniques with a multi-wavelet basis. The application of state-of-the-art parallel programming techniques include sophisticated object-oriented templates which parse the high-level code into distributed parallel tasks with a multi-thread task queue scheduler for each multi-core node. The internode communications are asynchronous. The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively, with functional and boundary constraints, in a finite spatial domain of very large size, limited by existing parallel computer memory. For smooth functions, user-defined finite precision is guaranteed. Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver madness-hfb is benchmarked against a two-dimensional coordinate-space solver hfb-ax that is based on the B-spline technique and a three-dimensional solver hfodd that is based on the harmonic-oscillator basis expansion. Several examples are considered, including the self-consistent HFB problem for spin-polarized trapped cold fermions and the Skyrme-Hartree-Fock (+BCS) problem for triaxial deformed nuclei. Conclusions: The new madness-hfb framework has many attractive features when applied to nuclear and atomic problems involving many-particle superfluid systems. Of particular interest are weakly bound nuclear configurations close to particle drip lines, strongly elongated and dinuclear configurations such as those present in fission and heavy-ion fusion, and exotic pasta phases that appear in neutron star crust.

  15. Artificial Intelligence (AI) Center of Excellence at the University of Pennsylvania

    DTIC Science & Technology

    1989-10-01

    34Multiresolution Representations and Wavelets" Advisor: Bajcsy Aug 88 Wayne Snyder "General E-Unification" Assistant Professor, Boston University Advisor: Collier ...Val Breazu- Tannen and Thierry Coquand MS- CIS-88-25 LINC LAB 109 This is a slightly revised version of MS-CIS-87- 75/LINC LAB 81. We present a...information can be used to tailor and explanation. Domain Theoretic Models of Polymorphism Thierry Coquand, Carl A. Gunter, and Glynn Winskel MS-CIS-88-)38

  16. Image Segmentation Using Affine Wavelets

    DTIC Science & Technology

    1991-12-12

    accomplished by tile the matrixtoascii. c prograimi. TIl’ i’ rlage file is theim processed by the wave2 prograli which u ilizes MaIllat’s algo- 5-2 CLASS...1024 feet Figure 5.3. Frequency Content of Multiresolution Levels rithm. Details of the wave2 program can be found in the Appendix. One of the resulting...which comprise the wave2 program. 1. mainswave.c - The main driver program for wave. 2. loadimage.c - A routine to load the input image from an ascii

  17. Wavelet domain textual coding of Ottoman script images

    NASA Astrophysics Data System (ADS)

    Gerek, Oemer N.; Cetin, Enis A.; Tewfik, Ahmed H.

    1996-02-01

    Image coding using wavelet transform, DCT, and similar transform techniques is well established. On the other hand, these coding methods neither take into account the special characteristics of the images in a database nor are they suitable for fast database search. In this paper, the digital archiving of Ottoman printings is considered. Ottoman documents are printed in Arabic letters. Witten et al. describes a scheme based on finding the characters in binary document images and encoding the positions of the repeated characters This method efficiently compresses document images and is suitable for database research, but it cannot be applied to Ottoman or Arabic documents as the concept of character is different in Ottoman or Arabic. Typically, one has to deal with compound structures consisting of a group of letters. Therefore, the matching criterion will be according to those compound structures. Furthermore, the text images are gray tone or color images for Ottoman scripts for the reasons that are described in the paper. In our method the compound structure matching is carried out in wavelet domain which reduces the search space and increases the compression ratio. In addition to the wavelet transformation which corresponds to the linear subband decomposition, we also used nonlinear subband decomposition. The filters in the nonlinear subband decomposition have the property of preserving edges in the low resolution subband image.

  18. Spectral Data Reduction via Wavelet Decomposition

    NASA Technical Reports Server (NTRS)

    Kaewpijit, S.; LeMoigne, J.; El-Ghazawi, T.; Rood, Richard (Technical Monitor)

    2002-01-01

    The greatest advantage gained from hyperspectral imagery is that narrow spectral features can be used to give more information about materials than was previously possible with broad-band multispectral imagery. For many applications, the new larger data volumes from such hyperspectral sensors, however, present a challenge for traditional processing techniques. For example, the actual identification of each ground surface pixel by its corresponding reflecting spectral signature is still one of the most difficult challenges in the exploitation of this advanced technology, because of the immense volume of data collected. Therefore, conventional classification methods require a preprocessing step of dimension reduction to conquer the so-called "curse of dimensionality." Spectral data reduction using wavelet decomposition could be useful, as it does not only reduce the data volume, but also preserves the distinctions between spectral signatures. This characteristic is related to the intrinsic property of wavelet transforms that preserves high- and low-frequency features during the signal decomposition, therefore preserving peaks and valleys found in typical spectra. When comparing to the most widespread dimension reduction technique, the Principal Component Analysis (PCA), and looking at the same level of compression rate, we show that Wavelet Reduction yields better classification accuracy, for hyperspectral data processed with a conventional supervised classification such as a maximum likelihood method.

  19. Pi2 detection using Empirical Mode Decomposition (EMD)

    NASA Astrophysics Data System (ADS)

    Mieth, Johannes Z. D.; Frühauff, Dennis; Glassmeier, Karl-Heinz

    2017-04-01

    Empirical Mode Decomposition has been used as an alternative method to wavelet transformation to identify onset times of Pi2 pulsations in data sets of the Scandinavian Magnetometer Array (SMA). Pi2 pulsations are magnetohydrodynamic waves occurring during magnetospheric substorms. Almost always Pi2 are observed at substorm onset in mid to low latitudes on Earth's nightside. They are fed by magnetic energy release caused by dipolarization processes. Their periods lie between 40 to 150 seconds. Usually, Pi2 are detected using wavelet transformation. Here, Empirical Mode Decomposition (EMD) is presented as an alternative approach to the traditional procedure. EMD is a young signal decomposition method designed for nonlinear and non-stationary time series. It provides an adaptive, data driven, and complete decomposition of time series into slow and fast oscillations. An optimized version using Monte-Carlo-type noise assistance is used here. By displaying the results in a time-frequency space a characteristic frequency modulation is observed. This frequency modulation can be correlated with the onset of Pi2 pulsations. A basic algorithm to find the onset is presented. Finally, the results are compared to classical wavelet-based analysis. The use of different SMA stations furthermore allows the spatial analysis of Pi2 onset times. EMD mostly finds application in the fields of engineering and medicine. This work demonstrates the applicability of this method to geomagnetic time series.

  20. Multiscale computations with a wavelet-adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Rastigejev, Yevgenii Anatolyevich

    A wavelet-based adaptive multiresolution algorithm for the numerical solution of multiscale problems governed by partial differential equations is introduced. The main features of the method include fast algorithms for the calculation of wavelet coefficients and approximation of derivatives on nonuniform stencils. The connection between the wavelet order and the size of the stencil is established. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution which are used in conjunction with an appropriate threshold criteria to adapt the collocation grid. The efficient data structures for grid representation as well as related computational algorithms to support grid rearrangement procedure are developed. The algorithm is applied to the simulation of phenomena described by Navier-Stokes equations. First, we undertake the study of the ignition and subsequent viscous detonation of a H2 : O2 : Ar mixture in a one-dimensional shock tube. Subsequently, we apply the algorithm to solve the two- and three-dimensional benchmark problem of incompressible flow in a lid-driven cavity at large Reynolds numbers. For these cases we show that solutions of comparable accuracy as the benchmarks are obtained with more than an order of magnitude reduction in degrees of freedom. The simulations show the striking ability of the algorithm to adapt to a solution having different scales at different spatial locations so as to produce accurate results at a relatively low computational cost.

  1. A Wavelet Polarization Decomposition Net Model for Polarimetric SAR Image Classification

    NASA Astrophysics Data System (ADS)

    He, Chu; Ou, Dan; Yang, Teng; Wu, Kun; Liao, Mingsheng; Chen, Erxue

    2014-11-01

    In this paper, a deep model based on wavelet texture has been proposed for Polarimetric Synthetic Aperture Radar (PolSAR) image classification inspired by recent successful deep learning method. Our model is supposed to learn powerful and informative representations to improve the generalization ability for the complex scene classification tasks. Given the influence of speckle noise in Polarimetric SAR image, wavelet polarization decomposition is applied first to obtain basic and discriminative texture features which are then embedded into a Deep Neural Network (DNN) in order to compose multi-layer higher representations. We demonstrate that the model can produce a powerful representation which can capture some untraceable information from Polarimetric SAR images and show a promising achievement in comparison with other traditional SAR image classification methods for the SAR image dataset.

  2. A Wavelet-Based Methodology for Grinding Wheel Condition Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, T. W.; Ting, C.F.; Qu, Jun

    2007-01-01

    Grinding wheel surface condition changes as more material is removed. This paper presents a wavelet-based methodology for grinding wheel condition monitoring based on acoustic emission (AE) signals. Grinding experiments in creep feed mode were conducted to grind alumina specimens with a resinoid-bonded diamond wheel using two different conditions. During the experiments, AE signals were collected when the wheel was 'sharp' and when the wheel was 'dull'. Discriminant features were then extracted from each raw AE signal segment using the discrete wavelet decomposition procedure. An adaptive genetic clustering algorithm was finally applied to the extracted features in order to distinguish differentmore » states of grinding wheel condition. The test results indicate that the proposed methodology can achieve 97% clustering accuracy for the high material removal rate condition, 86.7% for the low material removal rate condition, and 76.7% for the combined grinding conditions if the base wavelet, the decomposition level, and the GA parameters are properly selected.« less

  3. Matching pursuit parallel decomposition of seismic data

    NASA Astrophysics Data System (ADS)

    Li, Chuanhui; Zhang, Fanchang

    2017-07-01

    In order to improve the computation speed of matching pursuit decomposition of seismic data, a matching pursuit parallel algorithm is designed in this paper. We pick a fixed number of envelope peaks from the current signal in every iteration according to the number of compute nodes and assign them to the compute nodes on average to search the optimal Morlet wavelets in parallel. With the help of parallel computer systems and Message Passing Interface, the parallel algorithm gives full play to the advantages of parallel computing to significantly improve the computation speed of the matching pursuit decomposition and also has good expandability. Besides, searching only one optimal Morlet wavelet by every compute node in every iteration is the most efficient implementation.

  4. Adaptive wavelet collocation methods for initial value boundary problems of nonlinear PDE's

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Wang, Jian-Zhong

    1993-01-01

    We have designed a cubic spline wavelet decomposition for the Sobolev space H(sup 2)(sub 0)(I) where I is a bounded interval. Based on a special 'point-wise orthogonality' of the wavelet basis functions, a fast Discrete Wavelet Transform (DWT) is constructed. This DWT transform will map discrete samples of a function to its wavelet expansion coefficients in O(N log N) operations. Using this transform, we propose a collocation method for the initial value boundary problem of nonlinear PDE's. Then, we test the efficiency of the DWT transform and apply the collocation method to solve linear and nonlinear PDE's.

  5. Use of the wavelet transform to investigate differences in brain PET images between patient groups

    NASA Astrophysics Data System (ADS)

    Ruttimann, Urs E.; Unser, Michael A.; Rio, Daniel E.; Rawlings, Robert R.

    1993-06-01

    Suitability of the wavelet transform was studied for the analysis of glucose utilization differences between subject groups as displayed in PET images. To strengthen statistical inference, it was of particular interest investigating the tradeoff between signal localization and image decomposition into uncorrelated components. This tradeoff is shown to be controlled by wavelet regularity, with the optimal compromise attained by third-order orthogonal spline wavelets. Testing of the ensuing wavelet coefficients identified only about 1.5% as statistically different (p < .05) from noise, which then served to resynthesize the difference images by the inverse wavelet transform. The resulting images displayed relatively uniform, noise-free regions of significant differences with, due to the good localization maintained by the wavelets, very little reconstruction artifacts.

  6. Agile Multi-Scale Decompositions for Automatic Image Registration

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Leija, Omar Navarro; Le Moigne, Jacqueline

    2016-01-01

    In recent works, the first and third authors developed an automatic image registration algorithm based on a multiscale hybrid image decomposition with anisotropic shearlets and isotropic wavelets. This prototype showed strong performance, improving robustness over registration with wavelets alone. However, this method imposed a strict hierarchy on the order in which shearlet and wavelet features were used in the registration process, and also involved an unintegrated mixture of MATLAB and C code. In this paper, we introduce a more agile model for generating features, in which a flexible and user-guided mix of shearlet and wavelet features are computed. Compared to the previous prototype, this method introduces a flexibility to the order in which shearlet and wavelet features are used in the registration process. Moreover, the present algorithm is now fully coded in C, making it more efficient and portable than the MATLAB and C prototype. We demonstrate the versatility and computational efficiency of this approach by performing registration experiments with the fully-integrated C algorithm. In particular, meaningful timing studies can now be performed, to give a concrete analysis of the computational costs of the flexible feature extraction. Examples of synthetically warped and real multi-modal images are analyzed.

  7. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, A.; Abreu, P.; Andringa, S.

    2017-06-01

    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80{sup o} and energies in excess of 4 EeV (4 × 10{sup 18} eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providingmore » directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p -values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10{sup −5} in the case of the angular power spectrum, and 2.5 × 10{sup −3} in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.« less

  8. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, A.; Abreu, P.; Aglietta, M.

    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80(o) and energies in excess of 4 EeV (4 × 10 18 eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information onmore » any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured, while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p-values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10 -5 in the case of the angular power spectrum, and 2.5 × 10 -3 in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.« less

  9. Coherent vorticity extraction in resistive drift-wave turbulence: Comparison of orthogonal wavelets versus proper orthogonal decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futatani, S.; Bos, W.J.T.; Del-Castillo-Negrete, Diego B

    2011-01-01

    We assess two techniques for extracting coherent vortices out of turbulent flows: the wavelet based Coherent Vorticity Extraction (CVE) and the Proper Orthogonal Decomposition (POD). The former decomposes the flow field into an orthogonal wavelet representation and subsequent thresholding of the coefficients allows one to split the flow into organized coherent vortices with non-Gaussian statistics and an incoherent random part which is structureless. POD is based on the singular value decomposition and decomposes the flow into basis functions which are optimal with respect to the retained energy for the ensemble average. Both techniques are applied to direct numerical simulation datamore » of two-dimensional drift-wave turbulence governed by Hasegawa Wakatani equation, considering two limit cases: the quasi-hydrodynamic and the quasi-adiabatic regimes. The results are compared in terms of compression rate, retained energy, retained enstrophy and retained radial flux, together with the enstrophy spectrum and higher order statistics. (c) 2010 Published by Elsevier Masson SAS on behalf of Academie des sciences.« less

  10. Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features

    NASA Astrophysics Data System (ADS)

    Rezaeian, A.; Homayouni, S.; Safari, A.

    2015-12-01

    Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  11. Wavelets in music analysis and synthesis: timbre analysis and perspectives

    NASA Astrophysics Data System (ADS)

    Alves Faria, Regis R.; Ruschioni, Ruggero A.; Zuffo, Joao A.

    1996-10-01

    Music is a vital element in the process of comprehending the world where we live and interact with. Frequency it exerts a subtle but expressive influence over a society's evolution line. Analysis and synthesis of music and musical instruments has always been associated with forefront technologies available at each period of human history, and there is no surprise in witnessing now the use of digital technologies and sophisticated mathematical tools supporting its development. Fourier techniques have been employed for years as a tool to analyze timbres' spectral characteristics, and re-synthesize them from these extracted parameters. Recently many modern implementations, based on spectral modeling techniques, have been leading to the development of new generations of music synthesizers, capable of reproducing natural sounds with high fidelity, and producing novel timbres as well. Wavelets are a promising tool on the development of new generations of music synthesizers, counting on its advantages over the Fourier techniques in representing non-periodic and transient signals, with complex fine textures, as found in music. In this paper we propose and introduce the use of wavelets addressing its perspectives towards musical applications. The central idea is to investigate the capacities of wavelets in analyzing, extracting features and altering fine timbre components in a multiresolution time- scale, so as to produce high quality synthesized musical sounds.

  12. A novel method of identifying motor primitives using wavelet decomposition*

    PubMed Central

    Popov, Anton; Olesh, Erienne V.; Yakovenko, Sergiy; Gritsenko, Valeriya

    2018-01-01

    This study reports a new technique for extracting muscle synergies using continuous wavelet transform. The method allows to quantify coincident activation of muscle groups caused by the physiological processes of fixed duration, thus enabling the extraction of wavelet modules of arbitrary groups of muscles. Hierarchical clustering and identification of the repeating wavelet modules across subjects and across movements, was used to identify consistent muscle synergies. Results indicate that the most frequently repeated wavelet modules comprised combinations of two muscles that are not traditional agonists and span different joints. We have also found that these wavelet modules were flexibly combined across different movement directions in a pattern resembling directional tuning. This method is extendable to multiple frequency domains and signal modalities.

  13. Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Qian, Ya; Zhang, Wei; Tang, Chenghao

    2017-12-01

    High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Φ-OTDR) technology also brings in high nuisance alarm rates (NARs) in real applications. In this paper, feature extraction methods of wavelet decomposition (WD) and wavelet packet decomposition (WPD) are comparatively studied for three typical field testing signals, and an artificial neural network (ANN) is built for the event identification. The comparison results prove that the WPD performs a little better than the WD for the DOVS signal analysis and identification in oil pipeline safety monitoring. The identification rate can be improved up to 94.4%, and the nuisance alarm rate can be effectively controlled as low as 5.6% for the identification network with the wavelet packet energy distribution features.

  14. Wavelet decomposition and radial basis function networks for system monitoring

    NASA Astrophysics Data System (ADS)

    Ikonomopoulos, A.; Endou, A.

    1998-10-01

    Two approaches are coupled to develop a novel collection of black box models for monitoring operational parameters in a complex system. The idea springs from the intention of obtaining multiple predictions for each system variable and fusing them before they are used to validate the actual measurement. The proposed architecture pairs the analytical abilities of the discrete wavelet decomposition with the computational power of radial basis function networks. Members of a wavelet family are constructed in a systematic way and chosen through a statistical selection criterion that optimizes the structure of the network. Network parameters are further optimized through a quasi-Newton algorithm. The methodology is demonstrated utilizing data obtained during two transients of the Monju fast breeder reactor. The models developed are benchmarked with respect to similar regressors based on Gaussian basis functions.

  15. Using sparse regularization for multi-resolution tomography of the ionosphere

    NASA Astrophysics Data System (ADS)

    Panicciari, T.; Smith, N. D.; Mitchell, C. N.; Da Dalt, F.; Spencer, P. S. J.

    2015-10-01

    Computerized ionospheric tomography (CIT) is a technique that allows reconstructing the state of the ionosphere in terms of electron content from a set of slant total electron content (STEC) measurements. It is usually denoted as an inverse problem. In this experiment, the measurements are considered coming from the phase of the GPS signal and, therefore, affected by bias. For this reason the STEC cannot be considered in absolute terms but rather in relative terms. Measurements are collected from receivers not evenly distributed in space and together with limitations such as angle and density of the observations, they are the cause of instability in the operation of inversion. Furthermore, the ionosphere is a dynamic medium whose processes are continuously changing in time and space. This can affect CIT by limiting the accuracy in resolving structures and the processes that describe the ionosphere. Some inversion techniques are based on ℓ2 minimization algorithms (i.e. Tikhonov regularization) and a standard approach is implemented here using spherical harmonics as a reference to compare the new method. A new approach is proposed for CIT that aims to permit sparsity in the reconstruction coefficients by using wavelet basis functions. It is based on the ℓ1 minimization technique and wavelet basis functions due to their properties of compact representation. The ℓ1 minimization is selected because it can optimize the result with an uneven distribution of observations by exploiting the localization property of wavelets. Also illustrated is how the inter-frequency biases on the STEC are calibrated within the operation of inversion, and this is used as a way for evaluating the accuracy of the method. The technique is demonstrated using a simulation, showing the advantage of ℓ1 minimization to estimate the coefficients over the ℓ2 minimization. This is in particular true for an uneven observation geometry and especially for multi-resolution CIT.

  16. Comparison of automatic denoising methods for phonocardiograms with extraction of signal parameters via the Hilbert Transform

    NASA Astrophysics Data System (ADS)

    Messer, Sheila R.; Agzarian, John; Abbott, Derek

    2001-05-01

    Phonocardiograms (PCGs) have many advantages over traditional auscultation (listening to the heart) because they may be replayed, may be analyzed for spectral and frequency content, and frequencies inaudible to the human ear may be recorded. However, various sources of noise may pollute a PCG including lung sounds, environmental noise and noise generated from contact between the recording device and the skin. Because PCG signals are known to be nonlinear and it is often not possible to determine their noise content, traditional de-noising methods may not be effectively applied. However, other methods including wavelet de-noising, wavelet packet de-noising and averaging can be employed to de-noise the PCG. This study examines and compares these de-noising methods. This study answers such questions as to which de-noising method gives a better SNR, the magnitude of signal information that is lost as a result of the de-noising process, the appropriate uses of the different methods down to such specifics as to which wavelets and decomposition levels give best results in wavelet and wavelet packet de-noising. In general, the wavelet and wavelet packet de-noising performed roughly equally with optimal de-noising occurring at 3-5 levels of decomposition. Averaging also proved a highly useful de- noising technique; however, in some cases averaging is not appropriate. The Hilbert Transform is used to illustrate the results of the de-noising process and to extract instantaneous features including instantaneous amplitude, frequency, and phase.

  17. Optimal wavelet denoising for smart biomonitor systems

    NASA Astrophysics Data System (ADS)

    Messer, Sheila R.; Agzarian, John; Abbott, Derek

    2001-03-01

    Future smart-systems promise many benefits for biomedical diagnostics. The ideal is for simple portable systems that display and interpret information from smart integrated probes or MEMS-based devices. In this paper, we will discuss a step towards this vision with a heart bio-monitor case study. An electronic stethoscope is used to record heart sounds and the problem of extracting noise from the signal is addressed via the use of wavelets and averaging. In our example of heartbeat analysis, phonocardiograms (PCGs) have many advantages in that they may be replayed and analysed for spectral and frequency information. Many sources of noise may pollute a PCG including foetal breath sounds if the subject is pregnant, lung and breath sounds, environmental noise and noise from contact between the recording device and the skin. Wavelets can be employed to denoise the PCG. The signal is decomposed by a discrete wavelet transform. Due to the efficient decomposition of heart signals, their wavelet coefficients tend to be much larger than those due to noise. Thus, coefficients below a certain level are regarded as noise and are thresholded out. The signal can then be reconstructed without significant loss of information in the signal. The questions that this study attempts to answer are which wavelet families, levels of decomposition, and thresholding techniques best remove the noise in a PCG. The use of averaging in combination with wavelet denoising is also addressed. Possible applications of the Hilbert Transform to heart sound analysis are discussed.

  18. VELOCITY FIELD OF COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE: WAVELET DECOMPOSITION AND MODE SCALINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowal, Grzegorz; Lazarian, A., E-mail: kowal@astro.wisc.ed, E-mail: lazarian@astro.wisc.ed

    We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho and Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field referencemore » frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz- Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.« less

  19. Option pricing from wavelet-filtered financial series

    NASA Astrophysics Data System (ADS)

    de Almeida, V. T. X.; Moriconi, L.

    2012-10-01

    We perform wavelet decomposition of high frequency financial time series into large and small time scale components. Taking the FTSE100 index as a case study, and working with the Haar basis, it turns out that the small scale component defined by most (≃99.6%) of the wavelet coefficients can be neglected for the purpose of option premium evaluation. The relevance of the hugely compressed information provided by low-pass wavelet-filtering is related to the fact that the non-gaussian statistical structure of the original financial time series is essentially preserved for expiration times which are larger than just one trading day.

  20. OpenCL-based vicinity computation for 3D multiresolution mesh compression

    NASA Astrophysics Data System (ADS)

    Hachicha, Soumaya; Elkefi, Akram; Ben Amar, Chokri

    2017-03-01

    3D multiresolution mesh compression systems are still widely addressed in many domains. These systems are more and more requiring volumetric data to be processed in real-time. Therefore, the performance is becoming constrained by material resources usage and an overall reduction in the computational time. In this paper, our contribution entirely lies on computing, in real-time, triangles neighborhood of 3D progressive meshes for a robust compression algorithm based on the scan-based wavelet transform(WT) technique. The originality of this latter algorithm is to compute the WT with minimum memory usage by processing data as they are acquired. However, with large data, this technique is considered poor in term of computational complexity. For that, this work exploits the GPU to accelerate the computation using OpenCL as a heterogeneous programming language. Experiments demonstrate that, aside from the portability across various platforms and the flexibility guaranteed by the OpenCL-based implementation, this method can improve performance gain in speedup factor of 5 compared to the sequential CPU implementation.

  1. Hierarchical Volume Representation with 3{radical}2 Subdivision and Trivariate B-Spline Wavelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linsen, L; Gray, JT; Pascucci, V

    2002-01-11

    Multiresolution methods provide a means for representing data at multiple levels of detail. They are typically based on a hierarchical data organization scheme and update rules needed for data value computation. We use a data organization that is based on what we call n{radical}2 subdivision. The main advantage of subdivision, compared to quadtree (n = 2) or octree (n = 3) organizations, is that the number of vertices is only doubled in each subdivision step instead of multiplied by a factor of four or eight, respectively. To update data values we use n-variate B-spline wavelets, which yields better approximations formore » each level of detail. We develop a lifting scheme for n = 2 and n = 3 based on the n{radical}2-subdivision scheme. We obtain narrow masks that could also provide a basis for view-dependent visualization and adaptive refinement.« less

  2. Detection and classification of interstitial lung diseases and emphysema using a joint morphological-fuzzy approach

    NASA Astrophysics Data System (ADS)

    Chang Chien, Kuang-Che; Fetita, Catalin; Brillet, Pierre-Yves; Prêteux, Françoise; Chang, Ruey-Feng

    2009-02-01

    Multi-detector computed tomography (MDCT) has high accuracy and specificity on volumetrically capturing serial images of the lung. It increases the capability of computerized classification for lung tissue in medical research. This paper proposes a three-dimensional (3D) automated approach based on mathematical morphology and fuzzy logic for quantifying and classifying interstitial lung diseases (ILDs) and emphysema. The proposed methodology is composed of several stages: (1) an image multi-resolution decomposition scheme based on a 3D morphological filter is used to detect and analyze the different density patterns of the lung texture. Then, (2) for each pattern in the multi-resolution decomposition, six features are computed, for which fuzzy membership functions define a probability of association with a pathology class. Finally, (3) for each pathology class, the probabilities are combined up according to the weight assigned to each membership function and two threshold values are used to decide the final class of the pattern. The proposed approach was tested on 10 MDCT cases and the classification accuracy was: emphysema: 95%, fibrosis/honeycombing: 84% and ground glass: 97%.

  3. Time Frequency Analysis and Spatial Filtering in the Evaluation of Beta ERS After Finger Movement

    DTIC Science & Technology

    2001-10-25

    Italy. 5IRCCS Fondazione Santa Lucia , via Ardeatina 306, Roma, Italy Fig. 1 Scheme of the Wavelet Packet decomposition. The gray boxes represent...surface splines. J. Aircraft, 1972, 9: 189-191. [8]Maceri, B., Magnone, S., Bianchi, A., Cerutti, S. Studio della decomposizione wavelet dei segnali

  4. Interpretations of gravity and magnetic anomalies in the Songliao Basin with Wavelet Multi-scale Decomposition

    NASA Astrophysics Data System (ADS)

    Li, Changbo; Wang, Liangshu; Sun, Bin; Feng, Runhai; Wu, Yongjing

    2015-09-01

    In this paper, we introduce the method of Wavelet Multi-scale Decomposition (WMD) combined with Power Spectrum Analysis (PSA) for the separation of regional gravity and magnetic anomalies. The Songliao Basin is situated between the Siberian Plate and the North China Plate, and its main structural trend of gravity and magnetic anomaly fields is NNE. The study area shows a significant feature of deep collage-type construction. According to the feature of gravity field, the region was divided into five sub-regions. The gravity and magnetic fields of the Songliao Basin were separated using WMD with a 4th order separation. The apparent depth of anomalies in each order was determined by Logarithmic PSA. Then, the shallow high-frequency anomalies were removed and the 2nd-4th order wavelet detail anomalies were used to study the basin's major faults. Twenty-six faults within the basement were recognized. The 4th order wavelet approximate anomalies were used for the inversion of the Moho discontinuity and the Curie isothermal surface.

  5. Detection of Epileptic Seizure Event and Onset Using EEG

    PubMed Central

    Ahammad, Nabeel; Fathima, Thasneem; Joseph, Paul

    2014-01-01

    This study proposes a method of automatic detection of epileptic seizure event and onset using wavelet based features and certain statistical features without wavelet decomposition. Normal and epileptic EEG signals were classified using linear classifier. For seizure event detection, Bonn University EEG database has been used. Three types of EEG signals (EEG signal recorded from healthy volunteer with eye open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. Important features such as energy, entropy, standard deviation, maximum, minimum, and mean at different subbands were computed and classification was done using linear classifier. The performance of classifier was determined in terms of specificity, sensitivity, and accuracy. The overall accuracy was 84.2%. In the case of seizure onset detection, the database used is CHB-MIT scalp EEG database. Along with wavelet based features, interquartile range (IQR) and mean absolute deviation (MAD) without wavelet decomposition were extracted. Latency was used to study the performance of seizure onset detection. Classifier gave a sensitivity of 98.5% with an average latency of 1.76 seconds. PMID:24616892

  6. Research on the fault diagnosis of bearing based on wavelet and demodulation

    NASA Astrophysics Data System (ADS)

    Li, Jiapeng; Yuan, Yu

    2017-05-01

    As a most commonly-used machine part, antifriction bearing is extensively used in mechanical equipment. Vibration signal analysis is one of the methods to monitor and diagnose the running status of antifriction bearings. Therefore, using wavelet analysis for demising is of great importance in the engineering practice. This paper firstly presented the basic theory of wavelet analysis to study the transformation, decomposition and reconstruction of wavelet. In addition, edition software LabVIEW was adopted to conduct wavelet and demodulation upon the vibration signal of antifriction bearing collected. With the combination of Hilbert envelop demodulation analysis, the fault character frequencies of the demised signal were extracted to conduct fault diagnosis analysis, which serves as a reference for the wavelet and demodulation of the vibration signal in engineering practice.

  7. Hierarchical Diagnosis of Vocal Fold Disorders

    NASA Astrophysics Data System (ADS)

    Nikkhah-Bahrami, Mansour; Ahmadi-Noubari, Hossein; Seyed Aghazadeh, Babak; Khadivi Heris, Hossein

    This paper explores the use of hierarchical structure for diagnosis of vocal fold disorders. The hierarchical structure is initially used to train different second-level classifiers. At the first level normal and pathological signals have been distinguished. Next, pathological signals have been classified into neurogenic and organic vocal fold disorders. At the final level, vocal fold nodules have been distinguished from polyps in organic disorders category. For feature selection at each level of hierarchy, the reconstructed signal at each wavelet packet decomposition sub-band in 5 levels of decomposition with mother wavelet of (db10) is used to extract the nonlinear features of self-similarity and approximate entropy. Also, wavelet packet coefficients are used to measure energy and Shannon entropy features at different spectral sub-bands. Davies-Bouldin criterion has been employed to find the most discriminant features. Finally, support vector machines have been adopted as classifiers at each level of hierarchy resulting in the diagnosis accuracy of 92%.

  8. Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations

    NASA Astrophysics Data System (ADS)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    The wavelet packet transform method decomposes a time signal into several independent time-frequency signals called packets. This enables the temporary location of transient events occurring during the monitoring of the cutting processes, which is advantageous in monitoring condition and fault diagnosis. This paper proposes the monitoring of surface roughness using a single low cost sensor that is easily implemented in numerical control machine tools in order to make on-line decisions on workpiece surface finish quality. Packet feature extraction in vibration signals was applied to correlate the sensor signals to measured surface roughness. For the successful application of the WPT method, mother wavelets, packet decomposition level, and appropriate packet selection methods should be considered, but are poorly understood aspects in the literature. In this novel contribution, forty mother wavelets, optimal decomposition level, and packet reduction methods were analysed, as well as identifying the effective frequency range providing the best packet feature extraction for monitoring surface finish. The results show that mother wavelet biorthogonal 4.4 in decomposition level L3 with the fusion of the orthogonal vibration components (ax + ay + az) were the best option in the vibration signal and surface roughness correlation. The best packets were found in the medium-high frequency DDA (6250-9375 Hz) and high frequency ADA (9375-12500 Hz) ranges, and the feed acceleration component ay was the primary source of information. The packet reduction methods forfeited packets with relevant features to the signal, leading to poor results for the prediction of surface roughness. WPT is a robust vibration signal processing method for the monitoring of surface roughness using a single sensor without other information sources, satisfactory results were obtained in comparison to other processing methods with a low computational cost.

  9. The wavelet/scalar quantization compression standard for digital fingerprint images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J.N.; Brislawn, C.M.

    1994-04-01

    A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.

  10. Identification of particle-laden flow features from wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Jackson, A.; Turnbull, B.

    2017-12-01

    A wavelet decomposition based technique is applied to air pressure data obtained from laboratory-scale powder snow avalanches. This technique is shown to be a powerful tool for identifying both repeatable and chaotic features at any frequency within the signal. Additionally, this technique is demonstrated to be a robust method for the removal of noise from the signal as well as being capable of removing other contaminants from the signal. Whilst powder snow avalanches are the focus of the experiments analysed here, the features identified can provide insight to other particle-laden gravity currents and the technique described is applicable to a wide variety of experimental signals.

  11. The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J.N.; Brislawn, C.M.; Hopper, T.

    1993-05-01

    The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI`s Integrated Automated Fingerprint Identification System.

  12. The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J.N.; Brislawn, C.M.; Hopper, T.

    1993-01-01

    The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI's Integrated Automated Fingerprint Identification System.

  13. Wavelet decomposition based principal component analysis for face recognition using MATLAB

    NASA Astrophysics Data System (ADS)

    Sharma, Mahesh Kumar; Sharma, Shashikant; Leeprechanon, Nopbhorn; Ranjan, Aashish

    2016-03-01

    For the realization of face recognition systems in the static as well as in the real time frame, algorithms such as principal component analysis, independent component analysis, linear discriminate analysis, neural networks and genetic algorithms are used for decades. This paper discusses an approach which is a wavelet decomposition based principal component analysis for face recognition. Principal component analysis is chosen over other algorithms due to its relative simplicity, efficiency, and robustness features. The term face recognition stands for identifying a person from his facial gestures and having resemblance with factor analysis in some sense, i.e. extraction of the principal component of an image. Principal component analysis is subjected to some drawbacks, mainly the poor discriminatory power and the large computational load in finding eigenvectors, in particular. These drawbacks can be greatly reduced by combining both wavelet transform decomposition for feature extraction and principal component analysis for pattern representation and classification together, by analyzing the facial gestures into space and time domain, where, frequency and time are used interchangeably. From the experimental results, it is envisaged that this face recognition method has made a significant percentage improvement in recognition rate as well as having a better computational efficiency.

  14. Multiresolution wavelet analysis for efficient analysis, compression and remote display of long-term physiological signals.

    PubMed

    Khuan, L Y; Bister, M; Blanchfield, P; Salleh, Y M; Ali, R A; Chan, T H

    2006-06-01

    Increased inter-equipment connectivity coupled with advances in Web technology allows ever escalating amounts of physiological data to be produced, far too much to be displayed adequately on a single computer screen. The consequence is that large quantities of insignificant data will be transmitted and reviewed. This carries an increased risk of overlooking vitally important transients. This paper describes a technique to provide an integrated solution based on a single algorithm for the efficient analysis, compression and remote display of long-term physiological signals with infrequent short duration, yet vital events, to effect a reduction in data transmission and display cluttering and to facilitate reliable data interpretation. The algorithm analyses data at the server end and flags significant events. It produces a compressed version of the signal at a lower resolution that can be satisfactorily viewed in a single screen width. This reduced set of data is initially transmitted together with a set of 'flags' indicating where significant events occur. Subsequent transmissions need only involve transmission of flagged data segments of interest at the required resolution. Efficient processing and code protection with decomposition alone is novel. The fixed transmission length method ensures clutter-less display, irrespective of the data length. The flagging of annotated events in arterial oxygen saturation, electroencephalogram and electrocardiogram illustrates the generic property of the algorithm. Data reduction of 87% to 99% and improved displays are demonstrated.

  15. Application of a multiscale maximum entropy image restoration algorithm to HXMT observations

    NASA Astrophysics Data System (ADS)

    Guan, Ju; Song, Li-Ming; Huo, Zhuo-Xi

    2016-08-01

    This paper introduces a multiscale maximum entropy (MSME) algorithm for image restoration of the Hard X-ray Modulation Telescope (HXMT), which is a collimated scan X-ray satellite mainly devoted to a sensitive all-sky survey and pointed observations in the 1-250 keV range. The novelty of the MSME method is to use wavelet decomposition and multiresolution support to control noise amplification at different scales. Our work is focused on the application and modification of this method to restore diffuse sources detected by HXMT scanning observations. An improved method, the ensemble multiscale maximum entropy (EMSME) algorithm, is proposed to alleviate the problem of mode mixing exiting in MSME. Simulations have been performed on the detection of the diffuse source Cen A by HXMT in all-sky survey mode. The results show that the MSME method is adapted to the deconvolution task of HXMT for diffuse source detection and the improved method could suppress noise and improve the correlation and signal-to-noise ratio, thus proving itself a better algorithm for image restoration. Through one all-sky survey, HXMT could reach a capacity of detecting a diffuse source with maximum differential flux of 0.5 mCrab. Supported by Strategic Priority Research Program on Space Science, Chinese Academy of Sciences (XDA04010300) and National Natural Science Foundation of China (11403014)

  16. Neural network and wavelets in prediction of cosmic ray variability: The North Africa as study case

    NASA Astrophysics Data System (ADS)

    Zarrouk, Neïla; Bennaceur, Raouf

    2010-04-01

    Since the Earth is permanently bombarded with energetic cosmic rays particles, cosmic ray flux has been monitored by ground based neutron monitors for decades. In this work an attempt is made to investigate the decomposition and reconstructions provided by Morlet wavelet technique, using data series of cosmic rays variabilities, then to constitute from this wavelet analysis an input data base for the neural network system with which we can then predict decomposition coefficients and all related parameters for other points. Thus the latter are used for the recomposition step in which the plots and curves describing the relative cosmic rays intensities are obtained in any points on the earth in which we do not have any information about cosmic rays intensities. Although neural network associated with wavelets are not frequently used for cosmic rays time series, they seems very suitable and are a good choice to obtain these results. In fact we have succeeded to derive a very useful tool to obtain the decomposition coefficients, the main periods for each point on the Earth and on another hand we have now a kind of virtual NM for these locations like North Africa countries, Maroc, Algeria, Tunisia, Libya and Cairo. We have found the aspect of very known 11-years cycle: T1, we have also revealed the variation type of T2 and especially T3 cycles which seem to be induced by particular Earth's phenomena.

  17. Remote visualization and scale analysis of large turbulence datatsets

    NASA Astrophysics Data System (ADS)

    Livescu, D.; Pulido, J.; Burns, R.; Canada, C.; Ahrens, J.; Hamann, B.

    2015-12-01

    Accurate simulations of turbulent flows require solving all the dynamically relevant scales of motions. This technique, called Direct Numerical Simulation, has been successfully applied to a variety of simple flows; however, the large-scale flows encountered in Geophysical Fluid Dynamics (GFD) would require meshes outside the range of the most powerful supercomputers for the foreseeable future. Nevertheless, the current generation of petascale computers has enabled unprecedented simulations of many types of turbulent flows which focus on various GFD aspects, from the idealized configurations extensively studied in the past to more complex flows closer to the practical applications. The pace at which such simulations are performed only continues to increase; however, the simulations themselves are restricted to a small number of groups with access to large computational platforms. Yet the petabytes of turbulence data offer almost limitless information on many different aspects of the flow, from the hierarchy of turbulence moments, spectra and correlations, to structure-functions, geometrical properties, etc. The ability to share such datasets with other groups can significantly reduce the time to analyze the data, help the creative process and increase the pace of discovery. Using the largest DOE supercomputing platforms, we have performed some of the biggest turbulence simulations to date, in various configurations, addressing specific aspects of turbulence production and mixing mechanisms. Until recently, the visualization and analysis of such datasets was restricted by access to large supercomputers. The public Johns Hopkins Turbulence database simplifies the access to multi-Terabyte turbulence datasets and facilitates turbulence analysis through the use of commodity hardware. First, one of our datasets, which is part of the database, will be described and then a framework that adds high-speed visualization and wavelet support for multi-resolution analysis of turbulence will be highlighted. The addition of wavelet support reduces the latency and bandwidth requirements for visualization, allowing for many concurrent users, and enables new types of analyses, including scale decomposition and coherent feature extraction.

  18. ICER-3D: A Progressive Wavelet-Based Compressor for Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.; Xie, H.; Aranki, N.

    2005-01-01

    ICER-3D is a progressive, wavelet-based compressor for hyperspectral images. ICER-3D is derived from the ICER image compressor. ICER-3D can provide lossless and lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The three-dimensional wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of hyperspectral data sets, while facilitating elimination of spectral ringing artifacts. Correlation is further exploited by a context modeler that effectively exploits spectral dependencies in the wavelet-transformed hyperspectral data. Performance results illustrating the benefits of these features are presented.

  19. Objective research of auscultation signals in Traditional Chinese Medicine based on wavelet packet energy and support vector machine.

    PubMed

    Yan, Jianjun; Shen, Xiaojing; Wang, Yiqin; Li, Fufeng; Xia, Chunming; Guo, Rui; Chen, Chunfeng; Shen, Qingwei

    2010-01-01

    This study aims at utilising Wavelet Packet Transform (WPT) and Support Vector Machine (SVM) algorithm to make objective analysis and quantitative research for the auscultation in Traditional Chinese Medicine (TCM) diagnosis. First, Wavelet Packet Decomposition (WPD) at level 6 was employed to split more elaborate frequency bands of the auscultation signals. Then statistic analysis was made based on the extracted Wavelet Packet Energy (WPE) features from WPD coefficients. Furthermore, the pattern recognition was used to distinguish mixed subjects' statistical feature values of sample groups through SVM. Finally, the experimental results showed that the classification accuracies were at a high level.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, A.B.; Clothiaux, E.

    Because of Earth`s gravitational field, its atmosphere is strongly anisotropic with respect to the vertical; the effect of the Earth`s rotation on synoptic wind patterns also causes a more subtle form of anisotropy in the horizontal plane. The authors survey various approaches to statistically robust anisotropy from a wavelet perspective and present a new one adapted to strongly non-isotropic fields that are sampled on a rectangular grid with a large aspect ratio. This novel technique uses an anisotropic version of Multi-Resolution Analysis (MRA) in image analysis; the authors form a tensor product of the standard dyadic Haar basis, where themore » dividing ratio is {lambda}{sub z} = 2, and a nonstandard triadic counterpart, where the dividing ratio is {lambda}{sub x} = 3. The natural support of the field is therefore 2{sup n} pixels (vertically) by 3{sup n} pixels (horizontally) where n is the number of levels in the MRA. The natural triadic basis includes the French top-hat wavelet which resonates with bumps in the field whereas the Haar wavelet responds to ramps or steps. The complete 2D basis has one scaling function and five wavelets. The resulting anisotropic MRA is designed for application to the liquid water content (LWC) field in boundary-layer clouds, as the prevailing wind advects them by a vertically pointing mm-radar system. Spatial correlations are notoriously long-range in cloud structure and the authors use the wavelet coefficients from the new MRA to characterize these correlations in a multifractal analysis scheme. In the present study, the MRA is used (in synthesis mode) to generate fields that mimic cloud structure quite realistically although only a few parameters are used to control the randomness of the LWC`s wavelet coefficients.« less

  1. Bayesian wavelet PCA methodology for turbomachinery damage diagnosis under uncertainty

    NASA Astrophysics Data System (ADS)

    Xu, Shengli; Jiang, Xiaomo; Huang, Jinzhi; Yang, Shuhua; Wang, Xiaofang

    2016-12-01

    Centrifugal compressor often suffers various defects such as impeller cracking, resulting in forced outage of the total plant. Damage diagnostics and condition monitoring of such a turbomachinery system has become an increasingly important and powerful tool to prevent potential failure in components and reduce unplanned forced outage and further maintenance costs, while improving reliability, availability and maintainability of a turbomachinery system. This paper presents a probabilistic signal processing methodology for damage diagnostics using multiple time history data collected from different locations of a turbomachine, considering data uncertainty and multivariate correlation. The proposed methodology is based on the integration of three advanced state-of-the-art data mining techniques: discrete wavelet packet transform, Bayesian hypothesis testing, and probabilistic principal component analysis. The multiresolution wavelet analysis approach is employed to decompose a time series signal into different levels of wavelet coefficients. These coefficients represent multiple time-frequency resolutions of a signal. Bayesian hypothesis testing is then applied to each level of wavelet coefficient to remove possible imperfections. The ratio of posterior odds Bayesian approach provides a direct means to assess whether there is imperfection in the decomposed coefficients, thus avoiding over-denoising. Power spectral density estimated by the Welch method is utilized to evaluate the effectiveness of Bayesian wavelet cleansing method. Furthermore, the probabilistic principal component analysis approach is developed to reduce dimensionality of multiple time series and to address multivariate correlation and data uncertainty for damage diagnostics. The proposed methodology and generalized framework is demonstrated with a set of sensor data collected from a real-world centrifugal compressor with impeller cracks, through both time series and contour analyses of vibration signal and principal components.

  2. Multispectral multisensor image fusion using wavelet transforms

    USGS Publications Warehouse

    Lemeshewsky, George P.

    1999-01-01

    Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.

  3. Use of multiresolution wavelet feature pyramids for automatic registration of multisensor imagery

    NASA Technical Reports Server (NTRS)

    Zavorin, Ilya; Le Moigne, Jacqueline

    2005-01-01

    The problem of image registration, or the alignment of two or more images representing the same scene or object, has to be addressed in various disciplines that employ digital imaging. In the area of remote sensing, just like in medical imaging or computer vision, it is necessary to design robust, fast, and widely applicable algorithms that would allow automatic registration of images generated by various imaging platforms at the same or different times and that would provide subpixel accuracy. One of the main issues that needs to be addressed when developing a registration algorithm is what type of information should be extracted from the images being registered, to be used in the search for the geometric transformation that best aligns them. The main objective of this paper is to evaluate several wavelet pyramids that may be used both for invariant feature extraction and for representing images at multiple spatial resolutions to accelerate registration. We find that the bandpass wavelets obtained from the steerable pyramid due to Simoncelli performs best in terms of accuracy and consistency, while the low-pass wavelets obtained from the same pyramid give the best results in terms of the radius of convergence. Based on these findings, we propose a modification of a gradient-based registration algorithm that has recently been developed for medical data. We test the modified algorithm on several sets of real and synthetic satellite imagery.

  4. Image denoising via fundamental anisotropic diffusion and wavelet shrinkage: a comparative study

    NASA Astrophysics Data System (ADS)

    Bayraktar, Bulent; Analoui, Mostafa

    2004-05-01

    Noise removal faces a challenge: Keeping the image details. Resolving the dilemma of two purposes (smoothing and keeping image features in tact) working inadvertently of each other was an almost impossible task until anisotropic dif-fusion (AD) was formally introduced by Perona and Malik (PM). AD favors intra-region smoothing over inter-region in piecewise smooth images. Many authors regularized the original PM algorithm to overcome its drawbacks. We compared the performance of denoising using such 'fundamental' AD algorithms and one of the most powerful multiresolution tools available today, namely, wavelet shrinkage. The AD algorithms here are called 'fundamental' in the sense that the regularized versions center around the original PM algorithm with minor changes to the logic. The algorithms are tested with different noise types and levels. On top of the visual inspection, two mathematical metrics are used for performance comparison: Signal-to-noise ratio (SNR) and universal image quality index (UIQI). We conclude that some of the regu-larized versions of PM algorithm (AD) perform comparably with wavelet shrinkage denoising. This saves a lot of compu-tational power. With this conclusion, we applied the better-performing fundamental AD algorithms to a new imaging modality: Optical Coherence Tomography (OCT).

  5. Reliable discrimination of high explosive and chemical/biological artillery using acoustic UGS

    NASA Astrophysics Data System (ADS)

    Hohil, Myron E.; Desai, Sachi

    2005-10-01

    The Army is currently developing acoustic overwatch sensor systems that will provide extended range surveillance, detection, and identification for force protection and tactical security on the battlefield. A network of such sensors remotely deployed in conjunction with a central processing node (or gateway) will provide early warning and assessment of enemy threats, near real-time situational awareness to commanders, and may reduce potential hazards to the soldier. In contrast, the current detection of chemical/biological (CB) agents expelled into a battlefield environment is limited to the response of chemical sensors that must be located within close proximity to the CB agent. Since chemical sensors detect hazardous agents through contact, the sensor range to an airburst is the key-limiting factor in identifying a potential CB weapon attack. The associated sensor reporting latencies must be minimized to give sufficient preparation time to field commanders, who must assess if an attack is about to occur, has occurred, or if occurred, the type of agent that soldiers might be exposed to. The long-range propagation of acoustic blast waves from heavy artillery blasts, which are typical in a battlefield environment, introduces a feature for using acoustics and other disparate sensor technologies for the early detection and identification of CB threats. Employing disparate sensor technologies implies that warning of a potential CB attack can be provided to the solider more rapidly and from a safer distance when compared to that which conventional methods allow. This capability facilitates the necessity of classifying the types of rounds that have burst in a specified region in order to give both warning and provide identification of CB agents found in the area. In this paper, feature extraction methods based on the discrete wavelet transform (DWT) and multiresolution analysis facilitate the development of a robust classification algorithm that affords reliable discrimination between conventional and simulated chemical/biological artillery rounds using acoustic signals produced during detonation. Distinct characteristics arise within the different airburst signatures because high explosive warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. The ensuing blast waves are readily characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. We show that, highly reliable discrimination (> 98%) between conventional and potentially chemical/biological artillery is achieved at ranges exceeding 3km. A feedforward neural network classifier, trained on a feature space derived from the distribution of wavelet coefficients found within different levels of the multiresolution decomposition yields.

  6. Nonstationary Dynamics Data Analysis with Wavelet-SVD Filtering

    NASA Technical Reports Server (NTRS)

    Brenner, Marty; Groutage, Dale; Bessette, Denis (Technical Monitor)

    2001-01-01

    Nonstationary time-frequency analysis is used for identification and classification of aeroelastic and aeroservoelastic dynamics. Time-frequency multiscale wavelet processing generates discrete energy density distributions. The distributions are processed using the singular value decomposition (SVD). Discrete density functions derived from the SVD generate moments that detect the principal features in the data. The SVD standard basis vectors are applied and then compared with a transformed-SVD, or TSVD, which reduces the number of features into more compact energy density concentrations. Finally, from the feature extraction, wavelet-based modal parameter estimation is applied.

  7. Evaluation of the Use of Second Generation Wavelets in the Coherent Vortex Simulation Approach

    NASA Technical Reports Server (NTRS)

    Goldstein, D. E.; Vasilyev, O. V.; Wray, A. A.; Rogallo, R. S.

    2000-01-01

    The objective of this study is to investigate the use of the second generation bi-orthogonal wavelet transform for the field decomposition in the Coherent Vortex Simulation of turbulent flows. The performances of the bi-orthogonal second generation wavelet transform and the orthogonal wavelet transform using Daubechies wavelets with the same number of vanishing moments are compared in a priori tests using a spectral direct numerical simulation (DNS) database of isotropic turbulence fields: 256(exp 3) and 512(exp 3) DNS of forced homogeneous turbulence (Re(sub lambda) = 168) and 256(exp 3) and 512(exp 3) DNS of decaying homogeneous turbulence (Re(sub lambda) = 55). It is found that bi-orthogonal second generation wavelets can be used for coherent vortex extraction. The results of a priori tests indicate that second generation wavelets have better compression and the residual field is closer to Gaussian. However, it was found that the use of second generation wavelets results in an integral length scale for the incoherent part that is larger than that derived from orthogonal wavelets. A way of dealing with this difficulty is suggested.

  8. Lamb Waves Decomposition and Mode Identification Using Matching Pursuit Method

    DTIC Science & Technology

    2009-01-01

    Wigner - Ville distribution ( WVD ). However, WVD suffers from severe interferences, called cross-terms. Cross- terms are the area of a time-frequency...transform (STFT), wavelet transform, Wigner - Ville distribution , matching pursuit decomposition, etc. 1 Report Documentation Page Form ApprovedOMB No...MP decomposition using chirplet dictionary was applied to a simulated S0 mode Lamb wave shown previously in Figure 2a. Wigner - Ville distribution of

  9. A new approach to global seismic tomography based on regularization by sparsity in a novel 3D spherical wavelet basis

    NASA Astrophysics Data System (ADS)

    Loris, Ignace; Simons, Frederik J.; Daubechies, Ingrid; Nolet, Guust; Fornasier, Massimo; Vetter, Philip; Judd, Stephen; Voronin, Sergey; Vonesch, Cédric; Charléty, Jean

    2010-05-01

    Global seismic wavespeed models are routinely parameterized in terms of spherical harmonics, networks of tetrahedral nodes, rectangular voxels, or spherical splines. Up to now, Earth model parametrizations by wavelets on the three-dimensional ball remain uncommon. Here we propose such a procedure with the following three goals in mind: (1) The multiresolution character of a wavelet basis allows for the models to be represented with an effective spatial resolution that varies as a function of position within the Earth. (2) This property can be used to great advantage in the regularization of seismic inversion schemes by seeking the most sparse solution vector, in wavelet space, through iterative minimization of a combination of the ℓ2 (to fit the data) and ℓ1 norms (to promote sparsity in wavelet space). (3) With the continuing increase in high-quality seismic data, our focus is also on numerical efficiency and the ability to use parallel computing in reconstructing the model. In this presentation we propose a new wavelet basis to take advantage of these three properties. To form the numerical grid we begin with a surface tesselation known as the 'cubed sphere', a construction popular in fluid dynamics and computational seismology, coupled with an semi-regular radial subdivison that honors the major seismic discontinuities between the core-mantle boundary and the surface. This mapping first divides the volume of the mantle into six portions. In each 'chunk' two angular and one radial variable are used for parametrization. In the new variables standard 'cartesian' algorithms can more easily be used to perform the wavelet transform (or other common transforms). Edges between chunks are handled by special boundary filters. We highlight the benefits of this construction and use it to analyze the information present in several published seismic compressional-wavespeed models of the mantle, paying special attention to the statistics of wavelet and scaling coefficients across scales. We also focus on the likely gains of future inversions of finite-frequency seismic data using a sparsity promoting penalty in combination with our new wavelet approach.

  10. Comparison of hybrid spectral-decomposition artificial neural network models for understanding climatic forcing of groundwater levels

    NASA Astrophysics Data System (ADS)

    Abrokwah, K.; O'Reilly, A. M.

    2017-12-01

    Groundwater is an important resource that is extracted every day because of its invaluable use for domestic, industrial and agricultural purposes. The need for sustaining groundwater resources is clearly indicated by declining water levels and has led to modeling and forecasting accurate groundwater levels. In this study, spectral decomposition of climatic forcing time series was used to develop hybrid wavelet analysis (WA) and moving window average (MWA) artificial neural network (ANN) models. These techniques are explored by modeling historical groundwater levels in order to provide understanding of potential causes of the observed groundwater-level fluctuations. Selection of the appropriate decomposition level for WA and window size for MWA helps in understanding the important time scales of climatic forcing, such as rainfall, that influence water levels. Discrete wavelet transform (DWT) is used to decompose the input time-series data into various levels of approximate and details wavelet coefficients, whilst MWA acts as a low-pass signal-filtering technique for removing high-frequency signals from the input data. The variables used to develop and validate the models were daily average rainfall measurements from five National Atmospheric and Oceanic Administration (NOAA) weather stations and daily water-level measurements from two wells recorded from 1978 to 2008 in central Florida, USA. Using different decomposition levels and different window sizes, several WA-ANN and MWA-ANN models for simulating the water levels were created and their relative performances compared against each other. The WA-ANN models performed better than the corresponding MWA-ANN models; also higher decomposition levels of the input signal by the DWT gave the best results. The results obtained show the applicability and feasibility of hybrid WA-ANN and MWA-ANN models for simulating daily water levels using only climatic forcing time series as model inputs.

  11. An Investigation on Micro-Raman Spectra and Wavelet Data Analysis for Pemphigus Vulgaris Follow-up Monitoring.

    PubMed

    Camerlingo, Carlo; Zenone, Flora; Perna, Giuseppe; Capozzi, Vito; Cirillo, Nicola; Gaeta, Giovanni Maria; Lepore, Maria

    2008-06-01

    A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra of blood serum samples from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. Spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome problems related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. This numerical data treatment can automatically extract quantitative information from the Raman spectra and makes more reliable the data comparison. Even if an exhaustive investigation has not been done in this work, the feasibility of the follow-up monitoring of pemphigus vulgaris pathology has been clearly proved with useful implications for the clinical applications.

  12. An Investigation on Micro-Raman Spectra and Wavelet Data Analysis for Pemphigus Vulgaris Follow-up Monitoring

    PubMed Central

    Camerlingo, Carlo; Zenone, Flora; Perna, Giuseppe; Capozzi, Vito; Cirillo, Nicola; Gaeta, Giovanni Maria; Lepore, Maria

    2008-01-01

    A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra of blood serum samples from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. Spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome problems related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. This numerical data treatment can automatically extract quantitative information from the Raman spectra and makes more reliable the data comparison. Even if an exhaustive investigation has not been done in this work, the feasibility of the follow-up monitoring of pemphigus vulgaris pathology has been clearly proved with useful implications for the clinical applications. PMID:27879899

  13. Fault Diagnosis for Micro-Gas Turbine Engine Sensors via Wavelet Entropy

    PubMed Central

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can’t be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient. PMID:22163734

  14. Fault diagnosis for micro-gas turbine engine sensors via wavelet entropy.

    PubMed

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can't be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient.

  15. Comparative Analysis of Haar and Daubechies Wavelet for Hyper Spectral Image Classification

    NASA Astrophysics Data System (ADS)

    Sharif, I.; Khare, S.

    2014-11-01

    With the number of channels in the hundreds instead of in the tens Hyper spectral imagery possesses much richer spectral information than multispectral imagery. The increased dimensionality of such Hyper spectral data provides a challenge to the current technique for analyzing data. Conventional classification methods may not be useful without dimension reduction pre-processing. So dimension reduction has become a significant part of Hyper spectral image processing. This paper presents a comparative analysis of the efficacy of Haar and Daubechies wavelets for dimensionality reduction in achieving image classification. Spectral data reduction using Wavelet Decomposition could be useful because it preserves the distinction among spectral signatures. Daubechies wavelets optimally capture the polynomial trends while Haar wavelet is discontinuous and resembles a step function. The performance of these wavelets are compared in terms of classification accuracy and time complexity. This paper shows that wavelet reduction has more separate classes and yields better or comparable classification accuracy. In the context of the dimensionality reduction algorithm, it is found that the performance of classification of Daubechies wavelets is better as compared to Haar wavelet while Daubechies takes more time compare to Haar wavelet. The experimental results demonstrate the classification system consistently provides over 84% classification accuracy.

  16. A quantitative acoustic emission study on fracture processes in ceramics based on wavelet packet decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ning, J. G.; Chu, L.; Ren, H. L., E-mail: huilanren@bit.edu.cn

    2014-08-28

    We base a quantitative acoustic emission (AE) study on fracture processes in alumina ceramics on wavelet packet decomposition and AE source location. According to the frequency characteristics, as well as energy and ringdown counts of AE, the fracture process is divided into four stages: crack closure, nucleation, development, and critical failure. Each of the AE signals is decomposed by a 2-level wavelet package decomposition into four different (from-low-to-high) frequency bands (AA{sub 2}, AD{sub 2}, DA{sub 2}, and DD{sub 2}). The energy eigenvalues P{sub 0}, P{sub 1}, P{sub 2}, and P{sub 3} corresponding to these four frequency bands are calculated. Bymore » analyzing changes in P{sub 0} and P{sub 3} in the four stages, we determine the inverse relationship between AE frequency and the crack source size during ceramic fracture. AE signals with regard to crack nucleation can be expressed when P{sub 0} is less than 5 and P{sub 3} more than 60; whereas AE signals with regard to dangerous crack propagation can be expressed when more than 92% of P{sub 0} is greater than 4, and more than 95% of P{sub 3} is less than 45. Geiger location algorithm is used to locate AE sources and cracks in the sample. The results of this location algorithm are consistent with the positions of fractures in the sample when observed under a scanning electronic microscope; thus the locations of fractures located with Geiger's method can reflect the fracture process. The stage division by location results is in a good agreement with the division based on AE frequency characteristics. We find that both wavelet package decomposition and Geiger's AE source locations are suitable for the identification of the evolutionary process of cracks in alumina ceramics.« less

  17. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman

    2015-01-01

    A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE-MAP algorithm resulted in comparable regional mean values to those from the maximum likelihood algorithm while reducing noise. Achieving robust performance in various noise-level simulation and patient studies, the WJE-MAP algorithm demonstrates its potential in clinical quantitative PET imaging.

  18. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2015-04-29

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO 2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) andmore » fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO 2 (ffCO 2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO 2 emissions and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of 2. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  19. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, J.; Lee, J.; Yadav, V.

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO 2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) andmore » fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO 2 (ffCO 2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO 2 emissions and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of 2. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  20. Multifractality in Cardiac Dynamics

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch.; Rosenblum, Misha; Stanley, H. Eugene; Havlin, Shlomo; Goldberger, Ary

    1997-03-01

    Wavelet decomposition is used to analyze the fractal scaling properties of heart beat time series. The singularity spectrum D(h) of the variations in the beat-to-beat intervals is obtained from the wavelet transform modulus maxima which contain information on the hierarchical distribution of the singularities in the signal. Multifractal behavior is observed for healthy cardiac dynamics while pathologies are associated with loss of support in the singularity spectrum.

  1. Identification of large geomorphological anomalies based on 2D discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Doglioni, A.; Simeone, V.

    2012-04-01

    The identification and analysis based on quantitative evidences of large geomorphological anomalies is an important stage for the study of large landslides. Numerical geomorphic analyses represent an interesting approach to this kind of studies, allowing for a detailed and pretty accurate identification of hidden topographic anomalies that may be related to large landslides. Here a geomorphic numerical analyses of the Digital Terrain Model (DTM) is presented. The introduced approach is based on 2D discrete wavelet transform (Antoine et al., 2003; Bruun and Nilsen, 2003, Booth et al., 2009). The 2D wavelet decomposition of the DTM, and in particular the analysis of the detail coefficients of the wavelet transform can provide evidences of anomalies or singularities, i.e. discontinuities of the land surface. These discontinuities are not very evident from the DTM as it is, while 2D wavelet transform allows for grid-based analysis of DTM and for mapping the decomposition. In fact, the grid-based DTM can be assumed as a matrix, where a discrete wavelet transform (Daubechies, 1992) is performed columnwise and linewise, which basically represent horizontal and vertical directions. The outcomes of this analysis are low-frequency approximation coefficients and high-frequency detail coefficients. Detail coefficients are analyzed, since their variations are associated to discontinuities of the DTM. Detailed coefficients are estimated assuming to perform 2D wavelet transform both for the horizontal direction (east-west) and for the vertical direction (north-south). Detail coefficients are then mapped for both the cases, thus allowing to visualize and quantify potential anomalies of the land surface. Moreover, wavelet decomposition can be pushed to further levels, assuming a higher scale number of the transform. This may potentially return further interesting results, in terms of identification of the anomalies of land surface. In this kind of approach, the choice of a proper mother wavelet function is a tricky point, since it conditions the analysis and then their outcomes. Therefore multiple levels as well as multiple wavelet analyses are guessed. Here the introduced approach is applied to some interesting cases study of south Italy, in particular for the identification of large anomalies associated to large landslides at the transition between Apennine chain domain and the foredeep domain. In particular low Biferno valley and Fortore valley are here analyzed. Finally, the wavelet transforms are performed on multiple levels, thus trying to address the problem of which is the level extent for an accurate analysis fit to a specific problem. Antoine J.P., Carrette P., Murenzi R., and Piette B., (2003), Image analysis with two-dimensional continuous wavelet transform, Signal Processing, 31(3), pp. 241-272, doi:10.1016/0165-1684(93)90085-O. Booth A.M., Roering J.J., and Taylor Perron J., (2009), Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon, Geomorphology, 109(3-4), pp. 132-147, doi:10.1016/j.geomorph.2009.02.027. Bruun B.T., and Nilsen S., (2003), Wavelet representation of large digital terrain models, Computers and Geoscience, 29(6), pp. 695-703, doi:10.1016/S0098-3004(03)00015-3. Daubechies, I. (1992), Ten lectures on wavelets, SIAM.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization.more » The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.« less

  3. A robust watermarking scheme using lifting wavelet transform and singular value decomposition

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anuj; Verma, Deval; Verma, Vivek Singh

    2017-01-01

    The present paper proposes a robust image watermarking scheme using lifting wavelet transform (LWT) and singular value decomposition (SVD). Second level LWT is applied on host/cover image to decompose into different subbands. SVD is used to obtain singular values of watermark image and then these singular values are updated with the singular values of LH2 subband. The algorithm is tested on a number of benchmark images and it is found that the present algorithm is robust against different geometric and image processing operations. A comparison of the proposed scheme is performed with other existing schemes and observed that the present scheme is better not only in terms of robustness but also in terms of imperceptibility.

  4. A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment.

    PubMed

    Kumar, P; Kumar, Dinesh; Rai, K N

    2015-01-01

    The success of hyperthermia in the treatment of cancer depends on the precise prediction and control of temperature. It was absolutely a necessity for hyperthermia treatment planning to understand the temperature distribution within living biological tissues. In this paper, dual-phase-lag model of bio-heat transfer has been studied using Gaussian distribution source term under most generalized boundary condition during hyperthermia treatment. An approximate analytical solution of the present problem has been done by Finite element wavelet Galerkin method which uses Legendre wavelet as a basis function. Multi-resolution analysis of Legendre wavelet in the present case localizes small scale variations of solution and fast switching of functional bases. The whole analysis is presented in dimensionless form. The dual-phase-lag model of bio-heat transfer has compared with Pennes and Thermal wave model of bio-heat transfer and it has been found that large differences in the temperature at the hyperthermia position and time to achieve the hyperthermia temperature exist, when we increase the value of τT. Particular cases when surface subjected to boundary condition of 1st, 2nd and 3rd kind are discussed in detail. The use of dual-phase-lag model of bio-heat transfer and finite element wavelet Galerkin method as a solution method helps in precise prediction of temperature. Gaussian distribution source term helps in control of temperature during hyperthermia treatment. So, it makes this study more useful for clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Multispectral image sharpening using a shift-invariant wavelet transform and adaptive processing of multiresolution edges

    USGS Publications Warehouse

    Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.

    2002-01-01

    Enhanced false color images from mid-IR, near-IR (NIR), and visible bands of the Landsat thematic mapper (TM) are commonly used for visually interpreting land cover type. Described here is a technique for sharpening or fusion of NIR with higher resolution panchromatic (Pan) that uses a shift-invariant implementation of the discrete wavelet transform (SIDWT) and a reported pixel-based selection rule to combine coefficients. There can be contrast reversals (e.g., at soil-vegetation boundaries between NIR and visible band images) and consequently degraded sharpening and edge artifacts. To improve performance for these conditions, I used a local area-based correlation technique originally reported for comparing image-pyramid-derived edges for the adaptive processing of wavelet-derived edge data. Also, using the redundant data of the SIDWT improves edge data generation. There is additional improvement because sharpened subband imagery is used with the edge-correlation process. A reported technique for sharpening three-band spectral imagery used forward and inverse intensity, hue, and saturation transforms and wavelet-based sharpening of intensity. This technique had limitations with opposite contrast data, and in this study sharpening was applied to single-band multispectral-Pan image pairs. Sharpening used simulated 30-m NIR imagery produced by degrading the spatial resolution of a higher resolution reference. Performance, evaluated by comparison between sharpened and reference image, was improved when sharpened subband data were used with the edge correlation.

  6. Wavelet analysis for wind fields estimation.

    PubMed

    Leite, Gladeston C; Ushizima, Daniela M; Medeiros, Fátima N S; de Lima, Gilson G

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B(3) spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms(-1). Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms.

  7. Application of based on improved wavelet algorithm in fiber temperature sensor

    NASA Astrophysics Data System (ADS)

    Qi, Hui; Tang, Wenjuan

    2018-03-01

    It is crucial point that accurate temperature in distributed optical fiber temperature sensor. In order to solve the problem of temperature measurement error due to weak Raman scattering signal and strong noise in system, a new based on improved wavelet algorithm is presented. On the basis of the traditional modulus maxima wavelet algorithm, signal correlation is considered to improve the ability to capture signals and noise, meanwhile, combined with wavelet decomposition scale adaptive method to eliminate signal loss or noise not filtered due to mismatch scale. Superiority of algorithm filtering is compared with others by Matlab. At last, the 3km distributed optical fiber temperature sensing system is used for verification. Experimental results show that accuracy of temperature generally increased by 0.5233.

  8. A New Look at Rainfall Fluctuations and Scaling Properties of Spatial Rainfall Using Orthogonal Wavelets.

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Foufoula-Georgiou, Efi

    1993-02-01

    It has been observed that the finite-dimensional distribution functions of rainfall cannot obey simple scaling laws due to rainfall intermittency (mixed distribution with an atom at zero) and the probability of rainfall being an increasing function of area. Although rainfall fluctuations do not suffer these limitations, it is interesting to note that very few attempts have been made to study them in terms of their self-similarity characteristics. This is due to the lack of unambiguous definition of fluctuations in multidimensions. This paper shows that wavelet transforms offer a convenient and consistent method for the decomposition of inhomogeneous and anisotropic rainfall fields in two dimensions and that the components of this decomposition can be looked at as fluctuations of the rainfall field. It is also shown that under some mild assumptions, the component fields can be treated as homogeneous and thus are amenable to second-order analysis, which can provide useful insight into the nature of the process. The fact that wavelet transforms are a space-scale method also provides a convenient tool to study scaling characteristics of the process. Orthogonal wavelets are used, and these properties are investigated for a squall-line storm to study the presence of self-similarity.

  9. A new look at rainfall fluctuations and scaling properties of spatial rainfall using orthogonal wavelets

    NASA Technical Reports Server (NTRS)

    Kumar, Praveen; Foufoula-Georgiou, Efi

    1993-01-01

    It has been observed that the finite-dimensional distribution functions of rainfall cannot obey simple scaling laws due to rainfall intermittency (mixed distribution with an atom at zero) and the probability of rainfall being an increasing function of area. Although rainfall fluctuations do not suffer these limitations, it is interesting to note that very few attempts have been made to study them in terms of their self-similarity characteristics. This is due to the lack of unambiguous definition of fluctuations in multidimensions. This paper shows that wavelet transforms offer a convenient and consistent method for the decomposition of inhomogeneous and anisotropic rainfall fields in two dimensions and that the components of this decomposition can be looked at as fluctuations of the rainfall field. It is also shown that under some mild assumptions, the component fields can be treated as homogeneous and thus are amenable to second-order analysis, which can provide useful insight into the nature of the process. The fact that wavelet transforms are a space-scale method also provides a convenient tool to study scaling characteristics of the process. Orthogonal wavelets are used, and these properties are investigated for a squall-line storm to study the presence of self-similarity.

  10. Wavelet investigation of preferential concentration in particle-laden turbulence

    NASA Astrophysics Data System (ADS)

    Bassenne, Maxime; Urzay, Javier; Schneider, Kai; Moin, Parviz

    2017-11-01

    Direct numerical simulations of particle-laden homogeneous-isotropic turbulence are employed in conjunction with wavelet multi-resolution analyses to study preferential concentration in both physical and spectral spaces. Spatially-localized energy spectra for velocity, vorticity and particle-number density are computed, along with their spatial fluctuations that enable the quantification of scale-dependent probability density functions, intermittency and inter-phase conditional statistics. The main result is that particles are found in regions of lower turbulence spectral energy than the corresponding mean. This suggests that modeling the subgrid-scale turbulence intermittency is required for capturing the small-scale statistics of preferential concentration in large-eddy simulations. Additionally, a method is defined that decomposes a particle number-density field into the sum of a coherent and an incoherent components. The coherent component representing the clusters can be sparsely described by at most 1.6% of the total number of wavelet coefficients. An application of the method, motivated by radiative-heat-transfer simulations, is illustrated in the form of a grid-adaptation algorithm that results in non-uniform meshes refined around particle clusters. It leads to a reduction of the number of control volumes by one to two orders of magnitude. PSAAP-II Center at Stanford (Grant DE-NA0002373).

  11. Enhancement of the Wear Particle Monitoring Capability of Oil Debris Sensors Using a Maximal Overlap Discrete Wavelet Transform with Optimal Decomposition Depth

    PubMed Central

    Li, Chuan; Peng, Juan; Liang, Ming

    2014-01-01

    Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements. PMID:24686730

  12. Enhancement of the wear particle monitoring capability of oil debris sensors using a maximal overlap discrete wavelet transform with optimal decomposition depth.

    PubMed

    Li, Chuan; Peng, Juan; Liang, Ming

    2014-03-28

    Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements.

  13. Investigation of Multiple Frequency Ranges Using Discrete Wavelet Decomposition of Resting-State Functional Connectivity in Mild Traumatic Brain Injury Patients

    PubMed Central

    Chen, Haoxing; Roys, Steven; Zhuo, Jiachen; Varshney, Amitabh; Gullapalli, Rao P.

    2015-01-01

    Abstract The aim of this study was to investigate if discrete wavelet decomposition provides additional insight into resting-state processes through the analysis of functional connectivity within specific frequency ranges within the default mode network (DMN) that may be affected by mild traumatic brain injury (mTBI). Participants included 32 mTBI patients (15 with postconcussive syndrome [PCS+] and 17 without [PCS−]). mTBI patients received resting-state functional magnetic resonance imaging (rs-fMRI) at acute (within 10 days of injury) and chronic (6 months postinjury) time points and were compared with 31 controls (healthy control [HC]). The wavelet decomposition divides the time series into multiple frequency ranges based on four scaling factors (SF1: 0.125–0.250 Hz, SF2: 0.060–0.125 Hz, SF3: 0.030–0.060 Hz, SF4: 0.015–0.030 Hz). Within each SF, wavelet connectivity matrices for nodes of the DMN were created for each group (HC, PCS+, PCS−), and bivariate measures of strength and diversity were calculated. The results demonstrate reduced strength of connectivity in PCS+ patients compared with PCS− patients within SF1 during both the acute and chronic stages of injury, as well as recovery of connectivity within SF1 across the two time points. Furthermore, the PCS− group demonstrated greater network strength compared with controls at both time points, suggesting a potential compensatory or protective mechanism in these patients. These findings stress the importance of investigating resting-state connectivity within multiple frequency ranges; however, many of our findings are within SF1, which may overlap with frequencies associated with cardiac and respiratory activities. PMID:25808612

  14. Investigation of Multiple Frequency Ranges Using Discrete Wavelet Decomposition of Resting-State Functional Connectivity in Mild Traumatic Brain Injury Patients.

    PubMed

    Sours, Chandler; Chen, Haoxing; Roys, Steven; Zhuo, Jiachen; Varshney, Amitabh; Gullapalli, Rao P

    2015-09-01

    The aim of this study was to investigate if discrete wavelet decomposition provides additional insight into resting-state processes through the analysis of functional connectivity within specific frequency ranges within the default mode network (DMN) that may be affected by mild traumatic brain injury (mTBI). Participants included 32 mTBI patients (15 with postconcussive syndrome [PCS+] and 17 without [PCS-]). mTBI patients received resting-state functional magnetic resonance imaging (rs-fMRI) at acute (within 10 days of injury) and chronic (6 months postinjury) time points and were compared with 31 controls (healthy control [HC]). The wavelet decomposition divides the time series into multiple frequency ranges based on four scaling factors (SF1: 0.125-0.250 Hz, SF2: 0.060-0.125 Hz, SF3: 0.030-0.060 Hz, SF4: 0.015-0.030 Hz). Within each SF, wavelet connectivity matrices for nodes of the DMN were created for each group (HC, PCS+, PCS-), and bivariate measures of strength and diversity were calculated. The results demonstrate reduced strength of connectivity in PCS+ patients compared with PCS- patients within SF1 during both the acute and chronic stages of injury, as well as recovery of connectivity within SF1 across the two time points. Furthermore, the PCS- group demonstrated greater network strength compared with controls at both time points, suggesting a potential compensatory or protective mechanism in these patients. These findings stress the importance of investigating resting-state connectivity within multiple frequency ranges; however, many of our findings are within SF1, which may overlap with frequencies associated with cardiac and respiratory activities.

  15. Coherent structures and turbulence evolution in magnetized non-neutral plasmas

    NASA Astrophysics Data System (ADS)

    Romé, M.; Chen, S.; Maero, G.

    2018-01-01

    The evolution of turbulence of a magnetized pure electron plasma confined in a Penning-Malmberg trap is investigated by means of a two-dimensional particle-in-cell numerical code. The transverse plasma dynamics is studied both in the case of free evolution and under the influence of non-axisymmetric, multipolar radio-frequency drives applied on the circular conducting boundary. In the latter case the radio-frequency fields are chosen in the frequency range of the low-order azimuthal (diocotron) modes of the plasma in order to investigate their effect on the insurgence of azimuthal instabilities and the formation and evolution of coherent structures, possibly preventing the relaxation to a fully-developed turbulent state. Different initial density distributions (rings and spirals) are considered, so that evolutions characterized by different levels of turbulence and intermittency are obtained. The time evolution of integral and spectral quantities of interest are computed using a multiresolution analysis based on a wavelet decomposition of density maps. Qualitative features of turbulent relaxation are found to be similar in conditions of both free and forced evolution, but the analysis allows one to highlight fine details of the flow beyond the self-similarity turbulence properties, so that the influence of the initial conditions and the effect of the external forcing can be distinguished. In particular, the presence of small inhomogeneities in the initial density configuration turns out to lead to quite different final states, especially in the presence of competing unstable diocotron modes characterized by similar growth rates.

  16. Modal identification of structures by a novel approach based on FDD-wavelet method

    NASA Astrophysics Data System (ADS)

    Tarinejad, Reza; Damadipour, Majid

    2014-02-01

    An important application of system identification in structural dynamics is the determination of natural frequencies, mode shapes and damping ratios during operation which can then be used for calibrating numerical models. In this paper, the combination of two advanced methods of Operational Modal Analysis (OMA) called Frequency Domain Decomposition (FDD) and Continuous Wavelet Transform (CWT) based on novel cyclic averaging of correlation functions (CACF) technique are used for identification of dynamic properties. By using this technique, the autocorrelation of averaged correlation functions is used instead of original signals. Integration of FDD and CWT methods is used to overcome their deficiency and take advantage of the unique capabilities of these methods. The FDD method is able to accurately estimate the natural frequencies and mode shapes of structures in the frequency domain. On the other hand, the CWT method is in the time-frequency domain for decomposition of a signal at different frequencies and determines the damping coefficients. In this paper, a new formulation applied to the wavelet transform of the averaged correlation function of an ambient response is proposed. This application causes to accurate estimation of damping ratios from weak (noise) or strong (earthquake) vibrations and long or short duration record. For this purpose, the modified Morlet wavelet having two free parameters is used. The optimum values of these two parameters are obtained by employing a technique which minimizes the entropy of the wavelet coefficients matrix. The capabilities of the novel FDD-Wavelet method in the system identification of various dynamic systems with regular or irregular distribution of mass and stiffness are illustrated. This combined approach is superior to classic methods and yields results that agree well with the exact solutions of the numerical models.

  17. Semi-Lagrangian particle methods for high-dimensional Vlasov-Poisson systems

    NASA Astrophysics Data System (ADS)

    Cottet, Georges-Henri

    2018-07-01

    This paper deals with the implementation of high order semi-Lagrangian particle methods to handle high dimensional Vlasov-Poisson systems. It is based on recent developments in the numerical analysis of particle methods and the paper focuses on specific algorithmic features to handle large dimensions. The methods are tested with uniform particle distributions in particular against a recent multi-resolution wavelet based method on a 4D plasma instability case and a 6D gravitational case. Conservation properties, accuracy and computational costs are monitored. The excellent accuracy/cost trade-off shown by the method opens new perspective for accurate simulations of high dimensional kinetic equations by particle methods.

  18. Analysis of the Biceps Brachii Muscle by Varying the Arm Movement Level and Load Resistance Band

    PubMed Central

    Abdullah, Shahrum Shah; Jali, Mohd Hafiz

    2017-01-01

    Biceps brachii muscle illness is one of the common physical disabilities that requires rehabilitation exercises in order to build up the strength of the muscle after surgery. It is also important to monitor the condition of the muscle during the rehabilitation exercise through electromyography (EMG) signals. The purpose of this study was to analyse and investigate the selection of the best mother wavelet (MWT) function and depth of the decomposition level in the wavelet denoising EMG signals through the discrete wavelet transform (DWT) method at each decomposition level. In this experimental work, six healthy subjects comprised of males and females (26 ± 3.0 years and BMI of 22 ± 2.0) were selected as a reference for persons with the illness. The experiment was conducted for three sets of resistance band loads, namely, 5 kg, 9 kg, and 16 kg, as a force during the biceps brachii muscle contraction. Each subject was required to perform three levels of the arm angle positions (30°, 90°, and 150°) for each set of resistance band load. The experimental results showed that the Daubechies5 (db5) was the most appropriate DWT method together with a 6-level decomposition with a soft heursure threshold for the biceps brachii EMG signal analysis. PMID:29138687

  19. Analysis of the Biceps Brachii Muscle by Varying the Arm Movement Level and Load Resistance Band.

    PubMed

    Burhan, Nuradebah; Kasno, Mohammad 'Afif; Ghazali, Rozaimi; Said, Md Radzai; Abdullah, Shahrum Shah; Jali, Mohd Hafiz

    2017-01-01

    Biceps brachii muscle illness is one of the common physical disabilities that requires rehabilitation exercises in order to build up the strength of the muscle after surgery. It is also important to monitor the condition of the muscle during the rehabilitation exercise through electromyography (EMG) signals. The purpose of this study was to analyse and investigate the selection of the best mother wavelet (MWT) function and depth of the decomposition level in the wavelet denoising EMG signals through the discrete wavelet transform (DWT) method at each decomposition level. In this experimental work, six healthy subjects comprised of males and females (26 ± 3.0 years and BMI of 22 ± 2.0) were selected as a reference for persons with the illness. The experiment was conducted for three sets of resistance band loads, namely, 5 kg, 9 kg, and 16 kg, as a force during the biceps brachii muscle contraction. Each subject was required to perform three levels of the arm angle positions (30°, 90°, and 150°) for each set of resistance band load. The experimental results showed that the Daubechies5 (db5) was the most appropriate DWT method together with a 6-level decomposition with a soft heursure threshold for the biceps brachii EMG signal analysis.

  20. Gravity Waves characteristics and their impact on turbulent transport above an Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Cava, Daniela; Giostra, Umberto; Katul, Gabriel

    2016-04-01

    Turbulence within the stable boundary layer (SBL) remains a ubiquitous feature of many geophysical flows, especially over glaciers and ice-sheets. Although numerous studies have investigated various aspects of the boundary layer motion during stable atmospheric conditions, a unified picture of turbulent transport within the SBL remains elusive. In a strongly stratified SBL, turbulence generation is frequently associated with interactions with sub-meso scale motions that are often a combination of gravity waves (GWs) and horizontal modes. While some progress has been made in the inclusion of GW parameterisation within global models, description and parameterisation of the turbulence-wave interaction remain an open question. The discrimination between waves and turbulence is a focal point needed to make progress as these two motions have different properties with regards to heat, moisture and pollutant transport. In fact, the occurrence of GWs can cause significant differences and ambiguities in the interpretation of turbulence statistics and fluxes if not a priori filtered from the analysis. In this work, the characteristics of GW and their impact on turbulent statistics were investigated using wind velocity components and scalars collected above an Antarctic Ice sheet during an Austral Summer. Antarctica is an ideal location for exploring the characteristics of GW because of persistent conditions of strongly stable atmospheric stability in the lower troposphere. Periods dominated by wavy motions have been identified by analysing time series measured by fast response instrumentation. The GWs nature and features have been investigated using Fourier cross-spectral indicators. The detected waves were frequently characterised by variable amplitude and period; moreover, they often produced non-stationarity and large intermittency in turbulent fluctuations that can significantly alter the estimation of turbulence statistics in general and fluxes in particular. A multi-resolution decomposition based on the Haar wavelet has been applied to separate gravity waves from turbulent fluctuations in case of a sufficiently defined spectral gap. Statistics computed after removing wavy disturbances highlight the large impact of gravity waves on second order turbulent quantities. One of the most impacted parameters is turbulent kinetic energy, in particular in the longitudinal and lateral components. The effect of wave activity on momentum and scalar fluxes is more complex because waves can produce large errors in sign and magnitude of computed turbulent fluxes or they themselves can contribute to intermittent turbulent mixing. The proposed filtering procedure based on the multi-resolution decomposition restored the correct sign in the turbulent sensible heat flux values. These findings highlight the significance of a correct evaluation of the impact of wave components when the goal is determining the turbulent transport component of mass and energy in the SBL.

  1. Quantification of frequency-components contributions to the discharge of a karst spring

    NASA Astrophysics Data System (ADS)

    Taver, V.; Johannet, A.; Vinches, M.; Borrell, V.; Pistre, S.; Bertin, D.

    2013-12-01

    Karst aquifers represent important underground resources for water supplies, providing it to 25% of the population. Nevertheless such systems are currently underexploited because of their heterogeneity and complexity, which make work fields and physical measurements expensive, and frequently not representative of the whole aquifer. The systemic paradigm appears thus at a complementary approach to study and model karst aquifers in the framework of non-linear system analysis. Its input and output signals, namely rainfalls and discharge contain information about the function performed by the physical process. Therefore, improvement of knowledge about the karst system can be provided using time series analysis, for example Fourier analysis or orthogonal decomposition [1]. Another level of analysis consists in building non-linear models to identify rainfall/discharge relation, component by component [2]. In this context, this communication proposes to use neural networks to first model the rainfall-runoff relation using frequency components, and second to analyze the models, using the KnoX method [3], in order to quantify the importance of each component. Two different neural models were designed: (i) the recurrent model which implements a non-linear recurrent model fed by rainfalls, ETP and previous estimated discharge, (ii) the feed-forward model which implements a non-linear static model fed by rainfalls, ETP and previous observed discharges. The first model is known to better represent the rainfall-runoff relation; the second one to better predict the discharge based on previous discharge observations. KnoX method is based on a variable selection method, which simply considers values of parameters after the training without taking into account the non-linear behavior of the model during functioning. An amelioration of the KnoX method, is thus proposed in order to overcome this inadequacy. The proposed method, leads thus to both a hierarchization and a quantification of the input variables, here the frequency components, over output signal. Applied to the Lez karst aquifer, the combination of frequency decomposition and knowledge extraction improves knowledge on hydrological behavior. Both models and both extraction methods were applied and assessed using a fictitious reference model. Discussion is proposed in order to analyze efficiency of the methods compared to in situ measurements and tracing. [1] D. Labat et al. 'Rainfall-runoff relations for karst springs. Part II: continuous wavelet and discrete orthogonal multiresolution' In J of Hydrology, Vol. 238, 2000, pp. 149-178. [2] A. Johannet et al. 'Prediction of Lez Spring Discharge (Southern France) by Neural Networks using Orthogonal Wavelet Decomposition'.IJCNN Proceedings Brisbane 2012. [3] L. Kong A Siou et al. 'Modélisation hydrodynamique des karsts par réseaux de neurones : Comment dépasser la boîte noire. (Karst hydrodynamic modelling using artificial neural networks: how to surpass the black box ?)'. Proceedings of the 9th conference on limestone hydrogeology,2011 Besançon, France.

  2. A New Method for Computed Tomography Angiography (CTA) Imaging via Wavelet Decomposition-Dependented Edge Matching Interpolation.

    PubMed

    Li, Zeyu; Chen, Yimin; Zhao, Yan; Zhu, Lifeng; Lv, Shengqing; Lu, Jiahui

    2016-08-01

    The interpolation technique of computed tomography angiography (CTA) image provides the ability for 3D reconstruction, as well as reduces the detect cost and the amount of radiation. However, most of the image interpolation algorithms cannot take the automation and accuracy into account. This study provides a new edge matching interpolation algorithm based on wavelet decomposition of CTA. It includes mark, scale and calculation (MSC). Combining the real clinical image data, this study mainly introduces how to search for proportional factor and use the root mean square operator to find a mean value. Furthermore, we re- synthesize the high frequency and low frequency parts of the processed image by wavelet inverse operation, and get the final interpolation image. MSC can make up for the shortage of the conventional Computed Tomography (CT) and Magnetic Resonance Imaging(MRI) examination. The radiation absorption and the time to check through the proposed synthesized image were significantly reduced. In clinical application, it can help doctor to find hidden lesions in time. Simultaneously, the patients get less economic burden as well as less radiation exposure absorbed.

  3. Wavelet-based unsupervised learning method for electrocardiogram suppression in surface electromyograms.

    PubMed

    Niegowski, Maciej; Zivanovic, Miroslav

    2016-03-01

    We present a novel approach aimed at removing electrocardiogram (ECG) perturbation from single-channel surface electromyogram (EMG) recordings by means of unsupervised learning of wavelet-based intensity images. The general idea is to combine the suitability of certain wavelet decomposition bases which provide sparse electrocardiogram time-frequency representations, with the capacity of non-negative matrix factorization (NMF) for extracting patterns from images. In order to overcome convergence problems which often arise in NMF-related applications, we design a novel robust initialization strategy which ensures proper signal decomposition in a wide range of ECG contamination levels. Moreover, the method can be readily used because no a priori knowledge or parameter adjustment is needed. The proposed method was evaluated on real surface EMG signals against two state-of-the-art unsupervised learning algorithms and a singular spectrum analysis based method. The results, expressed in terms of high-to-low energy ratio, normalized median frequency, spectral power difference and normalized average rectified value, suggest that the proposed method enables better ECG-EMG separation quality than the reference methods. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Wavelet data analysis of micro-Raman spectra for follow-up monitoring in oral pathologies

    NASA Astrophysics Data System (ADS)

    Camerlingo, C.; Zenone, F.; Perna, G.; Capozzi, V.; Cirillo, N.; Gaeta, G. M.; Lepore, M.

    2008-02-01

    A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra from human biological samples. In particular, measurements have been performed on some samples of oral tissue and blood serum from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. The disease is characterized histologically by intradermal blisters and immunopathologically by the finding of tissue bound and circulating immunoglobulin G (IgG) antibody directed against the cell surface of keratinocytes. More than 150 spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. The results indicate that appropriate data processing can contribute to enlarge the medical applications of micro-Raman spectroscopy.

  5. A non-orthogonal decomposition of flows into discrete events

    NASA Astrophysics Data System (ADS)

    Boxx, Isaac; Lewalle, Jacques

    1998-11-01

    This work is based on the formula for the inverse Hermitian wavelet transform. A signal can be interpreted as a (non-unique) superposition of near-singular, partially overlapping events arising from Dirac functions and/or its derivatives combined with diffusion.( No dynamics implied: dimensionless diffusion is related to the definition of the analyzing wavelets.) These events correspond to local maxima of spectral energy density. We successfully fitted model events of various orders on a succession of fields, ranging from elementary signals to one-dimensional hot-wire traces. We document edge effects, event overlap and its implications on the algorithm. The interpretation of the discrete singularities as flow events (such as coherent structures) and the fundamental non-uniqueness of the decomposition are discussed. The dynamics of these events will be examined in the companion paper.

  6. Wavelet Analysis for Wind Fields Estimation

    PubMed Central

    Leite, Gladeston C.; Ushizima, Daniela M.; Medeiros, Fátima N. S.; de Lima, Gilson G.

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms. PMID:22219699

  7. A comparative study on book shelf structure based on different domain modal analysis

    NASA Astrophysics Data System (ADS)

    Sabamehr, Ardalan; Roy, Timir Baran; Bagchi, Ashutosh

    2017-04-01

    Structural Health Monitoring (SHM) based on the vibration of structures has been very attractive topic for researchers in different fields such as: civil, aeronautical and mechanical engineering. The aim of this paper is to compare three most common modal identification techniques such as Frequency Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and Continuous Wavelet Transform (CWT) to find modal properties (such as natural frequency, mode shape and damping ratio) of three story book shelf steel structure which was built in Concordia University Lab. The modified Complex Morlet wavelet have been selected for wavelet in order to use asymptotic signal rather than real one with variable bandwidth and wavelet central frequency. So, CWT is able to detect instantaneous modulus and phase by use of local maxima ridge detection.

  8. Improved CEEMDAN-wavelet transform de-noising method and its application in well logging noise reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Jingxia; Guo, Yinghai; Shen, Yulin; Zhao, Difei; Li, Mi

    2018-06-01

    The use of geophysical logging data to identify lithology is an important groundwork in logging interpretation. Inevitably, noise is mixed in during data collection due to the equipment and other external factors and this will affect the further lithological identification and other logging interpretation. Therefore, to get a more accurate lithological identification it is necessary to adopt de-noising methods. In this study, a new de-noising method, namely improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-wavelet transform, is proposed, which integrates the superiorities of improved CEEMDAN and wavelet transform. Improved CEEMDAN, an effective self-adaptive multi-scale analysis method, is used to decompose non-stationary signals as the logging data to obtain the intrinsic mode function (IMF) of N different scales and one residual. Moreover, one self-adaptive scale selection method is used to determine the reconstruction scale k. Simultaneously, given the possible frequency aliasing problem between adjacent IMFs, a wavelet transform threshold de-noising method is used to reduce the noise of the (k-1)th IMF. Subsequently, the de-noised logging data are reconstructed by the de-noised (k-1)th IMF and the remaining low-frequency IMFs and the residual. Finally, empirical mode decomposition, improved CEEMDAN, wavelet transform and the proposed method are applied for analysis of the simulation and the actual data. Results show diverse performance of these de-noising methods with regard to accuracy for lithological identification. Compared with the other methods, the proposed method has the best self-adaptability and accuracy in lithological identification.

  9. A sparse reconstruction method for the estimation of multiresolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2014-08-20

    We present a sparse reconstruction scheme that can also be used to ensure non-negativity when fitting wavelet-based random field models to limited observations in non-rectangular geometries. The method is relevant when multiresolution fields are estimated using linear inverse problems. Examples include the estimation of emission fields for many anthropogenic pollutants using atmospheric inversion or hydraulic conductivity in aquifers from flow measurements. The scheme is based on three new developments. Firstly, we extend an existing sparse reconstruction method, Stagewise Orthogonal Matching Pursuit (StOMP), to incorporate prior information on the target field. Secondly, we develop an iterative method that uses StOMP tomore » impose non-negativity on the estimated field. Finally, we devise a method, based on compressive sensing, to limit the estimated field within an irregularly shaped domain. We demonstrate the method on the estimation of fossil-fuel CO 2 (ffCO 2) emissions in the lower 48 states of the US. The application uses a recently developed multiresolution random field model and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of two. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  10. Data Mining and Optimization Tools for Developing Engine Parameters Tools

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.

    1998-01-01

    This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. Tricia Erhardt and I studied the problem domain for developing an Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy, datasets. From the study and discussion with NASA LeRC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of tile data for GA based multi-resolution optimal search.

  11. Determination of seasonals using wavelets in terms of noise parameters changeability

    NASA Astrophysics Data System (ADS)

    Klos, Anna; Bogusz, Janusz; Figurski, Mariusz

    2015-04-01

    The reliable velocities of GNSS-derived observations are becoming of high importance nowadays. The fact on how we determine and subtract the seasonals may all cause the time series autocorrelation and affect uncertainties of linear parameters. The periodic changes in GNSS time series are commonly assumed as the sum of annual and semi-annual changes with amplitudes and phases being constant in time and the Least-Squares Estimation (LSE) is used in general to model these sine waves. However, not only seasonals' time-changeability, but also their higher harmonics should be considered. In this research, we focused on more than 230 globally distributed IGS stations that were processed at the Military University of Technology EPN Local Analysis Centre (MUT LAC) in Bernese 5.0 software. The network was divided into 7 different sub-networks with few of overlapping stations and processed separately with newest models. Here, we propose a wavelet-based trend and seasonals determination and removal of whole frequency spectrum between Chandler and quarter-annual periods from North, East and Up components and compare it with LSE-determined values. We used a Meyer symmetric, orthogonal wavelet and assumed nine levels of decomposition. The details from 6 up to 9 were analyzed here as periodic components with frequencies between 0.3-2.5 cpy. The characteristic oscillations for each of frequency band were pointed out. The details lower than 6 summed together with detrended approximation were considered as residua. The power spectral densities (PSDs) of original and decomposed data were stacked for North, East and Up components for each of sub-networks so as to show what power was removed with each of decomposition levels. Moreover, the noises that the certain frequency band follows (in terms of spectral indices of power-law dependencies) were estimated here using a spectral method and compared for all processed sub-networks. It seems, that lowest frequencies up to 0.7 cpy are characterized by lower spectral indices in comparison to higher ones being close to white noise. Basing on the fact, that decomposition levels overlap each other, the frequency-window choice becomes a main point in spectral index estimation. Our results were compared with those obtained by Maximum Likelihood Estimation (MLE) and possible differences as well as their impact on velocity uncertainties pointed out. The results show that the spectral indices estimated in time and frequency domains differ of 0.15 in maximum. Moreover, we compared the removed power basing on wavelet decomposition levels with the one subtracted with LSE, assuming the same periodicities. In comparison to LSE, the wavelet-based approach leaves the residua being closer to white noise with lower power-law amplitudes of them, what strictly reduces velocity uncertainties. The last approximation was analyzed here as long-term trend, being the non-linear and compared with LSE-determined linear one. It seems that these two trends differ at the level of 0.3 mm/yr in the most extreme case, what makes wavelet decomposition being useful for velocity determination.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain

    In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strongmore » laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to increase the local character in phase-space of the numerical scheme, by considering multiscale reconstruction with more compact support and by replacing the semi-Lagrangian method with more local - in space - numerical scheme as compact finite difference schemes, discontinuous-Galerkin method or finite element residual schemes which are well suited for parallel domain decomposition techniques.« less

  13. Turbidity forecasting at a karst spring using combined machine learning and wavelet multiresolution analysis.

    NASA Astrophysics Data System (ADS)

    Savary, M.; Massei, N.; Johannet, A.; Dupont, J. P.; Hauchard, E.

    2016-12-01

    25% of the world populations drink water extracted from karst aquifer. The comprehension and the protection of these aquifers appear as crucial due to an increase of drinking water needs. In Normandie(North-West of France), the principal exploited aquifer is the chalk aquifer. The chalk aquifer highly karstified is an important water resource, regionally speaking. Connections between surface and underground waters thanks to karstification imply turbidity that decreases water quality. Both numerous parameters and phenomenons, and the non-linearity of the rainfall/turbidity relation influence the turbidity causing difficulties to model and forecast turbidity peaks. In this context, the Yport pumping well provides half of Le Havreconurbation drinking water supply (236 000 inhabitants). The aim of this work is thus to perform prediction of the turbidity peaks in order to help pumping well managers to decrease the impact of turbidity on water treatment. Database consists in hourly rainfalls coming from six rain gauges located on the alimentation basin since 2009 and hourly turbidity since 1993. Because of the lack of accurate physical description of the karst system and its surface basin, the systemic paradigm is chosen and a black box model: a neural network model is chosen. In a first step, correlation analyses are used to design the original model architecture by identifying the relation between output and input. The following optimization phases bring us four different architectures. These models were experimented to forecast 12h ahead turbidity and threshold surpassing. The first model is a simple multilayer perceptron. The second is a two-branches model designed to better represent the fast (rainfall) and low (evapotranspiration) dynamics. Each kind of model is developed using both a recurrent and feed-forward architecture. This work highlights that feed-forward multilayer perceptron is better to predict turbidity peaks when feed-forward two-branches model is better to predict threshold surpassing. In a second step, the implementation of wavelet decomposition within the neural network model to better apprehend slow and fast dynamics is tested and discussed, which could also allows accounting for non-linearity of the turbid response to some extent. This second approach is still under realization so far.

  14. Multiadaptive Bionic Wavelet Transform: Application to ECG Denoising and Baseline Wandering Reduction

    NASA Astrophysics Data System (ADS)

    Sayadi, Omid; Shamsollahi, Mohammad B.

    2007-12-01

    We present a new modified wavelet transform, called the multiadaptive bionic wavelet transform (MABWT), that can be applied to ECG signals in order to remove noise from them under a wide range of variations for noise. By using the definition of bionic wavelet transform and adaptively determining both the center frequency of each scale together with the[InlineEquation not available: see fulltext.]-function, the problem of desired signal decomposition is solved. Applying a new proposed thresholding rule works successfully in denoising the ECG. Moreover by using the multiadaptation scheme, lowpass noisy interference effects on the baseline of ECG will be removed as a direct task. The method was extensively clinically tested with real and simulated ECG signals which showed high performance of noise reduction, comparable to those of wavelet transform (WT). Quantitative evaluation of the proposed algorithm shows that the average SNR improvement of MABWT is 1.82 dB more than the WT-based results, for the best case. Also the procedure has largely proved advantageous over wavelet-based methods for baseline wandering cancellation, including both DC components and baseline drifts.

  15. Intelligent transportation systems data compression using wavelet decomposition technique.

    DOT National Transportation Integrated Search

    2009-12-01

    Intelligent Transportation Systems (ITS) generates massive amounts of traffic data, which posts : challenges for data storage, transmission and retrieval. Data compression and reconstruction technique plays an : important role in ITS data procession....

  16. Continuous EEG signal analysis for asynchronous BCI application.

    PubMed

    Hsu, Wei-Yen

    2011-08-01

    In this study, we propose a two-stage recognition system for continuous analysis of electroencephalogram (EEG) signals. An independent component analysis (ICA) and correlation coefficient are used to automatically eliminate the electrooculography (EOG) artifacts. Based on the continuous wavelet transform (CWT) and Student's two-sample t-statistics, active segment selection then detects the location of active segment in the time-frequency domain. Next, multiresolution fractal feature vectors (MFFVs) are extracted with the proposed modified fractal dimension from wavelet data. Finally, the support vector machine (SVM) is adopted for the robust classification of MFFVs. The EEG signals are continuously analyzed in 1-s segments, and every 0.5 second moves forward to simulate asynchronous BCI works in the two-stage recognition architecture. The segment is first recognized as lifted or not in the first stage, and then is classified as left or right finger lifting at stage two if the segment is recognized as lifting in the first stage. Several statistical analyses are used to evaluate the performance of the proposed system. The results indicate that it is a promising system in the applications of asynchronous BCI work.

  17. Multi-focus image fusion based on area-based standard deviation in dual tree contourlet transform domain

    NASA Astrophysics Data System (ADS)

    Dong, Min; Dong, Chenghui; Guo, Miao; Wang, Zhe; Mu, Xiaomin

    2018-04-01

    Multiresolution-based methods, such as wavelet and Contourlet are usually used to image fusion. This work presents a new image fusion frame-work by utilizing area-based standard deviation in dual tree Contourlet trans-form domain. Firstly, the pre-registered source images are decomposed with dual tree Contourlet transform; low-pass and high-pass coefficients are obtained. Then, the low-pass bands are fused with weighted average based on area standard deviation rather than the simple "averaging" rule. While the high-pass bands are merged with the "max-absolute' fusion rule. Finally, the modified low-pass and high-pass coefficients are used to reconstruct the final fused image. The major advantage of the proposed fusion method over conventional fusion is the approximately shift invariance and multidirectional selectivity of dual tree Contourlet transform. The proposed method is compared with wavelet- , Contourletbased methods and other the state-of-the art methods on common used multi focus images. Experiments demonstrate that the proposed fusion framework is feasible and effective, and it performs better in both subjective and objective evaluation.

  18. Self-similar pyramidal structures and signal reconstruction

    NASA Astrophysics Data System (ADS)

    Benedetto, John J.; Leon, Manuel; Saliani, Sandra

    1998-03-01

    Pyramidal structures are defined which are locally a combination of low and highpass filtering. The structures are analogous to but different from wavelet packet structures. In particular, new frequency decompositions are obtained; and these decompositions can be parameterized to establish a correspondence with a large class of Cantor sets. Further correspondences are then established to relate such frequency decompositions with more general self- similarities. The role of the filters in defining these pyramidal structures gives rise to signal reconstruction algorithms, and these, in turn, are used in the analysis of speech data.

  19. Implementation of the 2-D Wavelet Transform into FPGA for Image

    NASA Astrophysics Data System (ADS)

    León, M.; Barba, L.; Vargas, L.; Torres, C. O.

    2011-01-01

    This paper presents a hardware system implementation of the of discrete wavelet transform algoritm in two dimensions for FPGA, using the Daubechies filter family of order 2 (db2). The decomposition algorithm of this transform is designed and simulated with the Hardware Description Language VHDL and is implemented in a programmable logic device (FPGA) XC3S1200E reference, Spartan IIIE family, by Xilinx, take advantage the parallels properties of these gives us and speeds processing that can reach them. The architecture is evaluated using images input of different sizes. This implementation is done with the aim of developing a future images encryption hardware system using wavelet transform for security information.

  20. Use of Multi-Resolution Wavelet Feature Pyramids for Automatic Registration of Multi-Sensor Imagery

    NASA Technical Reports Server (NTRS)

    Zavorin, Ilya; LeMoigne, Jacqueline

    2003-01-01

    The problem of image registration, or alignment of two or more images representing the same scene or object, has to be addressed in various disciplines that employ digital imaging. In the area of remote sensing, just like in medical imaging or computer vision, it is necessary to design robust, fast and widely applicable algorithms that would allow automatic registration of images generated by various imaging platforms at the same or different times, and that would provide sub-pixel accuracy. One of the main issues that needs to be addressed when developing a registration algorithm is what type of information should be extracted from the images being registered, to be used in the search for the geometric transformation that best aligns them. The main objective of this paper is to evaluate several wavelet pyramids that may be used both for invariant feature extraction and for representing images at multiple spatial resolutions to accelerate registration. We find that the band-pass wavelets obtained from the Steerable Pyramid due to Simoncelli perform better than two types of low-pass pyramids when the images being registered have relatively small amount of nonlinear radiometric variations between them. Based on these findings, we propose a modification of a gradient-based registration algorithm that has recently been developed for medical data. We test the modified algorithm on several sets of real and synthetic satellite imagery.

  1. Design of tree structured matched wavelet for HRV signals of menstrual cycle.

    PubMed

    Rawal, Kirti; Saini, B S; Saini, Indu

    2016-07-01

    An algorithm is presented for designing a new class of wavelets matched to the Heart Rate Variability (HRV) signals of the menstrual cycle. The proposed wavelets are used to find HRV variations between phases of menstrual cycle. The method finds the signal matching characteristics by minimising the shape feature error using Least Mean Square method. The proposed filter banks are used for the decomposition of the HRV signal. For reconstructing the original signal, the tree structure method is used. In this approach, decomposed sub-bands are selected based upon their energy in each sub-band. Thus, instead of using all sub-bands for reconstruction, sub-bands having high energy content are used for the reconstruction of signal. Thus, a lower number of sub-bands are required for reconstruction of the original signal which shows the effectiveness of newly created filter coefficients. Results show that proposed wavelets are able to differentiate HRV variations between phases of the menstrual cycle accurately than standard wavelets.

  2. Application of Time-Frequency Domain Transform to Three-Dimensional Interpolation of Medical Images.

    PubMed

    Lv, Shengqing; Chen, Yimin; Li, Zeyu; Lu, Jiahui; Gao, Mingke; Lu, Rongrong

    2017-11-01

    Medical image three-dimensional (3D) interpolation is an important means to improve the image effect in 3D reconstruction. In image processing, the time-frequency domain transform is an efficient method. In this article, several time-frequency domain transform methods are applied and compared in 3D interpolation. And a Sobel edge detection and 3D matching interpolation method based on wavelet transform is proposed. We combine wavelet transform, traditional matching interpolation methods, and Sobel edge detection together in our algorithm. What is more, the characteristics of wavelet transform and Sobel operator are used. They deal with the sub-images of wavelet decomposition separately. Sobel edge detection 3D matching interpolation method is used in low-frequency sub-images under the circumstances of ensuring high frequency undistorted. Through wavelet reconstruction, it can get the target interpolation image. In this article, we make 3D interpolation of the real computed tomography (CT) images. Compared with other interpolation methods, our proposed method is verified to be effective and superior.

  3. Simultaneous spectrophotometric determination of four metals by two kinds of partial least squares methods

    NASA Astrophysics Data System (ADS)

    Gao, Ling; Ren, Shouxin

    2005-10-01

    Simultaneous determination of Ni(II), Cd(II), Cu(II) and Zn(II) was studied by two methods, kernel partial least squares (KPLS) and wavelet packet transform partial least squares (WPTPLS), with xylenol orange and cetyltrimethyl ammonium bromide as reagents in the medium pH = 9.22 borax-hydrochloric acid buffer solution. Two programs, PKPLS and PWPTPLS, were designed to perform the calculations. Data reduction was performed using kernel matrices and wavelet packet transform, respectively. In the KPLS method, the size of the kernel matrix is only dependent on the number of samples, thus the method was suitable for the data matrix with many wavelengths and fewer samples. Wavelet packet representations of signals provide a local time-frequency description, thus in the wavelet packet domain, the quality of the noise removal can be improved. In the WPTPLS by optimization, wavelet function and decomposition level were selected as Daubeches 12 and 5, respectively. Experimental results showed both methods to be successful even where there was severe overlap of spectra.

  4. Simultaneous compression and encryption for secure real-time secure transmission of sensitive video transmission

    NASA Astrophysics Data System (ADS)

    Al-Hayani, Nazar; Al-Jawad, Naseer; Jassim, Sabah A.

    2014-05-01

    Video compression and encryption became very essential in a secured real time video transmission. Applying both techniques simultaneously is one of the challenges where the size and the quality are important in multimedia transmission. In this paper we proposed a new technique for video compression and encryption. Both encryption and compression are based on edges extracted from the high frequency sub-bands of wavelet decomposition. The compression algorithm based on hybrid of: discrete wavelet transforms, discrete cosine transform, vector quantization, wavelet based edge detection, and phase sensing. The compression encoding algorithm treats the video reference and non-reference frames in two different ways. The encryption algorithm utilized A5 cipher combined with chaotic logistic map to encrypt the significant parameters and wavelet coefficients. Both algorithms can be applied simultaneously after applying the discrete wavelet transform on each individual frame. Experimental results show that the proposed algorithms have the following features: high compression, acceptable quality, and resistance to the statistical and bruteforce attack with low computational processing.

  5. High-resolution time-frequency representation of EEG data using multi-scale wavelets

    NASA Astrophysics Data System (ADS)

    Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina

    2017-09-01

    An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.

  6. Doppler radar fall activity detection using the wavelet transform.

    PubMed

    Su, Bo Yu; Ho, K C; Rantz, Marilyn J; Skubic, Marjorie

    2015-03-01

    We propose in this paper the use of Wavelet transform (WT) to detect human falls using a ceiling mounted Doppler range control radar. The radar senses any motions from falls as well as nonfalls due to the Doppler effect. The WT is very effective in distinguishing the falls from other activities, making it a promising technique for radar fall detection in nonobtrusive inhome elder care applications. The proposed radar fall detector consists of two stages. The prescreen stage uses the coefficients of wavelet decomposition at a given scale to identify the time locations in which fall activities may have occurred. The classification stage extracts the time-frequency content from the wavelet coefficients at many scales to form a feature vector for fall versus nonfall classification. The selection of different wavelet functions is examined to achieve better performance. Experimental results using the data from the laboratory and real inhome environments validate the promising and robust performance of the proposed detector.

  7. An adaptive morphological gradient lifting wavelet for detecting bearing defects

    NASA Astrophysics Data System (ADS)

    Li, Bing; Zhang, Pei-lin; Mi, Shuang-shan; Hu, Ren-xi; Liu, Dong-sheng

    2012-05-01

    This paper presents a novel wavelet decomposition scheme, named adaptive morphological gradient lifting wavelet (AMGLW), for detecting bearing defects. The adaptability of the AMGLW consists in that the scheme can select between two filters, mean the average filter and morphological gradient filter, to update the approximation signal based on the local gradient of the analyzed signal. Both a simulated signal and vibration signals acquired from bearing are employed to evaluate and compare the proposed AMGLW scheme with the traditional linear wavelet transform (LWT) and another adaptive lifting wavelet (ALW) developed in literature. Experimental results reveal that the AMGLW outperforms the LW and ALW obviously for detecting bearing defects. The impulsive components can be enhanced and the noise can be depressed simultaneously by the presented AMGLW scheme. Thus the fault characteristic frequencies of bearing can be clearly identified. Furthermore, the AMGLW gets an advantage over LW in computation efficiency. It is quite suitable for online condition monitoring of bearings and other rotating machineries.

  8. Multiresolution analysis of the spatiotemporal variability in global radiation observed by a dense network of 99 pyranometers

    NASA Astrophysics Data System (ADS)

    Lakshmi Madhavan, Bomidi; Deneke, Hartwig; Witthuhn, Jonas; Macke, Andreas

    2017-03-01

    The time series of global radiation observed by a dense network of 99 autonomous pyranometers during the HOPE campaign around Jülich, Germany, are investigated with a multiresolution analysis based on the maximum overlap discrete wavelet transform and the Haar wavelet. For different sky conditions, typical wavelet power spectra are calculated to quantify the timescale dependence of variability in global transmittance. Distinctly higher variability is observed at all frequencies in the power spectra of global transmittance under broken-cloud conditions compared to clear, cirrus, or overcast skies. The spatial autocorrelation function including its frequency dependence is determined to quantify the degree of similarity of two time series measurements as a function of their spatial separation. Distances ranging from 100 m to 10 km are considered, and a rapid decrease of the autocorrelation function is found with increasing frequency and distance. For frequencies above 1/3 min-1 and points separated by more than 1 km, variations in transmittance become completely uncorrelated. A method is introduced to estimate the deviation between a point measurement and a spatially averaged value for a surrounding domain, which takes into account domain size and averaging period, and is used to explore the representativeness of a single pyranometer observation for its surrounding region. Two distinct mechanisms are identified, which limit the representativeness; on the one hand, spatial averaging reduces variability and thus modifies the shape of the power spectrum. On the other hand, the correlation of variations of the spatially averaged field and a point measurement decreases rapidly with increasing temporal frequency. For a grid box of 10 km × 10 km and averaging periods of 1.5-3 h, the deviation of global transmittance between a point measurement and an area-averaged value depends on the prevailing sky conditions: 2.8 (clear), 1.8 (cirrus), 1.5 (overcast), and 4.2 % (broken clouds). The solar global radiation observed at a single station is found to deviate from the spatial average by as much as 14-23 (clear), 8-26 (cirrus), 4-23 (overcast), and 31-79 W m-2 (broken clouds) from domain averages ranging from 1 km × 1 km to 10 km × 10 km in area.

  9. Compressive Strength Estimation of Marble Specimens using Acoustic Emission Hits in Time and Natural Time Domains: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Hloupis, George; Stavrakas, Ilias; Vallianatos, Filippos; Triantis, Dimos

    2013-04-01

    The current study deals with preliminary results of characteristic patterns derived from acoustic emissions during compressional stress. Two loading cycles were applied to a specimen of 4cm x 4cm x 10 cm Dionysos marble while acoustic emissions (AE) were recorded using one acoustic sensor coupled at the expected direction of the main crack (at the center of the specimen). The produced time series comprised from the number of counts per AE hit under increasing and constant load. Processing took place in two domains: in conventional time domain (t), using multiresolution wavelet analysis for the study of temporal variation of the wavelet-coefficients' standard deviation (SDEV) [1] and in natural time domain (χ), using the variance (κ1) of natural-time transformed time-series [2,3]. Results in both cases, dictate that identification of the region where the increasing stress (σ), exceeds 40% of the ultimate compressional strength (σ*), is possible. More specific, in conventional time domain, the temporal evolution of SDEV presents a sharp change around σ* during first loading cycle and less than σ* during second loading cycle. In natural time domain, the κ1 value clearly oscillate around 0.07 at natural time indexes corresponding to σ* during first loading cycle. Merging both results leads to a preliminary observation that we have an identification of the time when the compressional stress exceeds σ*. References [1] Telesca, L., Hloupis, G., Nikolintaga, I., Vallianatos, F.,."Temporal patterns in southern Aegean seismicity revealed by the multiresolution wavelet analysis", Communications in Nonlinear Science and Numerical Simulation, vol. 12, issue 8, pp 1418-1426, 2007 [2] P. A. Varotsos, N. V. Sarlis, and E. S. Skordas, "Natural Time Analysis: The New View of Time. Precursory Seismic Electric Signals, Earthquakes and other Complex Time-Series", Springer-Verlag, Berlin, Heidelberg, 2011. [3] N. V. Sarlis, P. A. Varotsos, and E. S. Skordas, "Flux Avalances in YBa2Cu307-x films and rice piles: natural time domain analysis", Physical Review B, 73, 054504, 2006. Acknowledgements This work was supported by the THALES Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled "Integrated understanding of Seismicity, using innovative Methodologies of Fracture mechanics along with Earthquake and non extensive statistical physics - Application to the geodynamic system of the Hellenic Arc. SEISMO FEAR HELLARC".

  10. [Surface electromyography signal classification using gray system theory].

    PubMed

    Xie, Hongbo; Ma, Congbin; Wang, Zhizhong; Huang, Hai

    2004-12-01

    A new method based on gray correlation was introduced to improve the identification rate in artificial limb. The electromyography (EMG) signal was first transformed into time-frequency domain by wavelet transform. Singular value decomposition (SVD) was then used to extract feature vector from the wavelet coefficient for pattern recognition. The decision was made according to the maximum gray correlation coefficient. Compared with neural network recognition, this robust method has an almost equivalent recognition rate but much lower computation costs and less training samples.

  11. Wavelet based free-form deformations for nonrigid registration

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.

  12. Adaptive multiresolution modeling of groundwater flow in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Malenica, Luka; Gotovac, Hrvoje; Srzic, Veljko; Andric, Ivo

    2016-04-01

    Proposed methodology was originally developed by our scientific team in Split who designed multiresolution approach for analyzing flow and transport processes in highly heterogeneous porous media. The main properties of the adaptive Fup multi-resolution approach are: 1) computational capabilities of Fup basis functions with compact support capable to resolve all spatial and temporal scales, 2) multi-resolution presentation of heterogeneity as well as all other input and output variables, 3) accurate, adaptive and efficient strategy and 4) semi-analytical properties which increase our understanding of usually complex flow and transport processes in porous media. The main computational idea behind this approach is to separately find the minimum number of basis functions and resolution levels necessary to describe each flow and transport variable with the desired accuracy on a particular adaptive grid. Therefore, each variable is separately analyzed, and the adaptive and multi-scale nature of the methodology enables not only computational efficiency and accuracy, but it also describes subsurface processes closely related to their understood physical interpretation. The methodology inherently supports a mesh-free procedure, avoiding the classical numerical integration, and yields continuous velocity and flux fields, which is vitally important for flow and transport simulations. In this paper, we will show recent improvements within the proposed methodology. Since "state of the art" multiresolution approach usually uses method of lines and only spatial adaptive procedure, temporal approximation was rarely considered as a multiscale. Therefore, novel adaptive implicit Fup integration scheme is developed, resolving all time scales within each global time step. It means that algorithm uses smaller time steps only in lines where solution changes are intensive. Application of Fup basis functions enables continuous time approximation, simple interpolation calculations across different temporal lines and local time stepping control. Critical aspect of time integration accuracy is construction of spatial stencil due to accurate calculation of spatial derivatives. Since common approach applied for wavelets and splines uses a finite difference operator, we developed here collocation one including solution values and differential operator. In this way, new improved algorithm is adaptive in space and time enabling accurate solution for groundwater flow problems, especially in highly heterogeneous porous media with large lnK variances and different correlation length scales. In addition, differences between collocation and finite volume approaches are discussed. Finally, results show application of methodology to the groundwater flow problems in highly heterogeneous confined and unconfined aquifers.

  13. Wavelet subspace decomposition of thermal infrared images for defect detection in artworks

    NASA Astrophysics Data System (ADS)

    Ahmad, M. Z.; Khan, A. A.; Mezghani, S.; Perrin, E.; Mouhoubi, K.; Bodnar, J. L.; Vrabie, V.

    2016-07-01

    Health of ancient artworks must be routinely monitored for their adequate preservation. Faults in these artworks may develop over time and must be identified as precisely as possible. The classical acoustic testing techniques, being invasive, risk causing permanent damage during periodic inspections. Infrared thermometry offers a promising solution to map faults in artworks. It involves heating the artwork and recording its thermal response using infrared camera. A novel strategy based on pseudo-random binary excitation principle is used in this work to suppress the risks associated with prolonged heating. The objective of this work is to develop an automatic scheme for detecting faults in the captured images. An efficient scheme based on wavelet based subspace decomposition is developed which favors identification of, the otherwise invisible, weaker faults. Two major problems addressed in this work are the selection of the optimal wavelet basis and the subspace level selection. A novel criterion based on regional mutual information is proposed for the latter. The approach is successfully tested on a laboratory based sample as well as real artworks. A new contrast enhancement metric is developed to demonstrate the quantitative efficiency of the algorithm. The algorithm is successfully deployed for both laboratory based and real artworks.

  14. Motor current signature analysis for gearbox condition monitoring under transient speeds using wavelet analysis and dual-level time synchronous averaging

    NASA Astrophysics Data System (ADS)

    Bravo-Imaz, Inaki; Davari Ardakani, Hossein; Liu, Zongchang; García-Arribas, Alfredo; Arnaiz, Aitor; Lee, Jay

    2017-09-01

    This paper focuses on analyzing motor current signature for fault diagnosis of gearboxes operating under transient speed regimes. Two different strategies are evaluated, extensively tested and compared to analyze the motor current signature in order to implement a condition monitoring system for gearboxes in industrial machinery. A specially designed test bench is used, thoroughly monitored to fully characterize the experiments, in which gears in different health status are tested. The measured signals are analyzed using discrete wavelet decomposition, in different decomposition levels using a range of mother wavelets. Moreover, a dual-level time synchronous averaging analysis is performed on the same signal to compare the performance of the two methods. From both analyses, the relevant features of the signals are extracted and cataloged using a self-organizing map, which allows for an easy detection and classification of the diverse health states of the gears. The results demonstrate the effectiveness of both methods for diagnosing gearbox faults. A slightly better performance was observed for dual-level time synchronous averaging method. Based on the obtained results, the proposed methods can used as effective and reliable condition monitoring procedures for gearbox condition monitoring using only motor current signature.

  15. A correlation study regarding the AE index and ACE solar wind data for Alfvénic intervals using wavelet decomposition and reconstruction

    NASA Astrophysics Data System (ADS)

    Guarnieri, Fernando L.; Tsurutani, Bruce T.; Vieira, Luis E. A.; Hajra, Rajkumar; Echer, Ezequiel; Mannucci, Anthony J.; Gonzalez, Walter D.

    2018-01-01

    The purpose of this study is to present a wavelet interactive filtering and reconstruction technique and apply this to the solar wind magnetic field components detected at the L1 Lagrange point ˜ 0.01 AU upstream of the Earth. These filtered interplanetary magnetic field (IMF) data are fed into a model to calculate a time series which we call AE∗. This model was adjusted assuming that magnetic reconnection associated with southward-directed IMF Bz is the main mechanism transferring energy into the magnetosphere. The calculated AE∗ was compared to the observed AE (auroral electrojet) index using cross-correlation analysis. The results show correlations as high as 0.90. Empirical removal of the high-frequency, short-wavelength Alfvénic component in the IMF by wavelet decomposition is shown to dramatically improve the correlation between AE∗ and the observed AE index. It is envisioned that this AE∗ can be used as the main input for a model to forecast relativistic electrons in the Earth's outer radiation belts, which are delayed by ˜ 1 to 2 days from intense AE events.

  16. A hybrid fault diagnosis method based on second generation wavelet de-noising and local mean decomposition for rotating machinery.

    PubMed

    Liu, Zhiwen; He, Zhengjia; Guo, Wei; Tang, Zhangchun

    2016-03-01

    In order to extract fault features of large-scale power equipment from strong background noise, a hybrid fault diagnosis method based on the second generation wavelet de-noising (SGWD) and the local mean decomposition (LMD) is proposed in this paper. In this method, a de-noising algorithm of second generation wavelet transform (SGWT) using neighboring coefficients was employed as the pretreatment to remove noise in rotating machinery vibration signals by virtue of its good effect in enhancing the signal-noise ratio (SNR). Then, the LMD method is used to decompose the de-noised signals into several product functions (PFs). The PF corresponding to the faulty feature signal is selected according to the correlation coefficients criterion. Finally, the frequency spectrum is analyzed by applying the FFT to the selected PF. The proposed method is applied to analyze the vibration signals collected from an experimental gearbox and a real locomotive rolling bearing. The results demonstrate that the proposed method has better performances such as high SNR and fast convergence speed than the normal LMD method. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  17. A Signal Processing Approach with a Smooth Empirical Mode Decomposition to Reveal Hidden Trace of Corrosion in Highly Contaminated Guided Wave Signals for Concrete-Covered Pipes

    PubMed Central

    Rostami, Javad; Chen, Jingming; Tse, Peter W.

    2017-01-01

    Ultrasonic guided waves have been extensively applied for non-destructive testing of plate-like structures particularly pipes in past two decades. In this regard, if a structure has a simple geometry, obtained guided waves’ signals are easy to explain. However, any small degree of complexity in the geometry such as contacting with other materials may cause an extra amount of complication in the interpretation of guided wave signals. The problem deepens if defects have irregular shapes such as natural corrosion. Signal processing techniques that have been proposed for guided wave signals’ analysis are generally good for simple signals obtained in a highly controlled experimental environment. In fact, guided wave signals in a real situation such as the existence of natural corrosion in wall-covered pipes are much more complicated. Considering pipes in residential buildings that pass through concrete walls, in this paper we introduced Smooth Empirical Mode Decomposition (SEMD) to efficiently separate overlapped guided waves. As empirical mode decomposition (EMD) which is a good candidate for analyzing non-stationary signals, suffers from some shortcomings, wavelet transform was adopted in the sifting stage of EMD to improve its outcome in SEMD. However, selection of mother wavelet that suits best for our purpose plays an important role. Since in guided wave inspection, the incident waves are well known and are usually tone-burst signals, we tailored a complex tone-burst signal to be used as our mother wavelet. In the sifting stage of EMD, wavelet de-noising was applied to eliminate unwanted frequency components from each IMF. SEMD greatly enhances the performance of EMD in guided wave analysis for highly contaminated signals. In our experiment on concrete covered pipes with natural corrosion, this method not only separates the concrete wall indication clearly in time domain signal, a natural corrosion with complex geometry that was hidden and located inside the concrete section was successfully exposed. PMID:28178220

  18. A Signal Processing Approach with a Smooth Empirical Mode Decomposition to Reveal Hidden Trace of Corrosion in Highly Contaminated Guided Wave Signals for Concrete-Covered Pipes.

    PubMed

    Rostami, Javad; Chen, Jingming; Tse, Peter W

    2017-02-07

    Ultrasonic guided waves have been extensively applied for non-destructive testing of plate-like structures particularly pipes in past two decades. In this regard, if a structure has a simple geometry, obtained guided waves' signals are easy to explain. However, any small degree of complexity in the geometry such as contacting with other materials may cause an extra amount of complication in the interpretation of guided wave signals. The problem deepens if defects have irregular shapes such as natural corrosion. Signal processing techniques that have been proposed for guided wave signals' analysis are generally good for simple signals obtained in a highly controlled experimental environment. In fact, guided wave signals in a real situation such as the existence of natural corrosion in wall-covered pipes are much more complicated. Considering pipes in residential buildings that pass through concrete walls, in this paper we introduced Smooth Empirical Mode Decomposition (SEMD) to efficiently separate overlapped guided waves. As empirical mode decomposition (EMD) which is a good candidate for analyzing non-stationary signals, suffers from some shortcomings, wavelet transform was adopted in the sifting stage of EMD to improve its outcome in SEMD. However, selection of mother wavelet that suits best for our purpose plays an important role. Since in guided wave inspection, the incident waves are well known and are usually tone-burst signals, we tailored a complex tone-burst signal to be used as our mother wavelet. In the sifting stage of EMD, wavelet de-noising was applied to eliminate unwanted frequency components from each IMF. SEMD greatly enhances the performance of EMD in guided wave analysis for highly contaminated signals. In our experiment on concrete covered pipes with natural corrosion, this method not only separates the concrete wall indication clearly in time domain signal, a natural corrosion with complex geometry that was hidden and located inside the concrete section was successfully exposed.

  19. Wavelet filtered shifted phase-encoded joint transform correlation for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new wavelet-filtered-based Shifted- phase-encoded Joint Transform Correlation (WPJTC) technique has been proposed for efficient face recognition. The proposed technique uses discrete wavelet decomposition for preprocessing and can effectively accommodate various 3D facial distortions, effects of noise, and illumination variations. After analyzing different forms of wavelet basis functions, an optimal method has been proposed by considering the discrimination capability and processing speed as performance trade-offs. The proposed technique yields better correlation discrimination compared to alternate pattern recognition techniques such as phase-shifted phase-encoded fringe-adjusted joint transform correlator. The performance of the proposed WPJTC has been tested using the Yale facial database and extended Yale facial database under different environments such as illumination variation, noise, and 3D changes in facial expressions. Test results show that the proposed WPJTC yields better performance compared to alternate JTC based face recognition techniques.

  20. Application of lifting wavelet and random forest in compound fault diagnosis of gearbox

    NASA Astrophysics Data System (ADS)

    Chen, Tang; Cui, Yulian; Feng, Fuzhou; Wu, Chunzhi

    2018-03-01

    Aiming at the weakness of compound fault characteristic signals of a gearbox of an armored vehicle and difficult to identify fault types, a fault diagnosis method based on lifting wavelet and random forest is proposed. First of all, this method uses the lifting wavelet transform to decompose the original vibration signal in multi-layers, reconstructs the multi-layer low-frequency and high-frequency components obtained by the decomposition to get multiple component signals. Then the time-domain feature parameters are obtained for each component signal to form multiple feature vectors, which is input into the random forest pattern recognition classifier to determine the compound fault type. Finally, a variety of compound fault data of the gearbox fault analog test platform are verified, the results show that the recognition accuracy of the fault diagnosis method combined with the lifting wavelet and the random forest is up to 99.99%.

  1. Heart Rate Variability and Wavelet-based Studies on ECG Signals from Smokers and Non-smokers

    NASA Astrophysics Data System (ADS)

    Pal, K.; Goel, R.; Champaty, B.; Samantray, S.; Tibarewala, D. N.

    2013-12-01

    The current study deals with the heart rate variability (HRV) and wavelet-based ECG signal analysis of smokers and non-smokers. The results of HRV indicated dominance towards the sympathetic nervous system activity in smokers. The heart rate was found to be higher in case of smokers as compared to non-smokers ( p < 0.05). The frequency domain analysis showed an increase in the LF and LF/HF components with a subsequent decrease in the HF component. The HRV features were analyzed for classification of the smokers from the non-smokers. The results indicated that when RMSSD, SD1 and RR-mean features were used concurrently a classification efficiency of > 90 % was achieved. The wavelet decomposition of the ECG signal was done using the Daubechies (db 6) wavelet family. No difference was observed between the smokers and non-smokers which apparently suggested that smoking does not affect the conduction pathway of heart.

  2. SPECT reconstruction using DCT-induced tight framelet regularization

    NASA Astrophysics Data System (ADS)

    Zhang, Jiahan; Li, Si; Xu, Yuesheng; Schmidtlein, C. R.; Lipson, Edward D.; Feiglin, David H.; Krol, Andrzej

    2015-03-01

    Wavelet transforms have been successfully applied in many fields of image processing. Yet, to our knowledge, they have never been directly incorporated to the objective function in Emission Computed Tomography (ECT) image reconstruction. Our aim has been to investigate if the ℓ1-norm of non-decimated discrete cosine transform (DCT) coefficients of the estimated radiotracer distribution could be effectively used as the regularization term for the penalized-likelihood (PL) reconstruction, where a regularizer is used to enforce the image smoothness in the reconstruction. In this study, the ℓ1-norm of 2D DCT wavelet decomposition was used as a regularization term. The Preconditioned Alternating Projection Algorithm (PAPA), which we proposed in earlier work to solve penalized likelihood (PL) reconstruction with non-differentiable regularizers, was used to solve this optimization problem. The DCT wavelet decompositions were performed on the transaxial reconstructed images. We reconstructed Monte Carlo simulated SPECT data obtained for a numerical phantom with Gaussian blobs as hot lesions and with a warm random lumpy background. Reconstructed images using the proposed method exhibited better noise suppression and improved lesion conspicuity, compared with images reconstructed using expectation maximization (EM) algorithm with Gaussian post filter (GPF). Also, the mean square error (MSE) was smaller, compared with EM-GPF. A critical and challenging aspect of this method was selection of optimal parameters. In summary, our numerical experiments demonstrated that the ℓ1-norm of discrete cosine transform (DCT) wavelet frame transform DCT regularizer shows promise for SPECT image reconstruction using PAPA method.

  3. Wavelet optimization for content-based image retrieval in medical databases.

    PubMed

    Quellec, G; Lamard, M; Cazuguel, G; Cochener, B; Roux, C

    2010-04-01

    We propose in this article a content-based image retrieval (CBIR) method for diagnosis aid in medical fields. In the proposed system, images are indexed in a generic fashion, without extracting domain-specific features: a signature is built for each image from its wavelet transform. These image signatures characterize the distribution of wavelet coefficients in each subband of the decomposition. A distance measure is then defined to compare two image signatures and thus retrieve the most similar images in a database when a query image is submitted by a physician. To retrieve relevant images from a medical database, the signatures and the distance measure must be related to the medical interpretation of images. As a consequence, we introduce several degrees of freedom in the system so that it can be tuned to any pathology and image modality. In particular, we propose to adapt the wavelet basis, within the lifting scheme framework, and to use a custom decomposition scheme. Weights are also introduced between subbands. All these parameters are tuned by an optimization procedure, using the medical grading of each image in the database to define a performance measure. The system is assessed on two medical image databases: one for diabetic retinopathy follow up and one for screening mammography, as well as a general purpose database. Results are promising: a mean precision of 56.50%, 70.91% and 96.10% is achieved for these three databases, when five images are returned by the system. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Filtering of the Radon transform to enhance linear signal features via wavelet pyramid decomposition

    NASA Astrophysics Data System (ADS)

    Meckley, John R.

    1995-09-01

    The information content in many signal processing applications can be reduced to a set of linear features in a 2D signal transform. Examples include the narrowband lines in a spectrogram, ship wakes in a synthetic aperture radar image, and blood vessels in a medical computer-aided tomography scan. The line integrals that generate the values of the projections of the Radon transform can be characterized as a bank of matched filters for linear features. This localization of energy in the Radon transform for linear features can be exploited to enhance these features and to reduce noise by filtering the Radon transform with a filter explicitly designed to pass only linear features, and then reconstructing a new 2D signal by inverting the new filtered Radon transform (i.e., via filtered backprojection). Previously used methods for filtering the Radon transform include Fourier based filtering (a 2D elliptical Gaussian linear filter) and a nonlinear filter ((Radon xfrm)**y with y >= 2.0). Both of these techniques suffer from the mismatch of the filter response to the true functional form of the Radon transform of a line. The Radon transform of a line is not a point but is a function of the Radon variables (rho, theta) and the total line energy. This mismatch leads to artifacts in the reconstructed image and a reduction in achievable processing gain. The Radon transform for a line is computed as a function of angle and offset (rho, theta) and the line length. The 2D wavelet coefficients are then compared for the Haar wavelets and the Daubechies wavelets. These filter responses are used as frequency filters for the Radon transform. The filtering is performed on the wavelet pyramid decomposition of the Radon transform by detecting the most likely positions of lines in the transform and then by convolving the local area with the appropriate response and zeroing the pyramid coefficients outside of the response area. The response area is defined to contain 95% of the total wavelet coefficient energy. The detection algorithm provides an estimate of the line offset, orientation, and length that is then used to index the appropriate filter shape. Additional wavelet pyramid decomposition is performed in areas of high energy to refine the line position estimate. After filtering, the new Radon transform is generated by inverting the wavelet pyramid. The Radon transform is then inverted by filtered backprojection to produce the final 2D signal estimate with the enhanced linear features. The wavelet-based method is compared to both the Fourier and the nonlinear filtering with examples of sparse and dense shapes in imaging, acoustics and medical tomography with test images of noisy concentric lines, a real spectrogram of a blow fish (a very nonstationary spectrum), and the Shepp Logan Computer Tomography phantom image. Both qualitative and derived quantitative measures demonstrate the improvement of wavelet-based filtering. Additional research is suggested based on these results. Open questions include what level(s) to use for detection and filtering because multiple-level representations exist. The lower levels are smoother at reduced spatial resolution, while the higher levels provide better response to edges. Several examples are discussed based on analytical and phenomenological arguments.

  5. Automatic classification of visual evoked potentials based on wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Stasiakiewicz, Paweł; Dobrowolski, Andrzej P.; Tomczykiewicz, Kazimierz

    2017-04-01

    Diagnosis of part of the visual system, that is responsible for conducting compound action potential, is generally based on visual evoked potentials generated as a result of stimulation of the eye by external light source. The condition of patient's visual path is assessed by set of parameters that describe the time domain characteristic extremes called waves. The decision process is compound therefore diagnosis significantly depends on experience of a doctor. The authors developed a procedure - based on wavelet decomposition and linear discriminant analysis - that ensures automatic classification of visual evoked potentials. The algorithm enables to assign individual case to normal or pathological class. The proposed classifier has a 96,4% sensitivity at 10,4% probability of false alarm in a group of 220 cases and area under curve ROC equals to 0,96 which, from the medical point of view, is a very good result.

  6. An optimized digital watermarking algorithm in wavelet domain based on differential evolution for color image.

    PubMed

    Cui, Xinchun; Niu, Yuying; Zheng, Xiangwei; Han, Yingshuai

    2018-01-01

    In this paper, a new color watermarking algorithm based on differential evolution is proposed. A color host image is first converted from RGB space to YIQ space, which is more suitable for the human visual system. Then, apply three-level discrete wavelet transformation to luminance component Y and generate four different frequency sub-bands. After that, perform singular value decomposition on these sub-bands. In the watermark embedding process, apply discrete wavelet transformation to a watermark image after the scrambling encryption processing. Our new algorithm uses differential evolution algorithm with adaptive optimization to choose the right scaling factors. Experimental results show that the proposed algorithm has a better performance in terms of invisibility and robustness.

  7. Experimental Investigation for Fault Diagnosis Based on a Hybrid Approach Using Wavelet Packet and Support Vector Classification

    PubMed Central

    Li, Pengfei; Jiang, Yongying; Xiang, Jiawei

    2014-01-01

    To deal with the difficulty to obtain a large number of fault samples under the practical condition for mechanical fault diagnosis, a hybrid method that combined wavelet packet decomposition and support vector classification (SVC) is proposed. The wavelet packet is employed to decompose the vibration signal to obtain the energy ratio in each frequency band. Taking energy ratios as feature vectors, the pattern recognition results are obtained by the SVC. The rolling bearing and gear fault diagnostic results of the typical experimental platform show that the present approach is robust to noise and has higher classification accuracy and, thus, provides a better way to diagnose mechanical faults under the condition of small fault samples. PMID:24688361

  8. Hydrological response of karst systems to large-scale climate variability for different catchments of the French karst observatory network INSU/CNRS SNO KARST

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Labat, David; Jourde, Hervé; Lecoq, Nicolas; Mazzilli, Naomi

    2017-04-01

    The french karst observatory network SNO KARST is a national initiative from the National Institute for Earth Sciences and Astronomy (INSU) of the National Center for Scientific Research (CNRS). It is also part of the new french research infrastructure for the observation of the critical zone OZCAR. SNO KARST is composed by several karst sites distributed over conterminous France which are located in different physiographic and climatic contexts (Mediterranean, Pyrenean, Jura mountain, western and northwestern shore near the Atlantic or the English Channel). This allows the scientific community to develop advanced research and experiments dedicated to improve understanding of the hydrological functioning of karst catchments. Here we used several sites of SNO KARST in order to assess the hydrological response of karst catchments to long-term variation of large-scale atmospheric circulation. Using NCEP reanalysis products and karst discharge, we analyzed the links between large-scale circulation and karst water resources variability. As karst hydrosystems are highly heterogeneous media, they behave differently across different time-scales : we explore the large-scale/local-scale relationships according to time-scales using a wavelet multiresolution approach of both karst hydrological variables and large-scale climate fields such as sea level pressure (SLP). The different wavelet components of karst discharge in response to the corresponding wavelet component of climate fields are either 1) compared to physico-chemical/geochemical responses at karst springs, or 2) interpreted in terms of hydrological functioning by comparing discharge wavelet components to internal components obtained from precipitation/discharge models using the KARSTMOD conceptual modeling platform of SNO KARST.

  9. Texture segmentation of non-cooperative spacecrafts images based on wavelet and fractal dimension

    NASA Astrophysics Data System (ADS)

    Wu, Kanzhi; Yue, Xiaokui

    2011-06-01

    With the increase of on-orbit manipulations and space conflictions, missions such as tracking and capturing the target spacecrafts are aroused. Unlike cooperative spacecrafts, fixing beacons or any other marks on the targets is impossible. Due to the unknown shape and geometry features of non-cooperative spacecraft, in order to localize the target and obtain the latitude, we need to segment the target image and recognize the target from the background. The data and errors during the following procedures such as feature extraction and matching can also be reduced. Multi-resolution analysis of wavelet theory reflects human beings' recognition towards images from low resolution to high resolution. In addition, spacecraft is the only man-made object in the image compared to the natural background and the differences will be certainly observed between the fractal dimensions of target and background. Combined wavelet transform and fractal dimension, in this paper, we proposed a new segmentation algorithm for the images which contains complicated background such as the universe and planet surfaces. At first, Daubechies wavelet basis is applied to decompose the image in both x axis and y axis, thus obtain four sub-images. Then, calculate the fractal dimensions in four sub-images using different methods; after analyzed the results of fractal dimensions in sub-images, we choose Differential Box Counting in low resolution image as the principle to segment the texture which has the greatest divergences between different sub-images. This paper also presents the results of experiments by using the algorithm above. It is demonstrated that an accurate texture segmentation result can be obtained using the proposed technique.

  10. A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG

    PubMed Central

    Chen, Duo; Wan, Suiren; Xiang, Jing; Bao, Forrest Sheng

    2017-01-01

    In the past decade, Discrete Wavelet Transform (DWT), a powerful time-frequency tool, has been widely used in computer-aided signal analysis of epileptic electroencephalography (EEG), such as the detection of seizures. One of the important hurdles in the applications of DWT is the settings of DWT, which are chosen empirically or arbitrarily in previous works. The objective of this study aimed to develop a framework for automatically searching the optimal DWT settings to improve accuracy and to reduce computational cost of seizure detection. To address this, we developed a method to decompose EEG data into 7 commonly used wavelet families, to the maximum theoretical level of each mother wavelet. Wavelets and decomposition levels providing the highest accuracy in each wavelet family were then searched in an exhaustive selection of frequency bands, which showed optimal accuracy and low computational cost. The selection of frequency bands and features removed approximately 40% of redundancies. The developed algorithm achieved promising performance on two well-tested EEG datasets (accuracy >90% for both datasets). The experimental results of the developed method have demonstrated that the settings of DWT affect its performance on seizure detection substantially. Compared with existing seizure detection methods based on wavelet, the new approach is more accurate and transferable among datasets. PMID:28278203

  11. Multimodal fusion framework: a multiresolution approach for emotion classification and recognition from physiological signals.

    PubMed

    Verma, Gyanendra K; Tiwary, Uma Shanker

    2014-11-15

    The purpose of this paper is twofold: (i) to investigate the emotion representation models and find out the possibility of a model with minimum number of continuous dimensions and (ii) to recognize and predict emotion from the measured physiological signals using multiresolution approach. The multimodal physiological signals are: Electroencephalogram (EEG) (32 channels) and peripheral (8 channels: Galvanic skin response (GSR), blood volume pressure, respiration pattern, skin temperature, electromyogram (EMG) and electrooculogram (EOG)) as given in the DEAP database. We have discussed the theories of emotion modeling based on i) basic emotions, ii) cognitive appraisal and physiological response approach and iii) the dimensional approach and proposed a three continuous dimensional representation model for emotions. The clustering experiment on the given valence, arousal and dominance values of various emotions has been done to validate the proposed model. A novel approach for multimodal fusion of information from a large number of channels to classify and predict emotions has also been proposed. Discrete Wavelet Transform, a classical transform for multiresolution analysis of signal has been used in this study. The experiments are performed to classify different emotions from four classifiers. The average accuracies are 81.45%, 74.37%, 57.74% and 75.94% for SVM, MLP, KNN and MMC classifiers respectively. The best accuracy is for 'Depressing' with 85.46% using SVM. The 32 EEG channels are considered as independent modes and features from each channel are considered with equal importance. May be some of the channel data are correlated but they may contain supplementary information. In comparison with the results given by others, the high accuracy of 85% with 13 emotions and 32 subjects from our proposed method clearly proves the potential of our multimodal fusion approach. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Hierarchical analysis of spatial pattern and processes of Douglas-fir forests. Ph.D. Thesis, 10 Sep. 1991 Abstract Only

    NASA Technical Reports Server (NTRS)

    Bradshaw, G. A.

    1995-01-01

    There has been an increased interest in the quantification of pattern in ecological systems over the past years. This interest is motivated by the desire to construct valid models which extend across many scales. Spatial methods must quantify pattern, discriminate types of pattern, and relate hierarchical phenomena across scales. Wavelet analysis is introduced as a method to identify spatial structure in ecological transect data. The main advantage of the wavelet transform over other methods is its ability to preserve and display hierarchical information while allowing for pattern decomposition. Two applications of wavelet analysis are illustrated, as a means to: (1) quantify known spatial patterns in Douglas-fir forests at several scales, and (2) construct spatially-explicit hypotheses regarding pattern generating mechanisms. Application of the wavelet variance, derived from the wavelet transform, is developed for forest ecosystem analysis to obtain additional insight into spatially-explicit data. Specifically, the resolution capabilities of the wavelet variance are compared to the semi-variogram and Fourier power spectra for the description of spatial data using a set of one-dimensional stationary and non-stationary processes. The wavelet cross-covariance function is derived from the wavelet transform and introduced as a alternative method for the analysis of multivariate spatial data of understory vegetation and canopy in Douglas-fir forests of the western Cascades of Oregon.

  13. Identification of speech transients using variable frame rate analysis and wavelet packets.

    PubMed

    Rasetshwane, Daniel M; Boston, J Robert; Li, Ching-Chung

    2006-01-01

    Speech transients are important cues for identifying and discriminating speech sounds. Yoo et al. and Tantibundhit et al. were successful in identifying speech transients and, emphasizing them, improving the intelligibility of speech in noise. However, their methods are computationally intensive and unsuitable for real-time applications. This paper presents a method to identify and emphasize speech transients that combines subband decomposition by the wavelet packet transform with variable frame rate (VFR) analysis and unvoiced consonant detection. The VFR analysis is applied to each wavelet packet to define a transitivity function that describes the extent to which the wavelet coefficients of that packet are changing. Unvoiced consonant detection is used to identify unvoiced consonant intervals and the transitivity function is amplified during these intervals. The wavelet coefficients are multiplied by the transitivity function for that packet, amplifying the coefficients localized at times when they are changing and attenuating coefficients at times when they are steady. Inverse transform of the modified wavelet packet coefficients produces a signal corresponding to speech transients similar to the transients identified by Yoo et al. and Tantibundhit et al. A preliminary implementation of the algorithm runs more efficiently.

  14. Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Hadi; Rajaee, Taher

    2017-01-01

    Simulation of groundwater level (GWL) fluctuations is an important task in management of groundwater resources. In this study, the effect of wavelet analysis on the training of the artificial neural network (ANN), multi linear regression (MLR) and support vector regression (SVR) approaches was investigated, and the ANN, MLR and SVR along with the wavelet-ANN (WNN), wavelet-MLR (WLR) and wavelet-SVR (WSVR) models were compared in simulating one-month-ahead of GWL. The only variable used to develop the models was the monthly GWL data recorded over a period of 11 years from two wells in the Qom plain, Iran. The results showed that decomposing GWL time series into several sub-time series, extremely improved the training of the models. For both wells 1 and 2, the Meyer and Db5 wavelets produced better results compared to the other wavelets; which indicated wavelet types had similar behavior in similar case studies. The optimal number of delays was 6 months, which seems to be due to natural phenomena. The best WNN model, using Meyer mother wavelet with two decomposition levels, simulated one-month-ahead with RMSE values being equal to 0.069 m and 0.154 m for wells 1 and 2, respectively. The RMSE values for the WLR model were 0.058 m and 0.111 m, and for WSVR model were 0.136 m and 0.060 m for wells 1 and 2, respectively.

  15. Assessments on GOCE-based Gravity Field Model Comparisons with Terrestrial Data Using Wavelet Decomposition and Spectral Enhancement Approaches

    NASA Astrophysics Data System (ADS)

    Erol, Serdar; Serkan Isık, Mustafa; Erol, Bihter

    2016-04-01

    The recent Earth gravity field satellite missions data lead significant improvement in Global Geopotential Models in terms of both accuracy and resolution. However the improvement in accuracy is not the same everywhere in the Earth and therefore quantifying the level of improvement locally is necessary using the independent data. The validations of the level-3 products from the gravity field satellite missions, independently from the estimation procedures of these products, are possible using various arbitrary data sets, as such the terrestrial gravity observations, astrogeodetic vertical deflections, GPS/leveling data, the stationary sea surface topography. Quantifying the quality of the gravity field functionals via recent products has significant importance for determination of the regional geoid modeling, base on the satellite and terrestrial data fusion with an optimal algorithm, beside the statistical reporting the improvement rates depending on spatial location. In the validations, the errors and the systematic differences between the data and varying spectral content of the compared signals should be considered in order to have comparable results. In this manner this study compares the performance of Wavelet decomposition and spectral enhancement techniques in validation of the GOCE/GRACE based Earth gravity field models using GPS/leveling and terrestrial gravity data in Turkey. The terrestrial validation data are filtered using Wavelet decomposition technique and the numerical results from varying levels of decomposition are compared with the results which are derived using the spectral enhancement approach with contribution of an ultra-high resolution Earth gravity field model. The tests include the GO-DIR-R5, GO-TIM-R5, GOCO05S, EIGEN-6C4 and EGM2008 global models. The conclusion discuss the superiority and drawbacks of both concepts as well as reporting the performance of tested gravity field models with an estimate of their contribution to modeling the geoid in Turkish territory.

  16. Feature extraction across individual time series observations with spikes using wavelet principal component analysis.

    PubMed

    Røislien, Jo; Winje, Brita

    2013-09-20

    Clinical studies frequently include repeated measurements of individuals, often for long periods. We present a methodology for extracting common temporal features across a set of individual time series observations. In particular, the methodology explores extreme observations within the time series, such as spikes, as a possible common temporal phenomenon. Wavelet basis functions are attractive in this sense, as they are localized in both time and frequency domains simultaneously, allowing for localized feature extraction from a time-varying signal. We apply wavelet basis function decomposition of individual time series, with corresponding wavelet shrinkage to remove noise. We then extract common temporal features using linear principal component analysis on the wavelet coefficients, before inverse transformation back to the time domain for clinical interpretation. We demonstrate the methodology on a subset of a large fetal activity study aiming to identify temporal patterns in fetal movement (FM) count data in order to explore formal FM counting as a screening tool for identifying fetal compromise and thus preventing adverse birth outcomes. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Luminance sticker based facial expression recognition using discrete wavelet transform for physically disabled persons.

    PubMed

    Nagarajan, R; Hariharan, M; Satiyan, M

    2012-08-01

    Developing tools to assist physically disabled and immobilized people through facial expression is a challenging area of research and has attracted many researchers recently. In this paper, luminance stickers based facial expression recognition is proposed. Recognition of facial expression is carried out by employing Discrete Wavelet Transform (DWT) as a feature extraction method. Different wavelet families with their different orders (db1 to db20, Coif1 to Coif 5 and Sym2 to Sym8) are utilized to investigate their performance in recognizing facial expression and to evaluate their computational time. Standard deviation is computed for the coefficients of first level of wavelet decomposition for every order of wavelet family. This standard deviation is used to form a set of feature vectors for classification. In this study, conventional validation and cross validation are performed to evaluate the efficiency of the suggested feature vectors. Three different classifiers namely Artificial Neural Network (ANN), k-Nearest Neighborhood (kNN) and Linear Discriminant Analysis (LDA) are used to classify a set of eight facial expressions. The experimental results demonstrate that the proposed method gives very promising classification accuracies.

  18. Reconstructing Past Admixture Processes from Local Genomic Ancestry Using Wavelet Transformation

    PubMed Central

    Sanderson, Jean; Sudoyo, Herawati; Karafet, Tatiana M.; Hammer, Michael F.; Cox, Murray P.

    2015-01-01

    Admixture between long-separated populations is a defining feature of the genomes of many species. The mosaic block structure of admixed genomes can provide information about past contact events, including the time and extent of admixture. Here, we describe an improved wavelet-based technique that better characterizes ancestry block structure from observed genomic patterns. principal components analysis is first applied to genomic data to identify the primary population structure, followed by wavelet decomposition to develop a new characterization of local ancestry information along the chromosomes. For testing purposes, this method is applied to human genome-wide genotype data from Indonesia, as well as virtual genetic data generated using genome-scale sequential coalescent simulations under a wide range of admixture scenarios. Time of admixture is inferred using an approximate Bayesian computation framework, providing robust estimates of both admixture times and their associated levels of uncertainty. Crucially, we demonstrate that this revised wavelet approach, which we have released as the R package adwave, provides improved statistical power over existing wavelet-based techniques and can be used to address a broad range of admixture questions. PMID:25852078

  19. Information Theory Filters for Wavelet Packet Coefficient Selection with Application to Corrosion Type Identification from Acoustic Emission Signals

    PubMed Central

    Van Dijck, Gert; Van Hulle, Marc M.

    2011-01-01

    The damage caused by corrosion in chemical process installations can lead to unexpected plant shutdowns and the leakage of potentially toxic chemicals into the environment. When subjected to corrosion, structural changes in the material occur, leading to energy releases as acoustic waves. This acoustic activity can in turn be used for corrosion monitoring, and even for predicting the type of corrosion. Here we apply wavelet packet decomposition to extract features from acoustic emission signals. We then use the extracted wavelet packet coefficients for distinguishing between the most important types of corrosion processes in the chemical process industry: uniform corrosion, pitting and stress corrosion cracking. The local discriminant basis selection algorithm can be considered as a standard for the selection of the most discriminative wavelet coefficients. However, it does not take the statistical dependencies between wavelet coefficients into account. We show that, when these dependencies are ignored, a lower accuracy is obtained in predicting the corrosion type. We compare several mutual information filters to take these dependencies into account in order to arrive at a more accurate prediction. PMID:22163921

  20. Cointegration and Nonstationarity in the Context of Multiresolution Analysis

    NASA Astrophysics Data System (ADS)

    Worden, K.; Cross, E. J.; Kyprianou, A.

    2011-07-01

    Cointegration has established itself as a powerful means of projecting out long-term trends from time-series data in the context of econometrics. Recent work by the current authors has further established that cointegration can be applied profitably in the context of structural health monitoring (SHM), where it is desirable to project out the effects of environmental and operational variations from data in order that they do not generate false positives in diagnostic tests. The concept of cointegration is partly built on a clear understanding of the ideas of stationarity and nonstationarity for time-series. Nonstationarity in this context is 'traditionally' established through the use of statistical tests, e.g. the hypothesis test based on the augmented Dickey-Fuller statistic. However, it is important to understand the distinction in this case between 'trend' stationarity and stationarity of the AR models typically fitted as part of the analysis process. The current paper will discuss this distinction in the context of SHM data and will extend the discussion by the introduction of multi-resolution (discrete wavelet) analysis as a means of characterising the time-scales on which nonstationarity manifests itself. The discussion will be based on synthetic data and also on experimental data for the guided-wave SHM of a composite plate.

  1. Multiscale Image Processing of Solar Image Data

    NASA Astrophysics Data System (ADS)

    Young, C.; Myers, D. C.

    2001-12-01

    It is often said that the blessing and curse of solar physics is too much data. Solar missions such as Yohkoh, SOHO and TRACE have shown us the Sun with amazing clarity but have also increased the amount of highly complex data. We have improved our view of the Sun yet we have not improved our analysis techniques. The standard techniques used for analysis of solar images generally consist of observing the evolution of features in a sequence of byte scaled images or a sequence of byte scaled difference images. The determination of features and structures in the images are done qualitatively by the observer. There is little quantitative and objective analysis done with these images. Many advances in image processing techniques have occured in the past decade. Many of these methods are possibly suited for solar image analysis. Multiscale/Multiresolution methods are perhaps the most promising. These methods have been used to formulate the human ability to view and comprehend phenomena on different scales. So these techniques could be used to quantitify the imaging processing done by the observers eyes and brains. In this work we present several applications of multiscale techniques applied to solar image data. Specifically, we discuss uses of the wavelet, curvelet, and related transforms to define a multiresolution support for EIT, LASCO and TRACE images.

  2. Automatic CT Brain Image Segmentation Using Two Level Multiresolution Mixture Model of EM

    NASA Astrophysics Data System (ADS)

    Jiji, G. Wiselin; Dehmeshki, Jamshid

    2014-04-01

    Tissue classification in computed tomography (CT) brain images is an important issue in the analysis of several brain dementias. A combination of different approaches for the segmentation of brain images is presented in this paper. A multi resolution algorithm is proposed along with scaled versions using Gaussian filter and wavelet analysis that extends expectation maximization (EM) algorithm. It is found that it is less sensitive to noise and got more accurate image segmentation than traditional EM. Moreover the algorithm has been applied on 20 sets of CT of the human brain and compared with other works. The segmentation results show the advantages of the proposed work have achieved more promising results and the results have been tested with Doctors.

  3. Improving surface EMG burst detection in infrahyoid muscles during swallowing using digital filters and discrete wavelet analysis.

    PubMed

    Restrepo-Agudelo, Sebastian; Roldan-Vasco, Sebastian; Ramirez-Arbelaez, Lina; Cadavid-Arboleda, Santiago; Perez-Giraldo, Estefania; Orozco-Duque, Andres

    2017-08-01

    The visual inspection is a widely used method for evaluating the surface electromyographic signal (sEMG) during deglutition, a process highly dependent of the examiners expertise. It is desirable to have a less subjective and automated technique to improve the onset detection in swallowing related muscles, which have a low signal-to-noise ratio. In this work, we acquired sEMG measured in infrahyoid muscles with high baseline noise of ten healthy adults during water swallowing tasks. Two methods were applied to find the combination of cutoff frequencies that achieve the most accurate onset detection: discrete wavelet decomposition based method and fixed steps variations of low and high cutoff frequencies of a digital bandpass filter. Teager-Kaiser Energy operator, root mean square and simple threshold method were applied for both techniques. Results show a narrowing of the effective bandwidth vs. the literature recommended parameters for sEMG acquisition. Both level 3 decomposition with mother wavelet db4 and bandpass filter with cutoff frequencies between 130 and 180Hz were optimal for onset detection in infrahyoid muscles. The proposed methodologies recognized the onset time with predictive power above 0.95, that is similar to previous findings but in larger and more superficial muscles in limbs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A general CFD framework for fault-resilient simulations based on multi-resolution information fusion

    NASA Astrophysics Data System (ADS)

    Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em

    2017-10-01

    We develop a general CFD framework for multi-resolution simulations to target multiscale problems but also resilience in exascale simulations, where faulty processors may lead to gappy, in space-time, simulated fields. We combine approximation theory and domain decomposition together with statistical learning techniques, e.g. coKriging, to estimate boundary conditions and minimize communications by performing independent parallel runs. To demonstrate this new simulation approach, we consider two benchmark problems. First, we solve the heat equation (a) on a small number of spatial "patches" distributed across the domain, simulated by finite differences at fine resolution and (b) on the entire domain simulated at very low resolution, thus fusing multi-resolution models to obtain the final answer. Second, we simulate the flow in a lid-driven cavity in an analogous fashion, by fusing finite difference solutions obtained with fine and low resolution assuming gappy data sets. We investigate the influence of various parameters for this framework, including the correlation kernel, the size of a buffer employed in estimating boundary conditions, the coarseness of the resolution of auxiliary data, and the communication frequency across different patches in fusing the information at different resolution levels. In addition to its robustness and resilience, the new framework can be employed to generalize previous multiscale approaches involving heterogeneous discretizations or even fundamentally different flow descriptions, e.g. in continuum-atomistic simulations.

  5. Subband directional vector quantization in radiological image compression

    NASA Astrophysics Data System (ADS)

    Akrout, Nabil M.; Diab, Chaouki; Prost, Remy; Goutte, Robert; Amiel, Michel

    1992-05-01

    The aim of this paper is to propose a new scheme for image compression. The method is very efficient for images which have directional edges such as the tree-like structure of the coronary vessels in digital angiograms. This method involves two steps. First, the original image is decomposed at different resolution levels using a pyramidal subband decomposition scheme. For decomposition/reconstruction of the image, free of aliasing and boundary errors, we use an ideal band-pass filter bank implemented in the Discrete Cosine Transform domain (DCT). Second, the high-frequency subbands are vector quantized using a multiresolution codebook with vertical and horizontal codewords which take into account the edge orientation of each subband. The proposed method reduces the blocking effect encountered at low bit rates in conventional vector quantization.

  6. Sensitivity evaluation of dynamic speckle activity measurements using clustering methods.

    PubMed

    Etchepareborda, Pablo; Federico, Alejandro; Kaufmann, Guillermo H

    2010-07-01

    We evaluate and compare the use of competitive neural networks, self-organizing maps, the expectation-maximization algorithm, K-means, and fuzzy C-means techniques as partitional clustering methods, when the sensitivity of the activity measurement of dynamic speckle images needs to be improved. The temporal history of the acquired intensity generated by each pixel is analyzed in a wavelet decomposition framework, and it is shown that the mean energy of its corresponding wavelet coefficients provides a suited feature space for clustering purposes. The sensitivity obtained by using the evaluated clustering techniques is also compared with the well-known methods of Konishi-Fujii, weighted generalized differences, and wavelet entropy. The performance of the partitional clustering approach is evaluated using simulated dynamic speckle patterns and also experimental data.

  7. A wavelet-based technique to predict treatment outcome for Major Depressive Disorder.

    PubMed

    Mumtaz, Wajid; Xia, Likun; Mohd Yasin, Mohd Azhar; Azhar Ali, Syed Saad; Malik, Aamir Saeed

    2017-01-01

    Treatment management for Major Depressive Disorder (MDD) has been challenging. However, electroencephalogram (EEG)-based predictions of antidepressant's treatment outcome may help during antidepressant's selection and ultimately improve the quality of life for MDD patients. In this study, a machine learning (ML) method involving pretreatment EEG data was proposed to perform such predictions for Selective Serotonin Reuptake Inhibitor (SSRIs). For this purpose, the acquisition of experimental data involved 34 MDD patients and 30 healthy controls. Consequently, a feature matrix was constructed involving time-frequency decomposition of EEG data based on wavelet transform (WT) analysis, termed as EEG data matrix. However, the resultant EEG data matrix had high dimensionality. Therefore, dimension reduction was performed based on a rank-based feature selection method according to a criterion, i.e., receiver operating characteristic (ROC). As a result, the most significant features were identified and further be utilized during the training and testing of a classification model, i.e., the logistic regression (LR) classifier. Finally, the LR model was validated with 100 iterations of 10-fold cross-validation (10-CV). The classification results were compared with short-time Fourier transform (STFT) analysis, and empirical mode decompositions (EMD). The wavelet features extracted from frontal and temporal EEG data were found statistically significant. In comparison with other time-frequency approaches such as the STFT and EMD, the WT analysis has shown highest classification accuracy, i.e., accuracy = 87.5%, sensitivity = 95%, and specificity = 80%. In conclusion, significant wavelet coefficients extracted from frontal and temporal pre-treatment EEG data involving delta and theta frequency bands may predict antidepressant's treatment outcome for the MDD patients.

  8. Reversible wavelet filter banks with side informationless spatially adaptive low-pass filters

    NASA Astrophysics Data System (ADS)

    Abhayaratne, Charith

    2011-07-01

    Wavelet transforms that have an adaptive low-pass filter are useful in applications that require the signal singularities, sharp transitions, and image edges to be left intact in the low-pass signal. In scalable image coding, the spatial resolution scalability is achieved by reconstructing the low-pass signal subband, which corresponds to the desired resolution level, and discarding other high-frequency wavelet subbands. In such applications, it is vital to have low-pass subbands that are not affected by smoothing artifacts associated with low-pass filtering. We present the mathematical framework for achieving 1-D wavelet transforms that have a spatially adaptive low-pass filter (SALP) using the prediction-first lifting scheme. The adaptivity decisions are computed using the wavelet coefficients, and no bookkeeping is required for the perfect reconstruction. Then, 2-D wavelet transforms that have a spatially adaptive low-pass filter are designed by extending the 1-D SALP framework. Because the 2-D polyphase decompositions are used in this case, the 2-D adaptivity decisions are made nonseparable as opposed to the separable 2-D realization using 1-D transforms. We present examples using the 2-D 5/3 wavelet transform and their lossless image coding and scalable decoding performances in terms of quality and resolution scalability. The proposed 2-D-SALP scheme results in better performance compared to the existing adaptive update lifting schemes.

  9. Study of Track Irregularity Time Series Calibration and Variation Pattern at Unit Section

    PubMed Central

    Jia, Chaolong; Wei, Lili; Wang, Hanning; Yang, Jiulin

    2014-01-01

    Focusing on problems existing in track irregularity time series data quality, this paper first presents abnormal data identification, data offset correction algorithm, local outlier data identification, and noise cancellation algorithms. And then proposes track irregularity time series decomposition and reconstruction through the wavelet decomposition and reconstruction approach. Finally, the patterns and features of track irregularity standard deviation data sequence in unit sections are studied, and the changing trend of track irregularity time series is discovered and described. PMID:25435869

  10. Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks

    PubMed Central

    2015-01-01

    Following the unconventional gas revolution, the forecasting of natural gas prices has become increasingly important because the association of these prices with those of crude oil has weakened. With this as motivation, we propose some modified hybrid models in which various combinations of the wavelet approximation, detail components, autoregressive integrated moving average, generalized autoregressive conditional heteroskedasticity, and artificial neural network models are employed to predict natural gas prices. We also emphasize the boundary problem in wavelet decomposition, and compare results that consider the boundary problem case with those that do not. The empirical results show that our suggested approach can handle the boundary problem, such that it facilitates the extraction of the appropriate forecasting results. The performance of the wavelet-hybrid approach was superior in all cases, whereas the application of detail components in the forecasting was only able to yield a small improvement in forecasting performance. Therefore, forecasting with only an approximation component would be acceptable, in consideration of forecasting efficiency. PMID:26539722

  11. A new method of Quickbird own image fusion

    NASA Astrophysics Data System (ADS)

    Han, Ying; Jiang, Hong; Zhang, Xiuying

    2009-10-01

    With the rapid development of remote sensing technology, the means of accessing to remote sensing data become increasingly abundant, thus the same area can form a large number of multi-temporal, different resolution image sequence. At present, the fusion methods are mainly: HPF, IHS transform method, PCA method, Brovey, Mallat algorithm and wavelet transform and so on. There exists a serious distortion of the spectrums in the IHS transform, Mallat algorithm omits low-frequency information of the high spatial resolution images, the integration results of which has obvious blocking effects. Wavelet multi-scale decomposition for different sizes, the directions, details and the edges can have achieved very good results, but different fusion rules and algorithms can achieve different effects. This article takes the Quickbird own image fusion as an example, basing on wavelet transform and HVS, wavelet transform and IHS integration. The result shows that the former better. This paper introduces the correlation coefficient, the relative average spectral error index and usual index to evaluate the quality of image.

  12. Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks.

    PubMed

    Jin, Junghwan; Kim, Jinsoo

    2015-01-01

    Following the unconventional gas revolution, the forecasting of natural gas prices has become increasingly important because the association of these prices with those of crude oil has weakened. With this as motivation, we propose some modified hybrid models in which various combinations of the wavelet approximation, detail components, autoregressive integrated moving average, generalized autoregressive conditional heteroskedasticity, and artificial neural network models are employed to predict natural gas prices. We also emphasize the boundary problem in wavelet decomposition, and compare results that consider the boundary problem case with those that do not. The empirical results show that our suggested approach can handle the boundary problem, such that it facilitates the extraction of the appropriate forecasting results. The performance of the wavelet-hybrid approach was superior in all cases, whereas the application of detail components in the forecasting was only able to yield a small improvement in forecasting performance. Therefore, forecasting with only an approximation component would be acceptable, in consideration of forecasting efficiency.

  13. An efficient coding algorithm for the compression of ECG signals using the wavelet transform.

    PubMed

    Rajoub, Bashar A

    2002-04-01

    A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.

  14. Directional dual-tree complex wavelet packet transforms for processing quadrature signals.

    PubMed

    Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin

    2016-03-01

    Quadrature signals containing in-phase and quadrature-phase components are used in many signal processing applications in every field of science and engineering. Specifically, Doppler ultrasound systems used to evaluate cardiovascular disorders noninvasively also result in quadrature format signals. In order to obtain directional blood flow information, the quadrature outputs have to be preprocessed using methods such as asymmetrical and symmetrical phasing filter techniques. These resultant directional signals can be employed in order to detect asymptomatic embolic signals caused by small emboli, which are indicators of a possible future stroke, in the cerebral circulation. Various transform-based methods such as Fourier and wavelet were frequently used in processing embolic signals. However, most of the times, the Fourier and discrete wavelet transforms are not appropriate for the analysis of embolic signals due to their non-stationary time-frequency behavior. Alternatively, discrete wavelet packet transform can perform an adaptive decomposition of the time-frequency axis. In this study, directional discrete wavelet packet transforms, which have the ability to map directional information while processing quadrature signals and have less computational complexity than the existing wavelet packet-based methods, are introduced. The performances of proposed methods are examined in detail by using single-frequency, synthetic narrow-band, and embolic quadrature signals.

  15. Applications of wavelets in morphometric analysis of medical images

    NASA Astrophysics Data System (ADS)

    Davatzikos, Christos; Tao, Xiaodong; Shen, Dinggang

    2003-11-01

    Morphometric analysis of medical images is playing an increasingly important role in understanding brain structure and function, as well as in understanding the way in which these change during development, aging and pathology. This paper presents three wavelet-based methods with related applications in morphometric analysis of magnetic resonance (MR) brain images. The first method handles cases where very limited datasets are available for the training of statistical shape models in the deformable segmentation. The method is capable of capturing a larger range of shape variability than the standard active shape models (ASMs) can, by using the elegant spatial-frequency decomposition of the shape contours provided by wavelet transforms. The second method addresses the difficulty of finding correspondences in anatomical images, which is a key step in shape analysis and deformable registration. The detection of anatomical correspondences is completed by using wavelet-based attribute vectors as morphological signatures of voxels. The third method uses wavelets to characterize the morphological measurements obtained from all voxels in a brain image, and the entire set of wavelet coefficients is further used to build a brain classifier. Since the classification scheme operates in a very-high-dimensional space, it can determine subtle population differences with complex spatial patterns. Experimental results are provided to demonstrate the performance of the proposed methods.

  16. Wavelet analysis of hemispheroid flow separation toward understanding human vocal fold pathologies

    NASA Astrophysics Data System (ADS)

    Plesniak, Daniel H.; Carr, Ian A.; Bulusu, Kartik V.; Plesniak, Michael W.

    2014-11-01

    Physiological flows observed in human vocal fold pathologies, such as polyps and nodules, can be modeled by flow over a wall-mounted protuberance. The experimental investigation of flow separation over a surface-mounted hemispheroid was performed using particle image velocimetry (PIV) and measurements of surface pressure in a low-speed wind tunnel. This study builds on the hypothesis that the signatures of vortical structures associated with flow separation are imprinted on the surface pressure distributions. Wavelet decomposition methods in one- and two-dimensions were utilized to elucidate the flow behavior. First, a complex Gaussian wavelet was used for the reconstruction of surface pressure time series from static pressure measurements acquired from ports upstream, downstream, and on the surface of the hemispheroid. This was followed by the application of a novel continuous wavelet transform algorithm (PIVlet 1.2) using a 2D-Ricker wavelet for coherent structure detection on instantaneous PIV-data. The goal of this study is to correlate phase shifts in surface pressure with Strouhal numbers associated with the vortex shedding. Ultimately, the wavelet-based analytical framework will be aimed at addressing pulsatile flows. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  17. Exploring an optimal wavelet-based filter for cryo-ET imaging.

    PubMed

    Huang, Xinrui; Li, Sha; Gao, Song

    2018-02-07

    Cryo-electron tomography (cryo-ET) is one of the most advanced technologies for the in situ visualization of molecular machines by producing three-dimensional (3D) biological structures. However, cryo-ET imaging has two serious disadvantages-low dose and low image contrast-which result in high-resolution information being obscured by noise and image quality being degraded, and this causes errors in biological interpretation. The purpose of this research is to explore an optimal wavelet denoising technique to reduce noise in cryo-ET images. We perform tests using simulation data and design a filter using the optimum selected wavelet parameters (three-level decomposition, level-1 zeroed out, subband-dependent threshold, a soft-thresholding and spline-based discrete dyadic wavelet transform (DDWT)), which we call a modified wavelet shrinkage filter; this filter is suitable for noisy cryo-ET data. When testing using real cryo-ET experiment data, higher quality images and more accurate measures of a biological structure can be obtained with the modified wavelet shrinkage filter processing compared with conventional processing. Because the proposed method provides an inherent advantage when dealing with cryo-ET images, it can therefore extend the current state-of-the-art technology in assisting all aspects of cryo-ET studies: visualization, reconstruction, structural analysis, and interpretation.

  18. Combining a wavelet transform with a channelized Hotelling observer for tumor detection in 3D PET oncology imaging

    NASA Astrophysics Data System (ADS)

    Lartizien, Carole; Tomei, Sandrine; Maxim, Voichita; Odet, Christophe

    2007-03-01

    This study evaluates new observer models for 3D whole-body Positron Emission Tomography (PET) imaging based on a wavelet sub-band decomposition and compares them with the classical constant-Q CHO model. Our final goal is to develop an original method that performs guided detection of abnormal activity foci in PET oncology imaging based on these new observer models. This computer-aided diagnostic method would highly benefit to clinicians for diagnostic purpose and to biologists for massive screening of rodents populations in molecular imaging. Method: We have previously shown good correlation of the channelized Hotelling observer (CHO) using a constant-Q model with human observer performance for 3D PET oncology imaging. We propose an alternate method based on combining a CHO observer with a wavelet sub-band decomposition of the image and we compare it to the standard CHO implementation. This method performs an undecimated transform using a biorthogonal B-spline 4/4 wavelet basis to extract the features set for input to the Hotelling observer. This work is based on simulated 3D PET images of an extended MCAT phantom with randomly located lesions. We compare three evaluation criteria: classification performance using the signal-to-noise ratio (SNR), computation efficiency and visual quality of the derived 3D maps of the decision variable λ. The SNR is estimated on a series of test images for a variable number of training images for both observers. Results: Results show that the maximum SNR is higher with the constant-Q CHO observer, especially for targets located in the liver, and that it is reached with a smaller number of training images. However, preliminary analysis indicates that the visual quality of the 3D maps of the decision variable λ is higher with the wavelet-based CHO and the computation time to derive a 3D λ-map is about 350 times shorter than for the standard CHO. This suggests that the wavelet-CHO observer is a good candidate for use in our guided detection method.

  19. Bayesian denoising in digital radiography: a comparison in the dental field.

    PubMed

    Frosio, I; Olivieri, C; Lucchese, M; Borghese, N A; Boccacci, P

    2013-01-01

    We compared two Bayesian denoising algorithms for digital radiographs, based on Total Variation regularization and wavelet decomposition. The comparison was performed on simulated radiographs with different photon counts and frequency content and on real dental radiographs. Four different quality indices were considered to quantify the quality of the filtered radiographs. The experimental results suggested that Total Variation is more suited to preserve fine anatomical details, whereas wavelets produce images of higher quality at global scale; they also highlighted the need for more reliable image quality indices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. An hybrid neuro-wavelet approach for long-term prediction of solar wind

    NASA Astrophysics Data System (ADS)

    Napoli, Christian; Bonanno, Francesco; Capizzi, Giacomo

    2011-06-01

    Nowadays the interest for space weather and solar wind forecasting is increasing to become a main relevance problem especially for telecommunication industry, military, and for scientific research. At present the goal for weather forecasting reach the ultimate high ground of the cosmos where the environment can affect the technological instrumentation. Some interests then rise about the correct prediction of space events, like ionized turbulence in the ionosphere or impacts from the energetic particles in the Van Allen belts, then of the intensity and features of the solar wind and magnetospheric response. The problem of data prediction can be faced using hybrid computation methods so as wavelet decomposition and recurrent neural networks (RNNs). Wavelet analysis was used in order to reduce the data redundancies so obtaining representation which can express their intrinsic structure. The main advantage of the wavelet use is the ability to pack the energy of a signal, and in turn the relevant carried informations, in few significant uncoupled coefficients. Neural networks (NNs) are a promising technique to exploit the complexity of non-linear data correlation. To obtain a correct prediction of solar wind an RNN was designed starting on the data series. As reported in literature, because of the temporal memory of the data an Adaptative Amplitude Real Time Recurrent Learning algorithm was used for a full connected RNN with temporal delays. The inputs for the RNN were given by the set of coefficients coming from the biorthogonal wavelet decomposition of the solar wind velocity time series. The experimental data were collected during the NASA mission WIND. It is a spin stabilized spacecraft launched in 1994 in a halo orbit around the L1 point. The data are provided by the SWE, a subsystem of the main craft designed to measure the flux of thermal protons and positive ions.

  1. Interdependence between Greece and other European stock markets: A comparison of wavelet and VMD copula, and the portfolio implications

    NASA Astrophysics Data System (ADS)

    Shahzad, Syed Jawad Hussain; Kumar, Ronald Ravinesh; Ali, Sajid; Ameer, Saba

    2016-09-01

    The interdependence of Greece and other European stock markets and the subsequent portfolio implications are examined in wavelet and variational mode decomposition domain. In applying the decomposition techniques, we analyze the structural properties of data and distinguish between short and long term dynamics of stock market returns. First, the GARCH-type models are fitted to obtain the standardized residuals. Next, different copula functions are evaluated, and based on the conventional information criteria and time varying parameter, Joe-Clayton copula is chosen to model the tail dependence between the stock markets. The short-run lower tail dependence time paths show a sudden increase in comovement during the global financial crises. The results of the long-run dependence suggest that European stock markets have higher interdependence with Greece stock market. Individual country's Value at Risk (VaR) separates the countries into two distinct groups. Finally, the two-asset portfolio VaR measures provide potential markets for Greece stock market investment diversification.

  2. BOOK REVIEW: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance

    NASA Astrophysics Data System (ADS)

    Ng, J.; Kingsbury, N. G.

    2004-02-01

    This book provides an overview of the theory and practice of continuous and discrete wavelet transforms. Divided into seven chapters, the first three chapters of the book are introductory, describing the various forms of the wavelet transform and their computation, while the remaining chapters are devoted to applications in fluids, engineering, medicine and miscellaneous areas. Each chapter is well introduced, with suitable examples to demonstrate key concepts. Illustrations are included where appropriate, thus adding a visual dimension to the text. A noteworthy feature is the inclusion, at the end of each chapter, of a list of further resources from the academic literature which the interested reader can consult. The first chapter is purely an introduction to the text. The treatment of wavelet transforms begins in the second chapter, with the definition of what a wavelet is. The chapter continues by defining the continuous wavelet transform and its inverse and a description of how it may be used to interrogate signals. The continuous wavelet transform is then compared to the short-time Fourier transform. Energy and power spectra with respect to scale are also discussed and linked to their frequency counterparts. Towards the end of the chapter, the two-dimensional continuous wavelet transform is introduced. Examples of how the continuous wavelet transform is computed using the Mexican hat and Morlet wavelets are provided throughout. The third chapter introduces the discrete wavelet transform, with its distinction from the discretized continuous wavelet transform having been made clear at the end of the second chapter. In the first half of the chapter, the logarithmic discretization of the wavelet function is described, leading to a discussion of dyadic grid scaling, frames, orthogonal and orthonormal bases, scaling functions and multiresolution representation. The fast wavelet transform is introduced and its computation is illustrated with an example using the Haar wavelet. The second half of the chapter groups together miscellaneous points about the discrete wavelet transform, including coefficient manipulation for signal denoising and smoothing, a description of Daubechies’ wavelets, the properties of translation invariance and biorthogonality, the two-dimensional discrete wavelet transforms and wavelet packets. The fourth chapter is dedicated to wavelet transform methods in the author’s own specialty, fluid mechanics. Beginning with a definition of wavelet-based statistical measures for turbulence, the text proceeds to describe wavelet thresholding in the analysis of fluid flows. The remainder of the chapter describes wavelet analysis of engineering flows, in particular jets, wakes, turbulence and coherent structures, and geophysical flows, including atmospheric and oceanic processes. The fifth chapter describes the application of wavelet methods in various branches of engineering, including machining, materials, dynamics and information engineering. Unlike previous chapters, this (and subsequent) chapters are styled more as literature reviews that describe the findings of other authors. The areas addressed in this chapter include: the monitoring of machining processes, the monitoring of rotating machinery, dynamical systems, chaotic systems, non-destructive testing, surface characterization and data compression. The sixth chapter continues in this vein with the attention now turned to wavelets in the analysis of medical signals. Most of the chapter is devoted to the analysis of one-dimensional signals (electrocardiogram, neural waveforms, acoustic signals etc.), although there is a small section on the analysis of two-dimensional medical images. The seventh and final chapter of the book focuses on the application of wavelets in three seemingly unrelated application areas: fractals, finance and geophysics. The treatment on wavelet methods in fractals focuses on stochastic fractals with a short section on multifractals. The treatment on finance touches on the use of wavelets by other authors in studying stock prices, commodity behaviour, market dynamics and foreign exchange rates. The treatment on geophysics covers what was omitted from the fourth chapter, namely, seismology, well logging, topographic feature analysis and the analysis of climatic data. The text concludes with an assortment of other application areas which could only be mentioned in passing. Unlike most other publications in the subject, this book does not treat wavelet transforms in a mathematically rigorous manner but rather aims to explain the mechanics of the wavelet transform in a way that is easy to understand. Consequently, it serves as an excellent overview of the subject rather than as a reference text. Keeping the mathematics to a minimum and omitting cumbersome and detailed proofs from the text, the book is best-suited to those who are new to wavelets or who want an intuitive understanding of the subject. Such an audience may include graduate students in engineering and professionals and researchers in engineering and the applied sciences.

  3. A Comparative Study on Fetal Heart Rates Estimated from Fetal Phonography and Cardiotocography

    PubMed Central

    Ibrahim, Emad A.; Al Awar, Shamsa; Balayah, Zuhur H.; Hadjileontiadis, Leontios J.; Khandoker, Ahsan H.

    2017-01-01

    The aim of this study is to investigate that fetal heart rates (fHR) extracted from fetal phonocardiography (fPCG) could convey similar information of fHR from cardiotocography (CTG). Four-channel fPCG sensors made of low cost (<$1) ceramic piezo vibration sensor within 3D-printed casings were used to collect abdominal phonogram signals from 20 pregnant mothers (>34 weeks of gestation). A novel multi-lag covariance matrix-based eigenvalue decomposition technique was used to separate maternal breathing, fetal heart sounds (fHS) and maternal heart sounds (mHS) from abdominal phonogram signals. Prior to the fHR estimation, the fPCG signals were denoised using a multi-resolution wavelet-based filter. The proposed source separation technique was first tested in separating sources from synthetically mixed signals and then on raw abdominal phonogram signals. fHR signals extracted from fPCG signals were validated using simultaneous recorded CTG-based fHR recordings.The experimental results have shown that the fHR derived from the acquired fPCG can be used to detect periods of acceleration and deceleration, which are critical indication of the fetus' well-being. Moreover, a comparative analysis demonstrated that fHRs from CTG and fPCG signals were in good agreement (Bland Altman plot has mean = −0.21 BPM and ±2 SD = ±3) with statistical significance (p < 0.001 and Spearman correlation coefficient ρ = 0.95). The study findings show that fHR estimated from fPCG could be a reliable substitute for fHR from the CTG, opening up the possibility of a low cost monitoring tool for fetal well-being. PMID:29089896

  4. Wavelet-bounded empirical mode decomposition for measured time series analysis

    NASA Astrophysics Data System (ADS)

    Moore, Keegan J.; Kurt, Mehmet; Eriten, Melih; McFarland, D. Michael; Bergman, Lawrence A.; Vakakis, Alexander F.

    2018-01-01

    Empirical mode decomposition (EMD) is a powerful technique for separating the transient responses of nonlinear and nonstationary systems into finite sets of nearly orthogonal components, called intrinsic mode functions (IMFs), which represent the dynamics on different characteristic time scales. However, a deficiency of EMD is the mixing of two or more components in a single IMF, which can drastically affect the physical meaning of the empirical decomposition results. In this paper, we present a new approached based on EMD, designated as wavelet-bounded empirical mode decomposition (WBEMD), which is a closed-loop, optimization-based solution to the problem of mode mixing. The optimization routine relies on maximizing the isolation of an IMF around a characteristic frequency. This isolation is measured by fitting a bounding function around the IMF in the frequency domain and computing the area under this function. It follows that a large (small) area corresponds to a poorly (well) separated IMF. An optimization routine is developed based on this result with the objective of minimizing the bounding-function area and with the masking signal parameters serving as free parameters, such that a well-separated IMF is extracted. As examples of application of WBEMD we apply the proposed method, first to a stationary, two-component signal, and then to the numerically simulated response of a cantilever beam with an essentially nonlinear end attachment. We find that WBEMD vastly improves upon EMD and that the extracted sets of IMFs provide insight into the underlying physics of the response of each system.

  5. Tool Condition Monitoring in Micro-End Milling using wavelets

    NASA Astrophysics Data System (ADS)

    Dubey, N. K.; Roushan, A.; Rao, U. S.; Sandeep, K.; Patra, K.

    2018-04-01

    In this work, Tool Condition Monitoring (TCM) strategy is developed for micro-end milling of titanium alloy and mild steel work-pieces. Full immersion slot milling experiments are conducted using a solid tungsten carbide end mill for more than 1900 s to have reasonable amount of tool wear. During the micro-end milling process, cutting force and vibration signals are acquired using Kistler piezo-electric 3-component force dynamometer (9256C2) and accelerometer (NI cDAQ-9188) respectively. The force components and the vibration signals are processed using Discrete Wavelet Transformation (DWT) in both time and frequency window. 5-level wavelet packet decomposition using Db-8 wavelet is carried out and the detailed coefficients D1 to D5 for each of the signals are obtained. The results of the wavelet transformation are correlated with the tool wear. In case of vibration signals, de-noising is done for higher frequency components (D1) and force signals were de-noised for lower frequency components (D5). Increasing value of MAD (Mean Absolute Deviation) of the detail coefficients for successive channels depicted tool wear. The predictions of the tool wear are confirmed from the actual wear observed in the SEM of the worn tool.

  6. Application of wavelet-based multi-model Kalman filters to real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Chou, Chien-Ming; Wang, Ru-Yih

    2004-04-01

    This paper presents the application of a multimodel method using a wavelet-based Kalman filter (WKF) bank to simultaneously estimate decomposed state variables and unknown parameters for real-time flood forecasting. Applying the Haar wavelet transform alters the state vector and input vector of the state space. In this way, an overall detail plus approximation describes each new state vector and input vector, which allows the WKF to simultaneously estimate and decompose state variables. The wavelet-based multimodel Kalman filter (WMKF) is a multimodel Kalman filter (MKF), in which the Kalman filter has been substituted for a WKF. The WMKF then obtains M estimated state vectors. Next, the M state-estimates, each of which is weighted by its possibility that is also determined on-line, are combined to form an optimal estimate. Validations conducted for the Wu-Tu watershed, a small watershed in Taiwan, have demonstrated that the method is effective because of the decomposition of wavelet transform, the adaptation of the time-varying Kalman filter and the characteristics of the multimodel method. Validation results also reveal that the resulting method enhances the accuracy of the runoff prediction of the rainfall-runoff process in the Wu-Tu watershed.

  7. Adaptive Fourier decomposition based ECG denoising.

    PubMed

    Wang, Ze; Wan, Feng; Wong, Chi Man; Zhang, Liming

    2016-10-01

    A novel ECG denoising method is proposed based on the adaptive Fourier decomposition (AFD). The AFD decomposes a signal according to its energy distribution, thereby making this algorithm suitable for separating pure ECG signal and noise with overlapping frequency ranges but different energy distributions. A stop criterion for the iterative decomposition process in the AFD is calculated on the basis of the estimated signal-to-noise ratio (SNR) of the noisy signal. The proposed AFD-based method is validated by the synthetic ECG signal using an ECG model and also real ECG signals from the MIT-BIH Arrhythmia Database both with additive Gaussian white noise. Simulation results of the proposed method show better performance on the denoising and the QRS detection in comparing with major ECG denoising schemes based on the wavelet transform, the Stockwell transform, the empirical mode decomposition, and the ensemble empirical mode decomposition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Detection of cretaceous incised-valley shale for resource play, Miano gas field, SW Pakistan: Spectral decomposition using continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Naseer, Muhammad Tayyab; Asim, Shazia

    2017-10-01

    Unconventional resource shales can play a critical role in economic growth throughout the world. The hydrocarbon potential of faults/fractured shales is the most significant challenge for unconventional prospect generation. The continuous wavelet transforms (CWT) of spectral decomposition (SD) technology is applied for shale gas prospects on high-resolution 3D seismic data from the Miano area in the Indus platform, SW Pakistan. Schmoker' technique reveals high-quality shales with total organic carbon (TOC) of 9.2% distributed in the western regions. The seismic amplitude, root-mean-square (RMS), and most positive curvature attributes show limited ability to resolve the prospective fractured shale components. The CWT is used to identify the hydrocarbon-bearing faulted/fractured compartments encased within the non-hydrocarbon bearing shale units. The hydrocarbon-bearing shales experience higher amplitudes (4694 dB and 3439 dB) than the non-reservoir shales (3290 dB). Cross plots between sweetness, 22 Hz spectral decomposition, and the seismic amplitudes are found more effective tools than the conventional seismic attribute mapping for discriminating the seal and reservoir elements within the incised-valley petroleum system. Rock physics distinguish the productive sediments from the non-productive sediments, suggesting the potential for future shale play exploration.

  9. Wavelet transform analysis of transient signals: the seismogram and the electrocardiogram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anant, K.S.

    1997-06-01

    In this dissertation I quantitatively demonstrate how the wavelet transform can be an effective mathematical tool for the analysis of transient signals. The two key signal processing applications of the wavelet transform, namely feature identification and representation (i.e., compression), are shown by solving important problems involving the seismogram and the electrocardiogram. The seismic feature identification problem involved locating in time the P and S phase arrivals. Locating these arrivals accurately (particularly the S phase) has been a constant issue in seismic signal processing. In Chapter 3, I show that the wavelet transform can be used to locate both the Pmore » as well as the S phase using only information from single station three-component seismograms. This is accomplished by using the basis function (wave-let) of the wavelet transform as a matching filter and by processing information across scales of the wavelet domain decomposition. The `pick` time results are quite promising as compared to analyst picks. The representation application involved the compression of the electrocardiogram which is a recording of the electrical activity of the heart. Compression of the electrocardiogram is an important problem in biomedical signal processing due to transmission and storage limitations. In Chapter 4, I develop an electrocardiogram compression method that applies vector quantization to the wavelet transform coefficients. The best compression results were obtained by using orthogonal wavelets, due to their ability to represent a signal efficiently. Throughout this thesis the importance of choosing wavelets based on the problem at hand is stressed. In Chapter 5, I introduce a wavelet design method that uses linear prediction in order to design wavelets that are geared to the signal or feature being analyzed. The use of these designed wavelets in a test feature identification application led to positive results. The methods developed in this thesis; the feature identification methods of Chapter 3, the compression methods of Chapter 4, as well as the wavelet design methods of Chapter 5, are general enough to be easily applied to other transient signals.« less

  10. Time difference of arrival to blast localization of potential chemical/biological event on the move

    NASA Astrophysics Data System (ADS)

    Morcos, Amir; Desai, Sachi; Peltzer, Brian; Hohil, Myron E.

    2007-10-01

    Integrating a sensor suite with ability to discriminate potential Chemical/Biological (CB) events from high-explosive (HE) events employing a standalone acoustic sensor with a Time Difference of Arrival (TDOA) algorithm we developed a cueing mechanism for more power intensive and range limited sensing techniques. Enabling the event detection algorithm to locate to a blast event using TDOA we then provide further information of the event as either Launch/Impact and if CB/HE. The added information is provided to a range limited chemical sensing system that exploits spectroscopy to determine the contents of the chemical event. The main innovation within this sensor suite is the system will provide this information on the move while the chemical sensor will have adequate time to determine the contents of the event from a safe stand-off distance. The CB/HE discrimination algorithm exploits acoustic sensors to provide early detection and identification of CB attacks. Distinct characteristics arise within the different airburst signatures because HE warheads emphasize concussive and shrapnel effects, while CB warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. Differences characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. The discrete wavelet transform (DWT) is used to extract the predominant components of these characteristics from air burst signatures at ranges exceeding 3km. Highly reliable discrimination is achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients and higher frequency details found within different levels of the multiresolution decomposition. The development of an adaptive noise floor to provide early event detection assists in minimizing the false alarm rate and increasing the confidence whether the event is blast event or back ground noise. The integration of these algorithms with the TDOA algorithm provides a complex suite of algorithms that can give early warning detection and highly reliable look direction from a great stand-off distance for a moving vehicle to determine if a candidate blast event is CB and if CB what is the composition of the resulting cloud.

  11. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zhao, Yang; Yi, Cai; Tsui, Kwok-Leung; Lin, Jianhui

    2018-02-01

    Rolling element bearings are widely used in various industrial machines, such as electric motors, generators, pumps, gearboxes, railway axles, turbines, and helicopter transmissions. Fault diagnosis of rolling element bearings is beneficial to preventing any unexpected accident and reducing economic loss. In the past years, many bearing fault detection methods have been developed. Recently, a new adaptive signal processing method called empirical wavelet transform attracts much attention from readers and engineers and its applications to bearing fault diagnosis have been reported. The main problem of empirical wavelet transform is that Fourier segments required in empirical wavelet transform are strongly dependent on the local maxima of the amplitudes of the Fourier spectrum of a signal, which connotes that Fourier segments are not always reliable and effective if the Fourier spectrum of the signal is complicated and overwhelmed by heavy noises and other strong vibration components. In this paper, sparsity guided empirical wavelet transform is proposed to automatically establish Fourier segments required in empirical wavelet transform for fault diagnosis of rolling element bearings. Industrial bearing fault signals caused by single and multiple railway axle bearing defects are used to verify the effectiveness of the proposed sparsity guided empirical wavelet transform. Results show that the proposed method can automatically discover Fourier segments required in empirical wavelet transform and reveal single and multiple railway axle bearing defects. Besides, some comparisons with three popular signal processing methods including ensemble empirical mode decomposition, the fast kurtogram and the fast spectral correlation are conducted to highlight the superiority of the proposed method.

  12. A wavelet-based technique to predict treatment outcome for Major Depressive Disorder

    PubMed Central

    Xia, Likun; Mohd Yasin, Mohd Azhar; Azhar Ali, Syed Saad

    2017-01-01

    Treatment management for Major Depressive Disorder (MDD) has been challenging. However, electroencephalogram (EEG)-based predictions of antidepressant’s treatment outcome may help during antidepressant’s selection and ultimately improve the quality of life for MDD patients. In this study, a machine learning (ML) method involving pretreatment EEG data was proposed to perform such predictions for Selective Serotonin Reuptake Inhibitor (SSRIs). For this purpose, the acquisition of experimental data involved 34 MDD patients and 30 healthy controls. Consequently, a feature matrix was constructed involving time-frequency decomposition of EEG data based on wavelet transform (WT) analysis, termed as EEG data matrix. However, the resultant EEG data matrix had high dimensionality. Therefore, dimension reduction was performed based on a rank-based feature selection method according to a criterion, i.e., receiver operating characteristic (ROC). As a result, the most significant features were identified and further be utilized during the training and testing of a classification model, i.e., the logistic regression (LR) classifier. Finally, the LR model was validated with 100 iterations of 10-fold cross-validation (10-CV). The classification results were compared with short-time Fourier transform (STFT) analysis, and empirical mode decompositions (EMD). The wavelet features extracted from frontal and temporal EEG data were found statistically significant. In comparison with other time-frequency approaches such as the STFT and EMD, the WT analysis has shown highest classification accuracy, i.e., accuracy = 87.5%, sensitivity = 95%, and specificity = 80%. In conclusion, significant wavelet coefficients extracted from frontal and temporal pre-treatment EEG data involving delta and theta frequency bands may predict antidepressant’s treatment outcome for the MDD patients. PMID:28152063

  13. Twofold processing for denoising ultrasound medical images.

    PubMed

    Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y

    2015-01-01

    Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India.

  14. Quality Enhancement of Ultrasonic TOFD Signals from Carbon Steel Weld Pad with Notches.

    PubMed

    Manjula, K; Vijayarekha, K; Venkatraman, B

    2018-03-01

    Welding is an integral part of component fabrication in industry. Even though the science and art of welding are more than 100 years old, defects continue to occur during welding. Codes of practice require that the welds be tested and evaluated. Conventionally ultrasonic testing has been widely applied in industry for the detection and evaluation of the flaws/defects in the weldments. With advances in sensor and signal analysis technologies, the last two decades have seen extensive developments in the field of ultrasonic testing. We have advanced techniques such as Time of Flight Diffraction (TOFD) which has better probability of detection for linear defects. A major irritant during the application of TOFD, especially for the testing of carbon steel weldments, is the presence of noise. A variety of approaches has been used internationally for the suppression of such noise and each has its own merits and demerits. This paper focuses on a method of enhancing the TOFD A-scan signals in carbon steel weldments by suppressing the noise from them using the discrete wavelet transform (DWT). The analysis clearly indicates that the DWT gives better signal-to-noise ratio improvement using higher-order wavelet filters with 4-level DWT decomposition. However the computational cost of this signal enhancement depends on the wavelet filter chosen along with the chosen level of DWT decomposition. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Spectral decomposition of seismic data with reassigned smoothed pseudo Wigner-Ville distribution

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyang; Liu, Tianyou

    2009-07-01

    Seismic signals are nonstationary mainly due to absorption and attenuation of seismic energy in strata. Referring to spectral decomposition of seismic data, the conventional method using short-time Fourier transform (STFT) limits temporal and spectral resolution by a predefined window length. Continuous-wavelet transform (CWT) uses dilation and translation of a wavelet to produce a time-scale map. However, the wavelets utilized should be orthogonal in order to obtain a satisfactory resolution. The less applied, Wigner-Ville distribution (WVD) being superior in energy distribution concentration, is confronted with cross-terms interference (CTI) when signals are multi-component. In order to reduce the impact of CTI, Cohen class uses kernel function as low-pass filter. Nevertheless it also weakens energy concentration of auto-terms. In this paper, we employ smoothed pseudo Wigner-Ville distribution (SPWVD) with Gauss kernel function to reduce CTI in time and frequency domain, then reassign values of SPWVD (called reassigned SPWVD) according to the center of gravity of the considering energy region so that distribution concentration is maintained simultaneously. We conduct the method above on a multi-component synthetic seismic record and compare with STFT and CWT spectra. Two field examples reveal that RSPWVD potentially can be applied to detect low-frequency shadows caused by hydrocarbons and to delineate the space distribution of abnormal geological body more precisely.

  16. Wavelet analysis to decompose a vibration simulation signal to improve pre-distribution testing of packaging

    NASA Astrophysics Data System (ADS)

    Griffiths, K. R.; Hicks, B. J.; Keogh, P. S.; Shires, D.

    2016-08-01

    In general, vehicle vibration is non-stationary and has a non-Gaussian probability distribution; yet existing testing methods for packaging design employ Gaussian distributions to represent vibration induced by road profiles. This frequently results in over-testing and/or over-design of the packaging to meet a specification and correspondingly leads to wasteful packaging and product waste, which represent 15bn per year in the USA and €3bn per year in the EU. The purpose of the paper is to enable a measured non-stationary acceleration signal to be replaced by a constructed signal that includes as far as possible any non-stationary characteristics from the original signal. The constructed signal consists of a concatenation of decomposed shorter duration signals, each having its own kurtosis level. Wavelet analysis is used for the decomposition process into inner and outlier signal components. The constructed signal has a similar PSD to the original signal, without incurring excessive acceleration levels. This allows an improved and more representative simulated input signal to be generated that can be used on the current generation of shaker tables. The wavelet decomposition method is also demonstrated experimentally through two correlation studies. It is shown that significant improvements over current international standards for packaging testing are achievable; hence the potential for more efficient packaging system design is possible.

  17. Multispectral image fusion based on fractal features

    NASA Astrophysics Data System (ADS)

    Tian, Jie; Chen, Jie; Zhang, Chunhua

    2004-01-01

    Imagery sensors have been one indispensable part of the detection and recognition systems. They are widely used to the field of surveillance, navigation, control and guide, et. However, different imagery sensors depend on diverse imaging mechanisms, and work within diverse range of spectrum. They also perform diverse functions and have diverse circumstance requires. So it is unpractical to accomplish the task of detection or recognition with a single imagery sensor under the conditions of different circumstances, different backgrounds and different targets. Fortunately, the multi-sensor image fusion technique emerged as important route to solve this problem. So image fusion has been one of the main technical routines used to detect and recognize objects from images. While, loss of information is unavoidable during fusion process, so it is always a very important content of image fusion how to preserve the useful information to the utmost. That is to say, it should be taken into account before designing the fusion schemes how to avoid the loss of useful information or how to preserve the features helpful to the detection. In consideration of these issues and the fact that most detection problems are actually to distinguish man-made objects from natural background, a fractal-based multi-spectral fusion algorithm has been proposed in this paper aiming at the recognition of battlefield targets in the complicated backgrounds. According to this algorithm, source images are firstly orthogonally decomposed according to wavelet transform theories, and then fractal-based detection is held to each decomposed image. At this step, natural background and man-made targets are distinguished by use of fractal models that can well imitate natural objects. Special fusion operators are employed during the fusion of area that contains man-made targets so that useful information could be preserved and features of targets could be extruded. The final fused image is reconstructed from the composition of source pyramid images. So this fusion scheme is a multi-resolution analysis. The wavelet decomposition of image can be actually considered as special pyramid decomposition. According to wavelet decomposition theories, the approximation of image (formula available in paper) at resolution 2j+1 equal to its orthogonal projection in space , that is, where Ajf is the low-frequency approximation of image f(x, y) at resolution 2j and , , represent the vertical, horizontal and diagonal wavelet coefficients respectively at resolution 2j. These coefficients describe the high-frequency information of image at direction of vertical, horizontal and diagonal respectively. Ajf, , and are independent and can be considered as images. In this paper J is set to be 1, so the source image is decomposed to produce the son-images Af, D1f, D2f and D3f. To solve the problem of detecting artifacts, the concepts of vertical fractal dimension FD1, horizontal fractal dimension FD2 and diagonal fractal dimension FD3 are proposed in this paper. The vertical fractal dimension FD1 corresponds to the vertical wavelet coefficients image after the wavelet decomposition of source image, the horizontal fractal dimension FD2 corresponds to the horizontal wavelet coefficients and the diagonal fractal dimension FD3 the diagonal one. These definitions enrich the illustration of source images. Therefore they are helpful to classify the targets. Then the detection of artifacts in the decomposed images is a problem of pattern recognition in 4-D space. The combination of FD0, FD1, FD2 and FD3 make a vector of (FD0, FD1, FD2, FD3), which can be considered as a united feature vector of the studied image. All the parts of the images are classified in the 4-D pattern space created by the vector of (FD0, FD1, FD2, FD3) so that the area that contains man-made objects could be detected. This detection can be considered as a coarse recognition, and then the significant areas in each son-images are signed so that they can be dealt with special rules. There has been various fusion rules developed with each one aiming at a special problem. These rules have different performance, so it is very important to select an appropriate rule during the design of an image fusion system. Recent research denotes that the rule should be adjustable so that it is always suitable to extrude the features of targets and to preserve the pixels of useful information. In this paper, owing to the consideration that fractal dimension is one of the main features to distinguish man-made targets from natural objects, the fusion rule was defined that if the studied region of image contains man-made target, the pixels of the source image whose fractal dimension is minimal are saved to be the pixels of the fused image, otherwise, a weighted average operator is adopted to avoid loss of information. The main idea of this rule is to store the pixels with low fractal dimensions, so it can be named Minimal Fractal dimensions (MFD) fusion rule. This fractal-based algorithm is compared with a common weighted average fusion algorithm. An objective assessment is taken to the two fusion results. The criteria of Entropy, Cross-Entropy, Peak Signal-to-Noise Ratio (PSNR) and Standard Gray Scale Difference are defined in this paper. Reversely to the idea of constructing an ideal image as the assessing reference, the source images are selected to be the reference in this paper. It can be deemed that this assessment is to calculate how much the image quality has been enhanced and the quantity of information has been increased when the fused image is compared with the source images. The experimental results imply that the fractal-based multi-spectral fusion algorithm can effectively preserve the information of man-made objects with a high contrast. It is proved that this algorithm could well preserve features of military targets because that battlefield targets are most man-made objects and in common their images differ from fractal models obviously. Furthermore, the fractal features are not sensitive to the imaging conditions and the movement of targets, so this fractal-based algorithm may be very practical.

  18. [Application of wavelet transform and neural network in the near-infrared spectrum analysis of oil shale].

    PubMed

    Li, Su-Yi; Ji, Yan-Ju; Liu, Wei-Yu; Wang, Zhi-Hong

    2013-04-01

    In the present study, an innovative method is proposed, employing both wavelet transform and neural network, to analyze the near-infrared spectrum data in oil shale survey. The method entails using db8 wavelet at 3 levels decomposition to process raw data, using the transformed data as the input matrix, and creating the model through neural network. To verify the validity of the method, this study analyzes 30 synthesized oil shale samples, in which 20 samples are randomly selected for network training, the other 10 for model prediction, and uses the full spectrum and the wavelet transformed spectrum to carry out 10 network models, respectively. Results show that the mean speed of the full spectrum neural network modeling is 570.33 seconds, and the predicted residual sum of squares (PRESS) and correlation coefficient of prediction are 0.006 012 and 0.843 75, respectively. In contrast, the mean speed of the wavelet network modeling method is 3.15 seconds, and the mean PRESS and correlation coefficient of prediction are 0.002 048 and 0.953 19, respectively. These results demonstrate that the wavelet neural network modeling method is significantly superior to the full spectrum neural network modeling method. This study not only provides a new method for more efficient and accurate detection of the oil content of oil shale, but also indicates the potential for applying wavelet transform and neutral network in broad near-infrared spectrum analysis.

  19. Sensor system for heart sound biomonitor

    NASA Astrophysics Data System (ADS)

    Maple, Jarrad L.; Hall, Leonard T.; Agzarian, John; Abbott, Derek

    1999-09-01

    Heart sounds can be utilized more efficiently by medical doctors when they are displayed visually, rather than through a conventional stethoscope. A system whereby a digital stethoscope interfaces directly to a PC will be directly along with signal processing algorithms, adopted. The sensor is based on a noise cancellation microphone, with a 450 Hz bandwidth and is sampled at 2250 samples/sec with 12-bit resolution. Further to this, we discuss for comparison a piezo-based sensor with a 1 kHz bandwidth. A major problem is that the recording of the heart sound into these devices is subject to unwanted background noise which can override the heart sound and results in a poor visual representation. This noise originates from various sources such as skin contact with the stethoscope diaphragm, lung sounds, and other surrounding sounds such as speech. Furthermore we demonstrate a solution using 'wavelet denoising'. The wavelet transform is used because of the similarity between the shape of wavelets and the time-domain shape of a heartbeat sound. Thus coding of the waveform into the wavelet domain is achieved with relatively few wavelet coefficients, in contrast to the many Fourier components that would result from conventional decomposition. We show that the background noise can be dramatically reduced by a thresholding operation in the wavelet domain. The principle is that the background noise codes into many small broadband wavelet coefficients that can be removed without significant degradation of the signal of interest.

  20. Wavelet-based identification of DNA focal genomic aberrations from single nucleotide polymorphism arrays

    PubMed Central

    2011-01-01

    Background Copy number aberrations (CNAs) are an important molecular signature in cancer initiation, development, and progression. However, these aberrations span a wide range of chromosomes, making it hard to distinguish cancer related genes from other genes that are not closely related to cancer but are located in broadly aberrant regions. With the current availability of high-resolution data sets such as single nucleotide polymorphism (SNP) microarrays, it has become an important issue to develop a computational method to detect driving genes related to cancer development located in the focal regions of CNAs. Results In this study, we introduce a novel method referred to as the wavelet-based identification of focal genomic aberrations (WIFA). The use of the wavelet analysis, because it is a multi-resolution approach, makes it possible to effectively identify focal genomic aberrations in broadly aberrant regions. The proposed method integrates multiple cancer samples so that it enables the detection of the consistent aberrations across multiple samples. We then apply this method to glioblastoma multiforme and lung cancer data sets from the SNP microarray platform. Through this process, we confirm the ability to detect previously known cancer related genes from both cancer types with high accuracy. Also, the application of this approach to a lung cancer data set identifies focal amplification regions that contain known oncogenes, though these regions are not reported using a recent CNAs detecting algorithm GISTIC: SMAD7 (chr18q21.1) and FGF10 (chr5p12). Conclusions Our results suggest that WIFA can be used to reveal cancer related genes in various cancer data sets. PMID:21569311

  1. Computer Science Techniques Applied to Parallel Atomistic Simulation

    NASA Astrophysics Data System (ADS)

    Nakano, Aiichiro

    1998-03-01

    Recent developments in parallel processing technology and multiresolution numerical algorithms have established large-scale molecular dynamics (MD) simulations as a new research mode for studying materials phenomena such as fracture. However, this requires large system sizes and long simulated times. We have developed: i) Space-time multiresolution schemes; ii) fuzzy-clustering approach to hierarchical dynamics; iii) wavelet-based adaptive curvilinear-coordinate load balancing; iv) multilevel preconditioned conjugate gradient method; and v) spacefilling-curve-based data compression for parallel I/O. Using these techniques, million-atom parallel MD simulations are performed for the oxidation dynamics of nanocrystalline Al. The simulations take into account the effect of dynamic charge transfer between Al and O using the electronegativity equalization scheme. The resulting long-range Coulomb interaction is calculated efficiently with the fast multipole method. Results for temperature and charge distributions, residual stresses, bond lengths and bond angles, and diffusivities of Al and O will be presented. The oxidation of nanocrystalline Al is elucidated through immersive visualization in virtual environments. A unique dual-degree education program at Louisiana State University will also be discussed in which students can obtain a Ph.D. in Physics & Astronomy and a M.S. from the Department of Computer Science in five years. This program fosters interdisciplinary research activities for interfacing High Performance Computing and Communications with large-scale atomistic simulations of advanced materials. This work was supported by NSF (CAREER Program), ARO, PRF, and Louisiana LEQSF.

  2. A New View of Earthquake Ground Motion Data: The Hilbert Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Huang, Norden; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    A brief description of the newly developed Empirical Mode Decomposition (ENID) and Hilbert Spectral Analysis (HSA) method will be given. The decomposition is adaptive and can be applied to both nonlinear and nonstationary data. Example of the method applied to a sample earthquake record will be given. The results indicate those low frequency components, totally missed by the Fourier analysis, are clearly identified by the new method. Comparisons with Wavelet and window Fourier analysis show the new method offers much better temporal and frequency resolutions.

  3. Detection method of flexion relaxation phenomenon based on wavelets for patients with low back pain

    NASA Astrophysics Data System (ADS)

    Nougarou, François; Massicotte, Daniel; Descarreaux, Martin

    2012-12-01

    The flexion relaxation phenomenon (FRP) can be defined as a reduction or silence of myoelectric activity of the lumbar erector spinae muscle during full trunk flexion. It is typically absent in patients with chronic low back pain (LBP). Before any broad clinical utilization of this neuromuscular response can be made, effective, standardized, and accurate methods of identifying FRP limits are needed. However, this phenomenon is clearly more difficult to detect for LBP patients than for healthy patients. The main goal of this study is to develop an automated method based on wavelet transformation that would improve time point limits detection of surface electromyography signals of the FRP in case of LBP patients. Conventional visual identification and proposed automated methods of time point limits detection of relaxation phase were compared on experimental data using criteria of accuracy and repeatability based on physiological properties. The evaluation demonstrates that the use of wavelet transform (WT) yields better results than methods without wavelet decomposition. Furthermore, methods based on wavelet per packet transform are more effective than algorithms employing discrete WT. Compared to visual detection, in addition to demonstrating an obvious saving of time, the use of wavelet per packet transform improves the accuracy and repeatability in the detection of the FRP limits. These results clearly highlight the value of the proposed technique in identifying onset and offset of the flexion relaxation response in LBP subjects.

  4. Intelligent Gearbox Diagnosis Methods Based on SVM, Wavelet Lifting and RBR

    PubMed Central

    Gao, Lixin; Ren, Zhiqiang; Tang, Wenliang; Wang, Huaqing; Chen, Peng

    2010-01-01

    Given the problems in intelligent gearbox diagnosis methods, it is difficult to obtain the desired information and a large enough sample size to study; therefore, we propose the application of various methods for gearbox fault diagnosis, including wavelet lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex field environment, it is less likely for machines to have the same fault; moreover, the fault features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, gearbox vibration signals were processed with wavelet packet decomposition, and the signal energy coefficients of each frequency band were extracted and used as input feature vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using wavelet lifting could successfully filter out the noisy signals while maintaining the impulse characteristics of the fault; thus effectively extracting the fault frequency of the machine. Lastly, the knowledge base was built based on the field rules summarized by experts to identify the detailed fault type. Results have shown that SVM is a powerful tool to accomplish gearbox fault pattern recognition when the sample size is small, whereas the wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can be used to identify the detailed fault type. Therefore, a method that combines SVM, wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis. PMID:22399894

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaojun; Lei, Guangtsai; Pan, Guangwen

    In this paper, the continuous operator is discretized into matrix forms by Galerkin`s procedure, using periodic Battle-Lemarie wavelets as basis/testing functions. The polynomial decomposition of wavelets is applied to the evaluation of matrix elements, which makes the computational effort of the matrix elements no more expensive than that of method of moments (MoM) with conventional piecewise basis/testing functions. A new algorithm is developed employing the fast wavelet transform (FWT). Owing to localization, cancellation, and orthogonal properties of wavelets, very sparse matrices have been obtained, which are then solved by the LSQR iterative method. This algorithm is also adaptive in thatmore » one can add at will finer wavelet bases in the regions where fields vary rapidly, without any damage to the system orthogonality of the wavelet basis functions. To demonstrate the effectiveness of the new algorithm, we applied it to the evaluation of frequency-dependent resistance and inductance matrices of multiple lossy transmission lines. Numerical results agree with previously published data and laboratory measurements. The valid frequency range of the boundary integral equation results has been extended two to three decades in comparison with the traditional MoM approach. The new algorithm has been integrated into the computer aided design tool, MagiCAD, which is used for the design and simulation of high-speed digital systems and multichip modules Pan et al. 29 refs., 7 figs., 6 tabs.« less

  6. Intelligent gearbox diagnosis methods based on SVM, wavelet lifting and RBR.

    PubMed

    Gao, Lixin; Ren, Zhiqiang; Tang, Wenliang; Wang, Huaqing; Chen, Peng

    2010-01-01

    Given the problems in intelligent gearbox diagnosis methods, it is difficult to obtain the desired information and a large enough sample size to study; therefore, we propose the application of various methods for gearbox fault diagnosis, including wavelet lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex field environment, it is less likely for machines to have the same fault; moreover, the fault features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, gearbox vibration signals were processed with wavelet packet decomposition, and the signal energy coefficients of each frequency band were extracted and used as input feature vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using wavelet lifting could successfully filter out the noisy signals while maintaining the impulse characteristics of the fault; thus effectively extracting the fault frequency of the machine. Lastly, the knowledge base was built based on the field rules summarized by experts to identify the detailed fault type. Results have shown that SVM is a powerful tool to accomplish gearbox fault pattern recognition when the sample size is small, whereas the wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can be used to identify the detailed fault type. Therefore, a method that combines SVM, wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis.

  7. Wavelet analysis for the study of the relations among soil radon anomalies, volcanic and seismic events: the case of Mt. Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Ferrera, Elisabetta; Giammanco, Salvatore; Cannata, Andrea; Montalto, Placido

    2013-04-01

    From November 2009 to April 2011 soil radon activity was continuously monitored using a Barasol® probe located on the upper NE flank of Mt. Etna volcano, close either to the Piano Provenzana fault or to the NE-Rift. Seismic and volcanological data have been analyzed together with radon data. We also analyzed air and soil temperature, barometric pressure, snow and rain fall data. In order to find possible correlations among the above parameters, and hence to reveal possible anomalies in the radon time-series, we used different statistical methods: i) multivariate linear regression; ii) cross-correlation; iii) coherence analysis through wavelet transform. Multivariate regression indicated a modest influence on soil radon from environmental parameters (R2 = 0.31). When using 100-days time windows, the R2 values showed wide variations in time, reaching their maxima (~0.63-0.66) during summer. Cross-correlation analysis over 100-days moving averages showed that, similar to multivariate linear regression analysis, the summer period is characterised by the best correlation between radon data and environmental parameters. Lastly, the wavelet coherence analysis allowed a multi-resolution coherence analysis of the time series acquired. This approach allows to study the relations among different signals either in time or frequency domain. It confirmed the results of the previous methods, but also allowed to recognize correlations between radon and environmental parameters at different observation scales (e.g., radon activity changed during strong precipitations, but also during anomalous variations of soil temperature uncorrelated with seasonal fluctuations). Our work suggests that in order to make an accurate analysis of the relations among distinct signals it is necessary to use different techniques that give complementary analytical information. In particular, the wavelet analysis showed to be very effective in discriminating radon changes due to environmental influences from those correlated with impending seismic or volcanic events.

  8. DWT-Based High Capacity Audio Watermarking

    NASA Astrophysics Data System (ADS)

    Fallahpour, Mehdi; Megías, David

    This letter suggests a novel high capacity robust audio watermarking algorithm by using the high frequency band of the wavelet decomposition, for which the human auditory system (HAS) is not very sensitive to alteration. The main idea is to divide the high frequency band into frames and then, for embedding, the wavelet samples are changed based on the average of the relevant frame. The experimental results show that the method has very high capacity (about 5.5kbps), without significant perceptual distortion (ODG in [-1, 0] and SNR about 33dB) and provides robustness against common audio signal processing such as added noise, filtering, echo and MPEG compression (MP3).

  9. Fault Detection of a Roller-Bearing System through the EMD of a Wavelet Denoised Signal

    PubMed Central

    Ahn, Jong-Hyo; Kwak, Dae-Ho; Koh, Bong-Hwan

    2014-01-01

    This paper investigates fault detection of a roller bearing system using a wavelet denoising scheme and proper orthogonal value (POV) of an intrinsic mode function (IMF) covariance matrix. The IMF of the bearing vibration signal is obtained through empirical mode decomposition (EMD). The signal screening process in the wavelet domain eliminates noise-corrupted portions that may lead to inaccurate prognosis of bearing conditions. We segmented the denoised bearing signal into several intervals, and decomposed each of them into IMFs. The first IMF of each segment is collected to become a covariance matrix for calculating the POV. We show that covariance matrices from healthy and damaged bearings exhibit different POV profiles, which can be a damage-sensitive feature. We also illustrate the conventional approach of feature extraction, of observing the kurtosis value of the measured signal, to compare the functionality of the proposed technique. The study demonstrates the feasibility of wavelet-based de-noising, and shows through laboratory experiments that tracking the proper orthogonal values of the covariance matrix of the IMF can be an effective and reliable measure for monitoring bearing fault. PMID:25196008

  10. Wavelet denoising of multiframe optical coherence tomography data

    PubMed Central

    Mayer, Markus A.; Borsdorf, Anja; Wagner, Martin; Hornegger, Joachim; Mardin, Christian Y.; Tornow, Ralf P.

    2012-01-01

    We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are weighted, averaged and reconstructed. At a signal-to-noise gain at about 100% we observe only a minor sharpness decrease, as measured by a full-width-half-maximum reduction of 10.5%. While a similar signal-to-noise gain would require averaging of 29 frames, we achieve this result using only 8 frames as input to the algorithm. A possible application of the proposed algorithm is preprocessing in retinal structure segmentation algorithms, to allow a better differentiation between real tissue information and unwanted speckle noise. PMID:22435103

  11. Wavelet denoising of multiframe optical coherence tomography data.

    PubMed

    Mayer, Markus A; Borsdorf, Anja; Wagner, Martin; Hornegger, Joachim; Mardin, Christian Y; Tornow, Ralf P

    2012-03-01

    We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are weighted, averaged and reconstructed. At a signal-to-noise gain at about 100% we observe only a minor sharpness decrease, as measured by a full-width-half-maximum reduction of 10.5%. While a similar signal-to-noise gain would require averaging of 29 frames, we achieve this result using only 8 frames as input to the algorithm. A possible application of the proposed algorithm is preprocessing in retinal structure segmentation algorithms, to allow a better differentiation between real tissue information and unwanted speckle noise.

  12. Wavelet/scalar quantization compression standard for fingerprint images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brislawn, C.M.

    1996-06-12

    US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class ofmore » potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.« less

  13. Reversible integer wavelet transform for blind image hiding method

    PubMed Central

    Bibi, Nargis; Mahmood, Zahid; Akram, Tallha; Naqvi, Syed Rameez

    2017-01-01

    In this article, a blind data hiding reversible methodology to embed the secret data for hiding purpose into cover image is proposed. The key advantage of this research work is to resolve the privacy and secrecy issues raised during the data transmission over the internet. Firstly, data is decomposed into sub-bands using the integer wavelets. For decomposition, the Fresnelet transform is utilized which encrypts the secret data by choosing a unique key parameter to construct a dummy pattern. The dummy pattern is then embedded into an approximated sub-band of the cover image. Our proposed method reveals high-capacity and great imperceptibility of the secret embedded data. With the utilization of family of integer wavelets, the proposed novel approach becomes more efficient for hiding and retrieving process. It retrieved the secret hidden data from the embedded data blindly, without the requirement of original cover image. PMID:28498855

  14. Pattern recognition by wavelet transforms using macro fibre composites transducers

    NASA Astrophysics Data System (ADS)

    Ruiz de la Hermosa González-Carrato, Raúl; García Márquez, Fausto Pedro; Dimlaye, Vichaar; Ruiz-Hernández, Diego

    2014-10-01

    This paper presents a novel pattern recognition approach for a non-destructive test based on macro fibre composite transducers applied in pipes. A fault detection and diagnosis (FDD) method is employed to extract relevant information from ultrasound signals by wavelet decomposition technique. The wavelet transform is a powerful tool that reveals particular characteristics as trends or breakdown points. The FDD developed for the case study provides information about the temperatures on the surfaces of the pipe, leading to monitor faults associated with cracks, leaks or corrosion. This issue may not be noticeable when temperatures are not subject to sudden changes, but it can cause structural problems in the medium and long-term. Furthermore, the case study is completed by a statistical method based on the coefficient of determination. The main purpose will be to predict future behaviours in order to set alarm levels as a part of a structural health monitoring system.

  15. Development of a classification method for a crack on a pavement surface images using machine learning

    NASA Astrophysics Data System (ADS)

    Hizukuri, Akiyoshi; Nagata, Takeshi

    2017-03-01

    The purpose of this study is to develop a classification method for a crack on a pavement surface image using machine learning to reduce a maintenance fee. Our database consists of 3500 pavement surface images. This includes 800 crack and 2700 normal pavement surface images. The pavement surface images first are decomposed into several sub-images using a discrete wavelet transform (DWT) decomposition. We then calculate the wavelet sub-band histogram from each several sub-images at each level. The support vector machine (SVM) with computed wavelet sub-band histogram is employed for distinguishing between a crack and normal pavement surface images. The accuracies of the proposed classification method are 85.3% for crack and 84.4% for normal pavement images. The proposed classification method achieved high performance. Therefore, the proposed method would be useful in maintenance inspection.

  16. An expert support system for breast cancer diagnosis using color wavelet features.

    PubMed

    Issac Niwas, S; Palanisamy, P; Chibbar, Rajni; Zhang, W J

    2012-10-01

    Breast cancer diagnosis can be done through the pathologic assessments of breast tissue samples such as core needle biopsy technique. The result of analysis on this sample by pathologist is crucial for breast cancer patient. In this paper, nucleus of tissue samples are investigated after decomposition by means of the Log-Gabor wavelet on HSV color domain and an algorithm is developed to compute the color wavelet features. These features are used for breast cancer diagnosis using Support Vector Machine (SVM) classifier algorithm. The ability of properly trained SVM is to correctly classify patterns and make them particularly suitable for use in an expert system that aids in the diagnosis of cancer tissue samples. The results are compared with other multivariate classifiers such as Naïves Bayes classifier and Artificial Neural Network. The overall accuracy of the proposed method using SVM classifier will be further useful for automation in cancer diagnosis.

  17. 3D Gabor wavelet based vessel filtering of photoacoustic images.

    PubMed

    Haq, Israr Ul; Nagoaka, Ryo; Makino, Takahiro; Tabata, Takuya; Saijo, Yoshifumi

    2016-08-01

    Filtering and segmentation of vasculature is an important issue in medical imaging. The visualization of vasculature is crucial for the early diagnosis and therapy in numerous medical applications. This paper investigates the use of Gabor wavelet to enhance the effect of vasculature while eliminating the noise due to size, sensitivity and aperture of the detector in 3D Optical Resolution Photoacoustic Microscopy (OR-PAM). A detailed multi-scale analysis of wavelet filtering and Hessian based method is analyzed for extracting vessels of different sizes since the blood vessels usually vary with in a range of radii. The proposed algorithm first enhances the vasculature in the image and then tubular structures are classified by eigenvalue decomposition of the local Hessian matrix at each voxel in the image. The algorithm is tested on non-invasive experiments, which shows appreciable results to enhance vasculature in photo-acoustic images.

  18. Wavelet-based analysis of transient electromagnetic wave propagation in photonic crystals.

    PubMed

    Shifman, Yair; Leviatan, Yehuda

    2004-03-01

    Photonic crystals and optical bandgap structures, which facilitate high-precision control of electromagnetic-field propagation, are gaining ever-increasing attention in both scientific and commercial applications. One common photonic device is the distributed Bragg reflector (DBR), which exhibits high reflectivity at certain frequencies. Analysis of the transient interaction of an electromagnetic pulse with such a device can be formulated in terms of the time-domain volume integral equation and, in turn, solved numerically with the method of moments. Owing to the frequency-dependent reflectivity of such devices, the extent of field penetration into deep layers of the device will be different depending on the frequency content of the impinging pulse. We show how this phenomenon can be exploited to reduce the number of basis functions needed for the solution. To this end, we use spatiotemporal wavelet basis functions, which possess the multiresolution property in both spatial and temporal domains. To select the dominant functions in the solution, we use an iterative impedance matrix compression (IMC) procedure, which gradually constructs and solves a compressed version of the matrix equation until the desired degree of accuracy has been achieved. Results show that when the electromagnetic pulse is reflected, the transient IMC omits basis functions defined over the last layers of the DBR, as anticipated.

  19. Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation

    PubMed Central

    Maji, Pradipta; Roy, Shaswati

    2015-01-01

    Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR) images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices. PMID:25848961

  20. Time-frequency analysis of electric motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentley, C.L.; Dunn, M.E.; Mattingly, J.K.

    1995-12-31

    Physical signals such as the current of an electric motor become nonstationary as a consequence of degraded operation and broken parts. In this instance, their power spectral densities become time dependent, and time-frequency analysis techniques become the appropriate tools for signal analysis. The first among these techniques, generally called the short-time Fourier transform (STFT) method, is the Gabor transform 2 (GT) of a signal S(t), which decomposes the signal into time-local frequency modes: where the window function, {Phi}(t-{tau}), is a normalized Gaussian. Alternatively, one can decompose the signal into its multi-resolution representation at different levels of magnification. This representation ismore » achieved by the continuous wavelet transform (CWT) where the function g(t) is a kernel of zero average belonging to a family of scaled and shifted wavelet kernels. The CWT can be interpreted as the action of a microscope that locates the signal by the shift parameter b and adjusts its magnification by changing the scale parameter a. The Fourier-transformed CWT, W,{sub g}(a, {omega}), acts as a filter that places the high-frequency content of a signal into the lower end of the scale spectrum and vice versa for the low frequencies. Signals from a motor in three different states were analyzed.« less

  1. Forecasting of particulate matter time series using wavelet analysis and wavelet-ARMA/ARIMA model in Taiyuan, China.

    PubMed

    Zhang, Hong; Zhang, Sheng; Wang, Ping; Qin, Yuzhe; Wang, Huifeng

    2017-07-01

    Particulate matter with aerodynamic diameter below 10 μm (PM 10 ) forecasting is difficult because of the uncertainties in describing the emission and meteorological fields. This paper proposed a wavelet-ARMA/ARIMA model to forecast the short-term series of the PM 10 concentrations. It was evaluated by experiments using a 10-year data set of daily PM 10 concentrations from 4 stations located in Taiyuan, China. The results indicated the following: (1) PM 10 concentrations of Taiyuan had a decreasing trend during 2005 to 2012 but increased in 2013. PM 10 concentrations had an obvious seasonal fluctuation related to coal-fired heating in winter and early spring. (2) Spatial differences among the four stations showed that the PM 10 concentrations in industrial and heavily trafficked areas were higher than those in residential and suburb areas. (3) Wavelet analysis revealed that the trend variation and the changes of the PM 10 concentration of Taiyuan were complicated. (4) The proposed wavelet-ARIMA model could be efficiently and successfully applied to the PM 10 forecasting field. Compared with the traditional ARMA/ARIMA methods, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. Wavelet analysis can filter noisy signals and identify the variation trend and the fluctuation of the PM 10 time-series data. Wavelet decomposition and reconstruction reduce the nonstationarity of the PM 10 time-series data, and thus improve the accuracy of the prediction. This paper proposed a wavelet-ARMA/ARIMA model to forecast the PM 10 time series. Compared with the traditional ARMA/ARIMA method, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. The proposed model could be efficiently and successfully applied to the PM 10 forecasting field.

  2. WREP: A wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops

    NASA Astrophysics Data System (ADS)

    Li, Dong; Cheng, Tao; Zhou, Kai; Zheng, Hengbiao; Yao, Xia; Tian, Yongchao; Zhu, Yan; Cao, Weixing

    2017-07-01

    Red edge position (REP), defined as the wavelength of the inflexion point in the red edge region (680-760 nm) of the reflectance spectrum, has been widely used to estimate foliar chlorophyll content from reflectance spectra. A number of techniques have been developed for REP extraction in the past three decades, but most of them require data-specific parameterization and the consistence of their performance from leaf to canopy levels remains poorly understood. In this study, we propose a new technique (WREP) to extract REPs based on the application of continuous wavelet transform to reflectance spectra. The REP is determined by the zero-crossing wavelength in the red edge region of a wavelet transformed spectrum for a number of scales of wavelet decomposition. The new technique is simple to implement and requires no parameterization from the user as long as continuous wavelet transforms are applied to reflectance spectra. Its performance was evaluated for estimating leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC) of cereal crops (i.e. rice and wheat) and compared with traditional techniques including linear interpolation, linear extrapolation, polynomial fitting and inverted Gaussian. Our results demonstrated that WREP obtained the best estimation accuracy for both LCC and CCC as compared to traditional techniques. High scales of wavelet decomposition were favorable for the estimation of CCC and low scales for the estimation of LCC. The difference in optimal scale reveals the underlying mechanism of signature transfer from leaf to canopy levels. In addition, crop-specific models were required for the estimation of CCC over the full range. However, a common model could be built with the REPs extracted with Scale 5 of the WREP technique for wheat and rice crops when CCC was less than 2 g/m2 (R2 = 0.73, RMSE = 0.26 g/m2). This insensitivity of WREP to crop type indicates the potential for aerial mapping of chlorophyll content between growth seasons of cereal crops. The new REP extraction technique provides us a new insight for understanding the spectral changes in the red edge region in response to chlorophyll variation from leaf to canopy levels.

  3. Multi-channel non-invasive fetal electrocardiography detection using wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Almeida, Javier; Ruano, Josué; Corredor, Germán.; Romo-Bucheli, David; Navarro-Vargas, José Ricardo; Romero, Eduardo

    2017-11-01

    Non-invasive fetal electrocardiography (fECG) has attracted the medical community because of the importance of fetal monitoring. However, its implementation in clinical practice is challenging: the fetal signal has a low Signal- to-Noise-Ratio and several signal sources are present in the maternal abdominal electrocardiography (AECG). This paper presents a novel method to detect the fetal signal from a multi-channel maternal AECG. The method begins by applying filters and signal detrending the AECG signals. Afterwards, the maternal QRS complexes are identified and subtracted. The residual signals are used to detect the fetal QRS complex. Intervals of these signals are analyzed by using a wavelet decomposition. The resulting representation feds a previously trained Random Forest (RF) classifier that identifies signal intervals associated to fetal QRS complex. The method was evaluated on a public available dataset: the Physionet2013 challenge. A set of 50 maternal AECG records were used to train the RF classifier. The evaluation was carried out in signals intervals extracted from additional 25 maternal AECG. The proposed method yielded an 83:77% accuracy in the fetal QRS complex classification task.

  4. Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection.

    PubMed

    Li, Baopu; Meng, Max Q-H

    2012-05-01

    Tumor in digestive tract is a common disease and wireless capsule endoscopy (WCE) is a relatively new technology to examine diseases for digestive tract especially for small intestine. This paper addresses the problem of automatic recognition of tumor for WCE images. Candidate color texture feature that integrates uniform local binary pattern and wavelet is proposed to characterize WCE images. The proposed features are invariant to illumination change and describe multiresolution characteristics of WCE images. Two feature selection approaches based on support vector machine, sequential forward floating selection and recursive feature elimination, are further employed to refine the proposed features for improving the detection accuracy. Extensive experiments validate that the proposed computer-aided diagnosis system achieves a promising tumor recognition accuracy of 92.4% in WCE images on our collected data.

  5. Fast multi-scale feature fusion for ECG heartbeat classification

    NASA Astrophysics Data System (ADS)

    Ai, Danni; Yang, Jian; Wang, Zeyu; Fan, Jingfan; Ai, Changbin; Wang, Yongtian

    2015-12-01

    Electrocardiogram (ECG) is conducted to monitor the electrical activity of the heart by presenting small amplitude and duration signals; as a result, hidden information present in ECG data is difficult to determine. However, this concealed information can be used to detect abnormalities. In our study, a fast feature-fusion method of ECG heartbeat classification based on multi-linear subspace learning is proposed. The method consists of four stages. First, baseline and high frequencies are removed to segment heartbeat. Second, as an extension of wavelets, wavelet-packet decomposition is conducted to extract features. With wavelet-packet decomposition, good time and frequency resolutions can be provided simultaneously. Third, decomposed confidences are arranged as a two-way tensor, in which feature fusion is directly implemented with generalized N dimensional ICA (GND-ICA). In this method, co-relationship among different data information is considered, and disadvantages of dimensionality are prevented; this method can also be used to reduce computing compared with linear subspace-learning methods (PCA). Finally, support vector machine (SVM) is considered as a classifier in heartbeat classification. In this study, ECG records are obtained from the MIT-BIT arrhythmia database. Four main heartbeat classes are used to examine the proposed algorithm. Based on the results of five measurements, sensitivity, positive predictivity, accuracy, average accuracy, and t-test, our conclusion is that a GND-ICA-based strategy can be used to provide enhanced ECG heartbeat classification. Furthermore, large redundant features are eliminated, and classification time is reduced.

  6. Local dynamics and spatiotemporal chaos. The Kuramoto- Sivashinsky equation: A case study

    NASA Astrophysics Data System (ADS)

    Wittenberg, Ralf Werner

    The nature of spatiotemporal chaos in extended continuous systems is not yet well-understood. In this thesis, a model partial differential equation, the Kuramoto- Sivashinsky (KS) equation ut+uxxxx+uxx+uux =0 on a large one-dimensional periodic domain, is studied analytically, numerically, and through modeling to obtain a more detailed understanding of the observed spatiotemporally complex dynamics. In particular, with the aid of a wavelet decomposition, the relevant dynamical interactions are shown to be localized in space and scale. Motivated by these results, and by the idea that the attractor on a large domain may be understood via attractors on smaller domains, a spatially localized low- dimensional model for a minimal chaotic box is proposed. A (de)stabilized extension of the KS equation has recently attracted increased interest; for this situation, dissipativity and analyticity areproven, and an explicit shock-like solution is constructed which sheds light on the difficulties in obtaining optimal bounds for the KS equation. For the usual KS equation, the spatiotemporally chaotic state is carefully characterized in real, Fourier and wavelet space. The wavelet decomposition provides good scale separation which isolates the three characteristic regions of the dynamics: large scales of slow Gaussian fluctuations, active scales containing localized interactions of coherent structures, and small scales. Space localization is shown through a comparison of various correlation lengths and a numerical experiment in which different modes are uncoupled to estimate a dynamic interaction length. A detailed picture of the contributions of different scales to the spatiotemporally complex dynamics is obtained via a Galerkin projection of the KS equation onto the wavelet basis, and an extensive series of numerical experiments in which different combinations of wavelet levels are eliminated or forced. These results, and a formalism to derive an effective equation for periodized subsystems externally forced from a larger system, motivate various models for spatially localized forced systems. There is convincing evidence that short periodized systems, internally forced at the largest scales, form a minimal model for the observed extensively chaotic dynamics in larger domains.

  7. Delamination detection by Multi-Level Wavelet Processing of Continuous Scanning Laser Doppler Vibrometry data

    NASA Astrophysics Data System (ADS)

    Chiariotti, P.; Martarelli, M.; Revel, G. M.

    2017-12-01

    A novel non-destructive testing procedure for delamination detection based on the exploitation of the simultaneous time and spatial sampling provided by Continuous Scanning Laser Doppler Vibrometry (CSLDV) and the feature extraction capability of Multi-Level wavelet-based processing is presented in this paper. The processing procedure consists in a multi-step approach. Once the optimal mother-wavelet is selected as the one maximizing the Energy to Shannon Entropy Ratio criterion among the mother-wavelet space, a pruning operation aiming at identifying the best combination of nodes inside the full-binary tree given by Wavelet Packet Decomposition (WPD) is performed. The pruning algorithm exploits, in double step way, a measure of the randomness of the point pattern distribution on the damage map space with an analysis of the energy concentration of the wavelet coefficients on those nodes provided by the first pruning operation. A combination of the point pattern distributions provided by each node of the ensemble node set from the pruning algorithm allows for setting a Damage Reliability Index associated to the final damage map. The effectiveness of the whole approach is proven on both simulated and real test cases. A sensitivity analysis related to the influence of noise on the CSLDV signal provided to the algorithm is also discussed, showing that the processing developed is robust enough to measurement noise. The method is promising: damages are well identified on different materials and for different damage-structure varieties.

  8. A data-driven wavelet-based approach for generating jumping loads

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Li, Guo; Racic, Vitomir

    2018-06-01

    This paper suggests an approach to generate human jumping loads using wavelet transform and a database of individual jumping force records. A total of 970 individual jumping force records of various frequencies were first collected by three experiments from 147 test subjects. For each record, every jumping pulse was extracted and decomposed into seven levels by wavelet transform. All the decomposition coefficients were stored in an information database. Probability distributions of jumping cycle period, contact ratio and energy of the jumping pulse were statistically analyzed. Inspired by the theory of DNA recombination, an approach was developed by interchanging the wavelet coefficients between different jumping pulses. To generate a jumping force time history with N pulses, wavelet coefficients were first selected randomly from the database at each level. They were then used to reconstruct N pulses by the inverse wavelet transform. Jumping cycle periods and contract ratios were then generated randomly based on their probabilistic functions. These parameters were assigned to each of the N pulses which were in turn scaled by the amplitude factors βi to account for energy relationship between successive pulses. The final jumping force time history was obtained by linking all the N cycles end to end. This simulation approach can preserve the non-stationary features of the jumping load force in time-frequency domain. Application indicates that this approach can be used to generate jumping force time history due to single people jumping and also can be extended further to stochastic jumping loads due to groups and crowds.

  9. Electroencephalographic compression based on modulated filter banks and wavelet transform.

    PubMed

    Bazán-Prieto, Carlos; Cárdenas-Barrera, Julián; Blanco-Velasco, Manuel; Cruz-Roldán, Fernando

    2011-01-01

    Due to the large volume of information generated in an electroencephalographic (EEG) study, compression is needed for storage, processing or transmission for analysis. In this paper we evaluate and compare two lossy compression techniques applied to EEG signals. It compares the performance of compression schemes with decomposition by filter banks or wavelet Packets transformation, seeking the best value for compression, best quality and more efficient real time implementation. Due to specific properties of EEG signals, we propose a quantization stage adapted to the dynamic range of each band, looking for higher quality. The results show that the compressor with filter bank performs better than transform methods. Quantization adapted to the dynamic range significantly enhances the quality.

  10. Multiresolution Approach for Noncontact Measurements of Arterial Pulse Using Thermal Imaging

    NASA Astrophysics Data System (ADS)

    Chekmenev, Sergey Y.; Farag, Aly A.; Miller, William M.; Essock, Edward A.; Bhatnagar, Aruni

    This chapter presents a novel computer vision methodology for noncontact and nonintrusive measurements of arterial pulse. This is the only investigation that links the knowledge of human physiology and anatomy, advances in thermal infrared (IR) imaging and computer vision to produce noncontact and nonintrusive measurements of the arterial pulse in both time and frequency domains. The proposed approach has a physical and physiological basis and as such is of a fundamental nature. A thermal IR camera was used to capture the heat pattern from superficial arteries, and a blood vessel model was proposed to describe the pulsatile nature of the blood flow. A multiresolution wavelet-based signal analysis approach was applied to extract the arterial pulse waveform, which lends itself to various physiological measurements. We validated our results using a traditional contact vital signs monitor as a ground truth. Eight people of different age, race and gender have been tested in our study consistent with Health Insurance Portability and Accountability Act (HIPAA) regulations and internal review board approval. The resultant arterial pulse waveforms exactly matched the ground truth oximetry readings. The essence of our approach is the automatic detection of region of measurement (ROM) of the arterial pulse, from which the arterial pulse waveform is extracted. To the best of our knowledge, the correspondence between noncontact thermal IR imaging-based measurements of the arterial pulse in the time domain and traditional contact approaches has never been reported in the literature.

  11. Data analysis in Raman measurements of biological tissues using wavelet techniques

    NASA Astrophysics Data System (ADS)

    Gaeta, Giovanni M.; Zenone, Flora; Camerlingo, Carlo; Riccio, Roberto; Moro, Gianfranco; Lepore, Maria; Indovina, Pietro L.

    2005-03-01

    Raman spectroscopy of oral tissues is a promising tool for in vivo diagnosis of oral pathologies, due to the high chemical and structural information content of Raman spectra. However, measurements on biological tissues are usually hindered by low level signals and by the presence of interfering noise and background components due to light diffusion or fluorescence processes. Numerical methods can be used in data analysis, in order to overcome these problems. In this work the wavelet multicomponent decomposition approach has been tested in a series of micro-Raman measurements performed on "in vitro" animal tissue samples. The experimental set-up was mainly composed by a He-Ne laser and a monochromator equipped with a liquid nitrogen cooled CCD equipped with a grating of 1800 grooves/mm. The laser light was focused on the sample surface by means of a 50 X optical objective. The resulting spectra were analysed using a wavelet software package and the contribution of different vibration modes have been singled out. In particular, the C=C stretching mode, and the CH2 bending mode of amide I and amide III and tyrosine contributions were present. The validity of wavelet approach in the data treatment has been also successfully tested on aspirin.

  12. Improved medical image fusion based on cascaded PCA and shift invariant wavelet transforms.

    PubMed

    Reena Benjamin, J; Jayasree, T

    2018-02-01

    In the medical field, radiologists need more informative and high-quality medical images to diagnose diseases. Image fusion plays a vital role in the field of biomedical image analysis. It aims to integrate the complementary information from multimodal images, producing a new composite image which is expected to be more informative for visual perception than any of the individual input images. The main objective of this paper is to improve the information, to preserve the edges and to enhance the quality of the fused image using cascaded principal component analysis (PCA) and shift invariant wavelet transforms. A novel image fusion technique based on cascaded PCA and shift invariant wavelet transforms is proposed in this paper. PCA in spatial domain extracts relevant information from the large dataset based on eigenvalue decomposition, and the wavelet transform operating in the complex domain with shift invariant properties brings out more directional and phase details of the image. The significance of maximum fusion rule applied in dual-tree complex wavelet transform domain enhances the average information and morphological details. The input images of the human brain of two different modalities (MRI and CT) are collected from whole brain atlas data distributed by Harvard University. Both MRI and CT images are fused using cascaded PCA and shift invariant wavelet transform method. The proposed method is evaluated based on three main key factors, namely structure preservation, edge preservation, contrast preservation. The experimental results and comparison with other existing fusion methods show the superior performance of the proposed image fusion framework in terms of visual and quantitative evaluations. In this paper, a complex wavelet-based image fusion has been discussed. The experimental results demonstrate that the proposed method enhances the directional features as well as fine edge details. Also, it reduces the redundant details, artifacts, distortions.

  13. Application of wavelet filtering and Barker-coded pulse compression hybrid method to air-coupled ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenggan; Ma, Baoquan; Jiang, Jingtao; Yu, Guang; Liu, Kui; Zhang, Dongmei; Liu, Weiping

    2014-10-01

    Air-coupled ultrasonic testing (ACUT) technique has been viewed as a viable solution in defect detection of advanced composites used in aerospace and aviation industries. However, the giant mismatch of acoustic impedance in air-solid interface makes the transmission efficiency of ultrasound low, and leads to poor signal-to-noise (SNR) ratio of received signal. The utilisation of signal-processing techniques in non-destructive testing is highly appreciated. This paper presents a wavelet filtering and phase-coded pulse compression hybrid method to improve the SNR and output power of received signal. The wavelet transform is utilised to filter insignificant components from noisy ultrasonic signal, and pulse compression process is used to improve the power of correlated signal based on cross-correction algorithm. For the purpose of reasonable parameter selection, different families of wavelets (Daubechies, Symlet and Coiflet) and decomposition level in discrete wavelet transform are analysed, different Barker codes (5-13 bits) are also analysed to acquire higher main-to-side lobe ratio. The performance of the hybrid method was verified in a honeycomb composite sample. Experimental results demonstrated that the proposed method is very efficient in improving the SNR and signal strength. The applicability of the proposed method seems to be a very promising tool to evaluate the integrity of high ultrasound attenuation composite materials using the ACUT.

  14. Nonlinear Prediction Model for Hydrologic Time Series Based on Wavelet Decomposition

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Khalil, A.; Brown, C.; Lall, U.; Ahn, H.; Moon, Y.

    2005-12-01

    Traditionally forecasting and characterizations of hydrologic systems is performed utilizing many techniques. Stochastic linear methods such as AR and ARIMA and nonlinear ones such as statistical learning theory based tools have been extensively used. The common difficulty to all methods is the determination of sufficient and necessary information and predictors for a successful prediction. Relationships between hydrologic variables are often highly nonlinear and interrelated across the temporal scale. A new hybrid approach is proposed for the simulation of hydrologic time series combining both the wavelet transform and the nonlinear model. The present model employs some merits of wavelet transform and nonlinear time series model. The Wavelet Transform is adopted to decompose a hydrologic nonlinear process into a set of mono-component signals, which are simulated by nonlinear model. The hybrid methodology is formulated in a manner to improve the accuracy of a long term forecasting. The proposed hybrid model yields much better results in terms of capturing and reproducing the time-frequency properties of the system at hand. Prediction results are promising when compared to traditional univariate time series models. An application of the plausibility of the proposed methodology is provided and the results conclude that wavelet based time series model can be utilized for simulating and forecasting of hydrologic variable reasonably well. This will ultimately serve the purpose of integrated water resources planning and management.

  15. Cloud-Scale Genomic Signals Processing for Robust Large-Scale Cancer Genomic Microarray Data Analysis.

    PubMed

    Harvey, Benjamin Simeon; Ji, Soo-Yeon

    2017-01-01

    As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring forth oncological inference to the bioinformatics community through the analysis of large-scale cancer genomic (LSCG) DNA and mRNA microarray data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological interpretation by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale distributed parallel (CSDP) separable 1-D wavelet decomposition technique for denoising through differential expression thresholding and classification of LSCG microarray data. This research presents a novel methodology that utilizes a CSDP separable 1-D method for wavelet-based transformation in order to initialize a threshold which will retain significantly expressed genes through the denoising process for robust classification of cancer patients. Additionally, the overall study was implemented and encompassed within CSDP environment. The utilization of cloud computing and wavelet-based thresholding for denoising was used for the classification of samples within the Global Cancer Map, Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas. The results proved that separable 1-D parallel distributed wavelet denoising in the cloud and differential expression thresholding increased the computational performance and enabled the generation of higher quality LSCG microarray datasets, which led to more accurate classification results.

  16. Feature extraction using gray-level co-occurrence matrix of wavelet coefficients and texture matching for batik motif recognition

    NASA Astrophysics Data System (ADS)

    Suciati, Nanik; Herumurti, Darlis; Wijaya, Arya Yudhi

    2017-02-01

    Batik is one of Indonesian's traditional cloth. Motif or pattern drawn on a piece of batik fabric has a specific name and philosopy. Although batik cloths are widely used in everyday life, but only few people understand its motif and philosophy. This research is intended to develop a batik motif recognition system which can be used to identify motif of Batik image automatically. First, a batik image is decomposed into sub-images using wavelet transform. Six texture descriptors, i.e. max probability, correlation, contrast, uniformity, homogenity and entropy, are extracted from gray-level co-occurrence matrix of each sub-image. The texture features are then matched to the template features using canberra distance. The experiment is performed on Batik Dataset consisting of 1088 batik images grouped into seven motifs. The best recognition rate, that is 92,1%, is achieved using feature extraction process with 5 level wavelet decomposition and 4 directional gray-level co-occurrence matrix.

  17. QRS analysis using wavelet transformation for the prediction of response to cardiac resynchronization therapy: a prospective pilot study.

    PubMed

    Vassilikos, Vassilios P; Mantziari, Lilian; Dakos, Georgios; Kamperidis, Vasileios; Chouvarda, Ioanna; Chatzizisis, Yiannis S; Kalpidis, Panagiotis; Theofilogiannakos, Efstratios; Paraskevaidis, Stelios; Karvounis, Haralambos; Mochlas, Sotirios; Maglaveras, Nikolaos; Styliadis, Ioannis H

    2014-01-01

    Wider QRS and left bundle branch block morphology are related to response to cardiac resynchronization therapy (CRT). A novel time-frequency analysis of the QRS complex may provide additional information in predicting response to CRT. Signal-averaged electrocardiograms were prospectively recorded, before CRT, in orthogonal leads and QRS decomposition in three frequency bands was performed using the Morlet wavelet transformation. Thirty eight patients (age 65±10years, 31 males) were studied. CRT responders (n=28) had wider baseline QRS compared to non-responders and lower QRS energies in all frequency bands. The combination of QRS duration and mean energy in the high frequency band had the best predicting ability (AUC 0.833, 95%CI 0.705-0.962, p=0.002) followed by the maximum energy in the high frequency band (AUC 0.811, 95%CI 0.663-0.960, p=0.004). Wavelet transformation of the QRS complex is useful in predicting response to CRT. © 2013.

  18. Recognizing of stereotypic patterns in epileptic EEG using empirical modes and wavelets

    NASA Astrophysics Data System (ADS)

    Grubov, V. V.; Sitnikova, E.; Pavlov, A. N.; Koronovskii, A. A.; Hramov, A. E.

    2017-11-01

    Epileptic activity in the form of spike-wave discharges (SWD) appears in the electroencephalogram (EEG) during absence seizures. This paper evaluates two approaches for detecting stereotypic rhythmic activities in EEG, i.e., the continuous wavelet transform (CWT) and the empirical mode decomposition (EMD). The CWT is a well-known method of time-frequency analysis of EEG, whereas EMD is a relatively novel approach for extracting signal's waveforms. A new method for pattern recognition based on combination of CWT and EMD is proposed. It was found that this combined approach resulted to the sensitivity of 86.5% and specificity of 92.9% for sleep spindles and 97.6% and 93.2% for SWD, correspondingly. Considering strong within- and between-subjects variability of sleep spindles, the obtained efficiency in their detection was high in comparison with other methods based on CWT. It is concluded that the combination of a wavelet-based approach and empirical modes increases the quality of automatic detection of stereotypic patterns in rat's EEG.

  19. Finite Element Methods for real-time Haptic Feedback of Soft-Tissue Models in Virtual Reality Simulators

    NASA Technical Reports Server (NTRS)

    Frank, Andreas O.; Twombly, I. Alexander; Barth, Timothy J.; Smith, Jeffrey D.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    We have applied the linear elastic finite element method to compute haptic force feedback and domain deformations of soft tissue models for use in virtual reality simulators. Our results show that, for virtual object models of high-resolution 3D data (>10,000 nodes), haptic real time computations (>500 Hz) are not currently possible using traditional methods. Current research efforts are focused in the following areas: 1) efficient implementation of fully adaptive multi-resolution methods and 2) multi-resolution methods with specialized basis functions to capture the singularity at the haptic interface (point loading). To achieve real time computations, we propose parallel processing of a Jacobi preconditioned conjugate gradient method applied to a reduced system of equations resulting from surface domain decomposition. This can effectively be achieved using reconfigurable computing systems such as field programmable gate arrays (FPGA), thereby providing a flexible solution that allows for new FPGA implementations as improved algorithms become available. The resulting soft tissue simulation system would meet NASA Virtual Glovebox requirements and, at the same time, provide a generalized simulation engine for any immersive environment application, such as biomedical/surgical procedures or interactive scientific applications.

  20. A Robust Zero-Watermarking Algorithm for Audio

    NASA Astrophysics Data System (ADS)

    Chen, Ning; Zhu, Jie

    2007-12-01

    In traditional watermarking algorithms, the insertion of watermark into the host signal inevitably introduces some perceptible quality degradation. Another problem is the inherent conflict between imperceptibility and robustness. Zero-watermarking technique can solve these problems successfully. Instead of embedding watermark, the zero-watermarking technique extracts some essential characteristics from the host signal and uses them for watermark detection. However, most of the available zero-watermarking schemes are designed for still image and their robustness is not satisfactory. In this paper, an efficient and robust zero-watermarking technique for audio signal is presented. The multiresolution characteristic of discrete wavelet transform (DWT), the energy compression characteristic of discrete cosine transform (DCT), and the Gaussian noise suppression property of higher-order cumulant are combined to extract essential features from the host audio signal and they are then used for watermark recovery. Simulation results demonstrate the effectiveness of our scheme in terms of inaudibility, detection reliability, and robustness.

  1. Shuttle Data Center File-Processing Tool in Java

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Miller, Walter H.

    2006-01-01

    A Java-language computer program has been written to facilitate mining of data in files in the Shuttle Data Center (SDC) archives. This program can be executed on a variety of workstations or via Web-browser programs. This program is partly similar to prior C-language programs used for the same purpose, while differing from those programs in that it exploits the platform-neutrality of Java in implementing several features that are important for analysis of large sets of time-series data. The program supports regular expression queries of SDC archive files, reads the files, interleaves the time-stamped samples according to a chosen output, then transforms the results into that format. A user can choose among a variety of output file formats that are useful for diverse purposes, including plotting, Markov modeling, multivariate density estimation, and wavelet multiresolution analysis, as well as for playback of data in support of simulation and testing.

  2. Remotely sensed vegetation moisture as explanatory variable of Lyme borreliosis incidence

    NASA Astrophysics Data System (ADS)

    Barrios, J. M.; Verstraeten, W. W.; Maes, P.; Clement, J.; Aerts, J. M.; Farifteh, J.; Lagrou, K.; Van Ranst, M.; Coppin, P.

    2012-08-01

    The strong correlation between environmental conditions and abundance and spatial spread of the tick Ixodes ricinus is widely documented. I. ricinus is in Europe the main vector of the bacterium Borrelia burgdorferi, the pathogen causing Lyme borreliosis (LB). Humidity in vegetated systems is a major factor in tick ecology and its effects might translate into disease incidence in humans. Time series of two remotely sensed indices with sensitivity to vegetation greenness and moisture were tested as explanatory variables of LB incidence. Wavelet-based multiresolution analysis allowed the examination of these signals at different temporal scales in study sites in Belgium, where increases in LB incidence were reported in recent years. The analysis showed the potential of the tested indices for disease monitoring, the usefulness of analyzing the signal in different time frames and the importance of local characteristics of the study area for the selection of the vegetation index.

  3. Improved biliary detection and diagnosis through intelligent machine analysis.

    PubMed

    Logeswaran, Rajasvaran

    2012-09-01

    This paper reports on work undertaken to improve automated detection of bile ducts in magnetic resonance cholangiopancreatography (MRCP) images, with the objective of conducting preliminary classification of the images for diagnosis. The proposed I-BDeDIMA (Improved Biliary Detection and Diagnosis through Intelligent Machine Analysis) scheme is a multi-stage framework consisting of successive phases of image normalization, denoising, structure identification, object labeling, feature selection and disease classification. A combination of multiresolution wavelet, dynamic intensity thresholding, segment-based region growing, region elimination, statistical analysis and neural networks, is used in this framework to achieve good structure detection and preliminary diagnosis. Tests conducted on over 200 clinical images with known diagnosis have shown promising results of over 90% accuracy. The scheme outperforms related work in the literature, making it a viable framework for computer-aided diagnosis of biliary diseases. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Group theoretical methods and wavelet theory: coorbit theory and applications

    NASA Astrophysics Data System (ADS)

    Feichtinger, Hans G.

    2013-05-01

    Before the invention of orthogonal wavelet systems by Yves Meyer1 in 1986 Gabor expansions (viewed as discretized inversion of the Short-Time Fourier Transform2 using the overlap and add OLA) and (what is now perceived as) wavelet expansions have been treated more or less at an equal footing. The famous paper on painless expansions by Daubechies, Grossman and Meyer3 is a good example for this situation. The description of atomic decompositions for functions in modulation spaces4 (including the classical Sobolev spaces) given by the author5 was directly modeled according to the corresponding atomic characterizations by Frazier and Jawerth,6, 7 more or less with the idea of replacing the dyadic partitions of unity of the Fourier transform side by uniform partitions of unity (so-called BUPU's, first named as such in the early work on Wiener-type spaces by the author in 19808). Watching the literature in the subsequent two decades one can observe that the interest in wavelets "took over", because it became possible to construct orthonormal wavelet systems with compact support and of any given degree of smoothness,9 while in contrast the Balian-Low theorem is prohibiting the existence of corresponding Gabor orthonormal bases, even in the multi-dimensional case and for general symplectic lattices.10 It is an interesting historical fact that* his construction of band-limited orthonormal wavelets (the Meyer wavelet, see11) grew out of an attempt to prove the impossibility of the existence of such systems, and the final insight was that it was not impossible to have such systems, and in fact quite a variety of orthonormal wavelet system can be constructed as we know by now. Meanwhile it is established wisdom that wavelet theory and time-frequency analysis are two different ways of decomposing signals in orthogonal resp. non-orthogonal ways. The unifying theory, covering both cases, distilling from these two situations the common group theoretical background lead to the theory of coorbit spaces,12, 13 established by the author jointly with K. Gröchenig. Starting from an integrable and irreducible representation of some locally compact group (such as the "ax+b"-group or the Heisenberg group) one can derive families of Banach spaces having natural atomic characterizations, or alternatively a continuous transform associated to it. So at the end function spaces of locally compact groups come into play, and their generic properties help to explain why and how it is possible to obtain (nonorthogonal) decompositions. While unification of these two groups was one important aspect of the approach given in the late 80th, it was also clear that this approach allows to formulate and exploit the analogy to Banach spaces of analytic functions invariant under the Moebius group have been at the heart in this context. Recent years have seen further new instances and generalizations. Among them shearlets or the Blaschke product should be mentioned here, and the increased interest in the connections between wavelet theory and complex analysis. The talk will try to summarize a few of the general principles which can be derived from the general theory, but also highlight the difference between the different groups and signal expansions arising from corresponding group representations. There is still a lot more to be done, also from the point of view of applications and the numerical realization of such non-orthogonal expansions.

  5. Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent Elman neural network classifier.

    PubMed

    Raghu, S; Sriraam, N; Kumar, G Pradeep

    2017-02-01

    Electroencephalogram shortly termed as EEG is considered as the fundamental segment for the assessment of the neural activities in the brain. In cognitive neuroscience domain, EEG-based assessment method is found to be superior due to its non-invasive ability to detect deep brain structure while exhibiting superior spatial resolutions. Especially for studying the neurodynamic behavior of epileptic seizures, EEG recordings reflect the neuronal activity of the brain and thus provide required clinical diagnostic information for the neurologist. This specific proposed study makes use of wavelet packet based log and norm entropies with a recurrent Elman neural network (REN) for the automated detection of epileptic seizures. Three conditions, normal, pre-ictal and epileptic EEG recordings were considered for the proposed study. An adaptive Weiner filter was initially applied to remove the power line noise of 50 Hz from raw EEG recordings. Raw EEGs were segmented into 1 s patterns to ensure stationarity of the signal. Then wavelet packet using Haar wavelet with a five level decomposition was introduced and two entropies, log and norm were estimated and were applied to REN classifier to perform binary classification. The non-linear Wilcoxon statistical test was applied to observe the variation in the features under these conditions. The effect of log energy entropy (without wavelets) was also studied. It was found from the simulation results that the wavelet packet log entropy with REN classifier yielded a classification accuracy of 99.70 % for normal-pre-ictal, 99.70 % for normal-epileptic and 99.85 % for pre-ictal-epileptic.

  6. ECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform.

    PubMed

    El B'charri, Oussama; Latif, Rachid; Elmansouri, Khalifa; Abenaou, Abdenbi; Jenkal, Wissam

    2017-02-07

    Since the electrocardiogram (ECG) signal has a low frequency and a weak amplitude, it is sensitive to miscellaneous mixed noises, which may reduce the diagnostic accuracy and hinder the physician's correct decision on patients. The dual tree wavelet transform (DT-WT) is one of the most recent enhanced versions of discrete wavelet transform. However, threshold tuning on this method for noise removal from ECG signal has not been investigated yet. In this work, we shall provide a comprehensive study on the impact of the choice of threshold algorithm, threshold value, and the appropriate wavelet decomposition level to evaluate the ECG signal de-noising performance. A set of simulations is performed on both synthetic and real ECG signals to achieve the promised results. First, the synthetic ECG signal is used to observe the algorithm response. The evaluation results of synthetic ECG signal corrupted by various types of noise has showed that the modified unified threshold and wavelet hyperbolic threshold de-noising method is better in realistic and colored noises. The tuned threshold is then used on real ECG signals from the MIT-BIH database. The results has shown that the proposed method achieves higher performance than the ordinary dual tree wavelet transform into all kinds of noise removal from ECG signal. The simulation results indicate that the algorithm is robust for all kinds of noises with varying degrees of input noise, providing a high quality clean signal. Moreover, the algorithm is quite simple and can be used in real time ECG monitoring.

  7. The scale of the problem: recovering images of reionization with Generalized Morphological Component Analysis

    NASA Astrophysics Data System (ADS)

    Chapman, Emma; Abdalla, Filipe B.; Bobin, J.; Starck, J.-L.; Harker, Geraint; Jelić, Vibor; Labropoulos, Panagiotis; Zaroubi, Saleem; Brentjens, Michiel A.; de Bruyn, A. G.; Koopmans, L. V. E.

    2013-02-01

    The accurate and precise removal of 21-cm foregrounds from Epoch of Reionization (EoR) redshifted 21-cm emission data is essential if we are to gain insight into an unexplored cosmological era. We apply a non-parametric technique, Generalized Morphological Component Analysis (gmca), to simulated Low Frequency Array (LOFAR)-EoR data and show that it has the ability to clean the foregrounds with high accuracy. We recover the 21-cm 1D, 2D and 3D power spectra with high accuracy across an impressive range of frequencies and scales. We show that gmca preserves the 21-cm phase information, especially when the smallest spatial scale data is discarded. While it has been shown that LOFAR-EoR image recovery is theoretically possible using image smoothing, we add that wavelet decomposition is an efficient way of recovering 21-cm signal maps to the same or greater order of accuracy with more flexibility. By comparing the gmca output residual maps (equal to the noise, 21-cm signal and any foreground fitting errors) with the 21-cm maps at one frequency and discarding the smaller wavelet scale information, we find a correlation coefficient of 0.689, compared to 0.588 for the equivalently smoothed image. Considering only the pixels in a central patch covering 50 per cent of the total map area, these coefficients improve to 0.905 and 0.605, respectively, and we conclude that wavelet decomposition is a significantly more powerful method to denoise reconstructed 21-cm maps than smoothing.

  8. A modified multiscale peak alignment method combined with trilinear decomposition to study the volatile/heat-labile components in Ligusticum chuanxiong Hort - Cyperus rotundus rhizomes by HS-SPME-GC/MS.

    PubMed

    He, Min; Yan, Pan; Yang, Zhi-Yu; Zhang, Zhi-Min; Yang, Tian-Biao; Hong, Liang

    2018-03-15

    Head Space/Solid Phase Micro-Extraction (HS-SPME) coupled with Gas Chromatography/Mass Spectrometer (GC/MS) was used to determine the volatile/heat-labile components in Ligusticum chuanxiong Hort - Cyperus rotundus rhizomes. Facing co-eluting peaks in k samples, a trilinear structure was reconstructed to obtain the second-order advantage. The retention time (RT) shift with multi-channel detection signals for different samples has been vital in maintaining the trilinear structure, thus a modified multiscale peak alignment (mMSPA) method was proposed in this paper. The peak position and peak width of representative ion profile were firstly detected by mMSPA using Continuous Wavelet Transform with Haar wavelet as the mother wavelet (Haar CWT). Then, the raw shift was confirmed by Fast Fourier Transform (FFT) cross correlation calculation. To obtain the optimal shift, Haar CWT was again used to detect the subtle deviations and be amalgamated in calculation. Here, to ensure there is no peaks shape alternation, the alignment was performed in local domains of data matrices, and all data points in the peak zone were moved via linear interpolation in non-peak parts. Finally, chemical components of interest in Ligusticum chuanxiong Hort - Cyperus rotundus rhizomes were analyzed by HS-SPME-GCMS and mMSPA-alternating trilinear decomposition (ATLD) resolution. As a result, the concentration variation between herbs and their pharmaceutical products can provide a scientific basic for the quality standard establishment of traditional Chinese medicines. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Respiratory-Induced Prostate Motion Using Wavelet Decomposition of the Real-Time Electromagnetic Tracking Signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuting; Liu, Tian; Yang, Xiaofeng

    2013-10-01

    Purpose: The objective of this work is to characterize and quantify the impact of respiratory-induced prostate motion. Methods and Materials: Real-time intrafraction motion is observed with the Calypso 4-dimensional nonradioactive electromagnetic tracking system (Calypso Medical Technologies, Inc. Seattle, Washington). We report the results from a total of 1024 fractions from 31 prostate cancer patients. Wavelet transform was used to decompose the signal to extract and isolate the respiratory-induced prostate motion from the total prostate displacement. Results: Our results show that the average respiratory motion larger than 0.5 mm can be observed in 68% of the fractions. Fewer than 1% ofmore » the patients showed average respiratory motion of less than 0.2 mm, whereas 99% of the patients showed average respiratory-induced motion ranging between 0.2 and 2 mm. The maximum respiratory range of motion of 3 mm or greater was seen in only 25% of the fractions. In addition, about 2% patients showed anxiety, indicated by a breathing frequency above 24 times per minute. Conclusions: Prostate motion is influenced by respiration in most fractions. Real-time intrafraction data are sensitive enough to measure the impact of respiration by use of wavelet decomposition methods. Although the average respiratory amplitude observed in this study is small, this technique provides a tool that can be useful if one moves to smaller treatment margins (≤5 mm). This also opens ups the possibility of being able to develop patient specific margins, knowing that prostate motion is not unpredictable.« less

  10. sparse-msrf:A package for sparse modeling and estimation of fossil-fuel CO2 emission fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-10-06

    The software is used to fit models of emission fields (e.g., fossil-fuel CO2 emissions) to sparse measurements of gaseous concentrations. Its primary aim is to provide an implementation and a demonstration for the algorithms and models developed in J. Ray, V. Yadav, A. M. Michalak, B. van Bloemen Waanders and S. A. McKenna, "A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions", accepted, Geoscientific Model Development, 2014. The software can be used to estimate emissions of non-reactive gases such as fossil-fuel CO2, methane etc. The software uses a proxy of the emission field beingmore » estimated (e.g., for fossil-fuel CO2, a population density map is a good proxy) to construct a wavelet model for the emission field. It then uses a shrinkage regression algorithm called Stagewise Orthogonal Matching Pursuit (StOMP) to fit the wavelet model to concentration measurements, using an atmospheric transport model to relate emission and concentration fields. Algorithmic novelties described in the paper above (1) ensure that the estimated emission fields are non-negative, (2) allow the use of guesses for emission fields to accelerate the estimation processes and (3) ensure that under/overestimates in the guesses do not skew the estimation.« less

  11. Long-term forecasting of internet backbone traffic.

    PubMed

    Papagiannaki, Konstantina; Taft, Nina; Zhang, Zhi-Li; Diot, Christophe

    2005-09-01

    We introduce a methodology to predict when and where link additions/upgrades have to take place in an Internet protocol (IP) backbone network. Using simple network management protocol (SNMP) statistics, collected continuously since 1999, we compute aggregate demand between any two adjacent points of presence (PoPs) and look at its evolution at time scales larger than 1 h. We show that IP backbone traffic exhibits visible long term trends, strong periodicities, and variability at multiple time scales. Our methodology relies on the wavelet multiresolution analysis (MRA) and linear time series models. Using wavelet MRA, we smooth the collected measurements until we identify the overall long-term trend. The fluctuations around the obtained trend are further analyzed at multiple time scales. We show that the largest amount of variability in the original signal is due to its fluctuations at the 12-h time scale. We model inter-PoP aggregate demand as a multiple linear regression model, consisting of the two identified components. We show that this model accounts for 98% of the total energy in the original signal, while explaining 90% of its variance. Weekly approximations of those components can be accurately modeled with low-order autoregressive integrated moving average (ARIMA) models. We show that forecasting the long term trend and the fluctuations of the traffic at the 12-h time scale yields accurate estimates for at least 6 months in the future.

  12. The FBI compression standard for digitized fingerprint images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brislawn, C.M.; Bradley, J.N.; Onyshczak, R.J.

    1996-10-01

    The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the currentmore » status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.« less

  13. FBI compression standard for digitized fingerprint images

    NASA Astrophysics Data System (ADS)

    Brislawn, Christopher M.; Bradley, Jonathan N.; Onyshczak, Remigius J.; Hopper, Thomas

    1996-11-01

    The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the current status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.

  14. Interdependence and contagion among industry-level US credit markets: An application of wavelet and VMD based copula approaches

    NASA Astrophysics Data System (ADS)

    Shahzad, Syed Jawad Hussain; Nor, Safwan Mohd; Kumar, Ronald Ravinesh; Mensi, Walid

    2017-01-01

    This study examines the interdependence and contagion among US industry-level credit markets. We use daily data of 11 industries from 17 December 2007 to 31 December 2014 for the time-frequency, namely, wavelet squared coherence analysis. The empirical analysis reveals that Basic Materials (Utilities) industry credit market has the highest (lowest) interdependence with other industries. Basic Materials credit market passes cyclical effect to all other industries. The little ;shift-contagion; as defined by Forbes and Rigobon (2002) is examined using elliptical and Archimedean copulas on the short-run decomposed series obtained through Variational Mode Decomposition (VMD). The contagion effects between US industry-level credit markets mainly occurred during the global financial crisis of 2007-08.

  15. Wavelet-based techniques for the gamma-ray sky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Samuel D.; Fox, Patrick J.; Cholis, Ilias

    2016-07-01

    Here, we demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from darkmore » matter annihilation and extended gamma-ray point source populations in a data-driven way.« less

  16. Powerline noise elimination in biomedical signals via blind source separation and wavelet analysis.

    PubMed

    Akwei-Sekyere, Samuel

    2015-01-01

    The distortion of biomedical signals by powerline noise from recording biomedical devices has the potential to reduce the quality and convolute the interpretations of the data. Usually, powerline noise in biomedical recordings are extinguished via band-stop filters. However, due to the instability of biomedical signals, the distribution of signals filtered out may not be centered at 50/60 Hz. As a result, self-correction methods are needed to optimize the performance of these filters. Since powerline noise is additive in nature, it is intuitive to model powerline noise in a raw recording and subtract it from the raw data in order to obtain a relatively clean signal. This paper proposes a method that utilizes this approach by decomposing the recorded signal and extracting powerline noise via blind source separation and wavelet analysis. The performance of this algorithm was compared with that of a 4th order band-stop Butterworth filter, empirical mode decomposition, independent component analysis and, a combination of empirical mode decomposition with independent component analysis. The proposed method was able to expel sinusoidal signals within powerline noise frequency range with higher fidelity in comparison with the mentioned techniques, especially at low signal-to-noise ratio.

  17. Spectral estimation—What is new? What is next?

    NASA Astrophysics Data System (ADS)

    Tary, Jean Baptiste; Herrera, Roberto Henry; Han, Jiajun; van der Baan, Mirko

    2014-12-01

    Spectral estimation, and corresponding time-frequency representation for nonstationary signals, is a cornerstone in geophysical signal processing and interpretation. The last 10-15 years have seen the development of many new high-resolution decompositions that are often fundamentally different from Fourier and wavelet transforms. These conventional techniques, like the short-time Fourier transform and the continuous wavelet transform, show some limitations in terms of resolution (localization) due to the trade-off between time and frequency localizations and smearing due to the finite size of the time series of their template. Well-known techniques, like autoregressive methods and basis pursuit, and recently developed techniques, such as empirical mode decomposition and the synchrosqueezing transform, can achieve higher time-frequency localization due to reduced spectral smearing and leakage. We first review the theory of various established and novel techniques, pointing out their assumptions, adaptability, and expected time-frequency localization. We illustrate their performances on a provided collection of benchmark signals, including a laughing voice, a volcano tremor, a microseismic event, and a global earthquake, with the intention to provide a fair comparison of the pros and cons of each method. Finally, their outcomes are discussed and possible avenues for improvements are proposed.

  18. Near-lossless multichannel EEG compression based on matrix and tensor decompositions.

    PubMed

    Dauwels, Justin; Srinivasan, K; Reddy, M Ramasubba; Cichocki, Andrzej

    2013-05-01

    A novel near-lossless compression algorithm for multichannel electroencephalogram (MC-EEG) is proposed based on matrix/tensor decomposition models. MC-EEG is represented in suitable multiway (multidimensional) forms to efficiently exploit temporal and spatial correlations simultaneously. Several matrix/tensor decomposition models are analyzed in view of efficient decorrelation of the multiway forms of MC-EEG. A compression algorithm is built based on the principle of “lossy plus residual coding,” consisting of a matrix/tensor decomposition-based coder in the lossy layer followed by arithmetic coding in the residual layer. This approach guarantees a specifiable maximum absolute error between original and reconstructed signals. The compression algorithm is applied to three different scalp EEG datasets and an intracranial EEG dataset, each with different sampling rate and resolution. The proposed algorithm achieves attractive compression ratios compared to compressing individual channels separately. For similar compression ratios, the proposed algorithm achieves nearly fivefold lower average error compared to a similar wavelet-based volumetric MC-EEG compression algorithm.

  19. Wavelet Analysis Used for Spectral Background Removal in the Determination of Glucose from Near-Infrared Single-Beam Spectra

    PubMed Central

    Wan, Boyong; Small, Gary W.

    2010-01-01

    Wavelet analysis is developed as a preprocessing tool for use in removing background information from near-infrared (near-IR) single-beam spectra before the construction of multivariate calibration models. Three data sets collected with three different near-IR spectrometers are investigated that involve the determination of physiological levels of glucose (1-30 mM) in a simulated biological matrix containing alanine, ascorbate, lactate, triacetin, and urea in phosphate buffer. A factorial design is employed to optimize the specific wavelet function used and the level of decomposition applied, in addition to the spectral range and number of latent variables associated with a partial least-squares calibration model. The prediction performance of the computed models is studied with separate data acquired after the collection of the calibration spectra. This evaluation includes one data set collected over a period of more than six months. Preprocessing with wavelet analysis is also compared to the calculation of second-derivative spectra. Over the three data sets evaluated, wavelet analysis is observed to produce better-performing calibration models, with improvements in concentration predictions on the order of 30% being realized relative to models based on either second-derivative spectra or spectra preprocessed with simple additive and multiplicative scaling correction. This methodology allows the construction of stable calibrations directly with single-beam spectra, thereby eliminating the need for the collection of a separate background or reference spectrum. PMID:21035604

  20. Wavelet analysis used for spectral background removal in the determination of glucose from near-infrared single-beam spectra.

    PubMed

    Wan, Boyong; Small, Gary W

    2010-11-29

    Wavelet analysis is developed as a preprocessing tool for use in removing background information from near-infrared (near-IR) single-beam spectra before the construction of multivariate calibration models. Three data sets collected with three different near-IR spectrometers are investigated that involve the determination of physiological levels of glucose (1-30 mM) in a simulated biological matrix containing alanine, ascorbate, lactate, triacetin, and urea in phosphate buffer. A factorial design is employed to optimize the specific wavelet function used and the level of decomposition applied, in addition to the spectral range and number of latent variables associated with a partial least-squares calibration model. The prediction performance of the computed models is studied with separate data acquired after the collection of the calibration spectra. This evaluation includes one data set collected over a period of more than 6 months. Preprocessing with wavelet analysis is also compared to the calculation of second-derivative spectra. Over the three data sets evaluated, wavelet analysis is observed to produce better-performing calibration models, with improvements in concentration predictions on the order of 30% being realized relative to models based on either second-derivative spectra or spectra preprocessed with simple additive and multiplicative scaling correction. This methodology allows the construction of stable calibrations directly with single-beam spectra, thereby eliminating the need for the collection of a separate background or reference spectrum. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Developing a multi-Kinect-system for monitoring in dairy cows: object recognition and surface analysis using wavelets.

    PubMed

    Salau, J; Haas, J H; Thaller, G; Leisen, M; Junge, W

    2016-09-01

    Camera-based systems in dairy cattle were intensively studied over the last years. Different from this study, single camera systems with a limited range of applications were presented, mostly using 2D cameras. This study presents current steps in the development of a camera system comprising multiple 3D cameras (six Microsoft Kinect cameras) for monitoring purposes in dairy cows. An early prototype was constructed, and alpha versions of software for recording, synchronizing, sorting and segmenting images and transforming the 3D data in a joint coordinate system have already been implemented. This study introduced the application of two-dimensional wavelet transforms as method for object recognition and surface analyses. The method was explained in detail, and four differently shaped wavelets were tested with respect to their reconstruction error concerning Kinect recorded depth maps from different camera positions. The images' high frequency parts reconstructed from wavelet decompositions using the haar and the biorthogonal 1.5 wavelet were statistically analyzed with regard to the effects of image fore- or background and of cows' or persons' surface. Furthermore, binary classifiers based on the local high frequencies have been implemented to decide whether a pixel belongs to the image foreground and if it was located on a cow or a person. Classifiers distinguishing between image regions showed high (⩾0.8) values of Area Under reciever operation characteristic Curve (AUC). The classifications due to species showed maximal AUC values of 0.69.

  2. Decision support system for diabetic retinopathy using discrete wavelet transform.

    PubMed

    Noronha, K; Acharya, U R; Nayak, K P; Kamath, S; Bhandary, S V

    2013-03-01

    Prolonged duration of the diabetes may affect the tiny blood vessels of the retina causing diabetic retinopathy. Routine eye screening of patients with diabetes helps to detect diabetic retinopathy at the early stage. It is very laborious and time-consuming for the doctors to go through many fundus images continuously. Therefore, decision support system for diabetic retinopathy detection can reduce the burden of the ophthalmologists. In this work, we have used discrete wavelet transform and support vector machine classifier for automated detection of normal and diabetic retinopathy classes. The wavelet-based decomposition was performed up to the second level, and eight energy features were extracted. Two energy features from the approximation coefficients of two levels and six energy values from the details in three orientations (horizontal, vertical and diagonal) were evaluated. These features were fed to the support vector machine classifier with various kernel functions (linear, radial basis function, polynomial of orders 2 and 3) to evaluate the highest classification accuracy. We obtained the highest average classification accuracy, sensitivity and specificity of more than 99% with support vector machine classifier (polynomial kernel of order 3) using three discrete wavelet transform features. We have also proposed an integrated index called Diabetic Retinopathy Risk Index using clinically significant wavelet energy features to identify normal and diabetic retinopathy classes using just one number. We believe that this (Diabetic Retinopathy Risk Index) can be used as an adjunct tool by the doctors during the eye screening to cross-check their diagnosis.

  3. Unsupervised symmetrical trademark image retrieval in soccer telecast using wavelet energy and quadtree decomposition

    NASA Astrophysics Data System (ADS)

    Ong, Swee Khai; Lim, Wee Keong; Soo, Wooi King

    2013-04-01

    Trademark, a distinctive symbol, is used to distinguish products or services provided by a particular person, group or organization from other similar entries. As trademark represents the reputation and credit standing of the owner, it is important to differentiate one trademark from another. Many methods have been proposed to identify, classify and retrieve trademarks. However, most methods required features database and sample sets for training prior to recognition and retrieval process. In this paper, a new feature on wavelet coefficients, the localized wavelet energy, is introduced to extract features of trademarks. With this, unsupervised content-based symmetrical trademark image retrieval is proposed without the database and prior training set. The feature analysis is done by an integration of the proposed localized wavelet energy and quadtree decomposed regional symmetrical vector. The proposed framework eradicates the dependence on query database and human participation during the retrieval process. In this paper, trademarks for soccer games sponsors are the intended trademark category. Video frames from soccer telecast are extracted and processed for this study. Reasonably good localization and retrieval results on certain categories of trademarks are achieved. A distinctive symbol is used to distinguish products or services provided by a particular person, group or organization from other similar entries.

  4. Functional magnetic resonance imaging activation detection: fuzzy cluster analysis in wavelet and multiwavelet domains.

    PubMed

    Jahanian, Hesamoddin; Soltanian-Zadeh, Hamid; Hossein-Zadeh, Gholam-Ali

    2005-09-01

    To present novel feature spaces, based on multiscale decompositions obtained by scalar wavelet and multiwavelet transforms, to remedy problems associated with high dimension of functional magnetic resonance imaging (fMRI) time series (when they are used directly in clustering algorithms) and their poor signal-to-noise ratio (SNR) that limits accurate classification of fMRI time series according to their activation contents. Using randomization, the proposed method finds wavelet/multiwavelet coefficients that represent the activation content of fMRI time series and combines them to define new feature spaces. Using simulated and experimental fMRI data sets, the proposed feature spaces are compared to the cross-correlation (CC) feature space and their performances are evaluated. In these studies, the false positive detection rate is controlled using randomization. To compare different methods, several points of the receiver operating characteristics (ROC) curves, using simulated data, are estimated and compared. The proposed features suppress the effects of confounding signals and improve activation detection sensitivity. Experimental results show improved sensitivity and robustness of the proposed method compared to the conventional CC analysis. More accurate and sensitive activation detection can be achieved using the proposed feature spaces compared to CC feature space. Multiwavelet features show superior detection sensitivity compared to the scalar wavelet features. (c) 2005 Wiley-Liss, Inc.

  5. A multiresolution processing method for contrast enhancement in portal imaging.

    PubMed

    Gonzalez-Lopez, Antonio

    2018-06-18

    Portal images have a unique feature among the imaging modalities used in radiotherapy: they provide direct visualization of the irradiated volumes. However, contrast and spatial resolution are strongly limited due to the high energy of the radiation sources. Because of this, imaging modalities using x-ray energy beams have gained importance in the verification of patient positioning, replacing portal imaging. The purpose of this work was to develop a method for the enhancement of local contrast in portal images. The method operates in the subbands of a wavelet decomposition of the image, re-scaling them in such a way that coefficients in the high and medium resolution subbands are amplified, an approach totally different of those operating on the image histogram, widely used nowadays. Portal images of an anthropomorphic phantom were acquired in an electronic portal imaging device (EPID). Then, different re-scaling strategies were investigated, studying the effects of the scaling parameters on the enhanced images. Also, the effect of using different types of transforms was studied. Finally, the implemented methods were combined with histogram equalization methods like the contrast limited adaptive histogram equalization (CLAHE), and these combinations were compared. Uniform amplification of the detail subbands shows the best results in contrast enhancement. On the other hand, linear re-escalation of the high resolution subbands increases the visibility of fine detail of the images, at the expense of an increase in noise levels. Also, since processing is applied only to detail subbands, not to the approximation, the mean gray level of the image is minimally modified and no further display adjustments are required. It is shown that re-escalation of the detail subbands of portal images can be used as an efficient method for the enhancement of both, the local contrast and the resolution of these images. © 2018 Institute of Physics and Engineering in Medicine.

  6. Wavelet-based automatic determination of the P- and S-wave arrivals

    NASA Astrophysics Data System (ADS)

    Bogiatzis, P.; Ishii, M.

    2013-12-01

    The detection of P- and S-wave arrivals is important for a variety of seismological applications including earthquake detection and characterization, and seismic tomography problems such as imaging of hydrocarbon reservoirs. For many years, dedicated human-analysts manually selected the arrival times of P and S waves. However, with the rapid expansion of seismic instrumentation, automatic techniques that can process a large number of seismic traces are becoming essential in tomographic applications, and for earthquake early-warning systems. In this work, we present a pair of algorithms for efficient picking of P and S onset times. The algorithms are based on the continuous wavelet transform of the seismic waveform that allows examination of a signal in both time and frequency domains. Unlike Fourier transform, the basis functions are localized in time and frequency, therefore, wavelet decomposition is suitable for analysis of non-stationary signals. For detecting the P-wave arrival, the wavelet coefficients are calculated using the vertical component of the seismogram, and the onset time of the wave is identified. In the case of the S-wave arrival, we take advantage of the polarization of the shear waves, and cross-examine the wavelet coefficients from the two horizontal components. In addition to the onset times, the automatic picking program provides estimates of uncertainty, which are important for subsequent applications. The algorithms are tested with synthetic data that are generated to include sudden changes in amplitude, frequency, and phase. The performance of the wavelet approach is further evaluated using real data by comparing the automatic picks with manual picks. Our results suggest that the proposed algorithms provide robust measurements that are comparable to manual picks for both P- and S-wave arrivals.

  7. MRI Volume Fusion Based on 3D Shearlet Decompositions.

    PubMed

    Duan, Chang; Wang, Shuai; Wang, Xue Gang; Huang, Qi Hong

    2014-01-01

    Nowadays many MRI scans can give 3D volume data with different contrasts, but the observers may want to view various contrasts in the same 3D volume. The conventional 2D medical fusion methods can only fuse the 3D volume data layer by layer, which may lead to the loss of interframe correlative information. In this paper, a novel 3D medical volume fusion method based on 3D band limited shearlet transform (3D BLST) is proposed. And this method is evaluated upon MRI T2* and quantitative susceptibility mapping data of 4 human brains. Both the perspective impression and the quality indices indicate that the proposed method has a better performance than conventional 2D wavelet, DT CWT, and 3D wavelet, DT CWT based fusion methods.

  8. Blind source separation by sparse decomposition

    NASA Astrophysics Data System (ADS)

    Zibulevsky, Michael; Pearlmutter, Barak A.

    2000-04-01

    The blind source separation problem is to extract the underlying source signals from a set of their linear mixtures, where the mixing matrix is unknown. This situation is common, eg in acoustics, radio, and medical signal processing. We exploit the property of the sources to have a sparse representation in a corresponding signal dictionary. Such a dictionary may consist of wavelets, wavelet packets, etc., or be obtained by learning from a given family of signals. Starting from the maximum a posteriori framework, which is applicable to the case of more sources than mixtures, we derive a few other categories of objective functions, which provide faster and more robust computations, when there are an equal number of sources and mixtures. Our experiments with artificial signals and with musical sounds demonstrate significantly better separation than other known techniques.

  9. Passive microrheology of soft materials with atomic force microscopy: A wavelet-based spectral analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Torres, C.; Streppa, L.; Arneodo, A.

    2016-01-18

    Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale methodmore » to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.« less

  10. Automated pathologies detection in retina digital images based on complex continuous wavelet transform phase angles.

    PubMed

    Lahmiri, Salim; Gargour, Christian S; Gabrea, Marcel

    2014-10-01

    An automated diagnosis system that uses complex continuous wavelet transform (CWT) to process retina digital images and support vector machines (SVMs) for classification purposes is presented. In particular, each retina image is transformed into two one-dimensional signals by concatenating image rows and columns separately. The mathematical norm of phase angles found in each one-dimensional signal at each level of CWT decomposition are relied on to characterise the texture of normal images against abnormal images affected by exudates, drusen and microaneurysms. The leave-one-out cross-validation method was adopted to conduct experiments and the results from the SVM show that the proposed approach gives better results than those obtained by other methods based on the correct classification rate, sensitivity and specificity.

  11. Detecting trace components in liquid chromatography/mass spectrometry data sets with two-dimensional wavelets

    NASA Astrophysics Data System (ADS)

    Compton, Duane C.; Snapp, Robert R.

    2007-09-01

    TWiGS (two-dimensional wavelet transform with generalized cross validation and soft thresholding) is a novel algorithm for denoising liquid chromatography-mass spectrometry (LC-MS) data for use in "shot-gun" proteomics. Proteomics, the study of all proteins in an organism, is an emerging field that has already proven successful for drug and disease discovery in humans. There are a number of constraints that limit the effectiveness of liquid chromatography-mass spectrometry (LC-MS) for shot-gun proteomics, where the chemical signals are typically weak, and data sets are computationally large. Most algorithms suffer greatly from a researcher driven bias, making the results irreproducible and unusable by other laboratories. We thus introduce a new algorithm, TWiGS, that removes electrical (additive white) and chemical noise from LC-MS data sets. TWiGS is developed to be a true two-dimensional algorithm, which operates in the time-frequency domain, and minimizes the amount of researcher bias. It is based on the traditional discrete wavelet transform (DWT), which allows for fast and reproducible analysis. The separable two-dimensional DWT decomposition is paired with generalized cross validation and soft thresholding. The Haar, Coiflet-6, Daubechie-4 and the number of decomposition levels are determined based on observed experimental results. Using a synthetic LC-MS data model, TWiGS accurately retains key characteristics of the peaks in both the time and m/z domain, and can detect peaks from noise of the same intensity. TWiGS is applied to angiotensin I and II samples run on a LC-ESI-TOF-MS (liquid-chromatography-electrospray-ionization) to demonstrate its utility for the detection of low-lying peaks obscured by noise.

  12. Neuro magnetic resonance spectroscopy using wavelet decomposition and statistical testing identifies biochemical changes in people with spinal cord injury and pain.

    PubMed

    Stanwell, Peter; Siddall, Philip; Keshava, Nirmal; Cocuzzo, Daniel; Ramadan, Saadallah; Lin, Alexander; Herbert, David; Craig, Ashley; Tran, Yvonne; Middleton, James; Gautam, Shiva; Cousins, Michael; Mountford, Carolyn

    2010-11-01

    Spinal cord injury (SCI) can be accompanied by chronic pain, the mechanisms for which are poorly understood. Here we report that magnetic resonance spectroscopy measurements from the brain, collected at 3T, and processed using wavelet-based feature extraction and classification algorithms, can identify biochemical changes that distinguish control subjects from subjects with SCI as well as subdividing the SCI group into those with and without chronic pain. The results from control subjects (n=10) were compared to those with SCI (n=10). The SCI cohort was made up of subjects with chronic neuropathic pain (n=5) and those without chronic pain (n=5). The wavelet-based decomposition of frequency domain MRS signals employs statistical significance testing to identify features best suited to discriminate different classes. Moreover, the features benefit from careful attention to the post-processing of the spectroscopy data prior to the comparison of the three cohorts. The spectroscopy data, from the thalamus, best distinguished control subjects without SCI from those with SCI with a sensitivity and specificity of 0.9 (Percentage of Correct Classification). The spectroscopy data obtained from the prefrontal cortex and anterior cingulate cortex both distinguished between SCI subjects with chronic neuropathic pain and those without pain with a sensitivity and specificity of 1.0. In this study, where two underlying mechanisms co-exist (i.e. SCI and pain), the thalamic changes appear to be linked more strongly to SCI, while the anterior cingulate cortex and prefrontal cortex changes appear to be specifically linked to the presence of pain. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Identification of sudden stiffness changes in the acceleration response of a bridge to moving loads using ensemble empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Aied, H.; González, A.; Cantero, D.

    2016-01-01

    The growth of heavy traffic together with aggressive environmental loads poses a threat to the safety of an aging bridge stock. Often, damage is only detected via visual inspection at a point when repairing costs can be quite significant. Ideally, bridge managers would want to identify a stiffness change as soon as possible, i.e., as it is occurring, to plan for prompt measures before reaching a prohibitive cost. Recent developments in signal processing techniques such as wavelet analysis and empirical mode decomposition (EMD) have aimed to address this need by identifying a stiffness change from a localised feature in the structural response to traffic. However, the effectiveness of these techniques is limited by the roughness of the road profile, the vehicle speed and the noise level. In this paper, ensemble empirical mode decomposition (EEMD) is applied by the first time to the acceleration response of a bridge model to a moving load with the purpose of capturing sudden stiffness changes. EEMD is more adaptive and appears to be better suited to non-linear signals than wavelets, and it reduces the mode mixing problem present in EMD. EEMD is tested in a variety of theoretical 3D vehicle-bridge interaction scenarios. Stiffness changes are successfully identified, even for small affected regions, relatively poor profiles, high vehicle speeds and significant noise. The latter is due to the ability of EEMD to separate high frequency components associated to sudden stiffness changes from other frequency components associated to the vehicle-bridge interaction system.

  14. Induction motors airgap-eccentricity detection through the discrete wavelet transform of the apparent power signal under non-stationary operating conditions.

    PubMed

    Yahia, K; Cardoso, A J M; Ghoggal, A; Zouzou, S E

    2014-03-01

    Fast Fourier transform (FFT) analysis has been successfully used for fault diagnosis in induction machines. However, this method does not always provide good results for the cases of load torque, speed and voltages variation, leading to a variation of the motor-slip and the consequent FFT problems that appear due to the non-stationary nature of the involved signals. In this paper, the discrete wavelet transform (DWT) of the apparent-power signal for the airgap-eccentricity fault detection in three-phase induction motors is presented in order to overcome the above FFT problems. The proposed method is based on the decomposition of the apparent-power signal from which wavelet approximation and detail coefficients are extracted. The energy evaluation of a known bandwidth permits to define a fault severity factor (FSF). Simulation as well as experimental results are provided to illustrate the effectiveness and accuracy of the proposed method presented even for the case of load torque variations. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Ocean Wave Separation Using CEEMD-Wavelet in GPS Wave Measurement.

    PubMed

    Wang, Junjie; He, Xiufeng; Ferreira, Vagner G

    2015-08-07

    Monitoring ocean waves plays a crucial role in, for example, coastal environmental and protection studies. Traditional methods for measuring ocean waves are based on ultrasonic sensors and accelerometers. However, the Global Positioning System (GPS) has been introduced recently and has the advantage of being smaller, less expensive, and not requiring calibration in comparison with the traditional methods. Therefore, for accurately measuring ocean waves using GPS, further research on the separation of the wave signals from the vertical GPS-mounted carrier displacements is still necessary. In order to contribute to this topic, we present a novel method that combines complementary ensemble empirical mode decomposition (CEEMD) with a wavelet threshold denoising model (i.e., CEEMD-Wavelet). This method seeks to extract wave signals with less residual noise and without losing useful information. Compared with the wave parameters derived from the moving average skill, high pass filter and wave gauge, the results show that the accuracy of the wave parameters for the proposed method was improved with errors of about 2 cm and 0.2 s for mean wave height and mean period, respectively, verifying the validity of the proposed method.

  16. Research and Implementation of Heart Sound Denoising

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Wang, Yutai; Wang, Yanxiang

    Heart sound is one of the most important signals. However, the process of getting heart sound signal can be interfered with many factors outside. Heart sound is weak electric signal and even weak external noise may lead to the misjudgment of pathological and physiological information in this signal, thus causing the misjudgment of disease diagnosis. As a result, it is a key to remove the noise which is mixed with heart sound. In this paper, a more systematic research and analysis which is involved in heart sound denoising based on matlab has been made. The study of heart sound denoising based on matlab firstly use the powerful image processing function of matlab to transform heart sound signals with noise into the wavelet domain through wavelet transform and decomposition these signals in muli-level. Then for the detail coefficient, soft thresholding is made using wavelet transform thresholding to eliminate noise, so that a signal denoising is significantly improved. The reconstructed signals are gained with stepwise coefficient reconstruction for the processed detail coefficient. Lastly, 50HZ power frequency and 35 Hz mechanical and electrical interference signals are eliminated using a notch filter.

  17. Wavelet data processing of micro-Raman spectra of biological samples

    NASA Astrophysics Data System (ADS)

    Camerlingo, C.; Zenone, F.; Gaeta, G. M.; Riccio, R.; Lepore, M.

    2006-02-01

    A wavelet multi-component decomposition algorithm is proposed for processing data from micro-Raman spectroscopy (μ-RS) of biological tissue. The μ-RS has been recently recognized as a promising tool for the biopsy test and in vivo diagnosis of degenerative human tissue pathologies, due to the high chemical and structural information contents of this spectroscopic technique. However, measurements of biological tissues are usually hampered by typically low-level signals and by the presence of noise and background components caused by light diffusion or fluorescence processes. In order to overcome these problems, a numerical method based on discrete wavelet transform is used for the analysis of data from μ-RS measurements performed in vitro on animal (pig and chicken) tissue samples and, in a preliminary form, on human skin and oral tissue biopsy from normal subjects. Visible light μ-RS was performed using a He-Ne laser and a monochromator with a liquid nitrogen cooled charge coupled device equipped with a grating of 1800 grooves mm-1. The validity of the proposed data procedure has been tested on the well-characterized Raman spectra of reference acetylsalicylic acid samples.

  18. The efficacy of support vector machines (SVM) in robust determination of earthquake early warning magnitudes in central Japan

    NASA Astrophysics Data System (ADS)

    Reddy, Ramakrushna; Nair, Rajesh R.

    2013-10-01

    This work deals with a methodology applied to seismic early warning systems which are designed to provide real-time estimation of the magnitude of an event. We will reappraise the work of Simons et al. (2006), who on the basis of wavelet approach predicted a magnitude error of ±1. We will verify and improve upon the methodology of Simons et al. (2006) by applying an SVM statistical learning machine on the time-scale wavelet decomposition methods. We used the data of 108 events in central Japan with magnitude ranging from 3 to 7.4 recorded at KiK-net network stations, for a source-receiver distance of up to 150 km during the period 1998-2011. We applied a wavelet transform on the seismogram data and calculating scale-dependent threshold wavelet coefficients. These coefficients were then classified into low magnitude and high magnitude events by constructing a maximum margin hyperplane between the two classes, which forms the essence of SVMs. Further, the classified events from both the classes were picked up and linear regressions were plotted to determine the relationship between wavelet coefficient magnitude and earthquake magnitude, which in turn helped us to estimate the earthquake magnitude of an event given its threshold wavelet coefficient. At wavelet scale number 7, we predicted the earthquake magnitude of an event within 2.7 seconds. This means that a magnitude determination is available within 2.7 s after the initial onset of the P-wave. These results shed light on the application of SVM as a way to choose the optimal regression function to estimate the magnitude from a few seconds of an incoming seismogram. This would improve the approaches from Simons et al. (2006) which use an average of the two regression functions to estimate the magnitude.

  19. Context Modeler for Wavelet Compression of Spectral Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron; Xie, Hua; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    A context-modeling sub-algorithm has been developed as part of an algorithm that effects three-dimensional (3D) wavelet-based compression of hyperspectral image data. The context-modeling subalgorithm, hereafter denoted the context modeler, provides estimates of probability distributions of wavelet-transformed data being encoded. These estimates are utilized by an entropy coding subalgorithm that is another major component of the compression algorithm. The estimates make it possible to compress the image data more effectively than would otherwise be possible. The following background discussion is prerequisite to a meaningful summary of the context modeler. This discussion is presented relative to ICER-3D, which is the name attached to a particular compression algorithm and the software that implements it. The ICER-3D software is summarized briefly in the preceding article, ICER-3D Hyperspectral Image Compression Software (NPO-43238). Some aspects of this algorithm were previously described, in a slightly more general context than the ICER-3D software, in "Improving 3D Wavelet-Based Compression of Hyperspectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. In turn, ICER-3D is a product of generalization of ICER, another previously reported algorithm and computer program that can perform both lossless and lossy wavelet-based compression and decompression of gray-scale-image data. In ICER-3D, hyperspectral image data are decomposed using a 3D discrete wavelet transform (DWT). Following wavelet decomposition, mean values are subtracted from spatial planes of spatially low-pass subbands prior to encoding. The resulting data are converted to sign-magnitude form and compressed. In ICER-3D, compression is progressive, in that compressed information is ordered so that as more of the compressed data stream is received, successive reconstructions of the hyperspectral image data are of successively higher overall fidelity.

  20. Modeling Complex Phenomena Using Multiscale Time Sequences

    DTIC Science & Technology

    2009-08-24

    measures based on Hurst and Holder exponents , auto-regressive methods and Fourier and wavelet decomposition methods. The applications for this technology...relate to each other. This can be done by combining a set statistical fractal measures based on Hurst and Holder exponents , auto-regressive...different scales and how these scales relate to each other. This can be done by combining a set statistical fractal measures based on Hurst and

  1. Speckle noise reduction in SAR images ship detection

    NASA Astrophysics Data System (ADS)

    Yuan, Ji; Wu, Bin; Yuan, Yuan; Huang, Qingqing; Chen, Jingbo; Ren, Lin

    2012-09-01

    At present, there are two types of method to detect ships in SAR images. One is a direct detection type, detecting ships directly. The other is an indirect detection type. That is, it firstly detects ship wakes, and then seeks ships around wakes. The two types all effect by speckle noise. In order to improve the accuracy of ship detection and get accurate ship and ship wakes parameters, such as ship length, ship width, ship area, the angle of ship wakes and ship outline from SAR images, it is extremely necessary to remove speckle noise in SAR images before data used in various SAR images ship detection. The use of speckle noise reduction filter depends on the specification for a particular application. Some common filters are widely used in speckle noise reduction, such as the mean filter, the median filter, the lee filter, the enhanced lee filter, the Kuan filter, the frost filter, the enhanced frost filter and gamma filter, but these filters represent some disadvantages in SAR image ship detection because of the various types of ship. Therefore, a mathematical function known as the wavelet transform and multi-resolution analysis were used to localize an SAR ocean image into different frequency components or useful subbands, and effectively reduce the speckle in the subbands according to the local statistics within the bands. Finally, the analysis of the statistical results are presented, which demonstrates the advantages and disadvantages of using wavelet shrinkage techniques over standard speckle filters.

  2. Long-term solar activity explored with wavelet methods

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.; Liszka, L.; Lundin, R.; Muscheler, R.

    2006-03-01

    Long-term solar activity has been studied with a set of wavelet methods. The following indicators of long-term solar activity were used; the group sunspot number, the sunspot number, and the 14C production rate. Scalograms showed the very long-term scales of 2300 years (Hallstat cycle), 900-1000 years, 400-500 years, and 200 years (de Vries cycle). Scalograms of a newly-constructed 14C production rate showed interesting solar modulation during the Maunder minimum. Multi-Resolution Analysis (MRA) revealed the modulation in detail, as well as peaks of solar activity not seen in the sunspot number. In both the group sunspot number scalogram and the 14C production rate scalogram, a process appeared, starting or ending in late 1700. This process has not been discussed before. Its solar origin is unclear.

    The group sunspot number ampligram and the sunspot number ampligram showed the Maunder and the Dalton minima, and the period of high solar activity, which already started about 1900 and then decreased again after mid 1990. The decrease starts earlier for weaker components. Also, weak semiperiodic activity was found.

    Time Scale Spectra (TSS) showed both deterministic and stochastic processes behind the variability of the long-term solar activity. TSS of the 14C production rate, group sunspot number and Mt. Wilson sunspot index and plage index were compared in an attempt to interpret the features and processes behind the long-term variability.

  3. Embedded wavelet-based face recognition under variable position

    NASA Astrophysics Data System (ADS)

    Cotret, Pascal; Chevobbe, Stéphane; Darouich, Mehdi

    2015-02-01

    For several years, face recognition has been a hot topic in the image processing field: this technique is applied in several domains such as CCTV, electronic devices delocking and so on. In this context, this work studies the efficiency of a wavelet-based face recognition method in terms of subject position robustness and performance on various systems. The use of wavelet transform has a limited impact on the position robustness of PCA-based face recognition. This work shows, for a well-known database (Yale face database B*), that subject position in a 3D space can vary up to 10% of the original ROI size without decreasing recognition rates. Face recognition is performed on approximation coefficients of the image wavelet transform: results are still satisfying after 3 levels of decomposition. Furthermore, face database size can be divided by a factor 64 (22K with K = 3). In the context of ultra-embedded vision systems, memory footprint is one of the key points to be addressed; that is the reason why compression techniques such as wavelet transform are interesting. Furthermore, it leads to a low-complexity face detection stage compliant with limited computation resources available on such systems. The approach described in this work is tested on three platforms from a standard x86-based computer towards nanocomputers such as RaspberryPi and SECO boards. For K = 3 and a database with 40 faces, the execution mean time for one frame is 0.64 ms on a x86-based computer, 9 ms on a SECO board and 26 ms on a RaspberryPi (B model).

  4. A hybrid wavelet analysis-cloud model data-extending approach for meteorologic and hydrologic time series

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ding, Hao; Singh, Vijay P.; Shang, Xiaosan; Liu, Dengfeng; Wang, Yuankun; Zeng, Xiankui; Wu, Jichun; Wang, Lachun; Zou, Xinqing

    2015-05-01

    For scientific and sustainable management of water resources, hydrologic and meteorologic data series need to be often extended. This paper proposes a hybrid approach, named WA-CM (wavelet analysis-cloud model), for data series extension. Wavelet analysis has time-frequency localization features, known as "mathematics microscope," that can decompose and reconstruct hydrologic and meteorologic series by wavelet transform. The cloud model is a mathematical representation of fuzziness and randomness and has strong robustness for uncertain data. The WA-CM approach first employs the wavelet transform to decompose the measured nonstationary series and then uses the cloud model to develop an extension model for each decomposition layer series. The final extension is obtained by summing the results of extension of each layer. Two kinds of meteorologic and hydrologic data sets with different characteristics and different influence of human activity from six (three pairs) representative stations are used to illustrate the WA-CM approach. The approach is also compared with four other methods, which are conventional correlation extension method, Kendall-Theil robust line method, artificial neural network method (back propagation, multilayer perceptron, and radial basis function), and single cloud model method. To evaluate the model performance completely and thoroughly, five measures are used, which are relative error, mean relative error, standard deviation of relative error, root mean square error, and Thiel inequality coefficient. Results show that the WA-CM approach is effective, feasible, and accurate and is found to be better than other four methods compared. The theory employed and the approach developed here can be applied to extension of data in other areas as well.

  5. Wavelet-based clustering of resting state MRI data in the rat.

    PubMed

    Medda, Alessio; Hoffmann, Lukas; Magnuson, Matthew; Thompson, Garth; Pan, Wen-Ju; Keilholz, Shella

    2016-01-01

    While functional connectivity has typically been calculated over the entire length of the scan (5-10min), interest has been growing in dynamic analysis methods that can detect changes in connectivity on the order of cognitive processes (seconds). Previous work with sliding window correlation has shown that changes in functional connectivity can be observed on these time scales in the awake human and in anesthetized animals. This exciting advance creates a need for improved approaches to characterize dynamic functional networks in the brain. Previous studies were performed using sliding window analysis on regions of interest defined based on anatomy or obtained from traditional steady-state analysis methods. The parcellation of the brain may therefore be suboptimal, and the characteristics of the time-varying connectivity between regions are dependent upon the length of the sliding window chosen. This manuscript describes an algorithm based on wavelet decomposition that allows data-driven clustering of voxels into functional regions based on temporal and spectral properties. Previous work has shown that different networks have characteristic frequency fingerprints, and the use of wavelets ensures that both the frequency and the timing of the BOLD fluctuations are considered during the clustering process. The method was applied to resting state data acquired from anesthetized rats, and the resulting clusters agreed well with known anatomical areas. Clusters were highly reproducible across subjects. Wavelet cross-correlation values between clusters from a single scan were significantly higher than the values from randomly matched clusters that shared no temporal information, indicating that wavelet-based analysis is sensitive to the relationship between areas. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Adaptive Numerical Dissipative Control in High Order Schemes for Multi-D Non-Ideal MHD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, B.

    2004-01-01

    The goal is to extend our adaptive numerical dissipation control in high order filter schemes and our new divergence-free methods for ideal MHD to non-ideal MHD that include viscosity and resistivity. The key idea consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free of numerical dissipation contamination. These scheme-independent detectors are capable of distinguishing shocks/shears, flame sheets, turbulent fluctuations and spurious high-frequency oscillations. The detection algorithm is based on an artificial compression method (ACM) (for shocks/shears), and redundant multi-resolution wavelets (WAV) (for the above types of flow feature). These filter approaches also provide a natural and efficient way for the minimization of Div(B) numerical error. The filter scheme consists of spatially sixth order or higher non-dissipative spatial difference operators as the base scheme for the inviscid flux derivatives. If necessary, a small amount of high order linear dissipation is used to remove spurious high frequency oscillations. For example, an eighth-order centered linear dissipation (AD8) might be included in conjunction with a spatially sixth-order base scheme. The inviscid difference operator is applied twice for the viscous flux derivatives. After the completion of a full time step of the base scheme step, the solution is adaptively filtered by the product of a 'flow detector' and the 'nonlinear dissipative portion' of a high-resolution shock-capturing scheme. In addition, the scheme independent wavelet flow detector can be used in conjunction with spatially compact, spectral or spectral element type of base schemes. The ACM and wavelet filter schemes using the dissipative portion of a second-order shock-capturing scheme with sixth-order spatial central base scheme for both the inviscid and viscous MHD flux derivatives and a fourth-order Runge-Kutta method are denoted.

  7. A Novel Multilevel-SVD Method to Improve Multistep Ahead Forecasting in Traffic Accidents Domain.

    PubMed

    Barba, Lida; Rodríguez, Nibaldo

    2017-01-01

    Here is proposed a novel method for decomposing a nonstationary time series in components of low and high frequency. The method is based on Multilevel Singular Value Decomposition (MSVD) of a Hankel matrix. The decomposition is used to improve the forecasting accuracy of Multiple Input Multiple Output (MIMO) linear and nonlinear models. Three time series coming from traffic accidents domain are used. They represent the number of persons with injuries in traffic accidents of Santiago, Chile. The data were continuously collected by the Chilean Police and were weekly sampled from 2000:1 to 2014:12. The performance of MSVD is compared with the decomposition in components of low and high frequency of a commonly accepted method based on Stationary Wavelet Transform (SWT). SWT in conjunction with the Autoregressive model (SWT + MIMO-AR) and SWT in conjunction with an Autoregressive Neural Network (SWT + MIMO-ANN) were evaluated. The empirical results have shown that the best accuracy was achieved by the forecasting model based on the proposed decomposition method MSVD, in comparison with the forecasting models based on SWT.

  8. A Novel Multilevel-SVD Method to Improve Multistep Ahead Forecasting in Traffic Accidents Domain

    PubMed Central

    Rodríguez, Nibaldo

    2017-01-01

    Here is proposed a novel method for decomposing a nonstationary time series in components of low and high frequency. The method is based on Multilevel Singular Value Decomposition (MSVD) of a Hankel matrix. The decomposition is used to improve the forecasting accuracy of Multiple Input Multiple Output (MIMO) linear and nonlinear models. Three time series coming from traffic accidents domain are used. They represent the number of persons with injuries in traffic accidents of Santiago, Chile. The data were continuously collected by the Chilean Police and were weekly sampled from 2000:1 to 2014:12. The performance of MSVD is compared with the decomposition in components of low and high frequency of a commonly accepted method based on Stationary Wavelet Transform (SWT). SWT in conjunction with the Autoregressive model (SWT + MIMO-AR) and SWT in conjunction with an Autoregressive Neural Network (SWT + MIMO-ANN) were evaluated. The empirical results have shown that the best accuracy was achieved by the forecasting model based on the proposed decomposition method MSVD, in comparison with the forecasting models based on SWT. PMID:28261267

  9. Near-Infrared Spectrum Detection of Wheat Gluten Protein Content Based on a Combined Filtering Method.

    PubMed

    Cai, Jian-Hua

    2017-09-01

    To eliminate the random error of the derivative near-IR (NIR) spectrum and to improve model stability and the prediction accuracy of the gluten protein content, a combined method is proposed for pretreatment of the NIR spectrum based on both empirical mode decomposition and the wavelet soft-threshold method. The principle and the steps of the method are introduced and the denoising effect is evaluated. The wheat gluten protein content is calculated based on the denoised spectrum, and the results are compared with those of the nine-point smoothing method and the wavelet soft-threshold method. Experimental results show that the proposed combined method is effective in completing pretreatment of the NIR spectrum, and the proposed method improves the accuracy of detection of wheat gluten protein content from the NIR spectrum.

  10. Dynamically re-configurable CMOS imagers for an active vision system

    NASA Technical Reports Server (NTRS)

    Yang, Guang (Inventor); Pain, Bedabrata (Inventor)

    2005-01-01

    A vision system is disclosed. The system includes a pixel array, at least one multi-resolution window operation circuit, and a pixel averaging circuit. The pixel array has an array of pixels configured to receive light signals from an image having at least one tracking target. The multi-resolution window operation circuits are configured to process the image. Each of the multi-resolution window operation circuits processes each tracking target within a particular multi-resolution window. The pixel averaging circuit is configured to sample and average pixels within the particular multi-resolution window.

  11. Bias correction of satellite precipitation products for flood forecasting application at the Upper Mahanadi River Basin in Eastern India

    NASA Astrophysics Data System (ADS)

    Beria, H.; Nanda, T., Sr.; Chatterjee, C.

    2015-12-01

    High resolution satellite precipitation products such as Tropical Rainfall Measuring Mission (TRMM), Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts (ECMWF), etc., offer a promising alternative to flood forecasting in data scarce regions. At the current state-of-art, these products cannot be used in the raw form for flood forecasting, even at smaller lead times. In the current study, these precipitation products are bias corrected using statistical techniques, such as additive and multiplicative bias corrections, and wavelet multi-resolution analysis (MRA) with India Meteorological Department (IMD) gridded precipitation product,obtained from gauge-based rainfall estimates. Neural network based rainfall-runoff modeling using these bias corrected products provide encouraging results for flood forecasting upto 48 hours lead time. We will present various statistical and graphical interpretations of catchment response to high rainfall events using both the raw and bias corrected precipitation products at different lead times.

  12. Cost-efficient speckle interferometry with plastic optical fiber for unobtrusive monitoring of human vital signs.

    PubMed

    Podbreznik, Peter; Đonlagić, Denis; Lešnik, Dejan; Cigale, Boris; Zazula, Damjan

    2013-10-01

    A cost-efficient plastic optical fiber (POF) system for unobtrusive monitoring of human vital signs is presented. The system is based on speckle interferometry. A laser diode is butt-coupled to the POF whose exit face projects speckle patterns onto a linear optical sensor array. Sequences of acquired speckle images are transformed into one-dimensional signals by using the phase-shifting method. The signals are analyzed by band-pass filtering and a Morlet-wavelet-based multiresolutional approach for the detection of cardiac and respiratory activities, respectively. The system is tested with 10 healthy nonhospitalized persons, lying supine on a mattress with the embedded POF. Experimental results are assessed statistically: precisions of 98.8% ± 1.5% and 97.9% ± 2.3%, sensitivities of 99.4% ± 0.6% and 95.3% ± 3%, and mean delays between interferometric detections and corresponding referential signals of 116.6 ± 55.5 and 1299.2 ± 437.3 ms for the heartbeat and respiration are obtained, respectively.

  13. Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study

    PubMed Central

    Sappa, Angel D.; Carvajal, Juan A.; Aguilera, Cristhian A.; Oliveira, Miguel; Romero, Dennis; Vintimilla, Boris X.

    2016-01-01

    This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR). PMID:27294938

  14. Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study.

    PubMed

    Sappa, Angel D; Carvajal, Juan A; Aguilera, Cristhian A; Oliveira, Miguel; Romero, Dennis; Vintimilla, Boris X

    2016-06-10

    This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR).

  15. Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task

    PubMed Central

    Al-Qazzaz, Noor Kamal; Hamid Bin Mohd Ali, Sawal; Ahmad, Siti Anom; Islam, Mohd Shabiul; Escudero, Javier

    2015-01-01

    We performed a comparative study to select the efficient mother wavelet (MWT) basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM) task recorded through electro-encephalography (EEG). Nineteen EEG electrodes were placed on the scalp following the 10–20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1–db20), Symlets (sym1–sym20), and Coiflets (coif1–coif5). Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using “sym9” across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions. PMID:26593918

  16. Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task.

    PubMed

    Al-Qazzaz, Noor Kamal; Bin Mohd Ali, Sawal Hamid; Ahmad, Siti Anom; Islam, Mohd Shabiul; Escudero, Javier

    2015-11-17

    We performed a comparative study to select the efficient mother wavelet (MWT) basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM) task recorded through electro-encephalography (EEG). Nineteen EEG electrodes were placed on the scalp following the 10-20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1-db20), Symlets (sym1-sym20), and Coiflets (coif1-coif5). Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using "sym9" across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions.

  17. Ocean Wave Separation Using CEEMD-Wavelet in GPS Wave Measurement

    PubMed Central

    Wang, Junjie; He, Xiufeng; Ferreira, Vagner G.

    2015-01-01

    Monitoring ocean waves plays a crucial role in, for example, coastal environmental and protection studies. Traditional methods for measuring ocean waves are based on ultrasonic sensors and accelerometers. However, the Global Positioning System (GPS) has been introduced recently and has the advantage of being smaller, less expensive, and not requiring calibration in comparison with the traditional methods. Therefore, for accurately measuring ocean waves using GPS, further research on the separation of the wave signals from the vertical GPS-mounted carrier displacements is still necessary. In order to contribute to this topic, we present a novel method that combines complementary ensemble empirical mode decomposition (CEEMD) with a wavelet threshold denoising model (i.e., CEEMD-Wavelet). This method seeks to extract wave signals with less residual noise and without losing useful information. Compared with the wave parameters derived from the moving average skill, high pass filter and wave gauge, the results show that the accuracy of the wave parameters for the proposed method was improved with errors of about 2 cm and 0.2 s for mean wave height and mean period, respectively, verifying the validity of the proposed method. PMID:26262620

  18. Wavelet decomposition analysis in the two-flash multifocal ERG in early glaucoma: a comparison to ganglion cell analysis and visual field.

    PubMed

    Brandao, Livia M; Monhart, Matthias; Schötzau, Andreas; Ledolter, Anna A; Palmowski-Wolfe, Anja M

    2017-08-01

    To further improve analysis of the two-flash multifocal electroretinogram (2F-mfERG) in glaucoma in regard to structure-function analysis, using discrete wavelet transform (DWT) analysis. Sixty subjects [35 controls and 25 primary open-angle glaucoma (POAG)] underwent 2F-mfERG. Responses were analyzed with the DWT. The DWT level that could best separate POAG from controls was compared to the root-mean-square (RMS) calculations previously used in the analysis of the 2F-mfERG. In a subgroup analysis, structure-function correlation was assessed between DWT, optical coherence tomography and automated perimetry (mf103 customized pattern) for the central 15°. Frequency level 4 of the wavelet variance analysis (144 Hz, WVA-144) was most sensitive (p < 0.003). It correlated positively with RMS but had a better AUC. Positive relations were found between visual field, WVA-144 and GCIPL thickness. The highest predictive factor for glaucoma diagnostic was seen in the GCIPL, but this improved further by adding the mean sensitivity and WVA-144. mfERG using WVA analysis improves glaucoma diagnosis, especially when combined with GCIPL and MS.

  19. On the probability density function and characteristic function moments of image steganalysis in the log prediction error wavelet subband

    NASA Astrophysics Data System (ADS)

    Bao, Zhenkun; Li, Xiaolong; Luo, Xiangyang

    2017-01-01

    Extracting informative statistic features is the most essential technical issue of steganalysis. Among various steganalysis methods, probability density function (PDF) and characteristic function (CF) moments are two important types of features due to the excellent ability for distinguishing the cover images from the stego ones. The two types of features are quite similar in definition. The only difference is that the PDF moments are computed in the spatial domain, while the CF moments are computed in the Fourier-transformed domain. Then, the comparison between PDF and CF moments is an interesting question of steganalysis. Several theoretical results have been derived, and CF moments are proved better than PDF moments in some cases. However, in the log prediction error wavelet subband of wavelet decomposition, some experiments show that the result is opposite and lacks a rigorous explanation. To solve this problem, a comparison result based on the rigorous proof is presented: the first-order PDF moment is proved better than the CF moment, while the second-order CF moment is better than the PDF moment. It tries to open the theoretical discussion on steganalysis and the question of finding suitable statistical features.

  20. The cross wavelet and wavelet coherence analysis of spatio-temporal rainfall-groundwater system in Pingtung plain, Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Chien; Yu, Hwa-Lung

    2013-04-01

    The increasing frequency and intensity of extreme rainfall events has been observed recently in Taiwan. Particularly, Typhoon Morakot, Typhoon Fanapi, and Typhoon Megi consecutively brought record-breaking intensity and magnitude of rainfalls to different locations of Taiwan in these two years. However, records show the extreme rainfall events did not elevate the amount of annual rainfall accordingly. Conversely, the increasing frequency of droughts has also been occurring in Taiwan. The challenges have been confronted by governmental agencies and scientific communities to come up with effective adaptation strategies for natural disaster reduction and sustainable environment establishment. Groundwater has long been a reliable water source for a variety of domestic, agricultural, and industrial uses because of its stable quantity and quality. In Taiwan, groundwater accounts for the largest proportion of all water resources for about 40%. This study plans to identify and quantify the nonlinear relationship between precipitation and groundwater recharge, find the non-stationary time-frequency relations between the variations of rainfall and groundwater levels to understand the phase difference of time series. Groundwater level data and over-50-years hourly rainfall records obtained from 20 weather stations in Pingtung Plain, Taiwan has been collected. Extract the space-time pattern by EOF method, which is a decomposition of a signal or data set in terms of orthogonal basis functions determined from the data for both time series and spatial patterns, to identify the important spatial pattern of groundwater recharge and using cross wavelet and wavelet coherence method to identify the relationship between rainfall and groundwater levels. Results show that EOF method can specify the spatial-temporal patterns which represents certain geological characteristics and other mechanisms of groundwater, and the wavelet coherence method can identify general correlation between rainfall and groundwater signal at low frequency and high frequency relationship at some certain extreme rainfall events. Keywords: extreme rainfall, groundwater, EOF, wavelet coherence

  1. Wavelets analysis for differentiating solid, non-macroscopic fat containing, enhancing renal masses: a pilot study

    NASA Astrophysics Data System (ADS)

    Varghese, Bino; Hwang, Darryl; Mohamed, Passant; Cen, Steven; Deng, Christopher; Chang, Michael; Duddalwar, Vinay

    2017-11-01

    Purpose: To evaluate potential use of wavelets analysis in discriminating benign and malignant renal masses (RM) Materials and Methods: Regions of interest of the whole lesion were manually segmented and co-registered from multiphase CT acquisitions of 144 patients (98 malignant RM: renal cell carcinoma (RCC) and 46 benign RM: oncocytoma, lipid-poor angiomyolipoma). Here, the Haar wavelet was used to analyze the grayscale images of the largest segmented tumor in the axial direction. Six metrics (energy, entropy, homogeneity, contrast, standard deviation (SD) and variance) derived from 3-levels of image decomposition in 3 directions (horizontal, vertical and diagonal) respectively, were used to quantify tumor texture. Independent t-test or Wilcoxon rank sum test depending on data normality were used as exploratory univariate analysis. Stepwise logistic regression and receiver operator characteristics (ROC) curve analysis were used to select predictors and assess prediction accuracy, respectively. Results: Consistently, 5 out of 6 wavelet-based texture measures (except homogeneity) were higher for malignant tumors compared to benign, when accounting for individual texture direction. Homogeneity was consistently lower in malignant than benign tumors irrespective of direction. SD and variance measured in the diagonal direction on the corticomedullary phase showed significant (p<0.05) difference between benign versus malignant tumors. The multivariate model with variance (3 directions) and SD (vertical direction) extracted from the excretory and pre-contrast phase, respectively showed an area under the ROC curve (AUC) of 0.78 (p < 0.05) in discriminating malignant from benign. Conclusion: Wavelet analysis is a valuable texture evaluation tool to add to a radiomics platforms geared at reliably characterizing and stratifying renal masses.

  2. Multiple description distributed image coding with side information for mobile wireless transmission

    NASA Astrophysics Data System (ADS)

    Wu, Min; Song, Daewon; Chen, Chang Wen

    2005-03-01

    Multiple description coding (MDC) is a source coding technique that involves coding the source information into multiple descriptions, and then transmitting them over different channels in packet network or error-prone wireless environment to achieve graceful degradation if parts of descriptions are lost at the receiver. In this paper, we proposed a multiple description distributed wavelet zero tree image coding system for mobile wireless transmission. We provide two innovations to achieve an excellent error resilient capability. First, when MDC is applied to wavelet subband based image coding, it is possible to introduce correlation between the descriptions in each subband. We consider using such a correlation as well as potentially error corrupted description as side information in the decoding to formulate the MDC decoding as a Wyner Ziv decoding problem. If only part of descriptions is lost, however, their correlation information is still available, the proposed Wyner Ziv decoder can recover the description by using the correlation information and the error corrupted description as side information. Secondly, in each description, single bitstream wavelet zero tree coding is very vulnerable to the channel errors. The first bit error may cause the decoder to discard all subsequent bits whether or not the subsequent bits are correctly received. Therefore, we integrate the multiple description scalar quantization (MDSQ) with the multiple wavelet tree image coding method to reduce error propagation. We first group wavelet coefficients into multiple trees according to parent-child relationship and then code them separately by SPIHT algorithm to form multiple bitstreams. Such decomposition is able to reduce error propagation and therefore improve the error correcting capability of Wyner Ziv decoder. Experimental results show that the proposed scheme not only exhibits an excellent error resilient performance but also demonstrates graceful degradation over the packet loss rate.

  3. LiveWire interactive boundary extraction algorithm based on Haar wavelet transform and control point set direction search

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Zhang, Jun; Tian, Jinwen

    2015-12-01

    Based on deep analysis of the LiveWire interactive boundary extraction algorithm, a new algorithm focusing on improving the speed of LiveWire algorithm is proposed in this paper. Firstly, the Haar wavelet transform is carried on the input image, and the boundary is extracted on the low resolution image obtained by the wavelet transform of the input image. Secondly, calculating LiveWire shortest path is based on the control point set direction search by utilizing the spatial relationship between the two control points users provide in real time. Thirdly, the search order of the adjacent points of the starting node is set in advance. An ordinary queue instead of a priority queue is taken as the storage pool of the points when optimizing their shortest path value, thus reducing the complexity of the algorithm from O[n2] to O[n]. Finally, A region iterative backward projection method based on neighborhood pixel polling has been used to convert dual-pixel boundary of the reconstructed image to single-pixel boundary after Haar wavelet inverse transform. The algorithm proposed in this paper combines the advantage of the Haar wavelet transform and the advantage of the optimal path searching method based on control point set direction search. The former has fast speed of image decomposition and reconstruction and is more consistent with the texture features of the image and the latter can reduce the time complexity of the original algorithm. So that the algorithm can improve the speed in interactive boundary extraction as well as reflect the boundary information of the image more comprehensively. All methods mentioned above have a big role in improving the execution efficiency and the robustness of the algorithm.

  4. The Speech multi features fusion perceptual hash algorithm based on tensor decomposition

    NASA Astrophysics Data System (ADS)

    Huang, Y. B.; Fan, M. H.; Zhang, Q. Y.

    2018-03-01

    With constant progress in modern speech communication technologies, the speech data is prone to be attacked by the noise or maliciously tampered. In order to make the speech perception hash algorithm has strong robustness and high efficiency, this paper put forward a speech perception hash algorithm based on the tensor decomposition and multi features is proposed. This algorithm analyses the speech perception feature acquires each speech component wavelet packet decomposition. LPCC, LSP and ISP feature of each speech component are extracted to constitute the speech feature tensor. Speech authentication is done by generating the hash values through feature matrix quantification which use mid-value. Experimental results showing that the proposed algorithm is robust for content to maintain operations compared with similar algorithms. It is able to resist the attack of the common background noise. Also, the algorithm is highly efficiency in terms of arithmetic, and is able to meet the real-time requirements of speech communication and complete the speech authentication quickly.

  5. The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series

    NASA Astrophysics Data System (ADS)

    Du, Kongchang; Zhao, Ying; Lei, Jiaqiang

    2017-09-01

    In hydrological time series prediction, singular spectrum analysis (SSA) and discrete wavelet transform (DWT) are widely used as preprocessing techniques for artificial neural network (ANN) and support vector machine (SVM) predictors. These hybrid or ensemble models seem to largely reduce the prediction error. In current literature researchers apply these techniques to the whole observed time series and then obtain a set of reconstructed or decomposed time series as inputs to ANN or SVM. However, through two comparative experiments and mathematical deduction we found the usage of SSA and DWT in building hybrid models is incorrect. Since SSA and DWT adopt 'future' values to perform the calculation, the series generated by SSA reconstruction or DWT decomposition contain information of 'future' values. These hybrid models caused incorrect 'high' prediction performance and may cause large errors in practice.

  6. Peak load demand forecasting using two-level discrete wavelet decomposition and neural network algorithm

    NASA Astrophysics Data System (ADS)

    Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak

    2010-02-01

    This paper proposed the discrete transform and neural network algorithms to obtain the monthly peak load demand in mid term load forecasting. The mother wavelet daubechies2 (db2) is employed to decomposed, high pass filter and low pass filter signals from the original signal before using feed forward back propagation neural network to determine the forecasting results. The historical data records in 1997-2007 of Electricity Generating Authority of Thailand (EGAT) is used as reference. In this study, historical information of peak load demand(MW), mean temperature(Tmean), consumer price index (CPI), and industrial index (economic:IDI) are used as feature inputs of the network. The experimental results show that the Mean Absolute Percentage Error (MAPE) is approximately 4.32%. This forecasting results can be used for fuel planning and unit commitment of the power system in the future.

  7. Remote-sensing image encryption in hybrid domains

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqiang; Zhu, Guiliang; Ma, Shilong

    2012-04-01

    Remote-sensing technology plays an important role in military and industrial fields. Remote-sensing image is the main means of acquiring information from satellites, which always contain some confidential information. To securely transmit and store remote-sensing images, we propose a new image encryption algorithm in hybrid domains. This algorithm makes full use of the advantages of image encryption in both spatial domain and transform domain. First, the low-pass subband coefficients of image DWT (discrete wavelet transform) decomposition are sorted by a PWLCM system in transform domain. Second, the image after IDWT (inverse discrete wavelet transform) reconstruction is diffused with 2D (two-dimensional) Logistic map and XOR operation in spatial domain. The experiment results and algorithm analyses show that the new algorithm possesses a large key space and can resist brute-force, statistical and differential attacks. Meanwhile, the proposed algorithm has the desirable encryption efficiency to satisfy requirements in practice.

  8. Comparative performance evaluation of transform coding in image pre-processing

    NASA Astrophysics Data System (ADS)

    Menon, Vignesh V.; NB, Harikrishnan; Narayanan, Gayathri; CK, Niveditha

    2017-07-01

    We are in the midst of a communication transmute which drives the development as largely as dissemination of pioneering communication systems with ever-increasing fidelity and resolution. Distinguishable researches have been appreciative in image processing techniques crazed by a growing thirst for faster and easier encoding, storage and transmission of visual information. In this paper, the researchers intend to throw light on many techniques which could be worn at the transmitter-end in order to ease the transmission and reconstruction of the images. The researchers investigate the performance of different image transform coding schemes used in pre-processing, their comparison, and effectiveness, the necessary and sufficient conditions, properties and complexity in implementation. Whimsical by prior advancements in image processing techniques, the researchers compare various contemporary image pre-processing frameworks- Compressed Sensing, Singular Value Decomposition, Integer Wavelet Transform on performance. The paper exposes the potential of Integer Wavelet transform to be an efficient pre-processing scheme.

  9. Otolith patterns of rockfishes from the northeastern Pacific.

    PubMed

    Tuset, Victor M; Imondi, Ralph; Aguado, Guillermo; Otero-Ferrer, José L; Santschi, Linda; Lombarte, Antoni; Love, Milton

    2015-04-01

    Sagitta otolith shape was analysed in twenty sympatric rockfishes off the southern California coast (Northeastern Pacific). The variation in shape was quantified using canonical variate analysis based on fifth wavelet function decomposition of otolith contour. We selected wavelets because this representation allow the identifications of zones or single morphological points along the contour. The entire otoliths along with four subsections (anterior, ventral, posterodorsal, and anterodorsal) with morphological meaning were examined. Multivariate analyses (MANOVA) showed significant differences in the contours of whole otolith morphology and corresponding subsection among rockfishes. Four patterns were found: fusiform, oblong, and two types of elliptic. A redundancy analysis indicated that anterior and anterodorsal subsections contribute most to define the entire otolith shape. Complementarily, the eco-morphological study indicated that the depth distribution and strategies for capture prey were correlated to otolith shape, especially with the anterodorsal zone. © 2014 Wiley Periodicals, Inc.

  10. Transient classification in LIGO data using difference boosting neural network

    NASA Astrophysics Data System (ADS)

    Mukund, N.; Abraham, S.; Kandhasamy, S.; Mitra, S.; Philip, N. S.

    2017-05-01

    Detection and classification of transients in data from gravitational wave detectors are crucial for efficient searches for true astrophysical events and identification of noise sources. We present a hybrid method for classification of short duration transients seen in gravitational wave data using both supervised and unsupervised machine learning techniques. To train the classifiers, we use the relative wavelet energy and the corresponding entropy obtained by applying one-dimensional wavelet decomposition on the data. The prediction accuracy of the trained classifier on nine simulated classes of gravitational wave transients and also LIGO's sixth science run hardware injections are reported. Targeted searches for a couple of known classes of nonastrophysical signals in the first observational run of Advanced LIGO data are also presented. The ability to accurately identify transient classes using minimal training samples makes the proposed method a useful tool for LIGO detector characterization as well as searches for short duration gravitational wave signals.

  11. Improved wavelet packet classification algorithm for vibrational intrusions in distributed fiber-optic monitoring systems

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Pi, Shaohua; Sun, Qi; Jia, Bo

    2015-05-01

    An improved classification algorithm that considers multiscale wavelet packet Shannon entropy is proposed. Decomposition coefficients at all levels are obtained to build the initial Shannon entropy feature vector. After subtracting the Shannon entropy map of the background signal, components of the strongest discriminating power in the initial feature vector are picked out to rebuild the Shannon entropy feature vector, which is transferred to radial basis function (RBF) neural network for classification. Four types of man-made vibrational intrusion signals are recorded based on a modified Sagnac interferometer. The performance of the improved classification algorithm has been evaluated by the classification experiments via RBF neural network under different diffusion coefficients. An 85% classification accuracy rate is achieved, which is higher than the other common algorithms. The classification results show that this improved classification algorithm can be used to classify vibrational intrusion signals in an automatic real-time monitoring system.

  12. Combination of geodetic measurements by means of a multi-resolution representation

    NASA Astrophysics Data System (ADS)

    Goebel, G.; Schmidt, M. G.; Börger, K.; List, H.; Bosch, W.

    2010-12-01

    Recent and in particular current satellite gravity missions provide important contributions for global Earth gravity models, and these global models can be refined by airborne and terrestrial gravity observations. The most common representation of a gravity field model in terms of spherical harmonics has the disadvantages that it is difficult to represent small spatial details and cannot handle data gaps appropriately. An adequate modeling using a multi-resolution representation (MRP) is necessary in order to exploit the highest degree of information out of all these mentioned measurements. The MRP provides a simple hierarchical framework for identifying the properties of a signal. The procedure starts from the measurements, performs the decomposition into frequency-dependent detail signals by applying a pyramidal algorithm and allows for data compression and filtering, i.e. data manipulations. Since different geodetic measurement types (terrestrial, airborne, spaceborne) cover different parts of the frequency spectrum, it seems reasonable to calculate the detail signals of the lower levels mainly from satellite data, the detail signals of medium levels mainly from airborne and the detail signals of the higher levels mainly from terrestrial data. A concept is presented how these different measurement types can be combined within the MRP. In this presentation the basic principles on strategies and concepts for the generation of MRPs will be shown. Examples of regional gravity field determination are presented.

  13. Content-based multiple bitstream image transmission over noisy channels.

    PubMed

    Cao, Lei; Chen, Chang Wen

    2002-01-01

    In this paper, we propose a novel combined source and channel coding scheme for image transmission over noisy channels. The main feature of the proposed scheme is a systematic decomposition of image sources so that unequal error protection can be applied according to not only bit error sensitivity but also visual content importance. The wavelet transform is adopted to hierarchically decompose the image. The association between the wavelet coefficients and what they represent spatially in the original image is fully exploited so that wavelet blocks are classified based on their corresponding image content. The classification produces wavelet blocks in each class with similar content and statistics, therefore enables high performance source compression using the set partitioning in hierarchical trees (SPIHT) algorithm. To combat the channel noise, an unequal error protection strategy with rate-compatible punctured convolutional/cyclic redundancy check (RCPC/CRC) codes is implemented based on the bit contribution to both peak signal-to-noise ratio (PSNR) and visual quality. At the receiving end, a postprocessing method making use of the SPIHT decoding structure and the classification map is developed to restore the degradation due to the residual error after channel decoding. Experimental results show that the proposed scheme is indeed able to provide protection both for the bits that are more sensitive to errors and for the more important visual content under a noisy transmission environment. In particular, the reconstructed images illustrate consistently better visual quality than using the single-bitstream-based schemes.

  14. Edge detection based on adaptive threshold b-spline wavelet for optical sub-aperture measuring

    NASA Astrophysics Data System (ADS)

    Zhang, Shiqi; Hui, Mei; Liu, Ming; Zhao, Zhu; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2015-08-01

    In the research of optical synthetic aperture imaging system, phase congruency is the main problem and it is necessary to detect sub-aperture phase. The edge of the sub-aperture system is more complex than that in the traditional optical imaging system. And with the existence of steep slope for large-aperture optical component, interference fringe may be quite dense when interference imaging. Deep phase gradient may cause a loss of phase information. Therefore, it's urgent to search for an efficient edge detection method. Wavelet analysis as a powerful tool is widely used in the fields of image processing. Based on its properties of multi-scale transform, edge region is detected with high precision in small scale. Longing with the increase of scale, noise is reduced in contrary. So it has a certain suppression effect on noise. Otherwise, adaptive threshold method which sets different thresholds in various regions can detect edge points from noise. Firstly, fringe pattern is obtained and cubic b-spline wavelet is adopted as the smoothing function. After the multi-scale wavelet decomposition of the whole image, we figure out the local modulus maxima in gradient directions. However, it also contains noise, and thus adaptive threshold method is used to select the modulus maxima. The point which greater than threshold value is boundary point. Finally, we use corrosion and expansion deal with the resulting image to get the consecutive boundary of image.

  15. Wavelet-based adaptation methodology combined with finite difference WENO to solve ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Do, Seongju; Li, Haojun; Kang, Myungjoo

    2017-06-01

    In this paper, we present an accurate and efficient wavelet-based adaptive weighted essentially non-oscillatory (WENO) scheme for hydrodynamics and ideal magnetohydrodynamics (MHD) equations arising from the hyperbolic conservation systems. The proposed method works with the finite difference weighted essentially non-oscillatory (FD-WENO) method in space and the third order total variation diminishing (TVD) Runge-Kutta (RK) method in time. The philosophy of this work is to use the lifted interpolating wavelets as not only detector for singularities but also interpolator. Especially, flexible interpolations can be performed by an inverse wavelet transformation. When the divergence cleaning method introducing auxiliary scalar field ψ is applied to the base numerical schemes for imposing divergence-free condition to the magnetic field in a MHD equation, the approximations to derivatives of ψ require the neighboring points. Moreover, the fifth order WENO interpolation requires large stencil to reconstruct high order polynomial. In such cases, an efficient interpolation method is necessary. The adaptive spatial differentiation method is considered as well as the adaptation of grid resolutions. In order to avoid the heavy computation of FD-WENO, in the smooth regions fixed stencil approximation without computing the non-linear WENO weights is used, and the characteristic decomposition method is replaced by a component-wise approach. Numerical results demonstrate that with the adaptive method we are able to resolve the solutions that agree well with the solution of the corresponding fine grid.

  16. QWT: Retrospective and New Applications

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Yang, Xiaokang; Song, Li; Traversoni, Leonardo; Lu, Wei

    Quaternion wavelet transform (QWT) achieves much attention in recent years as a new image analysis tool. In most cases, it is an extension of the real wavelet transform and complex wavelet transform (CWT) by using the quaternion algebra and the 2D Hilbert transform of filter theory, where analytic signal representation is desirable to retrieve phase-magnitude description of intrinsically 2D geometric structures in a grayscale image. In the context of color image processing, however, it is adapted to analyze the image pattern and color information as a whole unit by mapping sequential color pixels to a quaternion-valued vector signal. This paper provides a retrospective of QWT and investigates its potential use in the domain of image registration, image fusion, and color image recognition. It is indicated that it is important for QWT to induce the mechanism of adaptive scale representation of geometric features, which is further clarified through two application instances of uncalibrated stereo matching and optical flow estimation. Moreover, quaternionic phase congruency model is defined based on analytic signal representation so as to operate as an invariant feature detector for image registration. To achieve better localization of edges and textures in image fusion task, we incorporate directional filter bank (DFB) into the quaternion wavelet decomposition scheme to greatly enhance the direction selectivity and anisotropy of QWT. Finally, the strong potential use of QWT in color image recognition is materialized in a chromatic face recognition system by establishing invariant color features. Extensive experimental results are presented to highlight the exciting properties of QWT.

  17. A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms

    PubMed Central

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise. PMID:22163672

  18. A rigid image registration based on the nonsubsampled contourlet transform and genetic algorithms.

    PubMed

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.

  19. Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition.

    PubMed

    Zhang, Yi; Li, Peiyang; Zhu, Xuyang; Su, Steven W; Guo, Qing; Xu, Peng; Yao, Dezhong

    2017-01-01

    The EMG signal indicates the electrophysiological response to daily living of activities, particularly to lower-limb knee exercises. Literature reports have shown numerous benefits of the Wavelet analysis in EMG feature extraction for pattern recognition. However, its application to typical knee exercises when using only a single EMG channel is limited. In this study, three types of knee exercises, i.e., flexion of the leg up (standing), hip extension from a sitting position (sitting) and gait (walking) are investigated from 14 healthy untrained subjects, while EMG signals from the muscle group of vastus medialis and the goniometer on the knee joint of the detected leg are synchronously monitored and recorded. Four types of lower-limb motions including standing, sitting, stance phase of walking, and swing phase of walking, are segmented. The Wavelet Transform (WT) based Singular Value Decomposition (SVD) approach is proposed for the classification of four lower-limb motions using a single-channel EMG signal from the muscle group of vastus medialis. Based on lower-limb motions from all subjects, the combination of five-level wavelet decomposition and SVD is used to comprise the feature vector. The Support Vector Machine (SVM) is then configured to build a multiple-subject classifier for which the subject independent accuracy will be given across all subjects for the classification of four types of lower-limb motions. In order to effectively indicate the classification performance, EMG features from time-domain (e.g., Mean Absolute Value (MAV), Root-Mean-Square (RMS), integrated EMG (iEMG), Zero Crossing (ZC)) and frequency-domain (e.g., Mean Frequency (MNF) and Median Frequency (MDF)) are also used to classify lower-limb motions. The five-fold cross validation is performed and it repeats fifty times in order to acquire the robust subject independent accuracy. Results show that the proposed WT-based SVD approach has the classification accuracy of 91.85%±0.88% which outperforms other feature models.

  20. Image fusion method based on regional feature and improved bidimensional empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Qin, Xinqiang; Hu, Gang; Hu, Kai

    2018-01-01

    The decomposition of multiple source images using bidimensional empirical mode decomposition (BEMD) often produces mismatched bidimensional intrinsic mode functions, either by their number or their frequency, making image fusion difficult. A solution to this problem is proposed using a fixed number of iterations and a union operation in the sifting process. By combining the local regional features of the images, an image fusion method has been developed. First, the source images are decomposed using the proposed BEMD to produce the first intrinsic mode function (IMF) and residue component. Second, for the IMF component, a selection and weighted average strategy based on local area energy is used to obtain a high-frequency fusion component. Third, for the residue component, a selection and weighted average strategy based on local average gray difference is used to obtain a low-frequency fusion component. Finally, the fused image is obtained by applying the inverse BEMD transform. Experimental results show that the proposed algorithm provides superior performance over methods based on wavelet transform, line and column-based EMD, and complex empirical mode decomposition, both in terms of visual quality and objective evaluation criteria.

Top