Prasad, Dilip K; Rajan, Deepu; Rachmawati, Lily; Rajabally, Eshan; Quek, Chai
2016-12-01
This paper addresses the problem of horizon detection, a fundamental process in numerous object detection algorithms, in a maritime environment. The maritime environment is characterized by the absence of fixed features, the presence of numerous linear features in dynamically changing objects and background and constantly varying illumination, rendering the typically simple problem of detecting the horizon a challenging one. We present a novel method called multi-scale consistence of weighted edge Radon transform, abbreviated as MuSCoWERT. It detects the long linear features consistent over multiple scales using multi-scale median filtering of the image followed by Radon transform on a weighted edge map and computing the histogram of the detected linear features. We show that MuSCoWERT has excellent performance, better than seven other contemporary methods, for 84 challenging maritime videos, containing over 33,000 frames, and captured using visible range and near-infrared range sensors mounted onboard, onshore, or on floating buoys. It has a median error of about 2 pixels (less than 0.2%) from the center of the actual horizon and a median angular error of less than 0.4 deg. We are also sharing a new challenging horizon detection dataset of 65 videos of visible, infrared cameras for onshore and onboard ship camera placement.
Spatial vision processes: From the optical image to the symbolic structures of contour information
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.
1988-01-01
The significance of machine and natural vision is discussed together with the need for a general approach to image acquisition and processing aimed at recognition. An exploratory scheme is proposed which encompasses the definition of spatial primitives, intrinsic image properties and sampling, 2-D edge detection at the smallest scale, the construction of spatial primitives from edges, and the isolation of contour information from textural information. Concepts drawn from or suggested by natural vision at both perceptual and physiological levels are relied upon heavily to guide the development of the overall scheme. The scheme is intended to provide a larger context in which to place the emerging technology of detector array focal-plane processors. The approach differs from many recent efforts in edge detection and image coding by emphasizing smallest scale edge detection as a foundation for multi-scale symbolic processing while diminishing somewhat the importance of image convolutions with multi-scale edge operators. Cursory treatments of information theory illustrate that the direct application of this theory to structural information in images could not be realized.
Accurate feature detection and estimation using nonlinear and multiresolution analysis
NASA Astrophysics Data System (ADS)
Rudin, Leonid; Osher, Stanley
1994-11-01
A program for feature detection and estimation using nonlinear and multiscale analysis was completed. The state-of-the-art edge detection was combined with multiscale restoration (as suggested by the first author) and robust results in the presence of noise were obtained. Successful applications to numerous images of interest to DOD were made. Also, a new market in the criminal justice field was developed, based in part, on this work.
Edge detection based on adaptive threshold b-spline wavelet for optical sub-aperture measuring
NASA Astrophysics Data System (ADS)
Zhang, Shiqi; Hui, Mei; Liu, Ming; Zhao, Zhu; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin
2015-08-01
In the research of optical synthetic aperture imaging system, phase congruency is the main problem and it is necessary to detect sub-aperture phase. The edge of the sub-aperture system is more complex than that in the traditional optical imaging system. And with the existence of steep slope for large-aperture optical component, interference fringe may be quite dense when interference imaging. Deep phase gradient may cause a loss of phase information. Therefore, it's urgent to search for an efficient edge detection method. Wavelet analysis as a powerful tool is widely used in the fields of image processing. Based on its properties of multi-scale transform, edge region is detected with high precision in small scale. Longing with the increase of scale, noise is reduced in contrary. So it has a certain suppression effect on noise. Otherwise, adaptive threshold method which sets different thresholds in various regions can detect edge points from noise. Firstly, fringe pattern is obtained and cubic b-spline wavelet is adopted as the smoothing function. After the multi-scale wavelet decomposition of the whole image, we figure out the local modulus maxima in gradient directions. However, it also contains noise, and thus adaptive threshold method is used to select the modulus maxima. The point which greater than threshold value is boundary point. Finally, we use corrosion and expansion deal with the resulting image to get the consecutive boundary of image.
NASA Astrophysics Data System (ADS)
Jiang, Jie; Zhang, Shumei; Cao, Shixiang
2015-01-01
Multitemporal remote sensing images generally suffer from background variations, which significantly disrupt traditional region feature and descriptor abstracts, especially between pre and postdisasters, making registration by local features unreliable. Because shapes hold relatively stable information, a rotation and scale invariant shape context based on multiscale edge features is proposed. A multiscale morphological operator is adapted to detect edges of shapes, and an equivalent difference of Gaussian scale space is built to detect local scale invariant feature points along the detected edges. Then, a rotation invariant shape context with improved distance discrimination serves as a feature descriptor. For a distance shape context, a self-adaptive threshold (SAT) distance division coordinate system is proposed, which improves the discriminative property of the feature descriptor in mid-long pixel distances from the central point while maintaining it in shorter ones. To achieve rotation invariance, the magnitude of Fourier transform in one-dimension is applied to calculate angle shape context. Finally, the residual error is evaluated after obtaining thin-plate spline transformation between reference and sensed images. Experimental results demonstrate the robustness, efficiency, and accuracy of this automatic algorithm.
Automatic Target Cueing (ATC) Task 1 Report - Literature Survey on ATC
2013-10-30
xa s In st ru m en t D aV in ci c hi p C ++ O ut da te d in fo rm at io n as w eb pa ge w as la st u pd at ed in...techniques such as contrast/ edge enhancement to increase the detectability of targets in the urban terrain. [P-4] restores long-distance thermal...Range? Sensor Experimental Setup Results [P-3] Contrast enhancement Edge enhancement Multi-scale edge domain Still images Yes IR
NASA Astrophysics Data System (ADS)
Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Chen, C.
2018-04-01
In view of the traditional change detection algorithm mainly depends on the spectral information image spot, failed to effectively mining and fusion of multi-image feature detection advantage, the article borrows the ideas of object oriented analysis proposed a multi feature fusion of remote sensing image change detection algorithm. First by the multi-scale segmentation of image objects based; then calculate the various objects of color histogram and linear gradient histogram; utilizes the color distance and edge line feature distance between EMD statistical operator in different periods of the object, using the adaptive weighted method, the color feature distance and edge in a straight line distance of combination is constructed object heterogeneity. Finally, the curvature histogram analysis image spot change detection results. The experimental results show that the method can fully fuse the color and edge line features, thus improving the accuracy of the change detection.
Correlations of stock price fluctuations under multi-scale and multi-threshold scenarios
NASA Astrophysics Data System (ADS)
Sui, Guo; Li, Huajiao; Feng, Sida; Liu, Xueyong; Jiang, Meihui
2018-01-01
The multi-scale method is widely used in analyzing time series of financial markets and it can provide market information for different economic entities who focus on different periods. Through constructing multi-scale networks of price fluctuation correlation in the stock market, we can detect the topological relationship between each time series. Previous research has not addressed the problem that the original fluctuation correlation networks are fully connected networks and more information exists within these networks that is currently being utilized. Here we use listed coal companies as a case study. First, we decompose the original stock price fluctuation series into different time scales. Second, we construct the stock price fluctuation correlation networks at different time scales. Third, we delete the edges of the network based on thresholds and analyze the network indicators. Through combining the multi-scale method with the multi-threshold method, we bring to light the implicit information of fully connected networks.
Multi-scales region segmentation for ROI separation in digital mammograms
NASA Astrophysics Data System (ADS)
Zhang, Dapeng; Zhang, Di; Li, Yue; Wang, Wei
2017-02-01
Mammography is currently the most effective imaging modality used by radiologists for the screening of breast cancer. Segmentation is one of the key steps in the process of developing anatomical models for calculation of safe medical dose of radiation. This paper explores the potential of the statistical region merging segmentation technique for Breast segmentation in digital mammograms. First, the mammograms are pre-processing for regions enhancement, then the enhanced images are segmented using SRM with multi scales, finally these segmentations are combined for region of interest (ROI) separation and edge detection. The proposed algorithm uses multi-scales region segmentation in order to: separate breast region from background region, region edge detection and ROIs separation. The experiments are performed using a data set of mammograms from different patients, demonstrating the validity of the proposed criterion. Results show that, the statistical region merging segmentation algorithm actually can work on the segmentation of medical image and more accurate than another methods. And the outcome shows that the technique has a great potential to become a method of choice for segmentation of mammograms.
Multiscale infrared and visible image fusion using gradient domain guided image filtering
NASA Astrophysics Data System (ADS)
Zhu, Jin; Jin, Weiqi; Li, Li; Han, Zhenghao; Wang, Xia
2018-03-01
For better surveillance with infrared and visible imaging, a novel hybrid multiscale decomposition fusion method using gradient domain guided image filtering (HMSD-GDGF) is proposed in this study. In this method, hybrid multiscale decomposition with guided image filtering and gradient domain guided image filtering of source images are first applied before the weight maps of each scale are obtained using a saliency detection technology and filtering means with three different fusion rules at different scales. The three types of fusion rules are for small-scale detail level, large-scale detail level, and base level. Finally, the target becomes more salient and can be more easily detected in the fusion result, with the detail information of the scene being fully displayed. After analyzing the experimental comparisons with state-of-the-art fusion methods, the HMSD-GDGF method has obvious advantages in fidelity of salient information (including structural similarity, brightness, and contrast), preservation of edge features, and human visual perception. Therefore, visual effects can be improved by using the proposed HMSD-GDGF method.
Hexagonal wavelet processing of digital mammography
NASA Astrophysics Data System (ADS)
Laine, Andrew F.; Schuler, Sergio; Huda, Walter; Honeyman-Buck, Janice C.; Steinbach, Barbara G.
1993-09-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms and used to enhance features of importance to mammography within a continuum of scale-space. We present a method of contrast enhancement based on an overcomplete, non-separable multiscale representation: the hexagonal wavelet transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by local and global non-linear operators. Multiscale edges identified within distinct levels of transform space provide local support for enhancement. We demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.
Detecting Multi-scale Structures in Chandra Images of Centaurus A
NASA Astrophysics Data System (ADS)
Karovska, M.; Fabbiano, G.; Elvis, M. S.; Evans, I. N.; Kim, D. W.; Prestwich, A. H.; Schwartz, D. A.; Murray, S. S.; Forman, W.; Jones, C.; Kraft, R. P.; Isobe, T.; Cui, W.; Schreier, E. J.
1999-12-01
Centaurus A (NGC 5128) is a giant early-type galaxy with a merger history, containing the nearest radio-bright AGN. Recent Chandra High Resolution Camera (HRC) observations of Cen A reveal X-ray multi-scale structures in this object with unprecedented detail and clarity. We show the results of an analysis of the Chandra data with smoothing and edge enhancement techniques that allow us to enhance and quantify the multi-scale structures present in the HRC images. These techniques include an adaptive smoothing algorithm (Ebeling et al 1999), and a multi-directional gradient detection algorithm (Karovska et al 1994). The Ebeling et al adaptive smoothing algorithm, which is incorporated in the CXC analysis s/w package, is a powerful tool for smoothing images containing complex structures at various spatial scales. The adaptively smoothed images of Centaurus A show simultaneously the high-angular resolution bright structures at scales as small as an arcsecond and the extended faint structures as large as several arc minutes. The large scale structures suggest complex symmetry, including a component possibly associated with the inner radio lobes (as suggested by the ROSAT HRI data, Dobereiner et al 1996), and a separate component with an orthogonal symmetry that may be associated with the galaxy as a whole. The dust lane and the x-ray ridges are very clearly visible. The adaptively smoothed images and the edge-enhanced images also suggest several filamentary features including a large filament-like structure extending as far as about 5 arcminutes to North-West.
Adaptive multiscale processing for contrast enhancement
NASA Astrophysics Data System (ADS)
Laine, Andrew F.; Song, Shuwu; Fan, Jian; Huda, Walter; Honeyman, Janice C.; Steinbach, Barbara G.
1993-07-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms within a continuum of scale space and used to enhance features of importance to mammography. Choosing analyzing functions that are well localized in both space and frequency, results in a powerful methodology for image analysis. We describe methods of contrast enhancement based on two overcomplete (redundant) multiscale representations: (1) Dyadic wavelet transform (2) (phi) -transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by non-linear, logarithmic and constant scale-space weight functions. Multiscale edges identified within distinct levels of transform space provide a local support for enhancement throughout each decomposition. We demonstrate that features extracted from wavelet spaces can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.
NASA Technical Reports Server (NTRS)
Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.
2014-01-01
A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.
Coherent structures shed by multiscale cut-in trailing edge serrations on lifting wings
NASA Astrophysics Data System (ADS)
Prigent, S. L.; Buxton, O. R. H.; Bruce, P. J. K.
2017-07-01
This experimental study presents the effect of multiscale cut-in trailing edge serrations on the coherent structures shed into the wake of a lifting wing. Two-probe span-wise hot-wire traverses are performed to study spectra, coherence, and phase shift. In addition, planar particle image velocimetry is used to study the spatio-temporal structure of the vortices shed by the airfoils. Compared with a single tone sinusoidal serration, the multiscale ones reduce the vortex shedding energy as well as the span-wise coherence. Results indicate that the vortex shedding is locked into an arch-shaped cell structure. This structure is weakened by the multiscale patterns, which explains the reduction in both shedding energy and coherence.
Automatic image enhancement based on multi-scale image decomposition
NASA Astrophysics Data System (ADS)
Feng, Lu; Wu, Zhuangzhi; Pei, Luo; Long, Xiong
2014-01-01
In image processing and computational photography, automatic image enhancement is one of the long-range objectives. Recently the automatic image enhancement methods not only take account of the globe semantics, like correct color hue and brightness imbalances, but also the local content of the image, such as human face and sky of landscape. In this paper we describe a new scheme for automatic image enhancement that considers both global semantics and local content of image. Our automatic image enhancement method employs the multi-scale edge-aware image decomposition approach to detect the underexposure regions and enhance the detail of the salient content. The experiment results demonstrate the effectiveness of our approach compared to existing automatic enhancement methods.
A multiscale Markov random field model in wavelet domain for image segmentation
NASA Astrophysics Data System (ADS)
Dai, Peng; Cheng, Yu; Wang, Shengchun; Du, Xinyu; Wu, Dan
2017-07-01
The human vision system has abilities for feature detection, learning and selective attention with some properties of hierarchy and bidirectional connection in the form of neural population. In this paper, a multiscale Markov random field model in the wavelet domain is proposed by mimicking some image processing functions of vision system. For an input scene, our model provides its sparse representations using wavelet transforms and extracts its topological organization using MRF. In addition, the hierarchy property of vision system is simulated using a pyramid framework in our model. There are two information flows in our model, i.e., a bottom-up procedure to extract input features and a top-down procedure to provide feedback controls. The two procedures are controlled simply by two pyramidal parameters, and some Gestalt laws are also integrated implicitly. Equipped with such biological inspired properties, our model can be used to accomplish different image segmentation tasks, such as edge detection and region segmentation.
A Multiscale pipeline for the search of string-induced CMB anisotropies
NASA Astrophysics Data System (ADS)
Vafaei Sadr, A.; Movahed, S. M. S.; Farhang, M.; Ringeval, C.; Bouchet, F. R.
2018-03-01
We propose a multiscale edge-detection algorithm to search for the Gott-Kaiser-Stebbins imprints of a cosmic string (CS) network on the cosmic microwave background (CMB) anisotropies. Curvelet decomposition and extended Canny algorithm are used to enhance the string detectability. Various statistical tools are then applied to quantify the deviation of CMB maps having a CS contribution with respect to pure Gaussian anisotropies of inflationary origin. These statistical measures include the one-point probability density function, the weighted two-point correlation function (TPCF) of the anisotropies, the unweighted TPCF of the peaks and of the up-crossing map, as well as their cross-correlation. We use this algorithm on a hundred of simulated Nambu-Goto CMB flat sky maps, covering approximately 10 per cent of the sky, and for different string tensions Gμ. On noiseless sky maps with an angular resolution of 0.9 arcmin, we show that our pipeline detects CSs with Gμ as low as Gμ ≳ 4.3 × 10-10. At the same resolution, but with a noise level typical to a CMB-S4 phase II experiment, the detection threshold would be to Gμ ≳ 1.2 × 10-7.
Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George
2009-08-01
We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.
Macklin, Paul; Cristini, Vittorio
2013-01-01
Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insight on the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community. PMID:21529163
Network Intrusion Detection and Visualization using Aggregations in a Cyber Security Data Warehouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czejdo, Bogdan; Ferragut, Erik M; Goodall, John R
2012-01-01
The challenge of achieving situational understanding is a limiting factor in effective, timely, and adaptive cyber-security analysis. Anomaly detection fills a critical role in network assessment and trend analysis, both of which underlie the establishment of comprehensive situational understanding. To that end, we propose a cyber security data warehouse implemented as a hierarchical graph of aggregations that captures anomalies at multiple scales. Each node of our pro-posed graph is a summarization table of cyber event aggregations, and the edges are aggregation operators. The cyber security data warehouse enables domain experts to quickly traverse a multi-scale aggregation space systematically. We describemore » the architecture of a test bed system and a summary of results on the IEEE VAST 2012 Cyber Forensics data.« less
Electron Heating at Kinetic Scales in Magnetosheath Turbulence
NASA Technical Reports Server (NTRS)
Chasapis, Alexandros; Matthaeus, W. H.; Parashar, T. N.; Lecontel, O.; Retino, A.; Breuillard, H.; Khotyaintsev, Y.; Vaivads, A.; Lavraud, B.; Eriksson, E.;
2017-01-01
We present a statistical study of coherent structures at kinetic scales, using data from the Magnetospheric Multiscale mission in the Earths magnetosheath. We implemented the multi-spacecraft partial variance of increments (PVI) technique to detect these structures, which are associated with intermittency at kinetic scales. We examine the properties of the electron heating occurring within such structures. We find that, statistically, structures with a high PVI index are regions of significant electron heating. We also focus on one such structure, a current sheet, which shows some signatures consistent with magnetic reconnection. Strong parallel electron heating coincides with whistler emissions at the edges of the current sheet.
NASA Astrophysics Data System (ADS)
Pai Raikar, Vipul; Kwartowitz, David M.
2016-04-01
Degradation and injury of the rotator cuff is one of the most common diseases of the shoulder among the general population. In orthopedic injuries, rotator cuff disease is only second to back pain in terms of overall reduced quality of life for patients. Clinically, this disease is managed via pain and activity assessment and diagnostic imaging using ultrasound and MRI. Ultrasound has been shown to have good accuracy for identification and measurement of rotator cuff tears. In our previous work, we have developed novel, real-time techniques to biomechanically assess the condition of the rotator cuff based on Musculoskeletal Ultrasound. Of the rotator cuff tissues, supraspinatus is the first that sees degradation and is the most commonly affected. In our work, one of the challenges lies in effectively segmenting and characterizing the supraspinatus. We are exploring the possibility of using curvelet transform for improving techniques to segment tissue in ultrasound. Curvelets have been shown to give optimal multi-scale representation of edges in images. They are designed to represent edges and singularities along curves in images which makes them an attractive proposition for use in ultrasound segmentation. In this work, we present a novel approach to the possibility of using curvelet transforms for automatic edge and feature extraction for the supraspinatus.
A detection method for X-ray images based on wavelet transforms: the case of the ROSAT PSPC.
NASA Astrophysics Data System (ADS)
Damiani, F.; Maggio, A.; Micela, G.; Sciortino, S.
1996-02-01
The authors have developed a method based on wavelet transforms (WT) to detect efficiently sources in PSPC X-ray images. The multiscale approach typical of WT can be used to detect sources with a large range of sizes, and to estimate their size and count rate. Significance thresholds for candidate detections (found as local WT maxima) have been derived from a detailed study of the probability distribution of the WT of a locally uniform background. The use of the exposure map allows good detection efficiency to be retained even near PSPC ribs and edges. The algorithm may also be used to get upper limits to the count rate of undetected objects. Simulations of realistic PSPC images containing either pure background or background+sources were used to test the overall algorithm performances, and to assess the frequency of spurious detections (vs. detection threshold) and the algorithm sensitivity. Actual PSPC images of galaxies and star clusters show the algorithm to have good performance even in cases of extended sources and crowded fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Azevedo, Eduardo; Abbott, Stephen; Koskela, Tuomas
The XGC fusion gyrokinetic code combines state-of-the-art, portable computational and algorithmic technologies to enable complicated multiscale simulations of turbulence and transport dynamics in ITER edge plasma on the largest US open-science computer, the CRAY XK7 Titan, at its maximal heterogeneous capability, which have not been possible before due to a factor of over 10 shortage in the time-to-solution for less than 5 days of wall-clock time for one physics case. Frontier techniques such as nested OpenMP parallelism, adaptive parallel I/O, staging I/O and data reduction using dynamic and asynchronous applications interactions, dynamic repartitioning for balancing computational work in pushing particlesmore » and in grid related work, scalable and accurate discretization algorithms for non-linear Coulomb collisions, and communication-avoiding subcycling technology for pushing particles on both CPUs and GPUs are also utilized to dramatically improve the scalability and time-to-solution, hence enabling the difficult kinetic ITER edge simulation on a present-day leadership class computer.« less
Electron Heating at Kinetic Scales in Magnetosheath Turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chasapis, Alexandros; Matthaeus, W. H.; Parashar, T. N.
2017-02-20
We present a statistical study of coherent structures at kinetic scales, using data from the Magnetospheric Multiscale mission in the Earth’s magnetosheath. We implemented the multi-spacecraft partial variance of increments (PVI) technique to detect these structures, which are associated with intermittency at kinetic scales. We examine the properties of the electron heating occurring within such structures. We find that, statistically, structures with a high PVI index are regions of significant electron heating. We also focus on one such structure, a current sheet, which shows some signatures consistent with magnetic reconnection. Strong parallel electron heating coincides with whistler emissions at themore » edges of the current sheet.« less
TreeNetViz: revealing patterns of networks over tree structures.
Gou, Liang; Zhang, Xiaolong Luke
2011-12-01
Network data often contain important attributes from various dimensions such as social affiliations and areas of expertise in a social network. If such attributes exhibit a tree structure, visualizing a compound graph consisting of tree and network structures becomes complicated. How to visually reveal patterns of a network over a tree has not been fully studied. In this paper, we propose a compound graph model, TreeNet, to support visualization and analysis of a network at multiple levels of aggregation over a tree. We also present a visualization design, TreeNetViz, to offer the multiscale and cross-scale exploration and interaction of a TreeNet graph. TreeNetViz uses a Radial, Space-Filling (RSF) visualization to represent the tree structure, a circle layout with novel optimization to show aggregated networks derived from TreeNet, and an edge bundling technique to reduce visual complexity. Our circular layout algorithm reduces both total edge-crossings and edge length and also considers hierarchical structure constraints and edge weight in a TreeNet graph. These experiments illustrate that the algorithm can reduce visual cluttering in TreeNet graphs. Our case study also shows that TreeNetViz has the potential to support the analysis of a compound graph by revealing multiscale and cross-scale network patterns. © 2011 IEEE
Automatic detection and recognition of signs from natural scenes.
Chen, Xilin; Yang, Jie; Zhang, Jing; Waibel, Alex
2004-01-01
In this paper, we present an approach to automatic detection and recognition of signs from natural scenes, and its application to a sign translation task. The proposed approach embeds multiresolution and multiscale edge detection, adaptive searching, color analysis, and affine rectification in a hierarchical framework for sign detection, with different emphases at each phase to handle the text in different sizes, orientations, color distributions and backgrounds. We use affine rectification to recover deformation of the text regions caused by an inappropriate camera view angle. The procedure can significantly improve text detection rate and optical character recognition (OCR) accuracy. Instead of using binary information for OCR, we extract features from an intensity image directly. We propose a local intensity normalization method to effectively handle lighting variations, followed by a Gabor transform to obtain local features, and finally a linear discriminant analysis (LDA) method for feature selection. We have applied the approach in developing a Chinese sign translation system, which can automatically detect and recognize Chinese signs as input from a camera, and translate the recognized text into English.
Fusion of infrared polarization and intensity images based on improved toggle operator
NASA Astrophysics Data System (ADS)
Zhu, Pan; Ding, Lei; Ma, Xiaoqing; Huang, Zhanhua
2018-01-01
Integration of infrared polarization and intensity images has been a new topic in infrared image understanding and interpretation. The abundant infrared details and target from infrared image and the salient edge and shape information from polarization image should be preserved or even enhanced in the fused result. In this paper, a new fusion method is proposed for infrared polarization and intensity images based on the improved multi-scale toggle operator with spatial scale, which can effectively extract the feature information of source images and heavily reduce redundancy among different scale. Firstly, the multi-scale image features of infrared polarization and intensity images are respectively extracted at different scale levels by the improved multi-scale toggle operator. Secondly, the redundancy of the features among different scales is reduced by using spatial scale. Thirdly, the final image features are combined by simply adding all scales of feature images together, and a base image is calculated by performing mean value weighted method on smoothed source images. Finally, the fusion image is obtained by importing the combined image features into the base image with a suitable strategy. Both objective assessment and subjective vision of the experimental results indicate that the proposed method obtains better performance in preserving the details and edge information as well as improving the image contrast.
Enhanced visualization of abnormalities in digital-mammographic images
NASA Astrophysics Data System (ADS)
Young, Susan S.; Moore, William E.
2002-05-01
This paper describes two new presentation methods that are intended to improve the ability of radiologists to visualize abnormalities in mammograms by enhancing the appearance of the breast parenchyma pattern relative to the fatty-tissue surroundings. The first method, referred to as mountain- view, is obtained via multiscale edge decomposition through filter banks. The image is displayed in a multiscale edge domain that causes the image to have a topographic-like appearance. The second method displays the image in the intensity domain and is referred to as contrast-enhancement presentation. The input image is first passed through a decomposition filter bank to produce a filtered output (Id). The image at the lowest resolution is processed using a LUT (look-up table) to produce a tone scaled image (I'). The LUT is designed to optimally map the code value range corresponding to the parenchyma pattern in the mammographic image into the dynamic range of the output medium. The algorithm uses a contrast weight control mechanism to produce the desired weight factors to enhance the edge information corresponding to the parenchyma pattern. The output image is formed using a reconstruction filter bank through I' and enhanced Id.
Hu, Weiming; Hu, Ruiguang; Xie, Nianhua; Ling, Haibin; Maybank, Stephen
2014-04-01
In this paper, we propose saliency driven image multiscale nonlinear diffusion filtering. The resulting scale space in general preserves or even enhances semantically important structures such as edges, lines, or flow-like structures in the foreground, and inhibits and smoothes clutter in the background. The image is classified using multiscale information fusion based on the original image, the image at the final scale at which the diffusion process converges, and the image at a midscale. Our algorithm emphasizes the foreground features, which are important for image classification. The background image regions, whether considered as contexts of the foreground or noise to the foreground, can be globally handled by fusing information from different scales. Experimental tests of the effectiveness of the multiscale space for the image classification are conducted on the following publicly available datasets: 1) the PASCAL 2005 dataset; 2) the Oxford 102 flowers dataset; and 3) the Oxford 17 flowers dataset, with high classification rates.
NASA Astrophysics Data System (ADS)
Baumann, Sebastian; Robl, Jörg; Wendt, Lorenz; Willingshofer, Ernst; Hilberg, Sylke
2016-04-01
Automated lineament analysis on remotely sensed data requires two general process steps: The identification of neighboring pixels showing high contrast and the conversion of these domains into lines. The target output is the lineaments' position, extent and orientation. We developed a lineament extraction tool programmed in R using digital elevation models as input data to generate morphological lineaments defined as follows: A morphological lineament represents a zone of high relief roughness, whose length significantly exceeds the width. As relief roughness any deviation from a flat plane, defined by a roughness threshold, is considered. In our novel approach a multi-directional and multi-scale roughness filter uses moving windows of different neighborhood sizes to identify threshold limited rough domains on digital elevation models. Surface roughness is calculated as the vertical elevation difference between the center cell and the different orientated straight lines connecting two edge cells of a neighborhood, divided by the horizontal distance of the edge cells. Thus multiple roughness values depending on the neighborhood sizes and orientations of the edge connecting lines are generated for each cell and their maximum and minimum values are extracted. Thereby negative signs of the roughness parameter represent concave relief structures as valleys, positive signs convex relief structures as ridges. A threshold defines domains of high relief roughness. These domains are thinned to a representative point pattern by a 3x3 neighborhood filter, highlighting maximum and minimum roughness peaks, and representing the center points of lineament segments. The orientation and extent of the lineament segments are calculated within the roughness domains, generating a straight line segment in the direction of least roughness differences. We tested our algorithm on digital elevation models of multiple sources and scales and compared the results visually with shaded relief map of these digital elevation models. The lineament segments trace the relief structure to a great extent and the calculated roughness parameter represents the physical geometry of the digital elevation model. Modifying the threshold for the surface roughness value highlights different distinct relief structures. Also the neighborhood size at which lineament segments are detected correspond with the width of the surface structure and may be a useful additional parameter for further analysis. The discrimination of concave and convex relief structures perfectly matches with valleys and ridges of the surface.
Toward a first-principles integrated simulation of tokamak edge plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C S; Klasky, Scott A; Cummings, Julian
2008-01-01
Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary firstprinciples, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); andmore » (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles.« less
Enhancement of IVR images by combining an ICA shrinkage filter with a multi-scale filter
NASA Astrophysics Data System (ADS)
Chen, Yen-Wei; Matsuo, Kiyotaka; Han, Xianhua; Shimizu, Atsumoto; Shibata, Koichi; Mishina, Yukio; Mukuta, Yoshihiro
2007-11-01
Interventional Radiology (IVR) is an important technique to visualize and diagnosis the vascular disease. In real medical application, a weak x-ray radiation source is used for imaging in order to reduce the radiation dose, resulting in a low contrast noisy image. It is important to develop a method to smooth out the noise while enhance the vascular structure. In this paper, we propose to combine an ICA Shrinkage filter with a multiscale filter for enhancement of IVR images. The ICA shrinkage filter is used for noise reduction and the multiscale filter is used for enhancement of vascular structure. Experimental results show that the quality of the image can be dramatically improved without any blurring in edge by the proposed method. Simultaneous noise reduction and vessel enhancement have been achieved.
An infrared small target detection method based on multiscale local homogeneity measure
NASA Astrophysics Data System (ADS)
Nie, Jinyan; Qu, Shaocheng; Wei, Yantao; Zhang, Liming; Deng, Lizhen
2018-05-01
Infrared (IR) small target detection plays an important role in the field of image detection area owing to its intrinsic characteristics. This paper presents a multiscale local homogeneity measure (MLHM) for infrared small target detection, which can enhance the performance of IR small target detection system. Firstly, intra-patch homogeneity of the target itself and the inter-patch heterogeneity between target and the local background regions are integrated to enhance the significant of small target. Secondly, a multiscale measure based on local regions is proposed to obtain the most appropriate response. Finally, an adaptive threshold method is applied to small target segmentation. Experimental results on three different scenarios indicate that the MLHM has good performance under the interference of strong noise.
Yu, Xiuling; Lu, Shenggao
2016-12-01
Technogenic magnetic particles (TMPs) are carriers of heavy metals and organic contaminants, which derived from anthropogenic activities. However, little information on the relationship between heavy metals and TMP carrier phases at the micrometer scale is available. This study determined the distribution and association of heavy metals and magnetic phases in TMPs in three contaminated soils at the micrometer scale using micro-X-ray fluorescence (μ-XRF) and micro-X-ray absorption near-edge structure (μ-XANES) spectroscopy. Multiscale correlations of heavy metals in TMPs were elucidated using wavelet transform analysis. μ-XRF mapping showed that Fe was enriched and closely correlated with Co, Cr, and Pb in TMPs from steel industrial areas. Fluorescence mapping and wavelet analysis showed that ferroalloy was a major magnetic signature and heavy metal carrier in TMPs, because most heavy metals were highly associated with ferroalloy at all size scales. Multiscale analysis revealed that heavy metals in the TMPs were from multiple sources. Iron K-edge μ-XANES spectra revealed that metallic iron, ferroalloy, and magnetite were the main iron magnetic phases in the TMPs. The relative percentage of these magnetic phases depended on their emission sources. Heatmap analysis revealed that Co, Pb, Cu, Cr, and Ni were mainly derived from ferroalloy particles, while As was derived from both ferroalloy and metallic iron phases. Our results indicated the scale-dependent correlations of magnetic phases and heavy metals in TMPs. The combination of synchrotron based X-ray microprobe techniques and multiscale analysis provides a powerful tool for identifying the magnetic phases from different sources and quantifying the association of iron phases and heavy metals at micrometer scale. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hierarchical image feature extraction by an irregular pyramid of polygonal partitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skurikhin, Alexei N
2008-01-01
We present an algorithmic framework for hierarchical image segmentation and feature extraction. We build a successive fine-to-coarse hierarchy of irregular polygonal partitions of the original image. This multiscale hierarchy forms the basis for object-oriented image analysis. The framework incorporates the Gestalt principles of visual perception, such as proximity and closure, and exploits spectral and textural similarities of polygonal partitions, while iteratively grouping them until dissimilarity criteria are exceeded. Seed polygons are built upon a triangular mesh composed of irregular sized triangles, whose spatial arrangement is adapted to the image content. This is achieved by building the triangular mesh on themore » top of detected spectral discontinuities (such as edges), which form a network of constraints for the Delaunay triangulation. The image is then represented as a spatial network in the form of a graph with vertices corresponding to the polygonal partitions and edges reflecting their relations. The iterative agglomeration of partitions into object-oriented segments is formulated as Minimum Spanning Tree (MST) construction. An important characteristic of the approach is that the agglomeration of polygonal partitions is constrained by the detected edges; thus the shapes of agglomerated partitions are more likely to correspond to the outlines of real-world objects. The constructed partitions and their spatial relations are characterized using spectral, textural and structural features based on proximity graphs. The framework allows searching for object-oriented features of interest across multiple levels of details of the built hierarchy and can be generalized to the multi-criteria MST to account for multiple criteria important for an application.« less
Chung, Ji Ryang; Sung, Chul; Mayerich, David; Kwon, Jaerock; Miller, Daniel E.; Huffman, Todd; Keyser, John; Abbott, Louise C.; Choe, Yoonsuck
2011-01-01
Connectomics is the study of the full connection matrix of the brain. Recent advances in high-throughput, high-resolution 3D microscopy methods have enabled the imaging of whole small animal brains at a sub-micrometer resolution, potentially opening the road to full-blown connectomics research. One of the first such instruments to achieve whole-brain-scale imaging at sub-micrometer resolution is the Knife-Edge Scanning Microscope (KESM). KESM whole-brain data sets now include Golgi (neuronal circuits), Nissl (soma distribution), and India ink (vascular networks). KESM data can contribute greatly to connectomics research, since they fill the gap between lower resolution, large volume imaging methods (such as diffusion MRI) and higher resolution, small volume methods (e.g., serial sectioning electron microscopy). Furthermore, KESM data are by their nature multiscale, ranging from the subcellular to the whole organ scale. Due to this, visualization alone is a huge challenge, before we even start worrying about quantitative connectivity analysis. To solve this issue, we developed a web-based neuroinformatics framework for efficient visualization and analysis of the multiscale KESM data sets. In this paper, we will first provide an overview of KESM, then discuss in detail the KESM data sets and the web-based neuroinformatics framework, which is called the KESM brain atlas (KESMBA). Finally, we will discuss the relevance of the KESMBA to connectomics research, and identify challenges and future directions. PMID:22275895
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Shaojie; Tang Xiangyang; School of Automation, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121
2012-09-15
Purposes: The suppression of noise in x-ray computed tomography (CT) imaging is of clinical relevance for diagnostic image quality and the potential for radiation dose saving. Toward this purpose, statistical noise reduction methods in either the image or projection domain have been proposed, which employ a multiscale decomposition to enhance the performance of noise suppression while maintaining image sharpness. Recognizing the advantages of noise suppression in the projection domain, the authors propose a projection domain multiscale penalized weighted least squares (PWLS) method, in which the angular sampling rate is explicitly taken into consideration to account for the possible variation ofmore » interview sampling rate in advanced clinical or preclinical applications. Methods: The projection domain multiscale PWLS method is derived by converting an isotropic diffusion partial differential equation in the image domain into the projection domain, wherein a multiscale decomposition is carried out. With adoption of the Markov random field or soft thresholding objective function, the projection domain multiscale PWLS method deals with noise at each scale. To compensate for the degradation in image sharpness caused by the projection domain multiscale PWLS method, an edge enhancement is carried out following the noise reduction. The performance of the proposed method is experimentally evaluated and verified using the projection data simulated by computer and acquired by a CT scanner. Results: The preliminary results show that the proposed projection domain multiscale PWLS method outperforms the projection domain single-scale PWLS method and the image domain multiscale anisotropic diffusion method in noise reduction. In addition, the proposed method can preserve image sharpness very well while the occurrence of 'salt-and-pepper' noise and mosaic artifacts can be avoided. Conclusions: Since the interview sampling rate is taken into account in the projection domain multiscale decomposition, the proposed method is anticipated to be useful in advanced clinical and preclinical applications where the interview sampling rate varies.« less
Pedestal and edge electrostatic turbulence characteristics from an XGC1 gyrokinetic simulation
NASA Astrophysics Data System (ADS)
Churchill, R. M.; Chang, C. S.; Ku, S.; Dominski, J.
2017-10-01
Understanding the multi-scale neoclassical and turbulence physics in the edge region (pedestal + scrape-off layer (SOL)) is required in order to reliably predict performance in future fusion devices. We explore turbulent characteristics in the edge region from a multi-scale neoclassical and turbulent XGC1 gyrokinetic simulation in a DIII-D like tokamak geometry, here excluding neutrals and collisions. For an H-mode type plasma with steep pedestal, it is found that the electron density fluctuations increase towards the separatrix, and stay high well into the SOL, reaching a maximum value of δ {n}e/{\\bar{n}}e˜ 0.18. Blobs are observed, born around the magnetic separatrix surface and propagate radially outward with velocities generally less than 1 km s-1. Strong poloidal motion of the blobs is also present, near 20 km s-1, consistent with E × B rotation. The electron density fluctuations show a negative skewness in the closed field-line pedestal region, consistent with the presence of ‘holes’, followed by a transition to strong positive skewness across the separatrix and into the SOL. These simulations indicate that not only neoclassical phenomena, but also turbulence, including the blob-generation mechanism, can remain important in the steep H-mode pedestal and SOL. Qualitative comparisons will be made to experimental observations.
NASA Astrophysics Data System (ADS)
Jia, Rui-Sheng; Sun, Hong-Mei; Peng, Yan-Jun; Liang, Yong-Quan; Lu, Xin-Ming
2017-07-01
Microseismic monitoring is an effective means for providing early warning of rock or coal dynamical disasters, and its first step is microseismic event detection, although low SNR microseismic signals often cannot effectively be detected by routine methods. To solve this problem, this paper presents permutation entropy and a support vector machine to detect low SNR microseismic events. First, an extraction method of signal features based on multi-scale permutation entropy is proposed by studying the influence of the scale factor on the signal permutation entropy. Second, the detection model of low SNR microseismic events based on the least squares support vector machine is built by performing a multi-scale permutation entropy calculation for the collected vibration signals, constructing a feature vector set of signals. Finally, a comparative analysis of the microseismic events and noise signals in the experiment proves that the different characteristics of the two can be fully expressed by using multi-scale permutation entropy. The detection model of microseismic events combined with the support vector machine, which has the features of high classification accuracy and fast real-time algorithms, can meet the requirements of online, real-time extractions of microseismic events.
Zhang, Xueqing; Bieberle-Hütter, Anja
2016-06-08
This review summarizes recent developments, challenges, and strategies in the field of modeling and simulations of photoelectrochemical (PEC) water oxidation. We focus on water splitting by metal-oxide semiconductors and discuss topics such as theoretical calculations of light absorption, band gap/band edge, charge transport, and electrochemical reactions at the electrode-electrolyte interface. In particular, we review the mechanisms of the oxygen evolution reaction, strategies to lower overpotential, and computational methods applied to PEC systems with particular focus on multiscale modeling. The current challenges in modeling PEC interfaces and their processes are summarized. At the end, we propose a new multiscale modeling approach to simulate the PEC interface under conditions most similar to those of experiments. This approach will contribute to identifying the limitations at PEC interfaces. Its generic nature allows its application to a number of electrochemical systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multiscale structural gradients enhance the biomechanical functionality of the spider fang
Bar-On, Benny; Barth, Friedrich G.; Fratzl, Peter; Politi, Yael
2014-01-01
The spider fang is a natural injection needle, hierarchically built from a complex composite material comprising multiscale architectural gradients. Considering its biomechanical function, the spider fang has to sustain significant mechanical loads. Here we apply experiment-based structural modelling of the fang, followed by analytical mechanical description and Finite-Element simulations, the results of which indicate that the naturally evolved fang architecture results in highly adapted effective structural stiffness and damage resilience. The analysis methods and physical insights of this work are potentially important for investigating and understanding the architecture and structural motifs of sharp-edge biological elements such as stingers, teeth, claws and more. PMID:24866935
Computational Design of Materials: Planetary Entry to Electric Aircraft and Beyond
NASA Technical Reports Server (NTRS)
Thompson, Alexander; Lawson, John W.
2014-01-01
NASA's projects and missions push the bounds of what is possible. To support the agency's work, materials development must stay on the cutting edge in order to keep pace. Today, researchers at NASA Ames Research Center perform multiscale modeling to aid the development of new materials and provide insight into existing ones. Multiscale modeling enables researchers to determine micro- and macroscale properties by connecting computational methods ranging from the atomic level (density functional theory, molecular dynamics) to the macroscale (finite element method). The output of one level is passed on as input to the next level, creating a powerful predictive model.
A real-time multi-scale 2D Gaussian filter based on FPGA
NASA Astrophysics Data System (ADS)
Luo, Haibo; Gai, Xingqin; Chang, Zheng; Hui, Bin
2014-11-01
Multi-scale 2-D Gaussian filter has been widely used in feature extraction (e.g. SIFT, edge etc.), image segmentation, image enhancement, image noise removing, multi-scale shape description etc. However, their computational complexity remains an issue for real-time image processing systems. Aimed at this problem, we propose a framework of multi-scale 2-D Gaussian filter based on FPGA in this paper. Firstly, a full-hardware architecture based on parallel pipeline was designed to achieve high throughput rate. Secondly, in order to save some multiplier, the 2-D convolution is separated into two 1-D convolutions. Thirdly, a dedicate first in first out memory named as CAFIFO (Column Addressing FIFO) was designed to avoid the error propagating induced by spark on clock. Finally, a shared memory framework was designed to reduce memory costs. As a demonstration, we realized a 3 scales 2-D Gaussian filter on a single ALTERA Cyclone III FPGA chip. Experimental results show that, the proposed framework can computing a Multi-scales 2-D Gaussian filtering within one pixel clock period, is further suitable for real-time image processing. Moreover, the main principle can be popularized to the other operators based on convolution, such as Gabor filter, Sobel operator and so on.
Edge enhancement and noise suppression for infrared image based on feature analysis
NASA Astrophysics Data System (ADS)
Jiang, Meng
2018-06-01
Infrared images are often suffering from background noise, blurred edges, few details and low signal-to-noise ratios. To improve infrared image quality, it is essential to suppress noise and enhance edges simultaneously. To realize it in this paper, we propose a novel algorithm based on feature analysis in shearlet domain. Firstly, as one of multi-scale geometric analysis (MGA), we introduce the theory and superiority of shearlet transform. Secondly, after analyzing the defects of traditional thresholding technique to suppress noise, we propose a novel feature extraction distinguishing image structures from noise well and use it to improve the traditional thresholding technique. Thirdly, with computing the correlations between neighboring shearlet coefficients, the feature attribute maps identifying the weak detail and strong edges are completed to improve the generalized unsharped masking (GUM). At last, experiment results with infrared images captured in different scenes demonstrate that the proposed algorithm suppresses noise efficiently and enhances image edges adaptively.
A Multi-Scale Algorithm for Graffito Advertisement Detection from Images of Real Estate
NASA Astrophysics Data System (ADS)
Yang, Jun; Zhu, Shi-Jiao
There is a significant need to detect and extract the graffito advertisement embedded in the housing images automatically. However, it is a hard job to separate the advertisement region well since housing images generally have complex background. In this paper, a detecting algorithm which uses multi-scale Gabor filters to identify graffito regions is proposed. Firstly, multi-scale Gabor filters with different directions are applied to housing images, then the approach uses these frequency data to find likely graffito regions using the relationship of different channels, it exploits the ability of different filters technique to solve the detection problem with low computational efforts. Lastly, the method is tested on several real estate images which are embedded graffito advertisement to verify its robustness and efficiency. The experiments demonstrate graffito regions can be detected quite well.
Jaiswal, Astha; Godinez, William J; Eils, Roland; Lehmann, Maik Jorg; Rohr, Karl
2015-11-01
Automatic fluorescent particle tracking is an essential task to study the dynamics of a large number of biological structures at a sub-cellular level. We have developed a probabilistic particle tracking approach based on multi-scale detection and two-step multi-frame association. The multi-scale detection scheme allows coping with particles in close proximity. For finding associations, we have developed a two-step multi-frame algorithm, which is based on a temporally semiglobal formulation as well as spatially local and global optimization. In the first step, reliable associations are determined for each particle individually in local neighborhoods. In the second step, the global spatial information over multiple frames is exploited jointly to determine optimal associations. The multi-scale detection scheme and the multi-frame association finding algorithm have been combined with a probabilistic tracking approach based on the Kalman filter. We have successfully applied our probabilistic tracking approach to synthetic as well as real microscopy image sequences of virus particles and quantified the performance. We found that the proposed approach outperforms previous approaches.
EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis
NASA Astrophysics Data System (ADS)
Žvokelj, Matej; Zupan, Samo; Prebil, Ivan
2016-05-01
A novel multivariate and multiscale statistical process monitoring method is proposed with the aim of detecting incipient failures in large slewing bearings, where subjective influence plays a minor role. The proposed method integrates the strengths of the Independent Component Analysis (ICA) multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD), which adaptively decomposes signals into different time scales and can thus cope with multiscale system dynamics. The method, which was named EEMD-based multiscale ICA (EEMD-MSICA), not only enables bearing fault detection but also offers a mechanism of multivariate signal denoising and, in combination with the Envelope Analysis (EA), a diagnostic tool. The multiscale nature of the proposed approach makes the method convenient to cope with data which emanate from bearings in complex real-world rotating machinery and frequently represent the cumulative effect of many underlying phenomena occupying different regions in the time-frequency plane. The efficiency of the proposed method was tested on simulated as well as real vibration and Acoustic Emission (AE) signals obtained through conducting an accelerated run-to-failure lifetime experiment on a purpose-built laboratory slewing bearing test stand. The ability to detect and locate the early-stage rolling-sliding contact fatigue failure of the bearing indicates that AE and vibration signals carry sufficient information on the bearing condition and that the developed EEMD-MSICA method is able to effectively extract it, thereby representing a reliable bearing fault detection and diagnosis strategy.
Athavale, Prashant; Xu, Robert; Radau, Perry; Nachman, Adrian; Wright, Graham A
2015-07-01
Images consist of structures of varying scales: large scale structures such as flat regions, and small scale structures such as noise, textures, and rapidly oscillatory patterns. In the hierarchical (BV, L(2)) image decomposition, Tadmor, et al. (2004) start with extracting coarse scale structures from a given image, and successively extract finer structures from the residuals in each step of the iterative decomposition. We propose to begin instead by extracting the finest structures from the given image and then proceed to extract increasingly coarser structures. In most images, noise could be considered as a fine scale structure. Thus, starting the image decomposition with finer scales, rather than large scales, leads to fast denoising. We note that our approach turns out to be equivalent to the nonstationary regularization in Scherzer and Weickert (2000). The continuous limit of this procedure leads to a time-scaled version of total variation flow. Motivated by specific clinical applications, we introduce an image depending weight in the regularization functional, and study the corresponding weighted TV flow. We show that the edge-preserving property of the multiscale representation of an input image obtained with the weighted TV flow can be enhanced and localized by appropriate choice of the weight. We use this in developing an efficient and edge-preserving denoising algorithm with control on speed and localization properties. We examine analytical properties of the weighted TV flow that give precise information about the denoising speed and the rate of change of energy of the images. An additional contribution of the paper is to use the images obtained at different scales for robust multiscale registration. We show that the inherently multiscale nature of the weighted TV flow improved performance for registration of noisy cardiac MRI images, compared to other methods such as bilateral or Gaussian filtering. A clinical application of the multiscale registration algorithm is also demonstrated for aligning viability assessment magnetic resonance (MR) images from 8 patients with previous myocardial infarctions. Copyright © 2015. Published by Elsevier B.V.
Fast hierarchical knowledge-based approach for human face detection in color images
NASA Astrophysics Data System (ADS)
Jiang, Jun; Gong, Jie; Zhang, Guilin; Hu, Ruolan
2001-09-01
This paper presents a fast hierarchical knowledge-based approach for automatically detecting multi-scale upright faces in still color images. The approach consists of three levels. At the highest level, skin-like regions are determinated by skin model, which is based on the color attributes hue and saturation in HSV color space, as well color attributes red and green in normalized color space. In level 2, a new eye model is devised to select human face candidates in segmented skin-like regions. An important feature of the eye model is that it is independent of the scale of human face. So it is possible for finding human faces in different scale with scanning image only once, and it leads to reduction the computation time of face detection greatly. In level 3, a human face mosaic image model, which is consistent with physical structure features of human face well, is applied to judge whether there are face detects in human face candidate regions. This model includes edge and gray rules. Experiment results show that the approach has high robustness and fast speed. It has wide application perspective at human-computer interactions and visual telephone etc.
Multi-scale analytical investigation of fly ash in concrete
NASA Astrophysics Data System (ADS)
Aboustait, Mohammed B.
Much research has been conducted to find an acceptable concrete ingredient that would act as cement replacement. One promising material is fly ash. Fly ash is a by-product from coal-fired power plants. Throughout this document work on the characterization of fly ash structure and composition will be explored. This effort was conducted through a mixture of cutting edge multi-scale analytical X-ray based techniques that use both bulk experimentation and nano/micro analytical techniques. Furtherly, this examination was coupled by performing Physical/Mechanical ASTM based testing on fly ash-enrolled-concrete to examine the effects of fly ash introduction. The most exotic of the cutting edge characterization techniques endorsed in this work uses the Nano-Computed Tomography and the Nano X-ray Fluorescence at Argonne National Laboratory to investigate single fly ash particles. Additional Work on individual fly ash particles was completed by laboratory-based Micro-Computed Tomography and Scanning Electron Microscopy. By combining the results of individual particles and bulk property tests, a compiled perspective is introduced, and accessed to try and make new insights into the reactivity of fly ash within concrete.
NASA Astrophysics Data System (ADS)
Lao, Zhiqiang; Zheng, Xin
2011-03-01
This paper proposes a multiscale method to quantify tissue spiculation and distortion in mammography CAD systems that aims at improving the sensitivity in detecting architectural distortion and spiculated mass. This approach addresses the difficulty of predetermining the neighborhood size for feature extraction in characterizing lesions demonstrating spiculated mass/architectural distortion that may appear in different sizes. The quantification is based on the recognition of tissue spiculation and distortion pattern using multiscale first-order phase portrait model in texture orientation field generated by Gabor filter bank. A feature map is generated based on the multiscale quantification for each mammogram and two features are then extracted from the feature map. These two features will be combined with other mass features to provide enhanced discriminate ability in detecting lesions demonstrating spiculated mass and architectural distortion. The efficiency and efficacy of the proposed method are demonstrated with results obtained by applying the method to over 500 cancer cases and over 1000 normal cases.
Data fusion of multi-scale representations for structural damage detection
NASA Astrophysics Data System (ADS)
Guo, Tian; Xu, Zili
2018-01-01
Despite extensive researches into structural health monitoring (SHM) in the past decades, there are few methods that can detect multiple slight damage in noisy environments. Here, we introduce a new hybrid method that utilizes multi-scale space theory and data fusion approach for multiple damage detection in beams and plates. A cascade filtering approach provides multi-scale space for noisy mode shapes and filters the fluctuations caused by measurement noise. In multi-scale space, a series of amplification and data fusion algorithms are utilized to search the damage features across all possible scales. We verify the effectiveness of the method by numerical simulation using damaged beams and plates with various types of boundary conditions. Monte Carlo simulations are conducted to illustrate the effectiveness and noise immunity of the proposed method. The applicability is further validated via laboratory cases studies focusing on different damage scenarios. Both results demonstrate that the proposed method has a superior noise tolerant ability, as well as damage sensitivity, without knowing material properties or boundary conditions.
Christodoulidis, Argyrios; Hurtut, Thomas; Tahar, Houssem Ben; Cheriet, Farida
2016-09-01
Segmenting the retinal vessels from fundus images is a prerequisite for many CAD systems for the automatic detection of diabetic retinopathy lesions. So far, research efforts have concentrated mainly on the accurate localization of the large to medium diameter vessels. However, failure to detect the smallest vessels at the segmentation step can lead to false positive lesion detection counts in a subsequent lesion analysis stage. In this study, a new hybrid method for the segmentation of the smallest vessels is proposed. Line detection and perceptual organization techniques are combined in a multi-scale scheme. Small vessels are reconstructed from the perceptual-based approach via tracking and pixel painting. The segmentation was validated in a high resolution fundus image database including healthy and diabetic subjects using pixel-based as well as perceptual-based measures. The proposed method achieves 85.06% sensitivity rate, while the original multi-scale line detection method achieves 81.06% sensitivity rate for the corresponding images (p<0.05). The improvement in the sensitivity rate for the database is 6.47% when only the smallest vessels are considered (p<0.05). For the perceptual-based measure, the proposed method improves the detection of the vasculature by 7.8% against the original multi-scale line detection method (p<0.05). Copyright © 2016 Elsevier Ltd. All rights reserved.
Pedestal and edge electrostatic turbulence characteristics from an XGC1 gyrokinetic simulation
Churchill, R. M.; Chang, C. S.; Ku, S.; ...
2017-08-30
Understanding the multi-scale neoclassical and turbulence physics in the edge region (pedestal + scrape-off layer (SOL)) is required in order to reliably predict performance in future fusion devices. We explore turbulent characteristics in the edge region from a multi-scale neoclassical and turbulent XGC1 gyrokinetic simulation in a DIII-D like tokamak geometry, here excluding neutrals and collisions. For an H-mode type plasma with steep pedestal, it is found that the electron density fluctuations increase towards the separatrix, and stay high well into the SOL, reaching a maximum value ofmore » $$\\delta {n}_{e}/{\\bar{n}}_{e}\\sim 0.18$$. Blobs are observed, born around the magnetic separatrix surface and propagate radially outward with velocities generally less than 1 km s –1. Strong poloidal motion of the blobs is also present, near 20 km s –1, consistent with E × B rotation. The electron density fluctuations show a negative skewness in the closed field-line pedestal region, consistent with the presence of 'holes', followed by a transition to strong positive skewness across the separatrix and into the SOL. These simulations indicate that not only neoclassical phenomena, but also turbulence, including the blob-generation mechanism, can remain important in the steep H-mode pedestal and SOL. Lastly, qualitative comparisons will be made to experimental observations.« less
Martínez, Fabio; Romero, Eduardo; Dréan, Gaël; Simon, Antoine; Haigron, Pascal; De Crevoisier, Renaud; Acosta, Oscar
2014-01-01
Accurate segmentation of the prostate and organs at risk in computed tomography (CT) images is a crucial step for radiotherapy (RT) planning. Manual segmentation, as performed nowadays, is a time consuming process and prone to errors due to the a high intra- and inter-expert variability. This paper introduces a new automatic method for prostate, rectum and bladder segmentation in planning CT using a geometrical shape model under a Bayesian framework. A set of prior organ shapes are first built by applying Principal Component Analysis (PCA) to a population of manually delineated CT images. Then, for a given individual, the most similar shape is obtained by mapping a set of multi-scale edge observations to the space of organs with a customized likelihood function. Finally, the selected shape is locally deformed to adjust the edges of each organ. Experiments were performed with real data from a population of 116 patients treated for prostate cancer. The data set was split in training and test groups, with 30 and 86 patients, respectively. Results show that the method produces competitive segmentations w.r.t standard methods (Averaged Dice = 0.91 for prostate, 0.94 for bladder, 0.89 for Rectum) and outperforms the majority-vote multi-atlas approaches (using rigid registration, free-form deformation (FFD) and the demons algorithm) PMID:24594798
Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures.
Costa, Madalena D; Peng, Chung-Kang; Goldberger, Ary L
2008-06-01
Cardiovascular signals are largely analyzed using traditional time and frequency domain measures. However, such measures fail to account for important properties related to multiscale organization and non-equilibrium dynamics. The complementary role of conventional signal analysis methods and emerging multiscale techniques, is, therefore, an important frontier area of investigation. The key finding of this presentation is that two recently developed multiscale computational tools--multiscale entropy and multiscale time irreversibility--are able to extract information from cardiac interbeat interval time series not contained in traditional methods based on mean, variance or Fourier spectrum (two-point correlation) techniques. These new methods, with careful attention to their limitations, may be useful in diagnostics, risk stratification and detection of toxicity of cardiac drugs.
Multiscale Analysis of Heart Rate Dynamics: Entropy and Time Irreversibility Measures
Peng, Chung-Kang; Goldberger, Ary L.
2016-01-01
Cardiovascular signals are largely analyzed using traditional time and frequency domain measures. However, such measures fail to account for important properties related to multiscale organization and nonequilibrium dynamics. The complementary role of conventional signal analysis methods and emerging multiscale techniques, is, therefore, an important frontier area of investigation. The key finding of this presentation is that two recently developed multiscale computational tools— multiscale entropy and multiscale time irreversibility—are able to extract information from cardiac interbeat interval time series not contained in traditional methods based on mean, variance or Fourier spectrum (two-point correlation) techniques. These new methods, with careful attention to their limitations, may be useful in diagnostics, risk stratification and detection of toxicity of cardiac drugs. PMID:18172763
Cloud Detection by Fusing Multi-Scale Convolutional Features
NASA Astrophysics Data System (ADS)
Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang
2018-04-01
Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.
Multi-Scale Scattering Transform in Music Similarity Measuring
NASA Astrophysics Data System (ADS)
Wang, Ruobai
Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.
NASA Astrophysics Data System (ADS)
Luo, Aiwen; An, Fengwei; Zhang, Xiangyu; Chen, Lei; Huang, Zunkai; Jürgen Mattausch, Hans
2018-04-01
Feature extraction techniques are a cornerstone of object detection in computer-vision-based applications. The detection performance of vison-based detection systems is often degraded by, e.g., changes in the illumination intensity of the light source, foreground-background contrast variations or automatic gain control from the camera. In order to avoid such degradation effects, we present a block-based L1-norm-circuit architecture which is configurable for different image-cell sizes, cell-based feature descriptors and image resolutions according to customization parameters from the circuit input. The incorporated flexibility in both the image resolution and the cell size for multi-scale image pyramids leads to lower computational complexity and power consumption. Additionally, an object-detection prototype for performance evaluation in 65 nm CMOS implements the proposed L1-norm circuit together with a histogram of oriented gradients (HOG) descriptor and a support vector machine (SVM) classifier. The proposed parallel architecture with high hardware efficiency enables real-time processing, high detection robustness, small chip-core area as well as low power consumption for multi-scale object detection.
NASA Astrophysics Data System (ADS)
Liu, Q.; Jing, L.; Li, Y.; Tang, Y.; Li, H.; Lin, Q.
2016-04-01
For the purpose of forest management, high resolution LIDAR and optical remote sensing imageries are used for treetop detection, tree crown delineation, and classification. The purpose of this study is to develop a self-adjusted dominant scales calculation method and a new crown horizontal cutting method of tree canopy height model (CHM) to detect and delineate tree crowns from LIDAR, under the hypothesis that a treetop is radiometric or altitudinal maximum and tree crowns consist of multi-scale branches. The major concept of the method is to develop an automatic selecting strategy of feature scale on CHM, and a multi-scale morphological reconstruction-open crown decomposition (MRCD) to get morphological multi-scale features of CHM by: cutting CHM from treetop to the ground; analysing and refining the dominant multiple scales with differential horizontal profiles to get treetops; segmenting LiDAR CHM using watershed a segmentation approach marked with MRCD treetops. This method has solved the problems of false detection of CHM side-surface extracted by the traditional morphological opening canopy segment (MOCS) method. The novel MRCD delineates more accurate and quantitative multi-scale features of CHM, and enables more accurate detection and segmentation of treetops and crown. Besides, the MRCD method can also be extended to high optical remote sensing tree crown extraction. In an experiment on aerial LiDAR CHM of a forest of multi-scale tree crowns, the proposed method yielded high-quality tree crown maps.
Multispectral Image Enhancement Through Adaptive Wavelet Fusion
2016-09-14
13. SUPPLEMENTARY NOTES 14. ABSTRACT This research developed a multiresolution image fusion scheme based on guided filtering . Guided filtering can...effectively reduce noise while preserving detail boundaries. When applied in an iterative mode, guided filtering selectively eliminates small scale...details while restoring larger scale edges. The proposed multi-scale image fusion scheme achieves spatial consistency by using guided filtering both at
An Optimal Partial Differential Equations-based Stopping Criterion for Medical Image Denoising.
Khanian, Maryam; Feizi, Awat; Davari, Ali
2014-01-01
Improving the quality of medical images at pre- and post-surgery operations are necessary for beginning and speeding up the recovery process. Partial differential equations-based models have become a powerful and well-known tool in different areas of image processing such as denoising, multiscale image analysis, edge detection and other fields of image processing and computer vision. In this paper, an algorithm for medical image denoising using anisotropic diffusion filter with a convenient stopping criterion is presented. In this regard, the current paper introduces two strategies: utilizing the efficient explicit method due to its advantages with presenting impressive software technique to effectively solve the anisotropic diffusion filter which is mathematically unstable, proposing an automatic stopping criterion, that takes into consideration just input image, as opposed to other stopping criteria, besides the quality of denoised image, easiness and time. Various medical images are examined to confirm the claim.
Research on fusion algorithm of polarization image in tetrolet domain
NASA Astrophysics Data System (ADS)
Zhang, Dexiang; Yuan, BaoHong; Zhang, Jingjing
2015-12-01
Tetrolets are Haar-type wavelets whose supports are tetrominoes which are shapes made by connecting four equal-sized squares. A fusion method for polarization images based on tetrolet transform is proposed. Firstly, the magnitude of polarization image and angle of polarization image can be decomposed into low-frequency coefficients and high-frequency coefficients with multi-scales and multi-directions using tetrolet transform. For the low-frequency coefficients, the average fusion method is used. According to edge distribution differences in high frequency sub-band images, for the directional high-frequency coefficients are used to select the better coefficients by region spectrum entropy algorithm for fusion. At last the fused image can be obtained by utilizing inverse transform for fused tetrolet coefficients. Experimental results show that the proposed method can detect image features more effectively and the fused image has better subjective visual effect
A multiscale decomposition approach to detect abnormal vasculature in the optic disc.
Agurto, Carla; Yu, Honggang; Murray, Victor; Pattichis, Marios S; Nemeth, Sheila; Barriga, Simon; Soliz, Peter
2015-07-01
This paper presents a multiscale method to detect neovascularization in the optic disc (NVD) using fundus images. Our method is applied to a manually selected region of interest (ROI) containing the optic disc. All the vessels in the ROI are segmented by adaptively combining contrast enhancement methods with a vessel segmentation technique. Textural features extracted using multiscale amplitude-modulation frequency-modulation, morphological granulometry, and fractal dimension are used. A linear SVM is used to perform the classification, which is tested by means of 10-fold cross-validation. The performance is evaluated using 300 images achieving an AUC of 0.93 with maximum accuracy of 88%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Leempoel, Kevin; Parisod, Christian; Geiser, Céline; Joost, Stéphane
2018-02-01
Plant species are known to adapt locally to their environment, particularly in mountainous areas where conditions can vary drastically over short distances. The climate of such landscapes being largely influenced by topography, using fine-scale models to evaluate environmental heterogeneity may help detecting adaptation to micro-habitats. Here, we applied a multiscale landscape genomic approach to detect evidence of local adaptation in the alpine plant Biscutella laevigata . The two gene pools identified, experiencing limited gene flow along a 1-km ridge, were different in regard to several habitat features derived from a very high resolution (VHR) digital elevation model (DEM). A correlative approach detected signatures of selection along environmental gradients such as altitude, wind exposure, and solar radiation, indicating adaptive pressures likely driven by fine-scale topography. Using a large panel of DEM-derived variables as ecologically relevant proxies, our results highlighted the critical role of spatial resolution. These high-resolution multiscale variables indeed indicate that the robustness of associations between genetic loci and environmental features depends on spatial parameters that are poorly documented. We argue that the scale issue is critical in landscape genomics and that multiscale ecological variables are key to improve our understanding of local adaptation in highly heterogeneous landscapes.
Infrared small target detection based on multiscale center-surround contrast measure
NASA Astrophysics Data System (ADS)
Fu, Hao; Long, Yunli; Zhu, Ran; An, Wei
2018-04-01
Infrared(IR) small target detection plays a critical role in the Infrared Search And Track (IRST) system. Although it has been studied for years, there are some difficulties remained to the clutter environment. According to the principle of human discrimination of small targets from a natural scene that there is a signature of discontinuity between the object and its neighboring regions, we develop an efficient method for infrared small target detection called multiscale centersurround contrast measure (MCSCM). First, to determine the maximum neighboring window size, an entropy-based window selection technique is used. Then, we construct a novel multiscale center-surround contrast measure to calculate the saliency map. Compared with the original image, the MCSCM map has less background clutters and noise residual. Subsequently, a simple threshold is used to segment the target. Experimental results show our method achieves better performance.
NASA Astrophysics Data System (ADS)
Deng, Feiyue; Yang, Shaopu; Tang, Guiji; Hao, Rujiang; Zhang, Mingliang
2017-04-01
Wheel bearings are essential mechanical components of trains, and fault detection of the wheel bearing is of great significant to avoid economic loss and casualty effectively. However, considering the operating conditions, detection and extraction of the fault features hidden in the heavy noise of the vibration signal have become a challenging task. Therefore, a novel method called adaptive multi-scale AVG-Hat morphology filter (MF) is proposed to solve it. The morphology AVG-Hat operator not only can suppress the interference of the strong background noise greatly, but also enhance the ability of extracting fault features. The improved envelope spectrum sparsity (IESS), as a new evaluation index, is proposed to select the optimal filtering signal processed by the multi-scale AVG-Hat MF. It can present a comprehensive evaluation about the intensity of fault impulse to the background noise. The weighted coefficients of the different scale structural elements (SEs) in the multi-scale MF are adaptively determined by the particle swarm optimization (PSO) algorithm. The effectiveness of the method is validated by analyzing the real wheel bearing fault vibration signal (e.g. outer race fault, inner race fault and rolling element fault). The results show that the proposed method could improve the performance in the extraction of fault features effectively compared with the multi-scale combined morphological filter (CMF) and multi-scale morphology gradient filter (MGF) methods.
Hi-fidelity multi-scale local processing for visually optimized far-infrared Herschel images
NASA Astrophysics Data System (ADS)
Li Causi, G.; Schisano, E.; Liu, S. J.; Molinari, S.; Di Giorgio, A.
2016-07-01
In the context of the "Hi-Gal" multi-band full-plane mapping program for the Galactic Plane, as imaged by the Herschel far-infrared satellite, we have developed a semi-automatic tool which produces high definition, high quality color maps optimized for visual perception of extended features, like bubbles and filaments, against the high background variations. We project the map tiles of three selected bands onto a 3-channel panorama, which spans the central 130 degrees of galactic longitude times 2.8 degrees of galactic latitude, at the pixel scale of 3.2", in cartesian galactic coordinates. Then we process this image piecewise, applying a custom multi-scale local stretching algorithm, enforced by a local multi-scale color balance. Finally, we apply an edge-preserving contrast enhancement to perform an artifact-free details sharpening. Thanks to this tool, we have thus produced a stunning giga-pixel color image of the far-infrared Galactic Plane that we made publicly available with the recent release of the Hi-Gal mosaics and compact source catalog.
Multiscale simulations of the early stages of the growth of graphene on copper
NASA Astrophysics Data System (ADS)
Gaillard, P.; Chanier, T.; Henrard, L.; Moskovkin, P.; Lucas, S.
2015-07-01
We have performed multiscale simulations of the growth of graphene on defect-free copper (111) in order to model the nucleation and growth of graphene flakes during chemical vapour deposition and potentially guide future experimental work. Basic activation energies for atomic surface diffusion were determined by ab initio calculations. Larger scale growth was obtained within a kinetic Monte Carlo approach (KMC) with parameters based on the ab initio results. The KMC approach counts the first and second neighbours to determine the probability of surface diffusion. We report qualitative results on the size and shape of the graphene islands as a function of deposition flux. The dominance of graphene zigzag edges for low deposition flux, also observed experimentally, is explained by its larger dynamical stability that the present model fully reproduced.
NASA Astrophysics Data System (ADS)
Horowitz, F. G.; Gaede, O.
2014-12-01
Wavelet multiscale edge analysis of potential fields (a.k.a. "worms") has been known since Moreau et al. (1997) and was independently derived by Hornby et al. (1999). The technique is useful for producing a scale-explicit overview of the structures beneath a gravity or magnetic survey, including establishing the location and estimating the attitude of surface features, as well as incorporating information about the geometric class (point, line, surface, volume, fractal) of the underlying sources — in a fashion much like traditional structural indices from Euler solutions albeit with better areal coverage. Hornby et al. (2002) show that worms form the locally highest concentration of horizontal edges of a given strike — which in conjunction with the results from Mallat and Zhong (1992) induces a (non-unique!) inversion where the worms are physically interpretable as lateral boundaries in a source distribution that produces a close approximation of the observed potential field. The technique has enjoyed widespread adoption and success in the Australian mineral exploration community — including "ground truth" via successfully drilling structures indicated by the worms. Unfortunately, to our knowledge, all implementations of the code to calculate the worms/multiscale edges (including Horowitz' original research code) are either part of commercial software packages, or have copyright restrictions that impede the use of the technique by the wider community. The technique is completely described mathematically in Hornby et al. (1999) along with some later publications. This enables us to re-implement from scratch the code required to calculate and visualize the worms. We are freely releasing the results under an (open source) BSD two-clause software license. A git repository is available at
van Velsen, Evert F S; Niessen, Wiro J; de Weert, Thomas T; de Monyé, Cécile; van der Lugt, Aad; Meijering, Erik; Stokking, Rik
2007-07-01
Vessel image analysis is crucial when considering therapeutical options for (cardio-) vascular diseases. Our method, VAMPIRE (Vascular Analysis using Multiscale Paths Inferred from Ridges and Edges), involves two parts: a user defines a start- and endpoint upon which a lumen path is automatically defined, and which is used for initialization; the automatic segmentation of the vessel lumen on computed tomographic angiography (CTA) images. Both parts are based on the detection of vessel-like structures by analyzing intensity, edge, and ridge information. A multi-observer evaluation study was performed to compare VAMPIRE with a conventional method on the CTA data of 15 patients with carotid artery stenosis. In addition to the start- and endpoint, the two radiologists required on average 2.5 (SD: 1.9) additional points to define a lumen path when using the conventional method, and 0.1 (SD: 0.3) when using VAMPIRE. The segmentation results were quantitatively evaluated using Similarity Indices, which were slightly lower between VAMPIRE and the two radiologists (respectively 0.90 and 0.88) compared with the Similarity Index between the radiologists (0.92). The evaluation shows that the improved definition of a lumen path requires minimal user interaction, and that using this path as initialization leads to good automatic lumen segmentation results.
Extraction of tidal channel networks from airborne scanning laser altimetry
NASA Astrophysics Data System (ADS)
Mason, David C.; Scott, Tania R.; Wang, Hai-Jing
Tidal channel networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. This paper describes a semi-automatic technique developed to extract networks from high-resolution LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low-level algorithms first extract channel fragments based mainly on image properties then a high-level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism. The algorithm may be extended to extract networks from aerial photographs as well as LiDAR data. Its performance is illustrated using LiDAR data of two study sites, the River Ems, Germany and the Venice Lagoon. For the River Ems data, the error of omission for the automatic channel extractor is 26%, partly because numerous small channels are lost because they fall below the edge threshold, though these are less than 10 cm deep and unlikely to be hydraulically significant. The error of commission is lower, at 11%. For the Venice Lagoon data, the error of omission is 14%, but the error of commission is 42%, due partly to the difficulty of interpreting channels in these natural scenes. As a benchmark, previous work has shown that this type of algorithm specifically designed for extracting tidal networks from LiDAR data is able to achieve substantially improved results compared with those obtained using standard algorithms for drainage network extraction from Digital Terrain Models.
The ship edge feature detection based on high and low threshold for remote sensing image
NASA Astrophysics Data System (ADS)
Li, Xuan; Li, Shengyang
2018-05-01
In this paper, a method based on high and low threshold is proposed to detect the ship edge feature due to the low accuracy rate caused by the noise. Analyze the relationship between human vision system and the target features, and to determine the ship target by detecting the edge feature. Firstly, using the second-order differential method to enhance the quality of image; Secondly, to improvement the edge operator, we introduction of high and low threshold contrast to enhancement image edge and non-edge points, and the edge as the foreground image, non-edge as a background image using image segmentation to achieve edge detection, and remove the false edges; Finally, the edge features are described based on the result of edge features detection, and determine the ship target. The experimental results show that the proposed method can effectively reduce the number of false edges in edge detection, and has the high accuracy of remote sensing ship edge detection.
Multiscale-Driven approach to detecting change in Synthetic Aperture Radar (SAR) imagery
NASA Astrophysics Data System (ADS)
Gens, R.; Hogenson, K.; Ajadi, O. A.; Meyer, F. J.; Myers, A.; Logan, T. A.; Arnoult, K., Jr.
2017-12-01
Detecting changes between Synthetic Aperture Radar (SAR) images can be a useful but challenging exercise. SAR with its all-weather capabilities can be an important resource in identifying and estimating the expanse of events such as flooding, river ice breakup, earthquake damage, oil spills, and forest growth, as it can overcome shortcomings of optical methods related to cloud cover. However, detecting change in SAR imagery can be impeded by many factors including speckle, complex scattering responses, low temporal sampling, and difficulty delineating boundaries. In this presentation we use a change detection method based on a multiscale-driven approach. By using information at different resolution levels, we attempt to obtain more accurate change detection maps in both heterogeneous and homogeneous regions. Integrated within the processing flow are processes that 1) improve classification performance by combining Expectation-Maximization algorithms with mathematical morphology, 2) achieve high accuracy in preserving boundaries using measurement level fusion techniques, and 3) combine modern non-local filtering and 2D-discrete stationary wavelet transform to provide robustness against noise. This multiscale-driven approach to change detection has recently been incorporated into the Alaska Satellite Facility (ASF) Hybrid Pluggable Processing Pipeline (HyP3) using radiometrically terrain corrected SAR images. Examples primarily from natural hazards are presented to illustrate the capabilities and limitations of the change detection method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchill, R. M.; Chang, C. S.; Ku, S.
Understanding the multi-scale neoclassical and turbulence physics in the edge region (pedestal + scrape-off layer (SOL)) is required in order to reliably predict performance in future fusion devices. We explore turbulent characteristics in the edge region from a multi-scale neoclassical and turbulent XGC1 gyrokinetic simulation in a DIII-D like tokamak geometry, here excluding neutrals and collisions. For an H-mode type plasma with steep pedestal, it is found that the electron density fluctuations increase towards the separatrix, and stay high well into the SOL, reaching a maximum value ofmore » $$\\delta {n}_{e}/{\\bar{n}}_{e}\\sim 0.18$$. Blobs are observed, born around the magnetic separatrix surface and propagate radially outward with velocities generally less than 1 km s –1. Strong poloidal motion of the blobs is also present, near 20 km s –1, consistent with E × B rotation. The electron density fluctuations show a negative skewness in the closed field-line pedestal region, consistent with the presence of 'holes', followed by a transition to strong positive skewness across the separatrix and into the SOL. These simulations indicate that not only neoclassical phenomena, but also turbulence, including the blob-generation mechanism, can remain important in the steep H-mode pedestal and SOL. Lastly, qualitative comparisons will be made to experimental observations.« less
Comparative Study of Speckle Filtering Methods in PolSAR Radar Images
NASA Astrophysics Data System (ADS)
Boutarfa, S.; Bouchemakh, L.; Smara, Y.
2015-04-01
Images acquired by polarimetric SAR (PolSAR) radar systems are characterized by the presence of a noise called speckle. This noise has a multiplicative nature, corrupts both the amplitude and phase images, which complicates data interpretation, degrades segmentation performance and reduces the detectability of targets. Hence, the need to preprocess the images by adapted filtering methods before analysis.In this paper, we present a comparative study of implemented methods for reducing speckle in PolSAR images. These developed filters are: refined Lee filter based on the estimation of the minimum mean square error MMSE, improved Sigma filter with detection of strong scatterers based on the calculation of the coherency matrix to detect the different scatterers in order to preserve the polarization signature and maintain structures that are necessary for image interpretation, filtering by stationary wavelet transform SWT using multi-scale edge detection and the technique for improving the wavelet coefficients called SSC (sum of squared coefficients), and Turbo filter which is a combination between two complementary filters the refined Lee filter and the wavelet transform SWT. One filter can boost up the results of the other.The originality of our work is based on the application of these methods to several types of images: amplitude, intensity and complex, from a satellite or an airborne radar, and on the optimization of wavelet filtering by adding a parameter in the calculation of the threshold. This parameter will control the filtering effect and get a good compromise between smoothing homogeneous areas and preserving linear structures.The methods are applied to the fully polarimetric RADARSAT-2 images (HH, HV, VH, VV) acquired on Algiers, Algeria, in C-band and to the three polarimetric E-SAR images (HH, HV, VV) acquired on Oberpfaffenhofen area located in Munich, Germany, in P-band.To evaluate the performance of each filter, we used the following criteria: smoothing homogeneous areas, preserving edges and polarimetric information.Experimental results are included to illustrate the different implemented methods.
Optimizing Robinson Operator with Ant Colony Optimization As a Digital Image Edge Detection Method
NASA Astrophysics Data System (ADS)
Yanti Nasution, Tarida; Zarlis, Muhammad; K. M Nasution, Mahyuddin
2017-12-01
Edge detection serves to identify the boundaries of an object against a background of mutual overlap. One of the classic method for edge detection is operator Robinson. Operator Robinson produces a thin, not assertive and grey line edge. To overcome these deficiencies, the proposed improvements to edge detection method with the approach graph with Ant Colony Optimization algorithm. The repairs may be performed are thicken the edge and connect the edges cut off. Edge detection research aims to do optimization of operator Robinson with Ant Colony Optimization then compare the output and generated the inferred extent of Ant Colony Optimization can improve result of edge detection that has not been optimized and improve the accuracy of the results of Robinson edge detection. The parameters used in performance measurement of edge detection are morphology of the resulting edge line, MSE and PSNR. The result showed that Robinson and Ant Colony Optimization method produces images with a more assertive and thick edge. Ant Colony Optimization method is able to be used as a method for optimizing operator Robinson by improving the image result of Robinson detection average 16.77 % than classic Robinson result.
NASA Astrophysics Data System (ADS)
Casadei, F.; Ruzzene, M.
2011-04-01
This work illustrates the possibility to extend the field of application of the Multi-Scale Finite Element Method (MsFEM) to structural mechanics problems that involve localized geometrical discontinuities like cracks or notches. The main idea is to construct finite elements with an arbitrary number of edge nodes that describe the actual geometry of the damage with shape functions that are defined as local solutions of the differential operator of the specific problem according to the MsFEM approach. The small scale information are then brought to the large scale model through the coupling of the global system matrices that are assembled using classical finite element procedures. The efficiency of the method is demonstrated through selected numerical examples that constitute classical problems of great interest to the structural health monitoring community.
Edge detection and localization with edge pattern analysis and inflection characterization
NASA Astrophysics Data System (ADS)
Jiang, Bo
2012-05-01
In general edges are considered to be abrupt changes or discontinuities in two dimensional image signal intensity distributions. The accuracy of front-end edge detection methods in image processing impacts the eventual success of higher level pattern analysis downstream. To generalize edge detectors designed from a simple ideal step function model to real distortions in natural images, research on one dimensional edge pattern analysis to improve the accuracy of edge detection and localization proposes an edge detection algorithm, which is composed by three basic edge patterns, such as ramp, impulse, and step. After mathematical analysis, general rules for edge representation based upon the classification of edge types into three categories-ramp, impulse, and step (RIS) are developed to reduce detection and localization errors, especially reducing "double edge" effect that is one important drawback to the derivative method. But, when applying one dimensional edge pattern in two dimensional image processing, a new issue is naturally raised that the edge detector should correct marking inflections or junctions of edges. Research on human visual perception of objects and information theory pointed out that a pattern lexicon of "inflection micro-patterns" has larger information than a straight line. Also, research on scene perception gave an idea that contours have larger information are more important factor to determine the success of scene categorization. Therefore, inflections or junctions are extremely useful features, whose accurate description and reconstruction are significant in solving correspondence problems in computer vision. Therefore, aside from adoption of edge pattern analysis, inflection or junction characterization is also utilized to extend traditional derivative edge detection algorithm. Experiments were conducted to test my propositions about edge detection and localization accuracy improvements. The results support the idea that these edge detection method improvements are effective in enhancing the accuracy of edge detection and localization.
An Unified Multiscale Framework for Planar, Surface, and Curve Skeletonization.
Jalba, Andrei C; Sobiecki, Andre; Telea, Alexandru C
2016-01-01
Computing skeletons of 2D shapes, and medial surface and curve skeletons of 3D shapes, is a challenging task. In particular, there is no unified framework that detects all types of skeletons using a single model, and also produces a multiscale representation which allows to progressively simplify, or regularize, all skeleton types. In this paper, we present such a framework. We model skeleton detection and regularization by a conservative mass transport process from a shape's boundary to its surface skeleton, next to its curve skeleton, and finally to the shape center. The resulting density field can be thresholded to obtain a multiscale representation of progressively simplified surface, or curve, skeletons. We detail a numerical implementation of our framework which is demonstrably stable and has high computational efficiency. We demonstrate our framework on several complex 2D and 3D shapes.
Multiscale modeling of mucosal immune responses
2015-01-01
Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation. PMID:26329787
Multiscale modeling of mucosal immune responses.
Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep
2015-01-01
Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM.
Spatial-Spectral Approaches to Edge Detection in Hyperspectral Remote Sensing
NASA Astrophysics Data System (ADS)
Cox, Cary M.
This dissertation advances geoinformation science at the intersection of hyperspectral remote sensing and edge detection methods. A relatively new phenomenology among its remote sensing peers, hyperspectral imagery (HSI) comprises only about 7% of all remote sensing research - there are five times as many radar-focused peer reviewed journal articles than hyperspectral-focused peer reviewed journal articles. Similarly, edge detection studies comprise only about 8% of image processing research, most of which is dedicated to image processing techniques most closely associated with end results, such as image classification and feature extraction. Given the centrality of edge detection to mapping, that most important of geographic functions, improving the collective understanding of hyperspectral imagery edge detection methods constitutes a research objective aligned to the heart of geoinformation sciences. Consequently, this dissertation endeavors to narrow the HSI edge detection research gap by advancing three HSI edge detection methods designed to leverage HSI's unique chemical identification capabilities in pursuit of generating accurate, high-quality edge planes. The Di Zenzo-based gradient edge detection algorithm, an innovative version of the Resmini HySPADE edge detection algorithm and a level set-based edge detection algorithm are tested against 15 traditional and non-traditional HSI datasets spanning a range of HSI data configurations, spectral resolutions, spatial resolutions, bandpasses and applications. This study empirically measures algorithm performance against Dr. John Canny's six criteria for a good edge operator: false positives, false negatives, localization, single-point response, robustness to noise and unbroken edges. The end state is a suite of spatial-spectral edge detection algorithms that produce satisfactory edge results against a range of hyperspectral data types applicable to a diverse set of earth remote sensing applications. This work also explores the concept of an edge within hyperspectral space, the relative importance of spatial and spectral resolutions as they pertain to HSI edge detection and how effectively compressed HSI data improves edge detection results. The HSI edge detection experiments yielded valuable insights into the algorithms' strengths, weaknesses and optimal alignment to remote sensing applications. The gradient-based edge operator produced strong edge planes across a range of evaluation measures and applications, particularly with respect to false negatives, unbroken edges, urban mapping, vegetation mapping and oil spill mapping applications. False positives and uncompressed HSI data presented occasional challenges to the algorithm. The HySPADE edge operator produced satisfactory results with respect to localization, single-point response, oil spill mapping and trace chemical detection, and was challenged by false positives, declining spectral resolution and vegetation mapping applications. The level set edge detector produced high-quality edge planes for most tests and demonstrated strong performance with respect to false positives, single-point response, oil spill mapping and mineral mapping. False negatives were a regular challenge for the level set edge detection algorithm. Finally, HSI data optimized for spectral information compression and noise was shown to improve edge detection performance across all three algorithms, while the gradient-based algorithm and HySPADE demonstrated significant robustness to declining spectral and spatial resolutions.
Robust feature detection and local classification for surfaces based on moment analysis.
Clarenz, Ulrich; Rumpf, Martin; Telea, Alexandru
2004-01-01
The stable local classification of discrete surfaces with respect to features such as edges and corners or concave and convex regions, respectively, is as quite difficult as well as indispensable for many surface processing applications. Usually, the feature detection is done via a local curvature analysis. If concerned with large triangular and irregular grids, e.g., generated via a marching cube algorithm, the detectors are tedious to treat and a robust classification is hard to achieve. Here, a local classification method on surfaces is presented which avoids the evaluation of discretized curvature quantities. Moreover, it provides an indicator for smoothness of a given discrete surface and comes together with a built-in multiscale. The proposed classification tool is based on local zero and first moments on the discrete surface. The corresponding integral quantities are stable to compute and they give less noisy results compared to discrete curvature quantities. The stencil width for the integration of the moments turns out to be the scale parameter. Prospective surface processing applications are the segmentation on surfaces, surface comparison, and matching and surface modeling. Here, a method for feature preserving fairing of surfaces is discussed to underline the applicability of the presented approach.
Barba-J, Leiner; Escalante-Ramírez, Boris; Vallejo Venegas, Enrique; Arámbula Cosío, Fernando
2018-05-01
Analysis of cardiac images is a fundamental task to diagnose heart problems. Left ventricle (LV) is one of the most important heart structures used for cardiac evaluation. In this work, we propose a novel 3D hierarchical multiscale segmentation method based on a local active contour (AC) model and the Hermite transform (HT) for LV analysis in cardiac magnetic resonance (MR) and computed tomography (CT) volumes in short axis view. Features such as directional edges, texture, and intensities are analyzed using the multiscale HT space. A local AC model is configured using the HT coefficients and geometrical constraints. The endocardial and epicardial boundaries are used for evaluation. Segmentation of the endocardium is controlled using elliptical shape constraints. The final endocardial shape is used to define the geometrical constraints for segmentation of the epicardium. We follow the assumption that epicardial and endocardial shapes are similar in volumes with short axis view. An initialization scheme based on a fuzzy C-means algorithm and mathematical morphology was designed. The algorithm performance was evaluated using cardiac MR and CT volumes in short axis view demonstrating the feasibility of the proposed method.
Multiscale Morphology of Nanoporous Copper Made from Intermetallic Phases
Egle, Tobias; Barroo, Cédric; Janvelyan, Nare; ...
2017-07-11
Many application-relevant properties of nanoporous metals critically depend on their multiscale architecture. For example, the intrinsically high step-edge density of curved surfaces at the nanoscale provides highly reactive sites for catalysis, whereas the macroscale pore and grain morphology determines the macroscopic properties, such as mass transport, electrical conductivity, or mechanical properties. Here, in this work, we systematically study the effects of alloy composition and dealloying conditions on the multiscale morphology of nanoporous copper (np-Cu) made from various commercial Zn–Cu precursor alloys. Using a combination of X-ray diffraction, electron backscatter diffraction, and focused ion beam cross-sectional analysis, our results reveal thatmore » the macroscopic grain structure of the starting alloy surprisingly survives the dealloying process, despite a change in crystal structure from body-centered cubic (Zn–Cu starting alloy) to face-centered cubic (Cu). The nanoscale structure can be controlled by the acid used for dealloying with HCl leading to a larger and more faceted ligament morphology compared to that of H 3PO 4. Finally, anhydrous ethanol dehydrogenation was used as a probe reaction to test the effect of the nanoscale ligament morphology on the apparent activation energy of the reaction.« less
Multiscale Morphology of Nanoporous Copper Made from Intermetallic Phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egle, Tobias; Barroo, Cédric; Janvelyan, Nare
Many application-relevant properties of nanoporous metals critically depend on their multiscale architecture. For example, the intrinsically high step-edge density of curved surfaces at the nanoscale provides highly reactive sites for catalysis, whereas the macroscale pore and grain morphology determines the macroscopic properties, such as mass transport, electrical conductivity, or mechanical properties. Here, in this work, we systematically study the effects of alloy composition and dealloying conditions on the multiscale morphology of nanoporous copper (np-Cu) made from various commercial Zn–Cu precursor alloys. Using a combination of X-ray diffraction, electron backscatter diffraction, and focused ion beam cross-sectional analysis, our results reveal thatmore » the macroscopic grain structure of the starting alloy surprisingly survives the dealloying process, despite a change in crystal structure from body-centered cubic (Zn–Cu starting alloy) to face-centered cubic (Cu). The nanoscale structure can be controlled by the acid used for dealloying with HCl leading to a larger and more faceted ligament morphology compared to that of H 3PO 4. Finally, anhydrous ethanol dehydrogenation was used as a probe reaction to test the effect of the nanoscale ligament morphology on the apparent activation energy of the reaction.« less
Multiscale modelling for tokamak pedestals
NASA Astrophysics Data System (ADS)
Abel, I. G.
2018-04-01
Pedestal modelling is crucial to predict the performance of future fusion devices. Current modelling efforts suffer either from a lack of kinetic physics, or an excess of computational complexity. To ameliorate these problems, we take a first-principles multiscale approach to the pedestal. We will present three separate sets of equations, covering the dynamics of edge localised modes (ELMs), the inter-ELM pedestal and pedestal turbulence, respectively. Precisely how these equations should be coupled to each other is covered in detail. This framework is completely self-consistent; it is derived from first principles by means of an asymptotic expansion of the fundamental Vlasov-Landau-Maxwell system in appropriate small parameters. The derivation exploits the narrowness of the pedestal region, the smallness of the thermal gyroradius and the low plasma (the ratio of thermal to magnetic pressures) typical of current pedestal operation to achieve its simplifications. The relationship between this framework and gyrokinetics is analysed, and possibilities to directly match our systems of equations onto multiscale gyrokinetics are explored. A detailed comparison between our model and other models in the literature is performed. Finally, the potential for matching this framework onto an open-field-line region is briefly discussed.
NASA Astrophysics Data System (ADS)
Yang, Xue; Sun, Hao; Fu, Kun; Yang, Jirui; Sun, Xian; Yan, Menglong; Guo, Zhi
2018-01-01
Ship detection has been playing a significant role in the field of remote sensing for a long time but it is still full of challenges. The main limitations of traditional ship detection methods usually lie in the complexity of application scenarios, the difficulty of intensive object detection and the redundancy of detection region. In order to solve such problems above, we propose a framework called Rotation Dense Feature Pyramid Networks (R-DFPN) which can effectively detect ship in different scenes including ocean and port. Specifically, we put forward the Dense Feature Pyramid Network (DFPN), which is aimed at solving the problem resulted from the narrow width of the ship. Compared with previous multi-scale detectors such as Feature Pyramid Network (FPN), DFPN builds the high-level semantic feature-maps for all scales by means of dense connections, through which enhances the feature propagation and encourages the feature reuse. Additionally, in the case of ship rotation and dense arrangement, we design a rotation anchor strategy to predict the minimum circumscribed rectangle of the object so as to reduce the redundant detection region and improve the recall. Furthermore, we also propose multi-scale ROI Align for the purpose of maintaining the completeness of semantic and spatial information. Experiments based on remote sensing images from Google Earth for ship detection show that our detection method based on R-DFPN representation has a state-of-the-art performance.
A multiscale method for a robust detection of the default mode network
NASA Astrophysics Data System (ADS)
Baquero, Katherine; Gómez, Francisco; Cifuentes, Christian; Guldenmund, Pieter; Demertzi, Athena; Vanhaudenhuyse, Audrey; Gosseries, Olivia; Tshibanda, Jean-Flory; Noirhomme, Quentin; Laureys, Steven; Soddu, Andrea; Romero, Eduardo
2013-11-01
The Default Mode Network (DMN) is a resting state network widely used for the analysis and diagnosis of mental disorders. It is normally detected in fMRI data, but for its detection in data corrupted by motion artefacts or low neuronal activity, the use of a robust analysis method is mandatory. In fMRI it has been shown that the signal-to-noise ratio (SNR) and the detection sensitivity of neuronal regions is increased with di erent smoothing kernels sizes. Here we propose to use a multiscale decomposition based of a linear scale-space representation for the detection of the DMN. Three main points are proposed in this methodology: rst, the use of fMRI data at di erent smoothing scale-spaces, second, detection of independent neuronal components of the DMN at each scale by using standard preprocessing methods and ICA decomposition at scale-level, and nally, a weighted contribution of each scale by the Goodness of Fit measurement. This method was applied to a group of control subjects and was compared with a standard preprocesing baseline. The detection of the DMN was improved at single subject level and at group level. Based on these results, we suggest to use this methodology to enhance the detection of the DMN in data perturbed with artefacts or applied to subjects with low neuronal activity. Furthermore, the multiscale method could be extended for the detection of other resting state neuronal networks.
Hierarchical detection of red lesions in retinal images by multiscale correlation filtering
NASA Astrophysics Data System (ADS)
Zhang, Bob; Wu, Xiangqian; You, Jane; Li, Qin; Karray, Fakhri
2009-02-01
This paper presents an approach to the computer aided diagnosis (CAD) of diabetic retinopathy (DR) -- a common and severe complication of long-term diabetes which damages the retina and cause blindness. Since red lesions are regarded as the first signs of DR, there has been extensive research on effective detection and localization of these abnormalities in retinal images. In contrast to existing algorithms, a new approach based on Multiscale Correlation Filtering (MSCF) and dynamic thresholding is developed. This consists of two levels, Red Lesion Candidate Detection (coarse level) and True Red Lesion Detection (fine level). The approach was evaluated using data from Retinopathy On-line Challenge (ROC) competition website and we conclude our method to be effective and efficient.
Isolating contour information from arbitrary images
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.
1989-01-01
Aspects of natural vision (physiological and perceptual) serve as a basis for attempting the development of a general processing scheme for contour extraction. Contour information is assumed to be central to visual recognition skills. While the scheme must be regarded as highly preliminary, initial results do compare favorably with the visual perception of structure. The scheme pays special attention to the construction of a smallest scale circular difference-of-Gaussian (DOG) convolution, calibration of multiscale edge detection thresholds with the visual perception of grayscale boundaries, and contour/texture discrimination methods derived from fundamental assumptions of connectivity and the characteristics of printed text. Contour information is required to fall between a minimum connectivity limit and maximum regional spatial density limit at each scale. Results support the idea that contour information, in images possessing good image quality, is (centered at about 10 cyc/deg and 30 cyc/deg). Further, lower spatial frequency channels appear to play a major role only in contour extraction from images with serious global image defects.
Detecting natural occlusion boundaries using local cues
DiMattina, Christopher; Fox, Sean A.; Lewicki, Michael S.
2012-01-01
Occlusion boundaries and junctions provide important cues for inferring three-dimensional scene organization from two-dimensional images. Although several investigators in machine vision have developed algorithms for detecting occlusions and other edges in natural images, relatively few psychophysics or neurophysiology studies have investigated what features are used by the visual system to detect natural occlusions. In this study, we addressed this question using a psychophysical experiment where subjects discriminated image patches containing occlusions from patches containing surfaces. Image patches were drawn from a novel occlusion database containing labeled occlusion boundaries and textured surfaces in a variety of natural scenes. Consistent with related previous work, we found that relatively large image patches were needed to attain reliable performance, suggesting that human subjects integrate complex information over a large spatial region to detect natural occlusions. By defining machine observers using a set of previously studied features measured from natural occlusions and surfaces, we demonstrate that simple features defined at the spatial scale of the image patch are insufficient to account for human performance in the task. To define machine observers using a more biologically plausible multiscale feature set, we trained standard linear and neural network classifiers on the rectified outputs of a Gabor filter bank applied to the image patches. We found that simple linear classifiers could not match human performance, while a neural network classifier combining filter information across location and spatial scale compared well. These results demonstrate the importance of combining a variety of cues defined at multiple spatial scales for detecting natural occlusions. PMID:23255731
Modeling Materials: Design for Planetary Entry, Electric Aircraft, and Beyond
NASA Technical Reports Server (NTRS)
Thompson, Alexander; Lawson, John W.
2014-01-01
NASA missions push the limits of what is possible. The development of high-performance materials must keep pace with the agency's demanding, cutting-edge applications. Researchers at NASA's Ames Research Center are performing multiscale computational modeling to accelerate development times and further the design of next-generation aerospace materials. Multiscale modeling combines several computationally intensive techniques ranging from the atomic level to the macroscale, passing output from one level as input to the next level. These methods are applicable to a wide variety of materials systems. For example: (a) Ultra-high-temperature ceramics for hypersonic aircraft-we utilized the full range of multiscale modeling to characterize thermal protection materials for faster, safer air- and spacecraft, (b) Planetary entry heat shields for space vehicles-we computed thermal and mechanical properties of ablative composites by combining several methods, from atomistic simulations to macroscale computations, (c) Advanced batteries for electric aircraft-we performed large-scale molecular dynamics simulations of advanced electrolytes for ultra-high-energy capacity batteries to enable long-distance electric aircraft service; and (d) Shape-memory alloys for high-efficiency aircraft-we used high-fidelity electronic structure calculations to determine phase diagrams in shape-memory transformations. Advances in high-performance computing have been critical to the development of multiscale materials modeling. We used nearly one million processor hours on NASA's Pleiades supercomputer to characterize electrolytes with a fidelity that would be otherwise impossible. For this and other projects, Pleiades enables us to push the physics and accuracy of our calculations to new levels.
Power spectrum weighted edge analysis for straight edge detection in images
NASA Astrophysics Data System (ADS)
Karvir, Hrishikesh V.; Skipper, Julie A.
2007-04-01
Most man-made objects provide characteristic straight line edges and, therefore, edge extraction is a commonly used target detection tool. However, noisy images often yield broken edges that lead to missed detections, and extraneous edges that may contribute to false target detections. We present a sliding-block approach for target detection using weighted power spectral analysis. In general, straight line edges appearing at a given frequency are represented as a peak in the Fourier domain at a radius corresponding to that frequency, and a direction corresponding to the orientation of the edges in the spatial domain. Knowing the edge width and spacing between the edges, a band-pass filter is designed to extract the Fourier peaks corresponding to the target edges and suppress image noise. These peaks are then detected by amplitude thresholding. The frequency band width and the subsequent spatial filter mask size are variable parameters to facilitate detection of target objects of different sizes under known imaging geometries. Many military objects, such as trucks, tanks and missile launchers, produce definite signatures with parallel lines and the algorithm proves to be ideal for detecting such objects. Moreover, shadow-casting objects generally provide sharp edges and are readily detected. The block operation procedure offers advantages of significant reduction in noise influence, improved edge detection, faster processing speed and versatility to detect diverse objects of different sizes in the image. With Scud missile launcher replicas as target objects, the method has been successfully tested on terrain board test images under different backgrounds, illumination and imaging geometries with cameras of differing spatial resolution and bit-depth.
Xu, Yuan; Ding, Kun; Huo, Chunlei; Zhong, Zisha; Li, Haichang; Pan, Chunhong
2015-01-01
Very high resolution (VHR) image change detection is challenging due to the low discriminative ability of change feature and the difficulty of change decision in utilizing the multilevel contextual information. Most change feature extraction techniques put emphasis on the change degree description (i.e., in what degree the changes have happened), while they ignore the change pattern description (i.e., how the changes changed), which is of equal importance in characterizing the change signatures. Moreover, the simultaneous consideration of the classification robust to the registration noise and the multiscale region-consistent fusion is often neglected in change decision. To overcome such drawbacks, in this paper, a novel VHR image change detection method is proposed based on sparse change descriptor and robust discriminative dictionary learning. Sparse change descriptor combines the change degree component and the change pattern component, which are encoded by the sparse representation error and the morphological profile feature, respectively. Robust change decision is conducted by multiscale region-consistent fusion, which is implemented by the superpixel-level cosparse representation with robust discriminative dictionary and the conditional random field model. Experimental results confirm the effectiveness of the proposed change detection technique. PMID:25918748
Structural Damage Detection Using Slopes of Longitudinal Vibration Shapes
Xu, W.; Zhu, W. D.; Smith, S. A.; ...
2016-03-18
While structural damage detection based on flexural vibration shapes, such as mode shapes and steady-state response shapes under harmonic excitation, has been well developed, little attention is paid to that based on longitudinal vibration shapes that also contain damage information. This study originally formulates a slope vibration shape for damage detection in bars using longitudinal vibration shapes. To enhance noise robustness of the method, a slope vibration shape is transformed to a multiscale slope vibration shape in a multiscale domain using wavelet transform, which has explicit physical implication, high damage sensitivity, and noise robustness. These advantages are demonstrated in numericalmore » cases of damaged bars, and results show that multiscale slope vibration shapes can be used for identifying and locating damage in a noisy environment. A three-dimensional (3D) scanning laser vibrometer is used to measure the longitudinal steady-state response shape of an aluminum bar with damage due to reduced cross-sectional dimensions under harmonic excitation, and results show that the method can successfully identify and locate the damage. Slopes of longitudinal vibration shapes are shown to be suitable for damage detection in bars and have potential for applications in noisy environments.« less
Salient object detection based on multi-scale contrast.
Wang, Hai; Dai, Lei; Cai, Yingfeng; Sun, Xiaoqiang; Chen, Long
2018-05-01
Due to the development of deep learning networks, a salient object detection based on deep learning networks, which are used to extract the features, has made a great breakthrough compared to the traditional methods. At present, the salient object detection mainly relies on very deep convolutional network, which is used to extract the features. In deep learning networks, an dramatic increase of network depth may cause more training errors instead. In this paper, we use the residual network to increase network depth and to mitigate the errors caused by depth increase simultaneously. Inspired by image simplification, we use color and texture features to obtain simplified image with multiple scales by means of region assimilation on the basis of super-pixels in order to reduce the complexity of images and to improve the accuracy of salient target detection. We refine the feature on pixel level by the multi-scale feature correction method to avoid the feature error when the image is simplified at the above-mentioned region level. The final full connection layer not only integrates features of multi-scale and multi-level but also works as classifier of salient targets. The experimental results show that proposed model achieves better results than other salient object detection models based on original deep learning networks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bright breathers in nonlinear left-handed metamaterial lattices
NASA Astrophysics Data System (ADS)
Koukouloyannis, V.; Kevrekidis, P. G.; Veldes, G. P.; Frantzeskakis, D. J.; DiMarzio, D.; Lan, X.; Radisic, V.
2018-02-01
In the present work, we examine a prototypical model for the formation of bright breathers in nonlinear left-handed metamaterial lattices. Utilizing the paradigm of nonlinear transmission lines, we build a relevant lattice and develop a quasi-continuum multiscale approximation that enables us to appreciate both the underlying linear dispersion relation and the potential for bifurcation of nonlinear states. We focus here, more specifically, on bright discrete breathers which bifurcate from the lower edge of the linear dispersion relation at wavenumber k=π . Guided by the multiscale analysis, we calculate numerically both the stable inter-site centered and the unstable site-centered members of the relevant family. We quantify the associated stability via Floquet analysis and the Peierls-Nabarro barrier of the energy difference between these branches. Finally, we explore the dynamical implications of these findings towards the potential mobility or lack thereof (pinning) of such breather solutions.
Logarithmic profile mapping multi-scale Retinex for restoration of low illumination images
NASA Astrophysics Data System (ADS)
Shi, Haiyan; Kwok, Ngaiming; Wu, Hongkun; Li, Ruowei; Liu, Shilong; Lin, Ching-Feng; Wong, Chin Yeow
2018-04-01
Images are valuable information sources for many scientific and engineering applications. However, images captured in poor illumination conditions would have a large portion of dark regions that could heavily degrade the image quality. In order to improve the quality of such images, a restoration algorithm is developed here that transforms the low input brightness to a higher value using a modified Multi-Scale Retinex approach. The algorithm is further improved by a entropy based weighting with the input and the processed results to refine the necessary amplification at regions of low brightness. Moreover, fine details in the image are preserved by applying the Retinex principles to extract and then re-insert object edges to obtain an enhanced image. Results from experiments using low and normal illumination images have shown satisfactory performances with regard to the improvement in information contents and the mitigation of viewing artifacts.
The multiscale nature of magnetic pattern on the solar surface
NASA Astrophysics Data System (ADS)
Scardigli, S.; Del Moro, D.; Berrilli, F.
Multiscale magnetic underdense regions (voids) appear in high resolution magnetograms of quiet solar surface. These regions may be considered a signature of the underlying convective structure. The study of the associated pattern paves the way for the study of turbulent convective scales from granular to global. In order to address the question of magnetic pattern driven by turbulent convection we used a novel automatic void detection method to calculate void distributions. The absence of preferred scales of organization in the calculated distributions supports the multiscale nature of flows on the solar surface and the absence of preferred convective scales.
Practical Study for the Properties of Hueckel Edge Detection Operator
NASA Astrophysics Data System (ADS)
Jabbar, Hameed M. Abdul; Hatem, Amal J.; Ameer, Inbethaq M. A. Abdul
2018-05-01
The first practical study for the Hueckel edge detection operator was presented in this research, where it is tested on standard step edge set images. A number of criteria were adopted to evaluate its practical performance, which is the accuracy in detecting the edges direction, the error in the edges location (dislocation), edges width, the calculated edge goodness criterion and the consumed execution time. These criteria were studied with the edge direction and the used disk radius of the Hueckel edge detection operator. Important notes were recorded for the performance of this operator depending on the direction of the edge and/or with the radius of the used disk. There is a variation in the performance of the operator in terms of precision in detecting of the edges direction and position. A discussion was presented for the all criteria adopted in the research.
Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images.
Salvi, Massimo; Molinari, Filippo
2018-06-20
Accurate nuclei detection and segmentation in histological images is essential for many clinical purposes. While manual annotations are time-consuming and operator-dependent, full automated segmentation remains a challenging task due to the high variability of cells intensity, size and morphology. Most of the proposed algorithms for the automated segmentation of nuclei were designed for specific organ or tissues. The aim of this study was to develop and validate a fully multiscale method, named MANA (Multiscale Adaptive Nuclei Analysis), for nuclei segmentation in different tissues and magnifications. MANA was tested on a dataset of H&E stained tissue images with more than 59,000 annotated nuclei, taken from six organs (colon, liver, bone, prostate, adrenal gland and thyroid) and three magnifications (10×, 20×, 40×). Automatic results were compared with manual segmentations and three open-source software designed for nuclei detection. For each organ, MANA obtained always an F1-score higher than 0.91, with an average F1 of 0.9305 ± 0.0161. The average computational time was about 20 s independently of the number of nuclei to be detected (anyway, higher than 1000), indicating the efficiency of the proposed technique. To the best of our knowledge, MANA is the first fully automated multi-scale and multi-tissue algorithm for nuclei detection. Overall, the robustness and versatility of MANA allowed to achieve, on different organs and magnifications, performances in line or better than those of state-of-art algorithms optimized for single tissues.
Multiscale corner detection and classification using local properties and semantic patterns
NASA Astrophysics Data System (ADS)
Gallo, Giovanni; Giuoco, Alessandro L.
2002-05-01
A new technique to detect, localize and classify corners in digital closed curves is proposed. The technique is based on correct estimation of support regions for each point. We compute multiscale curvature to detect and to localize corners. As a further step, with the aid of some local features, it's possible to classify corners into seven distinct types. Classification is performed using a set of rules, which describe corners according to preset semantic patterns. Compared with existing techniques, the proposed approach inscribes itself into the family of algorithms that try to explain the curve, instead of simple labeling. Moreover, our technique works in manner similar to what is believed are typical mechanisms of human perception.
Use of Multiscale Entropy to Facilitate Artifact Detection in Electroencephalographic Signals
Mariani, Sara; Borges, Ana F. T.; Henriques, Teresa; Goldberger, Ary L.; Costa, Madalena D.
2016-01-01
Electroencephalographic (EEG) signals present a myriad of challenges to analysis, beginning with the detection of artifacts. Prior approaches to noise detection have utilized multiple techniques, including visual methods, independent component analysis and wavelets. However, no single method is broadly accepted, inviting alternative ways to address this problem. Here, we introduce a novel approach based on a statistical physics method, multiscale entropy (MSE) analysis, which quantifies the complexity of a signal. We postulate that noise corrupted EEG signals have lower information content, and, therefore, reduced complexity compared with their noise free counterparts. We test the new method on an open-access database of EEG signals with and without added artifacts due to electrode motion. PMID:26738116
Automatic rock detection for in situ spectroscopy applications on Mars
NASA Astrophysics Data System (ADS)
Mahapatra, Pooja; Foing, Bernard H.
A novel algorithm for rock detection has been developed for effectively utilising Mars rovers, and enabling autonomous selection of target rocks that require close-contact spectroscopic measurements. The algorithm demarcates small rocks in terrain images as seen by cameras on a Mars rover during traverse. This information may be used by the rover for selection of geologically relevant sample rocks, and (in conjunction with a rangefinder) to pick up target samples using a robotic arm for automatic in situ determination of rock composition and mineralogy using, for example, a Raman spectrometer. Determining rock samples within the region that are of specific interest without physically approaching them significantly reduces time, power and risk. Input images in colour are converted to greyscale for intensity analysis. Bilateral filtering is used for texture removal while preserving rock boundaries. Unsharp masking is used for contrast enhance-ment. Sharp contrasts in intensities are detected using Canny edge detection, with thresholds that are calculated from the image obtained after contrast-limited adaptive histogram equalisation of the unsharp masked image. Scale-space representations are then generated by convolving this image with a Gaussian kernel. A scale-invariant blob detector (Laplacian of the Gaussian, LoG) detects blobs independently of their sizes, and therefore requires a multi-scale approach with automatic scale se-lection. The scale-space blob detector consists of convolution of the Canny edge-detected image with a scale-normalised LoG at several scales, and finding the maxima of squared LoG response in scale-space. After the extraction of local intensity extrema, the intensity profiles along rays going out of the local extremum are investigated. An ellipse is fitted to the region determined by significant changes in the intensity profiles. The fitted ellipses are overlaid on the original Mars terrain image for a visual estimation of the rock detection accuracy, and the number of ellipses are counted. Since geometry and illumination have the least effect on small rocks, the proposed algorithm is effective in detecting small rocks (or bigger rocks at larger distances from the camera) that consist of a small fraction of image pixels. Acknowledgements: The first author would like to express her gratitude to the European Space Agency (ESA/ESTEC) and the International Lunar Exploration Working Group (ILEWG) for their support of this work.
Dabbah, M A; Graham, J; Petropoulos, I N; Tavakoli, M; Malik, R A
2011-10-01
Diabetic peripheral neuropathy (DPN) is one of the most common long term complications of diabetes. Corneal confocal microscopy (CCM) image analysis is a novel non-invasive technique which quantifies corneal nerve fibre damage and enables diagnosis of DPN. This paper presents an automatic analysis and classification system for detecting nerve fibres in CCM images based on a multi-scale adaptive dual-model detection algorithm. The algorithm exploits the curvilinear structure of the nerve fibres and adapts itself to the local image information. Detected nerve fibres are then quantified and used as feature vectors for classification using random forest (RF) and neural networks (NNT) classifiers. We show, in a comparative study with other well known curvilinear detectors, that the best performance is achieved by the multi-scale dual model in conjunction with the NNT classifier. An evaluation of clinical effectiveness shows that the performance of the automated system matches that of ground-truth defined by expert manual annotation. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, W.; Zhu, W. D.; Smith, S. A.
While structural damage detection based on flexural vibration shapes, such as mode shapes and steady-state response shapes under harmonic excitation, has been well developed, little attention is paid to that based on longitudinal vibration shapes that also contain damage information. This study originally formulates a slope vibration shape for damage detection in bars using longitudinal vibration shapes. To enhance noise robustness of the method, a slope vibration shape is transformed to a multiscale slope vibration shape in a multiscale domain using wavelet transform, which has explicit physical implication, high damage sensitivity, and noise robustness. These advantages are demonstrated in numericalmore » cases of damaged bars, and results show that multiscale slope vibration shapes can be used for identifying and locating damage in a noisy environment. A three-dimensional (3D) scanning laser vibrometer is used to measure the longitudinal steady-state response shape of an aluminum bar with damage due to reduced cross-sectional dimensions under harmonic excitation, and results show that the method can successfully identify and locate the damage. Slopes of longitudinal vibration shapes are shown to be suitable for damage detection in bars and have potential for applications in noisy environments.« less
Wearable Wireless Sensor for Multi-Scale Physiological Monitoring
2013-10-01
AD_________________ Award Number: W81XWH-12-1-0541 TITLE: Wearable Wireless Sensor for Multi-Scale...TYPE Annual 3. DATES COVERED 25 12- 13 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Wearable Wireless Sensor for Multi-Scale Physiological...peripheral management • Procedures for low power mode activation and wake - up • Routines for start- up state detection • Flash memory management
Research on improved edge extraction algorithm of rectangular piece
NASA Astrophysics Data System (ADS)
He, Yi-Bin; Zeng, Ya-Jun; Chen, Han-Xin; Xiao, San-Xia; Wang, Yan-Wei; Huang, Si-Yu
Traditional edge detection operators such as Prewitt operator, LOG operator and Canny operator, etc. cannot meet the requirements of the modern industrial measurement. This paper proposes a kind of image edge detection algorithm based on improved morphological gradient. It can be detect the image using structural elements, which deals with the characteristic information of the image directly. Choosing different shapes and sizes of structural elements to use together, the ideal image edge information can be detected. The experimental result shows that the algorithm can well extract image edge with noise, which is clearer, and has more detailed edges compared with the previous edge detection algorithm.
Plant trait detection with multi-scale spectrometry
NASA Astrophysics Data System (ADS)
Gamon, J. A.; Wang, R.
2017-12-01
Proximal and remote sensing using imaging spectrometry offers new opportunities for detecting plant traits, with benefits for phenotyping, productivity estimation, stress detection, and biodiversity studies. Using proximal and airborne spectrometry, we evaluated variation in plant optical properties at various spatial and spectral scales with the goal of identifying optimal scales for distinguishing plant traits related to photosynthetic function. Using directed approaches based on physiological vegetation indices, and statistical approaches based on spectral information content, we explored alternate ways of distinguishing plant traits with imaging spectrometry. With both leaf traits and canopy structure contributing to the signals, results exhibit a strong scale dependence. Our results demonstrate the benefits of multi-scale experimental approaches within a clear conceptual framework when applying remote sensing methods to plant trait detection for phenotyping, productivity, and biodiversity studies.
NASA Astrophysics Data System (ADS)
Ban, Yifang; Gong, Peng; Gamba, Paolo; Taubenbock, Hannes; Du, Peijun
2016-08-01
The overall objective of this research is to investigate multi-temporal, multi-scale, multi-sensor satellite data for analysis of urbanization and environmental/climate impact in China to support sustainable planning. Multi- temporal multi-scale SAR and optical data have been evaluated for urban information extraction using innovative methods and algorithms, including KTH- Pavia Urban Extractor, Pavia UEXT, and an "exclusion- inclusion" framework for urban extent extraction, and KTH-SEG, a novel object-based classification method for detailed urban land cover mapping. Various pixel- based and object-based change detection algorithms were also developed to extract urban changes. Several Chinese cities including Beijing, Shanghai and Guangzhou are selected as study areas. Spatio-temporal urbanization patterns and environmental impact at regional, metropolitan and city core were evaluated through ecosystem service, landscape metrics, spatial indices, and/or their combinations. The relationship between land surface temperature and land-cover classes was also analyzed.The urban extraction results showed that urban areas and small towns could be well extracted using multitemporal SAR data with the KTH-Pavia Urban Extractor and UEXT. The fusion of SAR data at multiple scales from multiple sensors was proven to improve urban extraction. For urban land cover mapping, the results show that the fusion of multitemporal SAR and optical data could produce detailed land cover maps with improved accuracy than that of SAR or optical data alone. Pixel-based and object-based change detection algorithms developed with the project were effective to extract urban changes. Comparing the urban land cover results from mulitemporal multisensor data, the environmental impact analysis indicates major losses for food supply, noise reduction, runoff mitigation, waste treatment and global climate regulation services through landscape structural changes in terms of decreases in service area, edge contamination and fragmentation. In terms ofclimate impact, the results indicate that land surface temperature can be related to land use/land cover classes.
Edge detection based on computational ghost imaging with structured illuminations
NASA Astrophysics Data System (ADS)
Yuan, Sheng; Xiang, Dong; Liu, Xuemei; Zhou, Xin; Bing, Pibin
2018-03-01
Edge detection is one of the most important tools to recognize the features of an object. In this paper, we propose an optical edge detection method based on computational ghost imaging (CGI) with structured illuminations which are generated by an interference system. The structured intensity patterns are designed to make the edge of an object be directly imaged from detected data in CGI. This edge detection method can extract the boundaries for both binary and grayscale objects in any direction at one time. We also numerically test the influence of distance deviations in the interference system on edge extraction, i.e., the tolerance of the optical edge detection system to distance deviation. Hopefully, it may provide a guideline for scholars to build an experimental system.
Kang, Jinbum; Lee, Jae Young; Yoo, Yangmo
2016-06-01
Effective speckle reduction in ultrasound B-mode imaging is important for enhancing the image quality and improving the accuracy in image analysis and interpretation. In this paper, a new feature-enhanced speckle reduction (FESR) method based on multiscale analysis and feature enhancement filtering is proposed for ultrasound B-mode imaging. In FESR, clinical features (e.g., boundaries and borders of lesions) are selectively emphasized by edge, coherence, and contrast enhancement filtering from fine to coarse scales while simultaneously suppressing speckle development via robust diffusion filtering. In the simulation study, the proposed FESR method showed statistically significant improvements in edge preservation, mean structure similarity, speckle signal-to-noise ratio, and contrast-to-noise ratio (CNR) compared with other speckle reduction methods, e.g., oriented speckle reducing anisotropic diffusion (OSRAD), nonlinear multiscale wavelet diffusion (NMWD), the Laplacian pyramid-based nonlinear diffusion and shock filter (LPNDSF), and the Bayesian nonlocal means filter (OBNLM). Similarly, the FESR method outperformed the OSRAD, NMWD, LPNDSF, and OBNLM methods in terms of CNR, i.e., 10.70 ± 0.06 versus 9.00 ± 0.06, 9.78 ± 0.06, 8.67 ± 0.04, and 9.22 ± 0.06 in the phantom study, respectively. Reconstructed B-mode images that were developed using the five speckle reduction methods were reviewed by three radiologists for evaluation based on each radiologist's diagnostic preferences. All three radiologists showed a significant preference for the abdominal liver images obtained using the FESR methods in terms of conspicuity, margin sharpness, artificiality, and contrast, p<0.0001. For the kidney and thyroid images, the FESR method showed similar improvement over other methods. However, the FESR method did not show statistically significant improvement compared with the OBNLM method in margin sharpness for the kidney and thyroid images. These results demonstrate that the proposed FESR method can improve the image quality of ultrasound B-mode imaging by enhancing the visualization of lesion features while effectively suppressing speckle noise.
Upscale Impact of Mesoscale Disturbances of Tropical Convection on Convectively Coupled Kelvin Waves
NASA Astrophysics Data System (ADS)
Yang, Q.; Majda, A.
2017-12-01
Tropical convection associated with convectively coupled Kelvin waves (CCKWs) is typically organized by an eastward-moving synoptic-scale convective envelope with numerous embedded westward-moving mesoscale disturbances. It is of central importance to assess upscale impact of mesoscale disturbances on CCKWs as mesoscale disturbances propagate at various tilt angles and speeds. Here a simple multi-scale model is used to capture this multi-scale structure, where mesoscale fluctuations are directly driven by mesoscale heating and synoptic-scale circulation is forced by mean heating and eddy transfer of momentum and temperature. The two-dimensional version of the multi-scale model drives the synoptic-scale circulation, successfully reproduces key features of flow fields with a front-to-rear tilt and compares well with results from a cloud resolving model. In the scenario with an elevated upright mean heating, the tilted vertical structure of synoptic-scale circulation is still induced by the upscale impact of mesoscale disturbances. In a faster propagation scenario, the upscale impact becomes less important, while the synoptic-scale circulation response to mean heating dominates. In the unrealistic scenario with upward/westward tilted mesoscale heating, positive potential temperature anomalies are induced in the leading edge, which will suppress shallow convection in a moist environment. In its three-dimensional version, results show that upscale impact of mesoscale disturbances that propagate at tilt angles (110o 250o) induces negative lower-tropospheric potential temperature anomalies in the leading edge, providing favorable conditions for shallow convection in a moist environment, while the remaining tilt angle cases have opposite effects. Even in the presence of upright mean heating, the front-to-rear tilted synoptic-scale circulation can still be induced by eddy terms at tilt angles (120o 240o). In the case with fast propagating mesoscale heating, positive potential temperature anomalies are induced in the lower troposphere, suppressing convection in a moist environment. This simple model also reproduces convective momentum transport and CCKWs in agreement with results from a recent cloud resolving simulation.
Investigations of image fusion
NASA Astrophysics Data System (ADS)
Zhang, Zhong
1999-12-01
The objective of image fusion is to combine information from multiple images of the same scene. The result of image fusion is a single image which is more suitable for the purpose of human visual perception or further image processing tasks. In this thesis, a region-based fusion algorithm using the wavelet transform is proposed. The identification of important features in each image, such as edges and regions of interest, are used to guide the fusion process. The idea of multiscale grouping is also introduced and a generic image fusion framework based on multiscale decomposition is studied. The framework includes all of the existing multiscale-decomposition- based fusion approaches we found in the literature which did not assume a statistical model for the source images. Comparisons indicate that our framework includes some new approaches which outperform the existing approaches for the cases we consider. Registration must precede our fusion algorithms. So we proposed a hybrid scheme which uses both feature-based and intensity-based methods. The idea of robust estimation of optical flow from time- varying images is employed with a coarse-to-fine multi- resolution approach and feature-based registration to overcome some of the limitations of the intensity-based schemes. Experiments show that this approach is robust and efficient. Assessing image fusion performance in a real application is a complicated issue. In this dissertation, a mixture probability density function model is used in conjunction with the Expectation- Maximization algorithm to model histograms of edge intensity. Some new techniques are proposed for estimating the quality of a noisy image of a natural scene. Such quality measures can be used to guide the fusion. Finally, we study fusion of images obtained from several copies of a new type of camera developed for video surveillance. Our techniques increase the capability and reliability of the surveillance system and provide an easy way to obtain 3-D information of objects in the space monitored by the system.
NASA Astrophysics Data System (ADS)
Gao, Kun; Yang, Hu; Chen, Xiaomei; Ni, Guoqiang
2008-03-01
Because of complex thermal objects in an infrared image, the prevalent image edge detection operators are often suitable for a certain scene and extract too wide edges sometimes. From a biological point of view, the image edge detection operators work reliably when assuming a convolution-based receptive field architecture. A DoG (Difference-of- Gaussians) model filter based on ON-center retinal ganglion cell receptive field architecture with artificial eye tremors introduced is proposed for the image contour detection. Aiming at the blurred edges of an infrared image, the subsequent orthogonal polynomial interpolation and sub-pixel level edge detection in rough edge pixel neighborhood is adopted to locate the foregoing rough edges in sub-pixel level. Numerical simulations show that this method can locate the target edge accurately and robustly.
Two-Dimensional Edge Detection by Guided Mode Resonant Metasurface
NASA Astrophysics Data System (ADS)
Saba, Amirhossein; Tavakol, Mohammad Reza; Karimi-Khoozani, Parisa; Khavasi, Amin
2018-05-01
In this letter, a new approach to perform edge detection is presented using an all-dielectric CMOS-compatible metasurface. The design is based on guided-mode resonance which provides a high quality factor resonance to make the edge detection experimentally realizable. The proposed structure that is easy to fabricate, can be exploited for detection of edges in two dimensions due to its symmetry. Also, the trade-off between gain and resolution of edge detection is discussed which can be adjusted by appropriate design parameters. The proposed edge detector has also the potential to be used in ultrafast analog computing and image processing.
Applications of 3D-EDGE Detection for ALS Point Cloud
NASA Astrophysics Data System (ADS)
Ni, H.; Lin, X. G.; Zhang, J. X.
2017-09-01
Edge detection has been one of the major issues in the field of remote sensing and photogrammetry. With the fast development of sensor technology of laser scanning system, dense point clouds have become increasingly common. Precious 3D-edges are able to be detected from these point clouds and a great deal of edge or feature line extraction methods have been proposed. Among these methods, an easy-to-use 3D-edge detection method, AGPN (Analyzing Geometric Properties of Neighborhoods), has been proposed. The AGPN method detects edges based on the analysis of geometric properties of a query point's neighbourhood. The AGPN method detects two kinds of 3D-edges, including boundary elements and fold edges, and it has many applications. This paper presents three applications of AGPN, i.e., 3D line segment extraction, ground points filtering, and ground breakline extraction. Experiments show that the utilization of AGPN method gives a straightforward solution to these applications.
Detecting recurrent gene mutation in interaction network context using multi-scale graph diffusion.
Babaei, Sepideh; Hulsman, Marc; Reinders, Marcel; de Ridder, Jeroen
2013-01-23
Delineating the molecular drivers of cancer, i.e. determining cancer genes and the pathways which they deregulate, is an important challenge in cancer research. In this study, we aim to identify pathways of frequently mutated genes by exploiting their network neighborhood encoded in the protein-protein interaction network. To this end, we introduce a multi-scale diffusion kernel and apply it to a large collection of murine retroviral insertional mutagenesis data. The diffusion strength plays the role of scale parameter, determining the size of the network neighborhood that is taken into account. As a result, in addition to detecting genes with frequent mutations in their genomic vicinity, we find genes that harbor frequent mutations in their interaction network context. We identify densely connected components of known and putatively novel cancer genes and demonstrate that they are strongly enriched for cancer related pathways across the diffusion scales. Moreover, the mutations in the clusters exhibit a significant pattern of mutual exclusion, supporting the conjecture that such genes are functionally linked. Using multi-scale diffusion kernel, various infrequently mutated genes are found to harbor significant numbers of mutations in their interaction network neighborhood. Many of them are well-known cancer genes. The results demonstrate the importance of defining recurrent mutations while taking into account the interaction network context. Importantly, the putative cancer genes and networks detected in this study are found to be significant at different diffusion scales, confirming the necessity of a multi-scale analysis.
NASA Astrophysics Data System (ADS)
Xu, Lei; Zheng, Xiaoxiang; Zhang, Hengyi; Yu, Yajun
1998-09-01
Accurate edge detection of retinal vessels is a prerequisite for quantitative analysis of subtle morphological changes of retinal vessels under different pathological conditions. A novel method for edge detection of retinal vessels is presented in this paper. Methods: (1) Wavelet-based image preprocessing. (2) The signed edge detection algorithm and mathematical morphological operation are applied to get the approximate regions that contain retinal vessels. (3) By convolving the preprocessed image with a LoG operator only on the detected approximate regions of retinal vessels, followed by edges refining, clear edge maps of the retinal vessels are fast obtained. Results: A detailed performance evaluation together with the existing techniques is given to demonstrate the strong features of our method. Conclusions: True edge locations of retinal vessels can be fast detected with continuous structures of retinal vessels, less non- vessel segments left and insensitivity to noise. The method is also suitable for other application fields such as road edge detection.
Linear segmentation algorithm for detecting layer boundary with lidar.
Mao, Feiyue; Gong, Wei; Logan, Timothy
2013-11-04
The automatic detection of aerosol- and cloud-layer boundary (base and top) is important in atmospheric lidar data processing, because the boundary information is not only useful for environment and climate studies, but can also be used as input for further data processing. Previous methods have demonstrated limitations in defining the base and top, window-size setting, and have neglected the in-layer attenuation. To overcome these limitations, we present a new layer detection scheme for up-looking lidars based on linear segmentation with a reasonable threshold setting, boundary selecting, and false positive removing strategies. Preliminary results from both real and simulated data show that this algorithm cannot only detect the layer-base as accurate as the simple multi-scale method, but can also detect the layer-top more accurately than that of the simple multi-scale method. Our algorithm can be directly applied to uncalibrated data without requiring any additional measurements or window size selections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Henager, Jr., Charles H.; Overman, Nicole R.
Increasing fracture toughness and modifying the ductile-brittle transition temperature of a tungsten-alloy relative to pure tungsten has been shown to be feasible by ductile-phase toughening (DPT) of tungsten for future plasma-facing materials for fusion energy. In DPT, a ductile phase is included in a brittle tungsten matrix to increase the overall work of fracture for the material. This research models the deformation behavior of DPT tungsten materials, such as tungsten-copper composites, using a multiscale modeling approach that involves a microstructural dual-phase (copper-tungsten) region of interest where the constituent phases are finely discretized and are described by a continuum damage mechanicsmore » model. Large deformation, damage, and fracture are allowed to occur and are modeled in a region that is connected to adjacent homogenized elastic regions to form a macroscopic structure, such as a test specimen. The present paper illustrates this multiscale modeling approach to analyze unnotched and single-edge notched (SENB) tungsten-copper composite specimens subjected to three-point bending. The predicted load-displacement responses and crack propagation patterns are compared to the corresponding experimental results to validate the model. Furthermore, such models may help design future DPT composite configurations for fusion materials, including volume fractions of ductile phase and microstructural optimization.« less
Nguyen, Ba Nghiep; Henager, Jr., Charles H.; Overman, Nicole R.; ...
2018-05-23
Increasing fracture toughness and modifying the ductile-brittle transition temperature of a tungsten-alloy relative to pure tungsten has been shown to be feasible by ductile-phase toughening (DPT) of tungsten for future plasma-facing materials for fusion energy. In DPT, a ductile phase is included in a brittle tungsten matrix to increase the overall work of fracture for the material. This research models the deformation behavior of DPT tungsten materials, such as tungsten-copper composites, using a multiscale modeling approach that involves a microstructural dual-phase (copper-tungsten) region of interest where the constituent phases are finely discretized and are described by a continuum damage mechanicsmore » model. Large deformation, damage, and fracture are allowed to occur and are modeled in a region that is connected to adjacent homogenized elastic regions to form a macroscopic structure, such as a test specimen. The present paper illustrates this multiscale modeling approach to analyze unnotched and single-edge notched (SENB) tungsten-copper composite specimens subjected to three-point bending. The predicted load-displacement responses and crack propagation patterns are compared to the corresponding experimental results to validate the model. Furthermore, such models may help design future DPT composite configurations for fusion materials, including volume fractions of ductile phase and microstructural optimization.« less
Optimal frequency domain textural edge detection filter
NASA Technical Reports Server (NTRS)
Townsend, J. K.; Shanmugan, K. S.; Frost, V. S.
1985-01-01
An optimal frequency domain textural edge detection filter is developed and its performance evaluated. For the given model and filter bandwidth, the filter maximizes the amount of output image energy placed within a specified resolution interval centered on the textural edge. Filter derivation is based on relating textural edge detection to tonal edge detection via the complex low-pass equivalent representation of narrowband bandpass signals and systems. The filter is specified in terms of the prolate spheroidal wave functions translated in frequency. Performance is evaluated using the asymptotic approximation version of the filter. This evaluation demonstrates satisfactory filter performance for ideal and nonideal textures. In addition, the filter can be adjusted to detect textural edges in noisy images at the expense of edge resolution.
A threshold-based fixed predictor for JPEG-LS image compression
NASA Astrophysics Data System (ADS)
Deng, Lihua; Huang, Zhenghua; Yao, Shoukui
2018-03-01
In JPEG-LS, fixed predictor based on median edge detector (MED) only detect horizontal and vertical edges, and thus produces large prediction errors in the locality of diagonal edges. In this paper, we propose a threshold-based edge detection scheme for the fixed predictor. The proposed scheme can detect not only the horizontal and vertical edges, but also diagonal edges. For some certain thresholds, the proposed scheme can be simplified to other existing schemes. So, it can also be regarded as the integration of these existing schemes. For a suitable threshold, the accuracy of horizontal and vertical edges detection is higher than the existing median edge detection in JPEG-LS. Thus, the proposed fixed predictor outperforms the existing JPEG-LS predictors for all images tested, while the complexity of the overall algorithm is maintained at a similar level.
Poisson denoising on the sphere
NASA Astrophysics Data System (ADS)
Schmitt, J.; Starck, J. L.; Fadili, J.; Grenier, I.; Casandjian, J. M.
2009-08-01
In the scope of the Fermi mission, Poisson noise removal should improve data quality and make source detection easier. This paper presents a method for Poisson data denoising on sphere, called Multi-Scale Variance Stabilizing Transform on Sphere (MS-VSTS). This method is based on a Variance Stabilizing Transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has an (asymptotically) constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. Thus, MS-VSTS consists in decomposing the data into a sparse multi-scale dictionary (wavelets, curvelets, ridgelets...), and then applying a VST on the coefficients in order to get quasi-Gaussian stabilized coefficients. In this present article, the used multi-scale transform is the Isotropic Undecimated Wavelet Transform. Then, hypothesis tests are made to detect significant coefficients, and the denoised image is reconstructed with an iterative method based on Hybrid Steepest Descent (HST). The method is tested on simulated Fermi data.
Efficient method of image edge detection based on FSVM
NASA Astrophysics Data System (ADS)
Cai, Aiping; Xiong, Xiaomei
2013-07-01
For efficient object cover edge detection in digital images, this paper studied traditional methods and algorithm based on SVM. It analyzed Canny edge detection algorithm existed some pseudo-edge and poor anti-noise capability. In order to provide a reliable edge extraction method, propose a new detection algorithm based on FSVM. Which contains several steps: first, trains classify sample and gives the different membership function to different samples. Then, a new training sample is formed by increase the punishment some wrong sub-sample, and use the new FSVM classification model for train and test them. Finally the edges are extracted of the object image by using the model. Experimental result shows that good edge detection image will be obtained and adding noise experiments results show that this method has good anti-noise.
NASA Astrophysics Data System (ADS)
Aouabdi, Salim; Taibi, Mahmoud; Bouras, Slimane; Boutasseta, Nadir
2017-06-01
This paper describes an approach for identifying localized gear tooth defects, such as pitting, using phase currents measured from an induction machine driving the gearbox. A new tool of anomaly detection based on multi-scale entropy (MSE) algorithm SampEn which allows correlations in signals to be identified over multiple time scales. The motor current signature analysis (MCSA) in conjunction with principal component analysis (PCA) and the comparison of observed values with those predicted from a model built using nominally healthy data. The Simulation results show that the proposed method is able to detect gear tooth pitting in current signals.
Tian, Huawei; Zhao, Yao; Ni, Rongrong; Cao, Gang
2009-11-23
In a feature-based geometrically robust watermarking system, it is a challenging task to detect geometric-invariant regions (GIRs) which can survive a broad range of image processing operations. Instead of commonly used Harris detector or Mexican hat wavelet method, a more robust corner detector named multi-scale curvature product (MSCP) is adopted to extract salient features in this paper. Based on such features, disk-like GIRs are found, which consists of three steps. First, robust edge contours are extracted. Then, MSCP is utilized to detect the centers for GIRs. Third, the characteristic scale selection is performed to calculate the radius of each GIR. A novel sector-shaped partitioning method for the GIRs is designed, which can divide a GIR into several sector discs with the help of the most important corner (MIC). The watermark message is then embedded bit by bit in each sector by using Quantization Index Modulation (QIM). The GIRs and the divided sector discs are invariant to geometric transforms, so the watermarking method inherently has high robustness against geometric attacks. Experimental results show that the scheme has a better robustness against various image processing operations including common processing attacks, affine transforms, cropping, and random bending attack (RBA) than the previous approaches.
Greater sage-grouse as an umbrella species for shrubland passerine birds: a multiscale assessment
Hanser, Steven E.; Knick, Steven T.; Knick, Steven T.; Connelly, John W.
2011-01-01
Working groups and government agen-cies are planning and conducting land actions in sagebrush (Artemisia spp.) habitats to benefit Greater Sage-Grouse (Centrocercus urophasianus) populations. Managers have adopted an umbrella concept, creating habitat characteristics specific to sage-grouse requirements, in the belief that other wildlife species dependent on sagebrush will benefit. We tested the efficacy of this approach by first identifying the primary environmental gradients underlying sagebrush steppe bird com-munities (including Greater Sage-Grouse). We integrated field sampling for birds and vegetation with geographic information system (GIS) data to characterize 305 sites sampled throughout the current range of Greater Sage-Grouse in the Intermountain West, United States. The primary environmental axis defining the bird community represented a gradient from local-scale Wyoming/basin big sagebrush (A. t. ssp. wyomingensis/A. t. ssp. tridentata), and bare ground cover to local and regional grassland cover; the second axis repre-sented a transition from low-elevation Wyoming/basin big sagebrush and bare ground to mountain big sagebrush (A. t. ssp. vaseyana) and habitat edge. We identified the relative overlap of sage-grouse with 13 species of passerine birds along the multiscale gradients and estimated the width of the umbrella when applying management guidelines specific to sage-grouse. Passerine birds associated with sagebrush steppe habitats had high levels of overlap with Greater Sage-Grouse along the multiscale environmental gradients. However, the overlap of the umbrella was prima-rily a function of the broad range of sagebrush habitats used by sage-grouse. Management that focuses on creating a narrow set of plot-scale con-ditions will likely be less effective than restoration efforts that recognize landscape scale heterogene-ity and multiscale organization of habitats. These multiscale efforts may improve some sage-grouse habitats and strengthen the management umb-rella for shrub steppe passerine birds.
Cao, Jianfang; Chen, Lichao; Wang, Min; Tian, Yun
2018-01-01
The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance.
Fu, Min; Wu, Wenming; Hong, Xiafei; Liu, Qiuhua; Jiang, Jialin; Ou, Yaobin; Zhao, Yupei; Gong, Xinqi
2018-04-24
Efficient computational recognition and segmentation of target organ from medical images are foundational in diagnosis and treatment, especially about pancreas cancer. In practice, the diversity in appearance of pancreas and organs in abdomen, makes detailed texture information of objects important in segmentation algorithm. According to our observations, however, the structures of previous networks, such as the Richer Feature Convolutional Network (RCF), are too coarse to segment the object (pancreas) accurately, especially the edge. In this paper, we extend the RCF, proposed to the field of edge detection, for the challenging pancreas segmentation, and put forward a novel pancreas segmentation network. By employing multi-layer up-sampling structure replacing the simple up-sampling operation in all stages, the proposed network fully considers the multi-scale detailed contexture information of object (pancreas) to perform per-pixel segmentation. Additionally, using the CT scans, we supply and train our network, thus get an effective pipeline. Working with our pipeline with multi-layer up-sampling model, we achieve better performance than RCF in the task of single object (pancreas) segmentation. Besides, combining with multi scale input, we achieve the 76.36% DSC (Dice Similarity Coefficient) value in testing data. The results of our experiments show that our advanced model works better than previous networks in our dataset. On the other words, it has better ability in catching detailed contexture information. Therefore, our new single object segmentation model has practical meaning in computational automatic diagnosis.
Earth As An Unstructured Mesh and Its Recovery from Seismic Waveform Data
NASA Astrophysics Data System (ADS)
De Hoop, M. V.
2015-12-01
We consider multi-scale representations of Earth's interior from thepoint of view of their possible recovery from multi- andhigh-frequency seismic waveform data. These representations areintrinsically connected to (geologic, tectonic) structures, that is,geometric parametrizations of Earth's interior. Indeed, we address theconstruction and recovery of such parametrizations using localiterative methods with appropriately designed data misfits andguaranteed convergence. The geometric parametrizations containinterior boundaries (defining, for example, faults, salt bodies,tectonic blocks, slabs) which can, in principle, be obtained fromsuccessive segmentation. We make use of unstructured meshes. For the adaptation and recovery of an unstructured mesh we introducean energy functional which is derived from the Hausdorff distance. Viaan augmented Lagrangian method, we incorporate the mentioned datamisfit. The recovery is constrained by shape optimization of theinterior boundaries, and is reminiscent of Hausdorff warping. We useelastic deformation via finite elements as a regularization whilefollowing a two-step procedure. The first step is an update determinedby the energy functional; in the second step, we modify the outcome ofthe first step where necessary to ensure that the new mesh isregular. This modification entails an array of techniques includingtopology correction involving interior boundary contacting andbreakup, edge warping and edge removal. We implement this as afeed-back mechanism from volume to interior boundary meshesoptimization. We invoke and apply a criterion of mesh quality controlfor coarsening, and for dynamical local multi-scale refinement. Wepresent a novel (fluid-solid) numerical framework based on theDiscontinuous Galerkin method.
A new method of edge detection for object recognition
Maddox, Brian G.; Rhew, Benjamin
2004-01-01
Traditional edge detection systems function by returning every edge in an input image. This can result in a large amount of clutter and make certain vectorization algorithms less accurate. Accuracy problems can then have a large impact on automated object recognition systems that depend on edge information. A new method of directed edge detection can be used to limit the number of edges returned based on a particular feature. This results in a cleaner image that is easier for vectorization. Vectorized edges from this process could then feed an object recognition system where the edge data would also contain information as to what type of feature it bordered.
Multiscale Modeling of UHTC: Thermal Conductivity
NASA Technical Reports Server (NTRS)
Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.
2012-01-01
We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.
NASA Astrophysics Data System (ADS)
Liu, Jianfei; Dubra, Alfredo; Tam, Johnny
2016-03-01
Cone photoreceptors are highly specialized cells responsible for the origin of vision in the human eye. Their inner segments can be noninvasively visualized using adaptive optics scanning light ophthalmoscopes (AOSLOs) with nonconfocal split detection capabilities. Monitoring the number of cones can lead to more precise metrics for real-time diagnosis and assessment of disease progression. Cell identification in split detection AOSLO images is hindered by cell regions with heterogeneous intensity arising from shadowing effects and low contrast boundaries due to overlying blood vessels. Here, we present a multi-scale circular voting approach to overcome these challenges through the novel combination of: 1) iterative circular voting to identify candidate cells based on their circular structures, 2) a multi-scale strategy to identify the optimal circular voting response, and 3) clustering to improve robustness while removing false positives. We acquired images from three healthy subjects at various locations on the retina and manually labeled cell locations to create ground-truth for evaluating the detection accuracy. The images span a large range of cell densities. The overall recall, precision, and F1 score were 91±4%, 84±10%, and 87±7% (Mean±SD). Results showed that our method for the identification of cone photoreceptor inner segments performs well even with low contrast cell boundaries and vessel obscuration. These encouraging results demonstrate that the proposed approach can robustly and accurately identify cells in split detection AOSLO images.
Wang, Min; Tian, Yun
2018-01-01
The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance. PMID:29861711
Improving resolution of dynamic communities in human brain networks through targeted node removal
Turner, Benjamin O.; Miller, Michael B.; Carlson, Jean M.
2017-01-01
Current approaches to dynamic community detection in complex networks can fail to identify multi-scale community structure, or to resolve key features of community dynamics. We propose a targeted node removal technique to improve the resolution of community detection. Using synthetic oscillator networks with well-defined “ground truth” communities, we quantify the community detection performance of a common modularity maximization algorithm. We show that the performance of the algorithm on communities of a given size deteriorates when these communities are embedded in multi-scale networks with communities of different sizes, compared to the performance in a single-scale network. We demonstrate that targeted node removal during community detection improves performance on multi-scale networks, particularly when removing the most functionally cohesive nodes. Applying this approach to network neuroscience, we compare dynamic functional brain networks derived from fMRI data taken during both repetitive single-task and varied multi-task experiments. After the removal of regions in visual cortex, the most coherent functional brain area during the tasks, community detection is better able to resolve known functional brain systems into communities. In addition, node removal enables the algorithm to distinguish clear differences in brain network dynamics between these experiments, revealing task-switching behavior that was not identified with the visual regions present in the network. These results indicate that targeted node removal can improve spatial and temporal resolution in community detection, and they demonstrate a promising approach for comparison of network dynamics between neuroscientific data sets with different resolution parameters. PMID:29261662
Application of a multiscale maximum entropy image restoration algorithm to HXMT observations
NASA Astrophysics Data System (ADS)
Guan, Ju; Song, Li-Ming; Huo, Zhuo-Xi
2016-08-01
This paper introduces a multiscale maximum entropy (MSME) algorithm for image restoration of the Hard X-ray Modulation Telescope (HXMT), which is a collimated scan X-ray satellite mainly devoted to a sensitive all-sky survey and pointed observations in the 1-250 keV range. The novelty of the MSME method is to use wavelet decomposition and multiresolution support to control noise amplification at different scales. Our work is focused on the application and modification of this method to restore diffuse sources detected by HXMT scanning observations. An improved method, the ensemble multiscale maximum entropy (EMSME) algorithm, is proposed to alleviate the problem of mode mixing exiting in MSME. Simulations have been performed on the detection of the diffuse source Cen A by HXMT in all-sky survey mode. The results show that the MSME method is adapted to the deconvolution task of HXMT for diffuse source detection and the improved method could suppress noise and improve the correlation and signal-to-noise ratio, thus proving itself a better algorithm for image restoration. Through one all-sky survey, HXMT could reach a capacity of detecting a diffuse source with maximum differential flux of 0.5 mCrab. Supported by Strategic Priority Research Program on Space Science, Chinese Academy of Sciences (XDA04010300) and National Natural Science Foundation of China (11403014)
Kemeny, Steven Frank; Clyne, Alisa Morss
2011-04-01
Fiber alignment plays a critical role in the structure and function of cells and tissues. While fiber alignment quantification is important to experimental analysis and several different methods for quantifying fiber alignment exist, many studies focus on qualitative rather than quantitative analysis perhaps due to the complexity of current fiber alignment methods. Speed and sensitivity were compared in edge detection and fast Fourier transform (FFT) for measuring actin fiber alignment in cells exposed to shear stress. While edge detection using matrix multiplication was consistently more sensitive than FFT, image processing time was significantly longer. However, when MATLAB functions were used to implement edge detection, MATLAB's efficient element-by-element calculations and fast filtering techniques reduced computation cost 100 times compared to the matrix multiplication edge detection method. The new computation time was comparable to the FFT method, and MATLAB edge detection produced well-distributed fiber angle distributions that statistically distinguished aligned and unaligned fibers in half as many sample images. When the FFT sensitivity was improved by dividing images into smaller subsections, processing time grew larger than the time required for MATLAB edge detection. Implementation of edge detection in MATLAB is simpler, faster, and more sensitive than FFT for fiber alignment quantification.
Ultrasound image edge detection based on a novel multiplicative gradient and Canny operator.
Zheng, Yinfei; Zhou, Yali; Zhou, Hao; Gong, Xiaohong
2015-07-01
To achieve the fast and accurate segmentation of ultrasound image, a novel edge detection method for speckle noised ultrasound images was proposed, which was based on the traditional Canny and a novel multiplicative gradient operator. The proposed technique combines a new multiplicative gradient operator of non-Newtonian type with the traditional Canny operator to generate the initial edge map, which is subsequently optimized by the following edge tracing step. To verify the proposed method, we compared it with several other edge detection methods that had good robustness to noise, with experiments on the simulated and in vivo medical ultrasound image. Experimental results showed that the proposed algorithm has higher speed for real-time processing, and the edge detection accuracy could be 75% or more. Thus, the proposed method is very suitable for fast and accurate edge detection of medical ultrasound images. © The Author(s) 2014.
Restricted cross-scale habitat selection by American beavers.
Francis, Robert A; Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming
2017-12-01
Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection.
Restricted cross-scale habitat selection by American beavers
Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming
2017-01-01
Abstract Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection. PMID:29492032
Multi-scale structures of turbulent magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, T. K. M., E-mail: takuma.nakamura@oeaw.ac.at; Nakamura, R.; Narita, Y.
2016-05-15
We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in whichmore » modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission.« less
Multi-scale structures of turbulent magnetic reconnection
NASA Astrophysics Data System (ADS)
Nakamura, T. K. M.; Nakamura, R.; Narita, Y.; Baumjohann, W.; Daughton, W.
2016-05-01
We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in which modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission.
Information theoretic analysis of canny edge detection in visual communication
NASA Astrophysics Data System (ADS)
Jiang, Bo; Rahman, Zia-ur
2011-06-01
In general edge detection evaluation, the edge detectors are examined, analyzed, and compared either visually or with a metric for specific an application. This analysis is usually independent of the characteristics of the image-gathering, transmission and display processes that do impact the quality of the acquired image and thus, the resulting edge image. We propose a new information theoretic analysis of edge detection that unites the different components of the visual communication channel and assesses edge detection algorithms in an integrated manner based on Shannon's information theory. The edge detection algorithm here is considered to achieve high performance only if the information rate from the scene to the edge approaches the maximum possible. Thus, by setting initial conditions of the visual communication system as constant, different edge detection algorithms could be evaluated. This analysis is normally limited to linear shift-invariant filters so in order to examine the Canny edge operator in our proposed system, we need to estimate its "power spectral density" (PSD). Since the Canny operator is non-linear and shift variant, we perform the estimation for a set of different system environment conditions using simulations. In our paper we will first introduce the PSD of the Canny operator for a range of system parameters. Then, using the estimated PSD, we will assess the Canny operator using information theoretic analysis. The information-theoretic metric is also used to compare the performance of the Canny operator with other edge-detection operators. This also provides a simple tool for selecting appropriate edgedetection algorithms based on system parameters, and for adjusting their parameters to maximize information throughput.
Quantitative Ultrasound Assessment of Duchenne Muscular Dystrophy Using Edge Detection Analysis.
Koppaka, Sisir; Shklyar, Irina; Rutkove, Seward B; Darras, Basil T; Anthony, Brian W; Zaidman, Craig M; Wu, Jim S
2016-09-01
The purpose of this study was to investigate the ability of quantitative ultrasound (US) using edge detection analysis to assess patients with Duchenne muscular dystrophy (DMD). After Institutional Review Board approval, US examinations with fixed technical parameters were performed unilaterally in 6 muscles (biceps, deltoid, wrist flexors, quadriceps, medial gastrocnemius, and tibialis anterior) in 19 boys with DMD and 21 age-matched control participants. The muscles of interest were outlined by a tracing tool, and the upper third of the muscle was used for analysis. Edge detection values for each muscle were quantified by the Canny edge detection algorithm and then normalized to the number of edge pixels in the muscle region. The edge detection values were extracted at multiple sensitivity thresholds (0.01-0.99) to determine the optimal threshold for distinguishing DMD from normal. Area under the receiver operating curve values were generated for each muscle and averaged across the 6 muscles. The average age in the DMD group was 8.8 years (range, 3.0-14.3 years), and the average age in the control group was 8.7 years (range, 3.4-13.5 years). For edge detection, a Canny threshold of 0.05 provided the best discrimination between DMD and normal (area under the curve, 0.96; 95% confidence interval, 0.84-1.00). According to a Mann-Whitney test, edge detection values were significantly different between DMD and controls (P < .0001). Quantitative US imaging using edge detection can distinguish patients with DMD from healthy controls at low Canny thresholds, at which discrimination of small structures is best. Edge detection by itself or in combination with other tests can potentially serve as a useful biomarker of disease progression and effectiveness of therapy in muscle disorders.
BP fusion model for the detection of oil spills on the sea by remote sensing
NASA Astrophysics Data System (ADS)
Chen, Weiwei; An, Jubai; Zhang, Hande; Lin, Bin
2003-06-01
Oil spills are very serious marine pollution in many countries. In order to detect and identify the oil-spilled on the sea by remote sensor, scientists have to conduct a research work on the remote sensing image. As to the detection of oil spills on the sea, edge detection is an important technology in image processing. There are many algorithms of edge detection developed for image processing. These edge detection algorithms always have their own advantages and disadvantages in the image processing. Based on the primary requirements of edge detection of the oil spills" image on the sea, computation time and detection accuracy, we developed a fusion model. The model employed a BP neural net to fuse the detection results of simple operators. The reason we selected BP neural net as the fusion technology is that the relation between simple operators" result of edge gray level and the image"s true edge gray level is nonlinear, while BP neural net is good at solving the nonlinear identification problem. Therefore in this paper we trained a BP neural net by some oil spill images, then applied the BP fusion model on the edge detection of other oil spill images and obtained a good result. In this paper the detection result of some gradient operators and Laplacian operator are also compared with the result of BP fusion model to analysis the fusion effect. At last the paper pointed out that the fusion model has higher accuracy and higher speed in the processing oil spill image"s edge detection.
Detection and labeling ribs on expiration chest radiographs
NASA Astrophysics Data System (ADS)
Park, Mira; Jin, Jesse S.; Wilson, Laurence S.
2003-06-01
Typically, inspiration is preferred when xraying the lungs. The x-ray technologist will ask a patient to be still and to take a deep breath and to hold it. This not only reduces the possibility of a blurred image but also enhances the quality of the image since air-filled lungs are easier to see on x-ray film. However, inspiration causes low density in the inner part of lung field. That means that ribs in the inner part of lung field have lower density than the other parts nearer to the border of the lung field. That is why edge detection algorithms often fail to detect ribs. Therefore to make rib edges clear we try to produce an expiration lung field using a 'hemi-elliptical cavity.' Based on the expiration lung field, we extract the rib edges using canny edge detector and a new connectivity method, called '4 way with 10-neighbors connectivity' to detect clavicle and rib edge candidates. Once the edge candidates are formed, our system selects the best candidates using knowledge-based constraints such as a gradient, length and location. The edges can be paired and labeled as superior rib edge and inferior rib edge. Then the system uses the clavicle, which is obtained in a same method for the rib edge detection, as a landmark to label all detected ribs.
A non-reference evaluation method for edge detection of wear particles in ferrograph images
NASA Astrophysics Data System (ADS)
Wang, Jingqiu; Bi, Ju; Wang, Lianjun; Wang, Xiaolei
2018-02-01
Edges are one of the most important features of wear particles in a ferrograph image and are widely used to extract parameters, recognize types of wear particles, and assist in the identification of the wear mode and severity. Edge detection is a critical step in ferrograph image processing and analysis. Till date, there has been no single algorithm that guarantees the production of good quality edges in ferrograph images for a variety of applications. Therefore, it is desirable to have a reliable evaluation method for measuring the performance of various edge detection algorithms and for aiding in the selection of the optimal parameter and algorithm for ferrographic applications. In this paper, a new non-reference method for the objective evaluation of wear particle edge detection is proposed. In this method, a comprehensive index of edge evaluation is composed of three components, i.e., the reconstruction based similarity sub-index between the original image and the reconstructed image, the confidence degree sub-index used to show the true or false degree of the edge pixels, and the edge form sub-index that is used to determine the direction consistency and width uniformity of the edges. Two experiments are performed to illustrate the validity of the proposed method. First, this method is used to select the best parameters for an edge detection algorithm, and it is then used to compare the results obtained using various edge detection algorithms and determine the best algorithm. Experimental results of various real ferrograph images verify the effectiveness of the proposed method.
Multiscale multifractal time irreversibility analysis of stock markets
NASA Astrophysics Data System (ADS)
Jiang, Chenguang; Shang, Pengjian; Shi, Wenbin
2016-11-01
Time irreversibility is one of the most important properties of nonstationary time series. Complex time series often demonstrate even multiscale time irreversibility, such that not only the original but also coarse-grained time series are asymmetric over a wide range of scales. We study the multiscale time irreversibility of time series. In this paper, we develop a method called multiscale multifractal time irreversibility analysis (MMRA), which allows us to extend the description of time irreversibility to include the dependence on the segment size and statistical moments. We test the effectiveness of MMRA in detecting multifractality and time irreversibility of time series generated from delayed Henon map and binomial multifractal model. Then we employ our method to the time irreversibility analysis of stock markets in different regions. We find that the emerging market has higher multifractality degree and time irreversibility compared with developed markets. In this sense, the MMRA method may provide new angles in assessing the evolution stage of stock markets.
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Wang, Jie; Ming, Dongping; Lv, Guonian
2017-01-01
In this paper, we first propose several novel concepts for object-based image analysis, which include line-based shape regularity, line density, and scale-based best feature value (SBV), based on the region-line primitive association framework (RLPAF). We then propose a raft cultivation area (RCA) extraction method for high spatial resolution (HSR) remote sensing imagery based on multi-scale feature fusion and spatial rule induction. The proposed method includes the following steps: (1) Multi-scale region primitives (segments) are obtained by image segmentation method HBC-SEG, and line primitives (straight lines) are obtained by phase-based line detection method. (2) Association relationships between regions and lines are built based on RLPAF, and then multi-scale RLPAF features are extracted and SBVs are selected. (3) Several spatial rules are designed to extract RCAs within sea waters after land and water separation. Experiments show that the proposed method can successfully extract different-shaped RCAs from HR images with good performance.
System and method for automated object detection in an image
Kenyon, Garrett T.; Brumby, Steven P.; George, John S.; Paiton, Dylan M.; Schultz, Peter F.
2015-10-06
A contour/shape detection model may use relatively simple and efficient kernels to detect target edges in an object within an image or video. A co-occurrence probability may be calculated for two or more edge features in an image or video using an object definition. Edge features may be differentiated between in response to measured contextual support, and prominent edge features may be extracted based on the measured contextual support. The object may then be identified based on the extracted prominent edge features.
NASA Astrophysics Data System (ADS)
Zhang, Yongping; Shang, Pengjian; Xiong, Hui; Xia, Jianan
Time irreversibility is an important property of nonequilibrium dynamic systems. A visibility graph approach was recently proposed, and this approach is generally effective to measure time irreversibility of time series. However, its result may be unreliable when dealing with high-dimensional systems. In this work, we consider the joint concept of time irreversibility and adopt the phase-space reconstruction technique to improve this visibility graph approach. Compared with the previous approach, the improved approach gives a more accurate estimate for the irreversibility of time series, and is more effective to distinguish irreversible and reversible stochastic processes. We also use this approach to extract the multiscale irreversibility to account for the multiple inherent dynamics of time series. Finally, we apply the approach to detect the multiscale irreversibility of financial time series, and succeed to distinguish the time of financial crisis and the plateau. In addition, Asian stock indexes away from other indexes are clearly visible in higher time scales. Simulations and real data support the effectiveness of the improved approach when detecting time irreversibility.
Multiscale CNNs for Brain Tumor Segmentation and Diagnosis.
Zhao, Liya; Jia, Kebin
2016-01-01
Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs). Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness.
NASA Astrophysics Data System (ADS)
Guo, Tian; Xu, Zili
2018-03-01
Measurement noise is inevitable in practice; thus, it is difficult to identify defects, cracks or damage in a structure while suppressing noise simultaneously. In this work, a novel method is introduced to detect multiple damage in noisy environments. Based on multi-scale space analysis for discrete signals, a method for extracting damage characteristics from the measured displacement mode shape is illustrated. Moreover, the proposed method incorporates a data fusion algorithm to further eliminate measurement noise-based interference. The effectiveness of the method is verified by numerical and experimental methods applied to different structural types. The results demonstrate that there are two advantages to the proposed method. First, damage features are extracted by the difference of the multi-scale representation; this step is taken such that the interference of noise amplification can be avoided. Second, a data fusion technique applied to the proposed method provides a global decision, which retains the damage features while maximally eliminating the uncertainty. Monte Carlo simulations are utilized to validate that the proposed method has a higher accuracy in damage detection.
The crack detection algorithm of pavement image based on edge information
NASA Astrophysics Data System (ADS)
Yang, Chunde; Geng, Mingyue
2018-05-01
As the images of pavement cracks are affected by a large amount of complicated noises, such as uneven illumination and water stains, the detected cracks are discontinuous and the main body information at the edge of the cracks is easily lost. In order to solve the problem, a crack detection algorithm in pavement image based on edge information is proposed. Firstly, the image is pre-processed by the nonlinear gray-scale transform function and reconstruction filter to enhance the linear characteristic of the crack. At the same time, an adaptive thresholding method is designed to coarsely extract the cracks edge according to the gray-scale gradient feature and obtain the crack gradient information map. Secondly, the candidate edge points are obtained according to the gradient information, and the edge is detected based on the single pixel percolation processing, which is improved by using the local difference between pixels in the fixed region. Finally, complete crack is obtained by filling the crack edge. Experimental results show that the proposed method can accurately detect pavement cracks and preserve edge information.
Poisson denoising on the sphere: application to the Fermi gamma ray space telescope
NASA Astrophysics Data System (ADS)
Schmitt, J.; Starck, J. L.; Casandjian, J. M.; Fadili, J.; Grenier, I.
2010-07-01
The Large Area Telescope (LAT), the main instrument of the Fermi gamma-ray Space telescope, detects high energy gamma rays with energies from 20 MeV to more than 300 GeV. The two main scientific objectives, the study of the Milky Way diffuse background and the detection of point sources, are complicated by the lack of photons. That is why we need a powerful Poisson noise removal method on the sphere which is efficient on low count Poisson data. This paper presents a new multiscale decomposition on the sphere for data with Poisson noise, called multi-scale variance stabilizing transform on the sphere (MS-VSTS). This method is based on a variance stabilizing transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has a quasi constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. MS-VSTS consists of decomposing the data into a sparse multi-scale dictionary like wavelets or curvelets, and then applying a VST on the coefficients in order to get almost Gaussian stabilized coefficients. In this work, we use the isotropic undecimated wavelet transform (IUWT) and the curvelet transform as spherical multi-scale transforms. Then, binary hypothesis testing is carried out to detect significant coefficients, and the denoised image is reconstructed with an iterative algorithm based on hybrid steepest descent (HSD). To detect point sources, we have to extract the Galactic diffuse background: an extension of the method to background separation is then proposed. In contrary, to study the Milky Way diffuse background, we remove point sources with a binary mask. The gaps have to be interpolated: an extension to inpainting is then proposed. The method, applied on simulated Fermi LAT data, proves to be adaptive, fast and easy to implement.
de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás
2017-12-01
The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z.; Bessa, M. A.; Liu, W.K.
A predictive computational theory is shown for modeling complex, hierarchical materials ranging from metal alloys to polymer nanocomposites. The theory can capture complex mechanisms such as plasticity and failure that span across multiple length scales. This general multiscale material modeling theory relies on sound principles of mathematics and mechanics, and a cutting-edge reduced order modeling method named self-consistent clustering analysis (SCA) [Zeliang Liu, M.A. Bessa, Wing Kam Liu, “Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials,” Comput. Methods Appl. Mech. Engrg. 306 (2016) 319–341]. SCA reduces by several orders of magnitude the computational cost of micromechanical andmore » concurrent multiscale simulations, while retaining the microstructure information. This remarkable increase in efficiency is achieved with a data-driven clustering method. Computationally expensive operations are performed in the so-called offline stage, where degrees of freedom (DOFs) are agglomerated into clusters. The interaction tensor of these clusters is computed. In the online or predictive stage, the Lippmann-Schwinger integral equation is solved cluster-wise using a self-consistent scheme to ensure solution accuracy and avoid path dependence. To construct a concurrent multiscale model, this scheme is applied at each material point in a macroscale structure, replacing a conventional constitutive model with the average response computed from the microscale model using just the SCA online stage. A regularized damage theory is incorporated in the microscale that avoids the mesh and RVE size dependence that commonly plagues microscale damage calculations. The SCA method is illustrated with two cases: a carbon fiber reinforced polymer (CFRP) structure with the concurrent multiscale model and an application to fatigue prediction for additively manufactured metals. For the CFRP problem, a speed up estimated to be about 43,000 is achieved by using the SCA method, as opposed to FE2, enabling the solution of an otherwise computationally intractable problem. The second example uses a crystal plasticity constitutive law and computes the fatigue potency of extrinsic microscale features such as voids. This shows that local stress and strain are capture sufficiently well by SCA. This model has been incorporated in a process-structure-properties prediction framework for process design in additive manufacturing.« less
NASA Astrophysics Data System (ADS)
de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás
2017-12-01
The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth.
Detection of Cardiac Abnormalities from Multilead ECG using Multiscale Phase Alternation Features.
Tripathy, R K; Dandapat, S
2016-06-01
The cardiac activities such as the depolarization and the relaxation of atria and ventricles are observed in electrocardiogram (ECG). The changes in the morphological features of ECG are the symptoms of particular heart pathology. It is a cumbersome task for medical experts to visually identify any subtle changes in the morphological features during 24 hours of ECG recording. Therefore, the automated analysis of ECG signal is a need for accurate detection of cardiac abnormalities. In this paper, a novel method for automated detection of cardiac abnormalities from multilead ECG is proposed. The method uses multiscale phase alternation (PA) features of multilead ECG and two classifiers, k-nearest neighbor (KNN) and fuzzy KNN for classification of bundle branch block (BBB), myocardial infarction (MI), heart muscle defect (HMD) and healthy control (HC). The dual tree complex wavelet transform (DTCWT) is used to decompose the ECG signal of each lead into complex wavelet coefficients at different scales. The phase of the complex wavelet coefficients is computed and the PA values at each wavelet scale are used as features for detection and classification of cardiac abnormalities. A publicly available multilead ECG database (PTB database) is used for testing of the proposed method. The experimental results show that, the proposed multiscale PA features and the fuzzy KNN classifier have better performance for detection of cardiac abnormalities with sensitivity values of 78.12 %, 80.90 % and 94.31 % for BBB, HMD and MI classes. The sensitivity value of proposed method for MI class is compared with the state-of-art techniques from multilead ECG.
NASA Astrophysics Data System (ADS)
Zhou, Chuan; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Chughtai, Aamer; Patel, Smita; Cascade, Philip N.; Sahiner, Berkman; Wei, Jun; Ge, Jun; Kazerooni, Ella A.
2007-03-01
CT pulmonary angiography (CTPA) has been reported to be an effective means for clinical diagnosis of pulmonary embolism (PE). We are developing a computer-aided detection (CAD) system to assist radiologist in PE detection in CTPA images. 3D multiscale filters in combination with a newly designed response function derived from the eigenvalues of Hessian matrices is used to enhance vascular structures including the vessel bifurcations and suppress non-vessel structures such as the lymphoid tissues surrounding the vessels. A hierarchical EM estimation is then used to segment the vessels by extracting the high response voxels at each scale. The segmented vessels are pre-screened for suspicious PE areas using a second adaptive multiscale EM estimation. A rule-based false positive (FP) reduction method was designed to identify the true PEs based on the features of PE and vessels. 43 CTPA scans were used as an independent test set to evaluate the performance of PE detection. Experienced chest radiologists identified the PE locations which were used as "gold standard". 435 PEs were identified in the artery branches, of which 172 and 263 were subsegmental and proximal to the subsegmental, respectively. The computer-detected volume was considered true positive (TP) when it overlapped with 10% or more of the gold standard PE volume. Our preliminary test results show that, at an average of 33 and 24 FPs/case, the sensitivities of our PE detection method were 81% and 78%, respectively, for proximal PEs, and 79% and 73%, respectively, for subsegmental PEs. The study demonstrates the feasibility that the automated method can identify PE accurately on CTPA images. Further study is underway to improve the sensitivity and reduce the FPs.
Image edge detection based tool condition monitoring with morphological component analysis.
Yu, Xiaolong; Lin, Xin; Dai, Yiquan; Zhu, Kunpeng
2017-07-01
The measurement and monitoring of tool condition are keys to the product precision in the automated manufacturing. To meet the need, this study proposes a novel tool wear monitoring approach based on the monitored image edge detection. Image edge detection has been a fundamental tool to obtain features of images. This approach extracts the tool edge with morphological component analysis. Through the decomposition of original tool wear image, the approach reduces the influence of texture and noise for edge measurement. Based on the target image sparse representation and edge detection, the approach could accurately extract the tool wear edge with continuous and complete contour, and is convenient in charactering tool conditions. Compared to the celebrated algorithms developed in the literature, this approach improves the integrity and connectivity of edges, and the results have shown that it achieves better geometry accuracy and lower error rate in the estimation of tool conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Action detection by double hierarchical multi-structure space-time statistical matching model
NASA Astrophysics Data System (ADS)
Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang
2018-03-01
Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.
Action detection by double hierarchical multi-structure space–time statistical matching model
NASA Astrophysics Data System (ADS)
Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang
2018-06-01
Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.
eDNAoccupancy: An R package for multi-scale occupancy modeling of environmental DNA data
Dorazio, Robert; Erickson, Richard A.
2017-01-01
In this article we describe eDNAoccupancy, an R package for fitting Bayesian, multi-scale occupancy models. These models are appropriate for occupancy surveys that include three, nested levels of sampling: primary sample units within a study area, secondary sample units collected from each primary unit, and replicates of each secondary sample unit. This design is commonly used in occupancy surveys of environmental DNA (eDNA). eDNAoccupancy allows users to specify and fit multi-scale occupancy models with or without covariates, to estimate posterior summaries of occurrence and detection probabilities, and to compare different models using Bayesian model-selection criteria. We illustrate these features by analyzing two published data sets: eDNA surveys of a fungal pathogen of amphibians and eDNA surveys of an endangered fish species.
Vessel Segmentation in Retinal Images Using Multi-scale Line Operator and K-Means Clustering.
Saffarzadeh, Vahid Mohammadi; Osareh, Alireza; Shadgar, Bita
2014-04-01
Detecting blood vessels is a vital task in retinal image analysis. The task is more challenging with the presence of bright and dark lesions in retinal images. Here, a method is proposed to detect vessels in both normal and abnormal retinal fundus images based on their linear features. First, the negative impact of bright lesions is reduced by using K-means segmentation in a perceptive space. Then, a multi-scale line operator is utilized to detect vessels while ignoring some of the dark lesions, which have intensity structures different from the line-shaped vessels in the retina. The proposed algorithm is tested on two publicly available STARE and DRIVE databases. The performance of the method is measured by calculating the area under the receiver operating characteristic curve and the segmentation accuracy. The proposed method achieves 0.9483 and 0.9387 localization accuracy against STARE and DRIVE respectively.
NASA Astrophysics Data System (ADS)
Steiner, N.; McDonald, K. C.; Dinardo, S. J.; Miller, C. E.
2015-12-01
Arctic permafrost soils contain a vast amount of organic carbon that will be released into the atmosphere as carbon dioxide or methane when thawed. Surface to air greenhouse gas fluxes are largely dependent on such surface controls as the frozen/thawed state of the snow and soil. Satellite remote sensing is an important means to create continuous mapping of surface properties. Advances in the ability to determine soil and snow freeze/thaw timings from microwave frequency observations improves upon our ability to predict the response of carbon gas emission to warming through synthesis with in-situ observation, such as the 2012-2015 Carbon in Arctic Reservoir Vulnerability Experiment (CARVE). Surface freeze/thaw or snowmelt timings are often derived using a constant or spatially/temporally variable threshold applied to time-series observations. Alternately, time-series singularity classifiers aim to detect discontinuous changes, or "edges", in time-series data similar to those that occur from the large contrast in dielectric constant during the freezing or thaw of soil or snow. We use multi-scale analysis of continuous wavelet transform spectral gradient brightness temperatures from various channel combinations of passive microwave radiometers, Advanced Microwave Scanning Radiometer (AMSR-E, AMSR2) and Special Sensor Microwave Imager (SSM/I F17) gridded at a 10 km posting with resolution proportional to the observational footprint. Channel combinations presented here aim to illustrate and differentiate timings of "edges" from transitions in surface water related to various landscape components (e.g. snow-melt, soil-thaw). To support an understanding of the physical basis of observed "edges" we compare satellite measurements with simple radiative transfer microwave-emission modeling of the snow, soil and vegetation using in-situ observations from the SNOw TELemetry (SNOTEL) automated weather stations. Results of freeze/thaw and snow-melt timings and trends are reported for Alaska and the North-West Canadian Arctic for the period 2002 to 2015.
NASA Astrophysics Data System (ADS)
Rivard, Camille; Montargès-Pelletier, Emmanuelle; Vantelon, Delphine; Pelletier, Manuel; Karunakaran, Chithra; Michot, Laurent J.; Villieras, Frédéric; Michau, Nicolas
2013-02-01
In the context of radioactive waste repository in geological formation, kaolinite-metallic iron interaction in chlorine solution was conducted in batch experiments, under anoxic conditions at 90 °C during 9 months. After a mineralogical characterization at a global scale, products were analyzed at the micrometer and nanometer scales by X-ray absorption spectroscopic techniques (XAS and STXM). Absorption at Al, Si and Fe edges was investigated to have a complete overview of the distribution and status of constituting elements. Whereas Si K-edge results do not evidence significant evolution of silicon status, investigations at Al K-edge and Fe L-edges demonstrate variations at aggregate and particle scales of IVAl:VIAl and Fe2+:Fe3+ ratios. Spectroscopic data evidence the systematic crystallization of Fe-serpentines onto the remaining particles of kaolinite and the absence of pure species (kaolinite or Fe-serpentines). Combination of spatially resolved spectroscopic analyses and TEM-EDXS elemental distribution aims to calculate unit cell formulae of Fe-serpentines layers and abundance of each species in mixed particles. For most of the investigated particles, results reveal that the variations of particles composition are directly linked to the relative contributions of kaolinite and Fe-berthierine in mixed particles. However, for some particles, microscale investigations evidence crystallization of two other Fe-serpentines species, devoid of aluminum, cronstedtite and greenalite.
Multiscale detection of sulfur cinquefoil using aerial photography.
Bridgett J. Naylor; Bryan A. Endress; Catherine G. Parks
2005-01-01
We evaluated the effectiveness of natural color aerial photography as a tool to improve detection, monitoring, and mapping of sulfur cinquefoil (Potentilla recta L.) infestations. Sulfur cinquefoil is an exotic perennial plant invading interior Pacific Northwest rangelands. Because sulfur cinquefoil produces distinctive pale yellow flowers, we...
Multiscale Magnetic Underdense Regions on the Solar Surface: Granular and Mesogranular Scales
NASA Astrophysics Data System (ADS)
Berrilli, F.; Scardigli, S.; Giordano, S.
2013-02-01
The Sun is a non-equilibrium, dissipative system subject to an energy flow that originates in its core. Convective overshooting motions create temperature and velocity structures that show a temporal and spatial multiscale evolution. As a result, photospheric structures are generally considered to be a direct manifestation of convective plasma motions. The plasma flows in the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns, which are observed as a variety of multiscale magnetic patterns. High-resolution magnetograms of the quiet solar surface revealed the presence of multiscale magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered to be a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales, from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales, we used a voids-detection method. The computed distribution of void length scales shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at mesogranular scales. The absence of preferred scales of organization in the 2 - 10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale.
Covariance, correlation matrix, and the multiscale community structure of networks.
Shen, Hua-Wei; Cheng, Xue-Qi; Fang, Bin-Xing
2010-07-01
Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this paper, we consider detecting the multiscale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multiscale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multiscale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multiscale community structure of network, as well as the translation and rotation transformations.
Multiscale Medical Image Fusion in Wavelet Domain
Khare, Ashish
2013-01-01
Wavelet transforms have emerged as a powerful tool in image fusion. However, the study and analysis of medical image fusion is still a challenging area of research. Therefore, in this paper, we propose a multiscale fusion of multimodal medical images in wavelet domain. Fusion of medical images has been performed at multiple scales varying from minimum to maximum level using maximum selection rule which provides more flexibility and choice to select the relevant fused images. The experimental analysis of the proposed method has been performed with several sets of medical images. Fusion results have been evaluated subjectively and objectively with existing state-of-the-art fusion methods which include several pyramid- and wavelet-transform-based fusion methods and principal component analysis (PCA) fusion method. The comparative analysis of the fusion results has been performed with edge strength (Q), mutual information (MI), entropy (E), standard deviation (SD), blind structural similarity index metric (BSSIM), spatial frequency (SF), and average gradient (AG) metrics. The combined subjective and objective evaluations of the proposed fusion method at multiple scales showed the effectiveness and goodness of the proposed approach. PMID:24453868
NASA Technical Reports Server (NTRS)
Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W.
2012-01-01
We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Azevedo, Eduardo; Abbott, Stephen; Koskela, Tuomas
The XGC fusion gyrokinetic code combines state-of-the-art, portable computational and algorithmic technologies to enable complicated multiscale simulations of turbulence and transport dynamics in ITER edge plasma on the largest US open-science computer, the CRAY XK7 Titan, at its maximal heterogeneous capability, which have not been possible before due to a factor of over 10 shortage in the time-to-solution for less than 5 days of wall-clock time for one physics case. Frontier techniques such as nested OpenMP parallelism, adaptive parallel I/O, staging I/O and data reduction using dynamic and asynchronous applications interactions, dynamic repartitioning.
Edge Detection Based On the Characteristic of Primary Visual Cortex Cells
NASA Astrophysics Data System (ADS)
Zhu, M. M.; Xu, Y. L.; Ma, H. Q.
2018-01-01
Aiming at the problem that it is difficult to balance the accuracy of edge detection and anti-noise performance, and referring to the dynamic and static perceptions of the primary visual cortex (V1) cells, a V1 cell model is established to perform edge detection. A spatiotemporal filter is adopted to simulate the receptive field of V1 simple cells, the model V1 cell is obtained after integrating the responses of simple cells by half-wave rectification and normalization, Then the natural image edge is detected by using static perception of V1 cells. The simulation results show that, the V1 model can basically fit the biological data and has the universality of biology. What’s more, compared with other edge detection operators, the proposed model is more effective and has better robustness
Using new edges for anomaly detection in computer networks
Neil, Joshua Charles
2017-07-04
Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.
Using new edges for anomaly detection in computer networks
Neil, Joshua Charles
2015-05-19
Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.
Anti-impulse-noise Edge Detection via Anisotropic Morphological Directional Derivatives.
Shui, Peng-Lang; Wang, Fu-Ping
2017-07-13
Traditional differential-based edge detection suffers from abrupt degradation in performance when images are corrupted by impulse noises. The morphological operators such as the median filters and weighted median filters possess the intrinsic ability to counteract impulse noise. In this paper, by combining the biwindow configuration with weighted median filters, anisotropic morphological directional derivatives (AMDD) robust to impulse noise are proposed to measure the local grayscale variation around a pixel. For ideal step edges, the AMDD spatial response and directional representation are derived. The characteristics and edge resolution of two kinds of typical biwindows are analyzed thoroughly. In terms of the AMDD spatial response and directional representation of ideal step edges, the spatial matched filter is used to extract the edge strength map (ESM) from the AMDDs of an image. The spatial and directional matched filters are used to extract the edge direction map (EDM). Embedding the extracted ESM and EDM into the standard route of the differential-based edge detection, an anti-impulse-noise AMDD-based edge detector is constructed. It is compared with the existing state-of-the-art detectors on a recognized image dataset for edge detection evaluation. The results show that it attains competitive performance in noise-free and Gaussian noise cases and the best performance in impulse noise cases.
NASA Astrophysics Data System (ADS)
Chakraborty, M.; Das Gupta, R.; Mukhopadhyay, S.; Anjum, N.; Patsa, S.; Ray, J. G.
2017-03-01
This manuscript presents an analytical treatment on the feasibility of multi-scale Gabor filter bank response for non-invasive oral cancer pre-screening and detection in the long infrared spectrum. Incapability of present healthcare technology to detect oral cancer in budding stage manifests in high mortality rate. The paper contributes a step towards automation in non-invasive computer-aided oral cancer detection using an amalgamation of image processing and machine intelligence paradigms. Previous works have shown the discriminative difference of facial temperature distribution between a normal subject and a patient. The proposed work, for the first time, exploits this difference further by representing the facial Region of Interest(ROI) using multiscale rotation invariant Gabor filter bank responses followed by classification using Radial Basis Function(RBF) kernelized Support Vector Machine(SVM). The proposed study reveals an initial increase in classification accuracy with incrementing image scales followed by degradation of performance; an indication that addition of more and more finer scales tend to embed noisy information instead of discriminative texture patterns. Moreover, the performance is consistently better for filter responses from profile faces compared to frontal faces.This is primarily attributed to the ineptness of Gabor kernels to analyze low spatial frequency components over a small facial surface area. On our dataset comprising of 81 malignant, 59 pre-cancerous, and 63 normal subjects, we achieve state-of-the-art accuracy of 85.16% for normal v/s precancerous and 84.72% for normal v/s malignant classification. This sets a benchmark for further investigation of multiscale feature extraction paradigms in IR spectrum for oral cancer detection.
Image enhancement of real-time television to benefit the visually impaired.
Wolffsohn, James S; Mukhopadhyay, Ditipriya; Rubinstein, Martin
2007-09-01
To examine the use of real-time, generic edge detection, image processing techniques to enhance the television viewing of the visually impaired. Prospective, clinical experimental study. One hundred and two sequential visually impaired (average age 73.8 +/- 14.8 years; 59% female) in a single center optimized a dynamic television image with respect to edge detection filter (Prewitt, Sobel, or the two combined), color (red, green, blue, or white), and intensity (one to 15 times) of the overlaid edges. They then rated the original television footage compared with a black-and-white image displaying the edges detected and the original television image with the detected edges overlaid in the chosen color and at the intensity selected. Footage of news, an advertisement, and the end of program credits were subjectively assessed in a random order. A Prewitt filter was preferred (44%) compared with the Sobel filter (27%) or a combination of the two (28%). Green and white were equally popular for displaying the detected edges (32%), with blue (22%) and red (14%) less so. The average preferred edge intensity was 3.5 +/- 1.7 times. The image-enhanced television was significantly preferred to the original (P < .001), which in turn was preferred to viewing the detected edges alone (P < .001) for each of the footage clips. Preference was not dependent on the condition causing visual impairment. Seventy percent were definitely willing to buy a set-top box that could achieve these effects for a reasonable price. Simple generic edge detection image enhancement options can be performed on television in real-time and significantly enhance the viewing of the visually impaired.
Gyrokinetic simulations of DIII-D near-edge L-mode plasmas
NASA Astrophysics Data System (ADS)
Neiser, Tom; Jenko, Frank; Carter, Troy; Schmitz, Lothar; Merlo, Gabriele; Told, Daniel; Banon Navarro, Alejandro; McKee, George; Yan, Zheng
2017-10-01
In order to understand the L-H transition, a good understanding of the L-mode edge region is necessary. We perform nonlinear gyrokinetic simulations of a DIII-D L-mode discharge with the GENE code in the near-edge, which we define as ρtor >= 0.8 . At ρ = 0.9 , ion-scale simulations reproduce experimental heat fluxes within the uncertainty of the experiment. At ρ = 0 . 8 , electron-scale simulations reproduce the experimental electron heat flux while ion-scale simulations do not reproduce the respective ion heat flux due to a strong poloidal zonal flow. However, we reproduce both electron and ion heat fluxes by increasing the local ion temperature gradient by 80 % . Local fitting to the CER data in the domain 0.7 <= ρ <= 0.9 is compatible with such an increase in ion temperature gradient within the error bars. Ongoing multi-scale simulations are investigating whether radial electron streamers could dampen the poloidal zonal flows at ρ = 0.8 and increase the radial ion-scale flux. Supported by U.S. DOE under Contract Numbers DE-FG02-08ER54984, DE-FC02-04ER54698, and DE-AC02-05CH11231.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seyedhosseini, Mojtaba; Kumar, Ritwik; Jurrus, Elizabeth R.
2011-10-01
Automated neural circuit reconstruction through electron microscopy (EM) images is a challenging problem. In this paper, we present a novel method that exploits multi-scale contextual information together with Radon-like features (RLF) to learn a series of discriminative models. The main idea is to build a framework which is capable of extracting information about cell membranes from a large contextual area of an EM image in a computationally efficient way. Toward this goal, we extract RLF that can be computed efficiently from the input image and generate a scale-space representation of the context images that are obtained at the output ofmore » each discriminative model in the series. Compared to a single-scale model, the use of a multi-scale representation of the context image gives the subsequent classifiers access to a larger contextual area in an effective way. Our strategy is general and independent of the classifier and has the potential to be used in any context based framework. We demonstrate that our method outperforms the state-of-the-art algorithms in detection of neuron membranes in EM images.« less
Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series
NASA Astrophysics Data System (ADS)
Gao, Zhong-Ke; Cai, Qing; Yang, Yu-Xuan; Dang, Wei-Dong; Zhang, Shan-Shan
2016-10-01
Visibility graph has established itself as a powerful tool for analyzing time series. We in this paper develop a novel multiscale limited penetrable horizontal visibility graph (MLPHVG). We use nonlinear time series from two typical complex systems, i.e., EEG signals and two-phase flow signals, to demonstrate the effectiveness of our method. Combining MLPHVG and support vector machine, we detect epileptic seizures from the EEG signals recorded from healthy subjects and epilepsy patients and the classification accuracy is 100%. In addition, we derive MLPHVGs from oil-water two-phase flow signals and find that the average clustering coefficient at different scales allows faithfully identifying and characterizing three typical oil-water flow patterns. These findings render our MLPHVG method particularly useful for analyzing nonlinear time series from the perspective of multiscale network analysis.
Cell edge detection in JPEG2000 wavelet domain - analysis on sigmoid function edge model.
Punys, Vytenis; Maknickas, Ramunas
2011-01-01
Big virtual microscopy images (80K x 60K pixels and larger) are usually stored using the JPEG2000 image compression scheme. Diagnostic quantification, based on image analysis, might be faster if performed on compressed data (approx. 20 times less the original amount), representing the coefficients of the wavelet transform. The analysis of possible edge detection without reverse wavelet transform is presented in the paper. Two edge detection methods, suitable for JPEG2000 bi-orthogonal wavelets, are proposed. The methods are adjusted according calculated parameters of sigmoid edge model. The results of model analysis indicate more suitable method for given bi-orthogonal wavelet.
A strain energy filter for 3D vessel enhancement with application to pulmonary CT images.
Xiao, Changyan; Staring, Marius; Shamonin, Denis; Reiber, Johan H C; Stolk, Jan; Stoel, Berend C
2011-02-01
The traditional Hessian-related vessel filters often suffer from detecting complex structures like bifurcations due to an over-simplified cylindrical model. To solve this problem, we present a shape-tuned strain energy density function to measure vessel likelihood in 3D medical images. This method is initially inspired by established stress-strain principles in mechanics. By considering the Hessian matrix as a stress tensor, the three invariants from orthogonal tensor decomposition are used independently or combined to formulate distinctive functions for vascular shape discrimination, brightness contrast and structure strength measuring. Moreover, a mathematical description of Hessian eigenvalues for general vessel shapes is obtained, based on an intensity continuity assumption, and a relative Hessian strength term is presented to ensure the dominance of second-order derivatives as well as suppress undesired step-edges. Finally, we adopt the multi-scale scheme to find an optimal solution through scale space. The proposed method is validated in experiments with a digital phantom and non-contrast-enhanced pulmonary CT data. It is shown that our model performed more effectively in enhancing vessel bifurcations and preserving details, compared to three existing filters. Copyright © 2010 Elsevier B.V. All rights reserved.
Medical Image Fusion Based on Feature Extraction and Sparse Representation
Wei, Gao; Zongxi, Song
2017-01-01
As a novel multiscale geometric analysis tool, sparse representation has shown many advantages over the conventional image representation methods. However, the standard sparse representation does not take intrinsic structure and its time complexity into consideration. In this paper, a new fusion mechanism for multimodal medical images based on sparse representation and decision map is proposed to deal with these problems simultaneously. Three decision maps are designed including structure information map (SM) and energy information map (EM) as well as structure and energy map (SEM) to make the results reserve more energy and edge information. SM contains the local structure feature captured by the Laplacian of a Gaussian (LOG) and EM contains the energy and energy distribution feature detected by the mean square deviation. The decision map is added to the normal sparse representation based method to improve the speed of the algorithm. Proposed approach also improves the quality of the fused results by enhancing the contrast and reserving more structure and energy information from the source images. The experiment results of 36 groups of CT/MR, MR-T1/MR-T2, and CT/PET images demonstrate that the method based on SR and SEM outperforms five state-of-the-art methods. PMID:28321246
A Semi-Automatic Method for Image Analysis of Edge Dynamics in Living Cells
Huang, Lawrence; Helmke, Brian P.
2011-01-01
Spatial asymmetry of actin edge ruffling contributes to the process of cell polarization and directional migration, but mechanisms by which external cues control actin polymerization near cell edges remain unclear. We designed a quantitative image analysis strategy to measure the spatiotemporal distribution of actin edge ruffling. Time-lapse images of endothelial cells (ECs) expressing mRFP-actin were segmented using an active contour method. In intensity line profiles oriented normal to the cell edge, peak detection identified the angular distribution of polymerized actin within 1 µm of the cell edge, which was localized to lamellipodia and edge ruffles. Edge features associated with filopodia and peripheral stress fibers were removed. Circular statistical analysis enabled detection of cell polarity, indicated by a unimodal distribution of edge ruffles. To demonstrate the approach, we detected a rapid, nondirectional increase in edge ruffling in serum-stimulated ECs and a change in constitutive ruffling orientation in quiescent, nonpolarized ECs. Error analysis using simulated test images demonstrate robustness of the method to variations in image noise levels, edge ruffle arc length, and edge intensity gradient. These quantitative measurements of edge ruffling dynamics enable investigation at the cellular length scale of the underlying molecular mechanisms regulating actin assembly and cell polarization. PMID:21643526
Improvement and implementation for Canny edge detection algorithm
NASA Astrophysics Data System (ADS)
Yang, Tao; Qiu, Yue-hong
2015-07-01
Edge detection is necessary for image segmentation and pattern recognition. In this paper, an improved Canny edge detection approach is proposed due to the defect of traditional algorithm. A modified bilateral filter with a compensation function based on pixel intensity similarity judgment was used to smooth image instead of Gaussian filter, which could preserve edge feature and remove noise effectively. In order to solve the problems of sensitivity to the noise in gradient calculating, the algorithm used 4 directions gradient templates. Finally, Otsu algorithm adaptively obtain the dual-threshold. All of the algorithm simulated with OpenCV 2.4.0 library in the environments of vs2010, and through the experimental analysis, the improved algorithm has been proved to detect edge details more effectively and with more adaptability.
Retinal Microaneurysms Detection Using Gradient Vector Analysis and Class Imbalance Classification.
Dai, Baisheng; Wu, Xiangqian; Bu, Wei
2016-01-01
Retinal microaneurysms (MAs) are the earliest clinically observable lesions of diabetic retinopathy. Reliable automated MAs detection is thus critical for early diagnosis of diabetic retinopathy. This paper proposes a novel method for the automated MAs detection in color fundus images based on gradient vector analysis and class imbalance classification, which is composed of two stages, i.e. candidate MAs extraction and classification. In the first stage, a candidate MAs extraction algorithm is devised by analyzing the gradient field of the image, in which a multi-scale log condition number map is computed based on the gradient vectors for vessel removal, and then the candidate MAs are localized according to the second order directional derivatives computed in different directions. Due to the complexity of fundus image, besides a small number of true MAs, there are also a large amount of non-MAs in the extracted candidates. Classifying the true MAs and the non-MAs is an extremely class imbalanced classification problem. Therefore, in the second stage, several types of features including geometry, contrast, intensity, edge, texture, region descriptors and other features are extracted from the candidate MAs and a class imbalance classifier, i.e., RUSBoost, is trained for the MAs classification. With the Retinopathy Online Challenge (ROC) criterion, the proposed method achieves an average sensitivity of 0.433 at 1/8, 1/4, 1/2, 1, 2, 4 and 8 false positives per image on the ROC database, which is comparable with the state-of-the-art approaches, and 0.321 on the DiaRetDB1 V2.1 database, which outperforms the state-of-the-art approaches.
NASA Astrophysics Data System (ADS)
Phan, Raymond; Androutsos, Dimitrios
2008-01-01
In this paper, we present a logo and trademark retrieval system for unconstrained color image databases that extends the Color Edge Co-occurrence Histogram (CECH) object detection scheme. We introduce more accurate information to the CECH, by virtue of incorporating color edge detection using vector order statistics. This produces a more accurate representation of edges in color images, in comparison to the simple color pixel difference classification of edges as seen in the CECH. Our proposed method is thus reliant on edge gradient information, and as such, we call this the Color Edge Gradient Co-occurrence Histogram (CEGCH). We use this as the main mechanism for our unconstrained color logo and trademark retrieval scheme. Results illustrate that the proposed retrieval system retrieves logos and trademarks with good accuracy, and outperforms the CECH object detection scheme with higher precision and recall.
Implementation of sobel method to detect the seed rubber plant leaves
NASA Astrophysics Data System (ADS)
Suyanto; Munte, J.
2018-03-01
This research was conducted to develop a system that can identify and recognize the type of rubber tree based on the pattern of leaves of the plant. The steps research are started with the identification of the image data acquisition, image processing, image edge detection and identification method template matching. Edge detection is using Sobel edge detection. Pattern recognition would detect image as input and compared with other images in a database called templates. Experiments carried out in one phase, identification of the leaf edge, using a rubber plant leaf image 14 are superior and 5 for each type of test images (clones) of the plant. From the experimental results obtained by the recognition rate of 91.79%.
Multiscale multichroic focal planes for measurements of the cosmic microwave background
NASA Astrophysics Data System (ADS)
Cukierman, Ari; Lee, Adrian T.; Raum, Christopher; Suzuki, Aritoki; Westbrook, Benjamin
2018-01-01
We report on the development of multiscale multichroic focal planes for measurements of the cosmic microwave background (CMB). A multichroic focal plane, i.e., one that consists of pixels that are simultaneously sensitive in multiple frequency bands, is an efficient architecture for increasing the sensitivity of an experiment as well as for disentangling the contamination due to galactic foregrounds, which is increasingly becoming the limiting factor in extracting cosmological information from CMB measurements. To achieve these goals, it is necessary to observe across a broad frequency range spanning roughly 30-350 GHz. For this purpose, the Berkeley CMB group has been developing multichroic pixels consisting of planar superconducting sinuous antennas coupled to extended hemispherical lenslets, which operate at sub-Kelvin temperatures. The sinuous antennas, microwave circuitry and the transition-edge-sensor (TES) bolometers to which they are coupled are integrated in a single lithographed wafer.We describe the design, fabrication, testing and performance of multichroic pixels with bandwidths of 3:1 and 4:1 across the entire frequency range of interest. Additionally, we report on a demonstration of multiscale pixels, i.e., pixels whose effective size changes as a function of frequency. This property keeps the beam width approximately constant across all frequencies, which in turn allows the sensitivity of the experiment to be optimal in every frequency band. We achieve this by creating phased arrays from neighboring lenslet-coupled sinuous antennas, where the size of each phased array is chosen independently for each frequency band. We describe the microwave circuitry in detail as well as the benefits of a multiscale architecture, e.g., mitigation of beam non-idealities, reduced readout requirements, etc. Finally, we discuss the design and fabrication of the detector modules and focal-plane structures including cryogenic readout components, which enable the integration of our devices in current and future CMB experiments.
An Adaptive Immune Genetic Algorithm for Edge Detection
NASA Astrophysics Data System (ADS)
Li, Ying; Bai, Bendu; Zhang, Yanning
An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.
NASA Astrophysics Data System (ADS)
Lian, Enyang; Ren, Yingyu; Han, Yunfeng; Liu, Weixin; Jin, Ningde; Zhao, Junying
2016-11-01
The multi-scale analysis is an important method for detecting nonlinear systems. In this study, we carry out experiments and measure the fluctuation signals from a rotating electric field conductance sensor with eight electrodes. We first use a recurrence plot to recognise flow patterns in vertical upward gas-liquid two-phase pipe flow from measured signals. Then we apply a multi-scale morphological analysis based on the first-order difference scatter plot to investigate the signals captured from the vertical upward gas-liquid two-phase flow loop test. We find that the invariant scaling exponent extracted from the multi-scale first-order difference scatter plot with the bisector of the second-fourth quadrant as the reference line is sensitive to the inhomogeneous distribution characteristics of the flow structure, and the variation trend of the exponent is helpful to understand the process of breakup and coalescence of the gas phase. In addition, we explore the dynamic mechanism influencing the inhomogeneous distribution of the gas phase in terms of adaptive optimal kernel time-frequency representation. The research indicates that the system energy is a factor influencing the distribution of the gas phase and the multi-scale morphological analysis based on the first-order difference scatter plot is an effective method for indicating the inhomogeneous distribution of the gas phase in gas-liquid two-phase flow.
2004-01-01
login identity to the one under which the system call is executed, the parameters of the system call execution - file names including full path...Anomaly detection COAST-EIMDT Distributed on target hosts EMERALD Distributed on target hosts and security servers Signature recognition Anomaly...uses a centralized architecture, and employs an anomaly detection technique for intrusion detection. The EMERALD project [80] proposes a
NASA Astrophysics Data System (ADS)
Li, Yifan; Liang, Xihui; Lin, Jianhui; Chen, Yuejian; Liu, Jianxin
2018-02-01
This paper presents a novel signal processing scheme, feature selection based multi-scale morphological filter (MMF), for train axle bearing fault detection. In this scheme, more than 30 feature indicators of vibration signals are calculated for axle bearings with different conditions and the features which can reflect fault characteristics more effectively and representatively are selected using the max-relevance and min-redundancy principle. Then, a filtering scale selection approach for MMF based on feature selection and grey relational analysis is proposed. The feature selection based MMF method is tested on diagnosis of artificially created damages of rolling bearings of railway trains. Experimental results show that the proposed method has a superior performance in extracting fault features of defective train axle bearings. In addition, comparisons are performed with the kurtosis criterion based MMF and the spectral kurtosis criterion based MMF. The proposed feature selection based MMF method outperforms these two methods in detection of train axle bearing faults.
Change Detection of Remote Sensing Images by Dt-Cwt and Mrf
NASA Astrophysics Data System (ADS)
Ouyang, S.; Fan, K.; Wang, H.; Wang, Z.
2017-05-01
Aiming at the significant loss of high frequency information during reducing noise and the pixel independence in change detection of multi-scale remote sensing image, an unsupervised algorithm is proposed based on the combination between Dual-tree Complex Wavelet Transform (DT-CWT) and Markov random Field (MRF) model. This method first performs multi-scale decomposition for the difference image by the DT-CWT and extracts the change characteristics in high-frequency regions by using a MRF-based segmentation algorithm. Then our method estimates the final maximum a posterior (MAP) according to the segmentation algorithm of iterative condition model (ICM) based on fuzzy c-means(FCM) after reconstructing the high-frequency and low-frequency sub-bands of each layer respectively. Finally, the method fuses the above segmentation results of each layer by using the fusion rule proposed to obtain the mask of the final change detection result. The results of experiment prove that the method proposed is of a higher precision and of predominant robustness properties.
Contour Tracking with a Spatio-Temporal Intensity Moment.
Demi, Marcello
2016-06-01
Standard edge detection operators such as the Laplacian of Gaussian and the gradient of Gaussian can be used to track contours in image sequences. When using edge operators, a contour, which is determined on a frame of the sequence, is simply used as a starting contour to locate the nearest contour on the subsequent frame. However, the strategy used to look for the nearest edge points may not work when tracking contours of non isolated gray level discontinuities. In these cases, strategies derived from the optical flow equation, which look for similar gray level distributions, appear to be more appropriate since these can work with a lower frame rate than that needed for strategies based on pure edge detection operators. However, an optical flow strategy tends to propagate the localization errors through the sequence and an additional edge detection procedure is essential to compensate for such a drawback. In this paper a spatio-temporal intensity moment is proposed which integrates the two basic functions of edge detection and tracking.
MMS Observations of Ion-Scale Magnetic Island in the Magnetosheath Turbulent Plasma
NASA Technical Reports Server (NTRS)
Huang, S. Y.; Sahraoui, F.; Retino, A.; Contel, O. Le; Yuan, Z. G.; Chasapis, A.; Aunai, N.; Breuillard, H.; Deng, X. H.; Zhou, M.;
2016-01-01
In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 di, where di is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma..
Monocular precrash vehicle detection: features and classifiers.
Sun, Zehang; Bebis, George; Miller, Ronald
2006-07-01
Robust and reliable vehicle detection from images acquired by a moving vehicle (i.e., on-road vehicle detection) is an important problem with applications to driver assistance systems and autonomous, self-guided vehicles. The focus of this work is on the issues of feature extraction and classification for rear-view vehicle detection. Specifically, by treating the problem of vehicle detection as a two-class classification problem, we have investigated several different feature extraction methods such as principal component analysis, wavelets, and Gabor filters. To evaluate the extracted features, we have experimented with two popular classifiers, neural networks and support vector machines (SVMs). Based on our evaluation results, we have developed an on-board real-time monocular vehicle detection system that is capable of acquiring grey-scale images, using Ford's proprietary low-light camera, achieving an average detection rate of 10 Hz. Our vehicle detection algorithm consists of two main steps: a multiscale driven hypothesis generation step and an appearance-based hypothesis verification step. During the hypothesis generation step, image locations where vehicles might be present are extracted. This step uses multiscale techniques not only to speed up detection, but also to improve system robustness. The appearance-based hypothesis verification step verifies the hypotheses using Gabor features and SVMs. The system has been tested in Ford's concept vehicle under different traffic conditions (e.g., structured highway, complex urban streets, and varying weather conditions), illustrating good performance.
A speeded-up saliency region-based contrast detection method for small targets
NASA Astrophysics Data System (ADS)
Li, Zhengjie; Zhang, Haiying; Bai, Jiaojiao; Zhou, Zhongjun; Zheng, Huihuang
2018-04-01
To cope with the rapid development of the real applications for infrared small targets, the researchers have tried their best to pursue more robust detection methods. At present, the contrast measure-based method has become a promising research branch. Following the framework, in this paper, a speeded-up contrast measure scheme is proposed based on the saliency detection and density clustering. First, the saliency region is segmented by saliency detection method, and then, the Multi-scale contrast calculation is carried out on it instead of traversing the whole image. Second, the target with a certain "integrity" property in spatial is exploited to distinguish the target from the isolated noises by density clustering. Finally, the targets are detected by a self-adaptation threshold. Compared with time-consuming MPCM (Multiscale Patch Contrast Map), the time cost of the speeded-up version is within a few seconds. Additional, due to the use of "clustering segmentation", the false alarm caused by heavy noises can be restrained to a lower level. The experiments show that our method has a satisfied FASR (False alarm suppression ratio) and real-time performance compared with the state-of-art algorithms no matter in cloudy sky or sea-sky background.
ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining.
Huan, Tianxiao; Sivachenko, Andrey Y; Harrison, Scott H; Chen, Jake Y
2008-08-12
New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges according to associated data values. We demonstrated the advantages of these new capabilities through three biological network visualization case studies: human disease association network, drug-target interaction network and protein-peptide mapping network. The architectural design of ProteoLens makes it suitable for bioinformatics expert data analysts who are experienced with relational database management to perform large-scale integrated network visual explorations. ProteoLens is a promising visual analytic platform that will facilitate knowledge discoveries in future network and systems biology studies.
Method and apparatus for detecting flaws and defects in heat seals
NASA Technical Reports Server (NTRS)
Rai, Kula R. (Inventor); Lew, Thomas M. (Inventor); Sinclair, Robert B. (Inventor)
1993-01-01
Flaws and defects in heat seals formed between sheets of translucent film are identified by optically examining consecutive lateral sections of the seal along the seal length. Each lateral seal section is illuminated and an optical sensor array detects the intensity of light transmitted through the seal section for the purpose of detecting and locating edges in the heat seal. A line profile for each consecutive seal section is derived having an amplitude proportional to the change in light intensity across the seal section. Instances in the derived line profile where the amplitude is greater than a threshold level indicate the detection of a seal edge. The detected edges in each derived line profile are then compared to a preset profile edge standard to identify the existence of a flaw or defect.
Edge-directed inference for microaneurysms detection in digital fundus images
NASA Astrophysics Data System (ADS)
Huang, Ke; Yan, Michelle; Aviyente, Selin
2007-03-01
Microaneurysms (MAs) detection is a critical step in diabetic retinopathy screening, since MAs are the earliest visible warning of potential future problems. A variety of algorithms have been proposed for MAs detection in mass screening. Different methods have been proposed for MAs detection. The core technology for most of existing methods is based on a directional mathematical morphological operation called "Top-Hat" filter that requires multiple filtering operations at each pixel. Background structure, uneven illumination and noise often cause confusion between MAs and some non-MA structures and limits the applicability of the filter. In this paper, a novel detection framework based on edge directed inference is proposed for MAs detection. The candidate MA regions are first delineated from the edge map of a fundus image. Features measuring shape, brightness and contrast are extracted for each candidate MA region to better exclude false detection from true MAs. Algorithmic analysis and empirical evaluation reveal that the proposed edge directed inference outperforms the "Top-Hat" based algorithm in both detection accuracy and computational speed.
Multivariate multiscale entropy of financial markets
NASA Astrophysics Data System (ADS)
Lu, Yunfan; Wang, Jun
2017-11-01
In current process of quantifying the dynamical properties of the complex phenomena in financial market system, the multivariate financial time series are widely concerned. In this work, considering the shortcomings and limitations of univariate multiscale entropy in analyzing the multivariate time series, the multivariate multiscale sample entropy (MMSE), which can evaluate the complexity in multiple data channels over different timescales, is applied to quantify the complexity of financial markets. Its effectiveness and advantages have been detected with numerical simulations with two well-known synthetic noise signals. For the first time, the complexity of four generated trivariate return series for each stock trading hour in China stock markets is quantified thanks to the interdisciplinary application of this method. We find that the complexity of trivariate return series in each hour show a significant decreasing trend with the stock trading time progressing. Further, the shuffled multivariate return series and the absolute multivariate return series are also analyzed. As another new attempt, quantifying the complexity of global stock markets (Asia, Europe and America) is carried out by analyzing the multivariate returns from them. Finally we utilize the multivariate multiscale entropy to assess the relative complexity of normalized multivariate return volatility series with different degrees.
[Progress in industrial bioprocess engineering in China].
Zhuang, Yingping; Chen, Hongzhang; Xia, Jianye; Tang, Wenjun; Zhao, Zhimin
2015-06-01
The advances of industrial biotechnology highly depend on the development of industrial bioprocess researches. In China, we are facing several challenges because of a huge national industrial fermentation capacity. The industrial bioprocess development experienced several main stages. This work mainly reviews the development of the industrial bioprocess in China during the past 30 or 40 years: including the early stage kinetics model study derived from classical chemical engineering, researching method based on control theory, multiple-parameter analysis techniques of on-line measuring instruments and techniques, and multi-scale analysis theory, and also solid state fermentation techniques and fermenters. In addition, the cutting edge of bioprocess engineering was also addressed.
Leveraging unsupervised training sets for multi-scale compartmentalization in renal pathology
NASA Astrophysics Data System (ADS)
Lutnick, Brendon; Tomaszewski, John E.; Sarder, Pinaki
2017-03-01
Clinical pathology relies on manual compartmentalization and quantification of biological structures, which is time consuming and often error-prone. Application of computer vision segmentation algorithms to histopathological image analysis, in contrast, can offer fast, reproducible, and accurate quantitative analysis to aid pathologists. Algorithms tunable to different biologically relevant structures can allow accurate, precise, and reproducible estimates of disease states. In this direction, we have developed a fast, unsupervised computational method for simultaneously separating all biologically relevant structures from histopathological images in multi-scale. Segmentation is achieved by solving an energy optimization problem. Representing the image as a graph, nodes (pixels) are grouped by minimizing a Potts model Hamiltonian, adopted from theoretical physics, modeling interacting electron spins. Pixel relationships (modeled as edges) are used to update the energy of the partitioned graph. By iteratively improving the clustering, the optimal number of segments is revealed. To reduce computational time, the graph is simplified using a Cantor pairing function to intelligently reduce the number of included nodes. The classified nodes are then used to train a multiclass support vector machine to apply the segmentation over the full image. Accurate segmentations of images with as many as 106 pixels can be completed only in 5 sec, allowing for attainable multi-scale visualization. To establish clinical potential, we employed our method in renal biopsies to quantitatively visualize for the first time scale variant compartments of heterogeneous intra- and extraglomerular structures simultaneously. Implications of the utility of our method extend to fields such as oncology, genomics, and non-biological problems.
Monitoring forest dynamics with multi-scale and time series imagery.
Huang, Chunbo; Zhou, Zhixiang; Wang, Di; Dian, Yuanyong
2016-05-01
To learn the forest dynamics and evaluate the ecosystem services of forest effectively, a timely acquisition of spatial and quantitative information of forestland is very necessary. Here, a new method was proposed for mapping forest cover changes by combining multi-scale satellite remote-sensing imagery with time series data. Using time series Normalized Difference Vegetation Index products derived from the Moderate Resolution Imaging Spectroradiometer images (MODIS-NDVI) and Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) images as data source, a hierarchy stepwise analysis from coarse scale to fine scale was developed for detecting the forest change area. At the coarse scale, MODIS-NDVI data with 1-km resolution were used to detect the changes in land cover types and a land cover change map was constructed using NDVI values at vegetation growing seasons. At the fine scale, based on the results at the coarse scale, Landsat TM/ETM+ data with 30-m resolution were used to precisely detect the forest change location and forest change trend by analyzing time series forest vegetation indices (IFZ). The method was tested using the data for Hubei Province, China. The MODIS-NDVI data from 2001 to 2012 were used to detect the land cover changes, and the overall accuracy was 94.02 % at the coarse scale. At the fine scale, the available TM/ETM+ images at vegetation growing seasons between 2001 and 2012 were used to locate and verify forest changes in the Three Gorges Reservoir Area, and the overall accuracy was 94.53 %. The accuracy of the two layer hierarchical monitoring results indicated that the multi-scale monitoring method is feasible and reliable.
Processing Images of Craters for Spacecraft Navigation
NASA Technical Reports Server (NTRS)
Cheng, Yang; Johnson, Andrew E.; Matthies, Larry H.
2009-01-01
A crater-detection algorithm has been conceived to enable automation of what, heretofore, have been manual processes for utilizing images of craters on a celestial body as landmarks for navigating a spacecraft flying near or landing on that body. The images are acquired by an electronic camera aboard the spacecraft, then digitized, then processed by the algorithm, which consists mainly of the following steps: 1. Edges in an image detected and placed in a database. 2. Crater rim edges are selected from the edge database. 3. Edges that belong to the same crater are grouped together. 4. An ellipse is fitted to each group of crater edges. 5. Ellipses are refined directly in the image domain to reduce errors introduced in the detection of edges and fitting of ellipses. 6. The quality of each detected crater is evaluated. It is planned to utilize this algorithm as the basis of a computer program for automated, real-time, onboard processing of crater-image data. Experimental studies have led to the conclusion that this algorithm is capable of a detection rate >93 percent, a false-alarm rate <5 percent, a geometric error <0.5 pixel, and a position error <0.3 pixel.
Reconfiguration of Cortical Networks in MDD Uncovered by Multiscale Community Detection with fMRI.
He, Ye; Lim, Sol; Fortunato, Santo; Sporns, Olaf; Zhang, Lei; Qiu, Jiang; Xie, Peng; Zuo, Xi-Nian
2018-04-01
Major depressive disorder (MDD) is known to be associated with altered interactions between distributed brain regions. How these regional changes relate to the reorganization of cortical functional systems, and their modulation by antidepressant medication, is relatively unexplored. To identify changes in the community structure of cortical functional networks in MDD, we performed a multiscale community detection algorithm on resting-state functional connectivity networks of unmedicated MDD (uMDD) patients (n = 46), medicated MDD (mMDD) patients (n = 38), and healthy controls (n = 50), which yielded a spectrum of multiscale community partitions. we selected an optimal resolution level by identifying the most stable community partition for each group. uMDD and mMDD groups exhibited a similar reconfiguration of the community structure of the visual association and the default mode systems but showed different reconfiguration profiles in the frontoparietal control (FPC) subsystems. Furthermore, the central system (somatomotor/salience) and 3 frontoparietal subsystems showed strengthened connectivity with other communities in uMDD but, with the exception of 1 frontoparietal subsystem, returned to control levels in mMDD. These findings provide evidence for reconfiguration of specific cortical functional systems associated with MDD, as well as potential effects of medication in restoring disease-related network alterations, especially those of the FPC system.
NASA Astrophysics Data System (ADS)
Agurto, C.; Barriga, S.; Murray, V.; Murillo, S.; Zamora, G.; Bauman, W.; Pattichis, M.; Soliz, P.
2011-03-01
In the United States and most of the western world, the leading causes of vision impairment and blindness are age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. In the last decade, research in automatic detection of retinal lesions associated with eye diseases has produced several automatic systems for detection and screening of AMD, DR, and glaucoma. However. advanced, sight-threatening stages of DR and AMD can present with lesions not commonly addressed by current approaches to automatic screening. In this paper we present an automatic eye screening system based on multiscale Amplitude Modulation-Frequency Modulation (AM-FM) decompositions that addresses not only the early stages, but also advanced stages of retinal and optic nerve disease. Ten different experiments were performed in which abnormal features such as neovascularization, drusen, exudates, pigmentation abnormalities, geographic atrophy (GA), and glaucoma were classified. The algorithm achieved an accuracy detection range of [0.77 to 0.98] area under the ROC curve for a set of 810 images. When set to a specificity value of 0.60, the sensitivity of the algorithm to the detection of abnormal features ranged between 0.88 and 1.00. Our system demonstrates that, given an appropriate training set, it is possible to use a unique algorithm to detect a broad range of eye diseases.
Alpha-ray detection with a MgB 2 transition edge sensor
NASA Astrophysics Data System (ADS)
Okayasu, S.; Katagiri, M.; Hojou, K.; Morii, Y.; Miki, S.; Shimakage, H.; Wang, Z.; Ishida, T.
2008-09-01
We have been investigating for neutron detection with the MgB 2 transition edge sensor (TES). For the purpose, we have been developing a low noise measurement system for the detection. To confirm the performance of the detecting sensor, alpha ray detection from an americium-241 ( 241Am) alpha-ray source was achieved. A short microfabricated sample with 10 μm length and 1 μm width is used to improve the S/N ratio. The detection is achieved under a constant current condition in the range between 1 and 6 μA bias current, and the resistivity changes at the sample due to the alpha ray irradiation is detected just on the transition edge.
NASA Astrophysics Data System (ADS)
Li, Yue
1990-01-01
Ultrasonic imaging plays an important role in medical imaging. But the images exhibit a granular structure, commonly known as speckle. The speckle tends to mask the presence of low-contrast lesions and reduces the ability of a human observer to resolve fine details. Our interest in this research is to examine the problem of edge detection and come up with methods for improving the visualization of organ boundaries and tissue inhomogeneity edges. An edge in an image can be formed either by acoustic impedance change or by scatterer volume density change (or both). The echo produced from these two kinds of edges has different properties. In this work, it has been proved that the echo from a scatterer volume density edge is the Hilbert transform of the echo from a rough impedance boundary (except for a constant) under certain conditions. This result can be used for choosing the correct signal to transmit to optimize the performance of edge detectors and characterizing an edge. The signal to noise ratio of the echo produced by a scatterer volume density edge is also obtained. It is found that: (1) By transmitting a signal with high bandwidth ratio and low center frequency, one can obtain a higher signal to noise ratio. (2) For large area edges, the farther the transducer is from the edge, the larger is the signal to noise ratio. But for small area edges, the nearer the transducer is to the edge, the larger is the signal to noise ratio. These results enable us to maximize the signal to noise ratio by adjusting these parameters. (3) The signal to noise ratio is not only related to the ratio of scatterer volume densities at the edge, but also related to the absolute value of scatterer volume densities. Some of these results have been proved through simulation and experiment. Different edge detection methods have been used to detect simulated scatterer volume density edges to compare their performance. A so-called interlaced array method has been developed for speckle reduction in the images formed by synthetic aperture focussing technique, and experiments have been done to evaluate its performance.
Ultrasound-Guided Bar Edge Labeling in the Perioperative Assessment of Nuss Bar Removal.
Incerti, Filippo; Bertocchini, Alessia; Ghionzoli, Marco; Messineo, Antonio
2017-12-01
Nuss bar removal after minimally invasive repair of pectus excavatum in patients where bar ends are not palpable, can be a challenging procedure for the surgeon; a blind dissection toward the bar edges may lead to intercostal vessels or deep intercostal muscle injuries. In this article, we describe a fast, repeatable, low-cost technique to detect bar edge and stabilizers. A perioperative scan is performed by means of a portable ultrasonograph a few minutes before the operation. The bar edge stabilizer is detected as a hyperechogenic image with a concentric crescent while the bar edge is detected as a hyperechogenic dashed line with net edges. The scan is performed, and the actual projection on the skin of the metal plaque bulk is then labeled on the patient's chest by an ink marker. We believe that this method may improve morbidity, operative time, and consequently, hospitalization length and costs.
Edge detection and mathematic fitting for corneal surface with Matlab software.
Di, Yue; Li, Mei-Yan; Qiao, Tong; Lu, Na
2017-01-01
To select the optimal edge detection methods to identify the corneal surface, and compare three fitting curve equations with Matlab software. Fifteen subjects were recruited. The corneal images from optical coherence tomography (OCT) were imported into Matlab software. Five edge detection methods (Canny, Log, Prewitt, Roberts, Sobel) were used to identify the corneal surface. Then two manual identifying methods (ginput and getpts) were applied to identify the edge coordinates respectively. The differences among these methods were compared. Binomial curve (y=Ax 2 +Bx+C), Polynomial curve [p(x)=p1x n +p2x n-1 +....+pnx+pn+1] and Conic section (Ax 2 +Bxy+Cy 2 +Dx+Ey+F=0) were used for curve fitting the corneal surface respectively. The relative merits among three fitting curves were analyzed. Finally, the eccentricity (e) obtained by corneal topography and conic section were compared with paired t -test. Five edge detection algorithms all had continuous coordinates which indicated the edge of the corneal surface. The ordinates of manual identifying were close to the inside of the actual edges. Binomial curve was greatly affected by tilt angle. Polynomial curve was lack of geometrical properties and unstable. Conic section could calculate the tilted symmetry axis, eccentricity, circle center, etc . There were no significant differences between 'e' values by corneal topography and conic section ( t =0.9143, P =0.3760 >0.05). It is feasible to simulate the corneal surface with mathematical curve with Matlab software. Edge detection has better repeatability and higher efficiency. The manual identifying approach is an indispensable complement for detection. Polynomial and conic section are both the alternative methods for corneal curve fitting. Conic curve was the optimal choice based on the specific geometrical properties.
NASA Technical Reports Server (NTRS)
Yamakov, V.; Saether, E.; Glaessgen, E. H.
2008-01-01
Intergranular fracture is a dominant mode of failure in ultrafine grained materials. In the present study, the atomistic mechanisms of grain-boundary debonding during intergranular fracture in aluminum are modeled using a coupled molecular dynamics finite element simulation. Using a statistical mechanics approach, a cohesive-zone law in the form of a traction-displacement constitutive relationship, characterizing the load transfer across the plane of a growing edge crack, is extracted from atomistic simulations and then recast in a form suitable for inclusion within a continuum finite element model. The cohesive-zone law derived by the presented technique is free of finite size effects and is statistically representative for describing the interfacial debonding of a grain boundary (GB) interface examined at atomic length scales. By incorporating the cohesive-zone law in cohesive-zone finite elements, the debonding of a GB interface can be simulated in a coupled continuum-atomistic model, in which a crack starts in the continuum environment, smoothly penetrates the continuum-atomistic interface, and continues its propagation in the atomistic environment. This study is a step towards relating atomistically derived decohesion laws to macroscopic predictions of fracture and constructing multiscale models for nanocrystalline and ultrafine grained materials.
NASA Astrophysics Data System (ADS)
Wilder, F. D.; Ergun, R. E.; Newman, D. L.; Goodrich, K. A.; Trattner, K. J.; Goldman, M. V.; Eriksson, S.; Jaynes, A. N.; Leonard, T.; Malaspina, D. M.; Ahmadi, N.; Schwartz, S. J.; Burch, J. L.; Torbert, R. B.; Argall, M. R.; Giles, B. L.; Phan, T. D.; Le Contel, O.; Graham, D. B.; Khotyaintsev, Yu V.; Strangeway, R. J.; Russell, C. T.; Magnes, W.; Plaschke, F.; Lindqvist, P.-A.
2017-05-01
We show observations of whistler mode waves in both the low-latitude boundary layer (LLBL) and on closed magnetospheric field lines during a crossing of the dayside reconnecting magnetopause by the Magnetospheric Multiscale (MMS) mission on 11 October 2015. The whistlers in the LLBL were on the electron edge of the magnetospheric separatrix and exhibited high propagation angles with respect to the background field, approaching 40°, with bursty and nonlinear parallel electric field signatures. The whistlers in the closed magnetosphere had Poynting flux that was more field aligned. Comparing the reduced electron distributions for each event, the magnetospheric whistlers appear to be consistent with anisotropy-driven waves, while the distribution in the LLBL case includes anisotropic backward resonant electrons and a forward resonant beam at near half the electron-Alfvén speed. Results are compared with the previously published observations by MMS on 19 September 2015 of LLBL whistler waves. The observations suggest that whistlers in the LLBL can be both beam and anisotropy driven, and the relative contribution of each might depend on the distance from the X line.
Edge detection techniques for iris recognition system
NASA Astrophysics Data System (ADS)
Tania, U. T.; Motakabber, S. M. A.; Ibrahimy, M. I.
2013-12-01
Nowadays security and authentication are the major parts of our daily life. Iris is one of the most reliable organ or part of human body which can be used for identification and authentication purpose. To develop an iris authentication algorithm for personal identification, this paper examines two edge detection techniques for iris recognition system. Between the Sobel and the Canny edge detection techniques, the experimental result shows that the Canny's technique has better ability to detect points in a digital image where image gray level changes even at slow rate.
Using multiscale texture and density features for near-term breast cancer risk analysis
Sun, Wenqing; Tseng, Tzu-Liang (Bill); Qian, Wei; Zhang, Jianying; Saltzstein, Edward C.; Zheng, Bin; Lure, Fleming; Yu, Hui; Zhou, Shi
2015-01-01
Purpose: To help improve efficacy of screening mammography by eventually establishing a new optimal personalized screening paradigm, the authors investigated the potential of using the quantitative multiscale texture and density feature analysis of digital mammograms to predict near-term breast cancer risk. Methods: The authors’ dataset includes digital mammograms acquired from 340 women. Among them, 141 were positive and 199 were negative/benign cases. The negative digital mammograms acquired from the “prior” screening examinations were used in the study. Based on the intensity value distributions, five subregions at different scales were extracted from each mammogram. Five groups of features, including density and texture features, were developed and calculated on every one of the subregions. Sequential forward floating selection was used to search for the effective combinations. Using the selected features, a support vector machine (SVM) was optimized using a tenfold validation method to predict the risk of each woman having image-detectable cancer in the next sequential mammography screening. The area under the receiver operating characteristic curve (AUC) was used as the performance assessment index. Results: From a total number of 765 features computed from multiscale subregions, an optimal feature set of 12 features was selected. Applying this feature set, a SVM classifier yielded performance of AUC = 0.729 ± 0.021. The positive predictive value was 0.657 (92 of 140) and the negative predictive value was 0.755 (151 of 200). Conclusions: The study results demonstrated a moderately high positive association between risk prediction scores generated by the quantitative multiscale mammographic image feature analysis and the actual risk of a woman having an image-detectable breast cancer in the next subsequent examinations. PMID:26127038
NASA Astrophysics Data System (ADS)
Li, Zhenwei; Xu, Xianli; Xu, Chaohao; Liu, Meixian; Wang, Kelin
2018-03-01
Southwest China, as one of the largest continuous karst areas in the world, is a severely eroded region due to its special geological condition. Thus, soil and water conservation measures such as dam construction have been extensively implemented in this region to control sediment delivery. However, it remains unclear how dam construction affects multiscale variability of sediment discharge (SD) and its potentially influential factors in southwest China. To assess this, annual SD, water discharge (WD), precipitation (PT), potential evapotranspiration (PET), and normalized differential vegetation index (NDVI) data from 1955 to 2015 were obtained from two karst watersheds of Liujiang (no large dams) and Hongshui (dam-controlled). These sites shared the similar climatic conditions. The Mann-Kendal test, Wilcoxon rank-sum test, and continuous wavelet transform analysis was used to detect the trends and periodicity in SD, and wavelet coherence analysis were employed to detect the temporal covariance between SD and WD, PT, PET, and NDVI. Results indicated that the multiscale variability of SD was strongly influenced by dam construction. The annual SD showed significant 4-year periodic oscillation in the Liujiang watershed, while no significant cycles were found in the Hongshui watershed. Dam construction exerted substantial influence on the multiscale correlations between SD and its associated factors. The time scales that the NDVI resonated with SD were concentrated on the periodicity of 2- and 3-year in the Liujiang watershed. In contrast, no significant periodicities were observed in the Hongshu watershed. This study yields a greater understanding of SD dynamics, and is helpful for better watershed management in karst areas of southwest China.
Vegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants.
Seager, S; Turner, E L; Schafer, J; Ford, E B
2005-06-01
Earth's deciduous plants have a sharp order-of-magnitude increase in leaf reflectance between approximately 700 and 750 nm wavelength. This strong reflectance of Earth's vegetation suggests that surface biosignatures with sharp spectral features might be detectable in the spectrum of scattered light from a spatially unresolved extrasolar terrestrial planet. We assess the potential of Earth's step-function-like spectroscopic feature, referred to as the "red edge," as a tool for astrobiology. We review the basic characteristics and physical origin of the red edge and summarize its use in astronomy: early spectroscopic efforts to search for vegetation on Mars and recent reports of detection of the red edge in the spectrum of Earthshine (i.e., the spatially integrated scattered light spectrum of Earth). We present Earthshine observations from Apache Point Observatory (New Mexico) to emphasize that time variability is key to detecting weak surface biosignatures such as the vegetation red edge. We briefly discuss the evolutionary advantages of vegetation's red edge reflectance, and speculate that while extraterrestrial "light-harvesting organisms" have no compelling reason to display the exact same red edge feature as terrestrial vegetation, they might have similar spectroscopic features at different wavelengths than terrestrial vegetation. This implies that future terrestrial-planet-characterizing space missions should obtain data that allow time-varying, sharp spectral features at unknown wavelengths to be identified. We caution that some mineral reflectance edges are similar in slope and strength to vegetation's red edge (albeit at different wavelengths); if an extrasolar planet reflectance edge is detected care must be taken with its interpretation.
Shrink-induced silica multiscale structures for enhanced fluorescence from DNA microarrays.
Sharma, Himanshu; Wood, Jennifer B; Lin, Sophia; Corn, Robert M; Khine, Michelle
2014-09-23
We describe a manufacturable and scalable method for fabrication of multiscale wrinkled silica (SiO2) structures on shrink-wrap film to enhance fluorescence signals in DNA fluorescence microarrays. We are able to enhance the fluorescence signal of hybridized DNA by more than 120 fold relative to a planar glass slide. Notably, our substrate has improved detection sensitivity (280 pM) relative to planar glass slide (11 nM). Furthermore, this is accompanied by a 30-45 times improvement in the signal-to-noise ratio (SNR). Unlike metal enhanced fluorescence (MEF) based enhancements, this is a far-field and uniform effect based on surface concentration and photophysical effects from the nano- to microscale SiO2 structures. Notably, the photophysical effects contribute an almost 2.5 fold enhancement over the concentration effects alone. Therefore, this simple and robust method offers an efficient technique to enhance the detection capabilities of fluorescence based DNA microarrays.
Shrink-Induced Silica Multiscale Structures for Enhanced Fluorescence from DNA Microarrays
2015-01-01
We describe a manufacturable and scalable method for fabrication of multiscale wrinkled silica (SiO2) structures on shrink-wrap film to enhance fluorescence signals in DNA fluorescence microarrays. We are able to enhance the fluorescence signal of hybridized DNA by more than 120 fold relative to a planar glass slide. Notably, our substrate has improved detection sensitivity (280 pM) relative to planar glass slide (11 nM). Furthermore, this is accompanied by a 30–45 times improvement in the signal-to-noise ratio (SNR). Unlike metal enhanced fluorescence (MEF) based enhancements, this is a far-field and uniform effect based on surface concentration and photophysical effects from the nano- to microscale SiO2 structures. Notably, the photophysical effects contribute an almost 2.5 fold enhancement over the concentration effects alone. Therefore, this simple and robust method offers an efficient technique to enhance the detection capabilities of fluorescence based DNA microarrays. PMID:25191785
Edge Detection Method Based on Neural Networks for COMS MI Images
NASA Astrophysics Data System (ADS)
Lee, Jin-Ho; Park, Eun-Bin; Woo, Sun-Hee
2016-12-01
Communication, Ocean And Meteorological Satellite (COMS) Meteorological Imager (MI) images are processed for radiometric and geometric correction from raw image data. When intermediate image data are matched and compared with reference landmark images in the geometrical correction process, various techniques for edge detection can be applied. It is essential to have a precise and correct edged image in this process, since its matching with the reference is directly related to the accuracy of the ground station output images. An edge detection method based on neural networks is applied for the ground processing of MI images for obtaining sharp edges in the correct positions. The simulation results are analyzed and characterized by comparing them with the results of conventional methods, such as Sobel and Canny filters.
NASA Astrophysics Data System (ADS)
Ajadi, O. A.; Meyer, F. J.
2014-12-01
Automatic oil spill detection and tracking from Synthetic Aperture Radar (SAR) images is a difficult task, due in large part to the inhomogeneous properties of the sea surface, the high level of speckle inherent in SAR data, the complexity and the highly non-Gaussian nature of amplitude information, and the low temporal sampling that is often achieved with SAR systems. This research presents a promising new oil spill detection and tracking method that is based on time series of SAR images. Through the combination of a number of advanced image processing techniques, the develop approach is able to mitigate some of these previously mentioned limitations of SAR-based oil-spill detection and enables fully automatic spill detection and tracking across a wide range of spatial scales. The method combines an initial automatic texture analysis with a consecutive change detection approach based on multi-scale image decomposition. The first step of the approach, a texture transformation of the original SAR images, is performed in order to normalize the ocean background and enhance the contrast between oil-covered and oil-free ocean surfaces. The Lipschitz regularity (LR), a local texture parameter, is used here due to its proven ability to normalize the reflectivity properties of ocean water and maximize the visibly of oil in water. To calculate LR, the images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), and transformed into Holder space to measure LR. After texture transformation, the now normalized images are inserted into our multi-temporal change detection algorithm. The multi-temporal change detection approach is a two-step procedure including (1) data enhancement and filtering and (2) multi-scale automatic change detection. The performance of the developed approach is demonstrated by an application to oil spill areas in the Gulf of Mexico. In this example, areas affected by oil spills were identified from a series of ALOS PALSAR images acquired in 2010. The comparison showed exceptional performance of our method. This method can be applied to emergency management and decision support systems with a need for real-time data, and it shows great potential for rapid data analysis in other areas, including volcano detection, flood boundaries, forest health, and wildfires.
Edge detection of optical subaperture image based on improved differential box-counting method
NASA Astrophysics Data System (ADS)
Li, Yi; Hui, Mei; Liu, Ming; Dong, Liquan; Kong, Lingqin; Zhao, Yuejin
2018-01-01
Optical synthetic aperture imaging technology is an effective approach to improve imaging resolution. Compared with monolithic mirror system, the image of optical synthetic aperture system is often more complex at the edge, and as a result of the existence of gap between segments, which makes stitching becomes a difficult problem. So it is necessary to extract the edge of subaperture image for achieving effective stitching. Fractal dimension as a measure feature can describe image surface texture characteristics, which provides a new approach for edge detection. In our research, an improved differential box-counting method is used to calculate fractal dimension of image, then the obtained fractal dimension is mapped to grayscale image to detect edges. Compared with original differential box-counting method, this method has two improvements as follows: by modifying the box-counting mechanism, a box with a fixed height is replaced by a box with adaptive height, which solves the problem of over-counting the number of boxes covering image intensity surface; an image reconstruction method based on super-resolution convolutional neural network is used to enlarge small size image, which can solve the problem that fractal dimension can't be calculated accurately under the small size image, and this method may well maintain scale invariability of fractal dimension. The experimental results show that the proposed algorithm can effectively eliminate noise and has a lower false detection rate compared with the traditional edge detection algorithms. In addition, this algorithm can maintain the integrity and continuity of image edge in the case of retaining important edge information.
Edge detection for optical synthetic aperture based on deep neural network
NASA Astrophysics Data System (ADS)
Tan, Wenjie; Hui, Mei; Liu, Ming; Kong, Lingqin; Dong, Liquan; Zhao, Yuejin
2017-09-01
Synthetic aperture optics systems can meet the demands of the next-generation space telescopes being lighter, larger and foldable. However, the boundaries of segmented aperture systems are much more complex than that of the whole aperture. More edge regions mean more imaging edge pixels, which are often mixed and discretized. In order to achieve high-resolution imaging, it is necessary to identify the gaps between the sub-apertures and the edges of the projected fringes. In this work, we introduced the algorithm of Deep Neural Network into the edge detection of optical synthetic aperture imaging. According to the detection needs, we constructed image sets by experiments and simulations. Based on MatConvNet, a toolbox of MATLAB, we ran the neural network, trained it on training image set and tested its performance on validation set. The training was stopped when the test error on validation set stopped declining. As an input image is given, each intra-neighbor area around the pixel is taken into the network, and scanned pixel by pixel with the trained multi-hidden layers. The network outputs make a judgment on whether the center of the input block is on edge of fringes. We experimented with various pre-processing and post-processing techniques to reveal their influence on edge detection performance. Compared with the traditional algorithms or their improvements, our method makes decision on a much larger intra-neighbor, and is more global and comprehensive. Experiments on more than 2,000 images are also given to prove that our method outperforms classical algorithms in optical images-based edge detection.
NASA Astrophysics Data System (ADS)
Dustin, Joshua S.
A state-of-the-art multi-scale analysis was performed to predict failure initiation at the free-edge of an angle-ply laminate using the Strain Invariant Failure Theory (SIFT), and multiple improvements to this analysis methodology were proposed and implemented. Application of this analysis and theory led to the conclusion that point-wise failure criteria which ignore the singular stress and strain fields from a homogenized analysis and the presence of free-edge damage in the form of micro-cracking, may do so at the expense of failure prediction capability. The main contributions of this work then are made in the study of the laminate free-edge singularity and in the effects of micro-cracking at the composite laminate free-edge. Study of both classical elasticity and finite element solutions of the laminate free-edge stress field based upon the assumption of homogenized lamina properties reveal that the order of the free-edge singularity is sufficiently small such that the domain of dominance of this term away from the laminate free-edge is much smaller than the relevant dimensions of the microstructure. In comparison to a crack-tip field, these free-edge singularities generate stress and strain fields which are half as intense as those at the crack-tip, leading to the conclusion that existing flaws at the free-edge in the form of micro-cracks would be more prone to the initiation of free-edge failure than the existence of a singularity in the free-edge elasticity solutions. A methodical experiment was performed on a family of [±25°/90°] s laminates made of IM7/8552 carbon/epoxy composite, to both characterize micro-cracks present at the laminate free-edge and to study their behavior under the application of a uniform extensional load. The majority of these micro-cracks were of length on the order of a few fiber diameters, though larger micro-cracks as long as 100 fiber diameters were observed in thicker laminates. A strong correlation between the application of vacuum during cure and the presence of micro-cracks was observed. The majority of micro-cracks were located along ply interfaces, even along the interfaces of plies with identical orientation, further implicating processing methods and conditions in the formation of these micro-cracks and suggesting that a region of interphase is present between composite plies. No micro-cracks of length smaller than approximately 36 fiber diameters (180 µm) grew or interacted with the free-edge delamination or damage at ultimate laminate failure, and the median length of micro-cracks which did grow was approximately 50 fiber diameters (250 µm). While the internal depth of these free-edge cracks was unknown, the results of these experiments then suggests a critical free-edge crack-length in the [±25°/90°]s family of laminates of approximately 50 fiber diameters (250 µm, or 1.5 lamina thicknesses). A multi-scale analysis of free-edge micro-cracks using traditional displacement based finite element submodeling and XFEM was used to explain the experimental observation that micro-cracks did not grow unless they were of sufficient length. Analysis of the stress-intensity factors along the micro-crack front revealed that penny shaped micro-cracks in the 90° plies of the [±25°/90°] s family of laminates of length two fiber diameters or longer are under mode I dominated loading conditions when oriented parallel or perpendicular to the laminate loading direction. The maximum observed KI along the crack-front of these modeled micro-cracks was no larger than 26% of the ultimate KIC of the matrix material, under the application of a uniform temperature change (ΔT=-150°C) and uniform extension equal to the experimentally measured ultimate failure strain of the laminate. This indicates that insufficient energy is supplied to these small micro-cracks to facilitate crack growth, confirming what was experimentally observed. A method for estimating a critical micro-crack length based upon the results of the fracture mechanics analysis was developed, and predictions for this critical crack length were between 26 and 255 fiber diameters with a nominal prediction of approximately 73 fiber diameters, which agreed quite well with the experimentally observed critical micro-crack length of approximately 50 fiber diameters. The overall conclusion of this work is that the composite laminate does not appear to be as sensitive to free-edge singular stress-fields or free-edge micro-cracking and damage as the research community has portrayed in the literature. In laminates designed to delaminate, material flaws on the order of the relevant dimensions of the micro-structure appear to have little to no effect on the static strength of a composite laminate.
Researches on Position Detection for Vacuum Switch Electrode
NASA Astrophysics Data System (ADS)
Dong, Huajun; Guo, Yingjie; Li, Jie; Kong, Yihan
2018-03-01
Form and transformation character of vacuum arc is important influencing factor on the vacuum switch performance, and the dynamic separations of electrode is the chief effecting factor on the transformation of vacuum arcs forms. Consequently, how to detect the position of electrode to calculate the separations in the arcs image is of great significance. However, gray level distribution of vacuum arcs image isn’t even, the gray level of burning arcs is high, but the gray level of electrode is low, meanwhile, the forms of vacuum arcs changes sharply, the problems above restrict electrode position detection precisely. In this paper, algorithm of detecting electrode position base on vacuum arcs image was proposed. The digital image processing technology was used in vacuum switch arcs image analysis, the upper edge and lower edge were detected respectively, then linear fitting was done using the result of edge detection, the fitting result was the position of electrode, thus, accurate position detection of electrode was realized. From the experimental results, we can see that: algorithm described in this paper detected upper and lower edge of arcs successfully and the position of electrode was obtained through calculation.
Direct Detection Doppler Lidar for Spaceborne Wind Measurement
NASA Technical Reports Server (NTRS)
Korb, C. Laurence; Flesia, Cristina
1999-01-01
Aerosol and molecular based versions of the double-edge technique can be used for direct detection Doppler lidar spaceborne wind measurement. The edge technique utilizes the edge of a high spectral resolution filter for high accuracy wind measurement using direct detection lidar. The signal is split between an edge filter channel and a broadband energy monitor channel. The energy monitor channel is used for signal normalization. The edge measurement is made as a differential frequency measurement between the outgoing laser signal and the atmospheric backscattered return for each pulse. As a result the measurement is insensitive to laser and edge filter frequency jitter and drift at a level less than a few parts in 10(exp 10). We have developed double edge versions of the edge technique for aerosol and molecular-based lidar measurement of the wind. Aerosol-based wind measurements have been made at Goddard Space Flight Center and molecular-based wind measurements at the University of Geneva. We have demonstrated atmospheric measurements using these techniques for altitudes from 1 to more than 10 km. Measurement accuracies of better than 1.25 m/s have been obtained with integration times from 5 to 30 seconds. The measurements can be scaled to space and agree, within a factor of two, with satellite-based simulations of performance based on Poisson statistics. The theory of the double edge aerosol technique is described by a generalized formulation which substantially extends the capabilities of the edge technique. It uses two edges with opposite slopes located about the laser frequency at approximately the half-width of each edge filter. This doubles the signal change for a given Doppler shift and yields a factor of 1.6 improvement in the measurement accuracy compared to the single edge technique. The use of two high resolution edge filters substantially reduces the effects of Rayleigh scattering on the measurement, as much as order of magnitude, and allows the signal to noise ratio to be substantially improved in areas of low aerosol backscatter. We describe a method that allows the Rayleigh and aerosol components of the signal to be independently determined using the two edge channels and an energy monitor channel. The effects of Rayleigh scattering may then subtracted from the measurement and we show that the correction process does not significantly increase the measurement noise for Rayleigh to aerosol ratios up to 10. We show that for small Doppler shifts a measurement accuracy of 0.4 m/s can be obtained for 5000 detected photon, 1.2 m/s for 1000 detected photons, and 3.7 m/s for 50 detected photons for a Rayleigh to aerosol ratio of 5. Methods for increasing the dynamic range of the aerosol-based system to more than +/- 100 m/s are given.
NASA Astrophysics Data System (ADS)
Sidor, Kamil; Szlachta, Anna
2017-04-01
The article presents the impact of the edge detection method in the image analysis on the reading accuracy of the measured value. In order to ensure the automatic reading of the measured value by an analog meter, a standard webcam and the LabVIEW programme were applied. NI Vision Development tools were used. The Hough transform was used to detect the indicator. The programme output was compared during the application of several methods of edge detection. Those included: the Prewitt operator, the Roberts cross, the Sobel operator and the Canny edge detector. The image analysis was made for an analog meter indicator with the above-mentioned methods, and the results of that analysis were compared with each other and presented.
Fu, Hai-Yan; Guo, Jun-Wei; Yu, Yong-Jie; Li, He-Dong; Cui, Hua-Peng; Liu, Ping-Ping; Wang, Bing; Wang, Sheng; Lu, Peng
2016-06-24
Peak detection is a critical step in chromatographic data analysis. In the present work, we developed a multi-scale Gaussian smoothing-based strategy for accurate peak extraction. The strategy consisted of three stages: background drift correction, peak detection, and peak filtration. Background drift correction was implemented using a moving window strategy. The new peak detection method is a variant of the system used by the well-known MassSpecWavelet, i.e., chromatographic peaks are found at local maximum values under various smoothing window scales. Therefore, peaks can be detected through the ridge lines of maximum values under these window scales, and signals that are monotonously increased/decreased around the peak position could be treated as part of the peak. Instrumental noise was estimated after peak elimination, and a peak filtration strategy was performed to remove peaks with signal-to-noise ratios smaller than 3. The performance of our method was evaluated using two complex datasets. These datasets include essential oil samples for quality control obtained from gas chromatography and tobacco plant samples for metabolic profiling analysis obtained from gas chromatography coupled with mass spectrometry. Results confirmed the reasonability of the developed method. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shimoda, E.; Eriksson, S.; Ahmadi, N.; Ergun, R.; Wilder, F. D.; Goodrich, K.
2017-12-01
The Magnetospheric Multi-Scale (MMS) mission resolves the small-scale structure of the Reconnection Electron Diffusion Regions (EDRs) using four spacecraft. We have surveyed two years of MMS data to find the candidates for the EDRs. We searched all the high-resolution segments when Fast Plasma Investigation (FPI) instrument was on. The search criteria are based on measuring the dissipation rate, agyrotropy, a reversal in jet velocity and magnetic field. Once these events were found for MMS1 data, the burst period for the other spacecraft was analyzed. We present our results of the best possible EDR candidates.
A study on obstacle detection method of the frontal view using a camera on highway
NASA Astrophysics Data System (ADS)
Nguyen, Van-Quang; Park, Jeonghyeon; Seo, Changjun; Kim, Heungseob; Boo, Kwangsuck
2018-03-01
In this work, we introduce an approach to detect vehicles for driver assistance, or warning system. For driver assistance system, it must detect both lanes (left and right side lane), and discover vehicles ahead of the test vehicle. Therefore, in this study, we use a camera, it is installed on the windscreen of the test vehicle. Images from the camera are used to detect three lanes, and detect multiple vehicles. In lane detection, line detection and vanishing point estimation are used. For the vehicle detection, we combine the horizontal and vertical edge detection, the horizontal edge is used to detect the vehicle candidates, and then the vertical edge detection is used to verify the vehicle candidates. The proposed algorithm works with of 480 × 640 image frame resolution. The system was tested on the highway in Korea.
NASA Astrophysics Data System (ADS)
Salam, Afifah Salmi Abdul; Isa, Mohd. Nazrin Md.; Ahmad, Muhammad Imran; Che Ismail, Rizalafande
2017-11-01
This paper will focus on the study and identifying various threshold values for two commonly used edge detection techniques, which are Sobel and Canny Edge detection. The idea is to determine which values are apt in giving accurate results in identifying a particular leukemic cell. In addition, evaluating suitability of edge detectors are also essential as feature extraction of the cell depends greatly on image segmentation (edge detection). Firstly, an image of M7 subtype of Acute Myelocytic Leukemia (AML) is chosen due to its diagnosing which were found lacking. Next, for an enhancement in image quality, noise filters are applied. Hence, by comparing images with no filter, median and average filter, useful information can be acquired. Each threshold value is fixed with value 0, 0.25 and 0.5. From the investigation found, without any filter, Canny with a threshold value of 0.5 yields the best result.
Edge grouping combining boundary and region information.
Stahl, Joachim S; Wang, Song
2007-10-01
This paper introduces a new edge-grouping method to detect perceptually salient structures in noisy images. Specifically, we define a new grouping cost function in a ratio form, where the numerator measures the boundary proximity of the resulting structure and the denominator measures the area of the resulting structure. This area term introduces a preference towards detecting larger-size structures and, therefore, makes the resulting edge grouping more robust to image noise. To find the optimal edge grouping with the minimum grouping cost, we develop a special graph model with two different kinds of edges and then reduce the grouping problem to finding a special kind of cycle in this graph with a minimum cost in ratio form. This optimal cycle-finding problem can be solved in polynomial time by a previously developed graph algorithm. We implement this edge-grouping method, test it on both synthetic data and real images, and compare its performance against several available edge-grouping and edge-linking methods. Furthermore, we discuss several extensions of the proposed method, including the incorporation of the well-known grouping cues of continuity and intensity homogeneity, introducing a factor to balance the contributions from the boundary and region information, and the prevention of detecting self-intersecting boundaries.
Cai, Ailong; Wang, Linyuan; Zhang, Hanming; Yan, Bin; Li, Lei; Xi, Xiaoqi; Li, Jianxin
2014-01-01
Linear scan computed tomography (CT) is a promising imaging configuration with high scanning efficiency while the data set is under-sampled and angularly limited for which high quality image reconstruction is challenging. In this work, an edge guided total variation minimization reconstruction (EGTVM) algorithm is developed in dealing with this problem. The proposed method is modeled on the combination of total variation (TV) regularization and iterative edge detection strategy. In the proposed method, the edge weights of intermediate reconstructions are incorporated into the TV objective function. The optimization is efficiently solved by applying alternating direction method of multipliers. A prudential and conservative edge detection strategy proposed in this paper can obtain the true edges while restricting the errors within an acceptable degree. Based on the comparison on both simulation studies and real CT data set reconstructions, EGTVM provides comparable or even better quality compared to the non-edge guided reconstruction and adaptive steepest descent-projection onto convex sets method. With the utilization of weighted alternating direction TV minimization and edge detection, EGTVM achieves fast and robust convergence and reconstructs high quality image when applied in linear scan CT with under-sampled data set.
Quality detection system and method of micro-accessory based on microscopic vision
NASA Astrophysics Data System (ADS)
Li, Dongjie; Wang, Shiwei; Fu, Yu
2017-10-01
Considering that the traditional manual detection of micro-accessory has some problems, such as heavy workload, low efficiency and large artificial error, a kind of quality inspection system of micro-accessory has been designed. Micro-vision technology has been used to inspect quality, which optimizes the structure of the detection system. The stepper motor is used to drive the rotating micro-platform to transfer quarantine device and the microscopic vision system is applied to get graphic information of micro-accessory. The methods of image processing and pattern matching, the variable scale Sobel differential edge detection algorithm and the improved Zernike moments sub-pixel edge detection algorithm are combined in the system in order to achieve a more detailed and accurate edge of the defect detection. The grade at the edge of the complex signal can be achieved accurately by extracting through the proposed system, and then it can distinguish the qualified products and unqualified products with high precision recognition.
The Edge Detectors Suitable for Retinal OCT Image Segmentation
Yang, Jing; Gao, Qian; Zhou, Sheng
2017-01-01
Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation task. The three most promising edge detection algorithms were identified in the related literature: Canny edge detector, the two-pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms consistently the Canny detector and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT images. In addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem. These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries. The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT images contain more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future efforts in the quantitative analysis of retinal OCT images for the effective use of OCT technologies in the field of ophthalmology. PMID:29065594
Paroxysmal atrial fibrillation recognition based on multi-scale Rényi entropy of ECG.
Xin, Yi; Zhao, Yizhang; Mu, Yuanhui; Li, Qin; Shi, Caicheng
2017-07-20
Atrial fibrillation (AF) is a common type of arrhythmia disease, which has a high morbidity and can lead to some serious complications. The ability to detect and in turn prevent AF is extremely significant to the patient and clinician. Using ECG to detect AF and develop a robust and effective algorithm is the primary objective of this study. Some studies show that after AF occurs, the regulatory mechanism of vagus nerve and sympathetic nerve will change. Each R-R interval will be absolutely unequal. After studying the physiological mechanism of AF, we will calculate the Rényi entropy of the wavelet coefficients of heart rate variability (HRV) in order to measure the complexity of PAF signals, as well as extract the multi-scale features of paroxysmal atrial fibrillation (PAF). The data used in this study is obtained from MIT-BIH PAF Prediction Challenge Database and the correct rate in classifying PAF patients from normal persons is 92.48%. The results of this experiment proved that AF could be detected by using this method and, in turn, provide opinions for clinical diagnosis.
Fault detection method for railway wheel flat using an adaptive multiscale morphological filter
NASA Astrophysics Data System (ADS)
Li, Yifan; Zuo, Ming J.; Lin, Jianhui; Liu, Jianxin
2017-02-01
This study explores the capacity of the morphology analysis for railway wheel flat fault detection. A dynamic model of vehicle systems with 56 degrees of freedom was set up along with a wheel flat model to calculate the dynamic responses of axle box. The vehicle axle box vibration signal is complicated because it not only contains the information of wheel defect, but also includes track condition information. Thus, how to extract the influential features of wheels from strong background noise effectively is a typical key issue for railway wheel fault detection. In this paper, an algorithm for adaptive multiscale morphological filtering (AMMF) was proposed, and its effect was evaluated by a simulated signal. And then this algorithm was employed to study the axle box vibration caused by wheel flats, as well as the influence of track irregularity and vehicle running speed on diagnosis results. Finally, the effectiveness of the proposed method was verified by bench testing. Research results demonstrate that the AMMF extracts the influential characteristic of axle box vibration signals effectively and can diagnose wheel flat faults in real time.
NASA Astrophysics Data System (ADS)
Ng, T. Y.; Yeak, S. H.; Liew, K. M.
2008-02-01
A multiscale technique is developed that couples empirical molecular dynamics (MD) and ab initio density functional theory (DFT). An overlap handshaking region between the empirical MD and ab initio DFT regions is formulated and the interaction forces between the carbon atoms are calculated based on the second-generation reactive empirical bond order potential, the long-range Lennard-Jones potential as well as the quantum-mechanical DFT derived forces. A density of point algorithm is also developed to track all interatomic distances in the system, and to activate and establish the DFT and handshaking regions. Through parallel computing, this multiscale method is used here to study the dynamic behavior of single-walled carbon nanotubes (SWCNTs) under asymmetrical axial compression. The detection of sideways buckling due to the asymmetrical axial compression is reported and discussed. It is noted from this study on SWCNTs that the MD results may be stiffer compared to those with electron density considerations, i.e. first-principle ab initio methods.
NASA Astrophysics Data System (ADS)
Andrus, Matthew
Stroke is a leading cause of death and disability in the United States, however, there remains no rapid diagnostic test for differentiating between ischemic and hemorrhagic stroke within the three-hour treatment window. Here we describe the design of a multiscale microfluidic module with an embedded time-of-flight nanosensor for the clinical diagnosis of stroke. The nanosensor described utilizes two synthetic pores in series, relying on resistive pulse sensing (RPS) to measure the passage of molecules through the time-of-flight tube. Once the nanosensor design was completed, a multiscale module to process patient samples and house the sensors was designed in a similar iterative process. This design utilized pillar arrays, called "pixels" to immobilize oligonucleotides from patient samples for ligase detection reactions (LDR) to be carried out. COMSOL simulations were performed to understand the operation and behavior of both the nanosensor and the modular chip once the designs were completed.
Osbourn, Gordon C.
1996-01-01
The shadow contrast sensitivity of the human vision system is simulated by configuring information obtained from an image sensor so that the information may be evaluated with multiple pixel widths in order to produce a machine vision system able to distinguish between shadow edges and abrupt object edges. A second difference of the image intensity for each line of the image is developed and this second difference is used to screen out high frequency noise contributions from the final edge detection signals. These edge detection signals are constructed from first differences of the image intensity where the screening conditions are satisfied. The positional coincidence of oppositely signed maxima in the first difference signal taken from the right and the second difference signal taken from the left is used to detect the presence of an object edge. Alternatively, the effective number of responding operators (ENRO) may be utilized to determine the presence of object edges.
Automatic comic page image understanding based on edge segment analysis
NASA Astrophysics Data System (ADS)
Liu, Dong; Wang, Yongtao; Tang, Zhi; Li, Luyuan; Gao, Liangcai
2013-12-01
Comic page image understanding aims to analyse the layout of the comic page images by detecting the storyboards and identifying the reading order automatically. It is the key technique to produce the digital comic documents suitable for reading on mobile devices. In this paper, we propose a novel comic page image understanding method based on edge segment analysis. First, we propose an efficient edge point chaining method to extract Canny edge segments (i.e., contiguous chains of Canny edge points) from the input comic page image; second, we propose a top-down scheme to detect line segments within each obtained edge segment; third, we develop a novel method to detect the storyboards by selecting the border lines and further identify the reading order of these storyboards. The proposed method is performed on a data set consisting of 2000 comic page images from ten printed comic series. The experimental results demonstrate that the proposed method achieves satisfactory results on different comics and outperforms the existing methods.
An Iris Segmentation Algorithm based on Edge Orientation for Off-angle Iris Recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakaya, Mahmut; Barstow, Del R; Santos-Villalobos, Hector J
Iris recognition is known as one of the most accurate and reliable biometrics. However, the accuracy of iris recognition systems depends on the quality of data capture and is negatively affected by several factors such as angle, occlusion, and dilation. In this paper, we present a segmentation algorithm for off-angle iris images that uses edge detection, edge elimination, edge classification, and ellipse fitting techniques. In our approach, we first detect all candidate edges in the iris image by using the canny edge detector; this collection contains edges from the iris and pupil boundaries as well as eyelash, eyelids, iris texturemore » etc. Edge orientation is used to eliminate the edges that cannot be part of the iris or pupil. Then, we classify the remaining edge points into two sets as pupil edges and iris edges. Finally, we randomly generate subsets of iris and pupil edge points, fit ellipses for each subset, select ellipses with similar parameters, and average to form the resultant ellipses. Based on the results from real experiments, the proposed method shows effectiveness in segmentation for off-angle iris images.« less
Detecting the Edge of the Tongue: A Tutorial
ERIC Educational Resources Information Center
Iskarous, Khalil
2005-01-01
The goal of this paper is to provide a tutorial introduction to the topic of edge detection of the tongue from ultrasound scans for researchers in speech science and phonetics. The method introduced here is Active Contours (also called snakes), a method for searching for an edge, assuming that it is a smooth curve in the image data. The advantage…
Vehicle tracking using fuzzy-based vehicle detection window with adaptive parameters
NASA Astrophysics Data System (ADS)
Chitsobhuk, Orachat; Kasemsiri, Watjanapong; Glomglome, Sorayut; Lapamonpinyo, Pipatphon
2018-04-01
In this paper, fuzzy-based vehicle tracking system is proposed. The proposed system consists of two main processes: vehicle detection and vehicle tracking. In the first process, the Gradient-based Adaptive Threshold Estimation (GATE) algorithm is adopted to provide the suitable threshold value for the sobel edge detection. The estimated threshold can be adapted to the changes of diverse illumination conditions throughout the day. This leads to greater vehicle detection performance compared to a fixed user's defined threshold. In the second process, this paper proposes the novel vehicle tracking algorithms namely Fuzzy-based Vehicle Analysis (FBA) in order to reduce the false estimation of the vehicle tracking caused by uneven edges of the large vehicles and vehicle changing lanes. The proposed FBA algorithm employs the average edge density and the Horizontal Moving Edge Detection (HMED) algorithm to alleviate those problems by adopting fuzzy rule-based algorithms to rectify the vehicle tracking. The experimental results demonstrate that the proposed system provides the high accuracy of vehicle detection about 98.22%. In addition, it also offers the low false detection rates about 3.92%.
Shearlet-based edge detection: flame fronts and tidal flats
NASA Astrophysics Data System (ADS)
King, Emily J.; Reisenhofer, Rafael; Kiefer, Johannes; Lim, Wang-Q.; Li, Zhen; Heygster, Georg
2015-09-01
Shearlets are wavelet-like systems which are better suited for handling geometric features in multi-dimensional data than traditional wavelets. A novel method for edge and line detection which is in the spirit of phase congruency but is based on a complex shearlet transform will be presented. This approach to detection yields an approximate tangent direction of detected discontinuities as a byproduct of the computation, which then yields local curvature estimates. Two applications of the edge detection method will be discussed. First, the tracking and classification of flame fronts is a critical component of research in technical thermodynamics. Quite often, the flame fronts are transient or weak and the images are noisy. The standard methods used in the field for the detection of flame fronts do not handle such data well. Fortunately, using the shearlet-based edge measure yields good results as well as an accurate approximation of local curvature. Furthermore, a modification of the method will yield line detection, which is important for certain imaging modalities. Second, the Wadden tidal flats are a biodiverse region along the North Sea coast. One approach to surveying the delicate region and tracking the topographical changes is to use pre-existing Synthetic Aperture Radar (SAR) images. Unfortunately, SAR data suffers from multiplicative noise as well as sensitivity to environmental factors. The first large-scale mapping project of that type showed good results but only with a tremendous amount of manual interaction because there are many edges in the data which are not boundaries of the tidal flats but are edges of features like fields or islands. Preliminary results will be presented.
Ripoche, Marion; Lindsay, Leslie Robbin; Ludwig, Antoinette; Ogden, Nicholas H; Thivierge, Karine; Leighton, Patrick A
2018-03-27
Since its detection in Canada in the early 1990s, Ixodes scapularis , the primary tick vector of Lyme disease in eastern North America, has continued to expand northward. Estimates of the tick's broad-scale distribution are useful for tracking the extent of the Lyme disease risk zone; however, tick distribution may vary widely within this zone. Here, we investigated I. scapularis nymph distribution at three spatial scales across the Lyme disease emergence zone in southern Quebec, Canada. We collected ticks and compared the nymph densities among different woodlands and different plots and transects within the same woodland. Hot spot analysis highlighted significant nymph clustering at each spatial scale. In regression models, nymph abundance was associated with litter depth, humidity, and elevation, which contribute to a suitable habitat for ticks, but also with the distance from the trail and the type of trail, which could be linked to host distribution and human disturbance. Accounting for this heterogeneous nymph distribution at a fine spatial scale could help improve Lyme disease management strategies but also help people to understand the risk variation around them and to adopt appropriate behaviors, such as staying on the trail in infested parks to limit their exposure to the vector and associated pathogens.
Lindsay, Leslie Robbin; Ludwig, Antoinette; Ogden, Nicholas H.; Thivierge, Karine; Leighton, Patrick A.
2018-01-01
Since its detection in Canada in the early 1990s, Ixodes scapularis, the primary tick vector of Lyme disease in eastern North America, has continued to expand northward. Estimates of the tick’s broad-scale distribution are useful for tracking the extent of the Lyme disease risk zone; however, tick distribution may vary widely within this zone. Here, we investigated I. scapularis nymph distribution at three spatial scales across the Lyme disease emergence zone in southern Quebec, Canada. We collected ticks and compared the nymph densities among different woodlands and different plots and transects within the same woodland. Hot spot analysis highlighted significant nymph clustering at each spatial scale. In regression models, nymph abundance was associated with litter depth, humidity, and elevation, which contribute to a suitable habitat for ticks, but also with the distance from the trail and the type of trail, which could be linked to host distribution and human disturbance. Accounting for this heterogeneous nymph distribution at a fine spatial scale could help improve Lyme disease management strategies but also help people to understand the risk variation around them and to adopt appropriate behaviors, such as staying on the trail in infested parks to limit their exposure to the vector and associated pathogens. PMID:29584627
Computer vision camera with embedded FPGA processing
NASA Astrophysics Data System (ADS)
Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel
2000-03-01
Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.
Multi-Level Anomaly Detection on Time-Varying Graph Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, Robert A; Collins, John P; Ferragut, Erik M
This work presents a novel modeling and analysis framework for graph sequences which addresses the challenge of detecting and contextualizing anomalies in labelled, streaming graph data. We introduce a generalization of the BTER model of Seshadhri et al. by adding flexibility to community structure, and use this model to perform multi-scale graph anomaly detection. Specifically, probability models describing coarse subgraphs are built by aggregating probabilities at finer levels, and these closely related hierarchical models simultaneously detect deviations from expectation. This technique provides insight into a graph's structure and internal context that may shed light on a detected event. Additionally, thismore » multi-scale analysis facilitates intuitive visualizations by allowing users to narrow focus from an anomalous graph to particular subgraphs or nodes causing the anomaly. For evaluation, two hierarchical anomaly detectors are tested against a baseline Gaussian method on a series of sampled graphs. We demonstrate that our graph statistics-based approach outperforms both a distribution-based detector and the baseline in a labeled setting with community structure, and it accurately detects anomalies in synthetic and real-world datasets at the node, subgraph, and graph levels. To illustrate the accessibility of information made possible via this technique, the anomaly detector and an associated interactive visualization tool are tested on NCAA football data, where teams and conferences that moved within the league are identified with perfect recall, and precision greater than 0.786.« less
Parmaksızoğlu, Selami; Alçı, Mustafa
2011-01-01
Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods.
Parmaksızoğlu, Selami; Alçı, Mustafa
2011-01-01
Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods. PMID:22163903
Sivakamasundari, J; Kavitha, G; Sujatha, C M; Ramakrishnan, S
2014-01-01
Diabetic Retinopathy (DR) is a disorder that affects the structure of retinal blood vessels due to long-standing diabetes mellitus. Real-Time mass screening system for DR is vital for timely diagnosis and periodic screening to prevent the patient from severe visual loss. Human retinal fundus images are widely used for an automated segmentation of blood vessel and diagnosis of various blood vessel disorders. In this work, an attempt has been made to perform hardware synthesis of Kirsch template based edge detection for segmentation of blood vessels. This method is implemented using LabVIEW software and is synthesized in field programmable gate array board to yield results in real-time application. The segmentation of blood vessels using Kirsch based edge detection is compared with other edge detection methods such as Sobel, Prewitt and Canny. The texture features such as energy, entropy, contrast, mean, homogeneity and structural feature namely ratio of vessel to vessel free area are obtained from the segmented images. The performance of segmentation is analysed in terms of sensitivity, specificity and accuracy. It is observed from the results that the Kirsch based edge detection technique segmented the edges of blood vessels better than other edge detection techniques. The ratio of vessel to vessel free area classified the normal and DR affected retinal images more significantly than other texture based features. FPGA based hardware synthesis of Kirsch edge detection method is able to differentiate normal and diseased images with high specificity (93%). This automated segmentation of retinal blood vessels system could be used in computer-assisted diagnosis for diabetic retinopathy screening in real-time application.
DOT National Transportation Integrated Search
2013-10-21
Today many intersections are operated based on data input from nonintrusive video detection systems. With those systems the video detectors can be easily deployed/modified for different application requirements. This research project is initiated to ...
Density functional theory for field emission from carbon nano-structures.
Li, Zhibing
2015-12-01
Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission. Copyright © 2015 The Author. Published by Elsevier B.V. All rights reserved.
Duan, Jiahua; Chen, Runkun; Cheng, Yuan; Yang, Tianzhong; Zhai, Feng; Dai, Qing; Chen, Jianing
2018-05-01
The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Measurement of pattern roughness and local size variation using CD-SEM: current status
NASA Astrophysics Data System (ADS)
Fukuda, Hiroshi; Kawasaki, Takahiro; Kawada, Hiroki; Sakai, Kei; Kato, Takashi; Yamaguchi, Satoru; Ikota, Masami; Momonoi, Yoshinori
2018-03-01
Measurement of line edge roughness (LER) is discussed from four aspects: edge detection, PSD prediction, sampling strategy, and noise mitigation, and general guidelines and practical solutions for LER measurement today are introduced. Advanced edge detection algorithms such as wave-matching method are shown effective for robustly detecting edges from low SNR images, while conventional algorithm with weak filtering is still effective in suppressing SEM noise and aliasing. Advanced PSD prediction method such as multi-taper method is effective in suppressing sampling noise within a line edge to analyze, while number of lines is still required for suppressing line to line variation. Two types of SEM noise mitigation methods, "apparent noise floor" subtraction method and LER-noise decomposition using regression analysis are verified to successfully mitigate SEM noise from PSD curves. These results are extended to LCDU measurement to clarify the impact of SEM noise and sampling noise on LCDU.
Radu, Maria D; Räber, Lorenz; Heo, Jungho; Gogas, Bill D; Jørgensen, Erik; Kelbæk, Henning; Muramatsu, Takashi; Farooq, Vasim; Helqvist, Steffen; Garcia-Garcia, Hector M; Windecker, Stephan; Saunamäki, Kari; Serruys, Patrick W
2014-01-22
Angiographic evidence of edge dissections has been associated with a risk of early stent thrombosis. Optical coherence tomography (OCT) is a high-resolution technology detecting a greater number of edge dissections--particularly non-flow-limiting--compared to angiography. Their natural history and clinical implications remain unclear. The objectives of the present study were to assess the morphology, healing response, and clinical outcomes of OCT-detected edge dissections using serial OCT imaging at baseline and at one year following drug-eluting stent (DES) implantation. Edge dissections were defined as disruptions of the luminal surface in the 5 mm segments proximal and distal to the stent, and categorised as flaps, cavities, double-lumen dissections or fissures. Qualitative and quantitative OCT analyses were performed every 0.5 mm at baseline and one year, and clinical outcomes were assessed. Sixty-three lesions (57 patients) were studied with OCT at baseline and one-year follow-up. Twenty-two non-flow-limiting edge dissections in 21 lesions (20 patients) were identified by OCT; only two (9%) were angiographically visible. Flaps were found in 96% of cases. The median longitudinal dissection length was 2.9 mm (interquartile range [IQR] 1.6-4.2 mm), whereas the circumferential and axial extensions amounted to 1.2 mm (IQR: 0.9-1.7 mm) and 0.6 mm (IQR: 0.4-0.7 mm), respectively. Dissections extended into the media and adventitia in seven (33%) and four (20%) cases, respectively. Eighteen (82%) OCT-detected edge dissections were also evaluated with intravascular ultrasound which identified nine (50%) of these OCT-detected dissections. No stent thrombosis or target lesion revascularisation occurred up to one year. At follow-up, 20 (90%) edge dissections were completely healed on OCT. The two cases exhibiting persistent dissection had the longest flaps (2.81 mm and 2.42 mm) at baseline. OCT-detected edge dissections which are angiographically silent in the majority of cases are not associated with acute stent thrombosis or restenosis up to one-year follow-up.
NASA Astrophysics Data System (ADS)
Sturner, A. P.; Eriksson, S.; Gershman, D. J.; Plaschke, F.; Burch, J.
2017-12-01
Magnetopause current sheets have been fertile ground for understanding kinetic-scale physics of magnetic reconnection, but can also be used to study more macroscopic scale phenomena statistically. Post-reconnection, magnetic flux and plasma are accelerated away from the x-line into exhaust regions. As the exhausting plasma exits the electron diffusion region, electrons become remagnetized and are accelerated by the magnetic field into an E x B jet while the ions remain unmagnetized. Further along the exhaust, at the edge of the ion diffusion region, the ions become frozen into the magnetic field, and are accelerated to join the electrons in the exhaust jet. By assuming a constant reconnection rate of 0.1, we can infer the distance to the x-line from the normal width of the exhaust. We present a statistical study using the Magnetospheric Multiscale Mission (MMS) to map out the electron and ion remagnetization distances that define the edge of the electron and ion diffusion regions for magnetopause reconnection, and explore the effects of a guide magnetic field.
High Precision Edge Detection Algorithm for Mechanical Parts
NASA Astrophysics Data System (ADS)
Duan, Zhenyun; Wang, Ning; Fu, Jingshun; Zhao, Wenhui; Duan, Boqiang; Zhao, Jungui
2018-04-01
High precision and high efficiency measurement is becoming an imperative requirement for a lot of mechanical parts. So in this study, a subpixel-level edge detection algorithm based on the Gaussian integral model is proposed. For this purpose, the step edge normal section line Gaussian integral model of the backlight image is constructed, combined with the point spread function and the single step model. Then gray value of discrete points on the normal section line of pixel edge is calculated by surface interpolation, and the coordinate as well as gray information affected by noise is fitted in accordance with the Gaussian integral model. Therefore, a precise location of a subpixel edge was determined by searching the mean point. Finally, a gear tooth was measured by M&M3525 gear measurement center to verify the proposed algorithm. The theoretical analysis and experimental results show that the local edge fluctuation is reduced effectively by the proposed method in comparison with the existing subpixel edge detection algorithms. The subpixel edge location accuracy and computation speed are improved. And the maximum error of gear tooth profile total deviation is 1.9 μm compared with measurement result with gear measurement center. It indicates that the method has high reliability to meet the requirement of high precision measurement.
Wear Detection of Drill Bit by Image-based Technique
NASA Astrophysics Data System (ADS)
Sukeri, Maziyah; Zulhilmi Paiz Ismadi, Mohd; Rahim Othman, Abdul; Kamaruddin, Shahrul
2018-03-01
Image processing for computer vision function plays an essential aspect in the manufacturing industries for the tool condition monitoring. This study proposes a dependable direct measurement method to measure the tool wear using image-based analysis. Segmentation and thresholding technique were used as the means to filter and convert the colour image to binary datasets. Then, the edge detection method was applied to characterize the edge of the drill bit. By using cross-correlation method, the edges of original and worn drill bits were correlated to each other. Cross-correlation graphs were able to detect the difference of the worn edge despite small difference between the graphs. Future development will focus on quantifying the worn profile as well as enhancing the sensitivity of the technique.
Multiscale peak detection in wavelet space.
Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng
2015-12-07
Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .
Design of compactly supported wavelet to match singularities in medical images
NASA Astrophysics Data System (ADS)
Fung, Carrson C.; Shi, Pengcheng
2002-11-01
Analysis and understanding of medical images has important clinical values for patient diagnosis and treatment, as well as technical implications for computer vision and pattern recognition. One of the most fundamental issues is the detection of object boundaries or singularities, which is often the basis for further processes such as organ/tissue recognition, image registration, motion analysis, measurement of anatomical and physiological parameters, etc. The focus of this work involved taking a correlation based approach toward edge detection, by exploiting some of desirable properties of wavelet analysis. This leads to the possibility of constructing a bank of detectors, consisting of multiple wavelet basis functions of different scales which are optimal for specific types of edges, in order to optimally detect all the edges in an image. Our work involved developing a set of wavelet functions which matches the shape of the ramp and pulse edges. The matching algorithm used focuses on matching the edges in the frequency domain. It was proven that this technique could create matching wavelets applicable at all scales. Results have shown that matching wavelets can be obtained for the pulse edge while the ramp edge requires another matching algorithm.
Accurately estimating PSF with straight lines detected by Hough transform
NASA Astrophysics Data System (ADS)
Wang, Ruichen; Xu, Liangpeng; Fan, Chunxiao; Li, Yong
2018-04-01
This paper presents an approach to estimating point spread function (PSF) from low resolution (LR) images. Existing techniques usually rely on accurate detection of ending points of the profile normal to edges. In practice however, it is often a great challenge to accurately localize profiles of edges from a LR image, which hence leads to a poor PSF estimation of the lens taking the LR image. For precisely estimating the PSF, this paper proposes firstly estimating a 1-D PSF kernel with straight lines, and then robustly obtaining the 2-D PSF from the 1-D kernel by least squares techniques and random sample consensus. Canny operator is applied to the LR image for obtaining edges and then Hough transform is utilized to extract straight lines of all orientations. Estimating 1-D PSF kernel with straight lines effectively alleviates the influence of the inaccurate edge detection on PSF estimation. The proposed method is investigated on both natural and synthetic images for estimating PSF. Experimental results show that the proposed method outperforms the state-ofthe- art and does not rely on accurate edge detection.
Adaptive local thresholding for robust nucleus segmentation utilizing shape priors
NASA Astrophysics Data System (ADS)
Wang, Xiuzhong; Srinivas, Chukka
2016-03-01
This paper describes a novel local thresholding method for foreground detection. First, a Canny edge detection method is used for initial edge detection. Then, tensor voting is applied on the initial edge pixels, using a nonsymmetric tensor field tailored to encode prior information about nucleus size, shape, and intensity spatial distribution. Tensor analysis is then performed to generate the saliency image and, based on that, the refined edge. Next, the image domain is divided into blocks. In each block, at least one foreground and one background pixel are sampled for each refined edge pixel. The saliency weighted foreground histogram and background histogram are then created. These two histograms are used to calculate a threshold by minimizing the background and foreground pixel classification error. The block-wise thresholds are then used to generate the threshold for each pixel via interpolation. Finally, the foreground is obtained by comparing the original image with the threshold image. The effective use of prior information, combined with robust techniques, results in far more reliable foreground detection, which leads to robust nucleus segmentation.
Reflection symmetry detection using locally affine invariant edge correspondence.
Wang, Zhaozhong; Tang, Zesheng; Zhang, Xiao
2015-04-01
Reflection symmetry detection receives increasing attentions in recent years. The state-of-the-art algorithms mainly use the matching of intensity-based features (such as the SIFT) within a single image to find symmetry axes. This paper proposes a novel approach by establishing the correspondence of locally affine invariant edge-based features, which are superior to the intensity based in the aspects that it is insensitive to illumination variations, and applicable to textureless objects. The locally affine invariance is achieved by simple linear algebra for efficient and robust computations, making the algorithm suitable for detections under object distortions like perspective projection. Commonly used edge detectors and a voting process are, respectively, used before and after the edge description and matching steps to form a complete reflection detection pipeline. Experiments are performed using synthetic and real-world images with both multiple and single reflection symmetry axis. The test results are compared with existing algorithms to validate the proposed method.
NASA Astrophysics Data System (ADS)
Lasaponara, R.; Lanorte, A.; Coluzzi, R.; Masini, N.
2009-04-01
The systematic monitoring of cultural and natural heritage is a basic step for its conservation. Monitoring strategies should constitute an integral component of policies relating to land use, development, and planning. To this aim remote sensing technologies can be used profitably. This paper deals with the use of multitemporal, multisensors, and multiscale satellite data for assessing and monitoring changes affecting cultural landscapes and archaeological sites. The discussion is focused on some significant test cases selected in Peru (South America) and Southern Italy . Artifacts, unearthed sites, and marks of buried remains have been investigated by using multitemporal aerial and satellite data, such as Quickbird, ASTER, Landsat MSS and TM.
An algorithm for pavement crack detection based on multiscale space
NASA Astrophysics Data System (ADS)
Liu, Xiang-long; Li, Qing-quan
2006-10-01
Conventional human-visual and manual field pavement crack detection method and approaches are very costly, time-consuming, dangerous, labor-intensive and subjective. They possess various drawbacks such as having a high degree of variability of the measure results, being unable to provide meaningful quantitative information and almost always leading to inconsistencies in crack details over space and across evaluation, and with long-periodic measurement. With the development of the public transportation and the growth of the Material Flow System, the conventional method can far from meet the demands of it, thereby, the automatic pavement state data gathering and data analyzing system come to the focus of the vocation's attention, and developments in computer technology, digital image acquisition, image processing and multi-sensors technology made the system possible, but the complexity of the image processing always made the data processing and data analyzing come to the bottle-neck of the whole system. According to the above description, a robust and high-efficient parallel pavement crack detection algorithm based on Multi-Scale Space is proposed in this paper. The proposed method is based on the facts that: (1) the crack pixels in pavement images are darker than their surroundings and continuous; (2) the threshold values of gray-level pavement images are strongly related with the mean value and standard deviation of the pixel-grey intensities. The Multi-Scale Space method is used to improve the data processing speed and minimize the effectiveness caused by image noise. Experiment results demonstrate that the advantages are remarkable: (1) it can correctly discover tiny cracks, even from very noise pavement image; (2) the efficiency and accuracy of the proposed algorithm are superior; (3) its application-dependent nature can simplify the design of the entire system.
Local extinction and turnover rates at the edge and interior of species' ranges
Doherty, P.F.; Boulinier, T.; James., D.
2003-01-01
One hypothesis for the maintenance of the edge of a species' range suggests that more central (and abundant) populations are relatively stable and edge populations are less stable with increased local extinction and turnover rates. To date, estimates of such metrics are equivocal due to design and analysis flaws. Apparent increased estimates of extinction and turnover rates at the edge of range, versus the interior, could be a function of decreased detection probabilities alone, and not of a biological process. We estimated extinction and turnover rates for species at the interiors and edges of their ranges using an approach which incorporates potential heterogeneity in species detection probabilities. Extinction rates were higher at the edges (0.17 ?? 0.03 []) than in the interiors (0.04 ?? 0.01), as was turnover. Without taking the probability of detection into account these differences would be artificially magnified. Knowledge of extinction and turnover rates is essential in furthering our understanding of range dynamics, and in directing conservation efforts. This study further illustrates the practical application of methods proposed recently for estimating extinction rates and other community dynamic parameters.
Local extinction and turnover rates at the edge and interior of species' ranges
Doherty, P.F.; Boulinier, T.; Nichols, J.D.
2003-01-01
One hypothesis for the maintenance of the edge of a species' range suggests that more central (and abundant) populations are relatively stable and edge populations are less stable with increased local extinction and turnover rates. To date, estimates of such metrics are equivocal due to design and analysis flaws. Apparent increased estimates of extinction and turnover rates at the edge of range, versus the interior, could be a function of decreased detection probabilities alone, and not of a biological process. We estimated extinction and turnover rates for species at the interiors and edges of their ranges using an approach which incorporates potential heterogeneity in species detection probabilities. Extinction rates were higher at the edges (0.17 ' 0.03 [SE]) than in the interiors (0.04 ' 0.01), as was turnover. Without taking the probability of detection into account these differences would be artificially magnified. Knowledge of extinction and turnover rates is essential in furthering our understanding of range dynamics, and in directing conservation efforts. This study further illustrates the practical application of methods proposed recently for estimating extinction rates and other community dynamic parameters.
Multi-scale Salinity Fronts Observed by Saildrones During the SPURS-2 Field Campaign
NASA Astrophysics Data System (ADS)
Cronin, M. F.; Zhang, D.; Sutton, A. J.; Meinig, C.; Jenkins, R.; Keene, J.
2017-12-01
As part of the Tropical Pacific Observing System (TPOS)-2020 project, two Saildrone Inc. "Saildrones" will be deployed to test the ability of these new autonomous sailing vessel drones for making climate quality meteorological, oceanic and biogeochemical measurements. During the first part of the 6-month mission, in October 2017, the two Saildrones will participate in the Salinity Processes in the Upper Ocean Regional Study-2 (SPURS-2) final field campaign in the eastern tropical Pacific. In this presentation we will show early results from the mission, including intercomparisons of Saildrone measurements against similar measurements from moorings and a research vessel, and Saildrone observations of multi-scale fronts in the eastern Pacific Intertropical Convergence Zone (ITCZ). With its ability to transit at speeds of up to 3-5 knots (for 10-20 knot winds) and to adapt its course and sampling scheme upon demand, Saildrones offer a powerful new tool for oceanographic research. If the measurements are shown to be climate quality, this exciting new platform could play a major new role in the TPOS, either as stationary pseudo-moorings, and/or for making repeat sections (e.g., across cold tongue front, or ITCZ), and/or monitoring evolving conditions, such as the eastern edge of the warm pool as it shifts eastward during an El Niño.
Computational approach on PEB process in EUV resist: multi-scale simulation
NASA Astrophysics Data System (ADS)
Kim, Muyoung; Moon, Junghwan; Choi, Joonmyung; Lee, Byunghoon; Jeong, Changyoung; Kim, Heebom; Cho, Maenghyo
2017-03-01
For decades, downsizing has been a key issue for high performance and low cost of semiconductor, and extreme ultraviolet lithography is one of the promising candidates to achieve the goal. As a predominant process in extreme ultraviolet lithography on determining resolution and sensitivity, post exposure bake has been mainly studied by experimental groups, but development of its photoresist is at the breaking point because of the lack of unveiled mechanism during the process. Herein, we provide theoretical approach to investigate underlying mechanism on the post exposure bake process in chemically amplified resist, and it covers three important reactions during the process: acid generation by photo-acid generator dissociation, acid diffusion, and deprotection. Density functional theory calculation (quantum mechanical simulation) was conducted to quantitatively predict activation energy and probability of the chemical reactions, and they were applied to molecular dynamics simulation for constructing reliable computational model. Then, overall chemical reactions were simulated in the molecular dynamics unit cell, and final configuration of the photoresist was used to predict the line edge roughness. The presented multiscale model unifies the phenomena of both quantum and atomic scales during the post exposure bake process, and it will be helpful to understand critical factors affecting the performance of the resulting photoresist and design the next-generation material.
Ye, Han; Zhou, Jiadong; Er, Dequan; Price, Christopher C; Yu, Zhongyuan; Liu, Yumin; Lowengrub, John; Lou, Jun; Liu, Zheng; Shenoy, Vivek B
2017-12-26
Vertical stacking of monolayers via van der Waals (vdW) interaction opens promising routes toward engineering physical properties of two-dimensional (2D) materials and designing atomically thin devices. However, due to the lack of mechanistic understanding, challenges remain in the controlled fabrication of these structures via scalable methods such as chemical vapor deposition (CVD) onto substrates. In this paper, we develop a general multiscale model to describe the size evolution of 2D layers and predict the necessary growth conditions for vertical (initial + subsequent layers) versus in-plane lateral (monolayer) growth. An analytic thermodynamic criterion is established for subsequent layer growth that depends on the sizes of both layers, the vdW interaction energies, and the edge energy of 2D layers. Considering the time-dependent growth process, we find that temperature and adatom flux from vapor are the primary criteria affecting the self-assembled growth. The proposed model clearly demonstrates the distinct roles of thermodynamic and kinetic mechanisms governing the final structure. Our model agrees with experimental observations of various monolayer and bilayer transition metal dichalcogenides grown by CVD and provides a predictive framework to guide the fabrication of vertically stacked 2D materials.
NASA Astrophysics Data System (ADS)
Sato, Kazuhisa; Tashiro, Shunya; Matsunaga, Shuhei; Yamaguchi, Yohei; Kiguchi, Takanori; Konno, Toyohiko J.
2018-07-01
We have studied three-dimensional (3D) structures and growth processes of 14H-type long-period stacking order (LPSO) formed in Mg97Zn1Gd2 cast alloys by single tilt-axis electron tomography (ET) using high-angle annular dark-field scanning transmission electron microscopy. Evolution of the solute-enriched stacking faults (SFs) and the 14H LPSO by ageing were visualised in 3D with a high spatial resolution in multi-scale fields of views from a few nanometres to 10 μm. Lateral growth of the solute-enriched SFs and the LPSO in the (0 0 0 1)Mg plane is notable compared to the out-of-plane growth in the [0 0 0 1]Mg direction. The 14H LPSO grows at the cost of decomposition of the (Mg, Zn)3Gd-type precipitates, and accompany a change of in-plane edge angles from 30 to 60°. We have updated the Time-Temperature-Transformation diagram for precipitation in Mg97Zn1Gd2 alloys: starting temperatures of both solute-enriched SFs and LPSO formation shifted to a shorter time side than those in the previous diagram.
Multiscale Anomaly Detection and Image Registration Algorithms for Airborne Landmine Detection
2008-05-01
with the sensed image. The two- dimensional correlation coefficient r for two matrices A and B both of size M ×N is given by r = ∑ m ∑ n (Amn...correlation based method by matching features in a high- dimensional feature- space . The current implementation of the SIFT algorithm uses a brute-force...by repeatedly convolving the image with a Guassian kernel. Each plane of the scale
A Performance Evaluation of Lightning-NO Algorithms in CMAQ
In the Community Multiscale Air Quality (CMAQv5.2) model, we have implemented two algorithms for lightning NO production; one algorithm is based on the hourly observed cloud-to-ground lightning strike data from National Lightning Detection Network (NLDN) to replace the previous m...
NASA Astrophysics Data System (ADS)
Xie, Yijing; Thom, Maria; Miserocchi, Anna; McEvoy, Andrew W.; Desjardins, Adrien; Ourselin, Sebastien; Vercauteren, Tom
2017-02-01
In glioma resection surgery, the detection of tumour is often guided by using intraoperative fluorescence imaging notably with 5-ALA-PpIX, providing fluorescent contrast between normal brain tissue and the gliomas tissue to achieve improved tumour delineation and prolonged patient survival compared with the conventional white-light guided resection. However, the commercially available fluorescence imaging system relies on surgeon's eyes to visualise and distinguish the fluorescence signals, which unfortunately makes the resection subjective. In this study, we developed a novel multi-scale spectrally-resolved fluorescence imaging system and a computational model for quantification of PpIX concentration. The system consisted of a wide-field spectrally-resolved quantitative imaging device and a fluorescence endomicroscopic imaging system enabling optical biopsy. Ex vivo animal tissue experiments as well as human tumour sample studies demonstrated that the system was capable of specifically detecting the PpIX fluorescent signal and estimate the true concentration of PpIX in brain specimen.
Poisson Noise Removal in Spherical Multichannel Images: Application to Fermi data
NASA Astrophysics Data System (ADS)
Schmitt, Jérémy; Starck, Jean-Luc; Fadili, Jalal; Digel, Seth
2012-03-01
The Fermi Gamma-ray Space Telescope, which was launched by NASA in June 2008, is a powerful space observatory which studies the high-energy gamma-ray sky [5]. Fermi's main instrument, the Large Area Telescope (LAT), detects photons in an energy range between 20MeV and >300 GeV. The LAT is much more sensitive than its predecessor, the energetic gamma ray experiment telescope (EGRET) telescope on the Compton Gamma-ray Observatory, and is expected to find several thousand gamma-ray point sources, which is an order of magnitude more than its predecessor EGRET [13]. Even with its relatively large acceptance (∼2m2 sr), the number of photons detected by the LAT outside the Galactic plane and away from intense sources is relatively low and the sky overall has a diffuse glow from cosmic-ray interactions with interstellar gas and low energy photons that makes a background against which point sources need to be detected. In addition, the per-photon angular resolution of the LAT is relatively poor and strongly energy dependent, ranging from>10° at 20MeV to ∼0.1° above 100 GeV. Consequently, the spherical photon count images obtained by Fermi are degraded by the fluctuations on the number of detected photons. This kind of noise is strongly signal dependent : on the brightest parts of the image like the galactic plane or the brightest sources, we have a lot of photons per pixel, and so the photon noise is low. Outside the galactic plane, the number of photons per pixel is low, which means that the photon noise is high. Such a signal-dependent noise cannot be accurately modeled by a Gaussian distribution. The basic photon-imaging model assumes that the number of detected photons at each pixel location is Poisson distributed. More specifically, the image is considered as a realization of an inhomogeneous Poisson process. This statistical noise makes the source detection more difficult, consequently it is highly desirable to have an efficient denoising method for spherical Poisson data. Several techniques have been proposed in the literature to estimate Poisson intensity in 2-dimensional (2D). A major class of methods adopt a multiscale Bayesian framework specifically tailored for Poisson data [18], independently initiated by Timmerman and Nowak [23] and Kolaczyk [14]. Lefkimmiaits et al. [15] proposed an improved Bayesian framework for analyzing Poisson processes, based on a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities in adjacent scales are modeled as mixtures of conjugate parametric distributions. Another approach includes preprocessing the count data by a variance stabilizing transform(VST) such as theAnscombe [4] and the Fisz [10] transforms, applied respectively in the spatial [8] or in the wavelet domain [11]. The transform reforms the data so that the noise approximately becomes Gaussian with a constant variance. Standard techniques for independent identically distributed Gaussian noise are then used for denoising. Zhang et al. [25] proposed a powerful method called multiscale (MS-VST). It consists in combining a VST with a multiscale transform (wavelets, ridgelets, or curvelets), yielding asymptotically normally distributed coefficients with known variances. The interest of using a multiscale method is to exploit the sparsity properties of the data : the data are transformed into a domain in which it is sparse, and, as the noise is not sparse in any transform domain, it is easy to separate it from the signal. When the noise is Gaussian of known variance, it is easy to remove it with a high thresholding in the wavelet domain. The choice of the multiscale transform depends on the morphology of the data. Wavelets represent more efficiently regular structures and isotropic singularities, whereas ridgelets are designed to represent global lines in an image, and curvelets represent efficiently curvilinear contours. Significant coefficients are then detected with binary hypothesis testing, and the final estimate is reconstructed with an iterative scheme. In Ref
Habitat edges have weak effects on duck nest survival at local spatial scales
Raquel, Amelia J; Ringelman, Kevin M.; Ackerman, Joshua T.; Eadie, John M.
2015-01-01
Edge effects on nesting success have been documented in breeding birds in a variety of contexts, but there is still uncertainty in how edge type and spatial scale determine the magnitude and detectability of edge effects. Habitat edges are often viewed as predator corridors that surround or penetrate core habitat and increase the risk of predation for nearby nests. We studied the effects of three different types of potential predator corridors (main perimeter roads, field boundaries, and ATV trails within fields) on waterfowl nest survival in California. We measured the distance from duck nests to the nearest edge of each type, and used distance as a covariate in a logistic exposure analysis of nest survival. We found only weak evidence for edge effects due to predation. The best supported model of nest survival included all three distance categories, and while all coefficient estimates were positive (indicating that survival increased with distance from edge), 85% coefficient confidence intervals approached or bounded zero indicating an overall weak effect of habitat edges on nest success. We suggest that given the configuration of edges at our site, there may be few areas far enough from hard edges to be considered ‘core’ habitat, making edge effects on nest survival particularly difficult to detect.
Information theoretic analysis of edge detection in visual communication
NASA Astrophysics Data System (ADS)
Jiang, Bo; Rahman, Zia-ur
2010-08-01
Generally, the designs of digital image processing algorithms and image gathering devices remain separate. Consequently, the performance of digital image processing algorithms is evaluated without taking into account the artifacts introduced into the process by the image gathering process. However, experiments show that the image gathering process profoundly impacts the performance of digital image processing and the quality of the resulting images. Huck et al. proposed one definitive theoretic analysis of visual communication channels, where the different parts, such as image gathering, processing, and display, are assessed in an integrated manner using Shannon's information theory. In this paper, we perform an end-to-end information theory based system analysis to assess edge detection methods. We evaluate the performance of the different algorithms as a function of the characteristics of the scene, and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge detection algorithm is regarded to have high performance only if the information rate from the scene to the edge approaches the maximum possible. This goal can be achieved only by jointly optimizing all processes. People generally use subjective judgment to compare different edge detection methods. There is not a common tool that can be used to evaluate the performance of the different algorithms, and to give people a guide for selecting the best algorithm for a given system or scene. Our information-theoretic assessment becomes this new tool to which allows us to compare the different edge detection operators in a common environment.
A new edge detection algorithm based on Canny idea
NASA Astrophysics Data System (ADS)
Feng, Yingke; Zhang, Jinmin; Wang, Siming
2017-10-01
The traditional Canny algorithm has poor self-adaptability threshold, and it is more sensitive to noise. In order to overcome these drawbacks, this paper proposed a new edge detection method based on Canny algorithm. Firstly, the media filtering and filtering based on the method of Euclidean distance are adopted to process it; secondly using the Frei-chen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value, and the half of the high threshold value is low threshold value. Experiment results show that this new method can effectively suppress noise disturbance, keep the edge information, and also improve the edge detection accuracy.
Khandoker, Ahsan H; Karmakar, Chandan K; Begg, Rezaul K; Palaniswami, Marimuthu
2007-01-01
As humans age or are influenced by pathology of the neuromuscular system, gait patterns are known to adjust, accommodating for reduced function in the balance control system. The aim of this study was to investigate the effectiveness of a wavelet based multiscale analysis of a gait variable [minimum toe clearance (MTC)] in deriving indexes for understanding age-related declines in gait performance and screening of balance impairments in the elderly. MTC during walking on a treadmill for 30 healthy young, 27 healthy elderly and 10 falls risk elderly subjects with a history of tripping falls were analyzed. The MTC signal from each subject was decomposed to eight detailed signals at different wavelet scales by using the discrete wavelet transform. The variances of detailed signals at scales 8 to 1 were calculated. The multiscale exponent (beta) was then estimated from the slope of the variance progression at successive scales. The variance at scale 5 was significantly (p<0.01) different between young and healthy elderly group. Results also suggest that the Beta between scales 1 to 2 are effective for recognizing falls risk gait patterns. Results have implication for quantifying gait dynamics in normal, ageing and pathological conditions. Early detection of gait pattern changes due to ageing and balance impairments using wavelet-based multiscale analysis might provide the opportunity to initiate preemptive measures to be undertaken to avoid injurious falls.
Enhancing Community Detection By Affinity-based Edge Weighting Scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Andy; Sanders, Geoffrey; Henson, Van
Community detection refers to an important graph analytics problem of finding a set of densely-connected subgraphs in a graph and has gained a great deal of interest recently. The performance of current community detection algorithms is limited by an inherent constraint of unweighted graphs that offer very little information on their internal community structures. In this paper, we propose a new scheme to address this issue that weights the edges in a given graph based on recently proposed vertex affinity. The vertex affinity quantifies the proximity between two vertices in terms of their clustering strength, and therefore, it is idealmore » for graph analytics applications such as community detection. We also demonstrate that the affinity-based edge weighting scheme can improve the performance of community detection algorithms significantly.« less
NASA Astrophysics Data System (ADS)
Moradi, Saed; Moallem, Payman; Sabahi, Mohamad Farzan
2018-03-01
False alarm rate and detection rate are still two contradictory metrics for infrared small target detection in an infrared search and track system (IRST), despite the development of new detection algorithms. In certain circumstances, not detecting true targets is more tolerable than detecting false items as true targets. Hence, considering background clutter and detector noise as the sources of the false alarm in an IRST system, in this paper, a false alarm aware methodology is presented to reduce false alarm rate while the detection rate remains undegraded. To this end, advantages and disadvantages of each detection algorithm are investigated and the sources of the false alarms are determined. Two target detection algorithms having independent false alarm sources are chosen in a way that the disadvantages of the one algorithm can be compensated by the advantages of the other one. In this work, multi-scale average absolute gray difference (AAGD) and Laplacian of point spread function (LoPSF) are utilized as the cornerstones of the desired algorithm of the proposed methodology. After presenting a conceptual model for the desired algorithm, it is implemented through the most straightforward mechanism. The desired algorithm effectively suppresses background clutter and eliminates detector noise. Also, since the input images are processed through just four different scales, the desired algorithm has good capability for real-time implementation. Simulation results in term of signal to clutter ratio and background suppression factor on real and simulated images prove the effectiveness and the performance of the proposed methodology. Since the desired algorithm was developed based on independent false alarm sources, our proposed methodology is expandable to any pair of detection algorithms which have different false alarm sources.
A multi-level anomaly detection algorithm for time-varying graph data with interactive visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, Robert A.; Collins, John P.; Ferragut, Erik M.
This work presents a novel modeling and analysis framework for graph sequences which addresses the challenge of detecting and contextualizing anomalies in labelled, streaming graph data. We introduce a generalization of the BTER model of Seshadhri et al. by adding flexibility to community structure, and use this model to perform multi-scale graph anomaly detection. Specifically, probability models describing coarse subgraphs are built by aggregating node probabilities, and these related hierarchical models simultaneously detect deviations from expectation. This technique provides insight into a graph's structure and internal context that may shed light on a detected event. Additionally, this multi-scale analysis facilitatesmore » intuitive visualizations by allowing users to narrow focus from an anomalous graph to particular subgraphs or nodes causing the anomaly. For evaluation, two hierarchical anomaly detectors are tested against a baseline Gaussian method on a series of sampled graphs. We demonstrate that our graph statistics-based approach outperforms both a distribution-based detector and the baseline in a labeled setting with community structure, and it accurately detects anomalies in synthetic and real-world datasets at the node, subgraph, and graph levels. Furthermore, to illustrate the accessibility of information made possible via this technique, the anomaly detector and an associated interactive visualization tool are tested on NCAA football data, where teams and conferences that moved within the league are identified with perfect recall, and precision greater than 0.786.« less
A multi-level anomaly detection algorithm for time-varying graph data with interactive visualization
Bridges, Robert A.; Collins, John P.; Ferragut, Erik M.; ...
2016-01-01
This work presents a novel modeling and analysis framework for graph sequences which addresses the challenge of detecting and contextualizing anomalies in labelled, streaming graph data. We introduce a generalization of the BTER model of Seshadhri et al. by adding flexibility to community structure, and use this model to perform multi-scale graph anomaly detection. Specifically, probability models describing coarse subgraphs are built by aggregating node probabilities, and these related hierarchical models simultaneously detect deviations from expectation. This technique provides insight into a graph's structure and internal context that may shed light on a detected event. Additionally, this multi-scale analysis facilitatesmore » intuitive visualizations by allowing users to narrow focus from an anomalous graph to particular subgraphs or nodes causing the anomaly. For evaluation, two hierarchical anomaly detectors are tested against a baseline Gaussian method on a series of sampled graphs. We demonstrate that our graph statistics-based approach outperforms both a distribution-based detector and the baseline in a labeled setting with community structure, and it accurately detects anomalies in synthetic and real-world datasets at the node, subgraph, and graph levels. Furthermore, to illustrate the accessibility of information made possible via this technique, the anomaly detector and an associated interactive visualization tool are tested on NCAA football data, where teams and conferences that moved within the league are identified with perfect recall, and precision greater than 0.786.« less
The edge detection method of the infrared imagery of the laser spot
NASA Astrophysics Data System (ADS)
Che, Jinxi; Zhang, Jinchun; Li, Zhongmin
2016-01-01
In the jamming effectiveness experiments, in which the thermal infrared imager was interfered by the CO2 Laser, in order to evaluate the jamming effect of the thermal infrared imager by the CO2 Laser, it was needed to analyses the obtained infrared imagery of laser spot. Because the laser spot pictures obtained from the thermal infrared imager are irregular, the edge detection is an important process. The image edge is one of the most basic characteristics of the image, and it contains most of the information of the image. Generally, because of the thermal balance effect, the partly temperature of objective is no quite difference; therefore the infrared imagery's ability of reflecting the local detail of object is obvious week. At the same time, when the information of heat distribution of the thermal imagery was combined with the basic information of target, such as the object size, the relative position of field of view, shape and outline, and so on, the information just has more value. Hence, it is an important step for making image processing to extract the objective edge of the infrared imagery. Meanwhile it is an important part of image processing procedure and it is the premise of many subsequent processing. So as to extract outline information of the target from the original thermal imagery, and overcome the disadvantage, such as the low image contrast of the image and serious noise interference, and so on, the edge of thermal imagery needs detecting and processing. The principles of the Roberts, Sobel, Prewitt and Canny operator were analyzed, and then they were used to making edge detection on the thermal imageries of laser spot, which were obtained from the jamming effect experiments of CO2 laser jamming the thermal infrared imager. On the basis of the detection result, their performances were compared. At the end, the characteristics of the operators were summarized, which provide reference for the choice of edge detection operators in thermal imagery processing in future.
Zhang, Yanru; de Peuter, Olav R; Kamphuisen, Pieter W; Karemaker, John M
2013-01-01
A sympathetic shift in heart rate variability (HRV) from high to lower frequencies may be an early signal of deterioration in a monitored patient. Most chronic heart failure (CHF) patients receive β-blockers. This tends to obscure HRV observation by increasing the fast variations. We tested which HRV parameters would still detect the change into a sympathetic state. β-blocker (Carvedilol®) treated CHF patients underwent a protocol of 10 min supine rest, followed by 10 min active standing. CHF patients (NYHA Class II-IV) n = 15, 10m/5f, mean age 58.4 years (47-72); healthy controls n = 29, 18m/11f, mean age 62.9 years (49-78). Interbeat intervals (IBI) were extracted from the finger blood pressure wave (Nexfin®). Both linear and non-linear HRV analyses were applied that (1) might be able to differentiate patients from healthy controls under resting conditions and (2) detect the change into a sympathetic state in the present short recordings. Linear: mean-IBI, SD-IBI, root mean square of successive differences (rMSSD), pIBI-50 (the proportion of intervals that differs by more than 50 ms from the previous), LF, HF, and LF/HF ratio. Non-linear: Sample entropy (SampEn), Multiscale entropy (MSE), and derived: Multiscale variance (MSV) and Multiscale rMSSD (MSD). In the supine resting situation patients differed from controls by having higher HF and, consequently, lower LF/HF. In addition their longer range (τ = 6-10) MSE was lower as well. The sympathetic shift was, in controls, detected by mean-IBI, rMSSD, pIBI-50, and LF/HF, all going down; in CHF by mean-IBI, rMSSD, pIBI-50, and MSD (τ = 6-10) going down. MSD6-10 introduced here works as a band-pass filter favoring frequencies from 0.02 to 0.1 Hz. In β-blocker treated CHF patients, traditional time domain analysis (mean-IBI, rMSSD, pIBI-50) and MSD6-10 provide the most useful information to detect a condition change.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
NASA Astrophysics Data System (ADS)
Zheng, Jinde; Pan, Haiyang; Yang, Shubao; Cheng, Junsheng
2018-01-01
Multiscale permutation entropy (MPE) is a recently proposed nonlinear dynamic method for measuring the randomness and detecting the nonlinear dynamic change of time series and can be used effectively to extract the nonlinear dynamic fault feature from vibration signals of rolling bearing. To solve the drawback of coarse graining process in MPE, an improved MPE method called generalized composite multiscale permutation entropy (GCMPE) was proposed in this paper. Also the influence of parameters on GCMPE and its comparison with the MPE are studied by analyzing simulation data. GCMPE was applied to the fault feature extraction from vibration signal of rolling bearing and then based on the GCMPE, Laplacian score for feature selection and the Particle swarm optimization based support vector machine, a new fault diagnosis method for rolling bearing was put forward in this paper. Finally, the proposed method was applied to analyze the experimental data of rolling bearing. The analysis results show that the proposed method can effectively realize the fault diagnosis of rolling bearing and has a higher fault recognition rate than the existing methods.
Robust approach to ocular fundus image analysis
NASA Astrophysics Data System (ADS)
Tascini, Guido; Passerini, Giorgio; Puliti, Paolo; Zingaretti, Primo
1993-07-01
The analysis of morphological and structural modifications of retinal blood vessels plays an important role both to establish the presence of some systemic diseases as hypertension and diabetes and to study their course. The paper describes a robust set of techniques developed to quantitatively evaluate morphometric aspects of the ocular fundus vascular and micro vascular network. They are defined: (1) the concept of 'Local Direction of a vessel' (LD); (2) a special form of edge detection, named Signed Edge Detection (SED), which uses LD to choose the convolution kernel in the edge detection process and is able to distinguish between the left or the right vessel edge; (3) an iterative tracking (IT) method. The developed techniques use intensively both LD and SED in: (a) the automatic detection of number, position and size of blood vessels departing from the optical papilla; (b) the tracking of body and edges of the vessels; (c) the recognition of vessel branches and crossings; (d) the extraction of a set of features as blood vessel length and average diameter, arteries and arterioles tortuosity, crossing position and angle between two vessels. The algorithms, implemented in C language, have an execution time depending on the complexity of the currently processed vascular network.
Iterative Self-Dual Reconstruction on Radar Image Recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins, Charles; Medeiros, Fatima; Ushizima, Daniela
2010-05-21
Imaging systems as ultrasound, sonar, laser and synthetic aperture radar (SAR) are subjected to speckle noise during image acquisition. Before analyzing these images, it is often necessary to remove the speckle noise using filters. We combine properties of two mathematical morphology filters with speckle statistics to propose a signal-dependent noise filter to multiplicative noise. We describe a multiscale scheme that preserves sharp edges while it smooths homogeneous areas, by combining local statistics with two mathematical morphology filters: the alternating sequential and the self-dual reconstruction algorithms. The experimental results show that the proposed approach is less sensitive to varying window sizesmore » when applied to simulated and real SAR images in comparison with standard filters.« less
Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Thomas; Efendiev, Yalchin; Tchelepi, Hamdi
2016-05-24
Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scalemore » basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics.« less
Multiscale analysis and computation for flows in heterogeneous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efendiev, Yalchin; Hou, T. Y.; Durlofsky, L. J.
Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scalemore » basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics. Below, we present a brief overview of each of these contributions.« less
Energy-Consistent Multiscale Algorithms for Granular Flows
2014-08-07
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection...not been able to be captured comprehensively in models. The consequences of these advancements are broad and deep. The GEM method has revolutionized...the algorithm to detect contact needs to be redesign to be able to detect contact points, even in non-convex surfaces. To achieve this, we developed
Kim, Chang-Wan; Dai, Mai Duc; Eom, Kilho
2016-01-01
We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on the edge structure of a graphene resonator plays a critical role on both its dynamic and sensing performances. We found that the resonance behavior of graphene can be tuned not only through edge stress but also through nonlinear vibration, and that the detection sensitivity of a graphene resonator can be controlled by using the edge stress. Our study sheds light on the important role of the finite-size effect in the effective design of graphene resonators for their mass sensing applications.
A novel algorithm for osteoarthritis detection in Hough domain
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sabyasachi; Poria, Nilanjan; Chakraborty, Rajanya; Pratiher, Sawon; Mukherjee, Sukanya; Panigrahi, Prasanta K.
2018-02-01
Background subtraction of knee MRI images has been performed, followed by edge detection through canny edge detector. In order to avoid the discontinuities among edges, Daubechies-4 (Db-4) discrete wavelet transform (DWT) methodology is applied for the smoothening of edges identified through canny edge detector. The approximation coefficients of Db-4, having highest energy is selected to get rid of discontinuities in edges. Hough transform is then applied to find imperfect knee locations, as a function of distance (r) and angle (θ). The final outcome of the linear Hough transform is a two-dimensional array i.e., the accumulator space (r, θ) where one dimension of this matrix is the quantized angle θ and the other dimension is the quantized distance r. A novel algorithm has been suggested such that any deviation from the healthy knee bone structure for diseases like osteoarthritis can clearly be depicted on the accumulator space.
77 FR 33125 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-05
... along the wing leading edge and the inboard end rib of the wing leading edge due to insufficient clearance. This proposed AD would require inspecting the wire harness along the leading edge for chafing... to detect and correct chafing damage to the wire harness along the wing leading edge which, if not...
A Multi-Scale Settlement Matching Algorithm Based on ARG
NASA Astrophysics Data System (ADS)
Yue, Han; Zhu, Xinyan; Chen, Di; Liu, Lingjia
2016-06-01
Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG) is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.
Multiscale analysis of the intensity fluctuation in a time series of dynamic speckle patterns.
Federico, Alejandro; Kaufmann, Guillermo H
2007-04-10
We propose the application of a method based on the discrete wavelet transform to detect, identify, and measure scaling behavior in dynamic speckle. The multiscale phenomena presented by a sample and displayed by its speckle activity are analyzed by processing the time series of dynamic speckle patterns. The scaling analysis is applied to the temporal fluctuation of the speckle intensity and also to the two derived data sets generated by its magnitude and sign. The application of the method is illustrated by analyzing paint-drying processes and bruising in apples. The results are discussed taking into account the different time organizations obtained for the scaling behavior of the magnitude and the sign of the intensity fluctuation.
Framework for adaptive multiscale analysis of nonhomogeneous point processes.
Helgason, Hannes; Bartroff, Jay; Abry, Patrice
2011-01-01
We develop the methodology for hypothesis testing and model selection in nonhomogeneous Poisson processes, with an eye toward the application of modeling and variability detection in heart beat data. Modeling the process' non-constant rate function using templates of simple basis functions, we develop the generalized likelihood ratio statistic for a given template and a multiple testing scheme to model-select from a family of templates. A dynamic programming algorithm inspired by network flows is used to compute the maximum likelihood template in a multiscale manner. In a numerical example, the proposed procedure is nearly as powerful as the super-optimal procedures that know the true template size and true partition, respectively. Extensions to general history-dependent point processes is discussed.
Development of a fully automatic scheme for detection of masses in whole breast ultrasound images.
Ikedo, Yuji; Fukuoka, Daisuke; Hara, Takeshi; Fujita, Hiroshi; Takada, Etsuo; Endo, Tokiko; Morita, Takako
2007-11-01
Ultrasonography has been used for breast cancer screening in Japan. Screening using a conventional hand-held probe is operator dependent and thus it is possible that some areas of the breast may not be scanned. To overcome such problems, a mechanical whole breast ultrasound (US) scanner has been proposed and developed for screening purposes. However, another issue is that radiologists might tire while interpreting all images in a large-volume screening; this increases the likelihood that masses may remain undetected. Therefore, the aim of this study is to develop a fully automatic scheme for the detection of masses in whole breast US images in order to assist the interpretations of radiologists and potentially improve the screening accuracy. The authors database comprised 109 whole breast US imagoes, which include 36 masses (16 malignant masses, 5 fibroadenomas, and 15 cysts). A whole breast US image with 84 slice images (interval between two slice images: 2 mm) was obtained by the ASU-1004 US scanner (ALOKA Co., Ltd., Japan). The feature based on the edge directions in each slice and a method for subtracting between the slice images were used for the detection of masses in the authors proposed scheme. The Canny edge detector was applied to detect edges in US images; these edges were classified as near-vertical edges or near-horizontal edges using a morphological method. The positions of mass candidates were located using the near-vertical edges as a cue. Then, the located positions were segmented by the watershed algorithm and mass candidate regions were detected using the segmented regions and the low-density regions extracted by the slice subtraction method. For the removal of false positives (FPs), rule-based schemes and a quadratic discriminant analysis were applied for the distribution between masses and FPs. As a result, the sensitivity of the authors scheme for the detection of masses was 80.6% (29/36) with 3.8 FPs per whole breast image. The authors scheme for a computer-aided detection may be useful in improving the screening performance and efficiency.
Natural and artificial spectral edges in exoplanets
NASA Astrophysics Data System (ADS)
Lingam, Manasvi; Loeb, Abraham
2017-09-01
Technological civilizations may rely upon large-scale photovoltaic arrays to harness energy from their host star. Photovoltaic materials, such as silicon, possess distinctive spectral features, including an 'artificial edge' that is characteristically shifted in wavelength shortwards of the 'red edge' of vegetation. Future observations of reflected light from exoplanets would be able to detect both natural and artificial edges photometrically, if a significant fraction of the planet's surface is covered by vegetation or photovoltaic arrays, respectively. The stellar energy thus tapped can be utilized for terraforming activities by transferring heat and light from the day side to the night side on tidally locked exoplanets, thereby producing detectable artefacts.
Three-dimensional contour edge detection algorithm
NASA Astrophysics Data System (ADS)
Wang, Yizhou; Ong, Sim Heng; Kassim, Ashraf A.; Foong, Kelvin W. C.
2000-06-01
This paper presents a novel algorithm for automatically extracting 3D contour edges, which are points of maximum surface curvature in a surface range image. The 3D image data are represented as a surface polygon mesh. The algorithm transforms the range data, obtained by scanning a dental plaster cast, into a 2D gray scale image by linearly converting the z-value of each vertex to a gray value. The Canny operator is applied to the median-filtered image to obtain the edge pixels and their orientations. A vertex in the 3D object corresponding to the detected edge pixel and its neighbors in the direction of the edge gradient are further analyzed with respect to their n-curvatures to extract the real 3D contour edges. This algorithm provides a fast method of reducing and sorting the unwieldy data inherent in the surface mesh representation. It employs powerful 2D algorithms to extract features from the transformed 3D models and refers to the 3D model for further analysis of selected data. This approach substantially reduces the computational burden without losing accuracy. It is also easily extended to detect 3D landmarks and other geometrical features, thus making it applicable to a wide range of applications.
Detection of fractional solitons in quantum spin Hall systems
NASA Astrophysics Data System (ADS)
Fleckenstein, C.; Traverso Ziani, N.; Trauzettel, B.
2018-03-01
We propose two experimental setups that allow for the implementation and the detection of fractional solitons of the Goldstone-Wilczek type. The first setup is based on two magnetic barriers at the edge of a quantum spin Hall system for generating the fractional soliton. If then a quantum point contact is created with the other edge, the linear conductance shows evidence of the fractional soliton. The second setup consists of a single magnetic barrier covering both edges and implementing a long quantum point contact. In this case, the fractional soliton can unambiguously be detected as a dip in the conductance without the need to control the magnetization of the barrier.
How Did Urban Land Expand in China between 1992 and 2015? A Multi-Scale Landscape Analysis.
Xu, Min; He, Chunyang; Liu, Zhifeng; Dou, Yinyin
2016-01-01
Effective and timely quantification of the spatiotemporal pattern of urban expansion in China is important for the assessment of its environmental effects. However, the dynamics of the most recent urban expansions in China since 2012 have not yet been adequately explained due to a lack of current information. In this paper, our objective was to quantify spatiotemporal patterns of urban expansion in China between 1992 and 2015. First, we extracted information on urban expansion in China between 1992 and 2015 by integrating nighttime light data, vegetation index data, and land surface temperature data. Then we analyzed the spatiotemporal patterns of urban expansion at the national and regional scales, as well as at that of urban agglomerations. We found that China experienced a rapid and large-scale process of urban expansion between 1992 and 2015, with urban land increasing from 1.22 × 104 km2 to 7.29 × 104 km2, increasing in size nearly fivefold and with an average annual growth rate of 8.10%, almost 2.5 times as rapid as the global average. We also found that urban land in China expanded mainly by occupying 3.31 × 104 km2 of cropland, which comprised 54.67% of the total area of expanded urban land. Among the three modes of growth-infilling, edge expansion, and leapfrog-edge expansion was the main cause of cropland loss. Cropland loss resulting from edge expansion of urban land totalled 2.51 × 104 km2, accounting for over 75% of total cropland loss. We suggest that effective future management with respect to edge expansion of urban land is needed to protect cropland in China.
How Did Urban Land Expand in China between 1992 and 2015? A Multi-Scale Landscape Analysis
Xu, Min; He, Chunyang; Liu, Zhifeng; Dou, Yinyin
2016-01-01
Effective and timely quantification of the spatiotemporal pattern of urban expansion in China is important for the assessment of its environmental effects. However, the dynamics of the most recent urban expansions in China since 2012 have not yet been adequately explained due to a lack of current information. In this paper, our objective was to quantify spatiotemporal patterns of urban expansion in China between 1992 and 2015. First, we extracted information on urban expansion in China between 1992 and 2015 by integrating nighttime light data, vegetation index data, and land surface temperature data. Then we analyzed the spatiotemporal patterns of urban expansion at the national and regional scales, as well as at that of urban agglomerations. We found that China experienced a rapid and large-scale process of urban expansion between 1992 and 2015, with urban land increasing from 1.22 × 104 km2 to 7.29 × 104 km2, increasing in size nearly fivefold and with an average annual growth rate of 8.10%, almost 2.5 times as rapid as the global average. We also found that urban land in China expanded mainly by occupying 3.31 × 104 km2 of cropland, which comprised 54.67% of the total area of expanded urban land. Among the three modes of growth—infilling, edge expansion, and leapfrog—edge expansion was the main cause of cropland loss. Cropland loss resulting from edge expansion of urban land totalled 2.51 × 104 km2, accounting for over 75% of total cropland loss. We suggest that effective future management with respect to edge expansion of urban land is needed to protect cropland in China. PMID:27144589
NASA Astrophysics Data System (ADS)
Hasegawa, H.; Nakamura, T.; Kitamura, N.; Hoshi, Y.; Saito, Y.; Figueroa-Vinas, A.; Giles, B. L.; Lavraud, B.; Khotyaintsev, Y. V.; Ergun, R.
2017-12-01
The Kelvin-Helmholtz (KH) instability is known to grow along the Earth's magnetopause, but its role in transporting solar wind mass and energy into the magnetosphere is not fully understood. On 8 September 2015, the Magnetospheric Multiscale (MMS) spacecraft, located at the postnoon, southern-hemisphere magnetopause, encountered thin low-shear current sheets at the trailing edge of the KH waves, where KH-induced reconnection, one of the plasma transport processes, was occurring [Eriksson et al., GRL, 2016; Li et al., GRL, 2016]. The event was observed during a prolonged period of northward interplanetary magnetic field, and was characterized by an extended region of the low-latitude boundary layer (LLBL) immediately earthward of the KH unstable magnetopause, which appeared to have been formed through magnetopause reconnection poleward of the cusp. In this LLBL, MMS observed plasma turbulence, another agent for the plasma transport [Stawarz et al., JGR, 2016]. Key features are that (i) significant magnetic shears were seen only at the trailing edges of the KH surface waves, (ii) for both the leading and trailing edge traversals, both field-aligned and anti-field-aligned streaming D-shaped ion populations, which are consistent with reconnection on the southward and northward sides, respectively, of MMS, were observed on either the magnetosheath or LLBL side of the magnetopause, though not always simultaneously, and (iii) the field-aligned Poynting flux was positive in some parts of the LLBL but was negative in other parts. Based on these observations and further wave analysis, we address the questions of how the current sheets at the KH wave trailing edges were generated, and what could have been the driver of the turbulent fluctuations observed within the KH vortices.
Algorithm for Automated Detection of Edges of Clouds
NASA Technical Reports Server (NTRS)
Ward, Jennifer G.; Merceret, Francis J.
2006-01-01
An algorithm processes cloud-physics data gathered in situ by an aircraft, along with reflectivity data gathered by ground-based radar, to determine whether the aircraft is inside or outside a cloud at a given time. A cloud edge is deemed to be detected when the in/out state changes, subject to a hysteresis constraint. Such determinations are important in continuing research on relationships among lightning, electric charges in clouds, and decay of electric fields with distance from cloud edges.
Real-time line-width measurements: a new feature for reticle inspection systems
NASA Astrophysics Data System (ADS)
Eran, Yair; Greenberg, Gad; Joseph, Amnon; Lustig, Cornel; Mizrahi, Eyal
1997-07-01
The significance of line width control in mask production has become greater with the lessening of defect size. There are two conventional methods used for controlling line widths dimensions which employed in the manufacturing of masks for sub micron devices. These two methods are the critical dimensions (CD) measurement and the detection of edge defects. Achieving reliable and accurate control of line width errors is one of the most challenging tasks in mask production. Neither of the two methods cited above (namely CD measurement and the detection of edge defects) guarantees the detection of line width errors with good sensitivity over the whole mask area. This stems from the fact that CD measurement provides only statistical data on the mask features whereas applying edge defect detection method checks defects on each edge by itself, and does not supply information on the combined result of error detection on two adjacent edges. For example, a combination of a small edge defect together with a CD non- uniformity which are both within the allowed tolerance, may yield a significant line width error, which will not be detected using the conventional methods (see figure 1). A new approach for the detection of line width errors which overcomes this difficulty is presented. Based on this approach, a new sensitive line width error detector was developed and added to Orbot's RT-8000 die-to-database reticle inspection system. This innovative detector operates continuously during the mask inspection process and scans (inspects) the entire area of the reticle for line width errors. The detection is based on a comparison of measured line width that are taken on both the design database and the scanned image of the reticle. In section 2, the motivation for developing this new detector is presented. The section covers an analysis of various defect types, which are difficult to detect using conventional edge detection methods or, alternatively, CD measurements. In section 3, the basic concept of the new approach is introduced together with a description of the new detector and its characteristics. In section 4, the calibration process that took place in order to achieve reliable and repeatable line width measurements is presented. The description of an experiments conducted in order to evaluate the sensitivity of the new detector is given in section 5, followed by a report of the results of this evaluation. The conclusions are presented in section 6.
Edge-based correlation image registration for multispectral imaging
Nandy, Prabal [Albuquerque, NM
2009-11-17
Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.
A synthetic genetic edge detection program.
Tabor, Jeffrey J; Salis, Howard M; Simpson, Zachary Booth; Chevalier, Aaron A; Levskaya, Anselm; Marcotte, Edward M; Voigt, Christopher A; Ellington, Andrew D
2009-06-26
Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.
A Synthetic Genetic Edge Detection Program
Tabor, Jeffrey J.; Salis, Howard; Simpson, Zachary B.; Chevalier, Aaron A.; Levskaya, Anselm; Marcotte, Edward M.; Voigt, Christopher A.; Ellington, Andrew D.
2009-01-01
Summary Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E.coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks. PMID:19563759
Intelligent identification of remnant ridge edges in region west of Yongxing Island, South China Sea
NASA Astrophysics Data System (ADS)
Wang, Weiwei; Guo, Jing; Cai, Guanqiang; Wang, Dawei
2018-02-01
Edge detection enables identification of geomorphologic unit boundaries and thus assists with geomorphical mapping. In this paper, an intelligent edge identification method is proposed and image processing techniques are applied to multi-beam bathymetry data. To accomplish this, a color image is generated by the bathymetry, and a weighted method is used to convert the color image to a gray image. As the quality of the image has a significant influence on edge detection, different filter methods are applied to the gray image for de-noising. The peak signal-to-noise ratio and mean square error are calculated to evaluate which filter method is most appropriate for depth image filtering and the edge is subsequently detected using an image binarization method. Traditional image binarization methods cannot manage the complicated uneven seafloor, and therefore a binarization method is proposed that is based on the difference between image pixel values; the appropriate threshold for image binarization is estimated according to the probability distribution of pixel value differences between two adjacent pixels in horizontal and vertical directions, respectively. Finally, an eight-neighborhood frame is adopted to thin the binary image, connect the intermittent edge, and implement contour extraction. Experimental results show that the method described here can recognize the main boundaries of geomorphologic units. In addition, the proposed automatic edge identification method avoids use of subjective judgment, and reduces time and labor costs.
Improved detection of soma location and morphology in fluorescence microscopy images of neurons.
Kayasandik, Cihan Bilge; Labate, Demetrio
2016-12-01
Automated detection and segmentation of somas in fluorescent images of neurons is a major goal in quantitative studies of neuronal networks, including applications of high-content-screenings where it is required to quantify multiple morphological properties of neurons. Despite recent advances in image processing targeted to neurobiological applications, existing algorithms of soma detection are often unreliable, especially when processing fluorescence image stacks of neuronal cultures. In this paper, we introduce an innovative algorithm for the detection and extraction of somas in fluorescent images of networks of cultured neurons where somas and other structures exist in the same fluorescent channel. Our method relies on a new geometrical descriptor called Directional Ratio and a collection of multiscale orientable filters to quantify the level of local isotropy in an image. To optimize the application of this approach, we introduce a new construction of multiscale anisotropic filters that is implemented by separable convolution. Extensive numerical experiments using 2D and 3D confocal images show that our automated algorithm reliably detects somas, accurately segments them, and separates contiguous ones. We include a detailed comparison with state-of-the-art existing methods to demonstrate that our algorithm is extremely competitive in terms of accuracy, reliability and computational efficiency. Our algorithm will facilitate the development of automated platforms for high content neuron image processing. A Matlab code is released open-source and freely available to the scientific community. Copyright © 2016 Elsevier B.V. All rights reserved.
Buildings Change Detection Based on Shape Matching for Multi-Resolution Remote Sensing Imagery
NASA Astrophysics Data System (ADS)
Abdessetar, M.; Zhong, Y.
2017-09-01
Buildings change detection has the ability to quantify the temporal effect, on urban area, for urban evolution study or damage assessment in disaster cases. In this context, changes analysis might involve the utilization of the available satellite images with different resolutions for quick responses. In this paper, to avoid using traditional method with image resampling outcomes and salt-pepper effect, building change detection based on shape matching is proposed for multi-resolution remote sensing images. Since the object's shape can be extracted from remote sensing imagery and the shapes of corresponding objects in multi-scale images are similar, it is practical for detecting buildings changes in multi-scale imagery using shape analysis. Therefore, the proposed methodology can deal with different pixel size for identifying new and demolished buildings in urban area using geometric properties of objects of interest. After rectifying the desired multi-dates and multi-resolutions images, by image to image registration with optimal RMS value, objects based image classification is performed to extract buildings shape from the images. Next, Centroid-Coincident Matching is conducted, on the extracted building shapes, based on the Euclidean distance measurement between shapes centroid (from shape T0 to shape T1 and vice versa), in order to define corresponding building objects. Then, New and Demolished buildings are identified based on the obtained distances those are greater than RMS value (No match in the same location).
Segmentation of blurred objects using wavelet transform: application to x-ray images
NASA Astrophysics Data System (ADS)
Barat, Cecile S.; Ducottet, Christophe; Bilgot, Anne; Desbat, Laurent
2004-02-01
First, we present a wavelet-based algorithm for edge detection and characterization, which is an adaptation of Mallat and Hwang"s method. This algorithm relies on a modelization of contours as smoothed singularities of three particular types (transitions, peaks and lines). On the one hand, it allows to detect and locate edges at an adapted scale. On the other hand, it is able to identify the type of each detected edge point and to measure its amplitude and smoothing size. The latter parameters represent respectively the contrast and the smoothness level of the edge point. Second, we explain that this method has been integrated in a 3D bone surface reconstruction algorithm designed for computer-assisted and minimal invasive orthopaedic surgery. In order to decrease the dose to the patient and to obtain rapidly a 3D image, we propose to identify a bone shape from few X-ray projections by using statistical shape models registered to segmented X-ray projections. We apply this approach to pedicle screw insertion (scoliosis, fractures...) where ten to forty percent of the screws are known to be misplaced. In this context, the proposed edge detection algorithm allows to overcome the major problem of vertebrae segmentation in the X-ray images.
High accuracy position method based on computer vision and error analysis
NASA Astrophysics Data System (ADS)
Chen, Shihao; Shi, Zhongke
2003-09-01
The study of high accuracy position system is becoming the hotspot in the field of autocontrol. And positioning is one of the most researched tasks in vision system. So we decide to solve the object locating by using the image processing method. This paper describes a new method of high accuracy positioning method through vision system. In the proposed method, an edge-detection filter is designed for a certain running condition. Here, the filter contains two mainly parts: one is image-processing module, this module is to implement edge detection, it contains of multi-level threshold self-adapting segmentation, edge-detection and edge filter; the other one is object-locating module, it is to point out the location of each object in high accurate, and it is made up of medium-filtering and curve-fitting. This paper gives some analysis error for the method to prove the feasibility of vision in position detecting. Finally, to verify the availability of the method, an example of positioning worktable, which is using the proposed method, is given at the end of the paper. Results show that the method can accurately detect the position of measured object and identify object attitude.
Automatic airline baggage counting using 3D image segmentation
NASA Astrophysics Data System (ADS)
Yin, Deyu; Gao, Qingji; Luo, Qijun
2017-06-01
The baggage number needs to be checked automatically during baggage self-check-in. A fast airline baggage counting method is proposed in this paper using image segmentation based on height map which is projected by scanned baggage 3D point cloud. There is height drop in actual edge of baggage so that it can be detected by the edge detection operator. And then closed edge chains are formed from edge lines that is linked by morphological processing. Finally, the number of connected regions segmented by closed chains is taken as the baggage number. Multi-bag experiment that is performed on the condition of different placement modes proves the validity of the method.
Seki, Yukio; Yamamoto, Takumi; Yoshimatsu, Hidehiko; Hayashi, Akitatsu; Kurazono, Arito; Mori, Masanori; Kato, Yoichi; Koshima, Isao
2015-11-01
Lymphatic vessel diameter and lymph flow are important for accurate anastomosis and effective lymph-to-venous flow in lymphaticovenular anastomosis. The authors developed a reliable method, the superioredge-of-the-knee incision method, for detecting and making the best use of high-flow lymphatic vessels in the distal medial thigh between the deep and superficial fascia, where movement of the knee, combined with compression between these fascial layers, theoretically results in upward propulsion of lymphatic fluid. Intraoperative detection of large lymphatic vessels and of venous reflux and postoperative lymphedematous volume reduction were compared between 15 patients in whom lymphaticovenular anastomoses with the superior-edge-of-the-knee incision method were undergone and 15 in whom conventional lymphaticovenular anastomoses were undergone. Lymphaticovenular anastomosis at the thigh yielded 30 anastomoses in the superior-edge-of-the-knee incision group and 32 anastomoses in the non-superior-edge-of-the-knee incision group. Large lymphatic vessels were more frequently found in the superior-edge-of-the-knee incision group than in the non-superior-edge-of-the-knee incision group (60.0 percent versus 18.8 percent; p = 0.002). Venous reflux occurred less frequently in the superior-edge-of-the-knee incision group than in the non-superior-edge-of-the-knee incision group (10.0 percent versus 65.6 percent; p < 0.001). Reduction of the lower extremity lymphedema index was significantly greater in the superior-edge-of-the-knee incision group than in the non-superior-edge-of-the-knee incision group (24.427 ± 12.400 versus 0.032 ± 20.535; p < 0.001). The superior-edge-of-the-knee incision method facilitates detection and use of large, high-flow lymphatic vessels in the distal medial thigh, both of which are important for optimum therapeutic effects in patients with lower extremity lymphedema. Therapeutic, III.
Liu, Xingbin; Mei, Wenbo; Du, Huiqian
2018-02-13
In this paper, a detail-enhanced multimodality medical image fusion algorithm is proposed by using proposed multi-scale joint decomposition framework (MJDF) and shearing filter (SF). The MJDF constructed with gradient minimization smoothing filter (GMSF) and Gaussian low-pass filter (GLF) is used to decompose source images into low-pass layers, edge layers, and detail layers at multiple scales. In order to highlight the detail information in the fused image, the edge layer and the detail layer in each scale are weighted combined into a detail-enhanced layer. As directional filter is effective in capturing salient information, so SF is applied to the detail-enhanced layer to extract geometrical features and obtain directional coefficients. Visual saliency map-based fusion rule is designed for fusing low-pass layers, and the sum of standard deviation is used as activity level measurement for directional coefficients fusion. The final fusion result is obtained by synthesizing the fused low-pass layers and directional coefficients. Experimental results show that the proposed method with shift-invariance, directional selectivity, and detail-enhanced property is efficient in preserving and enhancing detail information of multimodality medical images. Graphical abstract The detailed implementation of the proposed medical image fusion algorithm.
A cortical framework for invariant object categorization and recognition.
Rodrigues, João; Hans du Buf, J M
2009-08-01
In this paper we present a new model for invariant object categorization and recognition. It is based on explicit multi-scale features: lines, edges and keypoints are extracted from responses of simple, complex and end-stopped cells in cortical area V1, and keypoints are used to construct saliency maps for Focus-of-Attention. The model is a functional but dichotomous one, because keypoints are employed to model the "where" data stream, with dynamic routing of features from V1 to higher areas to obtain translation, rotation and size invariance, whereas lines and edges are employed in the "what" stream for object categorization and recognition. Furthermore, both the "where" and "what" pathways are dynamic in that information at coarse scales is employed first, after which information at progressively finer scales is added in order to refine the processes, i.e., both the dynamic feature routing and the categorization level. The construction of group and object templates, which are thought to be available in the prefrontal cortex with "what" and "where" components in PF46d and PF46v, is also illustrated. The model was tested in the framework of an integrated and biologically plausible architecture.
Propagation of radio frequency waves through density fluctuations
NASA Astrophysics Data System (ADS)
Valvis, S. I.; Papagiannis, P.; Papadopoulos, A.; Hizanidis, K.; Glytsis, E.; Bairaktaris, F.; Zisis, A.; Tigelis, I.; Ram, A. K.
2017-10-01
On their way to the core of a tokamak plasma, radio frequency (RF) waves, excited in the vacuum region, have to propagate through a variety of density fluctuations in the edge region. These fluctuations include coherent structures, like blobs that can be field aligned or not, as well as turbulent and filamentary structures. We have been studying the effect of fluctuations on RF propagation using both theoretical (analytical) and computational models. The theoretical results are being compared with those obtained by two different numerical codes ``a Finite Difference Frequency Domain code and the commercial COMSOL package. For plasmas with arbitrary distribution of coherent and turbulent fluctuations, we have formulated an effective dielectric permittivity of the edge plasma. This permittivity tensor is then used in numerical simulations to study the effect of multi-scale turbulence on RF waves. We not only consider plane waves but also Gaussian beams in the electron cyclotron and lower hybrid range of frequencies. The analytical theory and results from simulations on the propagation of RF waves will be presented. Supported in part by the Hellenic National Programme on Controlled Thermonuclear Fusion associated with the EUROfusion Consortium and by DoE Grant DE-FG02-91ER-54109.
Study of free edge effect on sub-laminar scale for thermoplastic composite laminates
NASA Astrophysics Data System (ADS)
Shen, Min; Lu, Huanbao; Tong, Jingwei; Su, Yishi; Li, Hongqi; Lv, Yongmin
2008-11-01
The interlaminar deformation on the free edge surface in thermoplastic composite AS4/PEEK laminates under bending loading are studied by means of digital image correlation method (DICM) using a white-light industrial microscopic. During the test, any artificial stochastic spray is not applied to the specimen surface. In laminar scale, the interlaminare displacements of [0/90]3s laminate are measured. In sub-laminar scale, the tested area includes a limited number of fibers; the fiber is elastic with actual diameter about 7μm, and PEEK matrix has elastic-plastic behavior. The local mesoscopic fields of interlaminar displacement near the areas of fiber-matrix interface are obtained by DICM. The distributions of in-plane elastic-plastic stresses near the interlaminar interface between different layers are indirectly obtained using the coupling the results of DICM with finite element method. Based on above DICM experiments, the influences of random fiber distribution and the PEEK matrix ductility in sub-laminar scale on the ineterlaminar mesomechanical behavior are investigated. The experimental results in the present work are important for multi-scale theory and numerical analysis of interlaminar deformation and stresses in these composite laminates.
NASA Astrophysics Data System (ADS)
Horstemeyer, M. F.
This review of multiscale modeling covers a brief history of various multiscale methodologies related to solid materials and the associated experimental influences, the various influence of multiscale modeling on different disciplines, and some examples of multiscale modeling in the design of structural components. Although computational multiscale modeling methodologies have been developed in the late twentieth century, the fundamental notions of multiscale modeling have been around since da Vinci studied different sizes of ropes. The recent rapid growth in multiscale modeling is the result of the confluence of parallel computing power, experimental capabilities to characterize structure-property relations down to the atomic level, and theories that admit multiple length scales. The ubiquitous research that focus on multiscale modeling has broached different disciplines (solid mechanics, fluid mechanics, materials science, physics, mathematics, biological, and chemistry), different regions of the world (most continents), and different length scales (from atoms to autos).
Zhang, Li; Athavale, Prashant; Pop, Mihaela; Wright, Graham A
2017-08-01
To enable robust reconstruction for highly accelerated three-dimensional multicontrast late enhancement imaging to provide improved MR characterization of myocardial infarction with isotropic high spatial resolution. A new method using compressed sensing with low rank and spatially varying edge-preserving constraints (CS-LASER) is proposed to improve the reconstruction of fine image details from highly undersampled data. CS-LASER leverages the low rank feature of the multicontrast volume series in MR relaxation and integrates spatially varying edge preservation into the explicit low rank constrained compressed sensing framework using weighted total variation. With an orthogonal temporal basis pre-estimated, a multiscale iterative reconstruction framework is proposed to enable the practice of CS-LASER with spatially varying weights of appropriate accuracy. In in vivo pig studies with both retrospective and prospective undersamplings, CS-LASER preserved fine image details better and presented tissue characteristics with a higher degree of consistency with histopathology, particularly in the peri-infarct region, than an alternative technique for different acceleration rates. An isotropic resolution of 1.5 mm was achieved in vivo within a single breath-hold using the proposed techniques. Accelerated three-dimensional multicontrast late enhancement with CS-LASER can achieve improved MR characterization of myocardial infarction with high spatial resolution. Magn Reson Med 78:598-610, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
An improved robust blind motion de-blurring algorithm for remote sensing images
NASA Astrophysics Data System (ADS)
He, Yulong; Liu, Jin; Liang, Yonghui
2016-10-01
Shift-invariant motion blur can be modeled as a convolution of the true latent image and the blur kernel with additive noise. Blind motion de-blurring estimates a sharp image from a motion blurred image without the knowledge of the blur kernel. This paper proposes an improved edge-specific motion de-blurring algorithm which proved to be fit for processing remote sensing images. We find that an inaccurate blur kernel is the main factor to the low-quality restored images. To improve image quality, we do the following contributions. For the robust kernel estimation, first, we adapt the multi-scale scheme to make sure that the edge map could be constructed accurately; second, an effective salient edge selection method based on RTV (Relative Total Variation) is used to extract salient structure from texture; third, an alternative iterative method is introduced to perform kernel optimization, in this step, we adopt l1 and l0 norm as the priors to remove noise and ensure the continuity of blur kernel. For the final latent image reconstruction, an improved adaptive deconvolution algorithm based on TV-l2 model is used to recover the latent image; we control the regularization weight adaptively in different region according to the image local characteristics in order to preserve tiny details and eliminate noise and ringing artifacts. Some synthetic remote sensing images are used to test the proposed algorithm, and results demonstrate that the proposed algorithm obtains accurate blur kernel and achieves better de-blurring results.
Dong, Yimeng; Gupta, Nirupam; Chopra, Nikhil
2016-11-01
In this paper, vulnerability of a distributed consensus seeking multi-agent system (MAS) with double-integrator dynamics against edge-bound content modification cyber attacks is studied. In particular, we define a specific edge-bound content modification cyber attack called malignant content modification attack (MCoMA), which results in unbounded growth of an appropriately defined group disagreement vector. Properties of MCoMA are utilized to design detection and mitigation algorithms so as to impart resilience in the considered MAS against MCoMA. Additionally, the proposed detection mechanism is extended to detect the general edge-bound content modification attacks (not just MCoMA). Finally, the efficacies of the proposed results are illustrated through numerical simulations.
Content modification attacks on consensus seeking multi-agent system with double-integrator dynamics
NASA Astrophysics Data System (ADS)
Dong, Yimeng; Gupta, Nirupam; Chopra, Nikhil
2016-11-01
In this paper, vulnerability of a distributed consensus seeking multi-agent system (MAS) with double-integrator dynamics against edge-bound content modification cyber attacks is studied. In particular, we define a specific edge-bound content modification cyber attack called malignant content modification attack (MCoMA), which results in unbounded growth of an appropriately defined group disagreement vector. Properties of MCoMA are utilized to design detection and mitigation algorithms so as to impart resilience in the considered MAS against MCoMA. Additionally, the proposed detection mechanism is extended to detect the general edge-bound content modification attacks (not just MCoMA). Finally, the efficacies of the proposed results are illustrated through numerical simulations.
An approach for traffic prohibition sign detection
NASA Astrophysics Data System (ADS)
Li, Qingquan; Xu, Dihong; Li, Bijun; Zeng, Zhe
2006-10-01
This paper presents an off-line traffic prohibition sign detection approach, whose core is based on combination with the color feature of traffic prohibition signs, shape feature and degree of circularity. Matlab-Image-processing toolbox is used for this purpose. In order to reduce the computational cost, a pre-processing of the image is applied before the core. Then, we employ the obvious redness attribute of prohibition signs to coarsely eliminate the non-redness image in the input data. Again, a edge-detection operator, Canny edge detector, is applied to extract the potential edge. Finally, Degree of circularity is used to verdict the traffic prohibition sign. Experimental results show that our systems offer satisfactory performance.
Linear array optical edge sensor
NASA Technical Reports Server (NTRS)
Bejczy, Antal K. (Inventor); Primus, Howard C. (Inventor)
1987-01-01
A series of independent parallel pairs of light emitting and detecting diodes for a linear pixel array, which is laterally positioned over an edge-like discontinuity in a workpiece to be scanned, is disclosed. These independent pairs of light emitters and detectors sense along intersecting pairs of separate optical axes. A discontinuity, such as an edge in the sensed workpiece, reflects a detectable difference in the amount of light from that discontinuity in comparison to the amount of light that is reflected on either side of the discontinuity. A sequentially sychronized clamping and sampling circuit detects that difference as an electrical signal which is recovered by circuitry that exhibits an improved signal-to-noise capability for the system.
Sub-surface defects detection of by using active thermography and advanced image edge detection
NASA Astrophysics Data System (ADS)
Tse, Peter W.; Wang, Gaochao
2017-05-01
Active or pulsed thermography is a popular non-destructive testing (NDT) tool for inspecting the integrity and anomaly of industrial equipment. One of the recent research trends in using active thermography is to automate the process in detecting hidden defects. As of today, human effort has still been using to adjust the temperature intensity of the thermo camera in order to visually observe the difference in cooling rates caused by a normal target as compared to that by a sub-surface crack exists inside the target. To avoid the tedious human-visual inspection and minimize human induced error, this paper reports the design of an automatic method that is capable of detecting subsurface defects. The method used the technique of active thermography, edge detection in machine vision and smart algorithm. An infrared thermo-camera was used to capture a series of temporal pictures after slightly heating up the inspected target by flash lamps. Then the Canny edge detector was employed to automatically extract the defect related images from the captured pictures. The captured temporal pictures were preprocessed by a packet of Canny edge detector and then a smart algorithm was used to reconstruct the whole sequences of image signals. During the processes, noise and irrelevant backgrounds exist in the pictures were removed. Consequently, the contrast of the edges of defective areas had been highlighted. The designed automatic method was verified by real pipe specimens that contains sub-surface cracks. After applying such smart method, the edges of cracks can be revealed visually without the need of using manual adjustment on the setting of thermo-camera. With the help of this automatic method, the tedious process in manually adjusting the colour contract and the pixel intensity in order to reveal defects can be avoided.
Doppler lidar wind measurement with the edge technique
NASA Technical Reports Server (NTRS)
Korb, C. Laurence; Gentry, Bruce M.
1992-01-01
The edge technique is a new and powerful method for measuring small frequency shifts. Range resolved lidar measurements of winds can be made with high accuracy and high vertical resolution using the edge technique to measure the Doppler shift of an atmospheric backscattered signal from a pulsed laser. The edge technique can be used at near-infrared or visible wavelengths using well developed solid state lasers and detectors with various edge filters. In the edge technique, the laser frequency is located on the steep slope of the spectral response function of a high resolution optical filter. Due to the steep slope of the edge, very small frequency shifts cause large changes in measured signal. The frequency of the outgoing laser pulse is determined by measuring its location on the edge of the filter. This is accomplished by sending a small portion of the beam to the edge detection setup where the incoming light is split into two channels - an edge filter and an energy monitor channel. The energy monitor signal is used to normalize the edge filter signal for magnitude. The laser return backscattered from the atmosphere is collected by a telescope and directed through the edge detection setup to determine its frequency (location on the edge) in a similar manner for each range element. The Doppler shift, and thus the wind, is determined from a differential measurement of the frequency of the outgoing laser pulse and the frequency of the laser return backscattered from the atmosphere. We have conducted simulations of the performance of an edge lidar system using an injection seeded pulsed Nd:YAG laser at 1.06 microns. The central fringe of a Fabry-Perot etalon is used as a high resolution edge filter to measure the shift of the aerosol return.
Active edge maps for medical image registration
NASA Astrophysics Data System (ADS)
Kerwin, William; Yuan, Chun
2001-07-01
Applying edge detection prior to performing image registration yields several advantages over raw intensity- based registration. Advantages include the ability to register multicontrast or multimodality images, immunity to intensity variations, and the potential for computationally efficient algorithms. In this work, a common framework for edge-based image registration is formulated as an adaptation of snakes used in boundary detection. Called active edge maps, the new formulation finds a one-to-one transformation T(x) that maps points in a source image to corresponding locations in a target image using an energy minimization approach. The energy consists of an image component that is small when edge features are well matched in the two images, and an internal term that restricts T(x) to allowable configurations. The active edge map formulation is illustrated here with a specific example developed for affine registration of carotid artery magnetic resonance images. In this example, edges are identified using a magnitude of gradient operator, image energy is determined using a Gaussian weighted distance function, and the internal energy includes separate, adjustable components that control volume preservation and rigidity.
Zhang, Xiaopu; Lin, Jun; Chen, Zubin; Sun, Feng; Zhu, Xi; Fang, Gengfa
2018-06-05
Microseismic monitoring is one of the most critical technologies for hydraulic fracturing in oil and gas production. To detect events in an accurate and efficient way, there are two major challenges. One challenge is how to achieve high accuracy due to a poor signal-to-noise ratio (SNR). The other one is concerned with real-time data transmission. Taking these challenges into consideration, an edge-computing-based platform, namely Edge-to-Center LearnReduce, is presented in this work. The platform consists of a data center with many edge components. At the data center, a neural network model combined with convolutional neural network (CNN) and long short-term memory (LSTM) is designed and this model is trained by using previously obtained data. Once the model is fully trained, it is sent to edge components for events detection and data reduction. At each edge component, a probabilistic inference is added to the neural network model to improve its accuracy. Finally, the reduced data is delivered to the data center. Based on experiment results, a high detection accuracy (over 96%) with less transmitted data (about 90%) was achieved by using the proposed approach on a microseismic monitoring system. These results show that the platform can simultaneously improve the accuracy and efficiency of microseismic monitoring.
Extended AIC model based on high order moments and its application in the financial market
NASA Astrophysics Data System (ADS)
Mao, Xuegeng; Shang, Pengjian
2018-07-01
In this paper, an extended method of traditional Akaike Information Criteria(AIC) is proposed to detect the volatility of time series by combining it with higher order moments, such as skewness and kurtosis. Since measures considering higher order moments are powerful in many aspects, the properties of asymmetry and flatness can be observed. Furthermore, in order to reduce the effect of noise and other incoherent features, we combine the extended AIC algorithm with multiscale wavelet analysis, in which the newly extended AIC algorithm is applied to wavelet coefficients at several scales and the time series are reconstructed by wavelet transform. After that, we create AIC planes to derive the relationship among AIC values using variance, skewness and kurtosis respectively. When we test this technique on the financial market, the aim is to analyze the trend and volatility of the closing price of stock indices and classify them. And we also adapt multiscale analysis to measure complexity of time series over a range of scales. Empirical results show that the singularity of time series in stock market can be detected via extended AIC algorithm.
Pan, Zhichao; Yu, Haishan; Liao, Jie-Lou
2016-01-01
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disorder characterized by progressive destruction of lung tissues and airway obstruction. COPD is currently the third leading cause of death worldwide and there is no curative treatment available so far. Cigarette smoke (CS) is the major risk factor for COPD. Yet, only a relatively small percentage of smokers develop the disease, showing that disease susceptibility varies significantly among smokers. As smoking cessation can prevent the disease in some smokers, quitting smoking cannot halt the progression of COPD in others. Despite extensive research efforts, cellular and molecular mechanisms of COPD remain elusive. In particular, the disease susceptibility and smoking cessation effects are poorly understood. To address these issues in this work, we develop a multiscale network model that consists of nodes, which represent molecular mediators, immune cells and lung tissues, and edges describing the interactions between the nodes. Our model study identifies several positive feedback loops and network elements playing a determinant role in the CS-induced immune response and COPD progression. The results are in agreement with clinic and laboratory measurements, offering novel insight into the cellular and molecular mechanisms of COPD. The study in this work also provides a rationale for targeted therapy and personalized medicine for the disease in future. PMID:27669518
Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated
NASA Astrophysics Data System (ADS)
Chen, Xiaoguang; Brodland, G. Wayne
2008-03-01
The novel multi-scale computational approach introduced here makes possible a new means for testing hypotheses about the forces that drive specific morphogenetic movements. A 3D model based on this approach is used to investigate neurulation in the axolotl (Ambystoma mexicanum), a type of amphibian. The model is based on geometric data from 3D surface reconstructions of live embryos and from serial sections. Tissue properties are described by a system of cell-based constitutive equations, and parameters in the equations are determined from physical tests. The model includes the effects of Shroom-activated neural ridge reshaping and lamellipodium-driven convergent extension. A typical whole-embryo model consists of 10 239 elements and to run its 100 incremental time steps requires 2 days. The model shows that a normal phenotype does not result if lamellipodium forces are uniform across the width of the neural plate; but it can result if the lamellipodium forces decrease from a maximum value at the mid-sagittal plane to zero at the plate edge. Even the seemingly simple motions of neurulation are found to contain important features that would remain hidden, they were not studied using an advanced computational model. The present model operates in a setting where data are extremely sparse and an important outcome of the study is a better understanding of the role of computational models in such environments.
Antunes, Sofia; Esposito, Antonio; Palmisano, Anna; Colantoni, Caterina; Cerutti, Sergio; Rizzo, Giovanna
2016-05-01
Extraction of the cardiac surfaces of interest from multi-detector computed tomographic (MDCT) data is a pre-requisite step for cardiac analysis, as well as for image guidance procedures. Most of the existing methods need manual corrections, which is time-consuming. We present a fully automatic segmentation technique for the extraction of the right ventricle, left ventricular endocardium and epicardium from MDCT images. The method consists in a 3D level set surface evolution approach coupled to a new stopping function based on a multiscale directional second derivative Gaussian filter, which is able to stop propagation precisely on the real boundary of the structures of interest. We validated the segmentation method on 18 MDCT volumes from healthy and pathologic subjects using manual segmentation performed by a team of expert radiologists as gold standard. Segmentation errors were assessed for each structure resulting in a surface-to-surface mean error below 0.5 mm and a percentage of surface distance with errors less than 1 mm above 80%. Moreover, in comparison to other segmentation approaches, already proposed in previous work, our method presented an improved accuracy (with surface distance errors less than 1 mm increased of 8-20% for all structures). The obtained results suggest that our approach is accurate and effective for the segmentation of ventricular cavities and myocardium from MDCT images.
Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated.
Chen, Xiaoguang; Brodland, G Wayne
2008-04-11
The novel multi-scale computational approach introduced here makes possible a new means for testing hypotheses about the forces that drive specific morphogenetic movements. A 3D model based on this approach is used to investigate neurulation in the axolotl (Ambystoma mexicanum), a type of amphibian. The model is based on geometric data from 3D surface reconstructions of live embryos and from serial sections. Tissue properties are described by a system of cell-based constitutive equations, and parameters in the equations are determined from physical tests. The model includes the effects of Shroom-activated neural ridge reshaping and lamellipodium-driven convergent extension. A typical whole-embryo model consists of 10,239 elements and to run its 100 incremental time steps requires 2 days. The model shows that a normal phenotype does not result if lamellipodium forces are uniform across the width of the neural plate; but it can result if the lamellipodium forces decrease from a maximum value at the mid-sagittal plane to zero at the plate edge. Even the seemingly simple motions of neurulation are found to contain important features that would remain hidden, they were not studied using an advanced computational model. The present model operates in a setting where data are extremely sparse and an important outcome of the study is a better understanding of the role of computational models in such environments.
A multiscale analysis of coral reef topographic complexity using lidar-derived bathymetry
Zawada, D.G.; Brock, J.C.
2009-01-01
Coral reefs represent one of the most irregular substrates in the marine environment. This roughness or topographic complexity is an important structural characteristic of reef habitats that affects a number of ecological and environmental attributes, including species diversity and water circulation. Little is known about the range of topographic complexity exhibited within a reef or between different reef systems. The objective of this study was to quantify topographic complexity for a 5-km x 5-km reefscape along the northern Florida Keys reef tract, over spatial scales ranging from meters to hundreds of meters. The underlying dataset was a 1-m spatial resolution, digital elevation model constructed from lidar measurements. Topographic complexity was quantified using a fractal algorithm, which provided a multi-scale characterization of reef roughness. The computed fractal dimensions (D) are a measure of substrate irregularity and are bounded between values of 2 and 3. Spatial patterns in D were positively correlated with known reef zonation in the area. Landward regions of the study site contain relatively smooth (D ??? 2.35) flat-topped patch reefs, which give way to rougher (D ??? 2.5), deep, knoll-shaped patch reefs. The seaward boundary contains a mixture of substrate features, including discontinuous shelf-edge reefs, and exhibits a corresponding range of roughness values (2.28 ??? D ??? 2.61). ?? 2009 Coastal Education and Research Foundation.
Improved imaging algorithm for bridge crack detection
NASA Astrophysics Data System (ADS)
Lu, Jingxiao; Song, Pingli; Han, Kaihong
2012-04-01
This paper present an improved imaging algorithm for bridge crack detection, through optimizing the eight-direction Sobel edge detection operator, making the positioning of edge points more accurate than without the optimization, and effectively reducing the false edges information, so as to facilitate follow-up treatment. In calculating the crack geometry characteristics, we use the method of extracting skeleton on single crack length. In order to calculate crack area, we construct the template of area by making logical bitwise AND operation of the crack image. After experiment, the results show errors of the crack detection method and actual manual measurement are within an acceptable range, meet the needs of engineering applications. This algorithm is high-speed and effective for automated crack measurement, it can provide more valid data for proper planning and appropriate performance of the maintenance and rehabilitation processes of bridge.
A Multiscale Vision Model applied to analyze EIT images of the solar corona
NASA Astrophysics Data System (ADS)
Portier-Fozzani, F.; Vandame, B.; Bijaoui, A.; Maucherat, A. J.; EIT Team
2001-07-01
The large dynamic range provided by the SOHO/EIT CCD (1 : 5000) is needed to observe the large EUV zoom of coronal structures from coronal homes up to flares. Histograms show that often a wide dynamic range is present in each image. Extracting hidden structures in the background level requires specific techniques such as the use of the Multiscale Vision Model (MVM, Bijaoui et al., 1998). This method, based on wavelet transformations optimizes detection of various size objects, however complex they may be. Bijaoui et al. built the Multiscale Vision Model to extract small dynamical structures from noise, mainly for studying galaxies. In this paper, we describe requirements for the use of this method with SOHO/EIT images (calibration, size of the image, dynamics of the subimage, etc.). Two different areas were studied revealing hidden structures: (1) classical coronal mass ejection (CME) formation and (2) a complex group of active regions with its evolution. The aim of this paper is to define carefully the constraints for this new method of imaging the solar corona with SOHO/EIT. Physical analysis derived from multi-wavelength observations will later complete these first results.
Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites
NASA Technical Reports Server (NTRS)
Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.
2010-01-01
Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity
Thomas, Michael S C; Forrester, Neil A; Ronald, Angelica
2016-01-01
In the multidisciplinary field of developmental cognitive neuroscience, statistical associations between levels of description play an increasingly important role. One example of such associations is the observation of correlations between relatively common gene variants and individual differences in behavior. It is perhaps surprising that such associations can be detected despite the remoteness of these levels of description, and the fact that behavior is the outcome of an extended developmental process involving interaction of the whole organism with a variable environment. Given that they have been detected, how do such associations inform cognitive-level theories? To investigate this question, we employed a multiscale computational model of development, using a sample domain drawn from the field of language acquisition. The model comprised an artificial neural network model of past-tense acquisition trained using the backpropagation learning algorithm, extended to incorporate population modeling and genetic algorithms. It included five levels of description-four internal: genetic, network, neurocomputation, behavior; and one external: environment. Since the mechanistic assumptions of the model were known and its operation was relatively transparent, we could evaluate whether cross-level associations gave an accurate picture of causal processes. We established that associations could be detected between artificial genes and behavioral variation, even under polygenic assumptions of a many-to-one relationship between genes and neurocomputational parameters, and when an experience-dependent developmental process interceded between the action of genes and the emergence of behavior. We evaluated these associations with respect to their specificity (to different behaviors, to function vs. structure), to their developmental stability, and to their replicability, as well as considering issues of missing heritability and gene-environment interactions. We argue that gene-behavior associations can inform cognitive theory with respect to effect size, specificity, and timing. The model demonstrates a means by which researchers can undertake multiscale modeling with respect to cognition and develop highly specific and complex hypotheses across multiple levels of description. Copyright © 2015 Cognitive Science Society, Inc.
Coherent Lagrangian swirls among submesoscale motions.
Beron-Vera, F J; Hadjighasem, A; Xia, Q; Olascoaga, M J; Haller, G
2018-03-05
The emergence of coherent Lagrangian swirls (CLSs) among submesoscale motions in the ocean is illustrated. This is done by applying recent nonlinear dynamics tools for Lagrangian coherence detection on a surface flow realization produced by a data-assimilative submesoscale-permitting ocean general circulation model simulation of the Gulf of Mexico. Both mesoscale and submesoscale CLSs are extracted. These extractions prove the relevance of coherent Lagrangian eddies detected in satellite-altimetry-based geostrophic flow data for the arguably more realistic ageostrophic multiscale flow.
Sunarto, Sunarto; Kelly, Marcella J.; Parakkasi, Karmila; Klenzendorf, Sybille; Septayuda, Eka; Kurniawan, Harry
2012-01-01
The critically endangered Sumatran tiger (Panthera tigris sumatrae Pocock, 1929) is generally known as a forest-dependent animal. With large-scale conversion of forests into plantations, however, it is crucial for restoration efforts to understand to what extent tigers use modified habitats. We investigated tiger-habitat relationships at 2 spatial scales: occupancy across the landscape and habitat use within the home range. Across major landcover types in central Sumatra, we conducted systematic detection, non-detection sign surveys in 47, 17×17 km grid cells. Within each cell, we surveyed 40, 1-km transects and recorded tiger detections and habitat variables in 100 m segments totaling 1,857 km surveyed. We found that tigers strongly preferred forest and used plantations of acacia and oilpalm, far less than their availability. Tiger probability of occupancy covaried positively and strongly with altitude, positively with forest area, and negatively with distance-to-forest centroids. At the fine scale, probability of habitat use by tigers across landcover types covaried positively and strongly with understory cover and altitude, and negatively and strongly with human settlement. Within forest areas, tigers strongly preferred sites that are farther from water bodies, higher in altitude, farther from edge, and closer to centroid of large forest block; and strongly preferred sites with thicker understory cover, lower level of disturbance, higher altitude, and steeper slope. These results indicate that to thrive, tigers depend on the existence of large contiguous forest blocks, and that with adjustments in plantation management, tigers could use mosaics of plantations (as additional roaming zones), riparian forests (as corridors) and smaller forest patches (as stepping stones), potentially maintaining a metapopulation structure in fragmented landscapes. This study highlights the importance of a multi-spatial scale analysis and provides crucial information relevant to restoring tigers and other wildlife in forest and plantation landscapes through improvement in habitat extent, quality, and connectivity. PMID:22292063
Sunarto, Sunarto; Kelly, Marcella J; Parakkasi, Karmila; Klenzendorf, Sybille; Septayuda, Eka; Kurniawan, Harry
2012-01-01
The critically endangered Sumatran tiger (Panthera tigris sumatrae Pocock, 1929) is generally known as a forest-dependent animal. With large-scale conversion of forests into plantations, however, it is crucial for restoration efforts to understand to what extent tigers use modified habitats. We investigated tiger-habitat relationships at 2 spatial scales: occupancy across the landscape and habitat use within the home range. Across major landcover types in central Sumatra, we conducted systematic detection, non-detection sign surveys in 47, 17×17 km grid cells. Within each cell, we surveyed 40, 1-km transects and recorded tiger detections and habitat variables in 100 m segments totaling 1,857 km surveyed. We found that tigers strongly preferred forest and used plantations of acacia and oilpalm, far less than their availability. Tiger probability of occupancy covaried positively and strongly with altitude, positively with forest area, and negatively with distance-to-forest centroids. At the fine scale, probability of habitat use by tigers across landcover types covaried positively and strongly with understory cover and altitude, and negatively and strongly with human settlement. Within forest areas, tigers strongly preferred sites that are farther from water bodies, higher in altitude, farther from edge, and closer to centroid of large forest block; and strongly preferred sites with thicker understory cover, lower level of disturbance, higher altitude, and steeper slope. These results indicate that to thrive, tigers depend on the existence of large contiguous forest blocks, and that with adjustments in plantation management, tigers could use mosaics of plantations (as additional roaming zones), riparian forests (as corridors) and smaller forest patches (as stepping stones), potentially maintaining a metapopulation structure in fragmented landscapes. This study highlights the importance of a multi-spatial scale analysis and provides crucial information relevant to restoring tigers and other wildlife in forest and plantation landscapes through improvement in habitat extent, quality, and connectivity.
Generation algorithm of craniofacial structure contour in cephalometric images
NASA Astrophysics Data System (ADS)
Mondal, Tanmoy; Jain, Ashish; Sardana, H. K.
2010-02-01
Anatomical structure tracing on cephalograms is a significant way to obtain cephalometric analysis. Computerized cephalometric analysis involves both manual and automatic approaches. The manual approach is limited in accuracy and repeatability. In this paper we have attempted to develop and test a novel method for automatic localization of craniofacial structure based on the detected edges on the region of interest. According to the grey scale feature at the different region of the cephalometric images, an algorithm for obtaining tissue contour is put forward. Using edge detection with specific threshold an improved bidirectional contour tracing approach is proposed by an interactive selection of the starting edge pixels, the tracking process searches repetitively for an edge pixel at the neighborhood of previously searched edge pixel to segment images, and then craniofacial structures are obtained. The effectiveness of the algorithm is demonstrated by the preliminary experimental results obtained with the proposed method.
Sampled-data consensus in switching networks of integrators based on edge events
NASA Astrophysics Data System (ADS)
Xiao, Feng; Meng, Xiangyu; Chen, Tongwen
2015-02-01
This paper investigates the event-driven sampled-data consensus in switching networks of multiple integrators and studies both the bidirectional interaction and leader-following passive reaction topologies in a unified framework. In these topologies, each information link is modelled by an edge of the information graph and assigned a sequence of edge events, which activate the mutual data sampling and controller updates of the two linked agents. Two kinds of edge-event-detecting rules are proposed for the general asynchronous data-sampling case and the synchronous periodic event-detecting case. They are implemented in a distributed fashion, and their effectiveness in reducing communication costs and solving consensus problems under a jointly connected topology condition is shown by both theoretical analysis and simulation examples.
Range image segmentation using Zernike moment-based generalized edge detector
NASA Technical Reports Server (NTRS)
Ghosal, S.; Mehrotra, R.
1992-01-01
The authors proposed a novel Zernike moment-based generalized step edge detection method which can be used for segmenting range and intensity images. A generalized step edge detector is developed to identify different kinds of edges in range images. These edge maps are thinned and linked to provide final segmentation. A generalized edge is modeled in terms of five parameters: orientation, two slopes, one step jump at the location of the edge, and the background gray level. Two complex and two real Zernike moment-based masks are required to determine all these parameters of the edge model. Theoretical noise analysis is performed to show that these operators are quite noise tolerant. Experimental results are included to demonstrate edge-based segmentation technique.
Real-time edge tracking using a tactile sensor
NASA Technical Reports Server (NTRS)
Berger, Alan D.; Volpe, Richard; Khosla, Pradeep K.
1989-01-01
Object recognition through the use of input from multiple sensors is an important aspect of an autonomous manipulation system. In tactile object recognition, it is necessary to determine the location and orientation of object edges and surfaces. A controller is proposed that utilizes a tactile sensor in the feedback loop of a manipulator to track along edges. In the control system, the data from the tactile sensor is first processed to find edges. The parameters of these edges are then used to generate a control signal to a hybrid controller. Theory is presented for tactile edge detection and an edge tracking controller. In addition, experimental verification of the edge tracking controller is presented.
Spatial heterogeneity of type I error for local cluster detection tests
2014-01-01
Background Just as power, type I error of cluster detection tests (CDTs) should be spatially assessed. Indeed, CDTs’ type I error and power have both a spatial component as CDTs both detect and locate clusters. In the case of type I error, the spatial distribution of wrongly detected clusters (WDCs) can be particularly affected by edge effect. This simulation study aims to describe the spatial distribution of WDCs and to confirm and quantify the presence of edge effect. Methods A simulation of 40 000 datasets has been performed under the null hypothesis of risk homogeneity. The simulation design used realistic parameters from survey data on birth defects, and in particular, two baseline risks. The simulated datasets were analyzed using the Kulldorff’s spatial scan as a commonly used test whose behavior is otherwise well known. To describe the spatial distribution of type I error, we defined the participation rate for each spatial unit of the region. We used this indicator in a new statistical test proposed to confirm, as well as quantify, the edge effect. Results The predefined type I error of 5% was respected for both baseline risks. Results showed strong edge effect in participation rates, with a descending gradient from center to edge, and WDCs more often centrally situated. Conclusions In routine analysis of real data, clusters on the edge of the region should be carefully considered as they rarely occur when there is no cluster. Further work is needed to combine results from power studies with this work in order to optimize CDTs performance. PMID:24885343
78 FR 52419 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-23
... trailing edge flap area that qualify as structural significant items (SSIs). This AD requires revising the... detect and correct fatigue cracking of the wing trailing edge structure, which could result in... within the wing trailing edge flap area that qualify as structural significant items (SSI). We are...
A graph signal filtering-based approach for detection of different edge types on airborne lidar data
NASA Astrophysics Data System (ADS)
Bayram, Eda; Vural, Elif; Alatan, Aydin
2017-10-01
Airborne Laser Scanning is a well-known remote sensing technology, which provides a dense and highly accurate, yet unorganized point cloud of earth surface. During the last decade, extracting information from the data generated by airborne LiDAR systems has been addressed by many studies in geo-spatial analysis and urban monitoring applications. However, the processing of LiDAR point clouds is challenging due to their irregular structure and 3D geometry. In this study, we propose a novel framework for the detection of the boundaries of an object or scene captured by LiDAR. Our approach is motivated by edge detection techniques in vision research and it is established on graph signal filtering which is an exciting and promising field of signal processing for irregular data types. Due to the convenient applicability of graph signal processing tools on unstructured point clouds, we achieve the detection of the edge points directly on 3D data by using a graph representation that is constructed exclusively to answer the requirements of the application. Moreover, considering the elevation data as the (graph) signal, we leverage aerial characteristic of the airborne LiDAR data. The proposed method can be employed both for discovering the jump edges on a segmentation problem and for exploring the crease edges on a LiDAR object on a reconstruction/modeling problem, by only adjusting the filter characteristics.
Information theoretic analysis of linear shift-invariant edge-detection operators
NASA Astrophysics Data System (ADS)
Jiang, Bo; Rahman, Zia-ur
2012-06-01
Generally, the designs of digital image processing algorithms and image gathering devices remain separate. Consequently, the performance of digital image processing algorithms is evaluated without taking into account the influences by the image gathering process. However, experiments show that the image gathering process has a profound impact on the performance of digital image processing and the quality of the resulting images. Huck et al. proposed one definitive theoretic analysis of visual communication channels, where the different parts, such as image gathering, processing, and display, are assessed in an integrated manner using Shannon's information theory. We perform an end-to-end information theory based system analysis to assess linear shift-invariant edge-detection algorithms. We evaluate the performance of the different algorithms as a function of the characteristics of the scene and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge-detection algorithm is regarded as having high performance only if the information rate from the scene to the edge image approaches its maximum possible. This goal can be achieved only by jointly optimizing all processes. Our information-theoretic assessment provides a new tool that allows us to compare different linear shift-invariant edge detectors in a common environment.
Automatic Road Gap Detection Using Fuzzy Inference System
NASA Astrophysics Data System (ADS)
Hashemi, S.; Valadan Zoej, M. J.; Mokhtarzadeh, M.
2011-09-01
Automatic feature extraction from aerial and satellite images is a high-level data processing which is still one of the most important research topics of the field. In this area, most of the researches are focused on the early step of road detection, where road tracking methods, morphological analysis, dynamic programming and snakes, multi-scale and multi-resolution methods, stereoscopic and multi-temporal analysis, hyper spectral experiments, are some of the mature methods in this field. Although most researches are focused on detection algorithms, none of them can extract road network perfectly. On the other hand, post processing algorithms accentuated on the refining of road detection results, are not developed as well. In this article, the main is to design an intelligent method to detect and compensate road gaps remained on the early result of road detection algorithms. The proposed algorithm consists of five main steps as follow: 1) Short gap coverage: In this step, a multi-scale morphological is designed that covers short gaps in a hierarchical scheme. 2) Long gap detection: In this step, the long gaps, could not be covered in the previous stage, are detected using a fuzzy inference system. for this reason, a knowledge base consisting of some expert rules are designed which are fired on some gap candidates of the road detection results. 3) Long gap coverage: In this stage, detected long gaps are compensated by two strategies of linear and polynomials for this reason, shorter gaps are filled by line fitting while longer ones are compensated by polynomials.4) Accuracy assessment: In order to evaluate the obtained results, some accuracy assessment criteria are proposed. These criteria are obtained by comparing the obtained results with truly compensated ones produced by a human expert. The complete evaluation of the obtained results whit their technical discussions are the materials of the full paper.
Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images
NASA Astrophysics Data System (ADS)
Rogowska, Jadwiga; Brezinski, Mark E.
2002-02-01
Osteoarthritis, whose hallmark is the progressive loss of joint cartilage, is a major cause of morbidity worldwide. Recently, optical coherence tomography (OCT) has demonstrated considerable promise for the assessment of articular cartilage. Among the most important parameters to be assessed is cartilage width. However, detection of the bone cartilage interface is critical for the assessment of cartilage width. At present, the quantitative evaluations of cartilage thickness are being done using manual tracing of cartilage-bone borders. Since data is being obtained near video rate with OCT, automated identification of the bone-cartilage interface is critical. In order to automate the process of boundary detection on OCT images, there is a need for developing new image processing techniques. In this paper we describe the image processing techniques for speckle removal, image enhancement and segmentation of cartilage OCT images. In particular, this paper focuses on rabbit cartilage since this is an important animal model for testing both chondroprotective agents and cartilage repair techniques. In this study, a variety of techniques were examined. Ultimately, by combining an adaptive filtering technique with edge detection (vertical gradient, Sobel edge detection), cartilage edges can be detected. The procedure requires several steps and can be automated. Once the cartilage edges are outlined, the cartilage thickness can be measured.
NASA Astrophysics Data System (ADS)
Destrez, Raphaël.; Albouy-Kissi, Benjamin; Treuillet, Sylvie; Lucas, Yves
2015-04-01
Computer aided planning for orthodontic treatment requires knowing occlusion of separately scanned dental casts. A visual guided registration is conducted starting by extracting corresponding features in both photographs and 3D scans. To achieve this, dental neck and occlusion surface are firstly extracted by image segmentation and 3D curvature analysis. Then, an iterative registration process is conducted during which feature positions are refined, guided by previously found anatomic edges. The occlusal edge image detection is improved by an original algorithm which follows Canny's poorly detected edges using a priori knowledge of tooth shapes. Finally, the influence of feature extraction and position optimization is evaluated in terms of the quality of the induced registration. Best combination of feature detection and optimization leads to a positioning average error of 1.10 mm and 2.03°.
Localization of tumors in various organs, using edge detection algorithms
NASA Astrophysics Data System (ADS)
López Vélez, Felipe
2015-09-01
The edge of an image is a set of points organized in a curved line, where in each of these points the brightness of the image changes abruptly, or has discontinuities, in order to find these edges there will be five different mathematical methods to be used and later on compared with its peers, this is with the aim of finding which of the methods is the one that can find the edges of any given image. In this paper these five methods will be used for medical purposes in order to find which one is capable of finding the edges of a scanned image more accurately than the others. The problem consists in analyzing the following two biomedicals images. One of them represents a brain tumor and the other one a liver tumor. These images will be analyzed with the help of the five methods described and the results will be compared in order to determine the best method to be used. It was decided to use different algorithms of edge detection in order to obtain the results shown below; Bessel algorithm, Morse algorithm, Hermite algorithm, Weibull algorithm and Sobel algorithm. After analyzing the appliance of each of the methods to both images it's impossible to determine the most accurate method for tumor detection due to the fact that in each case the best method changed, i.e., for the brain tumor image it can be noticed that the Morse method was the best at finding the edges of the image but for the liver tumor image it was the Hermite method. Making further observations it is found that Hermite and Morse have for these two cases the lowest standard deviations, concluding that these two are the most accurate method to find the edges in analysis of biomedical images.
A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments
Jeffrey S. Evans; Andrew T. Hudak
2007-01-01
One prerequisite to the use of light detection and ranging (LiDAR) across disciplines is differentiating ground from nonground returns. The objective was to automatically and objectively classify points within unclassified LiDAR point clouds, with few model parameters and minimal postprocessing. Presented is an automated method for classifying LiDAR returns as ground...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tawhai, Merryn; Bischoff, Jeff; Einstein, Daniel R.
2009-05-01
Abstract In this article, we describe some current multiscale modeling issues in computational biomechanics from the perspective of the musculoskeletal and respiratory systems and mechanotransduction. First, we outline the necessity of multiscale simulations in these biological systems. Then we summarize challenges inherent to multiscale biomechanics modeling, regardless of the subdiscipline, followed by computational challenges that are system-specific. We discuss some of the current tools that have been utilized to aid research in multiscale mechanics simulations, and the priorities to further the field of multiscale biomechanics computation.
Uncertainty in detecting trend: a new criterion and its applications to global SST
NASA Astrophysics Data System (ADS)
Lian, Tao
2017-10-01
In most parts of the global ocean, the magnitude of the long-term linear trend in sea surface temperature (SST) is much smaller than the amplitude of multi-scale internal variation. One can thus use a specific period in a much longer record to arbitrarily determine the sign of long-term trend, which is statistically significant, in regional SST. This could lead to a controversial conclusion on how global SST responded to the anthropogenic forcing in the recent history. In this study, the uncertainty in the linear trend due to multi-scale internal variation is theoretically investigated. It is found that the "estimated" trend will not change its sign only when its magnitude is greater than a theoretical threshold that scales the influence from the multi-scale internal variation. Otherwise, the sign of the "estimated" trend may depend on the period used. The new criterion is found to be superior over the existing methods when the de-trended time series is dominated by the oscillatory term. Applying this new criterion to a global SST reconstruction from 1881 to 2013 reveals that the influences from multi-scale internal variation on the sign of "estimated" linear trend cannot be excluded in most parts of the Pacific, the southern Indian Ocean and the northern Atlantic; therefore, the warming or/and cooling trends found in these regions cannot be interpreted as the consequences of anthropogenic forcing. It's also suggested that the recent hiatus can be explained by combined uncertainty from internal variations at the interannual and decadal time scales.
Uncertainty in Detecting Trend: A New Criterion and Its Applications to Global SST
NASA Astrophysics Data System (ADS)
Lian, Tao
2017-04-01
In most parts of the global ocean, the magnitude of the long-term linear trend in sea surface temperature (SST) is much smaller than the amplitude of multi-scale internal variation. One can thus use a specific period in a much longer record to arbitrarily determine the sign of long-term trend, which is statistically significant, in regional SST. This could lead to a controversial conclusion on how global SST responded to the anthropogenic forcing in the recent history. In this study, the uncertainty in the linear trend due to multi-scale internal variation is theoretically investigated. It is found that the "estimated" trend will not change its sign only when its magnitude is greater than a theoretical threshold that scales the influence from the multi-scale internal variation. Otherwise, the sign of the "estimated" trend may depend on the period used. The new criterion is found to be superior over the existing methods when the de-trended time series is dominated by the oscillatory term. Applying this new criterion to a global SST reconstruction from 1881 to 2013 reveals that the influences from multi-scale internal variation on the sign of "estimated" linear trend cannot be excluded in most parts of the Pacific, the southern Indian Ocean and the northern Atlantic; therefore, the warming or/and cooling trends found in these regions cannot be interpreted as the consequences of anthropogenic forcing. It's also suggested that the recent hiatus can be explained by combined uncertainty from internal variations at the interannual and decadal time scales.
Orientation of airborne laser scanning point clouds with multi-view, multi-scale image blocks.
Rönnholm, Petri; Hyyppä, Hannu; Hyyppä, Juha; Haggrén, Henrik
2009-01-01
Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters.
Multiscale Currents Observed by MMS in the Flow Braking Region
NASA Astrophysics Data System (ADS)
Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J.; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A.; Apatenkov, Sergey; Ergun, Robert E.; Fuselier, Stephen A.; Gershman, Daniel J.; Giles, Barbara J.; Khotyaintsev, Yuri V.; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T.; Stawarz, Julia; Strangeway, Robert J.; Anderson, Brian; Burch, James L.; Bromund, Ken R.; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J.; Slavin, James A.; Torbert, Roy B.; Turner, Drew L.
2018-02-01
We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.
Data-Driven Hierarchical Structure Kernel for Multiscale Part-Based Object Recognition
Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Zheng, Yuan F.
2017-01-01
Detecting generic object categories in images and videos are a fundamental issue in computer vision. However, it faces the challenges from inter and intraclass diversity, as well as distortions caused by viewpoints, poses, deformations, and so on. To solve object variations, this paper constructs a structure kernel and proposes a multiscale part-based model incorporating the discriminative power of kernels. The structure kernel would measure the resemblance of part-based objects in three aspects: 1) the global similarity term to measure the resemblance of the global visual appearance of relevant objects; 2) the part similarity term to measure the resemblance of the visual appearance of distinctive parts; and 3) the spatial similarity term to measure the resemblance of the spatial layout of parts. In essence, the deformation of parts in the structure kernel is penalized in a multiscale space with respect to horizontal displacement, vertical displacement, and scale difference. Part similarities are combined with different weights, which are optimized efficiently to maximize the intraclass similarities and minimize the interclass similarities by the normalized stochastic gradient ascent algorithm. In addition, the parameters of the structure kernel are learned during the training process with regard to the distribution of the data in a more discriminative way. With flexible part sizes on scale and displacement, it can be more robust to the intraclass variations, poses, and viewpoints. Theoretical analysis and experimental evaluations demonstrate that the proposed multiscale part-based representation model with structure kernel exhibits accurate and robust performance, and outperforms state-of-the-art object classification approaches. PMID:24808345
Orientation of Airborne Laser Scanning Point Clouds with Multi-View, Multi-Scale Image Blocks
Rönnholm, Petri; Hyyppä, Hannu; Hyyppä, Juha; Haggrén, Henrik
2009-01-01
Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters. PMID:22454569
Local variance for multi-scale analysis in geomorphometry.
Drăguţ, Lucian; Eisank, Clemens; Strasser, Thomas
2011-07-15
Increasing availability of high resolution Digital Elevation Models (DEMs) is leading to a paradigm shift regarding scale issues in geomorphometry, prompting new solutions to cope with multi-scale analysis and detection of characteristic scales. We tested the suitability of the local variance (LV) method, originally developed for image analysis, for multi-scale analysis in geomorphometry. The method consists of: 1) up-scaling land-surface parameters derived from a DEM; 2) calculating LV as the average standard deviation (SD) within a 3 × 3 moving window for each scale level; 3) calculating the rate of change of LV (ROC-LV) from one level to another, and 4) plotting values so obtained against scale levels. We interpreted peaks in the ROC-LV graphs as markers of scale levels where cells or segments match types of pattern elements characterized by (relatively) equal degrees of homogeneity. The proposed method has been applied to LiDAR DEMs in two test areas different in terms of roughness: low relief and mountainous, respectively. For each test area, scale levels for slope gradient, plan, and profile curvatures were produced at constant increments with either resampling (cell-based) or image segmentation (object-based). Visual assessment revealed homogeneous areas that convincingly associate into patterns of land-surface parameters well differentiated across scales. We found that the LV method performed better on scale levels generated through segmentation as compared to up-scaling through resampling. The results indicate that coupling multi-scale pattern analysis with delineation of morphometric primitives is possible. This approach could be further used for developing hierarchical classifications of landform elements.
Local variance for multi-scale analysis in geomorphometry
Drăguţ, Lucian; Eisank, Clemens; Strasser, Thomas
2011-01-01
Increasing availability of high resolution Digital Elevation Models (DEMs) is leading to a paradigm shift regarding scale issues in geomorphometry, prompting new solutions to cope with multi-scale analysis and detection of characteristic scales. We tested the suitability of the local variance (LV) method, originally developed for image analysis, for multi-scale analysis in geomorphometry. The method consists of: 1) up-scaling land-surface parameters derived from a DEM; 2) calculating LV as the average standard deviation (SD) within a 3 × 3 moving window for each scale level; 3) calculating the rate of change of LV (ROC-LV) from one level to another, and 4) plotting values so obtained against scale levels. We interpreted peaks in the ROC-LV graphs as markers of scale levels where cells or segments match types of pattern elements characterized by (relatively) equal degrees of homogeneity. The proposed method has been applied to LiDAR DEMs in two test areas different in terms of roughness: low relief and mountainous, respectively. For each test area, scale levels for slope gradient, plan, and profile curvatures were produced at constant increments with either resampling (cell-based) or image segmentation (object-based). Visual assessment revealed homogeneous areas that convincingly associate into patterns of land-surface parameters well differentiated across scales. We found that the LV method performed better on scale levels generated through segmentation as compared to up-scaling through resampling. The results indicate that coupling multi-scale pattern analysis with delineation of morphometric primitives is possible. This approach could be further used for developing hierarchical classifications of landform elements. PMID:21779138
NASA Astrophysics Data System (ADS)
Natoli, J. Y.; Wagner, F.; Ciapponi, A.; Capoulade, J.; Gallais, L.; Commandré, M.
2010-11-01
The mechanism of laser induced damage in optical materials under high power nanosecond laser irradiation is commonly attributed to the presence of precursor centers. Depending on material and laser source, the precursors could have different origins. Some of them are clearly extrinsic, such as impurities or structural defects linked to the fabrication conditions. In most cases the center size ranging from sub-micrometer to nanometer scale does not permit an easy detection by optical techniques before irradiation. Most often, only a post mortem observation of optics permits to proof the local origin of breakdown. Multi-scale analyzes by changing irradiation beam size have been performed to investigate the density, size and nature of laser damage precursors. Destructive methods such as raster scan, laser damage probability plot and morphology studies permit to deduce the precursor densities. Another experimental way to get information on nature of precursors is to use non destructive methods such as photoluminescence and absorption measurements. The destructive and non destructive multiscale studies are also motivated for practical reasons. Indeed LIDT studies of large optics as those used in LMJ or NIF projects are commonly performed on small samples and with table top lasers whose characteristics change from one to another. In these conditions, it is necessary to know exactly the influence of the different experimental parameters and overall the spot size effect on the final data. In this paper, we present recent developments in multiscale characterization and results obtained on optical coatings (surface case) and KDP crystal (bulk case).
An iterative method for airway segmentation using multiscale leakage detection
NASA Astrophysics Data System (ADS)
Nadeem, Syed Ahmed; Jin, Dakai; Hoffman, Eric A.; Saha, Punam K.
2017-02-01
There are growing applications of quantitative computed tomography for assessment of pulmonary diseases by characterizing lung parenchyma as well as the bronchial tree. Many large multi-center studies incorporating lung imaging as a study component are interested in phenotypes relating airway branching patterns, wall-thickness, and other morphological measures. To our knowledge, there are no fully automated airway tree segmentation methods, free of the need for user review. Even when there are failures in a small fraction of segmentation results, the airway tree masks must be manually reviewed for all results which is laborious considering that several thousands of image data sets are evaluated in large studies. In this paper, we present a CT-based novel airway tree segmentation algorithm using iterative multi-scale leakage detection, freezing, and active seed detection. The method is fully automated requiring no manual inputs or post-segmentation editing. It uses simple intensity based connectivity and a new leakage detection algorithm to iteratively grow an airway tree starting from an initial seed inside the trachea. It begins with a conservative threshold and then, iteratively shifts toward generous values. The method was applied on chest CT scans of ten non-smoking subjects at total lung capacity and ten at functional residual capacity. Airway segmentation results were compared to an expert's manually edited segmentations. Branch level accuracy of the new segmentation method was examined along five standardized segmental airway paths (RB1, RB4, RB10, LB1, LB10) and two generations beyond these branches. The method successfully detected all branches up to two generations beyond these segmental bronchi with no visual leakages.
Enhanced Component Performance Study: Emergency Diesel Generators 1998–2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, John Alton
2015-11-01
This report presents an enhanced performance evaluation of emergency diesel generators (EDGs) at U.S. commercial nuclear power plants. This report evaluates component performance over time using (1) Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES) data from 1998 through 2014 and (2) maintenance unavailability (UA) performance data from Mitigating Systems Performance Index (MSPI) Basis Document data from 2002 through 2014. The objective is to show estimates of current failure probabilities and rates related to EDGs, trend these data on an annual basis, determine if the current data are consistent with the probability distributions currently recommended for use inmore » NRC probabilistic risk assessments, show how the reliability data differ for different EDG manufacturers and for EDGs with different ratings; and summarize the subcomponents, causes, detection methods, and recovery associated with each EDG failure mode. Engineering analyses were performed with respect to time period and failure mode without regard to the actual number of EDGs at each plant. The factors analyzed are: sub-component, failure cause, detection method, recovery, manufacturer, and EDG rating. Six trends with varying degrees of statistical significance were identified in the data.« less
Single-view phase retrieval of an extended sample by exploiting edge detection and sparsity
Tripathi, Ashish; McNulty, Ian; Munson, Todd; ...
2016-10-14
We propose a new approach to robustly retrieve the exit wave of an extended sample from its coherent diffraction pattern by exploiting sparsity of the sample's edges. This approach enables imaging of an extended sample with a single view, without ptychography. We introduce nonlinear optimization methods that promote sparsity, and we derive update rules to robustly recover the sample's exit wave. We test these methods on simulated samples by varying the sparsity of the edge-detected representation of the exit wave. Finally, our tests illustrate the strengths and limitations of the proposed method in imaging extended samples.
An Automated Cloud-edge Detection Algorithm Using Cloud Physics and Radar Data
NASA Technical Reports Server (NTRS)
Ward, Jennifer G.; Merceret, Francis J.; Grainger, Cedric A.
2003-01-01
An automated cloud edge detection algorithm was developed and extensively tested. The algorithm uses in-situ cloud physics data measured by a research aircraft coupled with ground-based weather radar measurements to determine whether the aircraft is in or out of cloud. Cloud edges are determined when the in/out state changes, subject to a hysteresis constraint. The hysteresis constraint prevents isolated transient cloud puffs or data dropouts from being identified as cloud boundaries. The algorithm was verified by detailed manual examination of the data set in comparison to the results from application of the automated algorithm.
NASA Technical Reports Server (NTRS)
Prokop, Norman F (Inventor)
2016-01-01
Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.
NASA Technical Reports Server (NTRS)
Prokop, Norman F (Inventor)
2015-01-01
Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.
The Brera Multiscale Wavelet ROSAT HRI Source Catalog. I. The Algorithm
NASA Astrophysics Data System (ADS)
Lazzati, Davide; Campana, Sergio; Rosati, Piero; Panzera, Maria Rosa; Tagliaferri, Gianpiero
1999-10-01
We present a new detection algorithm based on the wavelet transform for the analysis of high-energy astronomical images. The wavelet transform, because of its multiscale structure, is suited to the optimal detection of pointlike as well as extended sources, regardless of any loss of resolution with the off-axis angle. Sources are detected as significant enhancements in the wavelet space, after the subtraction of the nonflat components of the background. Detection thresholds are computed through Monte Carlo simulations in order to establish the expected number of spurious sources per field. The source characterization is performed through a multisource fitting in the wavelet space. The procedure is designed to correctly deal with very crowded fields, allowing for the simultaneous characterization of nearby sources. To obtain a fast and reliable estimate of the source parameters and related errors, we apply a novel decimation technique that, taking into account the correlation properties of the wavelet transform, extracts a subset of almost independent coefficients. We test the performance of this algorithm on synthetic fields, analyzing with particular care the characterization of sources in poor background situations, where the assumption of Gaussian statistics does not hold. In these cases, for which standard wavelet algorithms generally provide underestimated errors, we infer errors through a procedure that relies on robust basic statistics. Our algorithm is well suited to the analysis of images taken with the new generation of X-ray instruments equipped with CCD technology, which will produce images with very low background and/or high source density.
Wang, Y. L.; Fabbris, G.; Meyers, D.; ...
2017-08-30
Resonant elastic x-ray scattering is a powerful technique for measuring multipolar order parameters. In this paper, we theoretically and experimentally study the possibility of using this technique to detect the proposed multipolar order parameters in URu 2 Si 2 at the U- L 3 edge with the electric quadrupolar transition. Based on an atomic model, we calculate the azimuthal dependence of the quadrupolar transition at the U- L 3 edge. Our results illustrate the potential of this technique for distinguishing different multipolar order parameters. We then perform experiments on ultraclean single crystals of URu 2 Si 2 at the U-more » L 3 edge to search for the predicted signal, but do not detect any indications of multipolar moments within the experimental uncertainty. We also theoretically estimate the orders of magnitude of the cross section and the expected count rate of the quadrupolar transition and compare them to the dipolar transitions at the U- M 4 and U- L 3 edges, clarifying the difficulty in detecting higher order multipolar order parameters in URu 2 Si 2 in the current experimental setup.« less
NASA Astrophysics Data System (ADS)
Pierce, Mark C.; Higgins, Laura M.; Ganapathy, Vidya; Kantamneni, Harini; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.
2017-02-01
We are investigating the ability of targeted rare earth (RE) doped nanocomposites to detect and track micrometastatic breast cancer lesions to distant sites in pre-clinical in vivo models. Functionalizing RE nanocomposites with AMD3100 promotes targeting to CXCR4, a recognized marker for highly metastatic disease. Mice were inoculated with SCP-28 (CXCR4 positive) and 4175 (CXCR4 negative) cell lines. Whole animal in vivo SWIR fluorescence imaging was performed after bioluminescence imaging confirmed tumor burden in the lungs. Line-scanning confocal fluorescence microscopy provided high-resolution imaging of RE nanocomposite uptake and native tissue autofluorescence in ex vivo lung specimens. Co-registered optical coherence tomography imaging allowed assessment of tissue microarchitecture. In conclusion, multiscale optical molecular imaging can be performed in pre-clinical models of metastatic breast cancer, using targeted RE-doped nanocomposites.
NASA Technical Reports Server (NTRS)
Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Cassak, P. A.; Burch, J. L.; Chen, Li-Jen; Torbert, R. B.; Phan, T. D.; Lavraud, B.;
2016-01-01
We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E(sub parallel lines) that is larger than predicted by simulations. The high-speed (approximately 300 km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E(sub parallel lines) is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.
NASA Astrophysics Data System (ADS)
Huang, Xia; Li, Chunqiang; Xiao, Chuan; Sun, Wenqing; Qian, Wei
2017-03-01
The temporal focusing two-photon microscope (TFM) is developed to perform depth resolved wide field fluorescence imaging by capturing frames sequentially. However, due to strong nonignorable noises and diffraction rings surrounding particles, further researches are extremely formidable without a precise particle localization technique. In this paper, we developed a fully-automated scheme to locate particles positions with high noise tolerance. Our scheme includes the following procedures: noise reduction using a hybrid Kalman filter method, particle segmentation based on a multiscale kernel graph cuts global and local segmentation algorithm, and a kinematic estimation based particle tracking method. Both isolated and partial-overlapped particles can be accurately identified with removal of unrelated pixels. Based on our quantitative analysis, 96.22% isolated particles and 84.19% partial-overlapped particles were successfully detected.
Edge detection, cosmic strings and the south pole telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Andrew; Brandenberger, Robert, E-mail: stewarta@physics.mcgill.ca, E-mail: rhb@physics.mcgill.ca
2009-02-15
We develop a method of constraining the cosmic string tension G{mu} which uses the Canny edge detection algorithm as a means of searching CMB temperature maps for the signature of the Kaiser-Stebbins effect. We test the potential of this method using high resolution, simulated CMB temperature maps. By modeling the future output from the South Pole Telescope project (including anticipated instrumental noise), we find that cosmic strings with G{mu} > 5.5 Multiplication-Sign 10{sup -8} could be detected.
Leading edge gypsy moth population dynamics
M. R. Carter; F. W. Ravlin; M. L. McManus
1991-01-01
Leading edge gypsy moth populations have been the focus of several intervention programs (MDIPM, AIPM). Knowledge of gypsy moth population dynamics in leading edge area is crucial for effective management. Populations in these areas tend to reach outbreak levels (noticeable defoliation) within three to four years after egg masses are first detected. Pheromone traps...
NASA Astrophysics Data System (ADS)
Guo, Yanhui; Zhou, Chuan; Chan, Heang-Ping; Wei, Jun; Chughtai, Aamer; Sundaram, Baskaran; Hadjiiski, Lubomir M.; Patel, Smita; Kazerooni, Ella A.
2013-04-01
A 3D multiscale intensity homogeneity transformation (MIHT) method was developed to reduce false positives (FPs) in our previously developed CAD system for pulmonary embolism (PE) detection. In MIHT, the voxel intensity of a PE candidate region was transformed to an intensity homogeneity value (IHV) with respect to the local median intensity. The IHVs were calculated in multiscales (MIHVs) to measure the intensity homogeneity, taking into account vessels of different sizes and different degrees of occlusion. Seven new features including the entropy, gradient, and moments that characterized the intensity distributions of the candidate regions were derived from the MIHVs and combined with the previously designed features that described the shape and intensity of PE candidates for the training of a linear classifier to reduce the FPs. 59 CTPA PE cases were collected from our patient files (UM set) with IRB approval and 69 cases from the PIOPED II data set with access permission. 595 and 800 PEs were identified as reference standard by experienced thoracic radiologists in the UM and PIOPED set, respectively. FROC analysis was used for performance evaluation. Compared with our previous CAD system, at a test sensitivity of 80%, the new method reduced the FP rate from 18.9 to 14.1/scan for the PIOPED set when the classifier was trained with the UM set and from 22.6 to 16.0/scan vice versa. The improvement was statistically significant (p<0.05) by JAFROC analysis. This study demonstrated that the MIHT method is effective in reducing FPs and improving the performance of the CAD system.
NASA Astrophysics Data System (ADS)
Zheng, Jinde; Pan, Haiyang; Cheng, Junsheng
2017-02-01
To timely detect the incipient failure of rolling bearing and find out the accurate fault location, a novel rolling bearing fault diagnosis method is proposed based on the composite multiscale fuzzy entropy (CMFE) and ensemble support vector machines (ESVMs). Fuzzy entropy (FuzzyEn), as an improvement of sample entropy (SampEn), is a new nonlinear method for measuring the complexity of time series. Since FuzzyEn (or SampEn) in single scale can not reflect the complexity effectively, multiscale fuzzy entropy (MFE) is developed by defining the FuzzyEns of coarse-grained time series, which represents the system dynamics in different scales. However, the MFE values will be affected by the data length, especially when the data are not long enough. By combining information of multiple coarse-grained time series in the same scale, the CMFE algorithm is proposed in this paper to enhance MFE, as well as FuzzyEn. Compared with MFE, with the increasing of scale factor, CMFE obtains much more stable and consistent values for a short-term time series. In this paper CMFE is employed to measure the complexity of vibration signals of rolling bearings and is applied to extract the nonlinear features hidden in the vibration signals. Also the physically meanings of CMFE being suitable for rolling bearing fault diagnosis are explored. Based on these, to fulfill an automatic fault diagnosis, the ensemble SVMs based multi-classifier is constructed for the intelligent classification of fault features. Finally, the proposed fault diagnosis method of rolling bearing is applied to experimental data analysis and the results indicate that the proposed method could effectively distinguish different fault categories and severities of rolling bearings.
Community Multiscale Air Quality Model
The U.S. EPA developed the Community Multiscale Air Quality (CMAQ) system to apply a “one atmosphere” multiscale and multi-pollutant modeling approach based mainly on the “first principles” description of the atmosphere. The multiscale capability is supported by the governing di...
Effects of Edge Directions on the Structural Controllability of Complex Networks
Xiao, Yandong; Lao, Songyang; Hou, Lvlin; Small, Michael; Bai, Liang
2015-01-01
Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain “inappropriate” edge directions. However, the existence of multiple sets of “inappropriate” edge directions suggests that different edges have different effects on optimal controllability—that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions—utilizing only local information—which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks. PMID:26281042
Effects of Edge Directions on the Structural Controllability of Complex Networks.
Xiao, Yandong; Lao, Songyang; Hou, Lvlin; Small, Michael; Bai, Liang
2015-01-01
Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain "inappropriate" edge directions. However, the existence of multiple sets of "inappropriate" edge directions suggests that different edges have different effects on optimal controllability-that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions-utilizing only local information-which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks.
Contrast-guided image interpolation.
Wei, Zhe; Ma, Kai-Kuang
2013-11-01
In this paper a contrast-guided image interpolation method is proposed that incorporates contrast information into the image interpolation process. Given the image under interpolation, four binary contrast-guided decision maps (CDMs) are generated and used to guide the interpolation filtering through two sequential stages: 1) the 45(°) and 135(°) CDMs for interpolating the diagonal pixels and 2) the 0(°) and 90(°) CDMs for interpolating the row and column pixels. After applying edge detection to the input image, the generation of a CDM lies in evaluating those nearby non-edge pixels of each detected edge for re-classifying them possibly as edge pixels. This decision is realized by solving two generalized diffusion equations over the computed directional variation (DV) fields using a derived numerical approach to diffuse or spread the contrast boundaries or edges, respectively. The amount of diffusion or spreading is proportional to the amount of local contrast measured at each detected edge. The diffused DV fields are then thresholded for yielding the binary CDMs, respectively. Therefore, the decision bands with variable widths will be created on each CDM. The two CDMs generated in each stage will be exploited as the guidance maps to conduct the interpolation process: for each declared edge pixel on the CDM, a 1-D directional filtering will be applied to estimate its associated to-be-interpolated pixel along the direction as indicated by the respective CDM; otherwise, a 2-D directionless or isotropic filtering will be used instead to estimate the associated missing pixels for each declared non-edge pixel. Extensive simulation results have clearly shown that the proposed contrast-guided image interpolation is superior to other state-of-the-art edge-guided image interpolation methods. In addition, the computational complexity is relatively low when compared with existing methods; hence, it is fairly attractive for real-time image applications.
Automated macromolecular crystal detection system and method
Christian, Allen T [Tracy, CA; Segelke, Brent [San Ramon, CA; Rupp, Bernard [Livermore, CA; Toppani, Dominique [Fontainebleau, FR
2007-06-05
An automated macromolecular method and system for detecting crystals in two-dimensional images, such as light microscopy images obtained from an array of crystallization screens. Edges are detected from the images by identifying local maxima of a phase congruency-based function associated with each image. The detected edges are segmented into discrete line segments, which are subsequently geometrically evaluated with respect to each other to identify any crystal-like qualities such as, for example, parallel lines, facing each other, similarity in length, and relative proximity. And from the evaluation a determination is made as to whether crystals are present in each image.
McCloskey, Kate; Ponsonby, Anne-Louise; Carlin, John B; Jachno, Kim; Cheung, Michael; Skilton, Michael R; Koleff, Jane; Vuillermin, Peter; Burgner, David
2014-06-03
Aortic intima-media thickness measured by transabdominal ultrasound (aIMT) is an intermediate phenotype of cardiovascular risk. We aimed to (1) investigate the reproducibility of aIMT in a population-derived cohort of infants; (2) establish the distribution of aIMT in early infancy; (3) compare measurement by edge-detection software to that by manual sonographic calipers; and (4) assess the effect of individual and environmental variables on image quality. Participants were term infants recruited to a population-derived birth cohort study. Transabdominal ultrasound was performed at six weeks of age by one of two trained operators. Thirty participants had ultrasounds performed by both operators on the same day. Data were collected on environmental (infant sleeping, presence of a sibling, use of sucrose, timing during study visit) and individual (post-conception age, weight, gender) variables. Two readers assessed image quality and measured aIMT by edge-detection software and a subset by manual sonographic calipers. Measurements were repeated by the same reader and between readers to obtain intra-observer and inter-observer reliability. Aortic IMT was measured successfully using edge-detection in 814 infants, and 290 of these infants also had aIMT measured using manual sonographic calipers. The intra-reader intra-class correlation (ICC) (n = 20) was 0.90 (95% CI 0.76, 0.96), mean difference 1.5 μm (95% LOA -39, 59). The between reader ICC using edge-detection (n = 20) was 0.92 (95% CI 0.82, 0.97) mean difference 2 μm (95% LOA -45.0, 49.0) and with manual caliper measurement (n = 290) the ICC was 0.84 (95% CI 0.80, 0.87) mean difference 5 μm (95% LOA -51.8, 61.8). Edge-detection measurements were greater than those from manual sonographic calipers (mean aIMT 618 μm (50) versus mean aIMT 563 μm (49) respectively; p < 0.001, mean difference 44 μm, 95% LOA -54, 142). With the exception of infant crying (p = 0.001), no associations were observed between individual and environmental variables and image quality. In a population-derived cohort of term infants, aIMT measurement has a high level of intra and inter-reader reproducibility. Measurement of aIMT using edge-detection software gives higher inter-reader ICC than manual sonographic calipers. Image quality is not substantially affected by individual and environmental factors.
Dim target detection method based on salient graph fusion
NASA Astrophysics Data System (ADS)
Hu, Ruo-lan; Shen, Yi-yan; Jiang, Jun
2018-02-01
Dim target detection is one key problem in digital image processing field. With development of multi-spectrum imaging sensor, it becomes a trend to improve the performance of dim target detection by fusing the information from different spectral images. In this paper, one dim target detection method based on salient graph fusion was proposed. In the method, Gabor filter with multi-direction and contrast filter with multi-scale were combined to construct salient graph from digital image. And then, the maximum salience fusion strategy was designed to fuse the salient graph from different spectral images. Top-hat filter was used to detect dim target from the fusion salient graph. Experimental results show that proposal method improved the probability of target detection and reduced the probability of false alarm on clutter background images.
The impact of skull bone intensity on the quality of compressed CT neuro images
NASA Astrophysics Data System (ADS)
Kowalik-Urbaniak, Ilona; Vrscay, Edward R.; Wang, Zhou; Cavaro-Menard, Christine; Koff, David; Wallace, Bill; Obara, Boguslaw
2012-02-01
The increasing use of technologies such as CT and MRI, along with a continuing improvement in their resolution, has contributed to the explosive growth of digital image data being generated. Medical communities around the world have recognized the need for efficient storage, transmission and display of medical images. For example, the Canadian Association of Radiologists (CAR) has recommended compression ratios for various modalities and anatomical regions to be employed by lossy JPEG and JPEG2000 compression in order to preserve diagnostic quality. Here we investigate the effects of the sharp skull edges present in CT neuro images on JPEG and JPEG2000 lossy compression. We conjecture that this atypical effect is caused by the sharp edges between the skull bone and the background regions as well as between the skull bone and the interior regions. These strong edges create large wavelet coefficients that consume an unnecessarily large number of bits in JPEG2000 compression because of its bitplane coding scheme, and thus result in reduced quality at the interior region, which contains most diagnostic information in the image. To validate the conjecture, we investigate a segmentation based compression algorithm based on simple thresholding and morphological operators. As expected, quality is improved in terms of PSNR as well as the structural similarity (SSIM) image quality measure, and its multiscale (MS-SSIM) and informationweighted (IW-SSIM) versions. This study not only supports our conjecture, but also provides a solution to improve the performance of JPEG and JPEG2000 compression for specific types of CT images.
Image Edge Tracking via Ant Colony Optimization
NASA Astrophysics Data System (ADS)
Li, Ruowei; Wu, Hongkun; Liu, Shilong; Rahman, M. A.; Liu, Sanchi; Kwok, Ngai Ming
2018-04-01
A good edge plot should use continuous thin lines to describe the complete contour of the captured object. However, the detection of weak edges is a challenging task because of the associated low pixel intensities. Ant Colony Optimization (ACO) has been employed by many researchers to address this problem. The algorithm is a meta-heuristic method developed by mimicking the natural behaviour of ants. It uses iterative searches to find the optimal solution that cannot be found via traditional optimization approaches. In this work, ACO is employed to track and repair broken edges obtained via conventional Sobel edge detector to produced a result with more connected edges.
Superpixel edges for boundary detection
Moya, Mary M.; Koch, Mark W.
2016-07-12
Various embodiments presented herein relate to identifying one or more edges in a synthetic aperture radar (SAR) image comprising a plurality of superpixels. Superpixels sharing an edge (or boundary) can be identified and one or more properties of the shared superpixels can be compared to determine whether the superpixels form the same or two different features. Where the superpixels form the same feature the edge is identified as an internal edge. Where the superpixels form two different features, the edge is identified as an external edge. Based upon classification of the superpixels, the external edge can be further determined to form part of a roof, wall, etc. The superpixels can be formed from a speckle-reduced SAR image product formed from a registered stack of SAR images, which is further segmented into a plurality of superpixels. The edge identification process is applied to the SAR image comprising the superpixels and edges.
NASA Astrophysics Data System (ADS)
Macioł, Piotr; Regulski, Krzysztof
2016-08-01
We present a process of semantic meta-model development for data management in an adaptable multiscale modeling framework. The main problems in ontology design are discussed, and a solution achieved as a result of the research is presented. The main concepts concerning the application and data management background for multiscale modeling were derived from the AM3 approach—object-oriented Agile multiscale modeling methodology. The ontological description of multiscale models enables validation of semantic correctness of data interchange between submodels. We also present a possibility of using the ontological model as a supervisor in conjunction with a multiscale model controller and a knowledge base system. Multiscale modeling formal ontology (MMFO), designed for describing multiscale models' data and structures, is presented. A need for applying meta-ontology in the MMFO development process is discussed. Examples of MMFO application in describing thermo-mechanical treatment of metal alloys are discussed. Present and future applications of MMFO are described.
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Fassin, Marek; Bednarcyk, Brett A.; Reese, Stefanie; Simon, Jaan-Willem
2017-01-01
Three different multiscale models, based on the method of cells (generalized and high fidelity) micromechanics models were developed and used to predict the elastic properties of C/C-SiC composites. In particular, the following multiscale modeling strategies were employed: Concurrent multiscale modeling of all phases using the generalized method of cells, synergistic (two-way coupling in space) multiscale modeling with the generalized method of cells, and hierarchical (one-way coupling in space) multiscale modeling with the high fidelity generalized method of cells. The three models are validated against data from a hierarchical multiscale finite element model in the literature for a repeating unit cell of C/C-SiC. Furthermore, the multiscale models are used in conjunction with classical lamination theory to predict the stiffness of C/C-SiC plates manufactured via a wet filament winding and liquid silicon infiltration process recently developed by the German Aerospace Institute.
An enhanced narrow-band imaging method for the microvessel detection
NASA Astrophysics Data System (ADS)
Yu, Feng; Song, Enmin; Liu, Hong; Wan, Youming; Zhu, Jun; Hung, Chih-Cheng
2018-02-01
A medical endoscope system combined with the narrow-band imaging (NBI), has been shown to be a superior diagnostic tool for early cancer detection. The NBI can reveal the morphologic changes of microvessels in the superficial cancer. In order to improve the conspicuousness of microvessel texture, we propose an enhanced NBI method to improve the conspicuousness of endoscopic images. To obtain the more conspicuous narrow-band images, we use the edge operator to extract the edge information of the narrow-band blue and green images, and give a weight to the extracted edges. Then, the weighted edges are fused with the narrow-band blue and green images. Finally, the displayed endoscopic images are reconstructed with the enhanced narrow-band images. In addition, we evaluate the performance of enhanced narrow-band images with different edge operators. Experimental results indicate that the Sobel and Canny operators achieve the best performance of all. Compared with traditional NBI method of Olympus company, our proposed method has more conspicuous texture of microvessel.
George, Simon J.; Drury, Owen B.; Fu, Juxia; Friedrich, Stephan; Doonan, Christian J.; George, Graham N.; White, Jonathan M.; Young, Charles G.; Cramer, Stephen P.
2009-01-01
We have surveyed the chemical utility of the near-edge structure of molybdenum x-ray absorption edges from the hard x-ray K-edge at 20,000 eV down to the soft x-ray M4,5-edges at ~230 eV. We compared, for each edge, the spectra of two tetrahedral anions, MoO4 and MoS42-. We used three criteria for assessing near-edge structure of each edge: (i) the ratio of the observed chemical shift between MoO42- and MoS42- and the linewidth, (ii) the chemical information from analysis of the near-edge structure and (iii) the ease of measurement using fluorescence detection. Not surprisingly, the K-edge was by far the easiest to measure, but it contained the least information. The L2,3-edges, although harder to measure, had benefits with regard to selection rules and chemical speciation in that they had both a greater chemical shift as well as detailed lineshapes which could be theoretically analyzed in terms of Mo ligand field, symmetry, and covalency. The soft x-ray M2,3-edges were perhaps the least useful, in that they were difficult to measure using fluorescence detection and had very similar information content to the corresponding L2,3-edges. Interestingly, the soft x-ray, low energy (~230 eV) M4,5-edges had greatest potential chemical sensitivity and using our high resolution superconducting tunnel junction (STJ) fluorescence detector they appear to be straightforward to measure. The spectra were amenable to analysis using both the TT-multiplet approach and FEFF. The results using FEFF indicate that the sharp near-edge peaks arise from 3d → 5p transitions, while the broad edge structure has predominately 3d → 4f character. A proper understanding of the dependence of these soft x-ray spectra on ligand field and site geometry is necessary before a complete assessment of the utility of the Mo M4,5-edges can be made. This work includes crystallographic characterization of sodium tetrathiomolybdate. PMID:19041140
Localized Oscillatory Energy Conversion in Magnetopause Reconnection
NASA Astrophysics Data System (ADS)
Burch, J. L.; Ergun, R. E.; Cassak, P. A.; Webster, J. M.; Torbert, R. B.; Giles, B. L.; Dorelli, J. C.; Rager, A. C.; Hwang, K.-J.; Phan, T. D.; Genestreti, K. J.; Allen, R. C.; Chen, L.-J.; Wang, S.; Gershman, D.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Wilder, F. D.; Graham, D. B.; Hesse, M.; Drake, J. F.; Swisdak, M.; Price, L. M.; Shay, M. A.; Lindqvist, P.-A.; Pollock, C. J.; Denton, R. E.; Newman, D. L.
2018-02-01
Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized ( 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J · E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).
Real-time object detection and semantic segmentation for autonomous driving
NASA Astrophysics Data System (ADS)
Li, Baojun; Liu, Shun; Xu, Weichao; Qiu, Wei
2018-02-01
In this paper, we proposed a Highly Coupled Network (HCNet) for joint objection detection and semantic segmentation. It follows that our method is faster and performs better than the previous approaches whose decoder networks of different tasks are independent. Besides, we present multi-scale loss architecture to learn better representation for different scale objects, but without extra time in the inference phase. Experiment results show that our method achieves state-of-the-art results on the KITTI datasets. Moreover, it can run at 35 FPS on a GPU and thus is a practical solution to object detection and semantic segmentation for autonomous driving.
The SKED: speckle knife edge detector
NASA Astrophysics Data System (ADS)
Sharpies, S. D.; Light, R. A.; Achamfuo-Yeboah, S. O.; Clark, M.; Somekh, M. G.
2014-06-01
The knife edge detector—also known as optical beam deflection—is a simple and robust method of detecting ultrasonic waves using a laser. It is particularly suitable for detection of high frequency surface acoustic waves as the response is proportional to variation of the local tilt of the surface. In the case of a specular reflection of the incident laser beam from a smooth surface, any lateral movement of the reflected beam caused by the ultrasonic waves is easily detected by a pair of photodiodes. The major disadvantage of the knife edge detector is that it does not cope well with optically rough surfaces, those that give a speckled reflection. The optical speckles from a rough surface adversely affect the efficiency of the knife edge detector, because 'dark' speckles move synchronously with 'bright' speckles, and their contributions to the ultrasonic signal cancel each other out. We have developed a new self-adapting sensor which can cope with the optical speckles reflected from a rough surface. It is inelegantly called the SKED—speckle knife edge detector—and like its smooth surface namesake it is simple, cheap, compact, and robust. We describe the theory of its operation, and present preliminary experimental results validating the overall concept and the operation of the prototype device.
Bayesian Multiscale Modeling of Closed Curves in Point Clouds
Gu, Kelvin; Pati, Debdeep; Dunson, David B.
2014-01-01
Modeling object boundaries based on image or point cloud data is frequently necessary in medical and scientific applications ranging from detecting tumor contours for targeted radiation therapy, to the classification of organisms based on their structural information. In low-contrast images or sparse and noisy point clouds, there is often insufficient data to recover local segments of the boundary in isolation. Thus, it becomes critical to model the entire boundary in the form of a closed curve. To achieve this, we develop a Bayesian hierarchical model that expresses highly diverse 2D objects in the form of closed curves. The model is based on a novel multiscale deformation process. By relating multiple objects through a hierarchical formulation, we can successfully recover missing boundaries by borrowing structural information from similar objects at the appropriate scale. Furthermore, the model’s latent parameters help interpret the population, indicating dimensions of significant structural variability and also specifying a ‘central curve’ that summarizes the collection. Theoretical properties of our prior are studied in specific cases and efficient Markov chain Monte Carlo methods are developed, evaluated through simulation examples and applied to panorex teeth images for modeling teeth contours and also to a brain tumor contour detection problem. PMID:25544786
NASA Astrophysics Data System (ADS)
Zhu, Yuxiang; Jiang, Jianmin; Huang, Changxing; Chen, Yongqin David; Zhang, Qiang
2018-04-01
This article, as part I, introduces three algorithms and applies them to both series of the monthly stream flow and rainfall in Xijiang River, southern China. The three algorithms include (1) normalization of probability distribution, (2) scanning U test for change points in correlation between two time series, and (3) scanning F-test for change points in variances. The normalization algorithm adopts the quantile method to normalize data from a non-normal into the normal probability distribution. The scanning U test and F-test have three common features: grafting the classical statistics onto the wavelet algorithm, adding corrections for independence into each statistic criteria at given confidence respectively, and being almost objective and automatic detection on multiscale time scales. In addition, the coherency analyses between two series are also carried out for changes in variance. The application results show that the changes of the monthly discharge are still controlled by natural precipitation variations in Xijiang's fluvial system. Human activities disturbed the ecological balance perhaps in certain content and in shorter spells but did not violate the natural relationships of correlation and variance changes so far.
Image Retrieval Method for Multiscale Objects from Optical Colonoscopy Images
Sakanashi, Hidenori; Takahashi, Eiichi; Murakawa, Masahiro; Aoki, Hiroshi; Takeuchi, Ken; Suzuki, Yasuo
2017-01-01
Optical colonoscopy is the most common approach to diagnosing bowel diseases through direct colon and rectum inspections. Periodic optical colonoscopy examinations are particularly important for detecting cancers at early stages while still treatable. However, diagnostic accuracy is highly dependent on both the experience and knowledge of the medical doctor. Moreover, it is extremely difficult, even for specialist doctors, to detect the early stages of cancer when obscured by inflammations of the colonic mucosa due to intractable inflammatory bowel diseases, such as ulcerative colitis. Thus, to assist the UC diagnosis, it is necessary to develop a new technology that can retrieve similar cases of diagnostic target image from cases in the past that stored the diagnosed images with various symptoms of colonic mucosa. In order to assist diagnoses with optical colonoscopy, this paper proposes a retrieval method for colonoscopy images that can cope with multiscale objects. The proposed method can retrieve similar colonoscopy images despite varying visible sizes of the target objects. Through three experiments conducted with real clinical colonoscopy images, we demonstrate that the method is able to retrieve objects of any visible size and any location at a high level of accuracy. PMID:28255295
Image Retrieval Method for Multiscale Objects from Optical Colonoscopy Images.
Nosato, Hirokazu; Sakanashi, Hidenori; Takahashi, Eiichi; Murakawa, Masahiro; Aoki, Hiroshi; Takeuchi, Ken; Suzuki, Yasuo
2017-01-01
Optical colonoscopy is the most common approach to diagnosing bowel diseases through direct colon and rectum inspections. Periodic optical colonoscopy examinations are particularly important for detecting cancers at early stages while still treatable. However, diagnostic accuracy is highly dependent on both the experience and knowledge of the medical doctor. Moreover, it is extremely difficult, even for specialist doctors, to detect the early stages of cancer when obscured by inflammations of the colonic mucosa due to intractable inflammatory bowel diseases, such as ulcerative colitis. Thus, to assist the UC diagnosis, it is necessary to develop a new technology that can retrieve similar cases of diagnostic target image from cases in the past that stored the diagnosed images with various symptoms of colonic mucosa. In order to assist diagnoses with optical colonoscopy, this paper proposes a retrieval method for colonoscopy images that can cope with multiscale objects. The proposed method can retrieve similar colonoscopy images despite varying visible sizes of the target objects. Through three experiments conducted with real clinical colonoscopy images, we demonstrate that the method is able to retrieve objects of any visible size and any location at a high level of accuracy.
Iris segmentation using an edge detector based on fuzzy sets theory and cellular learning automata.
Ghanizadeh, Afshin; Abarghouei, Amir Atapour; Sinaie, Saman; Saad, Puteh; Shamsuddin, Siti Mariyam
2011-07-01
Iris-based biometric systems identify individuals based on the characteristics of their iris, since they are proven to remain unique for a long time. An iris recognition system includes four phases, the most important of which is preprocessing in which the iris segmentation is performed. The accuracy of an iris biometric system critically depends on the segmentation system. In this paper, an iris segmentation system using edge detection techniques and Hough transforms is presented. The newly proposed edge detection system enhances the performance of the segmentation in a way that it performs much more efficiently than the other conventional iris segmentation methods.
Schaub, Michael T.; Delvenne, Jean-Charles; Yaliraki, Sophia N.; Barahona, Mauricio
2012-01-01
In recent years, there has been a surge of interest in community detection algorithms for complex networks. A variety of computational heuristics, some with a long history, have been proposed for the identification of communities or, alternatively, of good graph partitions. In most cases, the algorithms maximize a particular objective function, thereby finding the ‘right’ split into communities. Although a thorough comparison of algorithms is still lacking, there has been an effort to design benchmarks, i.e., random graph models with known community structure against which algorithms can be evaluated. However, popular community detection methods and benchmarks normally assume an implicit notion of community based on clique-like subgraphs, a form of community structure that is not always characteristic of real networks. Specifically, networks that emerge from geometric constraints can have natural non clique-like substructures with large effective diameters, which can be interpreted as long-range communities. In this work, we show that long-range communities escape detection by popular methods, which are blinded by a restricted ‘field-of-view’ limit, an intrinsic upper scale on the communities they can detect. The field-of-view limit means that long-range communities tend to be overpartitioned. We show how by adopting a dynamical perspective towards community detection [1], [2], in which the evolution of a Markov process on the graph is used as a zooming lens over the structure of the network at all scales, one can detect both clique- or non clique-like communities without imposing an upper scale to the detection. Consequently, the performance of algorithms on inherently low-diameter, clique-like benchmarks may not always be indicative of equally good results in real networks with local, sparser connectivity. We illustrate our ideas with constructive examples and through the analysis of real-world networks from imaging, protein structures and the power grid, where a multiscale structure of non clique-like communities is revealed. PMID:22384178
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minjeaud, Sebastian; INRIA project CASTOR; Pasquetti, Richard, E-mail: richard.pasquetti@unice.fr
Due to the extreme conditions required to produce energy by nuclear fusion in tokamaks, simulating the plasma behavior is an important but challenging task. We focus on the edge part of the plasma, where fluid approaches are probably the best suited, and our approach relies on the Braginskii ion–electron model. Assuming that the electric field is electrostatic, this yields a set of 10 strongly coupled and non-linear conservation equations that exhibit multiscale and anisotropy features. The computational domain is a torus of complex geometrical section, that corresponds to the divertor configuration, i.e. with an “X-point” in the magnetic surfaces. Tomore » capture the complex physics that is involved, high order methods are used: The time-discretization is based on a Strang splitting, that combines implicit and explicit high order Runge–Kutta schemes, and the space discretization makes use of the spectral element method in the poloidal plane together with Fourier expansions in the toroidal direction. The paper thoroughly describes the algorithms that have been developed, provides some numerical validations of the key algorithms and exhibits the results of preliminary numerical experiments. In particular, we point out that the highest frequency of the system is intermediate between the ion and electron cyclotron frequencies.« less
Epidemic spreading on hierarchical geographical networks with mobile agents
NASA Astrophysics Data System (ADS)
Han, Xiao-Pu; Zhao, Zhi-Dan; Hadzibeganovic, Tarik; Wang, Bing-Hong
2014-05-01
Hierarchical geographical traffic networks are critical for our understanding of scaling laws in human trajectories. Here, we investigate the susceptible-infected epidemic process evolving on hierarchical networks in which agents randomly walk along the edges and establish contacts in network nodes. We employ a metapopulation modeling framework that allows us to explore the contagion spread patterns in relation to multi-scale mobility behaviors. A series of computer simulations revealed that a shifted power-law-like negative relationship between the peak timing of epidemics τ0 and population density, and a logarithmic positive relationship between τ0 and the network size, can both be explained by the gradual enlargement of fluctuations in the spreading process. We employ a semi-analytical method to better understand the nature of these relationships and the role of pertinent demographic factors. Additionally, we provide a quantitative discussion of the efficiency of a border screening procedure in delaying epidemic outbreaks on hierarchical networks, yielding a rather limited feasibility of this mitigation strategy but also its non-trivial dependence on population density, infector detectability, and the diversity of the susceptible region. Our results suggest that the interplay between the human spatial dynamics, network topology, and demographic factors can have important consequences for the global spreading and control of infectious diseases. These findings provide novel insights into the combined effects of human mobility and the organization of geographical networks on spreading processes, with important implications for both epidemiological research and health policy.
NASA Astrophysics Data System (ADS)
Liu, Tao; Zhang, Wei; Yan, Shaoze
2015-10-01
In this paper, a multi-scale image enhancement algorithm based on low-passing filtering and nonlinear transformation is proposed for infrared testing image of the de-bonding defect in solid propellant rocket motors. Infrared testing images with high-level noise and low contrast are foundations for identifying defects and calculating the defects size. In order to improve quality of the infrared image, according to distribution properties of the detection image, within framework of stationary wavelet transform, the approximation coefficients at suitable decomposition level is processed by index low-passing filtering by using Fourier transform, after that, the nonlinear transformation is applied to further process the figure to improve the picture contrast. To verify validity of the algorithm, the image enhancement algorithm is applied to infrared testing pictures of two specimens with de-bonding defect. Therein, one specimen is made of a type of high-strength steel, and the other is a type of carbon fiber composite. As the result shown, in the images processed by the image enhancement algorithm presented in the paper, most of noises are eliminated, and contrast between defect areas and normal area is improved greatly; in addition, by using the binary picture of the processed figure, the continuous defect edges can be extracted, all of which show the validity of the algorithm. The paper provides a well-performing image enhancement algorithm for the infrared thermography.
Adaptive two-regime method: Application to front propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Martin, E-mail: martin.robinson@maths.ox.ac.uk; Erban, Radek, E-mail: erban@maths.ox.ac.uk; Flegg, Mark, E-mail: mark.flegg@monash.edu
2014-03-28
The Adaptive Two-Regime Method (ATRM) is developed for hybrid (multiscale) stochastic simulation of reaction-diffusion problems. It efficiently couples detailed Brownian dynamics simulations with coarser lattice-based models. The ATRM is a generalization of the previously developed Two-Regime Method [Flegg et al., J. R. Soc., Interface 9, 859 (2012)] to multiscale problems which require a dynamic selection of regions where detailed Brownian dynamics simulation is used. Typical applications include a front propagation or spatio-temporal oscillations. In this paper, the ATRM is used for an in-depth study of front propagation in a stochastic reaction-diffusion system which has its mean-field model given in termsmore » of the Fisher equation [R. Fisher, Ann. Eugen. 7, 355 (1937)]. It exhibits a travelling reaction front which is sensitive to stochastic fluctuations at the leading edge of the wavefront. Previous studies into stochastic effects on the Fisher wave propagation speed have focused on lattice-based models, but there has been limited progress using off-lattice (Brownian dynamics) models, which suffer due to their high computational cost, particularly at the high molecular numbers that are necessary to approach the Fisher mean-field model. By modelling only the wavefront itself with the off-lattice model, it is shown that the ATRM leads to the same Fisher wave results as purely off-lattice models, but at a fraction of the computational cost. The error analysis of the ATRM is also presented for a morphogen gradient model.« less
NASA Astrophysics Data System (ADS)
Ma, Jinlei; Zhou, Zhiqiang; Wang, Bo; Zong, Hua
2017-05-01
The goal of infrared (IR) and visible image fusion is to produce a more informative image for human observation or some other computer vision tasks. In this paper, we propose a novel multi-scale fusion method based on visual saliency map (VSM) and weighted least square (WLS) optimization, aiming to overcome some common deficiencies of conventional methods. Firstly, we introduce a multi-scale decomposition (MSD) using the rolling guidance filter (RGF) and Gaussian filter to decompose input images into base and detail layers. Compared with conventional MSDs, this MSD can achieve the unique property of preserving the information of specific scales and reducing halos near edges. Secondly, we argue that the base layers obtained by most MSDs would contain a certain amount of residual low-frequency information, which is important for controlling the contrast and overall visual appearance of the fused image, and the conventional "averaging" fusion scheme is unable to achieve desired effects. To address this problem, an improved VSM-based technique is proposed to fuse the base layers. Lastly, a novel WLS optimization scheme is proposed to fuse the detail layers. This optimization aims to transfer more visual details and less irrelevant IR details or noise into the fused image. As a result, the fused image details would appear more naturally and be suitable for human visual perception. Experimental results demonstrate that our method can achieve a superior performance compared with other fusion methods in both subjective and objective assessments.
NASA Astrophysics Data System (ADS)
Nehmetallah, Georges; Banerjee, Partha; Khoury, Jed
2015-03-01
The nonlinearity inherent in four-wave mixing in photorefractive (PR) materials is used for adaptive filtering. Examples include script enhancement on a periodic pattern, scratch and defect cluster enhancement, periodic pattern dislocation enhancement, etc. through intensity filtering image manipulation. Organic PR materials have large space-bandwidth product, which makes them useful in adaptive filtering techniques in quality control systems. For instance, in the case of edge enhancement, phase conjugation via four-wave mixing suppresses the low spatial frequencies of the Fourier spectrum of an aperiodic image and consequently leads to image edge enhancement. In this work, we model, numerically verify, and simulate the performance of a four wave mixing setup used for edge, defect and pattern detection in periodic amplitude and phase structures. The results show that this technique successfully detects the slightest defects clearly even with no enhancement. This technique should facilitate improvements in applications such as image display sharpness utilizing edge enhancement, production line defect inspection of fabrics, textiles, e-beam lithography masks, surface inspection, and materials characterization.
Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band
NASA Technical Reports Server (NTRS)
Singhroy, Vernon H.; Kruse, Fred A.
1991-01-01
Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.
NASA Astrophysics Data System (ADS)
Barba, M.; Rains, C.; von Dassow, W.; Parker, J. W.; Glasscoe, M. T.
2013-12-01
Knowing the location and behavior of active faults is essential for earthquake hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar (InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP California Disasters team contributed to the development of a method to expedite fault detection in California using remote-sensing technology. The team utilized InSAR images created from polarimetric L-band data from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) project. A computer-vision technique known as 'edge-detection' was used to automate the fault-identification process. We tested and refined an edge-detection algorithm under development through NASA's Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) project. To optimize the algorithm we used both UAVSAR interferograms and synthetic interferograms generated through Disloc, a web-based modeling program available through NASA's QuakeSim project. The edge-detection algorithm detected seismic, aseismic, and co-seismic slip along faults that were identified and compared with databases of known fault systems. Our optimization process was the first step toward integration of the edge-detection code into E-DECIDER to provide decision support for earthquake preparation and disaster management. E-DECIDER partners that will use the edge-detection code include the California Earthquake Clearinghouse and the US Department of Homeland Security through delivery of products using the Unified Incident Command and Decision Support (UICDS) service. Through these partnerships, researchers, earthquake disaster response teams, and policy-makers will be able to use this new methodology to examine the details of ground and fault motions for moderate to large earthquakes. Following an earthquake, the newly discovered faults can be paired with infrastructure overlays, allowing emergency response teams to identify sites that may have been exposed to damage. The faults will also be incorporated into a database for future integration into fault models and earthquake simulations, improving future earthquake hazard assessment. As new faults are mapped, they will further understanding of the complex fault systems and earthquake hazards within the seismically dynamic state of California.
Wisps in the outer edge of the Keeler Gap
NASA Astrophysics Data System (ADS)
Tiscareno, M. S.; Arnault, E. G.
2014-12-01
The outer part of Saturn's A ring contains five sharp edges: the inner and outer edges of the Encke Gap and of the Keeler Gap (which contain the moons Pan and Daphnis, respectively), and the outer edge of the A ring itself. Four of these five edges are characterized by structure at moderate to high spatial frequencies, with amplitudes ranging from 2 to 30 km (Tiscareno et al. 2005, DPS). Only the outer edge of the Keeler Gap is reasonably smooth in appearance (Tiscareno et al. 2005, DPS), with occultations indicating residuals less than 1 km upon a possibly non-zero eccentricity (R.G. French, personal communication, 2014). Superposed upon the relatively smooth outer edge of the Keeler Gap are a system of "wisps," which appear to be ring material protruding inward into the gap, usually with a sharp trailing edge and a smooth gradation back to the background edge location on the leading side (Porco et al. 2005, Science). The radial amplitude of wisps is usually 0.5 to 1 km, and their azimuthal extent is approximately a degree of longitude (~2400 km). Wisps are likely caused by an interplay between Daphnis (and perhaps other moons) and embedded moonlets within the ring, though the details remain unclear. We will present a catalogue of wisp detections in Cassini images. We carry out repeated gaussian fits of the radial edge location in order to characterize edge structure (see Figure, which compares our fitted edge to the figure presented by Porco et al. 2005) and visually scan those fitted edges in order to detect wisps. With extensive coverage in longitude and in time, we will report on how wisps evolve and move, both within an orbit period and on longer timescales. We will also report on the frequency and interpretation of wisps that deviate from the standard morphology. We will discuss the implications of our results for the origin and nature of wisps, and for the larger picture of how masses interact within Saturn's rings.
Lunar-edge based on-orbit modulation transfer function (MTF) measurement
NASA Astrophysics Data System (ADS)
Cheng, Ying; Yi, Hongwei; Liu, Xinlong
2017-10-01
Modulation transfer function (MTF) is an important parameter for image quality evaluation of on-orbit optical image systems. Various methods have been proposed to determine the MTF of an imaging system which are based on images containing point, pulse and edge features. In this paper, the edge of the moon can be used as a high contrast target to measure on-orbit MTF of image systems based on knife-edge methods. The proposed method is an extension of the ISO 12233 Slanted-edge Spatial Frequency Response test, except that the shape of the edge is a circular arc instead of a straight line. In order to get more accurate edge locations and then obtain a more authentic edge spread function (ESF), we choose circular fitting method based on least square to fit lunar edge in sub-pixel edge detection process. At last, simulation results show that the MTF value at Nyquist frequency calculated using our lunar edge method is reliable and accurate with error less than 2% comparing with theoretical MTF value.
A new multi-scale method to reveal hierarchical modular structures in biological networks.
Jiao, Qing-Ju; Huang, Yan; Shen, Hong-Bin
2016-11-15
Biological networks are effective tools for studying molecular interactions. Modular structure, in which genes or proteins may tend to be associated with functional modules or protein complexes, is a remarkable feature of biological networks. Mining modular structure from biological networks enables us to focus on a set of potentially important nodes, which provides a reliable guide to future biological experiments. The first fundamental challenge in mining modular structure from biological networks is that the quality of the observed network data is usually low owing to noise and incompleteness in the obtained networks. The second problem that poses a challenge to existing approaches to the mining of modular structure is that the organization of both functional modules and protein complexes in networks is far more complicated than was ever thought. For instance, the sizes of different modules vary considerably from each other and they often form multi-scale hierarchical structures. To solve these problems, we propose a new multi-scale protocol for mining modular structure (named ISIMB) driven by a node similarity metric, which works in an iteratively converged space to reduce the effects of the low data quality of the observed network data. The multi-scale node similarity metric couples both the local and the global topology of the network with a resolution regulator. By varying this resolution regulator to give different weightings to the local and global terms in the metric, the ISIMB method is able to fit the shape of modules and to detect them on different scales. Experiments on protein-protein interaction and genetic interaction networks show that our method can not only mine functional modules and protein complexes successfully, but can also predict functional modules from specific to general and reveal the hierarchical organization of protein complexes.
Multiscale Currents Observed by MMS in the Flow Braking Region.
Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A; Apatenkov, Sergey; Ergun, Robert E; Fuselier, Stephen A; Gershman, Daniel J; Giles, Barbara J; Khotyaintsev, Yuri V; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T; Stawarz, Julia; Strangeway, Robert J; Anderson, Brian; Burch, James L; Bromund, Ken R; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J; Slavin, James A; Torbert, Roy B; Turner, Drew L
2018-02-01
We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.
78 FR 66859 - Airworthiness Directives; the Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... airplanes. This proposed AD was prompted by reports of bearing damage at certain trailing edge (TE) flap... certain trailing edge (TE) flap support rib assemblies. We are issuing this AD to detect and correct...
Predicting hydration free energies of amphetamine-type stimulants with a customized molecular model
NASA Astrophysics Data System (ADS)
Li, Jipeng; Fu, Jia; Huang, Xing; Lu, Diannan; Wu, Jianzhong
2016-09-01
Amphetamine-type stimulants (ATS) are a group of incitation and psychedelic drugs affecting the central nervous system. Physicochemical data for these compounds are essential for understanding the stimulating mechanism, for assessing their environmental impacts, and for developing new drug detection methods. However, experimental data are scarce due to tight regulation of such illicit drugs, yet conventional methods to estimate their properties are often unreliable. Here we introduce a tailor-made multiscale procedure for predicting the hydration free energies and the solvation structures of ATS molecules by a combination of first principles calculations and the classical density functional theory. We demonstrate that the multiscale procedure performs well for a training set with similar molecular characteristics and yields good agreement with a testing set not used in the training. The theoretical predictions serve as a benchmark for the missing experimental data and, importantly, provide microscopic insights into manipulating the hydrophobicity of ATS compounds by chemical modifications.
NASA Technical Reports Server (NTRS)
Zhou, M.; Ashour-Abdalla, M.; Berchem, J.; Walker, R. J.; Liang, H.; El-Alaoui, M.; Goldstein, M. L.; Lindqvist, P.-A.; Marklund, G.; Khotyaintsev, Y. V.;
2016-01-01
We report Magnetospheric Multiscale observations of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region on the dayside magnetopause. The ion diffusion region is identified during two magnetopause crossings by the Hall electromagnetic fields, the slippage of ions with respect to the magnetic field, and magnetic energy dissipation. In addition to electron beam modes that have been previously detected at the separatrix on the magnetospheric side of the magnetopause, we report, for the first time, the existence of electron cyclotron harmonic waves at the magnetosheath separatrix. Broadband waves between the electron cyclotron and electron plasma frequencies, which were probably generated by electron beams, were found within the magnetopause current sheet. Contributions by these high-frequency waves to the magnetic energy dissipation were negligible in the diffusion regions as compared to those of lower-frequency waves.
NASA Astrophysics Data System (ADS)
Li, Yongbo; Yang, Yuantao; Li, Guoyan; Xu, Minqiang; Huang, Wenhu
2017-07-01
Health condition identification of planetary gearboxes is crucial to reduce the downtime and maximize productivity. This paper aims to develop a novel fault diagnosis method based on modified multi-scale symbolic dynamic entropy (MMSDE) and minimum redundancy maximum relevance (mRMR) to identify the different health conditions of planetary gearbox. MMSDE is proposed to quantify the regularity of time series, which can assess the dynamical characteristics over a range of scales. MMSDE has obvious advantages in the detection of dynamical changes and computation efficiency. Then, the mRMR approach is introduced to refine the fault features. Lastly, the obtained new features are fed into the least square support vector machine (LSSVM) to complete the fault pattern identification. The proposed method is numerically and experimentally demonstrated to be able to recognize the different fault types of planetary gearboxes.
Spatiotemporal attention operator using isotropic contrast and regional homogeneity
NASA Astrophysics Data System (ADS)
Palenichka, Roman; Lakhssassi, Ahmed; Zaremba, Marek
2011-04-01
A multiscale operator for spatiotemporal isotropic attention is proposed to reliably extract attention points during image sequence analysis. Its consecutive local maxima indicate attention points as the centers of image fragments of variable size with high intensity contrast, region homogeneity, regional shape saliency, and temporal change presence. The scale-adaptive estimation of temporal change (motion) and its aggregation with the regional shape saliency contribute to the accurate determination of attention points in image sequences. Multilocation descriptors of an image sequence are extracted at the attention points in the form of a set of multidimensional descriptor vectors. A fast recursive implementation is also proposed to make the operator's computational complexity independent from the spatial scale size, which is the window size in the spatial averaging filter. Experiments on the accuracy of attention-point detection have proved the operator consistency and its high potential for multiscale feature extraction from image sequences.
Image registration with uncertainty analysis
Simonson, Katherine M [Cedar Crest, NM
2011-03-22
In an image registration method, edges are detected in a first image and a second image. A percentage of edge pixels in a subset of the second image that are also edges in the first image shifted by a translation is calculated. A best registration point is calculated based on a maximum percentage of edges matched. In a predefined search region, all registration points other than the best registration point are identified that are not significantly worse than the best registration point according to a predetermined statistical criterion.
Safner, T.; Miller, M.P.; McRae, B.H.; Fortin, M.-J.; Manel, S.
2011-01-01
Recently, techniques available for identifying clusters of individuals or boundaries between clusters using genetic data from natural populations have expanded rapidly. Consequently, there is a need to evaluate these different techniques. We used spatially-explicit simulation models to compare three spatial Bayesian clustering programs and two edge detection methods. Spatially-structured populations were simulated where a continuous population was subdivided by barriers. We evaluated the ability of each method to correctly identify boundary locations while varying: (i) time after divergence, (ii) strength of isolation by distance, (iii) level of genetic diversity, and (iv) amount of gene flow across barriers. To further evaluate the methods' effectiveness to detect genetic clusters in natural populations, we used previously published data on North American pumas and a European shrub. Our results show that with simulated and empirical data, the Bayesian spatial clustering algorithms outperformed direct edge detection methods. All methods incorrectly detected boundaries in the presence of strong patterns of isolation by distance. Based on this finding, we support the application of Bayesian spatial clustering algorithms for boundary detection in empirical datasets, with necessary tests for the influence of isolation by distance. ?? 2011 by the authors; licensee MDPI, Basel, Switzerland.
NASA Astrophysics Data System (ADS)
Huang, Weilin; Wang, Runqiu; Chen, Yangkang
2018-05-01
Microseismic signal is typically weak compared with the strong background noise. In order to effectively detect the weak signal in microseismic data, we propose a mathematical morphology based approach. We decompose the initial data into several morphological multiscale components. For detection of weak signal, a non-stationary weighting operator is proposed and introduced into the process of reconstruction of data by morphological multiscale components. The non-stationary weighting operator can be obtained by solving an inversion problem. The regularized non-stationary method can be understood as a non-stationary matching filtering method, where the matching filter has the same size as the data to be filtered. In this paper, we provide detailed algorithmic descriptions and analysis. The detailed algorithm framework, parameter selection and computational issue for the regularized non-stationary morphological reconstruction (RNMR) method are presented. We validate the presented method through a comprehensive analysis through different data examples. We first test the proposed technique using a synthetic data set. Then the proposed technique is applied to a field project, where the signals induced from hydraulic fracturing are recorded by 12 three-component geophones in a monitoring well. The result demonstrates that the RNMR can improve the detectability of the weak microseismic signals. Using the processed data, the short-term-average over long-term average picking algorithm and Geiger's method are applied to obtain new locations of microseismic events. In addition, we show that the proposed RNMR method can be used not only in microseismic data but also in reflection seismic data to detect the weak signal. We also discussed the extension of RNMR from 1-D to 2-D or a higher dimensional version.
Parallelization of fine-scale computation in Agile Multiscale Modelling Methodology
NASA Astrophysics Data System (ADS)
Macioł, Piotr; Michalik, Kazimierz
2016-10-01
Nowadays, multiscale modelling of material behavior is an extensively developed area. An important obstacle against its wide application is high computational demands. Among others, the parallelization of multiscale computations is a promising solution. Heterogeneous multiscale models are good candidates for parallelization, since communication between sub-models is limited. In this paper, the possibility of parallelization of multiscale models based on Agile Multiscale Methodology framework is discussed. A sequential, FEM based macroscopic model has been combined with concurrently computed fine-scale models, employing a MatCalc thermodynamic simulator. The main issues, being investigated in this work are: (i) the speed-up of multiscale models with special focus on fine-scale computations and (ii) on decreasing the quality of computations enforced by parallel execution. Speed-up has been evaluated on the basis of Amdahl's law equations. The problem of `delay error', rising from the parallel execution of fine scale sub-models, controlled by the sequential macroscopic sub-model is discussed. Some technical aspects of combining third-party commercial modelling software with an in-house multiscale framework and a MPI library are also discussed.
Bae, Won-Gyu; Kim, Hong Nam; Kim, Doogon; Park, Suk-Hee; Jeong, Hoon Eui; Suh, Kahp-Yang
2014-02-01
Multiscale, hierarchically patterned surfaces, such as lotus leaves, butterfly wings, adhesion pads of gecko lizards are abundantly found in nature, where microstructures are usually used to strengthen the mechanical stability while nanostructures offer the main functionality, i.e., wettability, structural color, or dry adhesion. To emulate such hierarchical structures in nature, multiscale, multilevel patterning has been extensively utilized for the last few decades towards various applications ranging from wetting control, structural colors, to tissue scaffolds. In this review, we highlight recent advances in scalable multiscale patterning to bring about improved functions that can even surpass those found in nature, with particular focus on the analogy between natural and synthetic architectures in terms of the role of different length scales. This review is organized into four sections. First, the role and importance of multiscale, hierarchical structures is described with four representative examples. Second, recent achievements in multiscale patterning are introduced with their strengths and weaknesses. Third, four application areas of wetting control, dry adhesives, selectively filtrating membranes, and multiscale tissue scaffolds are overviewed by stressing out how and why multiscale structures need to be incorporated to carry out their performances. Finally, we present future directions and challenges for scalable, multiscale patterned surfaces. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Automatic vertebral bodies detection of x-ray images using invariant multiscale template matching
NASA Astrophysics Data System (ADS)
Sharifi Sarabi, Mona; Villaroman, Diane; Beckett, Joel; Attiah, Mark; Marcus, Logan; Ahn, Christine; Babayan, Diana; Gaonkar, Bilwaj; Macyszyn, Luke; Raghavendra, Cauligi
2017-03-01
Lower back pain and pathologies related to it are one of the most common results for a referral to a neurosurgical clinic in the developed and the developing world. Quantitative evaluation of these pathologies is a challenge. Image based measurements of angles/vertebral heights and disks could provide a potential quantitative biomarker for tracking and measuring these pathologies. Detection of vertebral bodies is a key element and is the focus of the current work. From the variety of medical imaging techniques, MRI and CT scans have been typically used for developing image segmentation methods. However, CT scans are known to give a large dose of x-rays, increasing cancer risk [8]. MRI can be substituted for CTs when the risk is high [8] but are difficult to obtain in smaller facilities due to cost and lack of expertise in the field [2]. X-rays provide another option with its ability to control the x-ray dosage, especially for young people, and its accessibility for smaller facilities. Hence, the ability to create quantitative biomarkers from x-ray data is especially valuable. Here, we develop a multiscale template matching, inspired by [9], to detect centers of vertebral bodies from x-ray data. The immediate application of such detection lies in developing quantitative biomarkers and in querying similar images in a database. Previously, shape similarity classification methods have been used to address this problem, but these are challenging to use in the presence of variation due to gross pathology and even subtle effects [1].
Liu, Jianfei; Jung, HaeWon; Dubra, Alfredo; Tam, Johnny
2017-09-01
Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification of the photoreceptor mosaic in the living human eye using metrics such as cell density and average spacing. These rely on the identification of individual cells. Here, we demonstrate a novel approach for computer-aided identification of cone photoreceptors on nonconfocal split detection AOSLO images. Algorithms for identification of cone photoreceptors were developed, based on multiscale circular voting (MSCV) in combination with a priori knowledge that split detection images resemble Nomarski differential interference contrast images, in which dark and bright regions are present on the two sides of each cell. The proposed algorithm locates dark and bright region pairs, iteratively refining the identification across multiple scales. Identification accuracy was assessed in data from 10 subjects by comparing automated identifications with manual labeling, followed by computation of density and spacing metrics for comparison to histology and published data. There was good agreement between manual and automated cone identifications with overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average, computed density and spacing values using automated identification were within 10.7% and 11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm. There was no statistically significant difference between MSCV-based and histology-based density measurements (P = 0.96, Kolmogorov-Smirnov 2-sample test). MSCV can accurately detect cone photoreceptors on split detection images across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic metrics, which will be important for future clinical trials utilizing adaptive optics.
Non-Invasive Electrical Impedance Tomography for Multi-Scale Detection of Liver Fat Content
Luo, Yuan; Abiri, Parinaz; Zhang, Shell; Chang, Chih-Chiang; Kaboodrangi, Amir H.; Li, Rongsong; Sahib, Ashish K.; Bui, Alex; Kumar, Rajesh; Woo, Mary; Li, Zhaoping; Packard, René R. Sevag; Tai, Yu-Chong; Hsiai, Tzung K.
2018-01-01
Introduction: Obesity is associated with an increased risk of nonalcoholic fatty liver disease (NAFLD). While Magnetic Resonance Imaging (MRI) is a non-invasive gold standard to detect fatty liver, we demonstrate a low-cost and portable electrical impedance tomography (EIT) approach with circumferential abdominal electrodes for liver conductivity measurements. Methods and Results: A finite element model (FEM) was established to simulate decremental liver conductivity in response to incremental liver lipid content. To validate the FEM simulation, we performed EIT imaging on an ex vivo porcine liver in a non-conductive tank with 32 circumferentially-embedded electrodes, demonstrating a high-resolution output given a priori information on location and geometry. To further examine EIT capacity in fatty liver detection, we performed EIT measurements in age- and gender-matched New Zealand White rabbits (3 on normal, 3 on high-fat diets). Liver conductivity values were significantly distinct following the high-fat diet (p = 0.003 vs. normal diet, n=3), accompanied by histopathological evidence of hepatic fat accumulation. We further assessed EIT imaging in human subjects with MRI quantification for fat volume fraction based on Dixon procedures, demonstrating average liver conductivity of 0.331 S/m for subjects with low Body-Mass Index (BMI < 25 kg/m²) and 0.286 S/m for high BMI (> 25 kg/m²). Conclusion: We provide both the theoretical and experimental framework for a multi-scale EIT strategy to detect liver lipid content. Our preliminary studies pave the way to enhance the spatial resolution of EIT as a marker for fatty liver disease and metabolic syndrome. PMID:29556346
A multi-scale hybrid neural network retrieval model for dust storm detection, a study in Asia
NASA Astrophysics Data System (ADS)
Wong, Man Sing; Xiao, Fei; Nichol, Janet; Fung, Jimmy; Kim, Jhoon; Campbell, James; Chan, P. W.
2015-05-01
Dust storms are known to have adverse effects on human health and significant impact on weather, air quality, hydrological cycle, and ecosystem. Atmospheric dust loading is also one of the large uncertainties in global climate modeling, due to its significant impact on the radiation budget and atmospheric stability. Observations of dust storms in humid tropical south China (e.g. Hong Kong), are challenging due to high industrial pollution from the nearby Pearl River Delta region. This study develops a method for dust storm detection by combining ground station observations (PM10 concentration, AERONET data), geostationary satellite images (MTSAT), and numerical weather and climatic forecasting products (WRF/Chem). The method is based on a hybrid neural network (NN) retrieval model for two scales: (i) a NN model for near real-time detection of dust storms at broader regional scale; (ii) a NN model for detailed dust storm mapping for Hong Kong and Taiwan. A feed-forward multilayer perceptron (MLP) NN, trained using back propagation (BP) algorithm, was developed and validated by the k-fold cross validation approach. The accuracy of the near real-time detection MLP-BP network is 96.6%, and the accuracies for the detailed MLP-BP neural network for Hong Kong and Taiwan is 74.8%. This newly automated multi-scale hybrid method can be used to give advance near real-time mapping of dust storms for environmental authorities and the public. It is also beneficial for identifying spatial locations of adverse air quality conditions, and estimates of low visibility associated with dust events for port and airport authorities.
NASA Technical Reports Server (NTRS)
Avanov, L. A.; Gliese, U.; Pollock, C. J.; Moore, T. E.; Chornay, D. J.; Barrie, A. C.; Kujawski, J. T.; Gershman, D. J.; Tucker, C. J.; Mariano, A.;
2015-01-01
Imaging detecting systems based on microchannel plates (MCPs) are the most common for low energy plasma measurements for both space borne and ground applications. One of the key parameters of these detection systems is the dynamic range of the MCP's response to the input fluxes of charged particles. For most applications the dynamic range of the linear response should be as wide as possible. This is especially true for the Dual Electron Spectrometers (DESs) of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission because a wide range of input fluxes are expected. To make use of the full available dynamic range, it is important to understand the MCP response behavior beyond the linear regime where the MCPs start to saturate. We have performed extensive studies of this during the characterization and calibration of the DES instruments and have identified several saturation effects of the detection system. The MCP itself exhibits saturation when the channels lack the ability to replenish charge sufficiently rapidly. It is found and will be shown that the ground system can significantly impact the correct measurement of this effect. As the MCP starts to saturate, the resulting pulse height distribution (PHD) changes shape and location (with less pulse height values), which leads to truncation of the PHD by the threshold set on the detection system discriminator. Finally, the detection system pulse amplifier exhibits saturation as the input flux drives pulse rates greater than its linear response speed. All of these effects effectively change the dead time of the overall detection system and as a result can affect the quality and interpretation of the flight data. We present results of detection system saturation effects and their interaction with special emphasis on the MCP related effects.
Threshold-adaptive canny operator based on cross-zero points
NASA Astrophysics Data System (ADS)
Liu, Boqi; Zhang, Xiuhua; Hong, Hanyu
2018-03-01
Canny edge detection[1] is a technique to extract useful structural information from different vision objects and dramatically reduce the amount of data to be processed. It has been widely applied in various computer vision systems. There are two thresholds have to be settled before the edge is segregated from background. Usually, by the experience of developers, two static values are set as the thresholds[2]. In this paper, a novel automatic thresholding method is proposed. The relation between the thresholds and Cross-zero Points is analyzed, and an interpolation function is deduced to determine the thresholds. Comprehensive experimental results demonstrate the effectiveness of proposed method and advantageous for stable edge detection at changing illumination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samala, Ravi K., E-mail: rsamala@umich.edu; Chan, Heang-Ping; Lu, Yao
Purpose: Develop a computer-aided detection (CADe) system for clustered microcalcifications in digital breast tomosynthesis (DBT) volume enhanced with multiscale bilateral filtering (MSBF) regularization. Methods: With Institutional Review Board approval and written informed consent, two-view DBT of 154 breasts, of which 116 had biopsy-proven microcalcification (MC) clusters and 38 were free of MCs, was imaged with a General Electric GEN2 prototype DBT system. The DBT volumes were reconstructed with MSBF-regularized simultaneous algebraic reconstruction technique (SART) that was designed to enhance MCs and reduce background noise while preserving the quality of other tissue structures. The contrast-to-noise ratio (CNR) of MCs was furthermore » improved with enhancement-modulated calcification response (EMCR) preprocessing, which combined multiscale Hessian response to enhance MCs by shape and bandpass filtering to remove the low-frequency structured background. MC candidates were then located in the EMCR volume using iterative thresholding and segmented by adaptive region growing. Two sets of potential MC objects, cluster centroid objects and MC seed objects, were generated and the CNR of each object was calculated. The number of candidates in each set was controlled based on the breast volume. Dynamic clustering around the centroid objects grouped the MC candidates to form clusters. Adaptive criteria were designed to reduce false positive (FP) clusters based on the size, CNR values and the number of MCs in the cluster, cluster shape, and cluster based maximum intensity projection. Free-response receiver operating characteristic (FROC) and jackknife alternative FROC (JAFROC) analyses were used to assess the performance and compare with that of a previous study. Results: Unpaired two-tailedt-test showed a significant increase (p < 0.0001) in the ratio of CNRs for MCs with and without MSBF regularization compared to similar ratios for FPs. For view-based detection, a sensitivity of 85% was achieved at an FP rate of 2.16 per DBT volume. For case-based detection, a sensitivity of 85% was achieved at an FP rate of 0.85 per DBT volume. JAFROC analysis showed a significant improvement in the performance of the current CADe system compared to that of our previous system (p = 0.003). Conclusions: MBSF regularized SART reconstruction enhances MCs. The enhancement in the signals, in combination with properly designed adaptive threshold criteria, effective MC feature analysis, and false positive reduction techniques, leads to a significant improvement in the detection of clustered MCs in DBT.« less
Wisps in the outer edge of the Keeler Gap
NASA Astrophysics Data System (ADS)
Tiscareno, Matthew S.; Arnault, Ethan G.
2015-11-01
Superposed upon the relatively smooth outer edge of the Keeler Gap are a system of "wisps," which appear to be ring material protruding inward into the gap, usually with a sharp trailing edge and a smooth gradation back to the background edge location on the leading side (Porco et al. 2005, Science). The radial amplitude of wisps is usually 0.5 to 1 km, and their azimuthal extent is approximately a degree of longitude (~2400 km). Wisps are likely caused by an interplay between Daphnis (and perhaps other moons) and embedded moonlets within the ring, though the details remain unclear.Aside from the wisps, the Keeler Gap outer edge is the only one of the five sharp edges in the outer part of Saturn's A ring that is reasonably smooth in appearance (Tiscareno et al. 2005, DPS), with occultations indicating residuals less than 1 km upon a possibly non-zero eccentricity (R.G. French, personal communication, 2014). The other four (the inner and outer edges of the Encke Gap, the inner edge of the Keeler Gap, and the outer edge of the A ring itself) are characterized by wavy structure at moderate to high spatial frequencies, with amplitudes ranging from 2 to 30 km (Tiscareno et al. 2005, DPS).We will present a catalogue of wisp detections in Cassini images. We carry out repeated gaussian fits of the radial edge location in order to characterize edge structure and visually scan those fitted edges in order to detect wisps. With extensive coverage in longitude and in time, we will report on how wisps evolve and move, both within an orbit period and on longer timescales. We will also report on the frequency and interpretation of wisps that deviate from the standard morphology. We will discuss the implications of our results for the origin and nature of wisps, and for the larger picture of how masses interact within Saturn's rings.
Comparison of birds detected from roadside and off-road point counts in the Shenandoah National Park
Keller, C.M.E.; Fuller, M.R.; Ralph, C. John; Sauer, John R.; Droege, Sam
1995-01-01
Roadside point counts are generally used for large surveys to increase the number of samples. We examined differences in species detected from roadside versus off-road (200-m and 400-ha) point counts in the Shenandoah National Park. We also compared the list of species detected in the first 3 minutes to those detected in 10 minutes for potential species biases. Results from 81 paired roadside and off-road counts indicated that roadside counts had higher numbers of several edge species but did not have lower numbers of nonedge forest species. More individuals and species were detected from roadside points because of this increase in edge species. Sixty-five percent of the species detected in 10 minutes were recorded in the first 3 minutes.
X-Ray Phase Imaging for Breast Cancer Detection
2011-09-01
the inline phase contrast imaging has good potential of greatly enhanc - ing the detection sensitivity and reducing radiation doses involved in the...the edge- enhancement generated by phase- contrast is generally useful for imaging the wrap, however, such edge- enhancements may lead interpretation...Kotre and I. P. Birch, “Phase contrast enhancement of x-ray mam- mography: A design study,” Phys. Med. Biol. 44, 2853–2866 (1999). 6F. Arfelli et al
In silico simulation of liver crack detection using ultrasonic shear wave imaging.
Nie, Erwei; Yu, Jiao; Dutta, Debaditya; Zhu, Yanying
2018-05-16
Liver trauma is an important source of morbidity and mortality worldwide. A timely detection and precise evaluation of traumatic liver injury and the bleeding site is necessary. There is a need to develop better imaging modalities of hepatic injuries to increase the sensitivity of ultrasonic imaging techniques for sites of hemorrhage caused by cracks. In this study, we conduct an in silico simulation of liver crack detection and delineation using an ultrasonic shear wave imaging (USWI) based method. We simulate the generation and propagation of the shear wave in a liver tissue medium having a crack using COMSOL. Ultrasound radio frequency (RF) signal synthesis and the two-dimensional speckle tracking algorithm are applied to simulate USWI in a medium with randomly distributed scatterers. Crack detection is performed using the directional filter and the edge detection algorithm rather than the conventional inversion algorithm. Cracks with varied sizes and locations are studied with our method and the crack localization results are compared with the given crack. Our pilot simulation study shows that, by using USWI combined with a directional filter cum edge detection technique, the near-end edge of the crack can be detected in all the three cracks that we studied. The detection errors are within 5%. For a crack of 1.6 mm thickness, little shear wave can pass through it and the far-end edge of the crack cannot be detected. The detected crack lengths using USWI are all slightly shorter than the actual crack length. The robustness of our method in detecting a straight crack, a curved crack and a subtle crack of 0.5 mm thickness is demonstrated. In this paper, we simulate the use of a USWI based method for the detection and delineation of the crack in liver. The in silico simulation helps to improve understanding and interpretation of USWI measurements in a physical scattered liver medium with a crack. This pilot study provides a basis for improved insights in future crack detection studies in a tissue phantom or liver.
Computer vision, camouflage breaking and countershading
Tankus, Ariel; Yeshurun, Yehezkel
2008-01-01
Camouflage is frequently used in the animal kingdom in order to conceal oneself from visual detection or surveillance. Many camouflage techniques are based on masking the familiar contours and texture of the subject by superposition of multiple edges on top of it. This work presents an operator, Darg, for the detection of three-dimensional smooth convex (or, equivalently, concave) objects. It can be used to detect curved objects on a relatively flat background, regardless of image edges, contours and texture. We show that a typical camouflage found in some animal species seems to be a ‘countermeasure’ taken against detection that might be based on our method. Detection by Darg is shown to be very robust, from both theoretical considerations and practical examples of real-life images. PMID:18990669
Assessment of AVIRIS data from vegetated sites in the Owens Valley, California
NASA Technical Reports Server (NTRS)
Rock, B. N.; Elvidge, Christopher D.; Defeo, N. J.
1988-01-01
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were acquired from the Bishop, CA area, located at the northern end of the Owens Valley, on July 30, 1987. Radiometrically-corrected AVIRIS data were flat-field corrected, and spectral curves produced and analyzed for pixels taken from both native and cultivated vegetation sites, using the JPS SPAM software program and PC-based spreadsheet programs. Analyses focussed on the chlorophyll well and red edge portions of the spectral curves. Results include the following: AVIRIS spectral data are acquired at sufficient spectral resolution to allow detection of blue shifts of both the chlorophyll well and red edge in moisture-stressed vegetation when compared with non-stressed vegetation; a normalization of selected parameters (chlorophyll well and near infrared shoulder) may be used to emphasize the shift in red edge position; and the presence of the red edge in AVIRIS spectral curves may be useful in detecting small amounts (20 to 30 pct cover) of semi-arid and arid vegetation ground cover. A discussion of possible causes of AVIRIS red edge shifts in respsonse to stress is presented.
Multiscale measurement error models for aggregated small area health data.
Aregay, Mehreteab; Lawson, Andrew B; Faes, Christel; Kirby, Russell S; Carroll, Rachel; Watjou, Kevin
2016-08-01
Spatial data are often aggregated from a finer (smaller) to a coarser (larger) geographical level. The process of data aggregation induces a scaling effect which smoothes the variation in the data. To address the scaling problem, multiscale models that link the convolution models at different scale levels via the shared random effect have been proposed. One of the main goals in aggregated health data is to investigate the relationship between predictors and an outcome at different geographical levels. In this paper, we extend multiscale models to examine whether a predictor effect at a finer level hold true at a coarser level. To adjust for predictor uncertainty due to aggregation, we applied measurement error models in the framework of multiscale approach. To assess the benefit of using multiscale measurement error models, we compare the performance of multiscale models with and without measurement error in both real and simulated data. We found that ignoring the measurement error in multiscale models underestimates the regression coefficient, while it overestimates the variance of the spatially structured random effect. On the other hand, accounting for the measurement error in multiscale models provides a better model fit and unbiased parameter estimates. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Horowitz, F. G.; Ebinger, C.; Jordan, T. E.
2017-12-01
Results from recent DOE and USGS sponsored projects in the (intraplate) northeastern portions of the US and southeastern portions of Canada have identified locations of steeply dipping structures - many previously unknown - from a Poisson wavelet multiscale edge ('worm') analysis of gravity and magnetic fields. The Avoca sequence of induced(?) seismicity in western New York state occurred during January and February of 2001. The Avoca earthquake sequence is associated with industrial hydraulic fracturing activity "related to a proposed natural gas storage facility near Avoca to be constructed by solution mining" (Kim, 2001). The main Avoca event was a felt Mb = 3.2 earthquake on Feb. 3, 2001 recorded by the Lamont Cooperative Seismic Network. Earlier, smaller events were located by the Canadian Geological Survey's seismic network north of the Canadian border - implying that the event locations might be biased because they occurred off the southern edge of the array. Some of these events were also felt locally, according to local newspaper reports. By plotting the location of the seismic events and that of the injection well - reported via it's API number - we find a strong correlation with structures detected via our potential field worms. The injection occurred near a NE-SW striking structure that was not activated. All but one of the earthquakes occurred about 5 km north of the injection well on or nearby to an E-W striking structure that appears to intersect the NE-SW structure. The final, small (MN=2.2) earthquake was located on a different complex structure about 10 km north of the other events. We suggest that potential field methods such as ours might be appropriate to locating structures of concern for induced seismic activity in association with industrial activity. Reference: Kim, W.-Y. (2001). The Lamont cooperative seismic network and the national seismic system: Earthquake hazard studies in the northeastern United States. Tech. Rep. 98-01, Lamont Cooperative Seismic Network, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY.
NASA Astrophysics Data System (ADS)
Kobayashi, Hiroaki; Gotoda, Hiroshi; Tachibana, Shigeru; Yoshida, Seiji
2017-12-01
We conduct an experimental study using time series analysis based on symbolic dynamics to detect a precursor of frequency-mode-shift during thermoacoustic combustion oscillations in a staged aircraft engine model combustor. With increasing amount of the main fuel, a significant shift in the dominant frequency-mode occurs in noisy periodic dynamics, leading to a notable increase in oscillation amplitudes. The sustainment of noisy periodic dynamics during thermoacoustic combustion oscillations is clearly shown by the multiscale complexity-entropy causality plane in terms of statistical complexity. A modified version of the permutation entropy allows us to detect a precursor of the frequency-mode-shift before the amplification of pressure fluctuations.
The Double Edge Technique for Doppler lidar wind measurement
NASA Technical Reports Server (NTRS)
Korb, C. Laurence; Gentry, Bruce M.; Li, S. Xingfu; Flesia, Cristina; Chen, Huailin; Mathur, S.
1998-01-01
The edge technique utilizes the edge of a high spectral resolution filter for high accuracy wind measurement using direct detection lidar. The signal is split between an edge filter channel and a broadband energy monitor channel. The energy monitor channel is used for signal normalization. The edge measurement is made as a differential frequency measurement between the outgoing laser signal and the atmospheric backscattered return for each pulse. As a result, the measurement is insensitive to laser and edge filter frequency jitter and drift at a level less than a few parts in 10(exp 10). We will discuss the methodology of the technique in detail, present a broad range of simulation results, and provide preprints of a journal article currently in press.
Multi-scale modelling of non-uniform consolidation of uncured toughened unidirectional prepregs
NASA Astrophysics Data System (ADS)
Sorba, G.; Binetruy, C.; Syerko, E.; Leygue, A.; Comas-Cardona, S.; Belnoue, J. P.-H.; Nixon-Pearson, O. J.; Ivanov, D. S.; Hallett, S. R.; Advani, S. G.
2018-05-01
Consolidation is a crucial step in manufacturing of composite parts with prepregs because its role is to eliminate inter- and intra-ply gaps and porosity. Some thermoset prepreg systems are toughened with thermoplastic particles. Depending on their size, thermoplastic particles can be either located in between plies or distributed within the inter-fibre regions. When subjected to transverse compaction, resin will bleed out of low-viscosity unidirectional prepregs along the fibre direction, whereas one would expect transverse squeeze flow to dominate for higher viscosity prepregs. Recent experimental work showed that the consolidation of uncured toughened prepregs involves complex flow and deformation mechanisms where both bleeding and squeeze flow patterns are observed [1]. Micrographs of compacted and cured samples confirm these features as shown in Fig.1. A phenomenological model was proposed [2] where bleeding flow and squeeze flow are combined. A criterion for the transition from shear flow to resin bleeding was also proposed. However, the micrographs also reveal a resin rich layer between plies which may be contributing to the complex flow mechanisms during the consolidation process. In an effort to provide additional insight into these complex mechanisms, this work focuses on the 3D numerical modelling of the compaction of uncured toughened prepregs in the cross-ply configuration described in [1]. A transversely isotropic fluid model is used to describe the flow behaviour of the plies coupled with interplay resin flow of an isotropic fluid. The multi-scale flow model used is based on [3, 4]. A numerical parametric study is carried out where the resin viscosity, permeability and inter-ply thickness are varied to identify the role of important variables. The squeezing flow and the bleeding flow are compared for a range of process parameters to investigate the coupling and competition between the two flow mechanisms. Figure 4 shows the predicted displacement of the sample edge with the multi-scale compaction model after one time step [3]. The ply distortion and resin flow observed in Fig.1 is qualitatively retrieved by the computational model.
Image steganography based on 2k correction and coherent bit length
NASA Astrophysics Data System (ADS)
Sun, Shuliang; Guo, Yongning
2014-10-01
In this paper, a novel algorithm is proposed. Firstly, the edge of cover image is detected with Canny operator and secret data is embedded in edge pixels. Sorting method is used to randomize the edge pixels in order to enhance security. Coherent bit length L is determined by relevant edge pixels. Finally, the method of 2k correction is applied to achieve better imperceptibility in stego image. The experiment shows that the proposed method is better than LSB-3 and Jae-Gil Yu's in PSNR and capacity.
Visualization and analysis of flow structures in an open cavity
NASA Astrophysics Data System (ADS)
Liu, Jun; Cai, Jinsheng; Yang, Dangguo; Wu, Junqiang; Wang, Xiansheng
2018-05-01
A numerical study is performed on the supersonic flow over an open cavity at Mach number of 1.5. A newly developed visualization method is employed to visualize the complicated flow structures, which provide an insight into major flow physics. Four types of shock/compressive waves which existed in experimental schlieren are observed in numerical visualization results. Furthermore, other flow structures such as multi-scale vortices are also obtained in the numerical results. And a new type of shocklet which is beneath large vortices is found. The shocklet beneath the vortex originates from leading edge, then, is strengthened by successive interactions between feedback compressive waves and its attached vortex. Finally, it collides against the trailing surface and generates a large number of feedback compressive waves and intensive pressure fluctuations. It is suggested that the shocklets beneath vortex play an important role of cavity self-sustained oscillation.
Patched bimetallic surfaces are active catalysts for ammonia decomposition.
Guo, Wei; Vlachos, Dionisios G
2015-10-07
Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core-shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core-shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian
2018-03-01
The measurement of microstructured components is a challenging task in optical engineering. Digital holographic microscopy has attracted intensive attention due to its remarkable capability of measuring complex surfaces. However, speckles arise in the recorded interferometric holograms, and they will degrade the reconstructed wavefronts. Existing speckle removal methods suffer from the problems of frequency aliasing and phase distortions. A reconstruction method based on the antialiasing shift-invariant contourlet transform (ASCT) is developed. Salient edges and corners have sparse representations in the transform domain of ASCT, and speckles can be recognized and removed effectively. As subsampling in the scale and directional filtering schemes is avoided, the problems of frequency aliasing and phase distortions occurring in the conventional multiscale transforms can be effectively overcome, thereby improving the accuracy of wavefront reconstruction. As a result, the proposed method is promising for the digital holographic measurement of complex structures.
NASA Astrophysics Data System (ADS)
Yu, Xuelian; Chen, Qian; Gu, Guohua; Ren, Jianle; Sui, Xiubao
2015-02-01
Designing objective quality assessment of color-fused image is a very demanding and challenging task. We propose four no-reference metrics based on human visual system characteristics for objectively evaluating the quality of false color fusion image. The perceived edge metric (PEM) is defined based on visual perception model and color image gradient similarity between the fused image and the source images. The perceptual contrast metric (PCM) is established associating multi-scale contrast and varying contrast sensitivity filter (CSF) with color components. The linear combination of the standard deviation and mean value over the fused image construct the image colorfulness metric (ICM). The color comfort metric (CCM) is designed by the average saturation and the ratio of pixels with high and low saturation. The qualitative and quantitative experimental results demonstrate that the proposed metrics have a good agreement with subjective perception.
Steepening of Waves at the Duskside Magnetopause
NASA Technical Reports Server (NTRS)
Plaschke, F.; Kahr, N.; Fischer, D.; Nakamura, R.; Baumjohann, W.; Magnes, W.; Burch, J. L.; Torbert, R.; Russell, C. T.; Giles, B. L.;
2016-01-01
Surface waves at the magnetopause flanks typically feature steeper, i.e., more inclined leading (antisunward facing) than trailing (sunward facing) edges. This is expected for Kelvin-Helmholtz instability (KHI) amplified waves. Very rarely, during northward interplanetary magnetic field (IMF) conditions, anomalous inverse steepening has been observed. The small-scale tetrahedral configuration of the Magnetospheric Multiscale spacecraft and their high time resolution measurements enable us to routinely ascertain magnetopause boundary inclinations during surface wave passage with high accuracy by four-spacecraft timing analysis. At the dusk flank magnetopause, 77%/23% of the analyzed wave intervals exhibit regular inverse steepening. Inverse steepening happens during northward IMF conditions, as previously reported and, in addition, during intervals of dominant equatorial IMF. Inverse steepening observed under the latter conditions may be due to the absence of KHI or due to instabilities arising from the alignment of flow and magnetic fields in the magnetosheath.
Patched bimetallic surfaces are active catalysts for ammonia decomposition
NASA Astrophysics Data System (ADS)
Guo, Wei; Vlachos, Dionisios G.
2015-10-01
Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core-shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core-shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.
Fast Edge Detection and Segmentation of Terrestrial Laser Scans Through Normal Variation Analysis
NASA Astrophysics Data System (ADS)
Che, E.; Olsen, M. J.
2017-09-01
Terrestrial Laser Scanning (TLS) utilizes light detection and ranging (lidar) to effectively and efficiently acquire point cloud data for a wide variety of applications. Segmentation is a common procedure of post-processing to group the point cloud into a number of clusters to simplify the data for the sequential modelling and analysis needed for most applications. This paper presents a novel method to rapidly segment TLS data based on edge detection and region growing. First, by computing the projected incidence angles and performing the normal variation analysis, the silhouette edges and intersection edges are separated from the smooth surfaces. Then a modified region growing algorithm groups the points lying on the same smooth surface. The proposed method efficiently exploits the gridded scan pattern utilized during acquisition of TLS data from most sensors and takes advantage of parallel programming to process approximately 1 million points per second. Moreover, the proposed segmentation does not require estimation of the normal at each point, which limits the errors in normal estimation propagating to segmentation. Both an indoor and outdoor scene are used for an experiment to demonstrate and discuss the effectiveness and robustness of the proposed segmentation method.
Morphogenesis of early stage melanoma
NASA Astrophysics Data System (ADS)
Chatelain, Clément; Amar, Martine Ben
2015-08-01
Melanoma early detection is possible by simple skin examination and can insure a high survival probability when successful. However it requires efficient methods for identifying malignant lesions from common moles. This paper provides an overview first of the biological and physical mechanisms controlling melanoma early evolution, and then of the clinical tools available today for detecting melanoma in vivo at an early stage. It highlights the lack of diagnosis methods rationally linking macroscopic observables to the microscopic properties of the tissue, which define the malignancy of the tumor. The possible inputs of multiscale models for improving these methods are shortly discussed.
Geographic applications of ERTS-1 data to landscape change
NASA Technical Reports Server (NTRS)
Rehder, J. B.
1973-01-01
The analysis of landscape change requires large area coverage on a periodic basis in order to analyze aggregate changes over an extended period of time. To date, only the ERTS program can provide this capability. Three avenues of experimentation and analysis are being used in the investigation: (1) a multi-scale sampling procedure utilizing aircraft imagery for ground truth and control; (2) a densitometric and computer analytical experiment for the analysis of gray tone signatures, comparisons and ultimately for landscape change detection and monitoring; and (3) an ERTS image enhancement procedure for the detection and analysis of photomorphic regions.
Text, photo, and line extraction in scanned documents
NASA Astrophysics Data System (ADS)
Erkilinc, M. Sezer; Jaber, Mustafa; Saber, Eli; Bauer, Peter; Depalov, Dejan
2012-07-01
We propose a page layout analysis algorithm to classify a scanned document into different regions such as text, photo, or strong lines. The proposed scheme consists of five modules. The first module performs several image preprocessing techniques such as image scaling, filtering, color space conversion, and gamma correction to enhance the scanned image quality and reduce the computation time in later stages. Text detection is applied in the second module wherein wavelet transform and run-length encoding are employed to generate and validate text regions, respectively. The third module uses a Markov random field based block-wise segmentation that employs a basis vector projection technique with maximum a posteriori probability optimization to detect photo regions. In the fourth module, methods for edge detection, edge linking, line-segment fitting, and Hough transform are utilized to detect strong edges and lines. In the last module, the resultant text, photo, and edge maps are combined to generate a page layout map using K-Means clustering. The proposed algorithm has been tested on several hundred documents that contain simple and complex page layout structures and contents such as articles, magazines, business cards, dictionaries, and newsletters, and compared against state-of-the-art page-segmentation techniques with benchmark performance. The results indicate that our methodology achieves an average of ˜89% classification accuracy in text, photo, and background regions.
NASA Astrophysics Data System (ADS)
Qur’ania, A.; Sarinah, I.
2018-03-01
People often wrong in knowing the type of jasmine by just looking at the white color of the jasmine, while not all white flowers including jasmine and not all jasmine flowers have white. There is a jasmine that is yellow and there is a jasmine that is white and purple.The aim of this research is to identify Jasmine flower (Jasminum sp.) based on the shape of the flower image-based using Sobel edge detection and k-Nearest Neighbor. Edge detection is used to detect the type of flower from the flower shape. Edge detection aims to improve the appearance of the border of a digital image. While k-Nearest Neighbor method is used to classify the classification of test objects into classes that have neighbouring properties closest to the object of training. The data used in this study are three types of jasmine namely jasmine white (Jasminum sambac), jasmine gambir (Jasminum pubescens), and jasmine japan (Pseuderanthemum reticulatum). Testing of jasmine flower image resized 50 × 50 pixels, 100 × 100 pixels, 150 × 150 pixels yields an accuracy of 84%. Tests on distance values of the k-NN method with spacing 5, 10 and 15 resulted in different accuracy rates for 5 and 10 closest distances yielding the same accuracy rate of 84%, for the 15 shortest distance resulted in a small accuracy of 65.2%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihailescu, Lucian
This disclosure provides systems, methods, and apparatus related to ion beam therapy. In one aspect, a system includes a position sensitive detector and a collimator. The position sensitive detector configured to detect gamma rays generated by an ion beam interacting with a target. The collimator is positioned between the target and the position sensitive detector. The collimator includes a plurality of knife-edge slits, with a first knife-edge slit intersecting with a second knife-edge slit.
Detection of radon emission at the edges of lunar maria with the Apollo alpha-particle spectrometer
NASA Technical Reports Server (NTRS)
Gorenstein, P.; Golub, L.; Bjorkholm, P.
1974-01-01
The distribution of radioactive polonium-210, a decay product of radon-222, shows enhanced concentrations at the edges of lunar maria. Enhancements are seen at the edges of Mare Fecunditatis, Mare Crisium, Mare Smythii, Mare Tranquillitatis, Mare Nubium, Mare Cognitum, and Oceanus Procellarum. The observation is indicative of the transient emission of radon gas from the perimeters of lunar maria.
Detection of radon emission at the edges of lunar maria with the apollo alpha-particle spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorenstein, P.; Golub, L.; Bjorkholm, P.
1974-02-01
The distribution of radioactive /sup 210/Po, a decay product of /sup 222/ Rn, shows enhanced concentrations at the edges of lunar maria. Enhancements are seen at the edges of Mare Fecunditatis, Mare Crisium, Mare Smythii, Mare Tranquillitatis, Mare Nubium, Mare Cognitum, and Oceanus Procellarum. The observation is indicative of the transient emission of radon gas from the perimeters of lunar maria. (auth)
NASA Astrophysics Data System (ADS)
Wan, Xiaoqing; Zhao, Chunhui; Gao, Bing
2017-11-01
The integration of an edge-preserving filtering technique in the classification of a hyperspectral image (HSI) has been proven effective in enhancing classification performance. This paper proposes an ensemble strategy for HSI classification using an edge-preserving filter along with a deep learning model and edge detection. First, an adaptive guided filter is applied to the original HSI to reduce the noise in degraded images and to extract powerful spectral-spatial features. Second, the extracted features are fed as input to a stacked sparse autoencoder to adaptively exploit more invariant and deep feature representations; then, a random forest classifier is applied to fine-tune the entire pretrained network and determine the classification output. Third, a Prewitt compass operator is further performed on the HSI to extract the edges of the first principal component after dimension reduction. Moreover, the regional growth rule is applied to the resulting edge logical image to determine the local region for each unlabeled pixel. Finally, the categories of the corresponding neighborhood samples are determined in the original classification map; then, the major voting mechanism is implemented to generate the final output. Extensive experiments proved that the proposed method achieves competitive performance compared with several traditional approaches.
Muñoz, M L; Lamoyi, E; León, G; Tovar, R; Pérez-García, J; De La Torre, M; Murueta, E; Bernal, R M
1990-01-01
In vitro interaction of Entamoeba histolytica with collagen induces intracellular formation and release of electron-dense granules (EDG) and stimulation of collagenolytic activity. Purified EDG contain 1.66 U of collagenase per mg of protein. Thus, EDG may participate in tissue destruction during invasive amebiasis. Monoclonal antibodies (MAbs) L1.1 and L7.1 reacted specifically with EDG in enzyme-linked immunosorbent assay (ELISA) and immunofluorescence and immunoelectron microscopy. MAb L7.1 immunoprecipitated three polypeptides with molecular weights of 95,000, 68,000, and 28,000 from lysates of biosynthetically labeled E. histolytica. Both MAbs recognized the pathogenic E. histolytica axenic strains HM1:IMSS, HM38:IMSS, and HK-9 but failed to react in ELISA with Entamoeba moshkovskii, Entamoeba invadens, and E. histolytica-like Laredo. In addition, MAb L7.1 reacted with one E. histolytica isolate from a symptomatic patient but did not react with four of five isolates from asymptomatic patients. EDG antigens were detected by a MAb L7.1-based ELISA in E. histolytica-containing fecal samples from symptomatic, but not asymptomatic, individuals. These results suggest that the EDG antigen detected with MAb L7.1 may be differentially expressed in pathogenic and nonpathogenic E. histolytica. Images PMID:2174899
NASA Astrophysics Data System (ADS)
Dou, Hao; Sun, Xiao; Li, Bin; Deng, Qianqian; Yang, Xubo; Liu, Di; Tian, Jinwen
2018-03-01
Aircraft detection from very high resolution remote sensing images, has gained more increasing interest in recent years due to the successful civil and military applications. However, several problems still exist: 1) how to extract the high-level features of aircraft; 2) locating objects within such a large image is difficult and time consuming; 3) A common problem of multiple resolutions of satellite images still exists. In this paper, inspirited by biological visual mechanism, the fusion detection framework is proposed, which fusing the top-down visual mechanism (deep CNN model) and bottom-up visual mechanism (GBVS) to detect aircraft. Besides, we use multi-scale training method for deep CNN model to solve the problem of multiple resolutions. Experimental results demonstrate that our method can achieve a better detection result than the other methods.
Brain's tumor image processing using shearlet transform
NASA Astrophysics Data System (ADS)
Cadena, Luis; Espinosa, Nikolai; Cadena, Franklin; Korneeva, Anna; Kruglyakov, Alexey; Legalov, Alexander; Romanenko, Alexey; Zotin, Alexander
2017-09-01
Brain tumor detection is well known research area for medical and computer scientists. In last decades there has been much research done on tumor detection, segmentation, and classification. Medical imaging plays a central role in the diagnosis of brain tumors and nowadays uses methods non-invasive, high-resolution techniques, especially magnetic resonance imaging and computed tomography scans. Edge detection is a fundamental tool in image processing, particularly in the areas of feature detection and feature extraction, which aim at identifying points in a digital image at which the image has discontinuities. Shearlets is the most successful frameworks for the efficient representation of multidimensional data, capturing edges and other anisotropic features which frequently dominate multidimensional phenomena. The paper proposes an improved brain tumor detection method by automatically detecting tumor location in MR images, its features are extracted by new shearlet transform.
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2007-01-01
The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A range of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption; and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity, However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This presentation gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology.
Glue detection based on teaching points constraint and tracking model of pixel convolution
NASA Astrophysics Data System (ADS)
Geng, Lei; Ma, Xiao; Xiao, Zhitao; Wang, Wen
2018-01-01
On-line glue detection based on machine version is significant for rust protection and strengthening in car production. Shadow stripes caused by reflect light and unevenness of inside front cover of car reduce the accuracy of glue detection. In this paper, we propose an effective algorithm to distinguish the edges of the glue and shadow stripes. Teaching points are utilized to calculate slope between the two adjacent points. Then a tracking model based on pixel convolution along motion direction is designed to segment several local rectangular regions using distance. The distance is the height of rectangular region. The pixel convolution along the motion direction is proposed to extract edges of gules in local rectangular region. A dataset with different illumination and complexity shape stripes are used to evaluate proposed method, which include 500 thousand images captured from the camera of glue gun machine. Experimental results demonstrate that the proposed method can detect the edges of glue accurately. The shadow stripes are distinguished and removed effectively. Our method achieves the 99.9% accuracies for the image dataset.
High-Speed Edge-Detecting Line Scan Smart Camera
NASA Technical Reports Server (NTRS)
Prokop, Norman F.
2012-01-01
A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..
Towards a Multiscale Approach to Cybersecurity Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Emilie A.; Hui, Peter SY; Choudhury, Sutanay
2013-11-12
We propose a multiscale approach to modeling cyber networks, with the goal of capturing a view of the network and overall situational awareness with respect to a few key properties--- connectivity, distance, and centrality--- for a system under an active attack. We focus on theoretical and algorithmic foundations of multiscale graphs, coming from an algorithmic perspective, with the goal of modeling cyber system defense as a specific use case scenario. We first define a notion of \\emph{multiscale} graphs, in contrast with their well-studied single-scale counterparts. We develop multiscale analogs of paths and distance metrics. As a simple, motivating example ofmore » a common metric, we present a multiscale analog of the all-pairs shortest-path problem, along with a multiscale analog of a well-known algorithm which solves it. From a cyber defense perspective, this metric might be used to model the distance from an attacker's position in the network to a sensitive machine. In addition, we investigate probabilistic models of connectivity. These models exploit the hierarchy to quantify the likelihood that sensitive targets might be reachable from compromised nodes. We believe that our novel multiscale approach to modeling cyber-physical systems will advance several aspects of cyber defense, specifically allowing for a more efficient and agile approach to defending these systems.« less
Filters for Improvement of Multiscale Data from Atomistic Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, David J.; Reynolds, Daniel R.
Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less
Filters for Improvement of Multiscale Data from Atomistic Simulations
Gardner, David J.; Reynolds, Daniel R.
2017-01-05
Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less
Stochastic Control of Multi-Scale Networks: Modeling, Analysis and Algorithms
2014-10-20
Theory, (02 2012): 0. doi: B. T. Swapna, Atilla Eryilmaz, Ness B. Shroff. Throughput-Delay Analysis of Random Linear Network Coding for Wireless ... Wireless Sensor Networks and Effects of Long-Range Dependent Data, Sequential Analysis , (10 2012): 0. doi: 10.1080/07474946.2012.719435 Stefano...Sequential Analysis , (10 2012): 0. doi: John S. Baras, Shanshan Zheng. Sequential Anomaly Detection in Wireless Sensor Networks andEffects of Long
Tutorial on photoacoustic tomography
NASA Astrophysics Data System (ADS)
Zhou, Yong; Yao, Junjie; Wang, Lihong V.
2016-06-01
Photoacoustic tomography (PAT) has become one of the fastest growing fields in biomedical optics. Unlike pure optical imaging, such as confocal microscopy and two-photon microscopy, PAT employs acoustic detection to image optical absorption contrast with high-resolution deep into scattering tissue. So far, PAT has been widely used for multiscale anatomical, functional, and molecular imaging of biological tissues. We focus on PAT's basic principles, major implementations, imaging contrasts, and recent applications.
Visual Saliency Detection Based on Multiscale Deep CNN Features.
Guanbin Li; Yizhou Yu
2016-11-01
Visual saliency is a fundamental problem in both cognitive and computational sciences, including computer vision. In this paper, we discover that a high-quality visual saliency model can be learned from multiscale features extracted using deep convolutional neural networks (CNNs), which have had many successes in visual recognition tasks. For learning such saliency models, we introduce a neural network architecture, which has fully connected layers on top of CNNs responsible for feature extraction at three different scales. The penultimate layer of our neural network has been confirmed to be a discriminative high-level feature vector for saliency detection, which we call deep contrast feature. To generate a more robust feature, we integrate handcrafted low-level features with our deep contrast feature. To promote further research and evaluation of visual saliency models, we also construct a new large database of 4447 challenging images and their pixelwise saliency annotations. Experimental results demonstrate that our proposed method is capable of achieving the state-of-the-art performance on all public benchmarks, improving the F-measure by 6.12% and 10%, respectively, on the DUT-OMRON data set and our new data set (HKU-IS), and lowering the mean absolute error by 9% and 35.3%, respectively, on these two data sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windl, Wolfgang; Blue, Thomas
In this project, we have designed a 4H-SiC Schottky diode detector device in order to monitor actinide concentrations in extreme environments, such as present in pyroprocessing of spent fuel. For the first time, we have demonstrated high temperature operation of such a device up to 500 °C in successfully detecting alpha particles. We have used Am-241 as an alpha source for our laboratory experiments. Along with the experiments, we have developed a multiscale model to study the phenomena controlling the device behavior and to be able to predict the device performance. Our multiscale model consists of ab initio modeling tomore » understand defect energetics and their effect on electronic structure and carrier mobility in the material. Further, we have developed the basis for a damage evolution model incorporating the outputs from ab initio model in order to predict respective defect concentrations in the device material. Finally, a fully equipped TCAD-based device model has been developed to study the phenomena controlling the device behavior. Using this model, we have proven our concept that the detector is capable of performing alpha detection in a salt bath with the mixtures of actinides present in a pyroprocessing environment.« less
Increasing CAD system efficacy for lung texture analysis using a convolutional network
NASA Astrophysics Data System (ADS)
Tarando, Sebastian Roberto; Fetita, Catalin; Faccinetto, Alex; Brillet, Pierre-Yves
2016-03-01
The infiltrative lung diseases are a class of irreversible, non-neoplastic lung pathologies requiring regular follow-up with CT imaging. Quantifying the evolution of the patient status imposes the development of automated classification tools for lung texture. For the large majority of CAD systems, such classification relies on a two-dimensional analysis of axial CT images. In a previously developed CAD system, we proposed a fully-3D approach exploiting a multi-scale morphological analysis which showed good performance in detecting diseased areas, but with a major drawback consisting of sometimes overestimating the pathological areas and mixing different type of lung patterns. This paper proposes a combination of the existing CAD system with the classification outcome provided by a convolutional network, specifically tuned-up, in order to increase the specificity of the classification and the confidence to diagnosis. The advantage of using a deep learning approach is a better regularization of the classification output (because of a deeper insight into a given pathological class over a large series of samples) where the previous system is extra-sensitive due to the multi-scale response on patient-specific, localized patterns. In a preliminary evaluation, the combined approach was tested on a 10 patient database of various lung pathologies, showing a sharp increase of true detections.
Low cost, multiscale and multi-sensor application for flooded area mapping
NASA Astrophysics Data System (ADS)
Giordan, Daniele; Notti, Davide; Villa, Alfredo; Zucca, Francesco; Calò, Fabiana; Pepe, Antonio; Dutto, Furio; Pari, Paolo; Baldo, Marco; Allasia, Paolo
2018-05-01
Flood mapping and estimation of the maximum water depth are essential elements for the first damage evaluation, civil protection intervention planning and detection of areas where remediation is needed. In this work, we present and discuss a methodology for mapping and quantifying flood severity over floodplains. The proposed methodology considers a multiscale and multi-sensor approach using free or low-cost data and sensors. We applied this method to the November 2016 Piedmont (northwestern Italy) flood. We first mapped the flooded areas at the basin scale using free satellite data from low- to medium-high-resolution from both the SAR (Sentinel-1, COSMO-Skymed) and multispectral sensors (MODIS, Sentinel-2). Using very- and ultra-high-resolution images from the low-cost aerial platform and remotely piloted aerial system, we refined the flooded zone and detected the most damaged sector. The presented method considers both urbanised and non-urbanised areas. Nadiral images have several limitations, in particular in urbanised areas, where the use of terrestrial images solved this limitation. Very- and ultra-high-resolution images were processed with structure from motion (SfM) for the realisation of 3-D models. These data, combined with an available digital terrain model, allowed us to obtain maps of the flooded area, maximum high water area and damaged infrastructures.
Towards practical multiscale approach for analysis of reinforced concrete structures
NASA Astrophysics Data System (ADS)
Moyeda, Arturo; Fish, Jacob
2017-12-01
We present a novel multiscale approach for analysis of reinforced concrete structural elements that overcomes two major hurdles in utilization of multiscale technologies in practice: (1) coupling between material and structural scales due to consideration of large representative volume elements (RVE), and (2) computational complexity of solving complex nonlinear multiscale problems. The former is accomplished using a variant of computational continua framework that accounts for sizeable reinforced concrete RVEs by adjusting the location of quadrature points. The latter is accomplished by means of reduced order homogenization customized for structural elements. The proposed multiscale approach has been verified against direct numerical simulations and validated against experimental results.
An automated multi-scale network-based scheme for detection and location of seismic sources
NASA Astrophysics Data System (ADS)
Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.
2017-12-01
We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.
Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges
NASA Astrophysics Data System (ADS)
Wu, Shuang; Liu, Bing; Shen, Cheng; Li, Si; Huang, Xiaochun; Lu, Xiaobo; Chen, Peng; Wang, Guole; Wang, Duoming; Liao, Mengzhou; Zhang, Jing; Zhang, Tingting; Wang, Shuopei; Yang, Wei; Yang, Rong; Shi, Dongxia; Watanabe, Kenji; Taniguchi, Takashi; Yao, Yugui; Wang, Weihua; Zhang, Guangyu
2018-05-01
The determination of the electronic structure by edge geometry is unique to graphene. In theory, an evanescent nonchiral edge state is predicted at the zigzag edges of graphene. Up to now, the approach used to study zigzag-edged graphene has mostly been limited to scanning tunneling microscopy. The transport properties have not been revealed. Recent advances in hydrogen plasma-assisted "top-down" fabrication of zigzag-edged graphene nanoribbons (Z-GNRs) have allowed us to investigate edge-related transport properties. In this Letter, we report the magnetotransport properties of Z-GNRs down to ˜70 nm wide on an h -BN substrate. In the quantum Hall effect regime, a prominent conductance peak is observed at Landau ν =0 , which is absent in GNRs with nonzigzag edges. The conductance peak persists under perpendicular magnetic fields and low temperatures. At a zero magnetic field, a nonlocal voltage signal, evidenced by edge conduction, is detected. These prominent transport features are closely related to the observable density of states at the hydrogen-etched zigzag edge of graphene probed by scanning tunneling spectroscopy, which qualitatively matches the theoretically predicted electronic structure for zigzag-edged graphene. Our study gives important insights for the design of new edge-related electronic devices.
A concurrent multiscale micromorphic molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shaofan, E-mail: shaofan@berkeley.edu; Tong, Qi
2015-04-21
In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from firstmore » principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation.« less
Edge magnetism of Heisenberg model on honeycomb lattice.
Huang, Wen-Min; Hikihara, Toshiya; Lee, Yen-Chen; Lin, Hsiu-Hau
2017-03-07
Edge magnetism in graphene sparks intense theoretical and experimental interests. In the previous study, we demonstrated the existence of collective excitations at the zigzag edge of the honeycomb lattice with long-ranged Néel order. By employing the Schwinger-boson approach, we show that the edge magnons remain robust even when the long-ranged order is destroyed by spin fluctuations. Furthermore, in the effective field-theory limit, the dynamics of the edge magnon is captured by the one-dimensional relativistic Klein-Gordon equation. It is intriguing that the boundary field theory for the edge magnon is tied up with its bulk counterpart. By performing density-matrix renormalization group calculations, we show that the robustness may be attributed to the closeness between the ground state and the Néel state. The existence of edge magnon is not limited to the honeycomb structure, as demonstrated in the rotated-square lattice with zigzag edges as well. The universal behavior indicates that the edge magnons may attribute to the uncompensated edges and can be detected in many two-dimensional materials.
Edge printability: techniques used to evaluate and improve extreme wafer edge printability
NASA Astrophysics Data System (ADS)
Roberts, Bill; Demmert, Cort; Jekauc, Igor; Tiffany, Jason P.
2004-05-01
The economics of semiconductor manufacturing have forced process engineers to develop techniques to increase wafer yield. Improvements in process controls and uniformities in all areas of the fab have reduced film thickness variations at the very edge of the wafer surface. This improved uniformity has provided the opportunity to consider decreasing edge exclusions, and now the outermost extents of the wafer must be considered in the yield model and expectations. These changes have increased the requirements on lithography to improve wafer edge printability in areas that previously were not even coated. This has taxed all software and hardware components used in defining the optical focal plane at the wafer edge. We have explored techniques to determine the capabilities of extreme wafer edge printability and the components of the systems that influence this printability. We will present current capabilities and new detection techniques and the influence that the individual hardware and software components have on edge printability. We will show effects of focus sensor designs, wafer layout, utilization of dummy edge fields, the use of non-zero overlay targets and chemical/optical edge bead optimization.
Deep convolutional networks for automated detection of posterior-element fractures on spine CT
NASA Astrophysics Data System (ADS)
Roth, Holger R.; Wang, Yinong; Yao, Jianhua; Lu, Le; Burns, Joseph E.; Summers, Ronald M.
2016-03-01
Injuries of the spine, and its posterior elements in particular, are a common occurrence in trauma patients, with potentially devastating consequences. Computer-aided detection (CADe) could assist in the detection and classification of spine fractures. Furthermore, CAD could help assess the stability and chronicity of fractures, as well as facilitate research into optimization of treatment paradigms. In this work, we apply deep convolutional networks (ConvNets) for the automated detection of posterior element fractures of the spine. First, the vertebra bodies of the spine with its posterior elements are segmented in spine CT using multi-atlas label fusion. Then, edge maps of the posterior elements are computed. These edge maps serve as candidate regions for predicting a set of probabilities for fractures along the image edges using ConvNets in a 2.5D fashion (three orthogonal patches in axial, coronal and sagittal planes). We explore three different methods for training the ConvNet using 2.5D patches along the edge maps of `positive', i.e. fractured posterior-elements and `negative', i.e. non-fractured elements. An experienced radiologist retrospectively marked the location of 55 displaced posterior-element fractures in 18 trauma patients. We randomly split the data into training and testing cases. In testing, we achieve an area-under-the-curve of 0.857. This corresponds to 71% or 81% sensitivities at 5 or 10 false-positives per patient, respectively. Analysis of our set of trauma patients demonstrates the feasibility of detecting posterior-element fractures in spine CT images using computer vision techniques such as deep convolutional networks.
1985-09-01
PROJECT. T ASK0 Artificial Inteligence Laboratory AREA It WORK UNIT NUMBERS V 545 Technology Square ( Cambridge, HA 02139 I I* CONTOOL1LIN@4OFFICE NAME...ARD-A1t62 62 EDGE DETECTION(U) NASSACNUSETTS INST OF TECH CAMBRIDGE 1/1 ARTIFICIAL INTELLIGENCE LAB E C HILDRETH SEP 85 AI-M-8 N99SI4-8S-C-6595...used to carry out this analysis. cce~iO a N) ’.~" D LI’BL. P p ------------ Sj. t i MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ARTIFICIAL INTELLIGENCE
Appearance-Based Vision and the Automatic Generation of Object Recognition Programs
1992-07-01
q u a groued into equivalence clases with respect o visible featms; the equivalence classes me called alpecu. A recognitio smuegy is generated from...illustates th concept. pge 9 Table 1: Summary o fSnsors Samr Vertex Edge Face Active/ Passive Edge detector line, passive Shape-fzm-shading - r passive...example of the detectability computation for a liht-stripe range finder is shown zn Fqgur 2. Figure 2: Detectability of a face for a light-stripe range
Beyond Frangi: an improved multiscale vesselness filter
NASA Astrophysics Data System (ADS)
Jerman, Tim; Pernuš, Franjo; Likar, Boštjan; Špiclin, Žiga
2015-03-01
Vascular diseases are among the top three causes of death in the developed countries. Effective diagnosis of vascular pathologies from angiographic images is therefore very important and usually relies on segmentation and visualization of vascular structures. To enhance the vascular structures prior to their segmentation and visualization, and to suppress non-vascular structures and image noise, the filters enhancing vascular structures are used extensively. Even though several enhancement filters are widely used, the responses of these filters are typically not uniform between vessels of different radii and, compared to the response in the central part of vessels, their response is lower at vessels' edges and bifurcations, and vascular pathologies like aneurysm. In this paper, we propose a novel enhancement filter based on ratio of multiscale Hessian eigenvalues, which yields a close-to-uniform response in all vascular structures and accurately enhances the border between the vascular structures and the background. The proposed and four state-of-the-art enhancement filters were evaluated and compared on a 3D synthetic image containing tubular structures and a clinical dataset of 15 cerebral 3D digitally subtracted angiograms with manual expert segmentations. The evaluation was based on quantitative metrics of segmentation performance, computed as area under the precision-recall curve, signal-to-noise ratio of the vessel enhancement and the response uniformity within vascular structures. The proposed filter achieved the best scores in all three metrics and thus has a high potential to further improve the performance of existing or encourage the development of more advanced methods for segmentation and visualization of vascular structures.
Structural health and prognostics management for offshore wind turbines :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, Daniel; Resor, Brian Ray; White, Jonathan Randall
2012-12-01
Operations and maintenance costs for offshore wind plants are expected to be significantly higher than the current costs for onshore plants. One way in which these costs may be able to be reduced is through the use of a structural health and prognostic management system as part of a condition based maintenance paradigm with smart load management. To facilitate the creation of such a system a multiscale modeling approach has been developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of amore » full turbine. The developed methodology was used to investigate the effects of a candidate blade damage feature, a trailing edge disbond, on a 5-MW offshore wind turbine and the measurements that demonstrated the highest sensitivity to the damage were the local pitching moments around the disbond. The multiscale method demonstrated that these changes were caused by a local decrease in the blades torsional stiffness due to the disbond, which also resulted in changes in the blades local strain field. Full turbine simulations were also used to demonstrate that derating the turbine power by as little as 5% could extend the fatigue life of a blade by as much as a factor of 3. The integration of the health monitoring information, conceptual repair cost versus damage size information, and this load management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.« less