Prasad, Dilip K; Rajan, Deepu; Rachmawati, Lily; Rajabally, Eshan; Quek, Chai
2016-12-01
This paper addresses the problem of horizon detection, a fundamental process in numerous object detection algorithms, in a maritime environment. The maritime environment is characterized by the absence of fixed features, the presence of numerous linear features in dynamically changing objects and background and constantly varying illumination, rendering the typically simple problem of detecting the horizon a challenging one. We present a novel method called multi-scale consistence of weighted edge Radon transform, abbreviated as MuSCoWERT. It detects the long linear features consistent over multiple scales using multi-scale median filtering of the image followed by Radon transform on a weighted edge map and computing the histogram of the detected linear features. We show that MuSCoWERT has excellent performance, better than seven other contemporary methods, for 84 challenging maritime videos, containing over 33,000 frames, and captured using visible range and near-infrared range sensors mounted onboard, onshore, or on floating buoys. It has a median error of about 2 pixels (less than 0.2%) from the center of the actual horizon and a median angular error of less than 0.4 deg. We are also sharing a new challenging horizon detection dataset of 65 videos of visible, infrared cameras for onshore and onboard ship camera placement.
NASA Astrophysics Data System (ADS)
Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Chen, C.
2018-04-01
In view of the traditional change detection algorithm mainly depends on the spectral information image spot, failed to effectively mining and fusion of multi-image feature detection advantage, the article borrows the ideas of object oriented analysis proposed a multi feature fusion of remote sensing image change detection algorithm. First by the multi-scale segmentation of image objects based; then calculate the various objects of color histogram and linear gradient histogram; utilizes the color distance and edge line feature distance between EMD statistical operator in different periods of the object, using the adaptive weighted method, the color feature distance and edge in a straight line distance of combination is constructed object heterogeneity. Finally, the curvature histogram analysis image spot change detection results. The experimental results show that the method can fully fuse the color and edge line features, thus improving the accuracy of the change detection.
Detecting Multi-scale Structures in Chandra Images of Centaurus A
NASA Astrophysics Data System (ADS)
Karovska, M.; Fabbiano, G.; Elvis, M. S.; Evans, I. N.; Kim, D. W.; Prestwich, A. H.; Schwartz, D. A.; Murray, S. S.; Forman, W.; Jones, C.; Kraft, R. P.; Isobe, T.; Cui, W.; Schreier, E. J.
1999-12-01
Centaurus A (NGC 5128) is a giant early-type galaxy with a merger history, containing the nearest radio-bright AGN. Recent Chandra High Resolution Camera (HRC) observations of Cen A reveal X-ray multi-scale structures in this object with unprecedented detail and clarity. We show the results of an analysis of the Chandra data with smoothing and edge enhancement techniques that allow us to enhance and quantify the multi-scale structures present in the HRC images. These techniques include an adaptive smoothing algorithm (Ebeling et al 1999), and a multi-directional gradient detection algorithm (Karovska et al 1994). The Ebeling et al adaptive smoothing algorithm, which is incorporated in the CXC analysis s/w package, is a powerful tool for smoothing images containing complex structures at various spatial scales. The adaptively smoothed images of Centaurus A show simultaneously the high-angular resolution bright structures at scales as small as an arcsecond and the extended faint structures as large as several arc minutes. The large scale structures suggest complex symmetry, including a component possibly associated with the inner radio lobes (as suggested by the ROSAT HRI data, Dobereiner et al 1996), and a separate component with an orthogonal symmetry that may be associated with the galaxy as a whole. The dust lane and the x-ray ridges are very clearly visible. The adaptively smoothed images and the edge-enhanced images also suggest several filamentary features including a large filament-like structure extending as far as about 5 arcminutes to North-West.
Multi-scales region segmentation for ROI separation in digital mammograms
NASA Astrophysics Data System (ADS)
Zhang, Dapeng; Zhang, Di; Li, Yue; Wang, Wei
2017-02-01
Mammography is currently the most effective imaging modality used by radiologists for the screening of breast cancer. Segmentation is one of the key steps in the process of developing anatomical models for calculation of safe medical dose of radiation. This paper explores the potential of the statistical region merging segmentation technique for Breast segmentation in digital mammograms. First, the mammograms are pre-processing for regions enhancement, then the enhanced images are segmented using SRM with multi scales, finally these segmentations are combined for region of interest (ROI) separation and edge detection. The proposed algorithm uses multi-scales region segmentation in order to: separate breast region from background region, region edge detection and ROIs separation. The experiments are performed using a data set of mammograms from different patients, demonstrating the validity of the proposed criterion. Results show that, the statistical region merging segmentation algorithm actually can work on the segmentation of medical image and more accurate than another methods. And the outcome shows that the technique has a great potential to become a method of choice for segmentation of mammograms.
NASA Astrophysics Data System (ADS)
Jiang, Jie; Zhang, Shumei; Cao, Shixiang
2015-01-01
Multitemporal remote sensing images generally suffer from background variations, which significantly disrupt traditional region feature and descriptor abstracts, especially between pre and postdisasters, making registration by local features unreliable. Because shapes hold relatively stable information, a rotation and scale invariant shape context based on multiscale edge features is proposed. A multiscale morphological operator is adapted to detect edges of shapes, and an equivalent difference of Gaussian scale space is built to detect local scale invariant feature points along the detected edges. Then, a rotation invariant shape context with improved distance discrimination serves as a feature descriptor. For a distance shape context, a self-adaptive threshold (SAT) distance division coordinate system is proposed, which improves the discriminative property of the feature descriptor in mid-long pixel distances from the central point while maintaining it in shorter ones. To achieve rotation invariance, the magnitude of Fourier transform in one-dimension is applied to calculate angle shape context. Finally, the residual error is evaluated after obtaining thin-plate spline transformation between reference and sensed images. Experimental results demonstrate the robustness, efficiency, and accuracy of this automatic algorithm.
A Multiscale pipeline for the search of string-induced CMB anisotropies
NASA Astrophysics Data System (ADS)
Vafaei Sadr, A.; Movahed, S. M. S.; Farhang, M.; Ringeval, C.; Bouchet, F. R.
2018-03-01
We propose a multiscale edge-detection algorithm to search for the Gott-Kaiser-Stebbins imprints of a cosmic string (CS) network on the cosmic microwave background (CMB) anisotropies. Curvelet decomposition and extended Canny algorithm are used to enhance the string detectability. Various statistical tools are then applied to quantify the deviation of CMB maps having a CS contribution with respect to pure Gaussian anisotropies of inflationary origin. These statistical measures include the one-point probability density function, the weighted two-point correlation function (TPCF) of the anisotropies, the unweighted TPCF of the peaks and of the up-crossing map, as well as their cross-correlation. We use this algorithm on a hundred of simulated Nambu-Goto CMB flat sky maps, covering approximately 10 per cent of the sky, and for different string tensions Gμ. On noiseless sky maps with an angular resolution of 0.9 arcmin, we show that our pipeline detects CSs with Gμ as low as Gμ ≳ 4.3 × 10-10. At the same resolution, but with a noise level typical to a CMB-S4 phase II experiment, the detection threshold would be to Gμ ≳ 1.2 × 10-7.
A detection method for X-ray images based on wavelet transforms: the case of the ROSAT PSPC.
NASA Astrophysics Data System (ADS)
Damiani, F.; Maggio, A.; Micela, G.; Sciortino, S.
1996-02-01
The authors have developed a method based on wavelet transforms (WT) to detect efficiently sources in PSPC X-ray images. The multiscale approach typical of WT can be used to detect sources with a large range of sizes, and to estimate their size and count rate. Significance thresholds for candidate detections (found as local WT maxima) have been derived from a detailed study of the probability distribution of the WT of a locally uniform background. The use of the exposure map allows good detection efficiency to be retained even near PSPC ribs and edges. The algorithm may also be used to get upper limits to the count rate of undetected objects. Simulations of realistic PSPC images containing either pure background or background+sources were used to test the overall algorithm performances, and to assess the frequency of spurious detections (vs. detection threshold) and the algorithm sensitivity. Actual PSPC images of galaxies and star clusters show the algorithm to have good performance even in cases of extended sources and crowded fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Azevedo, Eduardo; Abbott, Stephen; Koskela, Tuomas
The XGC fusion gyrokinetic code combines state-of-the-art, portable computational and algorithmic technologies to enable complicated multiscale simulations of turbulence and transport dynamics in ITER edge plasma on the largest US open-science computer, the CRAY XK7 Titan, at its maximal heterogeneous capability, which have not been possible before due to a factor of over 10 shortage in the time-to-solution for less than 5 days of wall-clock time for one physics case. Frontier techniques such as nested OpenMP parallelism, adaptive parallel I/O, staging I/O and data reduction using dynamic and asynchronous applications interactions, dynamic repartitioning for balancing computational work in pushing particlesmore » and in grid related work, scalable and accurate discretization algorithms for non-linear Coulomb collisions, and communication-avoiding subcycling technology for pushing particles on both CPUs and GPUs are also utilized to dramatically improve the scalability and time-to-solution, hence enabling the difficult kinetic ITER edge simulation on a present-day leadership class computer.« less
Spatial vision processes: From the optical image to the symbolic structures of contour information
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.
1988-01-01
The significance of machine and natural vision is discussed together with the need for a general approach to image acquisition and processing aimed at recognition. An exploratory scheme is proposed which encompasses the definition of spatial primitives, intrinsic image properties and sampling, 2-D edge detection at the smallest scale, the construction of spatial primitives from edges, and the isolation of contour information from textural information. Concepts drawn from or suggested by natural vision at both perceptual and physiological levels are relied upon heavily to guide the development of the overall scheme. The scheme is intended to provide a larger context in which to place the emerging technology of detector array focal-plane processors. The approach differs from many recent efforts in edge detection and image coding by emphasizing smallest scale edge detection as a foundation for multi-scale symbolic processing while diminishing somewhat the importance of image convolutions with multi-scale edge operators. Cursory treatments of information theory illustrate that the direct application of this theory to structural information in images could not be realized.
Accurate feature detection and estimation using nonlinear and multiresolution analysis
NASA Astrophysics Data System (ADS)
Rudin, Leonid; Osher, Stanley
1994-11-01
A program for feature detection and estimation using nonlinear and multiscale analysis was completed. The state-of-the-art edge detection was combined with multiscale restoration (as suggested by the first author) and robust results in the presence of noise were obtained. Successful applications to numerous images of interest to DOD were made. Also, a new market in the criminal justice field was developed, based in part, on this work.
Research on improved edge extraction algorithm of rectangular piece
NASA Astrophysics Data System (ADS)
He, Yi-Bin; Zeng, Ya-Jun; Chen, Han-Xin; Xiao, San-Xia; Wang, Yan-Wei; Huang, Si-Yu
Traditional edge detection operators such as Prewitt operator, LOG operator and Canny operator, etc. cannot meet the requirements of the modern industrial measurement. This paper proposes a kind of image edge detection algorithm based on improved morphological gradient. It can be detect the image using structural elements, which deals with the characteristic information of the image directly. Choosing different shapes and sizes of structural elements to use together, the ideal image edge information can be detected. The experimental result shows that the algorithm can well extract image edge with noise, which is clearer, and has more detailed edges compared with the previous edge detection algorithm.
TreeNetViz: revealing patterns of networks over tree structures.
Gou, Liang; Zhang, Xiaolong Luke
2011-12-01
Network data often contain important attributes from various dimensions such as social affiliations and areas of expertise in a social network. If such attributes exhibit a tree structure, visualizing a compound graph consisting of tree and network structures becomes complicated. How to visually reveal patterns of a network over a tree has not been fully studied. In this paper, we propose a compound graph model, TreeNet, to support visualization and analysis of a network at multiple levels of aggregation over a tree. We also present a visualization design, TreeNetViz, to offer the multiscale and cross-scale exploration and interaction of a TreeNet graph. TreeNetViz uses a Radial, Space-Filling (RSF) visualization to represent the tree structure, a circle layout with novel optimization to show aggregated networks derived from TreeNet, and an edge bundling technique to reduce visual complexity. Our circular layout algorithm reduces both total edge-crossings and edge length and also considers hierarchical structure constraints and edge weight in a TreeNet graph. These experiments illustrate that the algorithm can reduce visual cluttering in TreeNet graphs. Our case study also shows that TreeNetViz has the potential to support the analysis of a compound graph by revealing multiscale and cross-scale network patterns. © 2011 IEEE
Spatial-Spectral Approaches to Edge Detection in Hyperspectral Remote Sensing
NASA Astrophysics Data System (ADS)
Cox, Cary M.
This dissertation advances geoinformation science at the intersection of hyperspectral remote sensing and edge detection methods. A relatively new phenomenology among its remote sensing peers, hyperspectral imagery (HSI) comprises only about 7% of all remote sensing research - there are five times as many radar-focused peer reviewed journal articles than hyperspectral-focused peer reviewed journal articles. Similarly, edge detection studies comprise only about 8% of image processing research, most of which is dedicated to image processing techniques most closely associated with end results, such as image classification and feature extraction. Given the centrality of edge detection to mapping, that most important of geographic functions, improving the collective understanding of hyperspectral imagery edge detection methods constitutes a research objective aligned to the heart of geoinformation sciences. Consequently, this dissertation endeavors to narrow the HSI edge detection research gap by advancing three HSI edge detection methods designed to leverage HSI's unique chemical identification capabilities in pursuit of generating accurate, high-quality edge planes. The Di Zenzo-based gradient edge detection algorithm, an innovative version of the Resmini HySPADE edge detection algorithm and a level set-based edge detection algorithm are tested against 15 traditional and non-traditional HSI datasets spanning a range of HSI data configurations, spectral resolutions, spatial resolutions, bandpasses and applications. This study empirically measures algorithm performance against Dr. John Canny's six criteria for a good edge operator: false positives, false negatives, localization, single-point response, robustness to noise and unbroken edges. The end state is a suite of spatial-spectral edge detection algorithms that produce satisfactory edge results against a range of hyperspectral data types applicable to a diverse set of earth remote sensing applications. This work also explores the concept of an edge within hyperspectral space, the relative importance of spatial and spectral resolutions as they pertain to HSI edge detection and how effectively compressed HSI data improves edge detection results. The HSI edge detection experiments yielded valuable insights into the algorithms' strengths, weaknesses and optimal alignment to remote sensing applications. The gradient-based edge operator produced strong edge planes across a range of evaluation measures and applications, particularly with respect to false negatives, unbroken edges, urban mapping, vegetation mapping and oil spill mapping applications. False positives and uncompressed HSI data presented occasional challenges to the algorithm. The HySPADE edge operator produced satisfactory results with respect to localization, single-point response, oil spill mapping and trace chemical detection, and was challenged by false positives, declining spectral resolution and vegetation mapping applications. The level set edge detector produced high-quality edge planes for most tests and demonstrated strong performance with respect to false positives, single-point response, oil spill mapping and mineral mapping. False negatives were a regular challenge for the level set edge detection algorithm. Finally, HSI data optimized for spectral information compression and noise was shown to improve edge detection performance across all three algorithms, while the gradient-based algorithm and HySPADE demonstrated significant robustness to declining spectral and spatial resolutions.
A Multi-Scale Algorithm for Graffito Advertisement Detection from Images of Real Estate
NASA Astrophysics Data System (ADS)
Yang, Jun; Zhu, Shi-Jiao
There is a significant need to detect and extract the graffito advertisement embedded in the housing images automatically. However, it is a hard job to separate the advertisement region well since housing images generally have complex background. In this paper, a detecting algorithm which uses multi-scale Gabor filters to identify graffito regions is proposed. Firstly, multi-scale Gabor filters with different directions are applied to housing images, then the approach uses these frequency data to find likely graffito regions using the relationship of different channels, it exploits the ability of different filters technique to solve the detection problem with low computational efforts. Lastly, the method is tested on several real estate images which are embedded graffito advertisement to verify its robustness and efficiency. The experiments demonstrate graffito regions can be detected quite well.
Edge enhancement and noise suppression for infrared image based on feature analysis
NASA Astrophysics Data System (ADS)
Jiang, Meng
2018-06-01
Infrared images are often suffering from background noise, blurred edges, few details and low signal-to-noise ratios. To improve infrared image quality, it is essential to suppress noise and enhance edges simultaneously. To realize it in this paper, we propose a novel algorithm based on feature analysis in shearlet domain. Firstly, as one of multi-scale geometric analysis (MGA), we introduce the theory and superiority of shearlet transform. Secondly, after analyzing the defects of traditional thresholding technique to suppress noise, we propose a novel feature extraction distinguishing image structures from noise well and use it to improve the traditional thresholding technique. Thirdly, with computing the correlations between neighboring shearlet coefficients, the feature attribute maps identifying the weak detail and strong edges are completed to improve the generalized unsharped masking (GUM). At last, experiment results with infrared images captured in different scenes demonstrate that the proposed algorithm suppresses noise efficiently and enhances image edges adaptively.
Cao, Jianfang; Chen, Lichao; Wang, Min; Tian, Yun
2018-01-01
The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance.
Improvement and implementation for Canny edge detection algorithm
NASA Astrophysics Data System (ADS)
Yang, Tao; Qiu, Yue-hong
2015-07-01
Edge detection is necessary for image segmentation and pattern recognition. In this paper, an improved Canny edge detection approach is proposed due to the defect of traditional algorithm. A modified bilateral filter with a compensation function based on pixel intensity similarity judgment was used to smooth image instead of Gaussian filter, which could preserve edge feature and remove noise effectively. In order to solve the problems of sensitivity to the noise in gradient calculating, the algorithm used 4 directions gradient templates. Finally, Otsu algorithm adaptively obtain the dual-threshold. All of the algorithm simulated with OpenCV 2.4.0 library in the environments of vs2010, and through the experimental analysis, the improved algorithm has been proved to detect edge details more effectively and with more adaptability.
Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George
2009-08-01
We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.
Wang, Min; Tian, Yun
2018-01-01
The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance. PMID:29861711
Jaiswal, Astha; Godinez, William J; Eils, Roland; Lehmann, Maik Jorg; Rohr, Karl
2015-11-01
Automatic fluorescent particle tracking is an essential task to study the dynamics of a large number of biological structures at a sub-cellular level. We have developed a probabilistic particle tracking approach based on multi-scale detection and two-step multi-frame association. The multi-scale detection scheme allows coping with particles in close proximity. For finding associations, we have developed a two-step multi-frame algorithm, which is based on a temporally semiglobal formulation as well as spatially local and global optimization. In the first step, reliable associations are determined for each particle individually in local neighborhoods. In the second step, the global spatial information over multiple frames is exploited jointly to determine optimal associations. The multi-scale detection scheme and the multi-frame association finding algorithm have been combined with a probabilistic tracking approach based on the Kalman filter. We have successfully applied our probabilistic tracking approach to synthetic as well as real microscopy image sequences of virus particles and quantified the performance. We found that the proposed approach outperforms previous approaches.
Research on fusion algorithm of polarization image in tetrolet domain
NASA Astrophysics Data System (ADS)
Zhang, Dexiang; Yuan, BaoHong; Zhang, Jingjing
2015-12-01
Tetrolets are Haar-type wavelets whose supports are tetrominoes which are shapes made by connecting four equal-sized squares. A fusion method for polarization images based on tetrolet transform is proposed. Firstly, the magnitude of polarization image and angle of polarization image can be decomposed into low-frequency coefficients and high-frequency coefficients with multi-scales and multi-directions using tetrolet transform. For the low-frequency coefficients, the average fusion method is used. According to edge distribution differences in high frequency sub-band images, for the directional high-frequency coefficients are used to select the better coefficients by region spectrum entropy algorithm for fusion. At last the fused image can be obtained by utilizing inverse transform for fused tetrolet coefficients. Experimental results show that the proposed method can detect image features more effectively and the fused image has better subjective visual effect
A non-reference evaluation method for edge detection of wear particles in ferrograph images
NASA Astrophysics Data System (ADS)
Wang, Jingqiu; Bi, Ju; Wang, Lianjun; Wang, Xiaolei
2018-02-01
Edges are one of the most important features of wear particles in a ferrograph image and are widely used to extract parameters, recognize types of wear particles, and assist in the identification of the wear mode and severity. Edge detection is a critical step in ferrograph image processing and analysis. Till date, there has been no single algorithm that guarantees the production of good quality edges in ferrograph images for a variety of applications. Therefore, it is desirable to have a reliable evaluation method for measuring the performance of various edge detection algorithms and for aiding in the selection of the optimal parameter and algorithm for ferrographic applications. In this paper, a new non-reference method for the objective evaluation of wear particle edge detection is proposed. In this method, a comprehensive index of edge evaluation is composed of three components, i.e., the reconstruction based similarity sub-index between the original image and the reconstructed image, the confidence degree sub-index used to show the true or false degree of the edge pixels, and the edge form sub-index that is used to determine the direction consistency and width uniformity of the edges. Two experiments are performed to illustrate the validity of the proposed method. First, this method is used to select the best parameters for an edge detection algorithm, and it is then used to compare the results obtained using various edge detection algorithms and determine the best algorithm. Experimental results of various real ferrograph images verify the effectiveness of the proposed method.
Edge detection based on adaptive threshold b-spline wavelet for optical sub-aperture measuring
NASA Astrophysics Data System (ADS)
Zhang, Shiqi; Hui, Mei; Liu, Ming; Zhao, Zhu; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin
2015-08-01
In the research of optical synthetic aperture imaging system, phase congruency is the main problem and it is necessary to detect sub-aperture phase. The edge of the sub-aperture system is more complex than that in the traditional optical imaging system. And with the existence of steep slope for large-aperture optical component, interference fringe may be quite dense when interference imaging. Deep phase gradient may cause a loss of phase information. Therefore, it's urgent to search for an efficient edge detection method. Wavelet analysis as a powerful tool is widely used in the fields of image processing. Based on its properties of multi-scale transform, edge region is detected with high precision in small scale. Longing with the increase of scale, noise is reduced in contrary. So it has a certain suppression effect on noise. Otherwise, adaptive threshold method which sets different thresholds in various regions can detect edge points from noise. Firstly, fringe pattern is obtained and cubic b-spline wavelet is adopted as the smoothing function. After the multi-scale wavelet decomposition of the whole image, we figure out the local modulus maxima in gradient directions. However, it also contains noise, and thus adaptive threshold method is used to select the modulus maxima. The point which greater than threshold value is boundary point. Finally, we use corrosion and expansion deal with the resulting image to get the consecutive boundary of image.
Efficient method of image edge detection based on FSVM
NASA Astrophysics Data System (ADS)
Cai, Aiping; Xiong, Xiaomei
2013-07-01
For efficient object cover edge detection in digital images, this paper studied traditional methods and algorithm based on SVM. It analyzed Canny edge detection algorithm existed some pseudo-edge and poor anti-noise capability. In order to provide a reliable edge extraction method, propose a new detection algorithm based on FSVM. Which contains several steps: first, trains classify sample and gives the different membership function to different samples. Then, a new training sample is formed by increase the punishment some wrong sub-sample, and use the new FSVM classification model for train and test them. Finally the edges are extracted of the object image by using the model. Experimental result shows that good edge detection image will be obtained and adding noise experiments results show that this method has good anti-noise.
Linear segmentation algorithm for detecting layer boundary with lidar.
Mao, Feiyue; Gong, Wei; Logan, Timothy
2013-11-04
The automatic detection of aerosol- and cloud-layer boundary (base and top) is important in atmospheric lidar data processing, because the boundary information is not only useful for environment and climate studies, but can also be used as input for further data processing. Previous methods have demonstrated limitations in defining the base and top, window-size setting, and have neglected the in-layer attenuation. To overcome these limitations, we present a new layer detection scheme for up-looking lidars based on linear segmentation with a reasonable threshold setting, boundary selecting, and false positive removing strategies. Preliminary results from both real and simulated data show that this algorithm cannot only detect the layer-base as accurate as the simple multi-scale method, but can also detect the layer-top more accurately than that of the simple multi-scale method. Our algorithm can be directly applied to uncalibrated data without requiring any additional measurements or window size selections.
Extraction of tidal channel networks from airborne scanning laser altimetry
NASA Astrophysics Data System (ADS)
Mason, David C.; Scott, Tania R.; Wang, Hai-Jing
Tidal channel networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. This paper describes a semi-automatic technique developed to extract networks from high-resolution LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low-level algorithms first extract channel fragments based mainly on image properties then a high-level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism. The algorithm may be extended to extract networks from aerial photographs as well as LiDAR data. Its performance is illustrated using LiDAR data of two study sites, the River Ems, Germany and the Venice Lagoon. For the River Ems data, the error of omission for the automatic channel extractor is 26%, partly because numerous small channels are lost because they fall below the edge threshold, though these are less than 10 cm deep and unlikely to be hydraulically significant. The error of commission is lower, at 11%. For the Venice Lagoon data, the error of omission is 14%, but the error of commission is 42%, due partly to the difficulty of interpreting channels in these natural scenes. As a benchmark, previous work has shown that this type of algorithm specifically designed for extracting tidal networks from LiDAR data is able to achieve substantially improved results compared with those obtained using standard algorithms for drainage network extraction from Digital Terrain Models.
An Adaptive Immune Genetic Algorithm for Edge Detection
NASA Astrophysics Data System (ADS)
Li, Ying; Bai, Bendu; Zhang, Yanning
An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.
Application of a multiscale maximum entropy image restoration algorithm to HXMT observations
NASA Astrophysics Data System (ADS)
Guan, Ju; Song, Li-Ming; Huo, Zhuo-Xi
2016-08-01
This paper introduces a multiscale maximum entropy (MSME) algorithm for image restoration of the Hard X-ray Modulation Telescope (HXMT), which is a collimated scan X-ray satellite mainly devoted to a sensitive all-sky survey and pointed observations in the 1-250 keV range. The novelty of the MSME method is to use wavelet decomposition and multiresolution support to control noise amplification at different scales. Our work is focused on the application and modification of this method to restore diffuse sources detected by HXMT scanning observations. An improved method, the ensemble multiscale maximum entropy (EMSME) algorithm, is proposed to alleviate the problem of mode mixing exiting in MSME. Simulations have been performed on the detection of the diffuse source Cen A by HXMT in all-sky survey mode. The results show that the MSME method is adapted to the deconvolution task of HXMT for diffuse source detection and the improved method could suppress noise and improve the correlation and signal-to-noise ratio, thus proving itself a better algorithm for image restoration. Through one all-sky survey, HXMT could reach a capacity of detecting a diffuse source with maximum differential flux of 0.5 mCrab. Supported by Strategic Priority Research Program on Space Science, Chinese Academy of Sciences (XDA04010300) and National Natural Science Foundation of China (11403014)
NASA Astrophysics Data System (ADS)
Moradi, Saed; Moallem, Payman; Sabahi, Mohamad Farzan
2018-03-01
False alarm rate and detection rate are still two contradictory metrics for infrared small target detection in an infrared search and track system (IRST), despite the development of new detection algorithms. In certain circumstances, not detecting true targets is more tolerable than detecting false items as true targets. Hence, considering background clutter and detector noise as the sources of the false alarm in an IRST system, in this paper, a false alarm aware methodology is presented to reduce false alarm rate while the detection rate remains undegraded. To this end, advantages and disadvantages of each detection algorithm are investigated and the sources of the false alarms are determined. Two target detection algorithms having independent false alarm sources are chosen in a way that the disadvantages of the one algorithm can be compensated by the advantages of the other one. In this work, multi-scale average absolute gray difference (AAGD) and Laplacian of point spread function (LoPSF) are utilized as the cornerstones of the desired algorithm of the proposed methodology. After presenting a conceptual model for the desired algorithm, it is implemented through the most straightforward mechanism. The desired algorithm effectively suppresses background clutter and eliminates detector noise. Also, since the input images are processed through just four different scales, the desired algorithm has good capability for real-time implementation. Simulation results in term of signal to clutter ratio and background suppression factor on real and simulated images prove the effectiveness and the performance of the proposed methodology. Since the desired algorithm was developed based on independent false alarm sources, our proposed methodology is expandable to any pair of detection algorithms which have different false alarm sources.
A Performance Evaluation of Lightning-NO Algorithms in CMAQ
In the Community Multiscale Air Quality (CMAQv5.2) model, we have implemented two algorithms for lightning NO production; one algorithm is based on the hourly observed cloud-to-ground lightning strike data from National Lightning Detection Network (NLDN) to replace the previous m...
Logarithmic profile mapping multi-scale Retinex for restoration of low illumination images
NASA Astrophysics Data System (ADS)
Shi, Haiyan; Kwok, Ngaiming; Wu, Hongkun; Li, Ruowei; Liu, Shilong; Lin, Ching-Feng; Wong, Chin Yeow
2018-04-01
Images are valuable information sources for many scientific and engineering applications. However, images captured in poor illumination conditions would have a large portion of dark regions that could heavily degrade the image quality. In order to improve the quality of such images, a restoration algorithm is developed here that transforms the low input brightness to a higher value using a modified Multi-Scale Retinex approach. The algorithm is further improved by a entropy based weighting with the input and the processed results to refine the necessary amplification at regions of low brightness. Moreover, fine details in the image are preserved by applying the Retinex principles to extract and then re-insert object edges to obtain an enhanced image. Results from experiments using low and normal illumination images have shown satisfactory performances with regard to the improvement in information contents and the mitigation of viewing artifacts.
Information theoretic analysis of canny edge detection in visual communication
NASA Astrophysics Data System (ADS)
Jiang, Bo; Rahman, Zia-ur
2011-06-01
In general edge detection evaluation, the edge detectors are examined, analyzed, and compared either visually or with a metric for specific an application. This analysis is usually independent of the characteristics of the image-gathering, transmission and display processes that do impact the quality of the acquired image and thus, the resulting edge image. We propose a new information theoretic analysis of edge detection that unites the different components of the visual communication channel and assesses edge detection algorithms in an integrated manner based on Shannon's information theory. The edge detection algorithm here is considered to achieve high performance only if the information rate from the scene to the edge approaches the maximum possible. Thus, by setting initial conditions of the visual communication system as constant, different edge detection algorithms could be evaluated. This analysis is normally limited to linear shift-invariant filters so in order to examine the Canny edge operator in our proposed system, we need to estimate its "power spectral density" (PSD). Since the Canny operator is non-linear and shift variant, we perform the estimation for a set of different system environment conditions using simulations. In our paper we will first introduce the PSD of the Canny operator for a range of system parameters. Then, using the estimated PSD, we will assess the Canny operator using information theoretic analysis. The information-theoretic metric is also used to compare the performance of the Canny operator with other edge-detection operators. This also provides a simple tool for selecting appropriate edgedetection algorithms based on system parameters, and for adjusting their parameters to maximize information throughput.
A new edge detection algorithm based on Canny idea
NASA Astrophysics Data System (ADS)
Feng, Yingke; Zhang, Jinmin; Wang, Siming
2017-10-01
The traditional Canny algorithm has poor self-adaptability threshold, and it is more sensitive to noise. In order to overcome these drawbacks, this paper proposed a new edge detection method based on Canny algorithm. Firstly, the media filtering and filtering based on the method of Euclidean distance are adopted to process it; secondly using the Frei-chen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value, and the half of the high threshold value is low threshold value. Experiment results show that this new method can effectively suppress noise disturbance, keep the edge information, and also improve the edge detection accuracy.
Hu, Weiming; Hu, Ruiguang; Xie, Nianhua; Ling, Haibin; Maybank, Stephen
2014-04-01
In this paper, we propose saliency driven image multiscale nonlinear diffusion filtering. The resulting scale space in general preserves or even enhances semantically important structures such as edges, lines, or flow-like structures in the foreground, and inhibits and smoothes clutter in the background. The image is classified using multiscale information fusion based on the original image, the image at the final scale at which the diffusion process converges, and the image at a midscale. Our algorithm emphasizes the foreground features, which are important for image classification. The background image regions, whether considered as contexts of the foreground or noise to the foreground, can be globally handled by fusing information from different scales. Experimental tests of the effectiveness of the multiscale space for the image classification are conducted on the following publicly available datasets: 1) the PASCAL 2005 dataset; 2) the Oxford 102 flowers dataset; and 3) the Oxford 17 flowers dataset, with high classification rates.
Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images.
Salvi, Massimo; Molinari, Filippo
2018-06-20
Accurate nuclei detection and segmentation in histological images is essential for many clinical purposes. While manual annotations are time-consuming and operator-dependent, full automated segmentation remains a challenging task due to the high variability of cells intensity, size and morphology. Most of the proposed algorithms for the automated segmentation of nuclei were designed for specific organ or tissues. The aim of this study was to develop and validate a fully multiscale method, named MANA (Multiscale Adaptive Nuclei Analysis), for nuclei segmentation in different tissues and magnifications. MANA was tested on a dataset of H&E stained tissue images with more than 59,000 annotated nuclei, taken from six organs (colon, liver, bone, prostate, adrenal gland and thyroid) and three magnifications (10×, 20×, 40×). Automatic results were compared with manual segmentations and three open-source software designed for nuclei detection. For each organ, MANA obtained always an F1-score higher than 0.91, with an average F1 of 0.9305 ± 0.0161. The average computational time was about 20 s independently of the number of nuclei to be detected (anyway, higher than 1000), indicating the efficiency of the proposed technique. To the best of our knowledge, MANA is the first fully automated multi-scale and multi-tissue algorithm for nuclei detection. Overall, the robustness and versatility of MANA allowed to achieve, on different organs and magnifications, performances in line or better than those of state-of-art algorithms optimized for single tissues.
Vehicle tracking using fuzzy-based vehicle detection window with adaptive parameters
NASA Astrophysics Data System (ADS)
Chitsobhuk, Orachat; Kasemsiri, Watjanapong; Glomglome, Sorayut; Lapamonpinyo, Pipatphon
2018-04-01
In this paper, fuzzy-based vehicle tracking system is proposed. The proposed system consists of two main processes: vehicle detection and vehicle tracking. In the first process, the Gradient-based Adaptive Threshold Estimation (GATE) algorithm is adopted to provide the suitable threshold value for the sobel edge detection. The estimated threshold can be adapted to the changes of diverse illumination conditions throughout the day. This leads to greater vehicle detection performance compared to a fixed user's defined threshold. In the second process, this paper proposes the novel vehicle tracking algorithms namely Fuzzy-based Vehicle Analysis (FBA) in order to reduce the false estimation of the vehicle tracking caused by uneven edges of the large vehicles and vehicle changing lanes. The proposed FBA algorithm employs the average edge density and the Horizontal Moving Edge Detection (HMED) algorithm to alleviate those problems by adopting fuzzy rule-based algorithms to rectify the vehicle tracking. The experimental results demonstrate that the proposed system provides the high accuracy of vehicle detection about 98.22%. In addition, it also offers the low false detection rates about 3.92%.
Automatic Target Cueing (ATC) Task 1 Report - Literature Survey on ATC
2013-10-30
xa s In st ru m en t D aV in ci c hi p C ++ O ut da te d in fo rm at io n as w eb pa ge w as la st u pd at ed in...techniques such as contrast/ edge enhancement to increase the detectability of targets in the urban terrain. [P-4] restores long-distance thermal...Range? Sensor Experimental Setup Results [P-3] Contrast enhancement Edge enhancement Multi-scale edge domain Still images Yes IR
Processing Images of Craters for Spacecraft Navigation
NASA Technical Reports Server (NTRS)
Cheng, Yang; Johnson, Andrew E.; Matthies, Larry H.
2009-01-01
A crater-detection algorithm has been conceived to enable automation of what, heretofore, have been manual processes for utilizing images of craters on a celestial body as landmarks for navigating a spacecraft flying near or landing on that body. The images are acquired by an electronic camera aboard the spacecraft, then digitized, then processed by the algorithm, which consists mainly of the following steps: 1. Edges in an image detected and placed in a database. 2. Crater rim edges are selected from the edge database. 3. Edges that belong to the same crater are grouped together. 4. An ellipse is fitted to each group of crater edges. 5. Ellipses are refined directly in the image domain to reduce errors introduced in the detection of edges and fitting of ellipses. 6. The quality of each detected crater is evaluated. It is planned to utilize this algorithm as the basis of a computer program for automated, real-time, onboard processing of crater-image data. Experimental studies have led to the conclusion that this algorithm is capable of a detection rate >93 percent, a false-alarm rate <5 percent, a geometric error <0.5 pixel, and a position error <0.3 pixel.
An Automated Cloud-edge Detection Algorithm Using Cloud Physics and Radar Data
NASA Technical Reports Server (NTRS)
Ward, Jennifer G.; Merceret, Francis J.; Grainger, Cedric A.
2003-01-01
An automated cloud edge detection algorithm was developed and extensively tested. The algorithm uses in-situ cloud physics data measured by a research aircraft coupled with ground-based weather radar measurements to determine whether the aircraft is in or out of cloud. Cloud edges are determined when the in/out state changes, subject to a hysteresis constraint. The hysteresis constraint prevents isolated transient cloud puffs or data dropouts from being identified as cloud boundaries. The algorithm was verified by detailed manual examination of the data set in comparison to the results from application of the automated algorithm.
Barba-J, Leiner; Escalante-Ramírez, Boris; Vallejo Venegas, Enrique; Arámbula Cosío, Fernando
2018-05-01
Analysis of cardiac images is a fundamental task to diagnose heart problems. Left ventricle (LV) is one of the most important heart structures used for cardiac evaluation. In this work, we propose a novel 3D hierarchical multiscale segmentation method based on a local active contour (AC) model and the Hermite transform (HT) for LV analysis in cardiac magnetic resonance (MR) and computed tomography (CT) volumes in short axis view. Features such as directional edges, texture, and intensities are analyzed using the multiscale HT space. A local AC model is configured using the HT coefficients and geometrical constraints. The endocardial and epicardial boundaries are used for evaluation. Segmentation of the endocardium is controlled using elliptical shape constraints. The final endocardial shape is used to define the geometrical constraints for segmentation of the epicardium. We follow the assumption that epicardial and endocardial shapes are similar in volumes with short axis view. An initialization scheme based on a fuzzy C-means algorithm and mathematical morphology was designed. The algorithm performance was evaluated using cardiac MR and CT volumes in short axis view demonstrating the feasibility of the proposed method.
Enhanced visualization of abnormalities in digital-mammographic images
NASA Astrophysics Data System (ADS)
Young, Susan S.; Moore, William E.
2002-05-01
This paper describes two new presentation methods that are intended to improve the ability of radiologists to visualize abnormalities in mammograms by enhancing the appearance of the breast parenchyma pattern relative to the fatty-tissue surroundings. The first method, referred to as mountain- view, is obtained via multiscale edge decomposition through filter banks. The image is displayed in a multiscale edge domain that causes the image to have a topographic-like appearance. The second method displays the image in the intensity domain and is referred to as contrast-enhancement presentation. The input image is first passed through a decomposition filter bank to produce a filtered output (Id). The image at the lowest resolution is processed using a LUT (look-up table) to produce a tone scaled image (I'). The LUT is designed to optimally map the code value range corresponding to the parenchyma pattern in the mammographic image into the dynamic range of the output medium. The algorithm uses a contrast weight control mechanism to produce the desired weight factors to enhance the edge information corresponding to the parenchyma pattern. The output image is formed using a reconstruction filter bank through I' and enhanced Id.
Athavale, Prashant; Xu, Robert; Radau, Perry; Nachman, Adrian; Wright, Graham A
2015-07-01
Images consist of structures of varying scales: large scale structures such as flat regions, and small scale structures such as noise, textures, and rapidly oscillatory patterns. In the hierarchical (BV, L(2)) image decomposition, Tadmor, et al. (2004) start with extracting coarse scale structures from a given image, and successively extract finer structures from the residuals in each step of the iterative decomposition. We propose to begin instead by extracting the finest structures from the given image and then proceed to extract increasingly coarser structures. In most images, noise could be considered as a fine scale structure. Thus, starting the image decomposition with finer scales, rather than large scales, leads to fast denoising. We note that our approach turns out to be equivalent to the nonstationary regularization in Scherzer and Weickert (2000). The continuous limit of this procedure leads to a time-scaled version of total variation flow. Motivated by specific clinical applications, we introduce an image depending weight in the regularization functional, and study the corresponding weighted TV flow. We show that the edge-preserving property of the multiscale representation of an input image obtained with the weighted TV flow can be enhanced and localized by appropriate choice of the weight. We use this in developing an efficient and edge-preserving denoising algorithm with control on speed and localization properties. We examine analytical properties of the weighted TV flow that give precise information about the denoising speed and the rate of change of energy of the images. An additional contribution of the paper is to use the images obtained at different scales for robust multiscale registration. We show that the inherently multiscale nature of the weighted TV flow improved performance for registration of noisy cardiac MRI images, compared to other methods such as bilateral or Gaussian filtering. A clinical application of the multiscale registration algorithm is also demonstrated for aligning viability assessment magnetic resonance (MR) images from 8 patients with previous myocardial infarctions. Copyright © 2015. Published by Elsevier B.V.
Information theoretic analysis of edge detection in visual communication
NASA Astrophysics Data System (ADS)
Jiang, Bo; Rahman, Zia-ur
2010-08-01
Generally, the designs of digital image processing algorithms and image gathering devices remain separate. Consequently, the performance of digital image processing algorithms is evaluated without taking into account the artifacts introduced into the process by the image gathering process. However, experiments show that the image gathering process profoundly impacts the performance of digital image processing and the quality of the resulting images. Huck et al. proposed one definitive theoretic analysis of visual communication channels, where the different parts, such as image gathering, processing, and display, are assessed in an integrated manner using Shannon's information theory. In this paper, we perform an end-to-end information theory based system analysis to assess edge detection methods. We evaluate the performance of the different algorithms as a function of the characteristics of the scene, and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge detection algorithm is regarded to have high performance only if the information rate from the scene to the edge approaches the maximum possible. This goal can be achieved only by jointly optimizing all processes. People generally use subjective judgment to compare different edge detection methods. There is not a common tool that can be used to evaluate the performance of the different algorithms, and to give people a guide for selecting the best algorithm for a given system or scene. Our information-theoretic assessment becomes this new tool to which allows us to compare the different edge detection operators in a common environment.
Dabbah, M A; Graham, J; Petropoulos, I N; Tavakoli, M; Malik, R A
2011-10-01
Diabetic peripheral neuropathy (DPN) is one of the most common long term complications of diabetes. Corneal confocal microscopy (CCM) image analysis is a novel non-invasive technique which quantifies corneal nerve fibre damage and enables diagnosis of DPN. This paper presents an automatic analysis and classification system for detecting nerve fibres in CCM images based on a multi-scale adaptive dual-model detection algorithm. The algorithm exploits the curvilinear structure of the nerve fibres and adapts itself to the local image information. Detected nerve fibres are then quantified and used as feature vectors for classification using random forest (RF) and neural networks (NNT) classifiers. We show, in a comparative study with other well known curvilinear detectors, that the best performance is achieved by the multi-scale dual model in conjunction with the NNT classifier. An evaluation of clinical effectiveness shows that the performance of the automated system matches that of ground-truth defined by expert manual annotation. Copyright © 2011 Elsevier B.V. All rights reserved.
A Multi-Scale Settlement Matching Algorithm Based on ARG
NASA Astrophysics Data System (ADS)
Yue, Han; Zhu, Xinyan; Chen, Di; Liu, Lingjia
2016-06-01
Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG) is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.
NASA Astrophysics Data System (ADS)
Ban, Yifang; Gong, Peng; Gamba, Paolo; Taubenbock, Hannes; Du, Peijun
2016-08-01
The overall objective of this research is to investigate multi-temporal, multi-scale, multi-sensor satellite data for analysis of urbanization and environmental/climate impact in China to support sustainable planning. Multi- temporal multi-scale SAR and optical data have been evaluated for urban information extraction using innovative methods and algorithms, including KTH- Pavia Urban Extractor, Pavia UEXT, and an "exclusion- inclusion" framework for urban extent extraction, and KTH-SEG, a novel object-based classification method for detailed urban land cover mapping. Various pixel- based and object-based change detection algorithms were also developed to extract urban changes. Several Chinese cities including Beijing, Shanghai and Guangzhou are selected as study areas. Spatio-temporal urbanization patterns and environmental impact at regional, metropolitan and city core were evaluated through ecosystem service, landscape metrics, spatial indices, and/or their combinations. The relationship between land surface temperature and land-cover classes was also analyzed.The urban extraction results showed that urban areas and small towns could be well extracted using multitemporal SAR data with the KTH-Pavia Urban Extractor and UEXT. The fusion of SAR data at multiple scales from multiple sensors was proven to improve urban extraction. For urban land cover mapping, the results show that the fusion of multitemporal SAR and optical data could produce detailed land cover maps with improved accuracy than that of SAR or optical data alone. Pixel-based and object-based change detection algorithms developed with the project were effective to extract urban changes. Comparing the urban land cover results from mulitemporal multisensor data, the environmental impact analysis indicates major losses for food supply, noise reduction, runoff mitigation, waste treatment and global climate regulation services through landscape structural changes in terms of decreases in service area, edge contamination and fragmentation. In terms ofclimate impact, the results indicate that land surface temperature can be related to land use/land cover classes.
Investigations of image fusion
NASA Astrophysics Data System (ADS)
Zhang, Zhong
1999-12-01
The objective of image fusion is to combine information from multiple images of the same scene. The result of image fusion is a single image which is more suitable for the purpose of human visual perception or further image processing tasks. In this thesis, a region-based fusion algorithm using the wavelet transform is proposed. The identification of important features in each image, such as edges and regions of interest, are used to guide the fusion process. The idea of multiscale grouping is also introduced and a generic image fusion framework based on multiscale decomposition is studied. The framework includes all of the existing multiscale-decomposition- based fusion approaches we found in the literature which did not assume a statistical model for the source images. Comparisons indicate that our framework includes some new approaches which outperform the existing approaches for the cases we consider. Registration must precede our fusion algorithms. So we proposed a hybrid scheme which uses both feature-based and intensity-based methods. The idea of robust estimation of optical flow from time- varying images is employed with a coarse-to-fine multi- resolution approach and feature-based registration to overcome some of the limitations of the intensity-based schemes. Experiments show that this approach is robust and efficient. Assessing image fusion performance in a real application is a complicated issue. In this dissertation, a mixture probability density function model is used in conjunction with the Expectation- Maximization algorithm to model histograms of edge intensity. Some new techniques are proposed for estimating the quality of a noisy image of a natural scene. Such quality measures can be used to guide the fusion. Finally, we study fusion of images obtained from several copies of a new type of camera developed for video surveillance. Our techniques increase the capability and reliability of the surveillance system and provide an easy way to obtain 3-D information of objects in the space monitored by the system.
Change Detection of Remote Sensing Images by Dt-Cwt and Mrf
NASA Astrophysics Data System (ADS)
Ouyang, S.; Fan, K.; Wang, H.; Wang, Z.
2017-05-01
Aiming at the significant loss of high frequency information during reducing noise and the pixel independence in change detection of multi-scale remote sensing image, an unsupervised algorithm is proposed based on the combination between Dual-tree Complex Wavelet Transform (DT-CWT) and Markov random Field (MRF) model. This method first performs multi-scale decomposition for the difference image by the DT-CWT and extracts the change characteristics in high-frequency regions by using a MRF-based segmentation algorithm. Then our method estimates the final maximum a posterior (MAP) according to the segmentation algorithm of iterative condition model (ICM) based on fuzzy c-means(FCM) after reconstructing the high-frequency and low-frequency sub-bands of each layer respectively. Finally, the method fuses the above segmentation results of each layer by using the fusion rule proposed to obtain the mask of the final change detection result. The results of experiment prove that the method proposed is of a higher precision and of predominant robustness properties.
A community detection algorithm based on structural similarity
NASA Astrophysics Data System (ADS)
Guo, Xuchao; Hao, Xia; Liu, Yaqiong; Zhang, Li; Wang, Lu
2017-09-01
In order to further improve the efficiency and accuracy of community detection algorithm, a new algorithm named SSTCA (the community detection algorithm based on structural similarity with threshold) is proposed. In this algorithm, the structural similarities are taken as the weights of edges, and the threshold k is considered to remove multiple edges whose weights are less than the threshold, and improve the computational efficiency. Tests were done on the Zachary’s network, Dolphins’ social network and Football dataset by the proposed algorithm, and compared with GN and SSNCA algorithm. The results show that the new algorithm is superior to other algorithms in accuracy for the dense networks and the operating efficiency is improved obviously.
Improving resolution of dynamic communities in human brain networks through targeted node removal
Turner, Benjamin O.; Miller, Michael B.; Carlson, Jean M.
2017-01-01
Current approaches to dynamic community detection in complex networks can fail to identify multi-scale community structure, or to resolve key features of community dynamics. We propose a targeted node removal technique to improve the resolution of community detection. Using synthetic oscillator networks with well-defined “ground truth” communities, we quantify the community detection performance of a common modularity maximization algorithm. We show that the performance of the algorithm on communities of a given size deteriorates when these communities are embedded in multi-scale networks with communities of different sizes, compared to the performance in a single-scale network. We demonstrate that targeted node removal during community detection improves performance on multi-scale networks, particularly when removing the most functionally cohesive nodes. Applying this approach to network neuroscience, we compare dynamic functional brain networks derived from fMRI data taken during both repetitive single-task and varied multi-task experiments. After the removal of regions in visual cortex, the most coherent functional brain area during the tasks, community detection is better able to resolve known functional brain systems into communities. In addition, node removal enables the algorithm to distinguish clear differences in brain network dynamics between these experiments, revealing task-switching behavior that was not identified with the visual regions present in the network. These results indicate that targeted node removal can improve spatial and temporal resolution in community detection, and they demonstrate a promising approach for comparison of network dynamics between neuroscientific data sets with different resolution parameters. PMID:29261662
Edge-directed inference for microaneurysms detection in digital fundus images
NASA Astrophysics Data System (ADS)
Huang, Ke; Yan, Michelle; Aviyente, Selin
2007-03-01
Microaneurysms (MAs) detection is a critical step in diabetic retinopathy screening, since MAs are the earliest visible warning of potential future problems. A variety of algorithms have been proposed for MAs detection in mass screening. Different methods have been proposed for MAs detection. The core technology for most of existing methods is based on a directional mathematical morphological operation called "Top-Hat" filter that requires multiple filtering operations at each pixel. Background structure, uneven illumination and noise often cause confusion between MAs and some non-MA structures and limits the applicability of the filter. In this paper, a novel detection framework based on edge directed inference is proposed for MAs detection. The candidate MA regions are first delineated from the edge map of a fundus image. Features measuring shape, brightness and contrast are extracted for each candidate MA region to better exclude false detection from true MAs. Algorithmic analysis and empirical evaluation reveal that the proposed edge directed inference outperforms the "Top-Hat" based algorithm in both detection accuracy and computational speed.
Three-dimensional contour edge detection algorithm
NASA Astrophysics Data System (ADS)
Wang, Yizhou; Ong, Sim Heng; Kassim, Ashraf A.; Foong, Kelvin W. C.
2000-06-01
This paper presents a novel algorithm for automatically extracting 3D contour edges, which are points of maximum surface curvature in a surface range image. The 3D image data are represented as a surface polygon mesh. The algorithm transforms the range data, obtained by scanning a dental plaster cast, into a 2D gray scale image by linearly converting the z-value of each vertex to a gray value. The Canny operator is applied to the median-filtered image to obtain the edge pixels and their orientations. A vertex in the 3D object corresponding to the detected edge pixel and its neighbors in the direction of the edge gradient are further analyzed with respect to their n-curvatures to extract the real 3D contour edges. This algorithm provides a fast method of reducing and sorting the unwieldy data inherent in the surface mesh representation. It employs powerful 2D algorithms to extract features from the transformed 3D models and refers to the 3D model for further analysis of selected data. This approach substantially reduces the computational burden without losing accuracy. It is also easily extended to detect 3D landmarks and other geometrical features, thus making it applicable to a wide range of applications.
Data fusion of multi-scale representations for structural damage detection
NASA Astrophysics Data System (ADS)
Guo, Tian; Xu, Zili
2018-01-01
Despite extensive researches into structural health monitoring (SHM) in the past decades, there are few methods that can detect multiple slight damage in noisy environments. Here, we introduce a new hybrid method that utilizes multi-scale space theory and data fusion approach for multiple damage detection in beams and plates. A cascade filtering approach provides multi-scale space for noisy mode shapes and filters the fluctuations caused by measurement noise. In multi-scale space, a series of amplification and data fusion algorithms are utilized to search the damage features across all possible scales. We verify the effectiveness of the method by numerical simulation using damaged beams and plates with various types of boundary conditions. Monte Carlo simulations are conducted to illustrate the effectiveness and noise immunity of the proposed method. The applicability is further validated via laboratory cases studies focusing on different damage scenarios. Both results demonstrate that the proposed method has a superior noise tolerant ability, as well as damage sensitivity, without knowing material properties or boundary conditions.
High Precision Edge Detection Algorithm for Mechanical Parts
NASA Astrophysics Data System (ADS)
Duan, Zhenyun; Wang, Ning; Fu, Jingshun; Zhao, Wenhui; Duan, Boqiang; Zhao, Jungui
2018-04-01
High precision and high efficiency measurement is becoming an imperative requirement for a lot of mechanical parts. So in this study, a subpixel-level edge detection algorithm based on the Gaussian integral model is proposed. For this purpose, the step edge normal section line Gaussian integral model of the backlight image is constructed, combined with the point spread function and the single step model. Then gray value of discrete points on the normal section line of pixel edge is calculated by surface interpolation, and the coordinate as well as gray information affected by noise is fitted in accordance with the Gaussian integral model. Therefore, a precise location of a subpixel edge was determined by searching the mean point. Finally, a gear tooth was measured by M&M3525 gear measurement center to verify the proposed algorithm. The theoretical analysis and experimental results show that the local edge fluctuation is reduced effectively by the proposed method in comparison with the existing subpixel edge detection algorithms. The subpixel edge location accuracy and computation speed are improved. And the maximum error of gear tooth profile total deviation is 1.9 μm compared with measurement result with gear measurement center. It indicates that the method has high reliability to meet the requirement of high precision measurement.
Automatic rock detection for in situ spectroscopy applications on Mars
NASA Astrophysics Data System (ADS)
Mahapatra, Pooja; Foing, Bernard H.
A novel algorithm for rock detection has been developed for effectively utilising Mars rovers, and enabling autonomous selection of target rocks that require close-contact spectroscopic measurements. The algorithm demarcates small rocks in terrain images as seen by cameras on a Mars rover during traverse. This information may be used by the rover for selection of geologically relevant sample rocks, and (in conjunction with a rangefinder) to pick up target samples using a robotic arm for automatic in situ determination of rock composition and mineralogy using, for example, a Raman spectrometer. Determining rock samples within the region that are of specific interest without physically approaching them significantly reduces time, power and risk. Input images in colour are converted to greyscale for intensity analysis. Bilateral filtering is used for texture removal while preserving rock boundaries. Unsharp masking is used for contrast enhance-ment. Sharp contrasts in intensities are detected using Canny edge detection, with thresholds that are calculated from the image obtained after contrast-limited adaptive histogram equalisation of the unsharp masked image. Scale-space representations are then generated by convolving this image with a Gaussian kernel. A scale-invariant blob detector (Laplacian of the Gaussian, LoG) detects blobs independently of their sizes, and therefore requires a multi-scale approach with automatic scale se-lection. The scale-space blob detector consists of convolution of the Canny edge-detected image with a scale-normalised LoG at several scales, and finding the maxima of squared LoG response in scale-space. After the extraction of local intensity extrema, the intensity profiles along rays going out of the local extremum are investigated. An ellipse is fitted to the region determined by significant changes in the intensity profiles. The fitted ellipses are overlaid on the original Mars terrain image for a visual estimation of the rock detection accuracy, and the number of ellipses are counted. Since geometry and illumination have the least effect on small rocks, the proposed algorithm is effective in detecting small rocks (or bigger rocks at larger distances from the camera) that consist of a small fraction of image pixels. Acknowledgements: The first author would like to express her gratitude to the European Space Agency (ESA/ESTEC) and the International Lunar Exploration Working Group (ILEWG) for their support of this work.
NASA Astrophysics Data System (ADS)
Jia, Rui-Sheng; Sun, Hong-Mei; Peng, Yan-Jun; Liang, Yong-Quan; Lu, Xin-Ming
2017-07-01
Microseismic monitoring is an effective means for providing early warning of rock or coal dynamical disasters, and its first step is microseismic event detection, although low SNR microseismic signals often cannot effectively be detected by routine methods. To solve this problem, this paper presents permutation entropy and a support vector machine to detect low SNR microseismic events. First, an extraction method of signal features based on multi-scale permutation entropy is proposed by studying the influence of the scale factor on the signal permutation entropy. Second, the detection model of low SNR microseismic events based on the least squares support vector machine is built by performing a multi-scale permutation entropy calculation for the collected vibration signals, constructing a feature vector set of signals. Finally, a comparative analysis of the microseismic events and noise signals in the experiment proves that the different characteristics of the two can be fully expressed by using multi-scale permutation entropy. The detection model of microseismic events combined with the support vector machine, which has the features of high classification accuracy and fast real-time algorithms, can meet the requirements of online, real-time extractions of microseismic events.
Localization of tumors in various organs, using edge detection algorithms
NASA Astrophysics Data System (ADS)
López Vélez, Felipe
2015-09-01
The edge of an image is a set of points organized in a curved line, where in each of these points the brightness of the image changes abruptly, or has discontinuities, in order to find these edges there will be five different mathematical methods to be used and later on compared with its peers, this is with the aim of finding which of the methods is the one that can find the edges of any given image. In this paper these five methods will be used for medical purposes in order to find which one is capable of finding the edges of a scanned image more accurately than the others. The problem consists in analyzing the following two biomedicals images. One of them represents a brain tumor and the other one a liver tumor. These images will be analyzed with the help of the five methods described and the results will be compared in order to determine the best method to be used. It was decided to use different algorithms of edge detection in order to obtain the results shown below; Bessel algorithm, Morse algorithm, Hermite algorithm, Weibull algorithm and Sobel algorithm. After analyzing the appliance of each of the methods to both images it's impossible to determine the most accurate method for tumor detection due to the fact that in each case the best method changed, i.e., for the brain tumor image it can be noticed that the Morse method was the best at finding the edges of the image but for the liver tumor image it was the Hermite method. Making further observations it is found that Hermite and Morse have for these two cases the lowest standard deviations, concluding that these two are the most accurate method to find the edges in analysis of biomedical images.
An optimized algorithm for multiscale wideband deconvolution of radio astronomical images
NASA Astrophysics Data System (ADS)
Offringa, A. R.; Smirnov, O.
2017-10-01
We describe a new multiscale deconvolution algorithm that can also be used in a multifrequency mode. The algorithm only affects the minor clean loop. In single-frequency mode, the minor loop of our improved multiscale algorithm is over an order of magnitude faster than the casa multiscale algorithm, and produces results of similar quality. For multifrequency deconvolution, a technique named joined-channel cleaning is used. In this mode, the minor loop of our algorithm is two to three orders of magnitude faster than casa msmfs. We extend the multiscale mode with automated scale-dependent masking, which allows structures to be cleaned below the noise. We describe a new scale-bias function for use in multiscale cleaning. We test a second deconvolution method that is a variant of the moresane deconvolution technique, and uses a convex optimization technique with isotropic undecimated wavelets as dictionary. On simple well-calibrated data, the convex optimization algorithm produces visually more representative models. On complex or imperfect data, the convex optimization algorithm has stability issues.
Reflection symmetry detection using locally affine invariant edge correspondence.
Wang, Zhaozhong; Tang, Zesheng; Zhang, Xiao
2015-04-01
Reflection symmetry detection receives increasing attentions in recent years. The state-of-the-art algorithms mainly use the matching of intensity-based features (such as the SIFT) within a single image to find symmetry axes. This paper proposes a novel approach by establishing the correspondence of locally affine invariant edge-based features, which are superior to the intensity based in the aspects that it is insensitive to illumination variations, and applicable to textureless objects. The locally affine invariance is achieved by simple linear algebra for efficient and robust computations, making the algorithm suitable for detections under object distortions like perspective projection. Commonly used edge detectors and a voting process are, respectively, used before and after the edge description and matching steps to form a complete reflection detection pipeline. Experiments are performed using synthetic and real-world images with both multiple and single reflection symmetry axis. The test results are compared with existing algorithms to validate the proposed method.
NASA Astrophysics Data System (ADS)
Liu, Tao; Zhang, Wei; Yan, Shaoze
2015-10-01
In this paper, a multi-scale image enhancement algorithm based on low-passing filtering and nonlinear transformation is proposed for infrared testing image of the de-bonding defect in solid propellant rocket motors. Infrared testing images with high-level noise and low contrast are foundations for identifying defects and calculating the defects size. In order to improve quality of the infrared image, according to distribution properties of the detection image, within framework of stationary wavelet transform, the approximation coefficients at suitable decomposition level is processed by index low-passing filtering by using Fourier transform, after that, the nonlinear transformation is applied to further process the figure to improve the picture contrast. To verify validity of the algorithm, the image enhancement algorithm is applied to infrared testing pictures of two specimens with de-bonding defect. Therein, one specimen is made of a type of high-strength steel, and the other is a type of carbon fiber composite. As the result shown, in the images processed by the image enhancement algorithm presented in the paper, most of noises are eliminated, and contrast between defect areas and normal area is improved greatly; in addition, by using the binary picture of the processed figure, the continuous defect edges can be extracted, all of which show the validity of the algorithm. The paper provides a well-performing image enhancement algorithm for the infrared thermography.
Multiscale Anomaly Detection and Image Registration Algorithms for Airborne Landmine Detection
2008-05-01
with the sensed image. The two- dimensional correlation coefficient r for two matrices A and B both of size M ×N is given by r = ∑ m ∑ n (Amn...correlation based method by matching features in a high- dimensional feature- space . The current implementation of the SIFT algorithm uses a brute-force...by repeatedly convolving the image with a Guassian kernel. Each plane of the scale
Information theoretic analysis of linear shift-invariant edge-detection operators
NASA Astrophysics Data System (ADS)
Jiang, Bo; Rahman, Zia-ur
2012-06-01
Generally, the designs of digital image processing algorithms and image gathering devices remain separate. Consequently, the performance of digital image processing algorithms is evaluated without taking into account the influences by the image gathering process. However, experiments show that the image gathering process has a profound impact on the performance of digital image processing and the quality of the resulting images. Huck et al. proposed one definitive theoretic analysis of visual communication channels, where the different parts, such as image gathering, processing, and display, are assessed in an integrated manner using Shannon's information theory. We perform an end-to-end information theory based system analysis to assess linear shift-invariant edge-detection algorithms. We evaluate the performance of the different algorithms as a function of the characteristics of the scene and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge-detection algorithm is regarded as having high performance only if the information rate from the scene to the edge image approaches its maximum possible. This goal can be achieved only by jointly optimizing all processes. Our information-theoretic assessment provides a new tool that allows us to compare different linear shift-invariant edge detectors in a common environment.
Edge detection and localization with edge pattern analysis and inflection characterization
NASA Astrophysics Data System (ADS)
Jiang, Bo
2012-05-01
In general edges are considered to be abrupt changes or discontinuities in two dimensional image signal intensity distributions. The accuracy of front-end edge detection methods in image processing impacts the eventual success of higher level pattern analysis downstream. To generalize edge detectors designed from a simple ideal step function model to real distortions in natural images, research on one dimensional edge pattern analysis to improve the accuracy of edge detection and localization proposes an edge detection algorithm, which is composed by three basic edge patterns, such as ramp, impulse, and step. After mathematical analysis, general rules for edge representation based upon the classification of edge types into three categories-ramp, impulse, and step (RIS) are developed to reduce detection and localization errors, especially reducing "double edge" effect that is one important drawback to the derivative method. But, when applying one dimensional edge pattern in two dimensional image processing, a new issue is naturally raised that the edge detector should correct marking inflections or junctions of edges. Research on human visual perception of objects and information theory pointed out that a pattern lexicon of "inflection micro-patterns" has larger information than a straight line. Also, research on scene perception gave an idea that contours have larger information are more important factor to determine the success of scene categorization. Therefore, inflections or junctions are extremely useful features, whose accurate description and reconstruction are significant in solving correspondence problems in computer vision. Therefore, aside from adoption of edge pattern analysis, inflection or junction characterization is also utilized to extend traditional derivative edge detection algorithm. Experiments were conducted to test my propositions about edge detection and localization accuracy improvements. The results support the idea that these edge detection method improvements are effective in enhancing the accuracy of edge detection and localization.
Improved detection of soma location and morphology in fluorescence microscopy images of neurons.
Kayasandik, Cihan Bilge; Labate, Demetrio
2016-12-01
Automated detection and segmentation of somas in fluorescent images of neurons is a major goal in quantitative studies of neuronal networks, including applications of high-content-screenings where it is required to quantify multiple morphological properties of neurons. Despite recent advances in image processing targeted to neurobiological applications, existing algorithms of soma detection are often unreliable, especially when processing fluorescence image stacks of neuronal cultures. In this paper, we introduce an innovative algorithm for the detection and extraction of somas in fluorescent images of networks of cultured neurons where somas and other structures exist in the same fluorescent channel. Our method relies on a new geometrical descriptor called Directional Ratio and a collection of multiscale orientable filters to quantify the level of local isotropy in an image. To optimize the application of this approach, we introduce a new construction of multiscale anisotropic filters that is implemented by separable convolution. Extensive numerical experiments using 2D and 3D confocal images show that our automated algorithm reliably detects somas, accurately segments them, and separates contiguous ones. We include a detailed comparison with state-of-the-art existing methods to demonstrate that our algorithm is extremely competitive in terms of accuracy, reliability and computational efficiency. Our algorithm will facilitate the development of automated platforms for high content neuron image processing. A Matlab code is released open-source and freely available to the scientific community. Copyright © 2016 Elsevier B.V. All rights reserved.
An Optimal Partial Differential Equations-based Stopping Criterion for Medical Image Denoising.
Khanian, Maryam; Feizi, Awat; Davari, Ali
2014-01-01
Improving the quality of medical images at pre- and post-surgery operations are necessary for beginning and speeding up the recovery process. Partial differential equations-based models have become a powerful and well-known tool in different areas of image processing such as denoising, multiscale image analysis, edge detection and other fields of image processing and computer vision. In this paper, an algorithm for medical image denoising using anisotropic diffusion filter with a convenient stopping criterion is presented. In this regard, the current paper introduces two strategies: utilizing the efficient explicit method due to its advantages with presenting impressive software technique to effectively solve the anisotropic diffusion filter which is mathematically unstable, proposing an automatic stopping criterion, that takes into consideration just input image, as opposed to other stopping criteria, besides the quality of denoised image, easiness and time. Various medical images are examined to confirm the claim.
NASA Astrophysics Data System (ADS)
Agurto, C.; Barriga, S.; Murray, V.; Murillo, S.; Zamora, G.; Bauman, W.; Pattichis, M.; Soliz, P.
2011-03-01
In the United States and most of the western world, the leading causes of vision impairment and blindness are age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. In the last decade, research in automatic detection of retinal lesions associated with eye diseases has produced several automatic systems for detection and screening of AMD, DR, and glaucoma. However. advanced, sight-threatening stages of DR and AMD can present with lesions not commonly addressed by current approaches to automatic screening. In this paper we present an automatic eye screening system based on multiscale Amplitude Modulation-Frequency Modulation (AM-FM) decompositions that addresses not only the early stages, but also advanced stages of retinal and optic nerve disease. Ten different experiments were performed in which abnormal features such as neovascularization, drusen, exudates, pigmentation abnormalities, geographic atrophy (GA), and glaucoma were classified. The algorithm achieved an accuracy detection range of [0.77 to 0.98] area under the ROC curve for a set of 810 images. When set to a specificity value of 0.60, the sensitivity of the algorithm to the detection of abnormal features ranged between 0.88 and 1.00. Our system demonstrates that, given an appropriate training set, it is possible to use a unique algorithm to detect a broad range of eye diseases.
An improved robust blind motion de-blurring algorithm for remote sensing images
NASA Astrophysics Data System (ADS)
He, Yulong; Liu, Jin; Liang, Yonghui
2016-10-01
Shift-invariant motion blur can be modeled as a convolution of the true latent image and the blur kernel with additive noise. Blind motion de-blurring estimates a sharp image from a motion blurred image without the knowledge of the blur kernel. This paper proposes an improved edge-specific motion de-blurring algorithm which proved to be fit for processing remote sensing images. We find that an inaccurate blur kernel is the main factor to the low-quality restored images. To improve image quality, we do the following contributions. For the robust kernel estimation, first, we adapt the multi-scale scheme to make sure that the edge map could be constructed accurately; second, an effective salient edge selection method based on RTV (Relative Total Variation) is used to extract salient structure from texture; third, an alternative iterative method is introduced to perform kernel optimization, in this step, we adopt l1 and l0 norm as the priors to remove noise and ensure the continuity of blur kernel. For the final latent image reconstruction, an improved adaptive deconvolution algorithm based on TV-l2 model is used to recover the latent image; we control the regularization weight adaptively in different region according to the image local characteristics in order to preserve tiny details and eliminate noise and ringing artifacts. Some synthetic remote sensing images are used to test the proposed algorithm, and results demonstrate that the proposed algorithm obtains accurate blur kernel and achieves better de-blurring results.
Correlations of stock price fluctuations under multi-scale and multi-threshold scenarios
NASA Astrophysics Data System (ADS)
Sui, Guo; Li, Huajiao; Feng, Sida; Liu, Xueyong; Jiang, Meihui
2018-01-01
The multi-scale method is widely used in analyzing time series of financial markets and it can provide market information for different economic entities who focus on different periods. Through constructing multi-scale networks of price fluctuation correlation in the stock market, we can detect the topological relationship between each time series. Previous research has not addressed the problem that the original fluctuation correlation networks are fully connected networks and more information exists within these networks that is currently being utilized. Here we use listed coal companies as a case study. First, we decompose the original stock price fluctuation series into different time scales. Second, we construct the stock price fluctuation correlation networks at different time scales. Third, we delete the edges of the network based on thresholds and analyze the network indicators. Through combining the multi-scale method with the multi-threshold method, we bring to light the implicit information of fully connected networks.
The crack detection algorithm of pavement image based on edge information
NASA Astrophysics Data System (ADS)
Yang, Chunde; Geng, Mingyue
2018-05-01
As the images of pavement cracks are affected by a large amount of complicated noises, such as uneven illumination and water stains, the detected cracks are discontinuous and the main body information at the edge of the cracks is easily lost. In order to solve the problem, a crack detection algorithm in pavement image based on edge information is proposed. Firstly, the image is pre-processed by the nonlinear gray-scale transform function and reconstruction filter to enhance the linear characteristic of the crack. At the same time, an adaptive thresholding method is designed to coarsely extract the cracks edge according to the gray-scale gradient feature and obtain the crack gradient information map. Secondly, the candidate edge points are obtained according to the gradient information, and the edge is detected based on the single pixel percolation processing, which is improved by using the local difference between pixels in the fixed region. Finally, complete crack is obtained by filling the crack edge. Experimental results show that the proposed method can accurately detect pavement cracks and preserve edge information.
Energy-Consistent Multiscale Algorithms for Granular Flows
2014-08-07
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection...not been able to be captured comprehensively in models. The consequences of these advancements are broad and deep. The GEM method has revolutionized...the algorithm to detect contact needs to be redesign to be able to detect contact points, even in non-convex surfaces. To achieve this, we developed
Segmentation of blurred objects using wavelet transform: application to x-ray images
NASA Astrophysics Data System (ADS)
Barat, Cecile S.; Ducottet, Christophe; Bilgot, Anne; Desbat, Laurent
2004-02-01
First, we present a wavelet-based algorithm for edge detection and characterization, which is an adaptation of Mallat and Hwang"s method. This algorithm relies on a modelization of contours as smoothed singularities of three particular types (transitions, peaks and lines). On the one hand, it allows to detect and locate edges at an adapted scale. On the other hand, it is able to identify the type of each detected edge point and to measure its amplitude and smoothing size. The latter parameters represent respectively the contrast and the smoothness level of the edge point. Second, we explain that this method has been integrated in a 3D bone surface reconstruction algorithm designed for computer-assisted and minimal invasive orthopaedic surgery. In order to decrease the dose to the patient and to obtain rapidly a 3D image, we propose to identify a bone shape from few X-ray projections by using statistical shape models registered to segmented X-ray projections. We apply this approach to pedicle screw insertion (scoliosis, fractures...) where ten to forty percent of the screws are known to be misplaced. In this context, the proposed edge detection algorithm allows to overcome the major problem of vertebrae segmentation in the X-ray images.
A synthetic genetic edge detection program.
Tabor, Jeffrey J; Salis, Howard M; Simpson, Zachary Booth; Chevalier, Aaron A; Levskaya, Anselm; Marcotte, Edward M; Voigt, Christopher A; Ellington, Andrew D
2009-06-26
Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.
A Synthetic Genetic Edge Detection Program
Tabor, Jeffrey J.; Salis, Howard; Simpson, Zachary B.; Chevalier, Aaron A.; Levskaya, Anselm; Marcotte, Edward M.; Voigt, Christopher A.; Ellington, Andrew D.
2009-01-01
Summary Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E.coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks. PMID:19563759
Hierarchical image feature extraction by an irregular pyramid of polygonal partitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skurikhin, Alexei N
2008-01-01
We present an algorithmic framework for hierarchical image segmentation and feature extraction. We build a successive fine-to-coarse hierarchy of irregular polygonal partitions of the original image. This multiscale hierarchy forms the basis for object-oriented image analysis. The framework incorporates the Gestalt principles of visual perception, such as proximity and closure, and exploits spectral and textural similarities of polygonal partitions, while iteratively grouping them until dissimilarity criteria are exceeded. Seed polygons are built upon a triangular mesh composed of irregular sized triangles, whose spatial arrangement is adapted to the image content. This is achieved by building the triangular mesh on themore » top of detected spectral discontinuities (such as edges), which form a network of constraints for the Delaunay triangulation. The image is then represented as a spatial network in the form of a graph with vertices corresponding to the polygonal partitions and edges reflecting their relations. The iterative agglomeration of partitions into object-oriented segments is formulated as Minimum Spanning Tree (MST) construction. An important characteristic of the approach is that the agglomeration of polygonal partitions is constrained by the detected edges; thus the shapes of agglomerated partitions are more likely to correspond to the outlines of real-world objects. The constructed partitions and their spatial relations are characterized using spectral, textural and structural features based on proximity graphs. The framework allows searching for object-oriented features of interest across multiple levels of details of the built hierarchy and can be generalized to the multi-criteria MST to account for multiple criteria important for an application.« less
Multiscale infrared and visible image fusion using gradient domain guided image filtering
NASA Astrophysics Data System (ADS)
Zhu, Jin; Jin, Weiqi; Li, Li; Han, Zhenghao; Wang, Xia
2018-03-01
For better surveillance with infrared and visible imaging, a novel hybrid multiscale decomposition fusion method using gradient domain guided image filtering (HMSD-GDGF) is proposed in this study. In this method, hybrid multiscale decomposition with guided image filtering and gradient domain guided image filtering of source images are first applied before the weight maps of each scale are obtained using a saliency detection technology and filtering means with three different fusion rules at different scales. The three types of fusion rules are for small-scale detail level, large-scale detail level, and base level. Finally, the target becomes more salient and can be more easily detected in the fusion result, with the detail information of the scene being fully displayed. After analyzing the experimental comparisons with state-of-the-art fusion methods, the HMSD-GDGF method has obvious advantages in fidelity of salient information (including structural similarity, brightness, and contrast), preservation of edge features, and human visual perception. Therefore, visual effects can be improved by using the proposed HMSD-GDGF method.
Hexagonal wavelet processing of digital mammography
NASA Astrophysics Data System (ADS)
Laine, Andrew F.; Schuler, Sergio; Huda, Walter; Honeyman-Buck, Janice C.; Steinbach, Barbara G.
1993-09-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms and used to enhance features of importance to mammography within a continuum of scale-space. We present a method of contrast enhancement based on an overcomplete, non-separable multiscale representation: the hexagonal wavelet transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by local and global non-linear operators. Multiscale edges identified within distinct levels of transform space provide local support for enhancement. We demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.
The Brera Multiscale Wavelet ROSAT HRI Source Catalog. I. The Algorithm
NASA Astrophysics Data System (ADS)
Lazzati, Davide; Campana, Sergio; Rosati, Piero; Panzera, Maria Rosa; Tagliaferri, Gianpiero
1999-10-01
We present a new detection algorithm based on the wavelet transform for the analysis of high-energy astronomical images. The wavelet transform, because of its multiscale structure, is suited to the optimal detection of pointlike as well as extended sources, regardless of any loss of resolution with the off-axis angle. Sources are detected as significant enhancements in the wavelet space, after the subtraction of the nonflat components of the background. Detection thresholds are computed through Monte Carlo simulations in order to establish the expected number of spurious sources per field. The source characterization is performed through a multisource fitting in the wavelet space. The procedure is designed to correctly deal with very crowded fields, allowing for the simultaneous characterization of nearby sources. To obtain a fast and reliable estimate of the source parameters and related errors, we apply a novel decimation technique that, taking into account the correlation properties of the wavelet transform, extracts a subset of almost independent coefficients. We test the performance of this algorithm on synthetic fields, analyzing with particular care the characterization of sources in poor background situations, where the assumption of Gaussian statistics does not hold. In these cases, for which standard wavelet algorithms generally provide underestimated errors, we infer errors through a procedure that relies on robust basic statistics. Our algorithm is well suited to the analysis of images taken with the new generation of X-ray instruments equipped with CCD technology, which will produce images with very low background and/or high source density.
Computer vision camera with embedded FPGA processing
NASA Astrophysics Data System (ADS)
Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel
2000-03-01
Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.
Algorithm for Automated Detection of Edges of Clouds
NASA Technical Reports Server (NTRS)
Ward, Jennifer G.; Merceret, Francis J.
2006-01-01
An algorithm processes cloud-physics data gathered in situ by an aircraft, along with reflectivity data gathered by ground-based radar, to determine whether the aircraft is inside or outside a cloud at a given time. A cloud edge is deemed to be detected when the in/out state changes, subject to a hysteresis constraint. Such determinations are important in continuing research on relationships among lightning, electric charges in clouds, and decay of electric fields with distance from cloud edges.
Improved imaging algorithm for bridge crack detection
NASA Astrophysics Data System (ADS)
Lu, Jingxiao; Song, Pingli; Han, Kaihong
2012-04-01
This paper present an improved imaging algorithm for bridge crack detection, through optimizing the eight-direction Sobel edge detection operator, making the positioning of edge points more accurate than without the optimization, and effectively reducing the false edges information, so as to facilitate follow-up treatment. In calculating the crack geometry characteristics, we use the method of extracting skeleton on single crack length. In order to calculate crack area, we construct the template of area by making logical bitwise AND operation of the crack image. After experiment, the results show errors of the crack detection method and actual manual measurement are within an acceptable range, meet the needs of engineering applications. This algorithm is high-speed and effective for automated crack measurement, it can provide more valid data for proper planning and appropriate performance of the maintenance and rehabilitation processes of bridge.
Hierarchical detection of red lesions in retinal images by multiscale correlation filtering
NASA Astrophysics Data System (ADS)
Zhang, Bob; Wu, Xiangqian; You, Jane; Li, Qin; Karray, Fakhri
2009-02-01
This paper presents an approach to the computer aided diagnosis (CAD) of diabetic retinopathy (DR) -- a common and severe complication of long-term diabetes which damages the retina and cause blindness. Since red lesions are regarded as the first signs of DR, there has been extensive research on effective detection and localization of these abnormalities in retinal images. In contrast to existing algorithms, a new approach based on Multiscale Correlation Filtering (MSCF) and dynamic thresholding is developed. This consists of two levels, Red Lesion Candidate Detection (coarse level) and True Red Lesion Detection (fine level). The approach was evaluated using data from Retinopathy On-line Challenge (ROC) competition website and we conclude our method to be effective and efficient.
Online Community Detection for Large Complex Networks
Pan, Gang; Zhang, Wangsheng; Wu, Zhaohui; Li, Shijian
2014-01-01
Complex networks describe a wide range of systems in nature and society. To understand complex networks, it is crucial to investigate their community structure. In this paper, we develop an online community detection algorithm with linear time complexity for large complex networks. Our algorithm processes a network edge by edge in the order that the network is fed to the algorithm. If a new edge is added, it just updates the existing community structure in constant time, and does not need to re-compute the whole network. Therefore, it can efficiently process large networks in real time. Our algorithm optimizes expected modularity instead of modularity at each step to avoid poor performance. The experiments are carried out using 11 public data sets, and are measured by two criteria, modularity and NMI (Normalized Mutual Information). The results show that our algorithm's running time is less than the commonly used Louvain algorithm while it gives competitive performance. PMID:25061683
Multiscale corner detection and classification using local properties and semantic patterns
NASA Astrophysics Data System (ADS)
Gallo, Giovanni; Giuoco, Alessandro L.
2002-05-01
A new technique to detect, localize and classify corners in digital closed curves is proposed. The technique is based on correct estimation of support regions for each point. We compute multiscale curvature to detect and to localize corners. As a further step, with the aid of some local features, it's possible to classify corners into seven distinct types. Classification is performed using a set of rules, which describe corners according to preset semantic patterns. Compared with existing techniques, the proposed approach inscribes itself into the family of algorithms that try to explain the curve, instead of simple labeling. Moreover, our technique works in manner similar to what is believed are typical mechanisms of human perception.
Generation algorithm of craniofacial structure contour in cephalometric images
NASA Astrophysics Data System (ADS)
Mondal, Tanmoy; Jain, Ashish; Sardana, H. K.
2010-02-01
Anatomical structure tracing on cephalograms is a significant way to obtain cephalometric analysis. Computerized cephalometric analysis involves both manual and automatic approaches. The manual approach is limited in accuracy and repeatability. In this paper we have attempted to develop and test a novel method for automatic localization of craniofacial structure based on the detected edges on the region of interest. According to the grey scale feature at the different region of the cephalometric images, an algorithm for obtaining tissue contour is put forward. Using edge detection with specific threshold an improved bidirectional contour tracing approach is proposed by an interactive selection of the starting edge pixels, the tracking process searches repetitively for an edge pixel at the neighborhood of previously searched edge pixel to segment images, and then craniofacial structures are obtained. The effectiveness of the algorithm is demonstrated by the preliminary experimental results obtained with the proposed method.
Multi-Scale Peak and Trough Detection Optimised for Periodic and Quasi-Periodic Neuroscience Data.
Bishop, Steven M; Ercole, Ari
2018-01-01
The reliable detection of peaks and troughs in physiological signals is essential to many investigative techniques in medicine and computational biology. Analysis of the intracranial pressure (ICP) waveform is a particular challenge due to multi-scale features, a changing morphology over time and signal-to-noise limitations. Here we present an efficient peak and trough detection algorithm that extends the scalogram approach of Scholkmann et al., and results in greatly improved algorithm runtime performance. Our improved algorithm (modified Scholkmann) was developed and analysed in MATLAB R2015b. Synthesised waveforms (periodic, quasi-periodic and chirp sinusoids) were degraded with white Gaussian noise to achieve signal-to-noise ratios down to 5 dB and were used to compare the performance of the original Scholkmann and modified Scholkmann algorithms. The modified Scholkmann algorithm has false-positive (0%) and false-negative (0%) detection rates identical to the original Scholkmann when applied to our test suite. Actual compute time for a 200-run Monte Carlo simulation over a multicomponent noisy test signal was 40.96 ± 0.020 s (mean ± 95%CI) for the original Scholkmann and 1.81 ± 0.003 s (mean ± 95%CI) for the modified Scholkmann, demonstrating the expected improvement in runtime complexity from [Formula: see text] to [Formula: see text]. The accurate interpretation of waveform data to identify peaks and troughs is crucial in signal parameterisation, feature extraction and waveform identification tasks. Modification of a standard scalogram technique has produced a robust algorithm with linear computational complexity that is particularly suited to the challenges presented by large, noisy physiological datasets. The algorithm is optimised through a single parameter and can identify sub-waveform features with minimal additional overhead, and is easily adapted to run in real time on commodity hardware.
Martínez, Fabio; Romero, Eduardo; Dréan, Gaël; Simon, Antoine; Haigron, Pascal; De Crevoisier, Renaud; Acosta, Oscar
2014-01-01
Accurate segmentation of the prostate and organs at risk in computed tomography (CT) images is a crucial step for radiotherapy (RT) planning. Manual segmentation, as performed nowadays, is a time consuming process and prone to errors due to the a high intra- and inter-expert variability. This paper introduces a new automatic method for prostate, rectum and bladder segmentation in planning CT using a geometrical shape model under a Bayesian framework. A set of prior organ shapes are first built by applying Principal Component Analysis (PCA) to a population of manually delineated CT images. Then, for a given individual, the most similar shape is obtained by mapping a set of multi-scale edge observations to the space of organs with a customized likelihood function. Finally, the selected shape is locally deformed to adjust the edges of each organ. Experiments were performed with real data from a population of 116 patients treated for prostate cancer. The data set was split in training and test groups, with 30 and 86 patients, respectively. Results show that the method produces competitive segmentations w.r.t standard methods (Averaged Dice = 0.91 for prostate, 0.94 for bladder, 0.89 for Rectum) and outperforms the majority-vote multi-atlas approaches (using rigid registration, free-form deformation (FFD) and the demons algorithm) PMID:24594798
Edge detection of optical subaperture image based on improved differential box-counting method
NASA Astrophysics Data System (ADS)
Li, Yi; Hui, Mei; Liu, Ming; Dong, Liquan; Kong, Lingqin; Zhao, Yuejin
2018-01-01
Optical synthetic aperture imaging technology is an effective approach to improve imaging resolution. Compared with monolithic mirror system, the image of optical synthetic aperture system is often more complex at the edge, and as a result of the existence of gap between segments, which makes stitching becomes a difficult problem. So it is necessary to extract the edge of subaperture image for achieving effective stitching. Fractal dimension as a measure feature can describe image surface texture characteristics, which provides a new approach for edge detection. In our research, an improved differential box-counting method is used to calculate fractal dimension of image, then the obtained fractal dimension is mapped to grayscale image to detect edges. Compared with original differential box-counting method, this method has two improvements as follows: by modifying the box-counting mechanism, a box with a fixed height is replaced by a box with adaptive height, which solves the problem of over-counting the number of boxes covering image intensity surface; an image reconstruction method based on super-resolution convolutional neural network is used to enlarge small size image, which can solve the problem that fractal dimension can't be calculated accurately under the small size image, and this method may well maintain scale invariability of fractal dimension. The experimental results show that the proposed algorithm can effectively eliminate noise and has a lower false detection rate compared with the traditional edge detection algorithms. In addition, this algorithm can maintain the integrity and continuity of image edge in the case of retaining important edge information.
Edge detection for optical synthetic aperture based on deep neural network
NASA Astrophysics Data System (ADS)
Tan, Wenjie; Hui, Mei; Liu, Ming; Kong, Lingqin; Dong, Liquan; Zhao, Yuejin
2017-09-01
Synthetic aperture optics systems can meet the demands of the next-generation space telescopes being lighter, larger and foldable. However, the boundaries of segmented aperture systems are much more complex than that of the whole aperture. More edge regions mean more imaging edge pixels, which are often mixed and discretized. In order to achieve high-resolution imaging, it is necessary to identify the gaps between the sub-apertures and the edges of the projected fringes. In this work, we introduced the algorithm of Deep Neural Network into the edge detection of optical synthetic aperture imaging. According to the detection needs, we constructed image sets by experiments and simulations. Based on MatConvNet, a toolbox of MATLAB, we ran the neural network, trained it on training image set and tested its performance on validation set. The training was stopped when the test error on validation set stopped declining. As an input image is given, each intra-neighbor area around the pixel is taken into the network, and scanned pixel by pixel with the trained multi-hidden layers. The network outputs make a judgment on whether the center of the input block is on edge of fringes. We experimented with various pre-processing and post-processing techniques to reveal their influence on edge detection performance. Compared with the traditional algorithms or their improvements, our method makes decision on a much larger intra-neighbor, and is more global and comprehensive. Experiments on more than 2,000 images are also given to prove that our method outperforms classical algorithms in optical images-based edge detection.
NASA Astrophysics Data System (ADS)
Zhu, Yuxiang; Jiang, Jianmin; Huang, Changxing; Chen, Yongqin David; Zhang, Qiang
2018-04-01
This article, as part I, introduces three algorithms and applies them to both series of the monthly stream flow and rainfall in Xijiang River, southern China. The three algorithms include (1) normalization of probability distribution, (2) scanning U test for change points in correlation between two time series, and (3) scanning F-test for change points in variances. The normalization algorithm adopts the quantile method to normalize data from a non-normal into the normal probability distribution. The scanning U test and F-test have three common features: grafting the classical statistics onto the wavelet algorithm, adding corrections for independence into each statistic criteria at given confidence respectively, and being almost objective and automatic detection on multiscale time scales. In addition, the coherency analyses between two series are also carried out for changes in variance. The application results show that the changes of the monthly discharge are still controlled by natural precipitation variations in Xijiang's fluvial system. Human activities disturbed the ecological balance perhaps in certain content and in shorter spells but did not violate the natural relationships of correlation and variance changes so far.
Parmaksızoğlu, Selami; Alçı, Mustafa
2011-01-01
Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods.
Parmaksızoğlu, Selami; Alçı, Mustafa
2011-01-01
Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods. PMID:22163903
Hi-fidelity multi-scale local processing for visually optimized far-infrared Herschel images
NASA Astrophysics Data System (ADS)
Li Causi, G.; Schisano, E.; Liu, S. J.; Molinari, S.; Di Giorgio, A.
2016-07-01
In the context of the "Hi-Gal" multi-band full-plane mapping program for the Galactic Plane, as imaged by the Herschel far-infrared satellite, we have developed a semi-automatic tool which produces high definition, high quality color maps optimized for visual perception of extended features, like bubbles and filaments, against the high background variations. We project the map tiles of three selected bands onto a 3-channel panorama, which spans the central 130 degrees of galactic longitude times 2.8 degrees of galactic latitude, at the pixel scale of 3.2", in cartesian galactic coordinates. Then we process this image piecewise, applying a custom multi-scale local stretching algorithm, enforced by a local multi-scale color balance. Finally, we apply an edge-preserving contrast enhancement to perform an artifact-free details sharpening. Thanks to this tool, we have thus produced a stunning giga-pixel color image of the far-infrared Galactic Plane that we made publicly available with the recent release of the Hi-Gal mosaics and compact source catalog.
Adaptive multiscale processing for contrast enhancement
NASA Astrophysics Data System (ADS)
Laine, Andrew F.; Song, Shuwu; Fan, Jian; Huda, Walter; Honeyman, Janice C.; Steinbach, Barbara G.
1993-07-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms within a continuum of scale space and used to enhance features of importance to mammography. Choosing analyzing functions that are well localized in both space and frequency, results in a powerful methodology for image analysis. We describe methods of contrast enhancement based on two overcomplete (redundant) multiscale representations: (1) Dyadic wavelet transform (2) (phi) -transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by non-linear, logarithmic and constant scale-space weight functions. Multiscale edges identified within distinct levels of transform space provide a local support for enhancement throughout each decomposition. We demonstrate that features extracted from wavelet spaces can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.
NASA Astrophysics Data System (ADS)
Aouabdi, Salim; Taibi, Mahmoud; Bouras, Slimane; Boutasseta, Nadir
2017-06-01
This paper describes an approach for identifying localized gear tooth defects, such as pitting, using phase currents measured from an induction machine driving the gearbox. A new tool of anomaly detection based on multi-scale entropy (MSE) algorithm SampEn which allows correlations in signals to be identified over multiple time scales. The motor current signature analysis (MCSA) in conjunction with principal component analysis (PCA) and the comparison of observed values with those predicted from a model built using nominally healthy data. The Simulation results show that the proposed method is able to detect gear tooth pitting in current signals.
Boundary and object detection in real world images. [by means of algorithms
NASA Technical Reports Server (NTRS)
Yakimovsky, Y.
1974-01-01
A solution to the problem of automatic location of objects in digital pictures by computer is presented. A self-scaling local edge detector which can be applied in parallel on a picture is described. Clustering algorithms and boundary following algorithms which are sequential in nature process the edge data to locate images of objects.
Extended AIC model based on high order moments and its application in the financial market
NASA Astrophysics Data System (ADS)
Mao, Xuegeng; Shang, Pengjian
2018-07-01
In this paper, an extended method of traditional Akaike Information Criteria(AIC) is proposed to detect the volatility of time series by combining it with higher order moments, such as skewness and kurtosis. Since measures considering higher order moments are powerful in many aspects, the properties of asymmetry and flatness can be observed. Furthermore, in order to reduce the effect of noise and other incoherent features, we combine the extended AIC algorithm with multiscale wavelet analysis, in which the newly extended AIC algorithm is applied to wavelet coefficients at several scales and the time series are reconstructed by wavelet transform. After that, we create AIC planes to derive the relationship among AIC values using variance, skewness and kurtosis respectively. When we test this technique on the financial market, the aim is to analyze the trend and volatility of the closing price of stock indices and classify them. And we also adapt multiscale analysis to measure complexity of time series over a range of scales. Empirical results show that the singularity of time series in stock market can be detected via extended AIC algorithm.
BP fusion model for the detection of oil spills on the sea by remote sensing
NASA Astrophysics Data System (ADS)
Chen, Weiwei; An, Jubai; Zhang, Hande; Lin, Bin
2003-06-01
Oil spills are very serious marine pollution in many countries. In order to detect and identify the oil-spilled on the sea by remote sensor, scientists have to conduct a research work on the remote sensing image. As to the detection of oil spills on the sea, edge detection is an important technology in image processing. There are many algorithms of edge detection developed for image processing. These edge detection algorithms always have their own advantages and disadvantages in the image processing. Based on the primary requirements of edge detection of the oil spills" image on the sea, computation time and detection accuracy, we developed a fusion model. The model employed a BP neural net to fuse the detection results of simple operators. The reason we selected BP neural net as the fusion technology is that the relation between simple operators" result of edge gray level and the image"s true edge gray level is nonlinear, while BP neural net is good at solving the nonlinear identification problem. Therefore in this paper we trained a BP neural net by some oil spill images, then applied the BP fusion model on the edge detection of other oil spill images and obtained a good result. In this paper the detection result of some gradient operators and Laplacian operator are also compared with the result of BP fusion model to analysis the fusion effect. At last the paper pointed out that the fusion model has higher accuracy and higher speed in the processing oil spill image"s edge detection.
NASA Astrophysics Data System (ADS)
Baumann, Sebastian; Robl, Jörg; Wendt, Lorenz; Willingshofer, Ernst; Hilberg, Sylke
2016-04-01
Automated lineament analysis on remotely sensed data requires two general process steps: The identification of neighboring pixels showing high contrast and the conversion of these domains into lines. The target output is the lineaments' position, extent and orientation. We developed a lineament extraction tool programmed in R using digital elevation models as input data to generate morphological lineaments defined as follows: A morphological lineament represents a zone of high relief roughness, whose length significantly exceeds the width. As relief roughness any deviation from a flat plane, defined by a roughness threshold, is considered. In our novel approach a multi-directional and multi-scale roughness filter uses moving windows of different neighborhood sizes to identify threshold limited rough domains on digital elevation models. Surface roughness is calculated as the vertical elevation difference between the center cell and the different orientated straight lines connecting two edge cells of a neighborhood, divided by the horizontal distance of the edge cells. Thus multiple roughness values depending on the neighborhood sizes and orientations of the edge connecting lines are generated for each cell and their maximum and minimum values are extracted. Thereby negative signs of the roughness parameter represent concave relief structures as valleys, positive signs convex relief structures as ridges. A threshold defines domains of high relief roughness. These domains are thinned to a representative point pattern by a 3x3 neighborhood filter, highlighting maximum and minimum roughness peaks, and representing the center points of lineament segments. The orientation and extent of the lineament segments are calculated within the roughness domains, generating a straight line segment in the direction of least roughness differences. We tested our algorithm on digital elevation models of multiple sources and scales and compared the results visually with shaded relief map of these digital elevation models. The lineament segments trace the relief structure to a great extent and the calculated roughness parameter represents the physical geometry of the digital elevation model. Modifying the threshold for the surface roughness value highlights different distinct relief structures. Also the neighborhood size at which lineament segments are detected correspond with the width of the surface structure and may be a useful additional parameter for further analysis. The discrimination of concave and convex relief structures perfectly matches with valleys and ridges of the surface.
A new method of edge detection for object recognition
Maddox, Brian G.; Rhew, Benjamin
2004-01-01
Traditional edge detection systems function by returning every edge in an input image. This can result in a large amount of clutter and make certain vectorization algorithms less accurate. Accuracy problems can then have a large impact on automated object recognition systems that depend on edge information. A new method of directed edge detection can be used to limit the number of edges returned based on a particular feature. This results in a cleaner image that is easier for vectorization. Vectorized edges from this process could then feed an object recognition system where the edge data would also contain information as to what type of feature it bordered.
Measurement of pattern roughness and local size variation using CD-SEM: current status
NASA Astrophysics Data System (ADS)
Fukuda, Hiroshi; Kawasaki, Takahiro; Kawada, Hiroki; Sakai, Kei; Kato, Takashi; Yamaguchi, Satoru; Ikota, Masami; Momonoi, Yoshinori
2018-03-01
Measurement of line edge roughness (LER) is discussed from four aspects: edge detection, PSD prediction, sampling strategy, and noise mitigation, and general guidelines and practical solutions for LER measurement today are introduced. Advanced edge detection algorithms such as wave-matching method are shown effective for robustly detecting edges from low SNR images, while conventional algorithm with weak filtering is still effective in suppressing SEM noise and aliasing. Advanced PSD prediction method such as multi-taper method is effective in suppressing sampling noise within a line edge to analyze, while number of lines is still required for suppressing line to line variation. Two types of SEM noise mitigation methods, "apparent noise floor" subtraction method and LER-noise decomposition using regression analysis are verified to successfully mitigate SEM noise from PSD curves. These results are extended to LCDU measurement to clarify the impact of SEM noise and sampling noise on LCDU.
Multi-scale graph-cut algorithm for efficient water-fat separation.
Berglund, Johan; Skorpil, Mikael
2017-09-01
To improve the accuracy and robustness to noise in water-fat separation by unifying the multiscale and graph cut based approaches to B 0 -correction. A previously proposed water-fat separation algorithm that corrects for B 0 field inhomogeneity in 3D by a single quadratic pseudo-Boolean optimization (QPBO) graph cut was incorporated into a multi-scale framework, where field map solutions are propagated from coarse to fine scales for voxels that are not resolved by the graph cut. The accuracy of the single-scale and multi-scale QPBO algorithms was evaluated against benchmark reference datasets. The robustness to noise was evaluated by adding noise to the input data prior to water-fat separation. Both algorithms achieved the highest accuracy when compared with seven previously published methods, while computation times were acceptable for implementation in clinical routine. The multi-scale algorithm was more robust to noise than the single-scale algorithm, while causing only a small increase (+10%) of the reconstruction time. The proposed 3D multi-scale QPBO algorithm offers accurate water-fat separation, robustness to noise, and fast reconstruction. The software implementation is freely available to the research community. Magn Reson Med 78:941-949, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Enhancing Community Detection By Affinity-based Edge Weighting Scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Andy; Sanders, Geoffrey; Henson, Van
Community detection refers to an important graph analytics problem of finding a set of densely-connected subgraphs in a graph and has gained a great deal of interest recently. The performance of current community detection algorithms is limited by an inherent constraint of unweighted graphs that offer very little information on their internal community structures. In this paper, we propose a new scheme to address this issue that weights the edges in a given graph based on recently proposed vertex affinity. The vertex affinity quantifies the proximity between two vertices in terms of their clustering strength, and therefore, it is idealmore » for graph analytics applications such as community detection. We also demonstrate that the affinity-based edge weighting scheme can improve the performance of community detection algorithms significantly.« less
Quality detection system and method of micro-accessory based on microscopic vision
NASA Astrophysics Data System (ADS)
Li, Dongjie; Wang, Shiwei; Fu, Yu
2017-10-01
Considering that the traditional manual detection of micro-accessory has some problems, such as heavy workload, low efficiency and large artificial error, a kind of quality inspection system of micro-accessory has been designed. Micro-vision technology has been used to inspect quality, which optimizes the structure of the detection system. The stepper motor is used to drive the rotating micro-platform to transfer quarantine device and the microscopic vision system is applied to get graphic information of micro-accessory. The methods of image processing and pattern matching, the variable scale Sobel differential edge detection algorithm and the improved Zernike moments sub-pixel edge detection algorithm are combined in the system in order to achieve a more detailed and accurate edge of the defect detection. The grade at the edge of the complex signal can be achieved accurately by extracting through the proposed system, and then it can distinguish the qualified products and unqualified products with high precision recognition.
NASA Technical Reports Server (NTRS)
Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.
2014-01-01
A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.
Automatic detection of artifacts in converted S3D video
NASA Astrophysics Data System (ADS)
Bokov, Alexander; Vatolin, Dmitriy; Zachesov, Anton; Belous, Alexander; Erofeev, Mikhail
2014-03-01
In this paper we present algorithms for automatically detecting issues specific to converted S3D content. When a depth-image-based rendering approach produces a stereoscopic image, the quality of the result depends on both the depth maps and the warping algorithms. The most common problem with converted S3D video is edge-sharpness mismatch. This artifact may appear owing to depth-map blurriness at semitransparent edges: after warping, the object boundary becomes sharper in one view and blurrier in the other, yielding binocular rivalry. To detect this problem we estimate the disparity map, extract boundaries with noticeable differences, and analyze edge-sharpness correspondence between views. We pay additional attention to cases involving a complex background and large occlusions. Another problem is detection of scenes that lack depth volume: we present algorithms for detecting at scenes and scenes with at foreground objects. To identify these problems we analyze the features of the RGB image as well as uniform areas in the depth map. Testing of our algorithms involved examining 10 Blu-ray 3D releases with converted S3D content, including Clash of the Titans, The Avengers, and The Chronicles of Narnia: The Voyage of the Dawn Treader. The algorithms we present enable improved automatic quality assessment during the production stage.
Delaunay based algorithm for finding polygonal voids in planar point sets
NASA Astrophysics Data System (ADS)
Alonso, R.; Ojeda, J.; Hitschfeld, N.; Hervías, C.; Campusano, L. E.
2018-01-01
This paper presents a new algorithm to find under-dense regions called voids inside a 2D point set. The algorithm starts from terminal-edges (local longest-edges) in a Delaunay triangulation and builds the largest possible low density terminal-edge regions around them. A terminal-edge region can represent either an entire void or part of a void (subvoid). Using artificial data sets, the case of voids that are detected as several adjacent subvoids is analyzed and four subvoid joining criteria are proposed and evaluated. Since this work is inspired on searches of a more robust, effective and efficient algorithm to find 3D cosmological voids the evaluation of the joining criteria considers this context. However, the design of the algorithm permits its adaption to the requirements of any similar application.
Schaub, Michael T.; Delvenne, Jean-Charles; Yaliraki, Sophia N.; Barahona, Mauricio
2012-01-01
In recent years, there has been a surge of interest in community detection algorithms for complex networks. A variety of computational heuristics, some with a long history, have been proposed for the identification of communities or, alternatively, of good graph partitions. In most cases, the algorithms maximize a particular objective function, thereby finding the ‘right’ split into communities. Although a thorough comparison of algorithms is still lacking, there has been an effort to design benchmarks, i.e., random graph models with known community structure against which algorithms can be evaluated. However, popular community detection methods and benchmarks normally assume an implicit notion of community based on clique-like subgraphs, a form of community structure that is not always characteristic of real networks. Specifically, networks that emerge from geometric constraints can have natural non clique-like substructures with large effective diameters, which can be interpreted as long-range communities. In this work, we show that long-range communities escape detection by popular methods, which are blinded by a restricted ‘field-of-view’ limit, an intrinsic upper scale on the communities they can detect. The field-of-view limit means that long-range communities tend to be overpartitioned. We show how by adopting a dynamical perspective towards community detection [1], [2], in which the evolution of a Markov process on the graph is used as a zooming lens over the structure of the network at all scales, one can detect both clique- or non clique-like communities without imposing an upper scale to the detection. Consequently, the performance of algorithms on inherently low-diameter, clique-like benchmarks may not always be indicative of equally good results in real networks with local, sparser connectivity. We illustrate our ideas with constructive examples and through the analysis of real-world networks from imaging, protein structures and the power grid, where a multiscale structure of non clique-like communities is revealed. PMID:22384178
Adaptation of a Fast Optimal Interpolation Algorithm to the Mapping of Oceangraphic Data
NASA Technical Reports Server (NTRS)
Menemenlis, Dimitris; Fieguth, Paul; Wunsch, Carl; Willsky, Alan
1997-01-01
A fast, recently developed, multiscale optimal interpolation algorithm has been adapted to the mapping of hydrographic and other oceanographic data. This algorithm produces solution and error estimates which are consistent with those obtained from exact least squares methods, but at a small fraction of the computational cost. Problems whose solution would be completely impractical using exact least squares, that is, problems with tens or hundreds of thousands of measurements and estimation grid points, can easily be solved on a small workstation using the multiscale algorithm. In contrast to methods previously proposed for solving large least squares problems, our approach provides estimation error statistics while permitting long-range correlations, using all measurements, and permitting arbitrary measurement locations. The multiscale algorithm itself, published elsewhere, is not the focus of this paper. However, the algorithm requires statistical models having a very particular multiscale structure; it is the development of a class of multiscale statistical models, appropriate for oceanographic mapping problems, with which we concern ourselves in this paper. The approach is illustrated by mapping temperature in the northeastern Pacific. The number of hydrographic stations is kept deliberately small to show that multiscale and exact least squares results are comparable. A portion of the data were not used in the analysis; these data serve to test the multiscale estimates. A major advantage of the present approach is the ability to repeat the estimation procedure a large number of times for sensitivity studies, parameter estimation, and model testing. We have made available by anonymous Ftp a set of MATLAB-callable routines which implement the multiscale algorithm and the statistical models developed in this paper.
Researches on Position Detection for Vacuum Switch Electrode
NASA Astrophysics Data System (ADS)
Dong, Huajun; Guo, Yingjie; Li, Jie; Kong, Yihan
2018-03-01
Form and transformation character of vacuum arc is important influencing factor on the vacuum switch performance, and the dynamic separations of electrode is the chief effecting factor on the transformation of vacuum arcs forms. Consequently, how to detect the position of electrode to calculate the separations in the arcs image is of great significance. However, gray level distribution of vacuum arcs image isn’t even, the gray level of burning arcs is high, but the gray level of electrode is low, meanwhile, the forms of vacuum arcs changes sharply, the problems above restrict electrode position detection precisely. In this paper, algorithm of detecting electrode position base on vacuum arcs image was proposed. The digital image processing technology was used in vacuum switch arcs image analysis, the upper edge and lower edge were detected respectively, then linear fitting was done using the result of edge detection, the fitting result was the position of electrode, thus, accurate position detection of electrode was realized. From the experimental results, we can see that: algorithm described in this paper detected upper and lower edge of arcs successfully and the position of electrode was obtained through calculation.
Coherent structures shed by multiscale cut-in trailing edge serrations on lifting wings
NASA Astrophysics Data System (ADS)
Prigent, S. L.; Buxton, O. R. H.; Bruce, P. J. K.
2017-07-01
This experimental study presents the effect of multiscale cut-in trailing edge serrations on the coherent structures shed into the wake of a lifting wing. Two-probe span-wise hot-wire traverses are performed to study spectra, coherence, and phase shift. In addition, planar particle image velocimetry is used to study the spatio-temporal structure of the vortices shed by the airfoils. Compared with a single tone sinusoidal serration, the multiscale ones reduce the vortex shedding energy as well as the span-wise coherence. Results indicate that the vortex shedding is locked into an arch-shaped cell structure. This structure is weakened by the multiscale patterns, which explains the reduction in both shedding energy and coherence.
Fault detection method for railway wheel flat using an adaptive multiscale morphological filter
NASA Astrophysics Data System (ADS)
Li, Yifan; Zuo, Ming J.; Lin, Jianhui; Liu, Jianxin
2017-02-01
This study explores the capacity of the morphology analysis for railway wheel flat fault detection. A dynamic model of vehicle systems with 56 degrees of freedom was set up along with a wheel flat model to calculate the dynamic responses of axle box. The vehicle axle box vibration signal is complicated because it not only contains the information of wheel defect, but also includes track condition information. Thus, how to extract the influential features of wheels from strong background noise effectively is a typical key issue for railway wheel fault detection. In this paper, an algorithm for adaptive multiscale morphological filtering (AMMF) was proposed, and its effect was evaluated by a simulated signal. And then this algorithm was employed to study the axle box vibration caused by wheel flats, as well as the influence of track irregularity and vehicle running speed on diagnosis results. Finally, the effectiveness of the proposed method was verified by bench testing. Research results demonstrate that the AMMF extracts the influential characteristic of axle box vibration signals effectively and can diagnose wheel flat faults in real time.
An algorithm for pavement crack detection based on multiscale space
NASA Astrophysics Data System (ADS)
Liu, Xiang-long; Li, Qing-quan
2006-10-01
Conventional human-visual and manual field pavement crack detection method and approaches are very costly, time-consuming, dangerous, labor-intensive and subjective. They possess various drawbacks such as having a high degree of variability of the measure results, being unable to provide meaningful quantitative information and almost always leading to inconsistencies in crack details over space and across evaluation, and with long-periodic measurement. With the development of the public transportation and the growth of the Material Flow System, the conventional method can far from meet the demands of it, thereby, the automatic pavement state data gathering and data analyzing system come to the focus of the vocation's attention, and developments in computer technology, digital image acquisition, image processing and multi-sensors technology made the system possible, but the complexity of the image processing always made the data processing and data analyzing come to the bottle-neck of the whole system. According to the above description, a robust and high-efficient parallel pavement crack detection algorithm based on Multi-Scale Space is proposed in this paper. The proposed method is based on the facts that: (1) the crack pixels in pavement images are darker than their surroundings and continuous; (2) the threshold values of gray-level pavement images are strongly related with the mean value and standard deviation of the pixel-grey intensities. The Multi-Scale Space method is used to improve the data processing speed and minimize the effectiveness caused by image noise. Experiment results demonstrate that the advantages are remarkable: (1) it can correctly discover tiny cracks, even from very noise pavement image; (2) the efficiency and accuracy of the proposed algorithm are superior; (3) its application-dependent nature can simplify the design of the entire system.
Automatic image enhancement based on multi-scale image decomposition
NASA Astrophysics Data System (ADS)
Feng, Lu; Wu, Zhuangzhi; Pei, Luo; Long, Xiong
2014-01-01
In image processing and computational photography, automatic image enhancement is one of the long-range objectives. Recently the automatic image enhancement methods not only take account of the globe semantics, like correct color hue and brightness imbalances, but also the local content of the image, such as human face and sky of landscape. In this paper we describe a new scheme for automatic image enhancement that considers both global semantics and local content of image. Our automatic image enhancement method employs the multi-scale edge-aware image decomposition approach to detect the underexposure regions and enhance the detail of the salient content. The experiment results demonstrate the effectiveness of our approach compared to existing automatic enhancement methods.
A threshold-based fixed predictor for JPEG-LS image compression
NASA Astrophysics Data System (ADS)
Deng, Lihua; Huang, Zhenghua; Yao, Shoukui
2018-03-01
In JPEG-LS, fixed predictor based on median edge detector (MED) only detect horizontal and vertical edges, and thus produces large prediction errors in the locality of diagonal edges. In this paper, we propose a threshold-based edge detection scheme for the fixed predictor. The proposed scheme can detect not only the horizontal and vertical edges, but also diagonal edges. For some certain thresholds, the proposed scheme can be simplified to other existing schemes. So, it can also be regarded as the integration of these existing schemes. For a suitable threshold, the accuracy of horizontal and vertical edges detection is higher than the existing median edge detection in JPEG-LS. Thus, the proposed fixed predictor outperforms the existing JPEG-LS predictors for all images tested, while the complexity of the overall algorithm is maintained at a similar level.
Optimizing Robinson Operator with Ant Colony Optimization As a Digital Image Edge Detection Method
NASA Astrophysics Data System (ADS)
Yanti Nasution, Tarida; Zarlis, Muhammad; K. M Nasution, Mahyuddin
2017-12-01
Edge detection serves to identify the boundaries of an object against a background of mutual overlap. One of the classic method for edge detection is operator Robinson. Operator Robinson produces a thin, not assertive and grey line edge. To overcome these deficiencies, the proposed improvements to edge detection method with the approach graph with Ant Colony Optimization algorithm. The repairs may be performed are thicken the edge and connect the edges cut off. Edge detection research aims to do optimization of operator Robinson with Ant Colony Optimization then compare the output and generated the inferred extent of Ant Colony Optimization can improve result of edge detection that has not been optimized and improve the accuracy of the results of Robinson edge detection. The parameters used in performance measurement of edge detection are morphology of the resulting edge line, MSE and PSNR. The result showed that Robinson and Ant Colony Optimization method produces images with a more assertive and thick edge. Ant Colony Optimization method is able to be used as a method for optimizing operator Robinson by improving the image result of Robinson detection average 16.77 % than classic Robinson result.
A novel algorithm for osteoarthritis detection in Hough domain
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sabyasachi; Poria, Nilanjan; Chakraborty, Rajanya; Pratiher, Sawon; Mukherjee, Sukanya; Panigrahi, Prasanta K.
2018-02-01
Background subtraction of knee MRI images has been performed, followed by edge detection through canny edge detector. In order to avoid the discontinuities among edges, Daubechies-4 (Db-4) discrete wavelet transform (DWT) methodology is applied for the smoothening of edges identified through canny edge detector. The approximation coefficients of Db-4, having highest energy is selected to get rid of discontinuities in edges. Hough transform is then applied to find imperfect knee locations, as a function of distance (r) and angle (θ). The final outcome of the linear Hough transform is a two-dimensional array i.e., the accumulator space (r, θ) where one dimension of this matrix is the quantized angle θ and the other dimension is the quantized distance r. A novel algorithm has been suggested such that any deviation from the healthy knee bone structure for diseases like osteoarthritis can clearly be depicted on the accumulator space.
NASA Astrophysics Data System (ADS)
Deng, Feiyue; Yang, Shaopu; Tang, Guiji; Hao, Rujiang; Zhang, Mingliang
2017-04-01
Wheel bearings are essential mechanical components of trains, and fault detection of the wheel bearing is of great significant to avoid economic loss and casualty effectively. However, considering the operating conditions, detection and extraction of the fault features hidden in the heavy noise of the vibration signal have become a challenging task. Therefore, a novel method called adaptive multi-scale AVG-Hat morphology filter (MF) is proposed to solve it. The morphology AVG-Hat operator not only can suppress the interference of the strong background noise greatly, but also enhance the ability of extracting fault features. The improved envelope spectrum sparsity (IESS), as a new evaluation index, is proposed to select the optimal filtering signal processed by the multi-scale AVG-Hat MF. It can present a comprehensive evaluation about the intensity of fault impulse to the background noise. The weighted coefficients of the different scale structural elements (SEs) in the multi-scale MF are adaptively determined by the particle swarm optimization (PSO) algorithm. The effectiveness of the method is validated by analyzing the real wheel bearing fault vibration signal (e.g. outer race fault, inner race fault and rolling element fault). The results show that the proposed method could improve the performance in the extraction of fault features effectively compared with the multi-scale combined morphological filter (CMF) and multi-scale morphology gradient filter (MGF) methods.
An improved algorithm of laser spot center detection in strong noise background
NASA Astrophysics Data System (ADS)
Zhang, Le; Wang, Qianqian; Cui, Xutai; Zhao, Yu; Peng, Zhong
2018-01-01
Laser spot center detection is demanded in many applications. The common algorithms for laser spot center detection such as centroid and Hough transform method have poor anti-interference ability and low detection accuracy in the condition of strong background noise. In this paper, firstly, the median filtering was used to remove the noise while preserving the edge details of the image. Secondly, the binarization of the laser facula image was carried out to extract target image from background. Then the morphological filtering was performed to eliminate the noise points inside and outside the spot. At last, the edge of pretreated facula image was extracted and the laser spot center was obtained by using the circle fitting method. In the foundation of the circle fitting algorithm, the improved algorithm added median filtering, morphological filtering and other processing methods. This method could effectively filter background noise through theoretical analysis and experimental verification, which enhanced the anti-interference ability of laser spot center detection and also improved the detection accuracy.
Multiscale-Driven approach to detecting change in Synthetic Aperture Radar (SAR) imagery
NASA Astrophysics Data System (ADS)
Gens, R.; Hogenson, K.; Ajadi, O. A.; Meyer, F. J.; Myers, A.; Logan, T. A.; Arnoult, K., Jr.
2017-12-01
Detecting changes between Synthetic Aperture Radar (SAR) images can be a useful but challenging exercise. SAR with its all-weather capabilities can be an important resource in identifying and estimating the expanse of events such as flooding, river ice breakup, earthquake damage, oil spills, and forest growth, as it can overcome shortcomings of optical methods related to cloud cover. However, detecting change in SAR imagery can be impeded by many factors including speckle, complex scattering responses, low temporal sampling, and difficulty delineating boundaries. In this presentation we use a change detection method based on a multiscale-driven approach. By using information at different resolution levels, we attempt to obtain more accurate change detection maps in both heterogeneous and homogeneous regions. Integrated within the processing flow are processes that 1) improve classification performance by combining Expectation-Maximization algorithms with mathematical morphology, 2) achieve high accuracy in preserving boundaries using measurement level fusion techniques, and 3) combine modern non-local filtering and 2D-discrete stationary wavelet transform to provide robustness against noise. This multiscale-driven approach to change detection has recently been incorporated into the Alaska Satellite Facility (ASF) Hybrid Pluggable Processing Pipeline (HyP3) using radiometrically terrain corrected SAR images. Examples primarily from natural hazards are presented to illustrate the capabilities and limitations of the change detection method.
Automatic Road Gap Detection Using Fuzzy Inference System
NASA Astrophysics Data System (ADS)
Hashemi, S.; Valadan Zoej, M. J.; Mokhtarzadeh, M.
2011-09-01
Automatic feature extraction from aerial and satellite images is a high-level data processing which is still one of the most important research topics of the field. In this area, most of the researches are focused on the early step of road detection, where road tracking methods, morphological analysis, dynamic programming and snakes, multi-scale and multi-resolution methods, stereoscopic and multi-temporal analysis, hyper spectral experiments, are some of the mature methods in this field. Although most researches are focused on detection algorithms, none of them can extract road network perfectly. On the other hand, post processing algorithms accentuated on the refining of road detection results, are not developed as well. In this article, the main is to design an intelligent method to detect and compensate road gaps remained on the early result of road detection algorithms. The proposed algorithm consists of five main steps as follow: 1) Short gap coverage: In this step, a multi-scale morphological is designed that covers short gaps in a hierarchical scheme. 2) Long gap detection: In this step, the long gaps, could not be covered in the previous stage, are detected using a fuzzy inference system. for this reason, a knowledge base consisting of some expert rules are designed which are fired on some gap candidates of the road detection results. 3) Long gap coverage: In this stage, detected long gaps are compensated by two strategies of linear and polynomials for this reason, shorter gaps are filled by line fitting while longer ones are compensated by polynomials.4) Accuracy assessment: In order to evaluate the obtained results, some accuracy assessment criteria are proposed. These criteria are obtained by comparing the obtained results with truly compensated ones produced by a human expert. The complete evaluation of the obtained results whit their technical discussions are the materials of the full paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Azevedo, Eduardo; Abbott, Stephen; Koskela, Tuomas
The XGC fusion gyrokinetic code combines state-of-the-art, portable computational and algorithmic technologies to enable complicated multiscale simulations of turbulence and transport dynamics in ITER edge plasma on the largest US open-science computer, the CRAY XK7 Titan, at its maximal heterogeneous capability, which have not been possible before due to a factor of over 10 shortage in the time-to-solution for less than 5 days of wall-clock time for one physics case. Frontier techniques such as nested OpenMP parallelism, adaptive parallel I/O, staging I/O and data reduction using dynamic and asynchronous applications interactions, dynamic repartitioning.
An Iris Segmentation Algorithm based on Edge Orientation for Off-angle Iris Recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakaya, Mahmut; Barstow, Del R; Santos-Villalobos, Hector J
Iris recognition is known as one of the most accurate and reliable biometrics. However, the accuracy of iris recognition systems depends on the quality of data capture and is negatively affected by several factors such as angle, occlusion, and dilation. In this paper, we present a segmentation algorithm for off-angle iris images that uses edge detection, edge elimination, edge classification, and ellipse fitting techniques. In our approach, we first detect all candidate edges in the iris image by using the canny edge detector; this collection contains edges from the iris and pupil boundaries as well as eyelash, eyelids, iris texturemore » etc. Edge orientation is used to eliminate the edges that cannot be part of the iris or pupil. Then, we classify the remaining edge points into two sets as pupil edges and iris edges. Finally, we randomly generate subsets of iris and pupil edge points, fit ellipses for each subset, select ellipses with similar parameters, and average to form the resultant ellipses. Based on the results from real experiments, the proposed method shows effectiveness in segmentation for off-angle iris images.« less
He, Jieyue; Li, Chaojun; Ye, Baoliu; Zhong, Wei
2012-06-25
Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures. In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules. The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms. Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the computational time significantly while keeping high prediction accuracy.
Optic disc detection using ant colony optimization
NASA Astrophysics Data System (ADS)
Dias, Marcy A.; Monteiro, Fernando C.
2012-09-01
The retinal fundus images are used in the treatment and diagnosis of several eye diseases, such as diabetic retinopathy and glaucoma. This paper proposes a new method to detect the optic disc (OD) automatically, due to the fact that the knowledge of the OD location is essential to the automatic analysis of retinal images. Ant Colony Optimization (ACO) is an optimization algorithm inspired by the foraging behaviour of some ant species that has been applied in image processing for edge detection. Recently, the ACO was used in fundus images to detect edges, and therefore, to segment the OD and other anatomical retinal structures. We present an algorithm for the detection of OD in the retina which takes advantage of the Gabor wavelet transform, entropy and ACO algorithm. Forty images of the retina from DRIVE database were used to evaluate the performance of our method.
Robust feature detection and local classification for surfaces based on moment analysis.
Clarenz, Ulrich; Rumpf, Martin; Telea, Alexandru
2004-01-01
The stable local classification of discrete surfaces with respect to features such as edges and corners or concave and convex regions, respectively, is as quite difficult as well as indispensable for many surface processing applications. Usually, the feature detection is done via a local curvature analysis. If concerned with large triangular and irregular grids, e.g., generated via a marching cube algorithm, the detectors are tedious to treat and a robust classification is hard to achieve. Here, a local classification method on surfaces is presented which avoids the evaluation of discretized curvature quantities. Moreover, it provides an indicator for smoothness of a given discrete surface and comes together with a built-in multiscale. The proposed classification tool is based on local zero and first moments on the discrete surface. The corresponding integral quantities are stable to compute and they give less noisy results compared to discrete curvature quantities. The stencil width for the integration of the moments turns out to be the scale parameter. Prospective surface processing applications are the segmentation on surfaces, surface comparison, and matching and surface modeling. Here, a method for feature preserving fairing of surfaces is discussed to underline the applicability of the presented approach.
NASA Astrophysics Data System (ADS)
Xu, Lei; Zheng, Xiaoxiang; Zhang, Hengyi; Yu, Yajun
1998-09-01
Accurate edge detection of retinal vessels is a prerequisite for quantitative analysis of subtle morphological changes of retinal vessels under different pathological conditions. A novel method for edge detection of retinal vessels is presented in this paper. Methods: (1) Wavelet-based image preprocessing. (2) The signed edge detection algorithm and mathematical morphological operation are applied to get the approximate regions that contain retinal vessels. (3) By convolving the preprocessed image with a LoG operator only on the detected approximate regions of retinal vessels, followed by edges refining, clear edge maps of the retinal vessels are fast obtained. Results: A detailed performance evaluation together with the existing techniques is given to demonstrate the strong features of our method. Conclusions: True edge locations of retinal vessels can be fast detected with continuous structures of retinal vessels, less non- vessel segments left and insensitivity to noise. The method is also suitable for other application fields such as road edge detection.
NASA Astrophysics Data System (ADS)
Huang, Weilin; Wang, Runqiu; Chen, Yangkang
2018-05-01
Microseismic signal is typically weak compared with the strong background noise. In order to effectively detect the weak signal in microseismic data, we propose a mathematical morphology based approach. We decompose the initial data into several morphological multiscale components. For detection of weak signal, a non-stationary weighting operator is proposed and introduced into the process of reconstruction of data by morphological multiscale components. The non-stationary weighting operator can be obtained by solving an inversion problem. The regularized non-stationary method can be understood as a non-stationary matching filtering method, where the matching filter has the same size as the data to be filtered. In this paper, we provide detailed algorithmic descriptions and analysis. The detailed algorithm framework, parameter selection and computational issue for the regularized non-stationary morphological reconstruction (RNMR) method are presented. We validate the presented method through a comprehensive analysis through different data examples. We first test the proposed technique using a synthetic data set. Then the proposed technique is applied to a field project, where the signals induced from hydraulic fracturing are recorded by 12 three-component geophones in a monitoring well. The result demonstrates that the RNMR can improve the detectability of the weak microseismic signals. Using the processed data, the short-term-average over long-term average picking algorithm and Geiger's method are applied to obtain new locations of microseismic events. In addition, we show that the proposed RNMR method can be used not only in microseismic data but also in reflection seismic data to detect the weak signal. We also discussed the extension of RNMR from 1-D to 2-D or a higher dimensional version.
The Edge Detectors Suitable for Retinal OCT Image Segmentation
Yang, Jing; Gao, Qian; Zhou, Sheng
2017-01-01
Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation task. The three most promising edge detection algorithms were identified in the related literature: Canny edge detector, the two-pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms consistently the Canny detector and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT images. In addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem. These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries. The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT images contain more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future efforts in the quantitative analysis of retinal OCT images for the effective use of OCT technologies in the field of ophthalmology. PMID:29065594
Design of compactly supported wavelet to match singularities in medical images
NASA Astrophysics Data System (ADS)
Fung, Carrson C.; Shi, Pengcheng
2002-11-01
Analysis and understanding of medical images has important clinical values for patient diagnosis and treatment, as well as technical implications for computer vision and pattern recognition. One of the most fundamental issues is the detection of object boundaries or singularities, which is often the basis for further processes such as organ/tissue recognition, image registration, motion analysis, measurement of anatomical and physiological parameters, etc. The focus of this work involved taking a correlation based approach toward edge detection, by exploiting some of desirable properties of wavelet analysis. This leads to the possibility of constructing a bank of detectors, consisting of multiple wavelet basis functions of different scales which are optimal for specific types of edges, in order to optimally detect all the edges in an image. Our work involved developing a set of wavelet functions which matches the shape of the ramp and pulse edges. The matching algorithm used focuses on matching the edges in the frequency domain. It was proven that this technique could create matching wavelets applicable at all scales. Results have shown that matching wavelets can be obtained for the pulse edge while the ramp edge requires another matching algorithm.
Feature extraction algorithm for space targets based on fractal theory
NASA Astrophysics Data System (ADS)
Tian, Balin; Yuan, Jianping; Yue, Xiaokui; Ning, Xin
2007-11-01
In order to offer a potential for extending the life of satellites and reducing the launch and operating costs, satellite servicing including conducting repairs, upgrading and refueling spacecraft on-orbit become much more frequently. Future space operations can be more economically and reliably executed using machine vision systems, which can meet real time and tracking reliability requirements for image tracking of space surveillance system. Machine vision was applied to the research of relative pose for spacecrafts, the feature extraction algorithm was the basis of relative pose. In this paper fractal geometry based edge extraction algorithm which can be used in determining and tracking the relative pose of an observed satellite during proximity operations in machine vision system was presented. The method gets the gray-level image distributed by fractal dimension used the Differential Box-Counting (DBC) approach of the fractal theory to restrain the noise. After this, we detect the consecutive edge using Mathematical Morphology. The validity of the proposed method is examined by processing and analyzing images of space targets. The edge extraction method not only extracts the outline of the target, but also keeps the inner details. Meanwhile, edge extraction is only processed in moving area to reduce computation greatly. Simulation results compared edge detection using the method which presented by us with other detection methods. The results indicate that the presented algorithm is a valid method to solve the problems of relative pose for spacecrafts.
Ultrasound image edge detection based on a novel multiplicative gradient and Canny operator.
Zheng, Yinfei; Zhou, Yali; Zhou, Hao; Gong, Xiaohong
2015-07-01
To achieve the fast and accurate segmentation of ultrasound image, a novel edge detection method for speckle noised ultrasound images was proposed, which was based on the traditional Canny and a novel multiplicative gradient operator. The proposed technique combines a new multiplicative gradient operator of non-Newtonian type with the traditional Canny operator to generate the initial edge map, which is subsequently optimized by the following edge tracing step. To verify the proposed method, we compared it with several other edge detection methods that had good robustness to noise, with experiments on the simulated and in vivo medical ultrasound image. Experimental results showed that the proposed algorithm has higher speed for real-time processing, and the edge detection accuracy could be 75% or more. Thus, the proposed method is very suitable for fast and accurate edge detection of medical ultrasound images. © The Author(s) 2014.
Auroux, Didier; Cohen, Laurent D.; Masmoudi, Mohamed
2011-01-01
We combine in this paper the topological gradient, which is a powerful method for edge detection in image processing, and a variant of the minimal path method in order to find connected contours. The topological gradient provides a more global analysis of the image than the standard gradient and identifies the main edges of an image. Several image processing problems (e.g., inpainting and segmentation) require continuous contours. For this purpose, we consider the fast marching algorithm in order to find minimal paths in the topological gradient image. This coupled algorithm quickly provides accurate and connected contours. We present then two numerical applications, to image inpainting and segmentation, of this hybrid algorithm. PMID:22194734
A novel retinal vessel extraction algorithm based on matched filtering and gradient vector flow
NASA Astrophysics Data System (ADS)
Yu, Lei; Xia, Mingliang; Xuan, Li
2013-10-01
The microvasculature network of retina plays an important role in the study and diagnosis of retinal diseases (age-related macular degeneration and diabetic retinopathy for example). Although it is possible to noninvasively acquire high-resolution retinal images with modern retinal imaging technologies, non-uniform illumination, the low contrast of thin vessels and the background noises all make it difficult for diagnosis. In this paper, we introduce a novel retinal vessel extraction algorithm based on gradient vector flow and matched filtering to segment retinal vessels with different likelihood. Firstly, we use isotropic Gaussian kernel and adaptive histogram equalization to smooth and enhance the retinal images respectively. Secondly, a multi-scale matched filtering method is adopted to extract the retinal vessels. Then, the gradient vector flow algorithm is introduced to locate the edge of the retinal vessels. Finally, we combine the results of matched filtering method and gradient vector flow algorithm to extract the vessels at different likelihood levels. The experiments demonstrate that our algorithm is efficient and the intensities of vessel images exactly represent the likelihood of the vessels.
Generalization Performance of Regularized Ranking With Multiscale Kernels.
Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin
2016-05-01
The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.
Leveraging unsupervised training sets for multi-scale compartmentalization in renal pathology
NASA Astrophysics Data System (ADS)
Lutnick, Brendon; Tomaszewski, John E.; Sarder, Pinaki
2017-03-01
Clinical pathology relies on manual compartmentalization and quantification of biological structures, which is time consuming and often error-prone. Application of computer vision segmentation algorithms to histopathological image analysis, in contrast, can offer fast, reproducible, and accurate quantitative analysis to aid pathologists. Algorithms tunable to different biologically relevant structures can allow accurate, precise, and reproducible estimates of disease states. In this direction, we have developed a fast, unsupervised computational method for simultaneously separating all biologically relevant structures from histopathological images in multi-scale. Segmentation is achieved by solving an energy optimization problem. Representing the image as a graph, nodes (pixels) are grouped by minimizing a Potts model Hamiltonian, adopted from theoretical physics, modeling interacting electron spins. Pixel relationships (modeled as edges) are used to update the energy of the partitioned graph. By iteratively improving the clustering, the optimal number of segments is revealed. To reduce computational time, the graph is simplified using a Cantor pairing function to intelligently reduce the number of included nodes. The classified nodes are then used to train a multiclass support vector machine to apply the segmentation over the full image. Accurate segmentations of images with as many as 106 pixels can be completed only in 5 sec, allowing for attainable multi-scale visualization. To establish clinical potential, we employed our method in renal biopsies to quantitatively visualize for the first time scale variant compartments of heterogeneous intra- and extraglomerular structures simultaneously. Implications of the utility of our method extend to fields such as oncology, genomics, and non-biological problems.
Algorithms used in the Airborne Lidar Processing System (ALPS)
Nagle, David B.; Wright, C. Wayne
2016-05-23
The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.
Edge detection techniques for iris recognition system
NASA Astrophysics Data System (ADS)
Tania, U. T.; Motakabber, S. M. A.; Ibrahimy, M. I.
2013-12-01
Nowadays security and authentication are the major parts of our daily life. Iris is one of the most reliable organ or part of human body which can be used for identification and authentication purpose. To develop an iris authentication algorithm for personal identification, this paper examines two edge detection techniques for iris recognition system. Between the Sobel and the Canny edge detection techniques, the experimental result shows that the Canny's technique has better ability to detect points in a digital image where image gray level changes even at slow rate.
Srinivasan, Pratul P.; Kim, Leo A.; Mettu, Priyatham S.; Cousins, Scott W.; Comer, Grant M.; Izatt, Joseph A.; Farsiu, Sina
2014-01-01
We present a novel fully automated algorithm for the detection of retinal diseases via optical coherence tomography (OCT) imaging. Our algorithm utilizes multiscale histograms of oriented gradient descriptors as feature vectors of a support vector machine based classifier. The spectral domain OCT data sets used for cross-validation consisted of volumetric scans acquired from 45 subjects: 15 normal subjects, 15 patients with dry age-related macular degeneration (AMD), and 15 patients with diabetic macular edema (DME). Our classifier correctly identified 100% of cases with AMD, 100% cases with DME, and 86.67% cases of normal subjects. This algorithm is a potentially impactful tool for the remote diagnosis of ophthalmic diseases. PMID:25360373
NASA Astrophysics Data System (ADS)
Vijaykumar, Adithya; Ouldridge, Thomas E.; ten Wolde, Pieter Rein; Bolhuis, Peter G.
2017-03-01
The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.
A deblocking algorithm based on color psychology for display quality enhancement
NASA Astrophysics Data System (ADS)
Yeh, Chia-Hung; Tseng, Wen-Yu; Huang, Kai-Lin
2012-12-01
This article proposes a post-processing deblocking filter to reduce blocking effects. The proposed algorithm detects blocking effects by fusing the results of Sobel edge detector and wavelet-based edge detector. The filtering stage provides four filter modes to eliminate blocking effects at different color regions according to human color vision and color psychology analysis. Experimental results show that the proposed algorithm has better subjective and objective qualities for H.264/AVC reconstructed videos when compared to several existing methods.
An improved dehazing algorithm of aerial high-definition image
NASA Astrophysics Data System (ADS)
Jiang, Wentao; Ji, Ming; Huang, Xiying; Wang, Chao; Yang, Yizhou; Li, Tao; Wang, Jiaoying; Zhang, Ying
2016-01-01
For unmanned aerial vehicle(UAV) images, the sensor can not get high quality images due to fog and haze weather. To solve this problem, An improved dehazing algorithm of aerial high-definition image is proposed. Based on the model of dark channel prior, the new algorithm firstly extracts the edges from crude estimated transmission map and expands the extracted edges. Then according to the expended edges, the algorithm sets a threshold value to divide the crude estimated transmission map into different areas and makes different guided filter on the different areas compute the optimized transmission map. The experimental results demonstrate that the performance of the proposed algorithm is substantially the same as the one based on dark channel prior and guided filter. The average computation time of the new algorithm is around 40% of the one as well as the detection ability of UAV image is improved effectively in fog and haze weather.
Towards a Multiscale Approach to Cybersecurity Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Emilie A.; Hui, Peter SY; Choudhury, Sutanay
2013-11-12
We propose a multiscale approach to modeling cyber networks, with the goal of capturing a view of the network and overall situational awareness with respect to a few key properties--- connectivity, distance, and centrality--- for a system under an active attack. We focus on theoretical and algorithmic foundations of multiscale graphs, coming from an algorithmic perspective, with the goal of modeling cyber system defense as a specific use case scenario. We first define a notion of \\emph{multiscale} graphs, in contrast with their well-studied single-scale counterparts. We develop multiscale analogs of paths and distance metrics. As a simple, motivating example ofmore » a common metric, we present a multiscale analog of the all-pairs shortest-path problem, along with a multiscale analog of a well-known algorithm which solves it. From a cyber defense perspective, this metric might be used to model the distance from an attacker's position in the network to a sensitive machine. In addition, we investigate probabilistic models of connectivity. These models exploit the hierarchy to quantify the likelihood that sensitive targets might be reachable from compromised nodes. We believe that our novel multiscale approach to modeling cyber-physical systems will advance several aspects of cyber defense, specifically allowing for a more efficient and agile approach to defending these systems.« less
Vessel Segmentation in Retinal Images Using Multi-scale Line Operator and K-Means Clustering.
Saffarzadeh, Vahid Mohammadi; Osareh, Alireza; Shadgar, Bita
2014-04-01
Detecting blood vessels is a vital task in retinal image analysis. The task is more challenging with the presence of bright and dark lesions in retinal images. Here, a method is proposed to detect vessels in both normal and abnormal retinal fundus images based on their linear features. First, the negative impact of bright lesions is reduced by using K-means segmentation in a perceptive space. Then, a multi-scale line operator is utilized to detect vessels while ignoring some of the dark lesions, which have intensity structures different from the line-shaped vessels in the retina. The proposed algorithm is tested on two publicly available STARE and DRIVE databases. The performance of the method is measured by calculating the area under the receiver operating characteristic curve and the segmentation accuracy. The proposed method achieves 0.9483 and 0.9387 localization accuracy against STARE and DRIVE respectively.
A new method of Quickbird own image fusion
NASA Astrophysics Data System (ADS)
Han, Ying; Jiang, Hong; Zhang, Xiuying
2009-10-01
With the rapid development of remote sensing technology, the means of accessing to remote sensing data become increasingly abundant, thus the same area can form a large number of multi-temporal, different resolution image sequence. At present, the fusion methods are mainly: HPF, IHS transform method, PCA method, Brovey, Mallat algorithm and wavelet transform and so on. There exists a serious distortion of the spectrums in the IHS transform, Mallat algorithm omits low-frequency information of the high spatial resolution images, the integration results of which has obvious blocking effects. Wavelet multi-scale decomposition for different sizes, the directions, details and the edges can have achieved very good results, but different fusion rules and algorithms can achieve different effects. This article takes the Quickbird own image fusion as an example, basing on wavelet transform and HVS, wavelet transform and IHS integration. The result shows that the former better. This paper introduces the correlation coefficient, the relative average spectral error index and usual index to evaluate the quality of image.
Detecting natural occlusion boundaries using local cues
DiMattina, Christopher; Fox, Sean A.; Lewicki, Michael S.
2012-01-01
Occlusion boundaries and junctions provide important cues for inferring three-dimensional scene organization from two-dimensional images. Although several investigators in machine vision have developed algorithms for detecting occlusions and other edges in natural images, relatively few psychophysics or neurophysiology studies have investigated what features are used by the visual system to detect natural occlusions. In this study, we addressed this question using a psychophysical experiment where subjects discriminated image patches containing occlusions from patches containing surfaces. Image patches were drawn from a novel occlusion database containing labeled occlusion boundaries and textured surfaces in a variety of natural scenes. Consistent with related previous work, we found that relatively large image patches were needed to attain reliable performance, suggesting that human subjects integrate complex information over a large spatial region to detect natural occlusions. By defining machine observers using a set of previously studied features measured from natural occlusions and surfaces, we demonstrate that simple features defined at the spatial scale of the image patch are insufficient to account for human performance in the task. To define machine observers using a more biologically plausible multiscale feature set, we trained standard linear and neural network classifiers on the rectified outputs of a Gabor filter bank applied to the image patches. We found that simple linear classifiers could not match human performance, while a neural network classifier combining filter information across location and spatial scale compared well. These results demonstrate the importance of combining a variety of cues defined at multiple spatial scales for detecting natural occlusions. PMID:23255731
Liu, Xingbin; Mei, Wenbo; Du, Huiqian
2018-02-13
In this paper, a detail-enhanced multimodality medical image fusion algorithm is proposed by using proposed multi-scale joint decomposition framework (MJDF) and shearing filter (SF). The MJDF constructed with gradient minimization smoothing filter (GMSF) and Gaussian low-pass filter (GLF) is used to decompose source images into low-pass layers, edge layers, and detail layers at multiple scales. In order to highlight the detail information in the fused image, the edge layer and the detail layer in each scale are weighted combined into a detail-enhanced layer. As directional filter is effective in capturing salient information, so SF is applied to the detail-enhanced layer to extract geometrical features and obtain directional coefficients. Visual saliency map-based fusion rule is designed for fusing low-pass layers, and the sum of standard deviation is used as activity level measurement for directional coefficients fusion. The final fusion result is obtained by synthesizing the fused low-pass layers and directional coefficients. Experimental results show that the proposed method with shift-invariance, directional selectivity, and detail-enhanced property is efficient in preserving and enhancing detail information of multimodality medical images. Graphical abstract The detailed implementation of the proposed medical image fusion algorithm.
Image gathering and processing - Information and fidelity
NASA Technical Reports Server (NTRS)
Huck, F. O.; Fales, C. L.; Halyo, N.; Samms, R. W.; Stacy, K.
1985-01-01
In this paper we formulate and use information and fidelity criteria to assess image gathering and processing, combining optical design with image-forming and edge-detection algorithms. The optical design of the image-gathering system revolves around the relationship among sampling passband, spatial response, and signal-to-noise ratio (SNR). Our formulations of information, fidelity, and optimal (Wiener) restoration account for the insufficient sampling (i.e., aliasing) common in image gathering as well as for the blurring and noise that conventional formulations account for. Performance analyses and simulations for ordinary optical-design constraints and random scences indicate that (1) different image-forming algorithms prefer different optical designs; (2) informationally optimized designs maximize the robustness of optimal image restorations and lead to the highest-spatial-frequency channel (relative to the sampling passband) for which edge detection is reliable (if the SNR is sufficiently high); and (3) combining the informationally optimized design with a 3 by 3 lateral-inhibitory image-plane-processing algorithm leads to a spatial-response shape that approximates the optimal edge-detection response of (Marr's model of) human vision and thus reduces the data preprocessing and transmission required for machine vision.
Image edge detection based tool condition monitoring with morphological component analysis.
Yu, Xiaolong; Lin, Xin; Dai, Yiquan; Zhu, Kunpeng
2017-07-01
The measurement and monitoring of tool condition are keys to the product precision in the automated manufacturing. To meet the need, this study proposes a novel tool wear monitoring approach based on the monitored image edge detection. Image edge detection has been a fundamental tool to obtain features of images. This approach extracts the tool edge with morphological component analysis. Through the decomposition of original tool wear image, the approach reduces the influence of texture and noise for edge measurement. Based on the target image sparse representation and edge detection, the approach could accurately extract the tool wear edge with continuous and complete contour, and is convenient in charactering tool conditions. Compared to the celebrated algorithms developed in the literature, this approach improves the integrity and connectivity of edges, and the results have shown that it achieves better geometry accuracy and lower error rate in the estimation of tool conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A multiscale Markov random field model in wavelet domain for image segmentation
NASA Astrophysics Data System (ADS)
Dai, Peng; Cheng, Yu; Wang, Shengchun; Du, Xinyu; Wu, Dan
2017-07-01
The human vision system has abilities for feature detection, learning and selective attention with some properties of hierarchy and bidirectional connection in the form of neural population. In this paper, a multiscale Markov random field model in the wavelet domain is proposed by mimicking some image processing functions of vision system. For an input scene, our model provides its sparse representations using wavelet transforms and extracts its topological organization using MRF. In addition, the hierarchy property of vision system is simulated using a pyramid framework in our model. There are two information flows in our model, i.e., a bottom-up procedure to extract input features and a top-down procedure to provide feedback controls. The two procedures are controlled simply by two pyramidal parameters, and some Gestalt laws are also integrated implicitly. Equipped with such biological inspired properties, our model can be used to accomplish different image segmentation tasks, such as edge detection and region segmentation.
Action detection by double hierarchical multi-structure space-time statistical matching model
NASA Astrophysics Data System (ADS)
Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang
2018-03-01
Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.
Action detection by double hierarchical multi-structure space–time statistical matching model
NASA Astrophysics Data System (ADS)
Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang
2018-06-01
Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.
Uddin, Muhammad Shahin; Tahtali, Murat; Lambert, Andrew J; Pickering, Mark R; Marchese, Margaret; Stuart, Iain
2016-05-20
Compared with other medical-imaging modalities, ultrasound (US) imaging is a valuable way to examine the body's internal organs, and two-dimensional (2D) imaging is currently the most common technique used in clinical diagnoses. Conventional 2D US imaging systems are highly flexible cost-effective imaging tools that permit operators to observe and record images of a large variety of thin anatomical sections in real time. Recently, 3D US imaging has also been gaining popularity due to its considerable advantages over 2D US imaging. It reduces dependency on the operator and provides better qualitative and quantitative information for an effective diagnosis. Furthermore, it provides a 3D view, which allows the observation of volume information. The major shortcoming of any type of US imaging is the presence of speckle noise. Hence, speckle reduction is vital in providing a better clinical diagnosis. The key objective of any speckle-reduction algorithm is to attain a speckle-free image while preserving the important anatomical features. In this paper we introduce a nonlinear multi-scale complex wavelet-diffusion based algorithm for speckle reduction and sharp-edge preservation of 2D and 3D US images. In the proposed method we use a Rayleigh and Maxwell-mixture model for 2D and 3D US images, respectively, where a genetic algorithm is used in combination with an expectation maximization method to estimate mixture parameters. Experimental results using both 2D and 3D synthetic, physical phantom, and clinical data demonstrate that our proposed algorithm significantly reduces speckle noise while preserving sharp edges without discernible distortions. The proposed approach performs better than the state-of-the-art approaches in both qualitative and quantitative measures.
Khan, Muhammad Burhan; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Lai, Koon Chun
2017-12-01
Image processing and analysis is an effective tool for monitoring and fault diagnosis of activated sludge (AS) wastewater treatment plants. The AS image comprise of flocs (microbial aggregates) and filamentous bacteria. In this paper, nine different approaches are proposed for image segmentation of phase-contrast microscopic (PCM) images of AS samples. The proposed strategies are assessed for their effectiveness from the perspective of microscopic artifacts associated with PCM. The first approach uses an algorithm that is based on the idea that different color space representation of images other than red-green-blue may have better contrast. The second uses an edge detection approach. The third strategy, employs a clustering algorithm for the segmentation and the fourth applies local adaptive thresholding. The fifth technique is based on texture-based segmentation and the sixth uses watershed algorithm. The seventh adopts a split-and-merge approach. The eighth employs Kittler's thresholding. Finally, the ninth uses a top-hat and bottom-hat filtering-based technique. The approaches are assessed, and analyzed critically with reference to the artifacts of PCM. Gold approximations of ground truth images are prepared to assess the segmentations. Overall, the edge detection-based approach exhibits the best results in terms of accuracy, and the texture-based algorithm in terms of false negative ratio. The respective scenarios are explained for suitability of edge detection and texture-based algorithms.
Power spectrum weighted edge analysis for straight edge detection in images
NASA Astrophysics Data System (ADS)
Karvir, Hrishikesh V.; Skipper, Julie A.
2007-04-01
Most man-made objects provide characteristic straight line edges and, therefore, edge extraction is a commonly used target detection tool. However, noisy images often yield broken edges that lead to missed detections, and extraneous edges that may contribute to false target detections. We present a sliding-block approach for target detection using weighted power spectral analysis. In general, straight line edges appearing at a given frequency are represented as a peak in the Fourier domain at a radius corresponding to that frequency, and a direction corresponding to the orientation of the edges in the spatial domain. Knowing the edge width and spacing between the edges, a band-pass filter is designed to extract the Fourier peaks corresponding to the target edges and suppress image noise. These peaks are then detected by amplitude thresholding. The frequency band width and the subsequent spatial filter mask size are variable parameters to facilitate detection of target objects of different sizes under known imaging geometries. Many military objects, such as trucks, tanks and missile launchers, produce definite signatures with parallel lines and the algorithm proves to be ideal for detecting such objects. Moreover, shadow-casting objects generally provide sharp edges and are readily detected. The block operation procedure offers advantages of significant reduction in noise influence, improved edge detection, faster processing speed and versatility to detect diverse objects of different sizes in the image. With Scud missile launcher replicas as target objects, the method has been successfully tested on terrain board test images under different backgrounds, illumination and imaging geometries with cameras of differing spatial resolution and bit-depth.
A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments
Jeffrey S. Evans; Andrew T. Hudak
2007-01-01
One prerequisite to the use of light detection and ranging (LiDAR) across disciplines is differentiating ground from nonground returns. The objective was to automatically and objectively classify points within unclassified LiDAR point clouds, with few model parameters and minimal postprocessing. Presented is an automated method for classifying LiDAR returns as ground...
Delakis, Ioannis; Hammad, Omer; Kitney, Richard I
2007-07-07
Wavelet-based de-noising has been shown to improve image signal-to-noise ratio in magnetic resonance imaging (MRI) while maintaining spatial resolution. Wavelet-based de-noising techniques typically implemented in MRI require that noise displays uniform spatial distribution. However, images acquired with parallel MRI have spatially varying noise levels. In this work, a new algorithm for filtering images with parallel MRI is presented. The proposed algorithm extracts the edges from the original image and then generates a noise map from the wavelet coefficients at finer scales. The noise map is zeroed at locations where edges have been detected and directional analysis is also used to calculate noise in regions of low-contrast edges that may not have been detected. The new methodology was applied on phantom and brain images and compared with other applicable de-noising techniques. The performance of the proposed algorithm was shown to be comparable with other techniques in central areas of the images, where noise levels are high. In addition, finer details and edges were maintained in peripheral areas, where noise levels are low. The proposed methodology is fully automated and can be applied on final reconstructed images without requiring sensitivity profiles or noise matrices of the receiver coils, therefore making it suitable for implementation in a clinical MRI setting.
NASA Astrophysics Data System (ADS)
Guo, Tian; Xu, Zili
2018-03-01
Measurement noise is inevitable in practice; thus, it is difficult to identify defects, cracks or damage in a structure while suppressing noise simultaneously. In this work, a novel method is introduced to detect multiple damage in noisy environments. Based on multi-scale space analysis for discrete signals, a method for extracting damage characteristics from the measured displacement mode shape is illustrated. Moreover, the proposed method incorporates a data fusion algorithm to further eliminate measurement noise-based interference. The effectiveness of the method is verified by numerical and experimental methods applied to different structural types. The results demonstrate that there are two advantages to the proposed method. First, damage features are extracted by the difference of the multi-scale representation; this step is taken such that the interference of noise amplification can be avoided. Second, a data fusion technique applied to the proposed method provides a global decision, which retains the damage features while maximally eliminating the uncertainty. Monte Carlo simulations are utilized to validate that the proposed method has a higher accuracy in damage detection.
Network Community Detection based on the Physarum-inspired Computational Framework.
Gao, Chao; Liang, Mingxin; Li, Xianghua; Zhang, Zili; Wang, Zhen; Zhou, Zhili
2016-12-13
Community detection is a crucial and essential problem in the structure analytics of complex networks, which can help us understand and predict the characteristics and functions of complex networks. Many methods, ranging from the optimization-based algorithms to the heuristic-based algorithms, have been proposed for solving such a problem. Due to the inherent complexity of identifying network structure, how to design an effective algorithm with a higher accuracy and a lower computational cost still remains an open problem. Inspired by the computational capability and positive feedback mechanism in the wake of foraging process of Physarum, which is a large amoeba-like cell consisting of a dendritic network of tube-like pseudopodia, a general Physarum-based computational framework for community detection is proposed in this paper. Based on the proposed framework, the inter-community edges can be identified from the intra-community edges in a network and the positive feedback of solving process in an algorithm can be further enhanced, which are used to improve the efficiency of original optimization-based and heuristic-based community detection algorithms, respectively. Some typical algorithms (e.g., genetic algorithm, ant colony optimization algorithm, and Markov clustering algorithm) and real-world datasets have been used to estimate the efficiency of our proposed computational framework. Experiments show that the algorithms optimized by Physarum-inspired computational framework perform better than the original ones, in terms of accuracy and computational cost. Moreover, a computational complexity analysis verifies the scalability of our framework.
NASA Astrophysics Data System (ADS)
Duncan, D.; Kummerow, C. D.; Meier, W.
2016-12-01
Over the lifetime of AMSR-E, operational retrieval algorithms were developed and run for precipitation, ocean suite (SST, wind speed, cloud liquid water path, and column water vapor over ocean), sea ice, snow water equivalent, and soil moisture. With a separate algorithm for each group, the retrievals were never interactive or integrated in any way despite many co-sensitivities. AMSR2, the follow-on mission to AMSR-E, retrieves the same parameters at a slightly higher spatial resolution. We have combined the operational algorithms for AMSR2 in a way that facilitates sharing information between the retrievals. Difficulties that arose were mainly related to calibration, spatial resolution, coastlines, and order of processing. The integration of all algorithms for AMSR2 has numerous benefits, including better detection of light precipitation and sea ice, fewer screened out pixels, and better quality flags. Integrating the algorithms opens up avenues for investigating the limits of detectability for precipitation from a passive microwave radiometer and the impact of spatial resolution on sea ice edge detection; these are investigated using CloudSat and MODIS coincident observations from the A-Train constellation.
NASA Astrophysics Data System (ADS)
Sun, Xiao; Chai, Guobei; Liu, Wei; Bao, Wenzhuo; Zhao, Xiaoning; Ming, Delie
2018-02-01
Simple cells in primary visual cortex are believed to extract local edge information from a visual scene. In this paper, inspired by different receptive field properties and visual information flow paths of neurons, an improved Combination of Receptive Fields (CORF) model combined with non-classical receptive fields was proposed to simulate the responses of simple cell's receptive fields. Compared to the classical model, the proposed model is able to better imitate simple cell's physiologic structure with consideration of facilitation and suppression of non-classical receptive fields. And on this base, an edge detection algorithm as an application of the improved CORF model was proposed. Experimental results validate the robustness of the proposed algorithm to noise and background interference.
NASA Astrophysics Data System (ADS)
Qi, Xingqin; Song, Huimin; Wu, Jianliang; Fuller, Edgar; Luo, Rong; Zhang, Cun-Quan
2017-09-01
Clustering algorithms for unsigned social networks which have only positive edges have been studied intensively. However, when a network has like/dislike, love/hate, respect/disrespect, or trust/distrust relationships, unsigned social networks with only positive edges are inadequate. Thus we model such kind of networks as signed networks which can have both negative and positive edges. Detecting the cluster structures of signed networks is much harder than for unsigned networks, because it not only requires that positive edges within clusters are as many as possible, but also requires that negative edges between clusters are as many as possible. Currently, we have few clustering algorithms for signed networks, and most of them requires the number of final clusters as an input while it is actually hard to predict beforehand. In this paper, we will propose a novel clustering algorithm called Eb &D for signed networks, where both the betweenness of edges and the density of subgraphs are used to detect cluster structures. A hierarchically nested system will be constructed to illustrate the inclusion relationships of clusters. To show the validity and efficiency of Eb &D, we test it on several classical social networks and also hundreds of synthetic data sets, and all obtain better results compared with other methods. The biggest advantage of Eb &D compared with other methods is that the number of clusters do not need to be known prior.
Discovering protein complexes in protein interaction networks via exploring the weak ties effect
2012-01-01
Background Studying protein complexes is very important in biological processes since it helps reveal the structure-functionality relationships in biological networks and much attention has been paid to accurately predict protein complexes from the increasing amount of protein-protein interaction (PPI) data. Most of the available algorithms are based on the assumption that dense subgraphs correspond to complexes, failing to take into account the inherence organization within protein complex and the roles of edges. Thus, there is a critical need to investigate the possibility of discovering protein complexes using the topological information hidden in edges. Results To provide an investigation of the roles of edges in PPI networks, we show that the edges connecting less similar vertices in topology are more significant in maintaining the global connectivity, indicating the weak ties phenomenon in PPI networks. We further demonstrate that there is a negative relation between the weak tie strength and the topological similarity. By using the bridges, a reliable virtual network is constructed, in which each maximal clique corresponds to the core of a complex. By this notion, the detection of the protein complexes is transformed into a classic all-clique problem. A novel core-attachment based method is developed, which detects the cores and attachments, respectively. A comprehensive comparison among the existing algorithms and our algorithm has been made by comparing the predicted complexes against benchmark complexes. Conclusions We proved that the weak tie effect exists in the PPI network and demonstrated that the density is insufficient to characterize the topological structure of protein complexes. Furthermore, the experimental results on the yeast PPI network show that the proposed method outperforms the state-of-the-art algorithms. The analysis of detected modules by the present algorithm suggests that most of these modules have well biological significance in context of complexes, suggesting that the roles of edges are critical in discovering protein complexes. PMID:23046740
Cest Analysis: Automated Change Detection from Very-High Remote Sensing Images
NASA Astrophysics Data System (ADS)
Ehlers, M.; Klonus, S.; Jarmer, T.; Sofina, N.; Michel, U.; Reinartz, P.; Sirmacek, B.
2012-08-01
A fast detection, visualization and assessment of change in areas of crisis or catastrophes are important requirements for coordination and planning of help. Through the availability of new satellites and/or airborne sensors with very high spatial resolutions (e.g., WorldView, GeoEye) new remote sensing data are available for a better detection, delineation and visualization of change. For automated change detection, a large number of algorithms has been proposed and developed. From previous studies, however, it is evident that to-date no single algorithm has the potential for being a reliable change detector for all possible scenarios. This paper introduces the Combined Edge Segment Texture (CEST) analysis, a decision-tree based cooperative suite of algorithms for automated change detection that is especially designed for the generation of new satellites with very high spatial resolution. The method incorporates frequency based filtering, texture analysis, and image segmentation techniques. For the frequency analysis, different band pass filters can be applied to identify the relevant frequency information for change detection. After transforming the multitemporal images via a fast Fourier transform (FFT) and applying the most suitable band pass filter, different methods are available to extract changed structures: differencing and correlation in the frequency domain and correlation and edge detection in the spatial domain. Best results are obtained using edge extraction. For the texture analysis, different 'Haralick' parameters can be calculated (e.g., energy, correlation, contrast, inverse distance moment) with 'energy' so far providing the most accurate results. These algorithms are combined with a prior segmentation of the image data as well as with morphological operations for a final binary change result. A rule-based combination (CEST) of the change algorithms is applied to calculate the probability of change for a particular location. CEST was tested with high-resolution satellite images of the crisis areas of Darfur (Sudan). CEST results are compared with a number of standard algorithms for automated change detection such as image difference, image ratioe, principal component analysis, delta cue technique and post classification change detection. The new combined method shows superior results averaging between 45% and 15% improvement in accuracy.
Nonlinear Multiscale Transformations: From Synchronization to Error Control
2001-07-01
transformation (plus the quantization step) has taken place, a lossless Lempel - Ziv compression algorithm is applied to reduce the size of the transformed... compressed data are all very close, however the visual quality of the reconstructed image is significantly better for the EC compression algorithm ...used in recent times in the first step of transform coding algorithms for image compression . Ideally, a multiscale transformation allows for an
NASA Astrophysics Data System (ADS)
Tylen, Ulf; Friman, Ola; Borga, Magnus; Angelhed, Jan-Erik
2001-05-01
Emphysema is characterized by destruction of lung tissue with development of small or large holes within the lung. These areas will have Hounsfield values (HU) approaching -1000. It is possible to detect and quantificate such areas using simple density mask technique. The edge enhancement reconstruction algorithm, gravity and motion of the heart and vessels during scanning causes artefacts, however. The purpose of our work was to construct an algorithm that detects such image artefacts and corrects them. The first step is to apply inverse filtering to the image removing much of the effect of the edge enhancement reconstruction algorithm. The next step implies computation of the antero-posterior density gradient caused by gravity and correction for that. Motion artefacts are in a third step corrected for by use of normalized averaging, thresholding and region growing. Twenty healthy volunteers were investigated, 10 with slight emphysema and 10 without. Using simple density mask technique it was not possible to separate persons with disease from those without. Our algorithm improved separation of the two groups considerably. Our algorithm needs further refinement, but may form a basis for further development of methods for computerized diagnosis and quantification of emphysema by HRCT.
A Real-Time System for Lane Detection Based on FPGA and DSP
NASA Astrophysics Data System (ADS)
Xiao, Jing; Li, Shutao; Sun, Bin
2016-12-01
This paper presents a real-time lane detection system including edge detection and improved Hough Transform based lane detection algorithm and its hardware implementation with field programmable gate array (FPGA) and digital signal processor (DSP). Firstly, gradient amplitude and direction information are combined to extract lane edge information. Then, the information is used to determine the region of interest. Finally, the lanes are extracted by using improved Hough Transform. The image processing module of the system consists of FPGA and DSP. Particularly, the algorithms implemented in FPGA are working in pipeline and processing in parallel so that the system can run in real-time. In addition, DSP realizes lane line extraction and display function with an improved Hough Transform. The experimental results show that the proposed system is able to detect lanes under different road situations efficiently and effectively.
Density functional theory for field emission from carbon nano-structures.
Li, Zhibing
2015-12-01
Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission. Copyright © 2015 The Author. Published by Elsevier B.V. All rights reserved.
Extraction of edge-based and region-based features for object recognition
NASA Astrophysics Data System (ADS)
Coutts, Benjamin; Ravi, Srinivas; Hu, Gongzhu; Shrikhande, Neelima
1993-08-01
One of the central problems of computer vision is object recognition. A catalogue of model objects is described as a set of features such as edges and surfaces. The same features are extracted from the scene and matched against the models for object recognition. Edges and surfaces extracted from the scenes are often noisy and imperfect. In this paper algorithms are described for improving low level edge and surface features. Existing edge extraction algorithms are applied to the intensity image to obtain edge features. Initial edges are traced by following directions of the current contour. These are improved by using corresponding depth and intensity information for decision making at branch points. Surface fitting routines are applied to the range image to obtain planar surface patches. An algorithm of region growing is developed that starts with a coarse segmentation and uses quadric surface fitting to iteratively merge adjacent regions into quadric surfaces based on approximate orthogonal distance regression. Surface information obtained is returned to the edge extraction routine to detect and remove fake edges. This process repeats until no more merging or edge improvement can take place. Both synthetic (with Gaussian noise) and real images containing multiple object scenes have been tested using the merging criteria. Results appeared quite encouraging.
Detection of anomaly in human retina using Laplacian Eigenmaps and vectorized matched filtering
NASA Astrophysics Data System (ADS)
Yacoubou Djima, Karamatou A.; Simonelli, Lucia D.; Cunningham, Denise; Czaja, Wojciech
2015-03-01
We present a novel method for automated anomaly detection on auto fluorescent data provided by the National Institute of Health (NIH). This is motivated by the need for new tools to improve the capability of diagnosing macular degeneration in its early stages, track the progression over time, and test the effectiveness of new treatment methods. In previous work, macular anomalies have been detected automatically through multiscale analysis procedures such as wavelet analysis or dimensionality reduction algorithms followed by a classification algorithm, e.g., Support Vector Machine. The method that we propose is a Vectorized Matched Filtering (VMF) algorithm combined with Laplacian Eigenmaps (LE), a nonlinear dimensionality reduction algorithm with locality preserving properties. By applying LE, we are able to represent the data in the form of eigenimages, some of which accentuate the visibility of anomalies. We pick significant eigenimages and proceed with the VMF algorithm that classifies anomalies across all of these eigenimages simultaneously. To evaluate our performance, we compare our method to two other schemes: a matched filtering algorithm based on anomaly detection on single images and a combination of PCA and VMF. LE combined with VMF algorithm performs best, yielding a high rate of accurate anomaly detection. This shows the advantage of using a nonlinear approach to represent the data and the effectiveness of VMF, which operates on the images as a data cube rather than individual images.
Global Contrast Based Salient Region Detection.
Cheng, Ming-Ming; Mitra, Niloy J; Huang, Xiaolei; Torr, Philip H S; Hu, Shi-Min
2015-03-01
Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.
The Brera Multiscale Wavelet ROSAT HRI Source Catalog. II. Application to the HRI and First Results
NASA Astrophysics Data System (ADS)
Campana, Sergio; Lazzati, Davide; Panzera, Maria Rosa; Tagliaferri, Gianpiero
1999-10-01
The wavelet detection algorithm (WDA) described in the accompanying paper by Lazzati et al. is suited to a fast and efficient analysis of images taken with the High-Resolution Imager (HRI) instrument on board the ROSAT satellite. An extensive testing is carried out on the detection pipeline: HRI fields with different exposure times are simulated and analyzed in the same fashion as the real data. Positions are recovered with errors of a few arcseconds, whereas fluxes are within a factor of 2 from their input values in more than 90% of the cases in the deepest images. Unlike the ``sliding-box'' detection algorithms, the WDA also provides a reliable description of the source extension, allowing for a complete search of, e.g., supernova remnants or clusters of galaxies in the HRI fields. A completeness analysis on simulated fields shows that for the deepest exposures considered (~120 ks) a limiting flux of ~3×10-15 ergs s-1 cm-2 can be reached over the entire field of view. We test the algorithm on real HRI fields selected for their crowding and/or the presence of extended or bright sources (e.g., clusters of galaxies and stars, supernova remnants). We show that our algorithm compares favorably with other X-ray detection algorithms, such as XIMAGE and EXSAS. Analysis with the WDA of the large set of HRI data will allow us to survey ~400 deg2 down to a limiting flux of ~10-13 ergs s-1 cm-2, and ~0.3 deg2 down to ~3×10-15 ergs s-1 cm-2. A complete catalog will result from our analysis, consisting of the Brera Multiscale Wavelet Bright Source Catalog (BMW-BSC), with sources detected with a significance of >~4.5 σ, and the Faint Source Catalog (BMW-FSC), with sources at >~3.5 σ. A conservative estimate based on the extragalactic log N-log S indicates that at least 16,000 sources will be revealed in the complete analysis of the entire HRI data set.
Parametric boundary reconstruction algorithm for industrial CT metrology application.
Yin, Zhye; Khare, Kedar; De Man, Bruno
2009-01-01
High-energy X-ray computed tomography (CT) systems have been recently used to produce high-resolution images in various nondestructive testing and evaluation (NDT/NDE) applications. The accuracy of the dimensional information extracted from CT images is rapidly approaching the accuracy achieved with a coordinate measuring machine (CMM), the conventional approach to acquire the metrology information directly. On the other hand, CT systems generate the sinogram which is transformed mathematically to the pixel-based images. The dimensional information of the scanned object is extracted later by performing edge detection on reconstructed CT images. The dimensional accuracy of this approach is limited by the grid size of the pixel-based representation of CT images since the edge detection is performed on the pixel grid. Moreover, reconstructed CT images usually display various artifacts due to the underlying physical process and resulting object boundaries from the edge detection fail to represent the true boundaries of the scanned object. In this paper, a novel algorithm to reconstruct the boundaries of an object with uniform material composition and uniform density is presented. There are three major benefits in the proposed approach. First, since the boundary parameters are reconstructed instead of image pixels, the complexity of the reconstruction algorithm is significantly reduced. The iterative approach, which can be computationally intensive, will be practical with the parametric boundary reconstruction. Second, the object of interest in metrology can be represented more directly and accurately by the boundary parameters instead of the image pixels. By eliminating the extra edge detection step, the overall dimensional accuracy and process time can be improved. Third, since the parametric reconstruction approach shares the boundary representation with other conventional metrology modalities such as CMM, boundary information from other modalities can be directly incorporated as prior knowledge to improve the convergence of an iterative approach. In this paper, the feasibility of parametric boundary reconstruction algorithm is demonstrated with both simple and complex simulated objects. Finally, the proposed algorithm is applied to the experimental industrial CT system data.
Scalable High-order Methods for Multi-Scale Problems: Analysis, Algorithms and Application
2016-02-26
Karniadakis, “Resilient algorithms for reconstructing and simulating gappy flow fields in CFD ”, Fluid Dynamic Research, vol. 47, 051402, 2015. 2. Y. Yu, H...simulation, domain decomposition, CFD , gappy data, estimation theory, and gap-tooth algorithm. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...objective of this project was to develop a general CFD framework for multifidelity simula- tions to target multiscale problems but also resilience in
Huang, Chengqiang; Yang, Youchang; Wu, Bo; Yu, Weize
2018-06-01
The sub-pixel arrangement of the RGBG panel and the image with RGB format are different and the algorithm that converts RGB to RGBG is urgently needed to display an image with RGB arrangement on the RGBG panel. However, the information loss is still large although color fringing artifacts are weakened in the published papers that study this conversion. In this paper, an RGB-to-RGBG conversion algorithm with adaptive weighting factors based on edge detection and minimal square error (EDMSE) is proposed. The main points of innovation include the following: (1) the edge detection is first proposed to distinguish image details with serious color fringing artifacts and image details which are prone to be lost in the process of RGB-RGBG conversion; (2) for image details with serious color fringing artifacts, the weighting factor 0.5 is applied to weaken the color fringing artifacts; and (3) for image details that are prone to be lost in the process of RGB-RGBG conversion, a special mechanism to minimize square error is proposed. The experiment shows that the color fringing artifacts are slightly improved by EDMSE, and the values of MSE of the image processed are 19.6% and 7% smaller than those of the image processed by the direct assignment and weighting factor algorithm, respectively. The proposed algorithm is implemented on a field programmable gate array to enable the image display on the RGBG panel.
Fu, Min; Wu, Wenming; Hong, Xiafei; Liu, Qiuhua; Jiang, Jialin; Ou, Yaobin; Zhao, Yupei; Gong, Xinqi
2018-04-24
Efficient computational recognition and segmentation of target organ from medical images are foundational in diagnosis and treatment, especially about pancreas cancer. In practice, the diversity in appearance of pancreas and organs in abdomen, makes detailed texture information of objects important in segmentation algorithm. According to our observations, however, the structures of previous networks, such as the Richer Feature Convolutional Network (RCF), are too coarse to segment the object (pancreas) accurately, especially the edge. In this paper, we extend the RCF, proposed to the field of edge detection, for the challenging pancreas segmentation, and put forward a novel pancreas segmentation network. By employing multi-layer up-sampling structure replacing the simple up-sampling operation in all stages, the proposed network fully considers the multi-scale detailed contexture information of object (pancreas) to perform per-pixel segmentation. Additionally, using the CT scans, we supply and train our network, thus get an effective pipeline. Working with our pipeline with multi-layer up-sampling model, we achieve better performance than RCF in the task of single object (pancreas) segmentation. Besides, combining with multi scale input, we achieve the 76.36% DSC (Dice Similarity Coefficient) value in testing data. The results of our experiments show that our advanced model works better than previous networks in our dataset. On the other words, it has better ability in catching detailed contexture information. Therefore, our new single object segmentation model has practical meaning in computational automatic diagnosis.
Safner, T.; Miller, M.P.; McRae, B.H.; Fortin, M.-J.; Manel, S.
2011-01-01
Recently, techniques available for identifying clusters of individuals or boundaries between clusters using genetic data from natural populations have expanded rapidly. Consequently, there is a need to evaluate these different techniques. We used spatially-explicit simulation models to compare three spatial Bayesian clustering programs and two edge detection methods. Spatially-structured populations were simulated where a continuous population was subdivided by barriers. We evaluated the ability of each method to correctly identify boundary locations while varying: (i) time after divergence, (ii) strength of isolation by distance, (iii) level of genetic diversity, and (iv) amount of gene flow across barriers. To further evaluate the methods' effectiveness to detect genetic clusters in natural populations, we used previously published data on North American pumas and a European shrub. Our results show that with simulated and empirical data, the Bayesian spatial clustering algorithms outperformed direct edge detection methods. All methods incorrectly detected boundaries in the presence of strong patterns of isolation by distance. Based on this finding, we support the application of Bayesian spatial clustering algorithms for boundary detection in empirical datasets, with necessary tests for the influence of isolation by distance. ?? 2011 by the authors; licensee MDPI, Basel, Switzerland.
Wong, Chung-Ki; Luo, Qingfei; Zotev, Vadim; Phillips, Raquel; Chan, Kam Wai Clifford; Bodurka, Jerzy
2018-03-31
In simultaneous EEG-fMRI, identification of the period of cardioballistic artifact (BCG) in EEG is required for the artifact removal. Recording the electrocardiogram (ECG) waveform during fMRI is difficult, often causing inaccurate period detection. Since the waveform of the BCG extracted by independent component analysis (ICA) is relatively invariable compared to the ECG waveform, we propose a multiple-scale peak-detection algorithm to determine the BCG cycle directly from the EEG data. The algorithm first extracts the high contrast BCG component from the EEG data by ICA. The BCG cycle is then estimated by band-pass filtering the component around the fundamental frequency identified from its energy spectral density, and the peak of BCG artifact occurrence is selected from each of the estimated cycle. The algorithm is shown to achieve a high accuracy on a large EEG-fMRI dataset. It is also adaptive to various heart rates without the needs of adjusting the threshold parameters. The cycle detection remains accurate with the scan duration reduced to half a minute. Additionally, the algorithm gives a figure of merit to evaluate the reliability of the detection accuracy. The algorithm is shown to give a higher detection accuracy than the commonly used cycle detection algorithm fmrib_qrsdetect implemented in EEGLAB. The achieved high cycle detection accuracy of our algorithm without using the ECG waveforms makes possible to create and automate pipelines for processing large EEG-fMRI datasets, and virtually eliminates the need for ECG recordings for BCG artifact removal. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
This article describes the governing equations, computational algorithms, and other components entering into the Community Multiscale Air Quality (CMAQ) modeling system. This system has been designed to approach air quality as a whole by including state-of-the-science capabiliti...
NASA Astrophysics Data System (ADS)
Barba, M.; Rains, C.; von Dassow, W.; Parker, J. W.; Glasscoe, M. T.
2013-12-01
Knowing the location and behavior of active faults is essential for earthquake hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar (InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP California Disasters team contributed to the development of a method to expedite fault detection in California using remote-sensing technology. The team utilized InSAR images created from polarimetric L-band data from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) project. A computer-vision technique known as 'edge-detection' was used to automate the fault-identification process. We tested and refined an edge-detection algorithm under development through NASA's Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) project. To optimize the algorithm we used both UAVSAR interferograms and synthetic interferograms generated through Disloc, a web-based modeling program available through NASA's QuakeSim project. The edge-detection algorithm detected seismic, aseismic, and co-seismic slip along faults that were identified and compared with databases of known fault systems. Our optimization process was the first step toward integration of the edge-detection code into E-DECIDER to provide decision support for earthquake preparation and disaster management. E-DECIDER partners that will use the edge-detection code include the California Earthquake Clearinghouse and the US Department of Homeland Security through delivery of products using the Unified Incident Command and Decision Support (UICDS) service. Through these partnerships, researchers, earthquake disaster response teams, and policy-makers will be able to use this new methodology to examine the details of ground and fault motions for moderate to large earthquakes. Following an earthquake, the newly discovered faults can be paired with infrastructure overlays, allowing emergency response teams to identify sites that may have been exposed to damage. The faults will also be incorporated into a database for future integration into fault models and earthquake simulations, improving future earthquake hazard assessment. As new faults are mapped, they will further understanding of the complex fault systems and earthquake hazards within the seismically dynamic state of California.
NASA Technical Reports Server (NTRS)
Longendorfer, B. A.
1976-01-01
The construction of an autonomous roving vehicle requires the development of complex data-acquisition and processing systems, which determine the path along which the vehicle travels. Thus, a vehicle must possess algorithms which can (1) reliably detect obstacles by processing sensor data, (2) maintain a constantly updated model of its surroundings, and (3) direct its immediate actions to further a long range plan. The first function consisted of obstacle recognition. Obstacles may be identified by the use of edge detection techniques. Therefore, the Kalman Filter was implemented as part of a large scale computer simulation of the Mars Rover. The second function consisted of modeling the environment. The obstacle must be reconstructed from its edges, and the vast amount of data must be organized in a readily retrievable form. Therefore, a Terrain Modeller was developed which assembled and maintained a rectangular grid map of the planet. The third function consisted of directing the vehicle's actions.
Detection and labeling ribs on expiration chest radiographs
NASA Astrophysics Data System (ADS)
Park, Mira; Jin, Jesse S.; Wilson, Laurence S.
2003-06-01
Typically, inspiration is preferred when xraying the lungs. The x-ray technologist will ask a patient to be still and to take a deep breath and to hold it. This not only reduces the possibility of a blurred image but also enhances the quality of the image since air-filled lungs are easier to see on x-ray film. However, inspiration causes low density in the inner part of lung field. That means that ribs in the inner part of lung field have lower density than the other parts nearer to the border of the lung field. That is why edge detection algorithms often fail to detect ribs. Therefore to make rib edges clear we try to produce an expiration lung field using a 'hemi-elliptical cavity.' Based on the expiration lung field, we extract the rib edges using canny edge detector and a new connectivity method, called '4 way with 10-neighbors connectivity' to detect clavicle and rib edge candidates. Once the edge candidates are formed, our system selects the best candidates using knowledge-based constraints such as a gradient, length and location. The edges can be paired and labeled as superior rib edge and inferior rib edge. Then the system uses the clavicle, which is obtained in a same method for the rib edge detection, as a landmark to label all detected ribs.
A novel line segment detection algorithm based on graph search
NASA Astrophysics Data System (ADS)
Zhao, Hong-dan; Liu, Guo-ying; Song, Xu
2018-02-01
To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minjeaud, Sebastian; INRIA project CASTOR; Pasquetti, Richard, E-mail: richard.pasquetti@unice.fr
Due to the extreme conditions required to produce energy by nuclear fusion in tokamaks, simulating the plasma behavior is an important but challenging task. We focus on the edge part of the plasma, where fluid approaches are probably the best suited, and our approach relies on the Braginskii ion–electron model. Assuming that the electric field is electrostatic, this yields a set of 10 strongly coupled and non-linear conservation equations that exhibit multiscale and anisotropy features. The computational domain is a torus of complex geometrical section, that corresponds to the divertor configuration, i.e. with an “X-point” in the magnetic surfaces. Tomore » capture the complex physics that is involved, high order methods are used: The time-discretization is based on a Strang splitting, that combines implicit and explicit high order Runge–Kutta schemes, and the space discretization makes use of the spectral element method in the poloidal plane together with Fourier expansions in the toroidal direction. The paper thoroughly describes the algorithms that have been developed, provides some numerical validations of the key algorithms and exhibits the results of preliminary numerical experiments. In particular, we point out that the highest frequency of the system is intermediate between the ion and electron cyclotron frequencies.« less
Edge detection, cosmic strings and the south pole telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Andrew; Brandenberger, Robert, E-mail: stewarta@physics.mcgill.ca, E-mail: rhb@physics.mcgill.ca
2009-02-15
We develop a method of constraining the cosmic string tension G{mu} which uses the Canny edge detection algorithm as a means of searching CMB temperature maps for the signature of the Kaiser-Stebbins effect. We test the potential of this method using high resolution, simulated CMB temperature maps. By modeling the future output from the South Pole Telescope project (including anticipated instrumental noise), we find that cosmic strings with G{mu} > 5.5 Multiplication-Sign 10{sup -8} could be detected.
A study on obstacle detection method of the frontal view using a camera on highway
NASA Astrophysics Data System (ADS)
Nguyen, Van-Quang; Park, Jeonghyeon; Seo, Changjun; Kim, Heungseob; Boo, Kwangsuck
2018-03-01
In this work, we introduce an approach to detect vehicles for driver assistance, or warning system. For driver assistance system, it must detect both lanes (left and right side lane), and discover vehicles ahead of the test vehicle. Therefore, in this study, we use a camera, it is installed on the windscreen of the test vehicle. Images from the camera are used to detect three lanes, and detect multiple vehicles. In lane detection, line detection and vanishing point estimation are used. For the vehicle detection, we combine the horizontal and vertical edge detection, the horizontal edge is used to detect the vehicle candidates, and then the vertical edge detection is used to verify the vehicle candidates. The proposed algorithm works with of 480 × 640 image frame resolution. The system was tested on the highway in Korea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seyedhosseini, Mojtaba; Kumar, Ritwik; Jurrus, Elizabeth R.
2011-10-01
Automated neural circuit reconstruction through electron microscopy (EM) images is a challenging problem. In this paper, we present a novel method that exploits multi-scale contextual information together with Radon-like features (RLF) to learn a series of discriminative models. The main idea is to build a framework which is capable of extracting information about cell membranes from a large contextual area of an EM image in a computationally efficient way. Toward this goal, we extract RLF that can be computed efficiently from the input image and generate a scale-space representation of the context images that are obtained at the output ofmore » each discriminative model in the series. Compared to a single-scale model, the use of a multi-scale representation of the context image gives the subsequent classifiers access to a larger contextual area in an effective way. Our strategy is general and independent of the classifier and has the potential to be used in any context based framework. We demonstrate that our method outperforms the state-of-the-art algorithms in detection of neuron membranes in EM images.« less
NASA Astrophysics Data System (ADS)
Bouganssa, Issam; Sbihi, Mohamed; Zaim, Mounia
2017-07-01
The 2D Discrete Wavelet Transform (DWT) is a computationally intensive task that is usually implemented on specific architectures in many imaging systems in real time. In this paper, a high throughput edge or contour detection algorithm is proposed based on the discrete wavelet transform. A technique for applying the filters on the three directions (Horizontal, Vertical and Diagonal) of the image is used to present the maximum of the existing contours. The proposed architectures were designed in VHDL and mapped to a Xilinx Sparten6 FPGA. The results of the synthesis show that the proposed architecture has a low area cost and can operate up to 100 MHz, which can perform 2D wavelet analysis for a sequence of images while maintaining the flexibility of the system to support an adaptive algorithm.
In silico simulation of liver crack detection using ultrasonic shear wave imaging.
Nie, Erwei; Yu, Jiao; Dutta, Debaditya; Zhu, Yanying
2018-05-16
Liver trauma is an important source of morbidity and mortality worldwide. A timely detection and precise evaluation of traumatic liver injury and the bleeding site is necessary. There is a need to develop better imaging modalities of hepatic injuries to increase the sensitivity of ultrasonic imaging techniques for sites of hemorrhage caused by cracks. In this study, we conduct an in silico simulation of liver crack detection and delineation using an ultrasonic shear wave imaging (USWI) based method. We simulate the generation and propagation of the shear wave in a liver tissue medium having a crack using COMSOL. Ultrasound radio frequency (RF) signal synthesis and the two-dimensional speckle tracking algorithm are applied to simulate USWI in a medium with randomly distributed scatterers. Crack detection is performed using the directional filter and the edge detection algorithm rather than the conventional inversion algorithm. Cracks with varied sizes and locations are studied with our method and the crack localization results are compared with the given crack. Our pilot simulation study shows that, by using USWI combined with a directional filter cum edge detection technique, the near-end edge of the crack can be detected in all the three cracks that we studied. The detection errors are within 5%. For a crack of 1.6 mm thickness, little shear wave can pass through it and the far-end edge of the crack cannot be detected. The detected crack lengths using USWI are all slightly shorter than the actual crack length. The robustness of our method in detecting a straight crack, a curved crack and a subtle crack of 0.5 mm thickness is demonstrated. In this paper, we simulate the use of a USWI based method for the detection and delineation of the crack in liver. The in silico simulation helps to improve understanding and interpretation of USWI measurements in a physical scattered liver medium with a crack. This pilot study provides a basis for improved insights in future crack detection studies in a tissue phantom or liver.
Sub-surface defects detection of by using active thermography and advanced image edge detection
NASA Astrophysics Data System (ADS)
Tse, Peter W.; Wang, Gaochao
2017-05-01
Active or pulsed thermography is a popular non-destructive testing (NDT) tool for inspecting the integrity and anomaly of industrial equipment. One of the recent research trends in using active thermography is to automate the process in detecting hidden defects. As of today, human effort has still been using to adjust the temperature intensity of the thermo camera in order to visually observe the difference in cooling rates caused by a normal target as compared to that by a sub-surface crack exists inside the target. To avoid the tedious human-visual inspection and minimize human induced error, this paper reports the design of an automatic method that is capable of detecting subsurface defects. The method used the technique of active thermography, edge detection in machine vision and smart algorithm. An infrared thermo-camera was used to capture a series of temporal pictures after slightly heating up the inspected target by flash lamps. Then the Canny edge detector was employed to automatically extract the defect related images from the captured pictures. The captured temporal pictures were preprocessed by a packet of Canny edge detector and then a smart algorithm was used to reconstruct the whole sequences of image signals. During the processes, noise and irrelevant backgrounds exist in the pictures were removed. Consequently, the contrast of the edges of defective areas had been highlighted. The designed automatic method was verified by real pipe specimens that contains sub-surface cracks. After applying such smart method, the edges of cracks can be revealed visually without the need of using manual adjustment on the setting of thermo-camera. With the help of this automatic method, the tedious process in manually adjusting the colour contract and the pixel intensity in order to reveal defects can be avoided.
Medical Image Fusion Based on Feature Extraction and Sparse Representation
Wei, Gao; Zongxi, Song
2017-01-01
As a novel multiscale geometric analysis tool, sparse representation has shown many advantages over the conventional image representation methods. However, the standard sparse representation does not take intrinsic structure and its time complexity into consideration. In this paper, a new fusion mechanism for multimodal medical images based on sparse representation and decision map is proposed to deal with these problems simultaneously. Three decision maps are designed including structure information map (SM) and energy information map (EM) as well as structure and energy map (SEM) to make the results reserve more energy and edge information. SM contains the local structure feature captured by the Laplacian of a Gaussian (LOG) and EM contains the energy and energy distribution feature detected by the mean square deviation. The decision map is added to the normal sparse representation based method to improve the speed of the algorithm. Proposed approach also improves the quality of the fused results by enhancing the contrast and reserving more structure and energy information from the source images. The experiment results of 36 groups of CT/MR, MR-T1/MR-T2, and CT/PET images demonstrate that the method based on SR and SEM outperforms five state-of-the-art methods. PMID:28321246
Multiscale equation-free algorithms for molecular dynamics
NASA Astrophysics Data System (ADS)
Abi Mansour, Andrew
Molecular dynamics is a physics-based computational tool that has been widely employed to study the dynamics and structure of macromolecules and their assemblies at the atomic scale. However, the efficiency of molecular dynamics simulation is limited because of the broad spectrum of timescales involved. To overcome this limitation, an equation-free algorithm is presented for simulating these systems using a multiscale model cast in terms of atomistic and coarse-grained variables. Both variables are evolved in time in such a way that the cross-talk between short and long scales is preserved. In this way, the coarse-grained variables guide the evolution of the atom-resolved states, while the latter provide the Newtonian physics for the former. While the atomistic variables are evolved using short molecular dynamics runs, time advancement at the coarse-grained level is achieved with a scheme that uses information from past and future states of the system while accounting for both the stochastic and deterministic features of the coarse-grained dynamics. To complete the multiscale cycle, an atom-resolved state consistent with the updated coarse-grained variables is recovered using algorithms from mathematical optimization. This multiscale paradigm is extended to nanofluidics using concepts from hydrodynamics, and it is demonstrated for macromolecular and nanofluidic systems. A toolkit is developed for prototyping these algorithms, which are then implemented within the GROMACS simulation package and released as an open source multiscale simulator.
Iterative Self-Dual Reconstruction on Radar Image Recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins, Charles; Medeiros, Fatima; Ushizima, Daniela
2010-05-21
Imaging systems as ultrasound, sonar, laser and synthetic aperture radar (SAR) are subjected to speckle noise during image acquisition. Before analyzing these images, it is often necessary to remove the speckle noise using filters. We combine properties of two mathematical morphology filters with speckle statistics to propose a signal-dependent noise filter to multiplicative noise. We describe a multiscale scheme that preserves sharp edges while it smooths homogeneous areas, by combining local statistics with two mathematical morphology filters: the alternating sequential and the self-dual reconstruction algorithms. The experimental results show that the proposed approach is less sensitive to varying window sizesmore » when applied to simulated and real SAR images in comparison with standard filters.« less
Aquino, Arturo; Gegundez-Arias, Manuel Emilio; Marin, Diego
2010-11-01
Optic disc (OD) detection is an important step in developing systems for automated diagnosis of various serious ophthalmic pathologies. This paper presents a new template-based methodology for segmenting the OD from digital retinal images. This methodology uses morphological and edge detection techniques followed by the Circular Hough Transform to obtain a circular OD boundary approximation. It requires a pixel located within the OD as initial information. For this purpose, a location methodology based on a voting-type algorithm is also proposed. The algorithms were evaluated on the 1200 images of the publicly available MESSIDOR database. The location procedure succeeded in 99% of cases, taking an average computational time of 1.67 s. with a standard deviation of 0.14 s. On the other hand, the segmentation algorithm rendered an average common area overlapping between automated segmentations and true OD regions of 86%. The average computational time was 5.69 s with a standard deviation of 0.54 s. Moreover, a discussion on advantages and disadvantages of the models more generally used for OD segmentation is also presented in this paper.
Medical image classification based on multi-scale non-negative sparse coding.
Zhang, Ruijie; Shen, Jian; Wei, Fushan; Li, Xiong; Sangaiah, Arun Kumar
2017-11-01
With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance. Copyright © 2017 Elsevier B.V. All rights reserved.
An iterative method for airway segmentation using multiscale leakage detection
NASA Astrophysics Data System (ADS)
Nadeem, Syed Ahmed; Jin, Dakai; Hoffman, Eric A.; Saha, Punam K.
2017-02-01
There are growing applications of quantitative computed tomography for assessment of pulmonary diseases by characterizing lung parenchyma as well as the bronchial tree. Many large multi-center studies incorporating lung imaging as a study component are interested in phenotypes relating airway branching patterns, wall-thickness, and other morphological measures. To our knowledge, there are no fully automated airway tree segmentation methods, free of the need for user review. Even when there are failures in a small fraction of segmentation results, the airway tree masks must be manually reviewed for all results which is laborious considering that several thousands of image data sets are evaluated in large studies. In this paper, we present a CT-based novel airway tree segmentation algorithm using iterative multi-scale leakage detection, freezing, and active seed detection. The method is fully automated requiring no manual inputs or post-segmentation editing. It uses simple intensity based connectivity and a new leakage detection algorithm to iteratively grow an airway tree starting from an initial seed inside the trachea. It begins with a conservative threshold and then, iteratively shifts toward generous values. The method was applied on chest CT scans of ten non-smoking subjects at total lung capacity and ten at functional residual capacity. Airway segmentation results were compared to an expert's manually edited segmentations. Branch level accuracy of the new segmentation method was examined along five standardized segmental airway paths (RB1, RB4, RB10, LB1, LB10) and two generations beyond these branches. The method successfully detected all branches up to two generations beyond these segmental bronchi with no visual leakages.
Framework for adaptive multiscale analysis of nonhomogeneous point processes.
Helgason, Hannes; Bartroff, Jay; Abry, Patrice
2011-01-01
We develop the methodology for hypothesis testing and model selection in nonhomogeneous Poisson processes, with an eye toward the application of modeling and variability detection in heart beat data. Modeling the process' non-constant rate function using templates of simple basis functions, we develop the generalized likelihood ratio statistic for a given template and a multiple testing scheme to model-select from a family of templates. A dynamic programming algorithm inspired by network flows is used to compute the maximum likelihood template in a multiscale manner. In a numerical example, the proposed procedure is nearly as powerful as the super-optimal procedures that know the true template size and true partition, respectively. Extensions to general history-dependent point processes is discussed.
Generalization of mixed multiscale finite element methods with applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C S
Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixedmore » multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii« less
Delineating parameter unidentifiabilities in complex models
NASA Astrophysics Data System (ADS)
Raman, Dhruva V.; Anderson, James; Papachristodoulou, Antonis
2017-03-01
Scientists use mathematical modeling as a tool for understanding and predicting the properties of complex physical systems. In highly parametrized models there often exist relationships between parameters over which model predictions are identical, or nearly identical. These are known as structural or practical unidentifiabilities, respectively. They are hard to diagnose and make reliable parameter estimation from data impossible. They furthermore imply the existence of an underlying model simplification. We describe a scalable method for detecting unidentifiabilities, as well as the functional relations defining them, for generic models. This allows for model simplification, and appreciation of which parameters (or functions thereof) cannot be estimated from data. Our algorithm can identify features such as redundant mechanisms and fast time-scale subsystems, as well as the regimes in parameter space over which such approximations are valid. We base our algorithm on a quantification of regional parametric sensitivity that we call `multiscale sloppiness'. Traditionally, the link between parametric sensitivity and the conditioning of the parameter estimation problem is made locally, through the Fisher information matrix. This is valid in the regime of infinitesimal measurement uncertainty. We demonstrate the duality between multiscale sloppiness and the geometry of confidence regions surrounding parameter estimates made where measurement uncertainty is non-negligible. Further theoretical relationships are provided linking multiscale sloppiness to the likelihood-ratio test. From this, we show that a local sensitivity analysis (as typically done) is insufficient for determining the reliability of parameter estimation, even with simple (non)linear systems. Our algorithm can provide a tractable alternative. We finally apply our methods to a large-scale, benchmark systems biology model of necrosis factor (NF)-κ B , uncovering unidentifiabilities.
Multiscale Monte Carlo equilibration: Pure Yang-Mills theory
Endres, Michael G.; Brower, Richard C.; Orginos, Kostas; ...
2015-12-29
In this study, we present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts.
NASA Astrophysics Data System (ADS)
Fabbrini, L.; Messina, M.; Greco, M.; Pinelli, G.
2011-10-01
In the context of augmented integrity Inertial Navigation System (INS), recent technological developments have been focusing on landmark extraction from high-resolution synthetic aperture radar (SAR) images in order to retrieve aircraft position and attitude. The article puts forward a processing chain that can automatically detect linear landmarks on highresolution synthetic aperture radar (SAR) images and can be successfully exploited also in the context of augmented integrity INS. The processing chain uses constant false alarm rate (CFAR) edge detectors as the first step of the whole processing procedure. Our studies confirm that the ratio of averages (RoA) edge detector detects object boundaries more effectively than Student T-test and Wilcoxon-Mann-Whitney (WMW) test. Nevertheless, all these statistical edge detectors are sensitive to violation of the assumptions which underlie their theory. In addition to presenting a solution to the previous problem, we put forward a new post-processing algorithm useful to remove the main false alarms, to select the most probable edge position, to reconstruct broken edges and finally to vectorize them. SAR images from the "MSTAR clutter" dataset were used to prove the effectiveness of the proposed algorithms.
Dong, Yimeng; Gupta, Nirupam; Chopra, Nikhil
2016-11-01
In this paper, vulnerability of a distributed consensus seeking multi-agent system (MAS) with double-integrator dynamics against edge-bound content modification cyber attacks is studied. In particular, we define a specific edge-bound content modification cyber attack called malignant content modification attack (MCoMA), which results in unbounded growth of an appropriately defined group disagreement vector. Properties of MCoMA are utilized to design detection and mitigation algorithms so as to impart resilience in the considered MAS against MCoMA. Additionally, the proposed detection mechanism is extended to detect the general edge-bound content modification attacks (not just MCoMA). Finally, the efficacies of the proposed results are illustrated through numerical simulations.
Content modification attacks on consensus seeking multi-agent system with double-integrator dynamics
NASA Astrophysics Data System (ADS)
Dong, Yimeng; Gupta, Nirupam; Chopra, Nikhil
2016-11-01
In this paper, vulnerability of a distributed consensus seeking multi-agent system (MAS) with double-integrator dynamics against edge-bound content modification cyber attacks is studied. In particular, we define a specific edge-bound content modification cyber attack called malignant content modification attack (MCoMA), which results in unbounded growth of an appropriately defined group disagreement vector. Properties of MCoMA are utilized to design detection and mitigation algorithms so as to impart resilience in the considered MAS against MCoMA. Additionally, the proposed detection mechanism is extended to detect the general edge-bound content modification attacks (not just MCoMA). Finally, the efficacies of the proposed results are illustrated through numerical simulations.
A speeded-up saliency region-based contrast detection method for small targets
NASA Astrophysics Data System (ADS)
Li, Zhengjie; Zhang, Haiying; Bai, Jiaojiao; Zhou, Zhongjun; Zheng, Huihuang
2018-04-01
To cope with the rapid development of the real applications for infrared small targets, the researchers have tried their best to pursue more robust detection methods. At present, the contrast measure-based method has become a promising research branch. Following the framework, in this paper, a speeded-up contrast measure scheme is proposed based on the saliency detection and density clustering. First, the saliency region is segmented by saliency detection method, and then, the Multi-scale contrast calculation is carried out on it instead of traversing the whole image. Second, the target with a certain "integrity" property in spatial is exploited to distinguish the target from the isolated noises by density clustering. Finally, the targets are detected by a self-adaptation threshold. Compared with time-consuming MPCM (Multiscale Patch Contrast Map), the time cost of the speeded-up version is within a few seconds. Additional, due to the use of "clustering segmentation", the false alarm caused by heavy noises can be restrained to a lower level. The experiments show that our method has a satisfied FASR (False alarm suppression ratio) and real-time performance compared with the state-of-art algorithms no matter in cloudy sky or sea-sky background.
NASA Astrophysics Data System (ADS)
Ng, T. Y.; Yeak, S. H.; Liew, K. M.
2008-02-01
A multiscale technique is developed that couples empirical molecular dynamics (MD) and ab initio density functional theory (DFT). An overlap handshaking region between the empirical MD and ab initio DFT regions is formulated and the interaction forces between the carbon atoms are calculated based on the second-generation reactive empirical bond order potential, the long-range Lennard-Jones potential as well as the quantum-mechanical DFT derived forces. A density of point algorithm is also developed to track all interatomic distances in the system, and to activate and establish the DFT and handshaking regions. Through parallel computing, this multiscale method is used here to study the dynamic behavior of single-walled carbon nanotubes (SWCNTs) under asymmetrical axial compression. The detection of sideways buckling due to the asymmetrical axial compression is reported and discussed. It is noted from this study on SWCNTs that the MD results may be stiffer compared to those with electron density considerations, i.e. first-principle ab initio methods.
Human recognition based on head-shoulder contour extraction and BP neural network
NASA Astrophysics Data System (ADS)
Kong, Xiao-fang; Wang, Xiu-qin; Gu, Guohua; Chen, Qian; Qian, Wei-xian
2014-11-01
In practical application scenarios like video surveillance and human-computer interaction, human body movements are uncertain because the human body is a non-rigid object. Based on the fact that the head-shoulder part of human body can be less affected by the movement, and will seldom be obscured by other objects, in human detection and recognition, a head-shoulder model with its stable characteristics can be applied as a detection feature to describe the human body. In order to extract the head-shoulder contour accurately, a head-shoulder model establish method with combination of edge detection and the mean-shift algorithm in image clustering has been proposed in this paper. First, an adaptive method of mixture Gaussian background update has been used to extract targets from the video sequence. Second, edge detection has been used to extract the contour of moving objects, and the mean-shift algorithm has been combined to cluster parts of target's contour. Third, the head-shoulder model can be established, according to the width and height ratio of human head-shoulder combined with the projection histogram of the binary image, and the eigenvectors of the head-shoulder contour can be acquired. Finally, the relationship between head-shoulder contour eigenvectors and the moving objects will be formed by the training of back-propagation (BP) neural network classifier, and the human head-shoulder model can be clustered for human detection and recognition. Experiments have shown that the method combined with edge detection and mean-shift algorithm proposed in this paper can extract the complete head-shoulder contour, with low calculating complexity and high efficiency.
Quantitative Ultrasound Assessment of Duchenne Muscular Dystrophy Using Edge Detection Analysis.
Koppaka, Sisir; Shklyar, Irina; Rutkove, Seward B; Darras, Basil T; Anthony, Brian W; Zaidman, Craig M; Wu, Jim S
2016-09-01
The purpose of this study was to investigate the ability of quantitative ultrasound (US) using edge detection analysis to assess patients with Duchenne muscular dystrophy (DMD). After Institutional Review Board approval, US examinations with fixed technical parameters were performed unilaterally in 6 muscles (biceps, deltoid, wrist flexors, quadriceps, medial gastrocnemius, and tibialis anterior) in 19 boys with DMD and 21 age-matched control participants. The muscles of interest were outlined by a tracing tool, and the upper third of the muscle was used for analysis. Edge detection values for each muscle were quantified by the Canny edge detection algorithm and then normalized to the number of edge pixels in the muscle region. The edge detection values were extracted at multiple sensitivity thresholds (0.01-0.99) to determine the optimal threshold for distinguishing DMD from normal. Area under the receiver operating curve values were generated for each muscle and averaged across the 6 muscles. The average age in the DMD group was 8.8 years (range, 3.0-14.3 years), and the average age in the control group was 8.7 years (range, 3.4-13.5 years). For edge detection, a Canny threshold of 0.05 provided the best discrimination between DMD and normal (area under the curve, 0.96; 95% confidence interval, 0.84-1.00). According to a Mann-Whitney test, edge detection values were significantly different between DMD and controls (P < .0001). Quantitative US imaging using edge detection can distinguish patients with DMD from healthy controls at low Canny thresholds, at which discrimination of small structures is best. Edge detection by itself or in combination with other tests can potentially serve as a useful biomarker of disease progression and effectiveness of therapy in muscle disorders.
Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray
2014-11-25
A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design.
Stochastic Control of Multi-Scale Networks: Modeling, Analysis and Algorithms
2014-10-20
Theory, (02 2012): 0. doi: B. T. Swapna, Atilla Eryilmaz, Ness B. Shroff. Throughput-Delay Analysis of Random Linear Network Coding for Wireless ... Wireless Sensor Networks and Effects of Long-Range Dependent Data, Sequential Analysis , (10 2012): 0. doi: 10.1080/07474946.2012.719435 Stefano...Sequential Analysis , (10 2012): 0. doi: John S. Baras, Shanshan Zheng. Sequential Anomaly Detection in Wireless Sensor Networks andEffects of Long
Iris Segmentation and Normalization Algorithm Based on Zigzag Collarette
NASA Astrophysics Data System (ADS)
Rizky Faundra, M.; Ratna Sulistyaningrum, Dwi
2017-01-01
In this paper, we proposed iris segmentation and normalization algorithm based on the zigzag collarette. First of all, iris images are processed by using Canny Edge Detection to detect pupil edge, then finding the center and the radius of the pupil with the Hough Transform Circle. Next, isolate important part in iris based zigzag collarette area. Finally, Daugman Rubber Sheet Model applied to get the fixed dimensions or normalization iris by transforming cartesian into polar format and thresholding technique to remove eyelid and eyelash. This experiment will be conducted with a grayscale eye image data taken from a database of iris-Chinese Academy of Sciences Institute of Automation (CASIA). Data iris taken is the data reliable and widely used to study the iris biometrics. The result show that specific threshold level is 0.3 have better accuracy than other, so the present algorithm can be used to segmentation and normalization zigzag collarette with accuracy is 98.88%
Automated kidney morphology measurements from ultrasound images using texture and edge analysis
NASA Astrophysics Data System (ADS)
Ravishankar, Hariharan; Annangi, Pavan; Washburn, Michael; Lanning, Justin
2016-04-01
In a typical ultrasound scan, a sonographer measures Kidney morphology to assess renal abnormalities. Kidney morphology can also help to discriminate between chronic and acute kidney failure. The caliper placements and volume measurements are often time consuming and an automated solution will help to improve accuracy, repeatability and throughput. In this work, we developed an automated Kidney morphology measurement solution from long axis Ultrasound scans. Automated kidney segmentation is challenging due to wide variability in kidney shape, size, weak contrast of the kidney boundaries and presence of strong edges like diaphragm, fat layers. To address the challenges and be able to accurately localize and detect kidney regions, we present a two-step algorithm that makes use of edge and texture information in combination with anatomical cues. First, we use an edge analysis technique to localize kidney region by matching the edge map with predefined templates. To accurately estimate the kidney morphology, we use textural information in a machine learning algorithm framework using Haar features and Gradient boosting classifier. We have tested the algorithm on 45 unseen cases and the performance against ground truth is measured by computing Dice overlap, % error in major and minor axis of kidney. The algorithm shows successful performance on 80% cases.
Reliable clarity automatic-evaluation method for optical remote sensing images
NASA Astrophysics Data System (ADS)
Qin, Bangyong; Shang, Ren; Li, Shengyang; Hei, Baoqin; Liu, Zhiwen
2015-10-01
Image clarity, which reflects the sharpness degree at the edge of objects in images, is an important quality evaluate index for optical remote sensing images. Scholars at home and abroad have done a lot of work on estimation of image clarity. At present, common clarity-estimation methods for digital images mainly include frequency-domain function methods, statistical parametric methods, gradient function methods and edge acutance methods. Frequency-domain function method is an accurate clarity-measure approach. However, its calculation process is complicate and cannot be carried out automatically. Statistical parametric methods and gradient function methods are both sensitive to clarity of images, while their results are easy to be affected by the complex degree of images. Edge acutance method is an effective approach for clarity estimate, while it needs picking out the edges manually. Due to the limits in accuracy, consistent or automation, these existing methods are not applicable to quality evaluation of optical remote sensing images. In this article, a new clarity-evaluation method, which is based on the principle of edge acutance algorithm, is proposed. In the new method, edge detection algorithm and gradient search algorithm are adopted to automatically search the object edges in images. Moreover, The calculation algorithm for edge sharpness has been improved. The new method has been tested with several groups of optical remote sensing images. Compared with the existing automatic evaluation methods, the new method perform better both in accuracy and consistency. Thus, the new method is an effective clarity evaluation method for optical remote sensing images.
Photon Counting Using Edge-Detection Algorithm
NASA Technical Reports Server (NTRS)
Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.
2010-01-01
New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1-bit comparator, which digitizes the input referenced to an adjustable threshold value. This results in four independent serial sample streams of binary 1s and 0s, which are ORed together at rates up to 10 GHz. This single serial stream is then deserialized by a factor of 16 to create 16 signal lines at a rate of 622.5 MHz or lower for input to a high-speed digital processor assembly. The new design and corresponding hardware can be employed with a quad-photon counting detector capable of handling photon rates on the order of multi-gigaphotons per second, whereas prior art was only capable of handling a single input at 1/4 the flux rate. Additionally, the hardware edge-detection algorithm has provided the ability to process 3-10 higher photon flux rates than previously possible by removing the limitation that photoncounting detector output pulses on multiple channels being ORed not overlap. Now, only the leading edges of the pulses are required to not overlap. This new photon counting digitizer hardware architecture supports a universal front end for an optical communications receiver operating at data rates from kilobits to over one gigabit per second to meet increased mission data volume requirements.
Multiscale high-order/low-order (HOLO) algorithms and applications
NASA Astrophysics Data System (ADS)
Chacón, L.; Chen, G.; Knoll, D. A.; Newman, C.; Park, H.; Taitano, W.; Willert, J. A.; Womeldorff, G.
2017-02-01
We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.
Moving Object Detection Using Scanning Camera on a High-Precision Intelligent Holder.
Chen, Shuoyang; Xu, Tingfa; Li, Daqun; Zhang, Jizhou; Jiang, Shenwang
2016-10-21
During the process of moving object detection in an intelligent visual surveillance system, a scenario with complex background is sure to appear. The traditional methods, such as "frame difference" and "optical flow", may not able to deal with the problem very well. In such scenarios, we use a modified algorithm to do the background modeling work. In this paper, we use edge detection to get an edge difference image just to enhance the ability of resistance illumination variation. Then we use a "multi-block temporal-analyzing LBP (Local Binary Pattern)" algorithm to do the segmentation. In the end, a connected component is used to locate the object. We also produce a hardware platform, the core of which consists of the DSP (Digital Signal Processor) and FPGA (Field Programmable Gate Array) platforms and the high-precision intelligent holder.
Color Image Enhancement Using Multiscale Retinex Based on Particle Swarm Optimization Method
NASA Astrophysics Data System (ADS)
Matin, F.; Jeong, Y.; Kim, K.; Park, K.
2018-01-01
This paper introduces, a novel method for the image enhancement using multiscale retinex and practical swarm optimization. Multiscale retinex is widely used image enhancement technique which intemperately pertains on parameters such as Gaussian scales, gain and offset, etc. To achieve the privileged effect, the parameters need to be tuned manually according to the image. In order to handle this matter, a developed retinex algorithm based on PSO has been used. The PSO method adjusted the parameters for multiscale retinex with chromaticity preservation (MSRCP) attains better outcome to compare with other existing methods. The experimental result indicates that the proposed algorithm is an efficient one and not only provides true color loyalty in low light conditions but also avoid color distortion at the same time.
Processing LiDAR Data to Predict Natural Hazards
NASA Technical Reports Server (NTRS)
Fairweather, Ian; Crabtree, Robert; Hager, Stacey
2008-01-01
ELF-Base and ELF-Hazards (wherein 'ELF' signifies 'Extract LiDAR Features' and 'LiDAR' signifies 'light detection and ranging') are developmental software modules for processing remote-sensing LiDAR data to identify past natural hazards (principally, landslides) and predict future ones. ELF-Base processes raw LiDAR data, including LiDAR intensity data that are often ignored in other software, to create digital terrain models (DTMs) and digital feature models (DFMs) with sub-meter accuracy. ELF-Hazards fuses raw LiDAR data, data from multispectral and hyperspectral optical images, and DTMs and DFMs generated by ELF-Base to generate hazard risk maps. Advanced algorithms in these software modules include line-enhancement and edge-detection algorithms, surface-characterization algorithms, and algorithms that implement innovative data-fusion techniques. The line-extraction and edge-detection algorithms enable users to locate such features as faults and landslide headwall scarps. Also implemented in this software are improved methodologies for identification and mapping of past landslide events by use of (1) accurate, ELF-derived surface characterizations and (2) three LiDAR/optical-data-fusion techniques: post-classification data fusion, maximum-likelihood estimation modeling, and hierarchical within-class discrimination. This software is expected to enable faster, more accurate forecasting of natural hazards than has previously been possible.
Text, photo, and line extraction in scanned documents
NASA Astrophysics Data System (ADS)
Erkilinc, M. Sezer; Jaber, Mustafa; Saber, Eli; Bauer, Peter; Depalov, Dejan
2012-07-01
We propose a page layout analysis algorithm to classify a scanned document into different regions such as text, photo, or strong lines. The proposed scheme consists of five modules. The first module performs several image preprocessing techniques such as image scaling, filtering, color space conversion, and gamma correction to enhance the scanned image quality and reduce the computation time in later stages. Text detection is applied in the second module wherein wavelet transform and run-length encoding are employed to generate and validate text regions, respectively. The third module uses a Markov random field based block-wise segmentation that employs a basis vector projection technique with maximum a posteriori probability optimization to detect photo regions. In the fourth module, methods for edge detection, edge linking, line-segment fitting, and Hough transform are utilized to detect strong edges and lines. In the last module, the resultant text, photo, and edge maps are combined to generate a page layout map using K-Means clustering. The proposed algorithm has been tested on several hundred documents that contain simple and complex page layout structures and contents such as articles, magazines, business cards, dictionaries, and newsletters, and compared against state-of-the-art page-segmentation techniques with benchmark performance. The results indicate that our methodology achieves an average of ˜89% classification accuracy in text, photo, and background regions.
Multiscale stochastic simulations of chemical reactions with regulated scale separation
NASA Astrophysics Data System (ADS)
Koumoutsakos, Petros; Feigelman, Justin
2013-07-01
We present a coupling of multiscale frameworks with accelerated stochastic simulation algorithms for systems of chemical reactions with disparate propensities. The algorithms regulate the propensities of the fast and slow reactions of the system, using alternating micro and macro sub-steps simulated with accelerated algorithms such as τ and R-leaping. The proposed algorithms are shown to provide significant speedups in simulations of stiff systems of chemical reactions with a trade-off in accuracy as controlled by a regulating parameter. More importantly, the error of the methods exhibits a cutoff phenomenon that allows for optimal parameter choices. Numerical experiments demonstrate that hybrid algorithms involving accelerated stochastic simulations can be, in certain cases, more accurate while faster, than their corresponding stochastic simulation algorithm counterparts.
Thomas, Michael S C; Forrester, Neil A; Ronald, Angelica
2016-01-01
In the multidisciplinary field of developmental cognitive neuroscience, statistical associations between levels of description play an increasingly important role. One example of such associations is the observation of correlations between relatively common gene variants and individual differences in behavior. It is perhaps surprising that such associations can be detected despite the remoteness of these levels of description, and the fact that behavior is the outcome of an extended developmental process involving interaction of the whole organism with a variable environment. Given that they have been detected, how do such associations inform cognitive-level theories? To investigate this question, we employed a multiscale computational model of development, using a sample domain drawn from the field of language acquisition. The model comprised an artificial neural network model of past-tense acquisition trained using the backpropagation learning algorithm, extended to incorporate population modeling and genetic algorithms. It included five levels of description-four internal: genetic, network, neurocomputation, behavior; and one external: environment. Since the mechanistic assumptions of the model were known and its operation was relatively transparent, we could evaluate whether cross-level associations gave an accurate picture of causal processes. We established that associations could be detected between artificial genes and behavioral variation, even under polygenic assumptions of a many-to-one relationship between genes and neurocomputational parameters, and when an experience-dependent developmental process interceded between the action of genes and the emergence of behavior. We evaluated these associations with respect to their specificity (to different behaviors, to function vs. structure), to their developmental stability, and to their replicability, as well as considering issues of missing heritability and gene-environment interactions. We argue that gene-behavior associations can inform cognitive theory with respect to effect size, specificity, and timing. The model demonstrates a means by which researchers can undertake multiscale modeling with respect to cognition and develop highly specific and complex hypotheses across multiple levels of description. Copyright © 2015 Cognitive Science Society, Inc.
Poole, William; Leinonen, Kalle; Shmulevich, Ilya
2017-01-01
Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C. PMID:28170390
Poole, William; Leinonen, Kalle; Shmulevich, Ilya; Knijnenburg, Theo A; Bernard, Brady
2017-02-01
Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C.
Paroxysmal atrial fibrillation recognition based on multi-scale Rényi entropy of ECG.
Xin, Yi; Zhao, Yizhang; Mu, Yuanhui; Li, Qin; Shi, Caicheng
2017-07-20
Atrial fibrillation (AF) is a common type of arrhythmia disease, which has a high morbidity and can lead to some serious complications. The ability to detect and in turn prevent AF is extremely significant to the patient and clinician. Using ECG to detect AF and develop a robust and effective algorithm is the primary objective of this study. Some studies show that after AF occurs, the regulatory mechanism of vagus nerve and sympathetic nerve will change. Each R-R interval will be absolutely unequal. After studying the physiological mechanism of AF, we will calculate the Rényi entropy of the wavelet coefficients of heart rate variability (HRV) in order to measure the complexity of PAF signals, as well as extract the multi-scale features of paroxysmal atrial fibrillation (PAF). The data used in this study is obtained from MIT-BIH PAF Prediction Challenge Database and the correct rate in classifying PAF patients from normal persons is 92.48%. The results of this experiment proved that AF could be detected by using this method and, in turn, provide opinions for clinical diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emery, John M.; Coffin, Peter; Robbins, Brian A.
Microstructural variabilities are among the predominant sources of uncertainty in structural performance and reliability. We seek to develop efficient algorithms for multiscale calcu- lations for polycrystalline alloys such as aluminum alloy 6061-T6 in environments where ductile fracture is the dominant failure mode. Our approach employs concurrent multiscale methods, but does not focus on their development. They are a necessary but not sufficient ingredient to multiscale reliability predictions. We have focused on how to efficiently use concurrent models for forward propagation because practical applications cannot include fine-scale details throughout the problem domain due to exorbitant computational demand. Our approach begins withmore » a low-fidelity prediction at the engineering scale that is sub- sequently refined with multiscale simulation. The results presented in this report focus on plasticity and damage at the meso-scale, efforts to expedite Monte Carlo simulation with mi- crostructural considerations, modeling aspects regarding geometric representation of grains and second-phase particles, and contrasting algorithms for scale coupling.« less
Retinex enhancement of infrared images.
Li, Ying; He, Renjie; Xu, Guizhi; Hou, Changzhi; Sun, Yunyan; Guo, Lei; Rao, Liyun; Yan, Weili
2008-01-01
With the ability of imaging the temperature distribution of body, infrared imaging is promising in diagnostication and prognostication of diseases. However the poor quality of the raw original infrared images prevented applications and one of the essential problems is the low contrast appearance of the imagined object. In this paper, the image enhancement technique based on the Retinex theory is studied, which is a process that automatically retrieve the visual realism to images. The algorithms, including Frackle-McCann algorithm, McCann99 algorithm, single-scale Retinex algorithm, multi-scale Retinex algorithm and multi-scale Retinex algorithm with color restoration, are experienced to the enhancement of infrared images. The entropy measurements along with the visual inspection were compared and results shown the algorithms based on Retinex theory have the ability in enhancing the infrared image. Out of the algorithms compared, MSRCR demonstrated the best performance.
Design of measuring system for wire diameter based on sub-pixel edge detection algorithm
NASA Astrophysics Data System (ADS)
Chen, Yudong; Zhou, Wang
2016-09-01
Light projection method is often used in measuring system for wire diameter, which is relatively simpler structure and lower cost, and the measuring accuracy is limited by the pixel size of CCD. Using a CCD with small pixel size can improve the measuring accuracy, but will increase the cost and difficulty of making. In this paper, through the comparative analysis of a variety of sub-pixel edge detection algorithms, polynomial fitting method is applied for data processing in measuring system for wire diameter, to improve the measuring accuracy and enhance the ability of anti-noise. In the design of system structure, light projection method with orthogonal structure is used for the detection optical part, which can effectively reduce the error caused by line jitter in the measuring process. For the electrical part, ARM Cortex-M4 microprocessor is used as the core of the circuit module, which can not only drive double channel linear CCD but also complete the sampling, processing and storage of the CCD video signal. In addition, ARM microprocessor can complete the high speed operation of the whole measuring system for wire diameter in the case of no additional chip. The experimental results show that sub-pixel edge detection algorithm based on polynomial fitting can make up for the lack of single pixel size and improve the precision of measuring system for wire diameter significantly, without increasing hardware complexity of the entire system.
Liu, Jianfei; Jung, HaeWon; Dubra, Alfredo; Tam, Johnny
2017-09-01
Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification of the photoreceptor mosaic in the living human eye using metrics such as cell density and average spacing. These rely on the identification of individual cells. Here, we demonstrate a novel approach for computer-aided identification of cone photoreceptors on nonconfocal split detection AOSLO images. Algorithms for identification of cone photoreceptors were developed, based on multiscale circular voting (MSCV) in combination with a priori knowledge that split detection images resemble Nomarski differential interference contrast images, in which dark and bright regions are present on the two sides of each cell. The proposed algorithm locates dark and bright region pairs, iteratively refining the identification across multiple scales. Identification accuracy was assessed in data from 10 subjects by comparing automated identifications with manual labeling, followed by computation of density and spacing metrics for comparison to histology and published data. There was good agreement between manual and automated cone identifications with overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average, computed density and spacing values using automated identification were within 10.7% and 11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm. There was no statistically significant difference between MSCV-based and histology-based density measurements (P = 0.96, Kolmogorov-Smirnov 2-sample test). MSCV can accurately detect cone photoreceptors on split detection images across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic metrics, which will be important for future clinical trials utilizing adaptive optics.
Image Edge Tracking via Ant Colony Optimization
NASA Astrophysics Data System (ADS)
Li, Ruowei; Wu, Hongkun; Liu, Shilong; Rahman, M. A.; Liu, Sanchi; Kwok, Ngai Ming
2018-04-01
A good edge plot should use continuous thin lines to describe the complete contour of the captured object. However, the detection of weak edges is a challenging task because of the associated low pixel intensities. Ant Colony Optimization (ACO) has been employed by many researchers to address this problem. The algorithm is a meta-heuristic method developed by mimicking the natural behaviour of ants. It uses iterative searches to find the optimal solution that cannot be found via traditional optimization approaches. In this work, ACO is employed to track and repair broken edges obtained via conventional Sobel edge detector to produced a result with more connected edges.
Reconfiguration of Cortical Networks in MDD Uncovered by Multiscale Community Detection with fMRI.
He, Ye; Lim, Sol; Fortunato, Santo; Sporns, Olaf; Zhang, Lei; Qiu, Jiang; Xie, Peng; Zuo, Xi-Nian
2018-04-01
Major depressive disorder (MDD) is known to be associated with altered interactions between distributed brain regions. How these regional changes relate to the reorganization of cortical functional systems, and their modulation by antidepressant medication, is relatively unexplored. To identify changes in the community structure of cortical functional networks in MDD, we performed a multiscale community detection algorithm on resting-state functional connectivity networks of unmedicated MDD (uMDD) patients (n = 46), medicated MDD (mMDD) patients (n = 38), and healthy controls (n = 50), which yielded a spectrum of multiscale community partitions. we selected an optimal resolution level by identifying the most stable community partition for each group. uMDD and mMDD groups exhibited a similar reconfiguration of the community structure of the visual association and the default mode systems but showed different reconfiguration profiles in the frontoparietal control (FPC) subsystems. Furthermore, the central system (somatomotor/salience) and 3 frontoparietal subsystems showed strengthened connectivity with other communities in uMDD but, with the exception of 1 frontoparietal subsystem, returned to control levels in mMDD. These findings provide evidence for reconfiguration of specific cortical functional systems associated with MDD, as well as potential effects of medication in restoring disease-related network alterations, especially those of the FPC system.
Coherent multiscale image processing using dual-tree quaternion wavelets.
Chan, Wai Lam; Choi, Hyeokho; Baraniuk, Richard G
2008-07-01
The dual-tree quaternion wavelet transform (QWT) is a new multiscale analysis tool for geometric image features. The QWT is a near shift-invariant tight frame representation whose coefficients sport a magnitude and three phases: two phases encode local image shifts while the third contains image texture information. The QWT is based on an alternative theory for the 2-D Hilbert transform and can be computed using a dual-tree filter bank with linear computational complexity. To demonstrate the properties of the QWT's coherent magnitude/phase representation, we develop an efficient and accurate procedure for estimating the local geometrical structure of an image. We also develop a new multiscale algorithm for estimating the disparity between a pair of images that is promising for image registration and flow estimation applications. The algorithm features multiscale phase unwrapping, linear complexity, and sub-pixel estimation accuracy.
Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray
2014-01-01
A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design. PMID:25404761
2007-06-01
images,” IEEE Trans. Pattern Analysis Machine Intelligence, vol. 13, no. 2, pp. 99–113, 1991. [15] C. Bouman and M. Shapiro, “A multiscale random...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing...this project was on developing new statistical algorithms for analysis of electromagnetic induction (EMI) and magnetometer data measured at actual
Wearable Wireless Sensor for Multi-Scale Physiological Monitoring
2015-10-01
clothes with different colors and patterns. The developed algorithm can still detect the chest movements even if single color clothes are worn...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT One of the aims of Year 2 of the project was to complete development of a prototype multi...this aim, we have developed a prototype 6-photodetector reflectance-based pulse oximeter and results to date show that good signals can be obtained in
The optimization of edge and line detectors for forest image analysis
Zhiling Long; Joseph Picone; Victor A. Rudis
2000-01-01
Automated image analysis for forestry applications is becoming increasingly important with the rapid evolution of satellite and land-based remote imaging industries. Features derived from line information play a very important role in analyses of such images. Many edge and line detection algorithms have been proposed but few, if any, comprehensive studies exist that...
Obstacle Detection Algorithms for Rotorcraft Navigation
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia I.; Huang, Ying; Narasimhamurthy, Anand; Pande, Nitin; Ahumada, Albert (Technical Monitor)
2001-01-01
In this research we addressed the problem of obstacle detection for low altitude rotorcraft flight. In particular, the problem of detecting thin wires in the presence of image clutter and noise was studied. Wires present a serious hazard to rotorcrafts. Since they are very thin, their detection early enough so that the pilot has enough time to take evasive action is difficult, as their images can be less than one or two pixels wide. After reviewing the line detection literature, an algorithm for sub-pixel edge detection proposed by Steger was identified as having good potential to solve the considered task. The algorithm was tested using a set of images synthetically generated by combining real outdoor images with computer generated wire images. The performance of the algorithm was evaluated both, at the pixel and the wire levels. It was observed that the algorithm performs well, provided that the wires are not too thin (or distant) and that some post processing is performed to remove false alarms due to clutter.
Jiang, Bernard C.
2014-01-01
Falls are unpredictable accidents, and the resulting injuries can be serious in the elderly, particularly those with chronic diseases. Regular exercise is recommended to prevent and treat hypertension and other chronic diseases by reducing clinical blood pressure. The “complexity index” (CI), based on multiscale entropy (MSE) algorithm, has been applied in recent studies to show a person's adaptability to intrinsic and external perturbations and widely used measure of postural sway or stability. The multivariate multiscale entropy (MMSE) was advanced algorithm used to calculate the complexity index (CI) values of the center of pressure (COP) data. In this study, we applied the MSE & MMSE to analyze gait function of 24 elderly, chronically ill patients (44% female; 56% male; mean age, 67.56 ± 10.70 years) with either cardiovascular disease, diabetes mellitus, or osteoporosis. After a 12-week training program, postural stability measurements showed significant improvements. Our results showed beneficial effects of resistance training, which can be used to improve postural stability in the elderly and indicated that MMSE algorithms to calculate CI of the COP data were superior to the multiscale entropy (MSE) algorithm to identify the sense of balance in the elderly. PMID:25295070
Monocular precrash vehicle detection: features and classifiers.
Sun, Zehang; Bebis, George; Miller, Ronald
2006-07-01
Robust and reliable vehicle detection from images acquired by a moving vehicle (i.e., on-road vehicle detection) is an important problem with applications to driver assistance systems and autonomous, self-guided vehicles. The focus of this work is on the issues of feature extraction and classification for rear-view vehicle detection. Specifically, by treating the problem of vehicle detection as a two-class classification problem, we have investigated several different feature extraction methods such as principal component analysis, wavelets, and Gabor filters. To evaluate the extracted features, we have experimented with two popular classifiers, neural networks and support vector machines (SVMs). Based on our evaluation results, we have developed an on-board real-time monocular vehicle detection system that is capable of acquiring grey-scale images, using Ford's proprietary low-light camera, achieving an average detection rate of 10 Hz. Our vehicle detection algorithm consists of two main steps: a multiscale driven hypothesis generation step and an appearance-based hypothesis verification step. During the hypothesis generation step, image locations where vehicles might be present are extracted. This step uses multiscale techniques not only to speed up detection, but also to improve system robustness. The appearance-based hypothesis verification step verifies the hypotheses using Gabor features and SVMs. The system has been tested in Ford's concept vehicle under different traffic conditions (e.g., structured highway, complex urban streets, and varying weather conditions), illustrating good performance.
Image steganography based on 2k correction and coherent bit length
NASA Astrophysics Data System (ADS)
Sun, Shuliang; Guo, Yongning
2014-10-01
In this paper, a novel algorithm is proposed. Firstly, the edge of cover image is detected with Canny operator and secret data is embedded in edge pixels. Sorting method is used to randomize the edge pixels in order to enhance security. Coherent bit length L is determined by relevant edge pixels. Finally, the method of 2k correction is applied to achieve better imperceptibility in stego image. The experiment shows that the proposed method is better than LSB-3 and Jae-Gil Yu's in PSNR and capacity.
Moving Object Detection Using Scanning Camera on a High-Precision Intelligent Holder
Chen, Shuoyang; Xu, Tingfa; Li, Daqun; Zhang, Jizhou; Jiang, Shenwang
2016-01-01
During the process of moving object detection in an intelligent visual surveillance system, a scenario with complex background is sure to appear. The traditional methods, such as “frame difference” and “optical flow”, may not able to deal with the problem very well. In such scenarios, we use a modified algorithm to do the background modeling work. In this paper, we use edge detection to get an edge difference image just to enhance the ability of resistance illumination variation. Then we use a “multi-block temporal-analyzing LBP (Local Binary Pattern)” algorithm to do the segmentation. In the end, a connected component is used to locate the object. We also produce a hardware platform, the core of which consists of the DSP (Digital Signal Processor) and FPGA (Field Programmable Gate Array) platforms and the high-precision intelligent holder. PMID:27775671
Edge grouping combining boundary and region information.
Stahl, Joachim S; Wang, Song
2007-10-01
This paper introduces a new edge-grouping method to detect perceptually salient structures in noisy images. Specifically, we define a new grouping cost function in a ratio form, where the numerator measures the boundary proximity of the resulting structure and the denominator measures the area of the resulting structure. This area term introduces a preference towards detecting larger-size structures and, therefore, makes the resulting edge grouping more robust to image noise. To find the optimal edge grouping with the minimum grouping cost, we develop a special graph model with two different kinds of edges and then reduce the grouping problem to finding a special kind of cycle in this graph with a minimum cost in ratio form. This optimal cycle-finding problem can be solved in polynomial time by a previously developed graph algorithm. We implement this edge-grouping method, test it on both synthetic data and real images, and compare its performance against several available edge-grouping and edge-linking methods. Furthermore, we discuss several extensions of the proposed method, including the incorporation of the well-known grouping cues of continuity and intensity homogeneity, introducing a factor to balance the contributions from the boundary and region information, and the prevention of detecting self-intersecting boundaries.
Cai, Ailong; Wang, Linyuan; Zhang, Hanming; Yan, Bin; Li, Lei; Xi, Xiaoqi; Li, Jianxin
2014-01-01
Linear scan computed tomography (CT) is a promising imaging configuration with high scanning efficiency while the data set is under-sampled and angularly limited for which high quality image reconstruction is challenging. In this work, an edge guided total variation minimization reconstruction (EGTVM) algorithm is developed in dealing with this problem. The proposed method is modeled on the combination of total variation (TV) regularization and iterative edge detection strategy. In the proposed method, the edge weights of intermediate reconstructions are incorporated into the TV objective function. The optimization is efficiently solved by applying alternating direction method of multipliers. A prudential and conservative edge detection strategy proposed in this paper can obtain the true edges while restricting the errors within an acceptable degree. Based on the comparison on both simulation studies and real CT data set reconstructions, EGTVM provides comparable or even better quality compared to the non-edge guided reconstruction and adaptive steepest descent-projection onto convex sets method. With the utilization of weighted alternating direction TV minimization and edge detection, EGTVM achieves fast and robust convergence and reconstructs high quality image when applied in linear scan CT with under-sampled data set.
[Road Extraction in Remote Sensing Images Based on Spectral and Edge Analysis].
Zhao, Wen-zhi; Luo, Li-qun; Guo, Zhou; Yue, Jun; Yu, Xue-ying; Liu, Hui; Wei, Jing
2015-10-01
Roads are typically man-made objects in urban areas. Road extraction from high-resolution images has important applications for urban planning and transportation development. However, due to the confusion of spectral characteristic, it is difficult to distinguish roads from other objects by merely using traditional classification methods that mainly depend on spectral information. Edge is an important feature for the identification of linear objects (e. g. , roads). The distribution patterns of edges vary greatly among different objects. It is crucial to merge edge statistical information into spectral ones. In this study, a new method that combines spectral information and edge statistical features has been proposed. First, edge detection is conducted by using self-adaptive mean-shift algorithm on the panchromatic band, which can greatly reduce pseudo-edges and noise effects. Then, edge statistical features are obtained from the edge statistical model, which measures the length and angle distribution of edges. Finally, by integrating the spectral and edge statistical features, SVM algorithm is used to classify the image and roads are ultimately extracted. A series of experiments are conducted and the results show that the overall accuracy of proposed method is 93% comparing with only 78% overall accuracy of the traditional. The results demonstrate that the proposed method is efficient and valuable for road extraction, especially on high-resolution images.
Multiscale high-order/low-order (HOLO) algorithms and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacon, Luis; Chen, Guangye; Knoll, Dana Alan
Here, we review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. Themore » HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.« less
Multiscale high-order/low-order (HOLO) algorithms and applications
Chacon, Luis; Chen, Guangye; Knoll, Dana Alan; ...
2016-11-11
Here, we review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. Themore » HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.« less
A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms
Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein
2017-01-01
Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts’ Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2–100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms. PMID:28487831
A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms.
Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein
2017-01-01
Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts' Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2-100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms.
Poisson denoising on the sphere: application to the Fermi gamma ray space telescope
NASA Astrophysics Data System (ADS)
Schmitt, J.; Starck, J. L.; Casandjian, J. M.; Fadili, J.; Grenier, I.
2010-07-01
The Large Area Telescope (LAT), the main instrument of the Fermi gamma-ray Space telescope, detects high energy gamma rays with energies from 20 MeV to more than 300 GeV. The two main scientific objectives, the study of the Milky Way diffuse background and the detection of point sources, are complicated by the lack of photons. That is why we need a powerful Poisson noise removal method on the sphere which is efficient on low count Poisson data. This paper presents a new multiscale decomposition on the sphere for data with Poisson noise, called multi-scale variance stabilizing transform on the sphere (MS-VSTS). This method is based on a variance stabilizing transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has a quasi constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. MS-VSTS consists of decomposing the data into a sparse multi-scale dictionary like wavelets or curvelets, and then applying a VST on the coefficients in order to get almost Gaussian stabilized coefficients. In this work, we use the isotropic undecimated wavelet transform (IUWT) and the curvelet transform as spherical multi-scale transforms. Then, binary hypothesis testing is carried out to detect significant coefficients, and the denoised image is reconstructed with an iterative algorithm based on hybrid steepest descent (HSD). To detect point sources, we have to extract the Galactic diffuse background: an extension of the method to background separation is then proposed. In contrary, to study the Milky Way diffuse background, we remove point sources with a binary mask. The gaps have to be interpolated: an extension to inpainting is then proposed. The method, applied on simulated Fermi LAT data, proves to be adaptive, fast and easy to implement.
Jeong, Ji-Wook; Chae, Seung-Hoon; Chae, Eun Young; Kim, Hak Hee; Choi, Young-Wook; Lee, Sooyeul
2016-01-01
We propose computer-aided detection (CADe) algorithm for microcalcification (MC) clusters in reconstructed digital breast tomosynthesis (DBT) images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP) reduction steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D) objectness response function and a connected-component segmentation method was applied to extract the cluster seed objects as potential clustering centers of MCs. Secondly, a signal-to-noise ratio (SNR) enhanced image was also generated to detect the individual MC candidates and prescreen the MC-like objects. Each cluster seed candidate was prescreened by counting neighboring individual MC candidates nearby the cluster seed object according to several microcalcification clustering criteria. As a second step, we introduced bounding boxes for the accepted seed candidate, clustered all the overlapping cubes, and examined. After the FP reduction step, the average number of FPs per case was estimated to be 2.47 per DBT volume with a sensitivity of 83.3%.
Li, Ying; Shi, Xiaohu; Liang, Yanchun; Xie, Juan; Zhang, Yu; Ma, Qin
2017-01-21
RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA comparison tools, RNApdist and RNAdistance, showcased that RNA-TVcurve can efficiently capture subtle relationships among RNAs for mutation detection and non-coding RNA classification. All the relevant results were shown in an intuitive graphical manner, and can be freely downloaded from this server. RNA-TVcurve, along with test examples and detailed documents, are available at: http://ml.jlu.edu.cn/tvcurve/ .
Retinal Microaneurysms Detection Using Gradient Vector Analysis and Class Imbalance Classification.
Dai, Baisheng; Wu, Xiangqian; Bu, Wei
2016-01-01
Retinal microaneurysms (MAs) are the earliest clinically observable lesions of diabetic retinopathy. Reliable automated MAs detection is thus critical for early diagnosis of diabetic retinopathy. This paper proposes a novel method for the automated MAs detection in color fundus images based on gradient vector analysis and class imbalance classification, which is composed of two stages, i.e. candidate MAs extraction and classification. In the first stage, a candidate MAs extraction algorithm is devised by analyzing the gradient field of the image, in which a multi-scale log condition number map is computed based on the gradient vectors for vessel removal, and then the candidate MAs are localized according to the second order directional derivatives computed in different directions. Due to the complexity of fundus image, besides a small number of true MAs, there are also a large amount of non-MAs in the extracted candidates. Classifying the true MAs and the non-MAs is an extremely class imbalanced classification problem. Therefore, in the second stage, several types of features including geometry, contrast, intensity, edge, texture, region descriptors and other features are extracted from the candidate MAs and a class imbalance classifier, i.e., RUSBoost, is trained for the MAs classification. With the Retinopathy Online Challenge (ROC) criterion, the proposed method achieves an average sensitivity of 0.433 at 1/8, 1/4, 1/2, 1, 2, 4 and 8 false positives per image on the ROC database, which is comparable with the state-of-the-art approaches, and 0.321 on the DiaRetDB1 V2.1 database, which outperforms the state-of-the-art approaches.
NASA Astrophysics Data System (ADS)
Lei, Sen; Zou, Zhengxia; Liu, Dunge; Xia, Zhenghuan; Shi, Zhenwei
2018-06-01
Sea-land segmentation is a key step for the information processing of ocean remote sensing images. Traditional sea-land segmentation algorithms ignore the local similarity prior of sea and land, and thus fail in complex scenarios. In this paper, we propose a new sea-land segmentation method for infrared remote sensing images to tackle the problem based on superpixels and multi-scale features. Considering the connectivity and local similarity of sea or land, we interpret the sea-land segmentation task in view of superpixels rather than pixels, where similar pixels are clustered and the local similarity are explored. Moreover, the multi-scale features are elaborately designed, comprising of gray histogram and multi-scale total variation. Experimental results on infrared bands of Landsat-8 satellite images demonstrate that the proposed method can obtain more accurate and more robust sea-land segmentation results than the traditional algorithms.
Full-waveform data for building roof step edge localization
NASA Astrophysics Data System (ADS)
Słota, Małgorzata
2015-08-01
Airborne laser scanning data perfectly represent flat or gently sloped areas; to date, however, accurate breakline detection is the main drawback of this technique. This issue becomes particularly important in the case of modeling buildings, where accuracy higher than the footprint size is often required. This article covers several issues related to full-waveform data registered on building step edges. First, the full-waveform data simulator was developed and presented in this paper. Second, this article provides a full description of the changes in echo amplitude, echo width and returned power caused by the presence of edges within the laser footprint. Additionally, two important properties of step edge echoes, peak shift and echo asymmetry, were noted and described. It was shown that these properties lead to incorrect echo positioning along the laser center line and can significantly reduce the edge points' accuracy. For these reasons and because all points are aligned with the center of the beam, regardless of the actual target position within the beam footprint, we can state that step edge points require geometric corrections. This article presents a novel algorithm for the refinement of step edge points. The main distinguishing advantage of the developed algorithm is the fact that none of the additional data, such as emitted signal parameters, beam divergence, approximate edge geometry or scanning settings, are required. The proposed algorithm works only on georeferenced profiles of reflected laser energy. Another major advantage is the simplicity of the calculation, allowing for very efficient data processing. Additionally, the developed method of point correction allows for the accurate determination of points lying on edges and edge point densification. For this reason, fully automatic localization of building roof step edges based on LiDAR full-waveform data with higher accuracy than the size of the lidar footprint is feasible.
Collision detection for spacecraft proximity operations
NASA Technical Reports Server (NTRS)
Vaughan, Robin M.; Bergmann, Edward V.; Walker, Bruce K.
1991-01-01
A new collision detection algorithm has been developed for use when two spacecraft are operating in the same vicinity. The two spacecraft are modeled as unions of convex polyhedra, where the resulting polyhedron many be either convex or nonconvex. The relative motion of the two spacecraft is assumed to be such that one vehicle is moving with constant linear and angular velocity with respect to the other. Contacts between the vertices, faces, and edges of the polyhedra representing the two spacecraft are shown to occur when the value of one or more of a set of functions is zero. The collision detection algorithm is then formulated as a search for the zeros (roots) of these functions. Special properties of the functions for the assumed relative trajectory are exploited to expedite the zero search. The new algorithm is the first algorithm that can solve the collision detection problem exactly for relative motion with constant angular velocity. This is a significant improvement over models of rotational motion used in previous collision detection algorithms.
Algorithm research on infrared imaging target extraction based on GAC model
NASA Astrophysics Data System (ADS)
Li, Yingchun; Fan, Youchen; Wang, Yanqing
2016-10-01
Good target detection and tracking technique is significantly meaningful to increase infrared target detection distance and enhance resolution capacity. For the target detection problem about infrared imagining, firstly, the basic principles of level set method and GAC model are is analyzed in great detail. Secondly, "convergent force" is added according to the defect that GAC model is stagnant outside the deep concave region and cannot reach deep concave edge to build the promoted GAC model. Lastly, the self-adaptive detection method in combination of Sobel operation and GAC model is put forward by combining the advantages that subject position of the target could be detected with Sobel operator and the continuous edge of the target could be obtained through GAC model. In order to verify the effectiveness of the model, the two groups of experiments are carried out by selecting the images under different noise effects. Besides, the comparative analysis is conducted with LBF and LIF models. The experimental result shows that target could be better locked through LIF and LBF algorithms for the slight noise effect. The accuracy of segmentation is above 0.8. However, as for the strong noise effect, the target and noise couldn't be distinguished under the strong interference of GAC, LIF and LBF algorithms, thus lots of non-target parts are extracted during iterative process. The accuracy of segmentation is below 0.8. The accurate target position is extracted through the algorithm proposed in this paper. Besides, the accuracy of segmentation is above 0.8.
Skin surface removal on breast microwave imagery using wavelet multiscale products
NASA Astrophysics Data System (ADS)
Flores-Tapia, Daniel; Thomas, Gabriel; Pistorius, Stephen
2006-03-01
In many parts of the world, breast cancer is the leading cause mortality among women and it is the major cause of cancer death, next only to lung cancer. In recent years, microwave imaging has shown its potential as an alternative approach for breast cancer detection. Although advances have improved the likelihood of developing an early detection system based on this technology, there are still limitations. One of these limitations is that target responses are often obscured by surface reflections. Contrary to ground penetrating radar applications, a simple reference subtraction cannot be easily applied to alleviate this problem due to differences in the breast skin composition between patients. A novel surface removal technique for the removal of these high intensity reflections is proposed in this paper. This paper presents an algorithm based on the multiplication of adjacent wavelet subbands in order to enhance target echoes while reducing skin reflections. In these multiscale products, target signatures can be effectively distinguished from surface reflections. A simple threshold is applied to the signal in the wavelet domain in order to eliminate the skin responses. This final signal is reconstructed to the spatial domain in order to obtain a focused image. The proposed algorithm yielded promising results when applied to real data obtained from a phantom which mimics the dielectric properties of breast, cancer and skin tissues.
Diffusion tensor driven contour closing for cell microinjection targeting.
Becattini, Gabriele; Mattos, Leonardo S; Caldwell, Darwin G
2010-01-01
This article introduces a novel approach to robust automatic detection of unstained living cells in bright-field (BF) microscope images with the goal of producing a target list for an automated microinjection system. The overall image analysis process is described and includes: preprocessing, ridge enhancement, image segmentation, shape analysis and injection point definition. The developed algorithm implements a new version of anisotropic contour completion (ACC) based on the partial differential equation (PDE) for heat diffusion which improves the cell segmentation process by elongating the edges only along their tangent direction. The developed ACC algorithm is equivalent to a dilation of the binary edge image with a continuous elliptic structural element that takes into account local orientation of the contours preventing extension towards normal direction. Experiments carried out on real images of 10 to 50 microm CHO-K1 adherent cells show a remarkable reliability in the algorithm along with up to 85% success for cell detection and injection point definition.
Measurement of Solid Rocket Propellant Burning Rate Using X-ray Imaging
NASA Astrophysics Data System (ADS)
Denny, Matthew D.
The burning rate of solid propellants can be difficult to measure for unusual burning surface geometries, but X-ray imaging can be used to measure burning rate. The objectives of this work were to measure the baseline burning rate of an electrically-controlled solid propellant (ESP) formulation with real-time X-ray radiography and to determine the uncertainty of the measurements. Two edge detection algorithms were written to track the burning surface in X-ray videos. The edge detection algorithms were informed by intensity profiles of simulated 2-D X-ray images. With a 95% confidence level, the burning rates measured by the Projected-Slope Intersection algorithm in the two combustion experiments conducted were 0.0839 in/s +/-2.86% at an average pressure of 407 psi +/-3.6% and 0.0882 in/s +/-3.04% at 410 psi +/-3.9%. The uncertainty percentages were based on the statistics of a Monte Carlo analysis on burning rate.
A cascade method for TFT-LCD defect detection
NASA Astrophysics Data System (ADS)
Yi, Songsong; Wu, Xiaojun; Yu, Zhiyang; Mo, Zhuoya
2017-07-01
In this paper, we propose a novel cascade detection algorithm which focuses on point and line defects on TFT-LCD. At the first step of the algorithm, we use the gray level difference of su-bimage to segment the abnormal area. The second step is based on phase only transform (POT) which corresponds to the Discrete Fourier Transform (DFT), normalized by the magnitude. It can remove regularities like texture and noise. After that, we improve the method of setting regions of interest (ROI) with the method of edge segmentation and polar transformation. The algorithm has outstanding performance in both computation speed and accuracy. It can solve most of the defect detections including dark point, light point, dark line, etc.
Macklin, Paul; Cristini, Vittorio
2013-01-01
Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insight on the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community. PMID:21529163
NASA Astrophysics Data System (ADS)
Chuan, Zun Liang; Ismail, Noriszura; Shinyie, Wendy Ling; Lit Ken, Tan; Fam, Soo-Fen; Senawi, Azlyna; Yusoff, Wan Nur Syahidah Wan
2018-04-01
Due to the limited of historical precipitation records, agglomerative hierarchical clustering algorithms widely used to extrapolate information from gauged to ungauged precipitation catchments in yielding a more reliable projection of extreme hydro-meteorological events such as extreme precipitation events. However, identifying the optimum number of homogeneous precipitation catchments accurately based on the dendrogram resulted using agglomerative hierarchical algorithms are very subjective. The main objective of this study is to propose an efficient regionalized algorithm to identify the homogeneous precipitation catchments for non-stationary precipitation time series. The homogeneous precipitation catchments are identified using average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling, while uncentered correlation coefficient as the similarity measure. The regionalized homogeneous precipitation is consolidated using K-sample Anderson Darling non-parametric test. The analysis result shows the proposed regionalized algorithm performed more better compared to the proposed agglomerative hierarchical clustering algorithm in previous studies.
NASA Astrophysics Data System (ADS)
Zhuang, Wei; Mountrakis, Giorgos
2014-09-01
Large footprint waveform LiDAR sensors have been widely used for numerous airborne studies. Ground peak identification in a large footprint waveform is a significant bottleneck in exploring full usage of the waveform datasets. In the current study, an accurate and computationally efficient algorithm was developed for ground peak identification, called Filtering and Clustering Algorithm (FICA). The method was evaluated on Land, Vegetation, and Ice Sensor (LVIS) waveform datasets acquired over Central NY. FICA incorporates a set of multi-scale second derivative filters and a k-means clustering algorithm in order to avoid detecting false ground peaks. FICA was tested in five different land cover types (deciduous trees, coniferous trees, shrub, grass and developed area) and showed more accurate results when compared to existing algorithms. More specifically, compared with Gaussian decomposition, the RMSE ground peak identification by FICA was 2.82 m (5.29 m for GD) in deciduous plots, 3.25 m (4.57 m for GD) in coniferous plots, 2.63 m (2.83 m for GD) in shrub plots, 0.82 m (0.93 m for GD) in grass plots, and 0.70 m (0.51 m for GD) in plots of developed areas. FICA performance was also relatively consistent under various slope and canopy coverage (CC) conditions. In addition, FICA showed better computational efficiency compared to existing methods. FICA's major computational and accuracy advantage is a result of the adopted multi-scale signal processing procedures that concentrate on local portions of the signal as opposed to the Gaussian decomposition that uses a curve-fitting strategy applied in the entire signal. The FICA algorithm is a good candidate for large-scale implementation on future space-borne waveform LiDAR sensors.
Registration algorithm of point clouds based on multiscale normal features
NASA Astrophysics Data System (ADS)
Lu, Jun; Peng, Zhongtao; Su, Hang; Xia, GuiHua
2015-01-01
The point cloud registration technology for obtaining a three-dimensional digital model is widely applied in many areas. To improve the accuracy and speed of point cloud registration, a registration method based on multiscale normal vectors is proposed. The proposed registration method mainly includes three parts: the selection of key points, the calculation of feature descriptors, and the determining and optimization of correspondences. First, key points are selected from the point cloud based on the changes of magnitude of multiscale curvatures obtained by using principal components analysis. Then the feature descriptor of each key point is proposed, which consists of 21 elements based on multiscale normal vectors and curvatures. The correspondences in a pair of two point clouds are determined according to the descriptor's similarity of key points in the source point cloud and target point cloud. Correspondences are optimized by using a random sampling consistency algorithm and clustering technology. Finally, singular value decomposition is applied to optimized correspondences so that the rigid transformation matrix between two point clouds is obtained. Experimental results show that the proposed point cloud registration algorithm has a faster calculation speed, higher registration accuracy, and better antinoise performance.
NASA Astrophysics Data System (ADS)
Campbell, B. D.; Higgins, S. R.
2008-12-01
Developing a method for bridging the gap between macroscopic and microscopic measurements of reaction kinetics at the mineral-water interface has important implications in geological and chemical fields. Investigating these reactions on the nanometer scale with SPM is often limited by image analysis and data extraction due to the large quantity of data usually obtained in SPM experiments. Here we present a computer algorithm for automated analysis of mineral-water interface reactions. This algorithm automates the analysis of sequential SPM images by identifying the kinetically active surface sites (i.e., step edges), and by tracking the displacement of these sites from image to image. The step edge positions in each image are readily identified and tracked through time by a standard edge detection algorithm followed by statistical analysis on the Hough Transform of the edge-mapped image. By quantifying this displacement as a function of time, the rate of step edge displacement is determined. Furthermore, the total edge length, also determined from analysis of the Hough Transform, combined with the computed step speed, yields the surface area normalized rate of the reaction. The algorithm was applied to a study of the spiral growth of the calcite(104) surface from supersaturated solutions, yielding results almost 20 times faster than performing this analysis by hand, with results being statistically similar for both analysis methods. This advance in analysis of kinetic data from SPM images will facilitate the building of experimental databases on the microscopic kinetics of mineral-water interface reactions.
NASA Astrophysics Data System (ADS)
Huang, Xia; Li, Chunqiang; Xiao, Chuan; Sun, Wenqing; Qian, Wei
2017-03-01
The temporal focusing two-photon microscope (TFM) is developed to perform depth resolved wide field fluorescence imaging by capturing frames sequentially. However, due to strong nonignorable noises and diffraction rings surrounding particles, further researches are extremely formidable without a precise particle localization technique. In this paper, we developed a fully-automated scheme to locate particles positions with high noise tolerance. Our scheme includes the following procedures: noise reduction using a hybrid Kalman filter method, particle segmentation based on a multiscale kernel graph cuts global and local segmentation algorithm, and a kinematic estimation based particle tracking method. Both isolated and partial-overlapped particles can be accurately identified with removal of unrelated pixels. Based on our quantitative analysis, 96.22% isolated particles and 84.19% partial-overlapped particles were successfully detected.
A hybrid algorithm for the segmentation of books in libraries
NASA Astrophysics Data System (ADS)
Hu, Zilong; Tang, Jinshan; Lei, Liang
2016-05-01
This paper proposes an algorithm for book segmentation based on bookshelves images. The algorithm can be separated into three parts. The first part is pre-processing, aiming at eliminating or decreasing the effect of image noise and illumination conditions. The second part is near-horizontal line detection based on Canny edge detector, and separating a bookshelves image into multiple sub-images so that each sub-image contains an individual shelf. The last part is book segmentation. In each shelf image, near-vertical line is detected, and obtained lines are used for book segmentation. The proposed algorithm was tested with the bookshelf images taken from OPIE library in MTU, and the experimental results demonstrate good performance.
“Skin-Core-Skin” Structure of Polymer Crystallization Investigated by Multiscale Simulation
Ruan, Chunlei
2018-01-01
“Skin-core-skin” structure is a typical crystal morphology in injection products. Previous numerical works have rarely focused on crystal evolution; rather, they have mostly been based on the prediction of temperature distribution or crystallization kinetics. The aim of this work was to achieve the “skin-core-skin” structure and investigate the role of external flow and temperature fields on crystal morphology. Therefore, the multiscale algorithm was extended to the simulation of polymer crystallization in a pipe flow. The multiscale algorithm contains two parts: a collocated finite volume method at the macroscopic level and a morphological Monte Carlo method at the microscopic level. The SIMPLE (semi-implicit method for pressure linked equations) algorithm was used to calculate the polymeric model at the macroscopic level, while the Monte Carlo method with stochastic birth-growth process of spherulites and shish-kebabs was used at the microscopic level. Results show that our algorithm is valid to predict “skin-core-skin” structure, and the initial melt temperature and the maximum velocity of melt at the inlet mainly affects the morphology of shish-kebabs. PMID:29659516
Liu, Jianfei; Jung, HaeWon; Dubra, Alfredo; Tam, Johnny
2017-01-01
Purpose Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification of the photoreceptor mosaic in the living human eye using metrics such as cell density and average spacing. These rely on the identification of individual cells. Here, we demonstrate a novel approach for computer-aided identification of cone photoreceptors on nonconfocal split detection AOSLO images. Methods Algorithms for identification of cone photoreceptors were developed, based on multiscale circular voting (MSCV) in combination with a priori knowledge that split detection images resemble Nomarski differential interference contrast images, in which dark and bright regions are present on the two sides of each cell. The proposed algorithm locates dark and bright region pairs, iteratively refining the identification across multiple scales. Identification accuracy was assessed in data from 10 subjects by comparing automated identifications with manual labeling, followed by computation of density and spacing metrics for comparison to histology and published data. Results There was good agreement between manual and automated cone identifications with overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average, computed density and spacing values using automated identification were within 10.7% and 11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm. There was no statistically significant difference between MSCV-based and histology-based density measurements (P = 0.96, Kolmogorov-Smirnov 2-sample test). Conclusions MSCV can accurately detect cone photoreceptors on split detection images across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic metrics, which will be important for future clinical trials utilizing adaptive optics. PMID:28873173
NASA Astrophysics Data System (ADS)
Destrez, Raphaël.; Albouy-Kissi, Benjamin; Treuillet, Sylvie; Lucas, Yves
2015-04-01
Computer aided planning for orthodontic treatment requires knowing occlusion of separately scanned dental casts. A visual guided registration is conducted starting by extracting corresponding features in both photographs and 3D scans. To achieve this, dental neck and occlusion surface are firstly extracted by image segmentation and 3D curvature analysis. Then, an iterative registration process is conducted during which feature positions are refined, guided by previously found anatomic edges. The occlusal edge image detection is improved by an original algorithm which follows Canny's poorly detected edges using a priori knowledge of tooth shapes. Finally, the influence of feature extraction and position optimization is evaluated in terms of the quality of the induced registration. Best combination of feature detection and optimization leads to a positioning average error of 1.10 mm and 2.03°.
Autonomous navigation method for substation inspection robot based on travelling deviation
NASA Astrophysics Data System (ADS)
Yang, Guoqing; Xu, Wei; Li, Jian; Fu, Chongguang; Zhou, Hao; Zhang, Chuanyou; Shao, Guangting
2017-06-01
A new method of edge detection is proposed in substation environment, which can realize the autonomous navigation of the substation inspection robot. First of all, the road image and information are obtained by using an image acquisition device. Secondly, the noise in the region of interest which is selected in the road image, is removed with the digital image processing algorithm, the road edge is extracted by Canny operator, and the road boundaries are extracted by Hough transform. Finally, the distance between the robot and the left and the right boundaries is calculated, and the travelling distance is obtained. The robot's walking route is controlled according to the travel deviation and the preset threshold. Experimental results show that the proposed method can detect the road area in real time, and the algorithm has high accuracy and stable performance.
Khomri, Bilal; Christodoulidis, Argyrios; Djerou, Leila; Babahenini, Mohamed Chaouki; Cheriet, Farida
2018-05-01
Retinal vessel segmentation plays an important role in the diagnosis of eye diseases and is considered as one of the most challenging tasks in computer-aided diagnosis (CAD) systems. The main goal of this study was to propose a method for blood-vessel segmentation that could deal with the problem of detecting vessels of varying diameters in high- and low-resolution fundus images. We proposed to use the particle swarm optimization (PSO) algorithm to improve the multiscale line detection (MSLD) method. The PSO algorithm was applied to find the best arrangement of scales in the MSLD method and to handle the problem of multiscale response recombination. The performance of the proposed method was evaluated on two low-resolution (DRIVE and STARE) and one high-resolution fundus (HRF) image datasets. The data include healthy (H) and diabetic retinopathy (DR) cases. The proposed approach improved the sensitivity rate against the MSLD by 4.7% for the DRIVE dataset and by 1.8% for the STARE dataset. For the high-resolution dataset, the proposed approach achieved 87.09% sensitivity rate, whereas the MSLD method achieves 82.58% sensitivity rate at the same specificity level. When only the smallest vessels were considered, the proposed approach improved the sensitivity rate by 11.02% and by 4.42% for the healthy and the diabetic cases, respectively. Integrating the proposed method in a comprehensive CAD system for DR screening would allow the reduction of false positives due to missed small vessels, misclassified as red lesions. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
[An object-oriented remote sensing image segmentation approach based on edge detection].
Tan, Yu-Min; Huai, Jian-Zhu; Tang, Zhong-Shi
2010-06-01
Satellite sensor technology endorsed better discrimination of various landscape objects. Image segmentation approaches to extracting conceptual objects and patterns hence have been explored and a wide variety of such algorithms abound. To this end, in order to effectively utilize edge and topological information in high resolution remote sensing imagery, an object-oriented algorithm combining edge detection and region merging is proposed. Susan edge filter is firstly applied to the panchromatic band of Quickbird imagery with spatial resolution of 0.61 m to obtain the edge map. Thanks to the resulting edge map, a two-phrase region-based segmentation method operates on the fusion image from panchromatic and multispectral Quickbird images to get the final partition result. In the first phase, a quad tree grid consisting of squares with sides parallel to the image left and top borders agglomerates the square subsets recursively where the uniform measure is satisfied to derive image object primitives. Before the merger of the second phrase, the contextual and spatial information, (e. g., neighbor relationship, boundary coding) of the resulting squares are retrieved efficiently by means of the quad tree structure. Then a region merging operation is performed with those primitives, during which the criterion for region merging integrates edge map and region-based features. This approach has been tested on the QuickBird images of some site in Sanxia area and the result is compared with those of ENVI Zoom Definiens. In addition, quantitative evaluation of the quality of segmentation results is also presented. Experiment results demonstrate stable convergence and efficiency.
Community detection in complex networks using link prediction
NASA Astrophysics Data System (ADS)
Cheng, Hui-Min; Ning, Yi-Zi; Yin, Zhao; Yan, Chao; Liu, Xin; Zhang, Zhong-Yuan
2018-01-01
Community detection and link prediction are both of great significance in network analysis, which provide very valuable insights into topological structures of the network from different perspectives. In this paper, we propose a novel community detection algorithm with inclusion of link prediction, motivated by the question whether link prediction can be devoted to improving the accuracy of community partition. For link prediction, we propose two novel indices to compute the similarity between each pair of nodes, one of which aims to add missing links, and the other tries to remove spurious edges. Extensive experiments are conducted on benchmark data sets, and the results of our proposed algorithm are compared with two classes of baselines. In conclusion, our proposed algorithm is competitive, revealing that link prediction does improve the precision of community detection.
Optical Assessment of Soft Contact Lens Edge-Thickness.
Tankam, Patrice; Won, Jungeun; Canavesi, Cristina; Cox, Ian; Rolland, Jannick P
2016-08-01
To assess the edge shape of soft contact lenses using Gabor-Domain Optical Coherence Microscopy (GD-OCM) with a 2-μm imaging resolution in three dimensions and to generate edge-thickness profiles at different distances from the edge tip of soft contact lenses. A high-speed custom-designed GD-OCM system was used to produce 3D images of the edge of an experimental soft contact lens (Bausch + Lomb, Rochester, NY) in four different configurations: in air, submerged into water, submerged into saline with contrast agent, and placed onto the cornea of a porcine eyeball. An algorithm to compute the edge-thickness was developed and applied to cross-sectional images. The proposed algorithm includes the accurate detection of the interfaces between the lens and the environment, and the correction of the refraction error. The sharply defined edge tip of a soft contact lens was visualized in 3D. Results showed precise thickness measurement of the contact lens edge profile. Fifty cross-sectional image frames for each configuration were used to test the robustness of the algorithm in evaluating the edge-thickness at any distance from the edge tip. The precision of the measurements was less than 0.2 μm. The results confirmed the ability of GD-OCM to provide high-definition images of soft contact lens edges. As a nondestructive, precise, and fast metrology tool for soft contact lens measurement, the integration of GD-OCM in the design and manufacturing of contact lenses will be beneficial for further improvement in edge design and quality control. In the clinical perspective, the in vivo evaluation of the lens fitted onto the cornea will advance our understanding of how the edge interacts with the ocular surface. The latter will provide insights into the impact of long-term use of contact lenses on the visual performance.
Optical Assessment of Soft Contact Lens Edge-Thickness
Tankam, Patrice; Won, Jungeun; Canavesi, Cristina; Cox, Ian; Rolland, Jannick P.
2016-01-01
Purpose To assess the edge shape of soft contact lenses using Gabor-Domain Optical Coherence Microscopy (GD-OCM) with a 2 μm imaging resolution in three dimensions, and to generate edge-thickness profiles at different distances from the edge tip of soft contact lenses. Methods A high-speed custom-designed GD-OCM system was used to produce 3D images of the edge of an experimental soft contact lens (Bausch + Lomb, Rochester NY) in four different configurations: in air, submerged into water, submerged into saline with contrast agent, and placed onto the cornea of a porcine eyeball. An algorithm to compute the edge-thickness was developed and applied to cross-sectional images. The proposed algorithm includes the accurate detection of the interfaces between the lens and the environment, and the correction of the refraction error. Results The sharply defined edge tip of a soft contact lens was visualized in 3D. Results showed precise thickness measurement of the contact lens edge profile. 50 cross-sectional image frames for each configuration were used to test the robustness of the algorithm in evaluating the edge-thickness at any distance from the edge tip. The precision of the measurements was less than 0.2 μm. Conclusions The results confirmed the ability of GD-OCM to provide high definition images of soft contact lens edges. As a non-destructive, precise, and fast metrology tool for soft contact lens measurement, the integration of GD-OCM in the design and manufacturing of contact lenses will be beneficial for further improvement in edge design and quality control. In the clinical perspective, the in-vivo evaluation of the lens fitted onto the cornea will advance our understanding of how the edge interacts with the ocular surface. The latter will provide insights into the impact of long-term use of contact lenses on the visual performance. PMID:27232902
A novel orthoimage mosaic method using the weighted A* algorithm for UAV imagery
NASA Astrophysics Data System (ADS)
Zheng, Maoteng; Zhou, Shunping; Xiong, Xiaodong; Zhu, Junfeng
2017-12-01
A weighted A* algorithm is proposed to select optimal seam-lines in orthoimage mosaic for UAV (Unmanned Aircraft Vehicle) imagery. The whole workflow includes four steps: the initial seam-line network is firstly generated by standard Voronoi Diagram algorithm; an edge diagram is then detected based on DSM (Digital Surface Model) data; the vertices (conjunction nodes) of initial network are relocated since some of them are on the high objects (buildings, trees and other artificial structures); and, the initial seam-lines are finally refined using the weighted A* algorithm based on the edge diagram and the relocated vertices. The method was tested with two real UAV datasets. Preliminary results show that the proposed method produces acceptable mosaic images in both the urban and mountainous areas, and is better than the result of the state-of-the-art methods on the datasets.
Robust approach to ocular fundus image analysis
NASA Astrophysics Data System (ADS)
Tascini, Guido; Passerini, Giorgio; Puliti, Paolo; Zingaretti, Primo
1993-07-01
The analysis of morphological and structural modifications of retinal blood vessels plays an important role both to establish the presence of some systemic diseases as hypertension and diabetes and to study their course. The paper describes a robust set of techniques developed to quantitatively evaluate morphometric aspects of the ocular fundus vascular and micro vascular network. They are defined: (1) the concept of 'Local Direction of a vessel' (LD); (2) a special form of edge detection, named Signed Edge Detection (SED), which uses LD to choose the convolution kernel in the edge detection process and is able to distinguish between the left or the right vessel edge; (3) an iterative tracking (IT) method. The developed techniques use intensively both LD and SED in: (a) the automatic detection of number, position and size of blood vessels departing from the optical papilla; (b) the tracking of body and edges of the vessels; (c) the recognition of vessel branches and crossings; (d) the extraction of a set of features as blood vessel length and average diameter, arteries and arterioles tortuosity, crossing position and angle between two vessels. The algorithms, implemented in C language, have an execution time depending on the complexity of the currently processed vascular network.
Quantifying the tibiofemoral joint space using x-ray tomosynthesis.
Kalinosky, Benjamin; Sabol, John M; Piacsek, Kelly; Heckel, Beth; Gilat Schmidt, Taly
2011-12-01
Digital x-ray tomosynthesis (DTS) has the potential to provide 3D information about the knee joint in a load-bearing posture, which may improve diagnosis and monitoring of knee osteoarthritis compared with projection radiography, the current standard of care. Manually quantifying and visualizing the joint space width (JSW) from 3D tomosynthesis datasets may be challenging. This work developed a semiautomated algorithm for quantifying the 3D tibiofemoral JSW from reconstructed DTS images. The algorithm was validated through anthropomorphic phantom experiments and applied to three clinical datasets. A user-selected volume of interest within the reconstructed DTS volume was enhanced with 1D multiscale gradient kernels. The edge-enhanced volumes were divided by polarity into tibial and femoral edge maps and combined across kernel scales. A 2D connected components algorithm was performed to determine candidate tibial and femoral edges. A 2D joint space width map (JSW) was constructed to represent the 3D tibiofemoral joint space. To quantify the algorithm accuracy, an adjustable knee phantom was constructed, and eleven posterior-anterior (PA) and lateral DTS scans were acquired with the medial minimum JSW of the phantom set to 0-5 mm in 0.5 mm increments (VolumeRad™, GE Healthcare, Chalfont St. Giles, United Kingdom). The accuracy of the algorithm was quantified by comparing the minimum JSW in a region of interest in the medial compartment of the JSW map to the measured phantom setting for each trial. In addition, the algorithm was applied to DTS scans of a static knee phantom and the JSW map compared to values estimated from a manually segmented computed tomography (CT) dataset. The algorithm was also applied to three clinical DTS datasets of osteoarthritic patients. The algorithm segmented the JSW and generated a JSW map for all phantom and clinical datasets. For the adjustable phantom, the estimated minimum JSW values were plotted against the measured values for all trials. A linear fit estimated a slope of 0.887 (R² = 0.962) and a mean error across all trials of 0.34 mm for the PA phantom data. The estimated minimum JSW values for the lateral adjustable phantom acquisitions were found to have low correlation to the measured values (R² = 0.377), with a mean error of 2.13 mm. The error in the lateral adjustable-phantom datasets appeared to be caused by artifacts due to unrealistic features in the phantom bones. JSW maps generated by DTS and CT varied by a mean of 0.6 mm and 0.8 mm across the knee joint, for PA and lateral scans. The tibial and femoral edges were successfully segmented and JSW maps determined for PA and lateral clinical DTS datasets. A semiautomated method is presented for quantifying the 3D joint space in a 2D JSW map using tomosynthesis images. The proposed algorithm quantified the JSW across the knee joint to sub-millimeter accuracy for PA tomosynthesis acquisitions. Overall, the results suggest that x-ray tomosynthesis may be beneficial for diagnosing and monitoring disease progression or treatment of osteoarthritis by providing quantitative images of JSW in the load-bearing knee.
NASA Astrophysics Data System (ADS)
Ma, Ming; Wang, Huafeng; Liu, Yan; Zhang, Hao; Gu, Xianfeng; Liang, Zhengrong
2014-03-01
Cone-beam computed tomography (CBCT) has attracted growing interest of researchers in image reconstruction. The mAs level of the X-ray tube current, in practical application of CBCT, is mitigated in order to reduce the CBCT dose. The lowering of the X-ray tube current, however, results in the degradation of image quality. Thus, low-dose CBCT image reconstruction is in effect a noise problem. To acquire clinically acceptable quality of image, and keep the X-ray tube current as low as achievable in the meanwhile, some penalized weighted least-squares (PWLS)-based image reconstruction algorithms have been developed. One representative strategy in previous work is to model the prior information for solution regularization using an anisotropic penalty term. To enhance the edge preserving and noise suppressing in a finer scale, a novel algorithm combining the local binary pattern (LBP) with penalized weighted leastsquares (PWLS), called LBP-PWLS-based image reconstruction algorithm, is proposed in this work. The proposed LBP-PWLS-based algorithm adaptively encourages strong diffusion on the local spot/flat region around a voxel and less diffusion on edge/corner ones by adjusting the penalty for cost function, after the LBP is utilized to detect the region around the voxel as spot, flat and edge ones. The LBP-PWLS-based reconstruction algorithm was evaluated using the sinogram data acquired by a clinical CT scanner from the CatPhan® 600 phantom. Experimental results on the noiseresolution tradeoff measurement and other quantitative measurements demonstrated its feasibility and effectiveness in edge preserving and noise suppressing in comparison with a previous PWLS reconstruction algorithm.
Image flows and one-liner graphical image representation.
Makhervaks, Vadim; Barequet, Gill; Bruckstein, Alfred
2002-10-01
This paper introduces a novel graphical image representation consisting of a single curve-the one-liner. The first step of the algorithm involves the detection and ranking of image edges. A new edge exploration technique is used to perform both tasks simultaneously. This process is based on image flows. It uses a gradient vector field and a new operator to explore image edges. Estimation of the derivatives of the image is performed by using local Taylor expansions in conjunction with a weighted least-squares method. This process finds all the possible image edges without any pruning, and collects information that allows the edges found to be prioritized. This enables the most important edges to be selected to form a skeleton of the representation sought. The next step connects the selected edges into one continuous curve-the one-liner. It orders the selected edges and determines the curves connecting them. These two problems are solved separately. Since the abstract graph setting of the first problem is NP-complete, we reduce it to a variant of the traveling salesman problem and compute an approximate solution to it. We solve the second problem by using Dijkstra's shortest-path algorithm. The full software implementation for the entire one-liner determination process is available.
Network Intrusion Detection and Visualization using Aggregations in a Cyber Security Data Warehouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czejdo, Bogdan; Ferragut, Erik M; Goodall, John R
2012-01-01
The challenge of achieving situational understanding is a limiting factor in effective, timely, and adaptive cyber-security analysis. Anomaly detection fills a critical role in network assessment and trend analysis, both of which underlie the establishment of comprehensive situational understanding. To that end, we propose a cyber security data warehouse implemented as a hierarchical graph of aggregations that captures anomalies at multiple scales. Each node of our pro-posed graph is a summarization table of cyber event aggregations, and the edges are aggregation operators. The cyber security data warehouse enables domain experts to quickly traverse a multi-scale aggregation space systematically. We describemore » the architecture of a test bed system and a summary of results on the IEEE VAST 2012 Cyber Forensics data.« less
CNNEDGEPOT: CNN based edge detection of 2D near surface potential field data
NASA Astrophysics Data System (ADS)
Aydogan, D.
2012-09-01
All anomalies are important in the interpretation of gravity and magnetic data because they indicate some important structural features. One of the advantages of using gravity or magnetic data for searching contacts is to be detected buried structures whose signs could not be seen on the surface. In this paper, a general view of the cellular neural network (CNN) method with a large scale nonlinear circuit is presented focusing on its image processing applications. The proposed CNN model is used consecutively in order to extract body and body edges. The algorithm is a stochastic image processing method based on close neighborhood relationship of the cells and optimization of A, B and I matrices entitled as cloning template operators. Setting up a CNN (continues time cellular neural network (CTCNN) or discrete time cellular neural network (DTCNN)) for a particular task needs a proper selection of cloning templates which determine the dynamics of the method. The proposed algorithm is used for image enhancement and edge detection. The proposed method is applied on synthetic and field data generated for edge detection of near-surface geological bodies that mask each other in various depths and dimensions. The program named as CNNEDGEPOT is a set of functions written in MATLAB software. The GUI helps the user to easily change all the required CNN model parameters. A visual evaluation of the outputs due to DTCNN and CTCNN are carried out and the results are compared with each other. These examples demonstrate that in detecting the geological features the CNN model can be used for visual interpretation of near surface gravity or magnetic anomaly maps.
Android malware detection based on evolutionary super-network
NASA Astrophysics Data System (ADS)
Yan, Haisheng; Peng, Lingling
2018-04-01
In the paper, an android malware detection method based on evolutionary super-network is proposed in order to improve the precision of android malware detection. Chi square statistics method is used for selecting characteristics on the basis of analyzing android authority. Boolean weighting is utilized for calculating characteristic weight. Processed characteristic vector is regarded as the system training set and test set; hyper edge alternative strategy is used for training super-network classification model, thereby classifying test set characteristic vectors, and it is compared with traditional classification algorithm. The results show that the detection method proposed in the paper is close to or better than traditional classification algorithm. The proposed method belongs to an effective Android malware detection means.
Electron Heating at Kinetic Scales in Magnetosheath Turbulence
NASA Technical Reports Server (NTRS)
Chasapis, Alexandros; Matthaeus, W. H.; Parashar, T. N.; Lecontel, O.; Retino, A.; Breuillard, H.; Khotyaintsev, Y.; Vaivads, A.; Lavraud, B.; Eriksson, E.;
2017-01-01
We present a statistical study of coherent structures at kinetic scales, using data from the Magnetospheric Multiscale mission in the Earths magnetosheath. We implemented the multi-spacecraft partial variance of increments (PVI) technique to detect these structures, which are associated with intermittency at kinetic scales. We examine the properties of the electron heating occurring within such structures. We find that, statistically, structures with a high PVI index are regions of significant electron heating. We also focus on one such structure, a current sheet, which shows some signatures consistent with magnetic reconnection. Strong parallel electron heating coincides with whistler emissions at the edges of the current sheet.
Breadth-First Search-Based Single-Phase Algorithms for Bridge Detection in Wireless Sensor Networks
Akram, Vahid Khalilpour; Dagdeviren, Orhan
2013-01-01
Wireless sensor networks (WSNs) are promising technologies for exploring harsh environments, such as oceans, wild forests, volcanic regions and outer space. Since sensor nodes may have limited transmission range, application packets may be transmitted by multi-hop communication. Thus, connectivity is a very important issue. A bridge is a critical edge whose removal breaks the connectivity of the network. Hence, it is crucial to detect bridges and take preventions. Since sensor nodes are battery-powered, services running on nodes should consume low energy. In this paper, we propose energy-efficient and distributed bridge detection algorithms for WSNs. Our algorithms run single phase and they are integrated with the Breadth-First Search (BFS) algorithm, which is a popular routing algorithm. Our first algorithm is an extended version of Milic's algorithm, which is designed to reduce the message length. Our second algorithm is novel and uses ancestral knowledge to detect bridges. We explain the operation of the algorithms, analyze their proof of correctness, message, time, space and computational complexities. To evaluate practical importance, we provide testbed experiments and extensive simulations. We show that our proposed algorithms provide less resource consumption, and the energy savings of our algorithms are up by 5.5-times. PMID:23845930
NASA Astrophysics Data System (ADS)
Agurto, C.; Barriga, S.; Murray, V.; Pattichis, M.; Soliz, P.
2010-03-01
Diabetic retinopathy (DR) is one of the leading causes of blindness among adult Americans. Automatic methods for detection of the disease have been developed in recent years, most of them addressing the segmentation of bright and red lesions. In this paper we present an automatic DR screening system that does approach the problem through the segmentation of features. The algorithm determines non-diseased retinal images from those with pathology based on textural features obtained using multiscale Amplitude Modulation-Frequency Modulation (AM-FM) decompositions. The decomposition is represented as features that are the inputs to a classifier. The algorithm achieves 0.88 area under the ROC curve (AROC) for a set of 280 images from the MESSIDOR database. The algorithm is then used to analyze the effects of image compression and degradation, which will be present in most actual clinical or screening environments. Results show that the algorithm is insensitive to illumination variations, but high rates of compression and large blurring effects degrade its performance.
Active edge maps for medical image registration
NASA Astrophysics Data System (ADS)
Kerwin, William; Yuan, Chun
2001-07-01
Applying edge detection prior to performing image registration yields several advantages over raw intensity- based registration. Advantages include the ability to register multicontrast or multimodality images, immunity to intensity variations, and the potential for computationally efficient algorithms. In this work, a common framework for edge-based image registration is formulated as an adaptation of snakes used in boundary detection. Called active edge maps, the new formulation finds a one-to-one transformation T(x) that maps points in a source image to corresponding locations in a target image using an energy minimization approach. The energy consists of an image component that is small when edge features are well matched in the two images, and an internal term that restricts T(x) to allowable configurations. The active edge map formulation is illustrated here with a specific example developed for affine registration of carotid artery magnetic resonance images. In this example, edges are identified using a magnitude of gradient operator, image energy is determined using a Gaussian weighted distance function, and the internal energy includes separate, adjustable components that control volume preservation and rigidity.
NASA Astrophysics Data System (ADS)
Al-Hayani, Nazar; Al-Jawad, Naseer; Jassim, Sabah A.
2014-05-01
Video compression and encryption became very essential in a secured real time video transmission. Applying both techniques simultaneously is one of the challenges where the size and the quality are important in multimedia transmission. In this paper we proposed a new technique for video compression and encryption. Both encryption and compression are based on edges extracted from the high frequency sub-bands of wavelet decomposition. The compression algorithm based on hybrid of: discrete wavelet transforms, discrete cosine transform, vector quantization, wavelet based edge detection, and phase sensing. The compression encoding algorithm treats the video reference and non-reference frames in two different ways. The encryption algorithm utilized A5 cipher combined with chaotic logistic map to encrypt the significant parameters and wavelet coefficients. Both algorithms can be applied simultaneously after applying the discrete wavelet transform on each individual frame. Experimental results show that the proposed algorithms have the following features: high compression, acceptable quality, and resistance to the statistical and bruteforce attack with low computational processing.
High-resolution time-frequency representation of EEG data using multi-scale wavelets
NASA Astrophysics Data System (ADS)
Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina
2017-09-01
An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.
Numerical Simulations of a Multiscale Model of Stratified Langmuir Circulation
NASA Astrophysics Data System (ADS)
Malecha, Ziemowit; Chini, Gregory; Julien, Keith
2012-11-01
Langmuir circulation (LC), a prominent form of wind and surface-wave driven shear turbulence in the ocean surface boundary layer (BL), is commonly modeled using the Craik-Leibovich (CL) equations, a phase-averaged variant of the Navier-Stokes (NS) equations. Although surface-wave filtering renders the CL equations more amenable to simulation than are the instantaneous NS equations, simulations in wide domains, hundreds of times the BL depth, currently earn the ``grand challenge'' designation. To facilitate simulations of LC in such spatially-extended domains, we have derived multiscale CL equations by exploiting the scale separation between submesoscale and BL flows in the upper ocean. The numerical algorithm for simulating this multiscale model resembles super-parameterization schemes used in meteorology, but retains a firm mathematical basis. We have validated our algorithm and here use it to perform multiscale simulations of the interaction between LC and upper ocean density stratification. ZMM, GPC, KJ gratefully acknowledge funding from NSF CMG Award 0934827.
Edge detection and mathematic fitting for corneal surface with Matlab software.
Di, Yue; Li, Mei-Yan; Qiao, Tong; Lu, Na
2017-01-01
To select the optimal edge detection methods to identify the corneal surface, and compare three fitting curve equations with Matlab software. Fifteen subjects were recruited. The corneal images from optical coherence tomography (OCT) were imported into Matlab software. Five edge detection methods (Canny, Log, Prewitt, Roberts, Sobel) were used to identify the corneal surface. Then two manual identifying methods (ginput and getpts) were applied to identify the edge coordinates respectively. The differences among these methods were compared. Binomial curve (y=Ax 2 +Bx+C), Polynomial curve [p(x)=p1x n +p2x n-1 +....+pnx+pn+1] and Conic section (Ax 2 +Bxy+Cy 2 +Dx+Ey+F=0) were used for curve fitting the corneal surface respectively. The relative merits among three fitting curves were analyzed. Finally, the eccentricity (e) obtained by corneal topography and conic section were compared with paired t -test. Five edge detection algorithms all had continuous coordinates which indicated the edge of the corneal surface. The ordinates of manual identifying were close to the inside of the actual edges. Binomial curve was greatly affected by tilt angle. Polynomial curve was lack of geometrical properties and unstable. Conic section could calculate the tilted symmetry axis, eccentricity, circle center, etc . There were no significant differences between 'e' values by corneal topography and conic section ( t =0.9143, P =0.3760 >0.05). It is feasible to simulate the corneal surface with mathematical curve with Matlab software. Edge detection has better repeatability and higher efficiency. The manual identifying approach is an indispensable complement for detection. Polynomial and conic section are both the alternative methods for corneal curve fitting. Conic curve was the optimal choice based on the specific geometrical properties.
Toward accurate and fast iris segmentation for iris biometrics.
He, Zhaofeng; Tan, Tieniu; Sun, Zhenan; Qiu, Xianchao
2009-09-01
Iris segmentation is an essential module in iris recognition because it defines the effective image region used for subsequent processing such as feature extraction. Traditional iris segmentation methods often involve an exhaustive search of a large parameter space, which is time consuming and sensitive to noise. To address these problems, this paper presents a novel algorithm for accurate and fast iris segmentation. After efficient reflection removal, an Adaboost-cascade iris detector is first built to extract a rough position of the iris center. Edge points of iris boundaries are then detected, and an elastic model named pulling and pushing is established. Under this model, the center and radius of the circular iris boundaries are iteratively refined in a way driven by the restoring forces of Hooke's law. Furthermore, a smoothing spline-based edge fitting scheme is presented to deal with noncircular iris boundaries. After that, eyelids are localized via edge detection followed by curve fitting. The novelty here is the adoption of a rank filter for noise elimination and a histogram filter for tackling the shape irregularity of eyelids. Finally, eyelashes and shadows are detected via a learned prediction model. This model provides an adaptive threshold for eyelash and shadow detection by analyzing the intensity distributions of different iris regions. Experimental results on three challenging iris image databases demonstrate that the proposed algorithm outperforms state-of-the-art methods in both accuracy and speed.
Community Detection on the GPU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naim, Md; Manne, Fredrik; Halappanavar, Mahantesh
We present and evaluate a new GPU algorithm based on the Louvain method for community detection. Our algorithm is the first for this problem that parallelizes the access to individual edges. In this way we can fine tune the load balance when processing networks with nodes of highly varying degrees. This is achieved by scaling the number of threads assigned to each node according to its degree. Extensive experiments show that we obtain speedups up to a factor of 270 compared to the sequential algorithm. The algorithm consistently outperforms other recent shared memory implementations and is only one order ofmore » magnitude slower than the current fastest parallel Louvain method running on a Blue Gene/Q supercomputer using more than 500K threads.« less
Prostate contouring in MRI guided biopsy.
Vikal, Siddharth; Haker, Steven; Tempany, Clare; Fichtinger, Gabor
2009-03-27
With MRI possibly becoming a modality of choice for detection and staging of prostate cancer, fast and accurate outlining of the prostate is required in the volume of clinical interest. We present a semi-automatic algorithm that uses a priori knowledge of prostate shape to arrive at the final prostate contour. The contour of one slice is then used as initial estimate in the neighboring slices. Thus we propagate the contour in 3D through steps of refinement in each slice. The algorithm makes only minimum assumptions about the prostate shape. A statistical shape model of prostate contour in polar transform space is employed to narrow search space. Further, shape guidance is implicitly imposed by allowing only plausible edge orientations using template matching. The algorithm does not require region-homogeneity, discriminative edge force, or any particular edge profile. Likewise, it makes no assumption on the imaging coils and pulse sequences used and it is robust to the patient's pose (supine, prone, etc.). The contour method was validated using expert segmentation on clinical MRI data. We recorded a mean absolute distance of 2.0 ± 0.6 mm and dice similarity coefficient of 0.93 ± 0.3 in midsection. The algorithm takes about 1 second per slice.
Prostate contouring in MRI guided biopsy
Vikal, Siddharth; Haker, Steven; Tempany, Clare; Fichtinger, Gabor
2010-01-01
With MRI possibly becoming a modality of choice for detection and staging of prostate cancer, fast and accurate outlining of the prostate is required in the volume of clinical interest. We present a semi-automatic algorithm that uses a priori knowledge of prostate shape to arrive at the final prostate contour. The contour of one slice is then used as initial estimate in the neighboring slices. Thus we propagate the contour in 3D through steps of refinement in each slice. The algorithm makes only minimum assumptions about the prostate shape. A statistical shape model of prostate contour in polar transform space is employed to narrow search space. Further, shape guidance is implicitly imposed by allowing only plausible edge orientations using template matching. The algorithm does not require region-homogeneity, discriminative edge force, or any particular edge profile. Likewise, it makes no assumption on the imaging coils and pulse sequences used and it is robust to the patient's pose (supine, prone, etc.). The contour method was validated using expert segmentation on clinical MRI data. We recorded a mean absolute distance of 2.0 ± 0.6 mm and dice similarity coefficient of 0.93 ± 0.3 in midsection. The algorithm takes about 1 second per slice. PMID:21132083
Net2Align: An Algorithm For Pairwise Global Alignment of Biological Networks
Wadhwab, Gulshan; Upadhyayaa, K. C.
2016-01-01
The amount of data on molecular interactions is growing at an enormous pace, whereas the progress of methods for analysing this data is still lacking behind. Particularly, in the area of comparative analysis of biological networks, where one wishes to explore the similarity between two biological networks, this holds a potential problem. In consideration that the functionality primarily runs at the network level, it advocates the need for robust comparison methods. In this paper, we describe Net2Align, an algorithm for pairwise global alignment that can perform node-to-node correspondences as well as edge-to-edge correspondences into consideration. The uniqueness of our algorithm is in the fact that it is also able to detect the type of interaction, which is essential in case of directed graphs. The existing algorithm is only able to identify the common nodes but not the common edges. Another striking feature of the algorithm is that it is able to remove duplicate entries in case of variable datasets being aligned. This is achieved through creation of a local database which helps exclude duplicate links. In a pervasive computational study on gene regulatory network, we establish that our algorithm surpasses its counterparts in its results. Net2Align has been implemented in Java 7 and the source code is available as supplementary files. PMID:28356678
Multiscale Macromolecular Simulation: Role of Evolving Ensembles
Singharoy, A.; Joshi, H.; Ortoleva, P.J.
2013-01-01
Multiscale analysis provides an algorithm for the efficient simulation of macromolecular assemblies. This algorithm involves the coevolution of a quasiequilibrium probability density of atomic configurations and the Langevin dynamics of spatial coarse-grained variables denoted order parameters (OPs) characterizing nanoscale system features. In practice, implementation of the probability density involves the generation of constant OP ensembles of atomic configurations. Such ensembles are used to construct thermal forces and diffusion factors that mediate the stochastic OP dynamics. Generation of all-atom ensembles at every Langevin timestep is computationally expensive. Here, multiscale computation for macromolecular systems is made more efficient by a method that self-consistently folds in ensembles of all-atom configurations constructed in an earlier step, history, of the Langevin evolution. This procedure accounts for the temporal evolution of these ensembles, accurately providing thermal forces and diffusions. It is shown that efficiency and accuracy of the OP-based simulations is increased via the integration of this historical information. Accuracy improves with the square root of the number of historical timesteps included in the calculation. As a result, CPU usage can be decreased by a factor of 3-8 without loss of accuracy. The algorithm is implemented into our existing force-field based multiscale simulation platform and demonstrated via the structural dynamics of viral capsomers. PMID:22978601
Classifying epileptic EEG signals with delay permutation entropy and Multi-Scale K-means.
Zhu, Guohun; Li, Yan; Wen, Peng Paul; Wang, Shuaifang
2015-01-01
Most epileptic EEG classification algorithms are supervised and require large training datasets, that hinder their use in real time applications. This chapter proposes an unsupervised Multi-Scale K-means (MSK-means) MSK-means algorithm to distinguish epileptic EEG signals and identify epileptic zones. The random initialization of the K-means algorithm can lead to wrong clusters. Based on the characteristics of EEGs, the MSK-means MSK-means algorithm initializes the coarse-scale centroid of a cluster with a suitable scale factor. In this chapter, the MSK-means algorithm is proved theoretically superior to the K-means algorithm on efficiency. In addition, three classifiers: the K-means, MSK-means MSK-means and support vector machine (SVM), are used to identify seizure and localize epileptogenic zone using delay permutation entropy features. The experimental results demonstrate that identifying seizure with the MSK-means algorithm and delay permutation entropy achieves 4. 7 % higher accuracy than that of K-means, and 0. 7 % higher accuracy than that of the SVM.
Local Geographic Variation of Public Services Inequality: Does the Neighborhood Scale Matter?
Wei, Chunzhu; Cabrera-Barona, Pablo; Blaschke, Thomas
2016-01-01
This study aims to explore the effect of the neighborhood scale when estimating public services inequality based on the aggregation of social, environmental, and health-related indicators. Inequality analyses were carried out at three neighborhood scales: the original census blocks and two aggregated neighborhood units generated by the spatial “k”luster analysis by the tree edge removal (SKATER) algorithm and the self-organizing map (SOM) algorithm. Then, we combined a set of health-related public services indicators with the geographically weighted principal components analyses (GWPCA) and the principal components analyses (PCA) to measure the public services inequality across all multi-scale neighborhood units. Finally, a statistical test was applied to evaluate the scale effects in inequality measurements by combining all available field survey data. We chose Quito as the case study area. All of the aggregated neighborhood units performed better than the original census blocks in terms of the social indicators extracted from a field survey. The SKATER and SOM algorithms can help to define the neighborhoods in inequality analyses. Moreover, GWPCA performs better than PCA in multivariate spatial inequality estimation. Understanding the scale effects is essential to sustain a social neighborhood organization, which, in turn, positively affects social determinants of public health and public quality of life. PMID:27706072
Shape-driven 3D segmentation using spherical wavelets.
Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen
2006-01-01
This paper presents a novel active surface segmentation algorithm using a multiscale shape representation and prior. We define a parametric model of a surface using spherical wavelet functions and learn a prior probability distribution over the wavelet coefficients to model shape variations at different scales and spatial locations in a training set. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior in the segmentation framework. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to the segmentation of brain caudate nucleus, of interest in the study of schizophrenia. Our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm by capturing finer shape details.
Intercomparison of Multiscale Modeling Approaches in Simulating Subsurface Flow and Transport
NASA Astrophysics Data System (ADS)
Yang, X.; Mehmani, Y.; Barajas-Solano, D. A.; Song, H. S.; Balhoff, M.; Tartakovsky, A. M.; Scheibe, T. D.
2016-12-01
Hybrid multiscale simulations that couple models across scales are critical to advance predictions of the larger system behavior using understanding of fundamental processes. In the current study, three hybrid multiscale methods are intercompared: multiscale loose-coupling method, multiscale finite volume (MsFV) method and multiscale mortar method. The loose-coupling method enables a parallel workflow structure based on the Swift scripting environment that manages the complex process of executing coupled micro- and macro-scale models without being intrusive to the at-scale simulators. The MsFV method applies microscale and macroscale models over overlapping subdomains of the modeling domain and enforces continuity of concentration and transport fluxes between models via restriction and prolongation operators. The mortar method is a non-overlapping domain decomposition approach capable of coupling all permutations of pore- and continuum-scale models with each other. In doing so, Lagrange multipliers are used at interfaces shared between the subdomains so as to establish continuity of species/fluid mass flux. Subdomain computations can be performed either concurrently or non-concurrently depending on the algorithm used. All the above methods have been proven to be accurate and efficient in studying flow and transport in porous media. However, there has not been any field-scale applications and benchmarking among various hybrid multiscale approaches. To address this challenge, we apply all three hybrid multiscale methods to simulate water flow and transport in a conceptualized 2D modeling domain of the hyporheic zone, where strong interactions between groundwater and surface water exist across multiple scales. In all three multiscale methods, fine-scale simulations are applied to a thin layer of riverbed alluvial sediments while the macroscopic simulations are used for the larger subsurface aquifer domain. Different numerical coupling methods are then applied between scales and inter-compared. Comparisons are drawn in terms of velocity distributions, solute transport behavior, algorithm-induced numerical error and computing cost. The intercomparison work provides support for confidence in a variety of hybrid multiscale methods and motivates further development and applications.
Auer, Manfred; Peng, Hanchuan; Singh, Ambuj
2007-01-01
The 2006 International Workshop on Multiscale Biological Imaging, Data Mining and Informatics was held at Santa Barbara, on Sept 7–8, 2006. Based on the presentations at the workshop, we selected and compiled this collection of research articles related to novel algorithms and enabling techniques for bio- and biomedical image analysis, mining, visualization, and biology applications. PMID:17634090
Multiscale Dynamics of Solar Magnetic Structures
NASA Technical Reports Server (NTRS)
Uritsky, Vadim M.; Davila, Joseph M.
2012-01-01
Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries.We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.
Color object detection using spatial-color joint probability functions.
Luo, Jiebo; Crandall, David
2006-06-01
Object detection in unconstrained images is an important image understanding problem with many potential applications. There has been little success in creating a single algorithm that can detect arbitrary objects in unconstrained images; instead, algorithms typically must be customized for each specific object. Consequently, it typically requires a large number of exemplars (for rigid objects) or a large amount of human intuition (for nonrigid objects) to develop a robust algorithm. We present a robust algorithm designed to detect a class of compound color objects given a single model image. A compound color object is defined as having a set of multiple, particular colors arranged spatially in a particular way, including flags, logos, cartoon characters, people in uniforms, etc. Our approach is based on a particular type of spatial-color joint probability function called the color edge co-occurrence histogram. In addition, our algorithm employs perceptual color naming to handle color variation, and prescreening to limit the search scope (i.e., size and location) for the object. Experimental results demonstrated that the proposed algorithm is insensitive to object rotation, scaling, partial occlusion, and folding, outperforming a closely related algorithm based on color co-occurrence histograms by a decisive margin.
NASA Astrophysics Data System (ADS)
Pai Raikar, Vipul; Kwartowitz, David M.
2016-04-01
Degradation and injury of the rotator cuff is one of the most common diseases of the shoulder among the general population. In orthopedic injuries, rotator cuff disease is only second to back pain in terms of overall reduced quality of life for patients. Clinically, this disease is managed via pain and activity assessment and diagnostic imaging using ultrasound and MRI. Ultrasound has been shown to have good accuracy for identification and measurement of rotator cuff tears. In our previous work, we have developed novel, real-time techniques to biomechanically assess the condition of the rotator cuff based on Musculoskeletal Ultrasound. Of the rotator cuff tissues, supraspinatus is the first that sees degradation and is the most commonly affected. In our work, one of the challenges lies in effectively segmenting and characterizing the supraspinatus. We are exploring the possibility of using curvelet transform for improving techniques to segment tissue in ultrasound. Curvelets have been shown to give optimal multi-scale representation of edges in images. They are designed to represent edges and singularities along curves in images which makes them an attractive proposition for use in ultrasound segmentation. In this work, we present a novel approach to the possibility of using curvelet transforms for automatic edge and feature extraction for the supraspinatus.
The algorithm for automatic detection of the calibration object
NASA Astrophysics Data System (ADS)
Artem, Kruglov; Irina, Ugfeld
2017-06-01
The problem of the automatic image calibration is considered in this paper. The most challenging task of the automatic calibration is a proper detection of the calibration object. The solving of this problem required the appliance of the methods and algorithms of the digital image processing, such as morphology, filtering, edge detection, shape approximation. The step-by-step process of the development of the algorithm and its adopting to the specific conditions of the log cuts in the image's background is presented. Testing of the automatic calibration module was carrying out under the conditions of the production process of the logging enterprise. Through the tests the average possibility of the automatic isolating of the calibration object is 86.1% in the absence of the type 1 errors. The algorithm was implemented in the automatic calibration module within the mobile software for the log deck volume measurement.
Forlenza, Lidia; Carton, Patrick; Accardo, Domenico; Fasano, Giancarmine; Moccia, Antonio
2012-01-01
This paper describes the target detection algorithm for the image processor of a vision-based system that is installed onboard an unmanned helicopter. It has been developed in the framework of a project of the French national aerospace research center Office National d’Etudes et de Recherches Aérospatiales (ONERA) which aims at developing an air-to-ground target tracking mission in an unknown urban environment. In particular, the image processor must detect targets and estimate ground motion in proximity of the detected target position. Concerning the target detection function, the analysis has dealt with realizing a corner detection algorithm and selecting the best choices in terms of edge detection methods, filtering size and type and the more suitable criterion of detection of the points of interest in order to obtain a very fast algorithm which fulfills the computation load requirements. The compared criteria are the Harris-Stephen and the Shi-Tomasi, ones, which are the most widely used in literature among those based on intensity. Experimental results which illustrate the performance of the developed algorithm and demonstrate that the detection time is fully compliant with the requirements of the real-time system are discussed. PMID:22368499
An effective hair detection algorithm for dermoscopic melanoma images of skin lesions
NASA Astrophysics Data System (ADS)
Chakraborti, Damayanti; Kaur, Ravneet; Umbaugh, Scott; LeAnder, Robert
2016-09-01
Dermoscopic images are obtained using the method of skin surface microscopy. Pigmented skin lesions are evaluated in terms of texture features such as color and structure. Artifacts, such as hairs, bubbles, black frames, ruler-marks, etc., create obstacles that prevent accurate detection of skin lesions by both clinicians and computer-aided diagnosis. In this article, we propose a new algorithm for the automated detection of hairs, using an adaptive, Canny edge-detection method, followed by morphological filtering and an arithmetic addition operation. The algorithm was applied to 50 dermoscopic melanoma images. In order to ascertain this method's relative detection accuracy, it was compared to the Razmjooy hair-detection method [1], using segmentation error (SE), true detection rate (TDR) and false positioning rate (FPR). The new method produced 6.57% SE, 96.28% TDR and 3.47% FPR, compared to 15.751% SE, 86.29% TDR and 11.74% FPR produced by the Razmjooy method [1]. Because of the 7.27-9.99% improvement in those parameters, we conclude that the new algorithm produces much better results for detecting thick, thin, dark and light hairs. The new method proposed here, shows an appreciable difference in the rate of detecting bubbles, as well.
Low-level processing for real-time image analysis
NASA Technical Reports Server (NTRS)
Eskenazi, R.; Wilf, J. M.
1979-01-01
A system that detects object outlines in television images in real time is described. A high-speed pipeline processor transforms the raw image into an edge map and a microprocessor, which is integrated into the system, clusters the edges, and represents them as chain codes. Image statistics, useful for higher level tasks such as pattern recognition, are computed by the microprocessor. Peak intensity and peak gradient values are extracted within a programmable window and are used for iris and focus control. The algorithms implemented in hardware and the pipeline processor architecture are described. The strategy for partitioning functions in the pipeline was chosen to make the implementation modular. The microprocessor interface allows flexible and adaptive control of the feature extraction process. The software algorithms for clustering edge segments, creating chain codes, and computing image statistics are also discussed. A strategy for real time image analysis that uses this system is given.
A multi-level anomaly detection algorithm for time-varying graph data with interactive visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, Robert A.; Collins, John P.; Ferragut, Erik M.
This work presents a novel modeling and analysis framework for graph sequences which addresses the challenge of detecting and contextualizing anomalies in labelled, streaming graph data. We introduce a generalization of the BTER model of Seshadhri et al. by adding flexibility to community structure, and use this model to perform multi-scale graph anomaly detection. Specifically, probability models describing coarse subgraphs are built by aggregating node probabilities, and these related hierarchical models simultaneously detect deviations from expectation. This technique provides insight into a graph's structure and internal context that may shed light on a detected event. Additionally, this multi-scale analysis facilitatesmore » intuitive visualizations by allowing users to narrow focus from an anomalous graph to particular subgraphs or nodes causing the anomaly. For evaluation, two hierarchical anomaly detectors are tested against a baseline Gaussian method on a series of sampled graphs. We demonstrate that our graph statistics-based approach outperforms both a distribution-based detector and the baseline in a labeled setting with community structure, and it accurately detects anomalies in synthetic and real-world datasets at the node, subgraph, and graph levels. Furthermore, to illustrate the accessibility of information made possible via this technique, the anomaly detector and an associated interactive visualization tool are tested on NCAA football data, where teams and conferences that moved within the league are identified with perfect recall, and precision greater than 0.786.« less
A multi-level anomaly detection algorithm for time-varying graph data with interactive visualization
Bridges, Robert A.; Collins, John P.; Ferragut, Erik M.; ...
2016-01-01
This work presents a novel modeling and analysis framework for graph sequences which addresses the challenge of detecting and contextualizing anomalies in labelled, streaming graph data. We introduce a generalization of the BTER model of Seshadhri et al. by adding flexibility to community structure, and use this model to perform multi-scale graph anomaly detection. Specifically, probability models describing coarse subgraphs are built by aggregating node probabilities, and these related hierarchical models simultaneously detect deviations from expectation. This technique provides insight into a graph's structure and internal context that may shed light on a detected event. Additionally, this multi-scale analysis facilitatesmore » intuitive visualizations by allowing users to narrow focus from an anomalous graph to particular subgraphs or nodes causing the anomaly. For evaluation, two hierarchical anomaly detectors are tested against a baseline Gaussian method on a series of sampled graphs. We demonstrate that our graph statistics-based approach outperforms both a distribution-based detector and the baseline in a labeled setting with community structure, and it accurately detects anomalies in synthetic and real-world datasets at the node, subgraph, and graph levels. Furthermore, to illustrate the accessibility of information made possible via this technique, the anomaly detector and an associated interactive visualization tool are tested on NCAA football data, where teams and conferences that moved within the league are identified with perfect recall, and precision greater than 0.786.« less
Multiscale 3-D shape representation and segmentation using spherical wavelets.
Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen
2007-04-01
This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of our multiscale prior and 2) a segmentation task. In the reconstruction task, our results show that for a given training set size, our algorithm significantly improves the approximation of shapes in a testing set over the Point Distribution Model, which tends to oversmooth data. In the segmentation task, our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm, by capturing finer shape details.
Multiscale 3-D Shape Representation and Segmentation Using Spherical Wavelets
Nain, Delphine; Haker, Steven; Bobick, Aaron
2013-01-01
This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of our multiscale prior and 2) a segmentation task. In the reconstruction task, our results show that for a given training set size, our algorithm significantly improves the approximation of shapes in a testing set over the Point Distribution Model, which tends to oversmooth data. In the segmentation task, our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm, by capturing finer shape details. PMID:17427745
Shape-Driven 3D Segmentation Using Spherical Wavelets
Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen
2013-01-01
This paper presents a novel active surface segmentation algorithm using a multiscale shape representation and prior. We define a parametric model of a surface using spherical wavelet functions and learn a prior probability distribution over the wavelet coefficients to model shape variations at different scales and spatial locations in a training set. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior in the segmentation framework. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to the segmentation of brain caudate nucleus, of interest in the study of schizophrenia. Our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm by capturing finer shape details. PMID:17354875
Al-Dmour, Hayat; Al-Ani, Ahmed
2016-04-01
The present work has the goal of developing a secure medical imaging information system based on a combined steganography and cryptography technique. It attempts to securely embed patient's confidential information into his/her medical images. The proposed information security scheme conceals coded Electronic Patient Records (EPRs) into medical images in order to protect the EPRs' confidentiality without affecting the image quality and particularly the Region of Interest (ROI), which is essential for diagnosis. The secret EPR data is converted into ciphertext using private symmetric encryption method. Since the Human Visual System (HVS) is less sensitive to alterations in sharp regions compared to uniform regions, a simple edge detection method has been introduced to identify and embed in edge pixels, which will lead to an improved stego image quality. In order to increase the embedding capacity, the algorithm embeds variable number of bits (up to 3) in edge pixels based on the strength of edges. Moreover, to increase the efficiency, two message coding mechanisms have been utilized to enhance the ±1 steganography. The first one, which is based on Hamming code, is simple and fast, while the other which is known as the Syndrome Trellis Code (STC), is more sophisticated as it attempts to find a stego image that is close to the cover image through minimizing the embedding impact. The proposed steganography algorithm embeds the secret data bits into the Region of Non Interest (RONI), where due to its importance; the ROI is preserved from modifications. The experimental results demonstrate that the proposed method can embed large amount of secret data without leaving a noticeable distortion in the output image. The effectiveness of the proposed algorithm is also proven using one of the efficient steganalysis techniques. The proposed medical imaging information system proved to be capable of concealing EPR data and producing imperceptible stego images with minimal embedding distortions compared to other existing methods. In order to refrain from introducing any modifications to the ROI, the proposed system only utilizes the Region of Non Interest (RONI) in embedding the EPR data. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Detection and Classification of Objects in Synthetic Aperture Radar Imagery
2006-02-01
a higher False Alarm Rate (FAR). Currently, a standard edge detector is the Canny algorithm, which is available with the mathematics package MATLAB ...the algorithm used to calculate the Radon transform. The MATLAB implementation uses the built in Radon transform procedure, which is extremely... MATLAB code for a faster forward-backwards selection process has also been provided. In both cases, the feature selection was accomplished by using
NASA Astrophysics Data System (ADS)
Behzad, Mehdi; Ghadami, Amin; Maghsoodi, Ameneh; Michael Hale, Jack
2013-11-01
In this paper, a simple method for detection of multiple edge cracks in Euler-Bernoulli beams having two different types of cracks is presented based on energy equations. Each crack is modeled as a massless rotational spring using Linear Elastic Fracture Mechanics (LEFM) theory, and a relationship among natural frequencies, crack locations and stiffness of equivalent springs is demonstrated. In the procedure, for detection of m cracks in a beam, 3m equations and natural frequencies of healthy and cracked beam in two different directions are needed as input to the algorithm. The main accomplishment of the presented algorithm is the capability to detect the location, severity and type of each crack in a multi-cracked beam. Concise and simple calculations along with accuracy are other advantages of this method. A number of numerical examples for cantilever beams including one and two cracks are presented to validate the method.
Failure detection and isolation analysis of a redundant strapdown inertial measurement unit
NASA Technical Reports Server (NTRS)
Motyka, P.; Landey, M.; Mckern, R.
1981-01-01
The objective of this study was to define and develop techniques for failure detection and isolation (FDI) algorithms for a dual fail/operational redundant strapdown inertial navigation system are defined and developed. The FDI techniques chosen include provisions for hard and soft failure detection in the context of flight control and navigation. Analyses were done to determine error detection and switching levels for the inertial navigation system, which is intended for a conventional takeoff or landing (CTOL) operating environment. In addition, investigations of false alarms and missed alarms were included for the FDI techniques developed, along with the analyses of filters to be used in conjunction with FDI processing. Two specific FDI algorithms were compared: the generalized likelihood test and the edge vector test. A deterministic digital computer simulation was used to compare and evaluate the algorithms and FDI systems.
Wire Detection Algorithms for Navigation
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia I.
2002-01-01
In this research we addressed the problem of obstacle detection for low altitude rotorcraft flight. In particular, the problem of detecting thin wires in the presence of image clutter and noise was studied. Wires present a serious hazard to rotorcrafts. Since they are very thin, their detection early enough so that the pilot has enough time to take evasive action is difficult, as their images can be less than one or two pixels wide. Two approaches were explored for this purpose. The first approach involved a technique for sub-pixel edge detection and subsequent post processing, in order to reduce the false alarms. After reviewing the line detection literature, an algorithm for sub-pixel edge detection proposed by Steger was identified as having good potential to solve the considered task. The algorithm was tested using a set of images synthetically generated by combining real outdoor images with computer generated wire images. The performance of the algorithm was evaluated both, at the pixel and the wire levels. It was observed that the algorithm performs well, provided that the wires are not too thin (or distant) and that some post processing is performed to remove false alarms due to clutter. The second approach involved the use of an example-based learning scheme namely, Support Vector Machines. The purpose of this approach was to explore the feasibility of an example-based learning based approach for the task of detecting wires from their images. Support Vector Machines (SVMs) have emerged as a promising pattern classification tool and have been used in various applications. It was found that this approach is not suitable for very thin wires and of course, not suitable at all for sub-pixel thick wires. High dimensionality of the data as such does not present a major problem for SVMs. However it is desirable to have a large number of training examples especially for high dimensional data. The main difficulty in using SVMs (or any other example-based learning method) is the need for a very good set of positive and negative examples since the performance depends on the quality of the training set.
NASA Astrophysics Data System (ADS)
Gao, Simon S.; Liu, Li; Bailey, Steven T.; Flaxel, Christina J.; Huang, David; Li, Dengwang; Jia, Yali
2016-07-01
Quantification of choroidal neovascularization (CNV) as visualized by optical coherence tomography angiography (OCTA) may have importance clinically when diagnosing or tracking disease. Here, we present an automated algorithm to quantify the vessel skeleton of CNV as vessel length. Initial segmentation of the CNV on en face angiograms was achieved using saliency-based detection and thresholding. A level set method was then used to refine vessel edges. Finally, a skeleton algorithm was applied to identify vessel centerlines. The algorithm was tested on nine OCTA scans from participants with CNV and comparisons of the algorithm's output to manual delineation showed good agreement.
Electron Heating at Kinetic Scales in Magnetosheath Turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chasapis, Alexandros; Matthaeus, W. H.; Parashar, T. N.
2017-02-20
We present a statistical study of coherent structures at kinetic scales, using data from the Magnetospheric Multiscale mission in the Earth’s magnetosheath. We implemented the multi-spacecraft partial variance of increments (PVI) technique to detect these structures, which are associated with intermittency at kinetic scales. We examine the properties of the electron heating occurring within such structures. We find that, statistically, structures with a high PVI index are regions of significant electron heating. We also focus on one such structure, a current sheet, which shows some signatures consistent with magnetic reconnection. Strong parallel electron heating coincides with whistler emissions at themore » edges of the current sheet.« less
Salient man-made structure detection in infrared images
NASA Astrophysics Data System (ADS)
Li, Dong-jie; Zhou, Fu-gen; Jin, Ting
2013-09-01
Target detection, segmentation and recognition is a hot research topic in the field of image processing and pattern recognition nowadays, among which salient area or object detection is one of core technologies of precision guided weapon. Many theories have been raised in this paper; we detect salient objects in a series of input infrared images by using the classical feature integration theory and Itti's visual attention system. In order to find the salient object in an image accurately, we present a new method to solve the edge blur problem by calculating and using the edge mask. We also greatly improve the computing speed by improving the center-surround differences method. Unlike the traditional algorithm, we calculate the center-surround differences through rows and columns separately. Experimental results show that our method is effective in detecting salient object accurately and rapidly.
Parallel Algorithms for Switching Edges in Heterogeneous Graphs.
Bhuiyan, Hasanuzzaman; Khan, Maleq; Chen, Jiangzhuo; Marathe, Madhav
2017-06-01
An edge switch is an operation on a graph (or network) where two edges are selected randomly and one of their end vertices are swapped with each other. Edge switch operations have important applications in graph theory and network analysis, such as in generating random networks with a given degree sequence, modeling and analyzing dynamic networks, and in studying various dynamic phenomena over a network. The recent growth of real-world networks motivates the need for efficient parallel algorithms. The dependencies among successive edge switch operations and the requirement to keep the graph simple (i.e., no self-loops or parallel edges) as the edges are switched lead to significant challenges in designing a parallel algorithm. Addressing these challenges requires complex synchronization and communication among the processors leading to difficulties in achieving a good speedup by parallelization. In this paper, we present distributed memory parallel algorithms for switching edges in massive networks. These algorithms provide good speedup and scale well to a large number of processors. A harmonic mean speedup of 73.25 is achieved on eight different networks with 1024 processors. One of the steps in our edge switch algorithms requires the computation of multinomial random variables in parallel. This paper presents the first non-trivial parallel algorithm for the problem, achieving a speedup of 925 using 1024 processors.
Parallel Algorithms for Switching Edges in Heterogeneous Graphs☆
Khan, Maleq; Chen, Jiangzhuo; Marathe, Madhav
2017-01-01
An edge switch is an operation on a graph (or network) where two edges are selected randomly and one of their end vertices are swapped with each other. Edge switch operations have important applications in graph theory and network analysis, such as in generating random networks with a given degree sequence, modeling and analyzing dynamic networks, and in studying various dynamic phenomena over a network. The recent growth of real-world networks motivates the need for efficient parallel algorithms. The dependencies among successive edge switch operations and the requirement to keep the graph simple (i.e., no self-loops or parallel edges) as the edges are switched lead to significant challenges in designing a parallel algorithm. Addressing these challenges requires complex synchronization and communication among the processors leading to difficulties in achieving a good speedup by parallelization. In this paper, we present distributed memory parallel algorithms for switching edges in massive networks. These algorithms provide good speedup and scale well to a large number of processors. A harmonic mean speedup of 73.25 is achieved on eight different networks with 1024 processors. One of the steps in our edge switch algorithms requires the computation of multinomial random variables in parallel. This paper presents the first non-trivial parallel algorithm for the problem, achieving a speedup of 925 using 1024 processors. PMID:28757680
Finding community structure in very large networks
NASA Astrophysics Data System (ADS)
Clauset, Aaron; Newman, M. E. J.; Moore, Cristopher
2004-12-01
The discovery and analysis of community structure in networks is a topic of considerable recent interest within the physics community, but most methods proposed so far are unsuitable for very large networks because of their computational cost. Here we present a hierarchical agglomeration algorithm for detecting community structure which is faster than many competing algorithms: its running time on a network with n vertices and m edges is O(mdlogn) where d is the depth of the dendrogram describing the community structure. Many real-world networks are sparse and hierarchical, with mtilde n and dtilde logn , in which case our algorithm runs in essentially linear time, O(nlog2n) . As an example of the application of this algorithm we use it to analyze a network of items for sale on the web site of a large on-line retailer, items in the network being linked if they are frequently purchased by the same buyer. The network has more than 400 000 vertices and 2×106 edges. We show that our algorithm can extract meaningful communities from this network, revealing large-scale patterns present in the purchasing habits of customers.
Biological object recognition in μ-radiography images
NASA Astrophysics Data System (ADS)
Prochazka, A.; Dammer, J.; Weyda, F.; Sopko, V.; Benes, J.; Zeman, J.; Jandejsek, I.
2015-03-01
This study presents an applicability of real-time microradiography to biological objects, namely to horse chestnut leafminer, Cameraria ohridella (Insecta: Lepidoptera, Gracillariidae) and following image processing focusing on image segmentation and object recognition. The microradiography of insects (such as horse chestnut leafminer) provides a non-invasive imaging that leaves the organisms alive. The imaging requires a high spatial resolution (micrometer scale) radiographic system. Our radiographic system consists of a micro-focus X-ray tube and two types of detectors. The first is a charge integrating detector (Hamamatsu flat panel), the second is a pixel semiconductor detector (Medipix2 detector). The latter allows detection of single quantum photon of ionizing radiation. We obtained numerous horse chestnuts leafminer pupae in several microradiography images easy recognizable in automatic mode using the image processing methods. We implemented an algorithm that is able to count a number of dead and alive pupae in images. The algorithm was based on two methods: 1) noise reduction using mathematical morphology filters, 2) Canny edge detection. The accuracy of the algorithm is higher for the Medipix2 (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.83), than for the flat panel (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.77). Therefore, we conclude that Medipix2 has lower noise and better displays contours (edges) of biological objects. Our method allows automatic selection and calculation of dead and alive chestnut leafminer pupae. It leads to faster monitoring of the population of one of the world's important insect pest.
Automatic detection and recognition of signs from natural scenes.
Chen, Xilin; Yang, Jie; Zhang, Jing; Waibel, Alex
2004-01-01
In this paper, we present an approach to automatic detection and recognition of signs from natural scenes, and its application to a sign translation task. The proposed approach embeds multiresolution and multiscale edge detection, adaptive searching, color analysis, and affine rectification in a hierarchical framework for sign detection, with different emphases at each phase to handle the text in different sizes, orientations, color distributions and backgrounds. We use affine rectification to recover deformation of the text regions caused by an inappropriate camera view angle. The procedure can significantly improve text detection rate and optical character recognition (OCR) accuracy. Instead of using binary information for OCR, we extract features from an intensity image directly. We propose a local intensity normalization method to effectively handle lighting variations, followed by a Gabor transform to obtain local features, and finally a linear discriminant analysis (LDA) method for feature selection. We have applied the approach in developing a Chinese sign translation system, which can automatically detect and recognize Chinese signs as input from a camera, and translate the recognized text into English.
Surgical wound segmentation based on adaptive threshold edge detection and genetic algorithm
NASA Astrophysics Data System (ADS)
Shih, Hsueh-Fu; Ho, Te-Wei; Hsu, Jui-Tse; Chang, Chun-Che; Lai, Feipei; Wu, Jin-Ming
2017-02-01
Postsurgical wound care has a great impact on patients' prognosis. It often takes few days, even few weeks, for the wound to stabilize, which incurs a great cost of health care and nursing resources. To assess the wound condition and diagnosis, it is important to segment out the wound region for further analysis. However, the scenario of this strategy often consists of complicated background and noise. In this study, we propose a wound segmentation algorithm based on Canny edge detector and genetic algorithm with an unsupervised evaluation function. The results were evaluated by the 112 clinical images, and 94.3% of images were correctly segmented. The judgment was based on the evaluation of experimented medical doctors. This capability to extract complete wound regions, makes it possible to conduct further image analysis such as intelligent recovery evaluation and automatic infection requirements.
Robust spike classification based on frequency domain neural waveform features.
Yang, Chenhui; Yuan, Yuan; Si, Jennie
2013-12-01
We introduce a new spike classification algorithm based on frequency domain features of the spike snippets. The goal for the algorithm is to provide high classification accuracy, low false misclassification, ease of implementation, robustness to signal degradation, and objectivity in classification outcomes. In this paper, we propose a spike classification algorithm based on frequency domain features (CFDF). It makes use of frequency domain contents of the recorded neural waveforms for spike classification. The self-organizing map (SOM) is used as a tool to determine the cluster number intuitively and directly by viewing the SOM output map. After that, spike classification can be easily performed using clustering algorithms such as the k-Means. In conjunction with our previously developed multiscale correlation of wavelet coefficient (MCWC) spike detection algorithm, we show that the MCWC and CFDF detection and classification system is robust when tested on several sets of artificial and real neural waveforms. The CFDF is comparable to or outperforms some popular automatic spike classification algorithms with artificial and real neural data. The detection and classification of neural action potentials or neural spikes is an important step in single-unit-based neuroscientific studies and applications. After the detection of neural snippets potentially containing neural spikes, a robust classification algorithm is applied for the analysis of the snippets to (1) extract similar waveforms into one class for them to be considered coming from one unit, and to (2) remove noise snippets if they do not contain any features of an action potential. Usually, a snippet is a small 2 or 3 ms segment of the recorded waveform, and differences in neural action potentials can be subtle from one unit to another. Therefore, a robust, high performance classification system like the CFDF is necessary. In addition, the proposed algorithm does not require any assumptions on statistical properties of the noise and proves to be robust under noise contamination.
Iterative image-domain decomposition for dual-energy CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, Tianye; Dong, Xue; Petrongolo, Michael
2014-04-15
Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its capability of material decomposition. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical values of DECT. Existing denoising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. In this work, the authors propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm ismore » formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, the authors include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. The regularization term enforces the image smoothness by calculating the square sum of neighboring pixel value differences. To retain the boundary sharpness of the decomposed images, the authors detect the edges in the CT images before decomposition. These edge pixels have small weights in the calculation of the regularization term. Distinct from the existing denoising algorithms applied on the images before or after decomposition, the method has an iterative process for noise suppression, with decomposition performed in each iteration. The authors implement the proposed algorithm using a standard conjugate gradient algorithm. The method performance is evaluated using an evaluation phantom (Catphan©600) and an anthropomorphic head phantom. The results are compared with those generated using direct matrix inversion with no noise suppression, a denoising method applied on the decomposed images, and an existing algorithm with similar formulation as the proposed method but with an edge-preserving regularization term. Results: On the Catphan phantom, the method maintains the same spatial resolution on the decomposed images as that of the CT images before decomposition (8 pairs/cm) while significantly reducing their noise standard deviation. Compared to that obtained by the direct matrix inversion, the noise standard deviation in the images decomposed by the proposed algorithm is reduced by over 98%. Without considering the noise correlation properties in the formulation, the denoising scheme degrades the spatial resolution to 6 pairs/cm for the same level of noise suppression. Compared to the edge-preserving algorithm, the method achieves better low-contrast detectability. A quantitative study is performed on the contrast-rod slice of Catphan phantom. The proposed method achieves lower electron density measurement error as compared to that by the direct matrix inversion, and significantly reduces the error variation by over 97%. On the head phantom, the method reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusions: The authors propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. By exploring the full variance-covariance properties of the decomposed images and utilizing the edge predetection, the proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability.« less
NASA Technical Reports Server (NTRS)
Reed, M. A.
1974-01-01
The need for an obstacle detection system on the Mars roving vehicle was assumed, and a practical scheme was investigated and simulated. The principal sensing device on this vehicle was taken to be a laser range finder. Both existing and original algorithms, ending with thresholding operations, were used to obtain the outlines of obstacles from the raw data of this laser scan. A theoretical analysis was carried out to show how proper value of threshold may be chosen. Computer simulations considered various mid-range boulders, for which the scheme was quite successful. The extension to other types of obstacles, such as craters, was considered. The special problems of bottom edge detection and scanning procedure are discussed.
Fast Decentralized Averaging via Multi-scale Gossip
NASA Astrophysics Data System (ADS)
Tsianos, Konstantinos I.; Rabbat, Michael G.
We are interested in the problem of computing the average consensus in a distributed fashion on random geometric graphs. We describe a new algorithm called Multi-scale Gossip which employs a hierarchical decomposition of the graph to partition the computation into tractable sub-problems. Using only pairwise messages of fixed size that travel at most O(n^{1/3}) hops, our algorithm is robust and has communication cost of O(n loglogn logɛ - 1) transmissions, which is order-optimal up to the logarithmic factor in n. Simulated experiments verify the good expected performance on graphs of many thousands of nodes.
Grebenkov, Denis S
2011-02-01
A new method for computing the signal attenuation due to restricted diffusion in a linear magnetic field gradient is proposed. A fast random walk (FRW) algorithm for simulating random trajectories of diffusing spin-bearing particles is combined with gradient encoding. As random moves of a FRW are continuously adapted to local geometrical length scales, the method is efficient for simulating pulsed-gradient spin-echo experiments in hierarchical or multiscale porous media such as concrete, sandstones, sedimentary rocks and, potentially, brain or lungs. Copyright © 2010 Elsevier Inc. All rights reserved.
Efficient, Decentralized Detection of Qualitative Spatial Events in a Dynamic Scalar Field
Jeong, Myeong-Hun; Duckham, Matt
2015-01-01
This paper describes an efficient, decentralized algorithm to monitor qualitative spatial events in a dynamic scalar field. The events of interest involve changes to the critical points (i.e., peak, pits and passes) and edges of the surface network derived from the field. Four fundamental types of event (appearance, disappearance, movement and switch) are defined. Our algorithm is designed to rely purely on qualitative information about the neighborhoods of nodes in the sensor network and does not require information about nodes’ coordinate positions. Experimental investigations confirm that our algorithm is efficient, with O(n) overall communication complexity (where n is the number of nodes in the sensor network), an even load balance and low operational latency. The accuracy of event detection is comparable to established centralized algorithms for the identification of critical points of a surface network. Our algorithm is relevant to a broad range of environmental monitoring applications of sensor networks. PMID:26343672
Efficient, Decentralized Detection of Qualitative Spatial Events in a Dynamic Scalar Field.
Jeong, Myeong-Hun; Duckham, Matt
2015-08-28
This paper describes an efficient, decentralized algorithm to monitor qualitative spatial events in a dynamic scalar field. The events of interest involve changes to the critical points (i.e., peak, pits and passes) and edges of the surface network derived from the field. Four fundamental types of event (appearance, disappearance, movement and switch) are defined. Our algorithm is designed to rely purely on qualitative information about the neighborhoods of nodes in the sensor network and does not require information about nodes' coordinate positions. Experimental investigations confirm that our algorithm is efficient, with O(n) overall communication complexity (where n is the number of nodes in the sensor network), an even load balance and low operational latency. The accuracy of event detection is comparable to established centralized algorithms for the identification of critical points of a surface network. Our algorithm is relevant to a broad range of environmental monitoring applications of sensor networks.
A multiscale analysis of coral reef topographic complexity using lidar-derived bathymetry
Zawada, D.G.; Brock, J.C.
2009-01-01
Coral reefs represent one of the most irregular substrates in the marine environment. This roughness or topographic complexity is an important structural characteristic of reef habitats that affects a number of ecological and environmental attributes, including species diversity and water circulation. Little is known about the range of topographic complexity exhibited within a reef or between different reef systems. The objective of this study was to quantify topographic complexity for a 5-km x 5-km reefscape along the northern Florida Keys reef tract, over spatial scales ranging from meters to hundreds of meters. The underlying dataset was a 1-m spatial resolution, digital elevation model constructed from lidar measurements. Topographic complexity was quantified using a fractal algorithm, which provided a multi-scale characterization of reef roughness. The computed fractal dimensions (D) are a measure of substrate irregularity and are bounded between values of 2 and 3. Spatial patterns in D were positively correlated with known reef zonation in the area. Landward regions of the study site contain relatively smooth (D ??? 2.35) flat-topped patch reefs, which give way to rougher (D ??? 2.5), deep, knoll-shaped patch reefs. The seaward boundary contains a mixture of substrate features, including discontinuous shelf-edge reefs, and exhibits a corresponding range of roughness values (2.28 ??? D ??? 2.61). ?? 2009 Coastal Education and Research Foundation.
Detection of core-periphery structure in networks based on 3-tuple motifs
NASA Astrophysics Data System (ADS)
Ma, Chuang; Xiang, Bing-Bing; Chen, Han-Shuang; Small, Michael; Zhang, Hai-Feng
2018-05-01
Detecting mesoscale structure, such as community structure, is of vital importance for analyzing complex networks. Recently, a new mesoscale structure, core-periphery (CP) structure, has been identified in many real-world systems. In this paper, we propose an effective algorithm for detecting CP structure based on a 3-tuple motif. In this algorithm, we first define a 3-tuple motif in terms of the patterns of edges as well as the property of nodes, and then a motif adjacency matrix is constructed based on the 3-tuple motif. Finally, the problem is converted to find a cluster that minimizes the smallest motif conductance. Our algorithm works well in different CP structures: including single or multiple CP structure, and local or global CP structures. Results on the synthetic and the empirical networks validate the high performance of our method.
Multiscale solvers and systematic upscaling in computational physics
NASA Astrophysics Data System (ADS)
Brandt, A.
2005-07-01
Multiscale algorithms can overcome the scale-born bottlenecks that plague most computations in physics. These algorithms employ separate processing at each scale of the physical space, combined with interscale iterative interactions, in ways which use finer scales very sparingly. Having been developed first and well known as multigrid solvers for partial differential equations, highly efficient multiscale techniques have more recently been developed for many other types of computational tasks, including: inverse PDE problems; highly indefinite (e.g., standing wave) equations; Dirac equations in disordered gauge fields; fast computation and updating of large determinants (as needed in QCD); fast integral transforms; integral equations; astrophysics; molecular dynamics of macromolecules and fluids; many-atom electronic structures; global and discrete-state optimization; practical graph problems; image segmentation and recognition; tomography (medical imaging); fast Monte-Carlo sampling in statistical physics; and general, systematic methods of upscaling (accurate numerical derivation of large-scale equations from microscopic laws).
A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle
Huang, Kuo-Yi; Ye, Yu-Ting
2015-01-01
In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI) algorithm. The gray level co-occurrence matrix (GLCM) was further used to evaluate the texture features of the segmented region. These texture features (contrast, entropy, energy), color features (mean and variance of gray level) and geometric features (distance variance, mean diameter and diameter ratio) were used in the classification procedures. A back-propagation neural network classifier was employed to detect the defects of micro-spray nozzles. The methodology presented herein effectively works for detecting micro-spray nozzle defects to an accuracy of 90.71%. PMID:26131678
A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle.
Huang, Kuo-Yi; Ye, Yu-Ting
2015-06-29
In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI) algorithm. The gray level co-occurrence matrix (GLCM) was further used to evaluate the texture features of the segmented region. These texture features (contrast, entropy, energy), color features (mean and variance of gray level) and geometric features (distance variance, mean diameter and diameter ratio) were used in the classification procedures. A back-propagation neural network classifier was employed to detect the defects of micro-spray nozzles. The methodology presented herein effectively works for detecting micro-spray nozzle defects to an accuracy of 90.71%.
Efficient Approximation Algorithms for Weighted $b$-Matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Arif; Pothen, Alex; Mostofa Ali Patwary, Md.
2016-01-01
We describe a half-approximation algorithm, b-Suitor, for computing a b-Matching of maximum weight in a graph with weights on the edges. b-Matching is a generalization of the well-known Matching problem in graphs, where the objective is to choose a subset of M edges in the graph such that at most a specified number b(v) of edges in M are incident on each vertex v. Subject to this restriction we maximize the sum of the weights of the edges in M. We prove that the b-Suitor algorithm computes the same b-Matching as the one obtained by the greedy algorithm for themore » problem. We implement the algorithm on serial and shared-memory parallel processors, and compare its performance against a collection of approximation algorithms that have been proposed for the Matching problem. Our results show that the b-Suitor algorithm outperforms the Greedy and Locally Dominant edge algorithms by one to two orders of magnitude on a serial processor. The b-Suitor algorithm has a high degree of concurrency, and it scales well up to 240 threads on a shared memory multiprocessor. The b-Suitor algorithm outperforms the Locally Dominant edge algorithm by a factor of fourteen on 16 cores of an Intel Xeon multiprocessor.« less
MREG V1.1 : a multi-scale image registration algorithm for SAR applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichel, Paul H.
2013-08-01
MREG V1.1 is the sixth generation SAR image registration algorithm developed by the Signal Processing&Technology Department for Synthetic Aperture Radar applications. Like its predecessor algorithm REGI, it employs a powerful iterative multi-scale paradigm to achieve the competing goals of sub-pixel registration accuracy and the ability to handle large initial offsets. Since it is not model based, it allows for high fidelity tracking of spatially varying terrain-induced misregistration. Since it does not rely on image domain phase, it is equally adept at coherent and noncoherent image registration. This document provides a brief history of the registration processors developed by Dept. 5962more » leading up to MREG V1.1, a full description of the signal processing steps involved in the algorithm, and a user's manual with application specific recommendations for CCD, TwoColor MultiView, and SAR stereoscopy.« less
NASA Astrophysics Data System (ADS)
Berahmand, Kamal; Bouyer, Asgarali
2018-03-01
Community detection is an essential approach for analyzing the structural and functional properties of complex networks. Although many community detection algorithms have been recently presented, most of them are weak and limited in different ways. Label Propagation Algorithm (LPA) is a well-known and efficient community detection technique which is characterized by the merits of nearly-linear running time and easy implementation. However, LPA has some significant problems such as instability, randomness, and monster community detection. In this paper, an algorithm, namely node’s label influence policy for label propagation algorithm (LP-LPA) was proposed for detecting efficient community structures. LP-LPA measures link strength value for edges and nodes’ label influence value for nodes in a new label propagation strategy with preference on link strength and for initial nodes selection, avoid of random behavior in tiebreak states, and efficient updating order and rule update. These procedures can sort out the randomness issue in an original LPA and stabilize the discovered communities in all runs of the same network. Experiments on synthetic networks and a wide range of real-world social networks indicated that the proposed method achieves significant accuracy and high stability. Indeed, it can obviously solve monster community problem with regard to detecting communities in networks.
An improved KCF tracking algorithm based on multi-feature and multi-scale
NASA Astrophysics Data System (ADS)
Wu, Wei; Wang, Ding; Luo, Xin; Su, Yang; Tian, Weiye
2018-02-01
The purpose of visual tracking is to associate the target object in a continuous video frame. In recent years, the method based on the kernel correlation filter has become the research hotspot. However, the algorithm still has some problems such as video capture equipment fast jitter, tracking scale transformation. In order to improve the ability of scale transformation and feature description, this paper has carried an innovative algorithm based on the multi feature fusion and multi-scale transform. The experimental results show that our method solves the problem that the target model update when is blocked or its scale transforms. The accuracy of the evaluation (OPE) is 77.0%, 75.4% and the success rate is 69.7%, 66.4% on the VOT and OTB datasets. Compared with the optimal one of the existing target-based tracking algorithms, the accuracy of the algorithm is improved by 6.7% and 6.3% respectively. The success rates are improved by 13.7% and 14.2% respectively.
[Image processing applying in analysis of motion features of cultured cardiac myocyte in rat].
Teng, Qizhi; He, Xiaohai; Luo, Daisheng; Wang, Zhengrong; Zhou, Beiyi; Yuan, Zhirun; Tao, Dachang
2007-02-01
Study of mechanism of medicine actions, by quantitative analysis of cultured cardiac myocyte, is one of the cutting edge researches in myocyte dynamics and molecular biology. The characteristics of cardiac myocyte auto-beating without external stimulation make the research sense. Research of the morphology and cardiac myocyte motion using image analysis can reveal the fundamental mechanism of medical actions, increase the accuracy of medicine filtering, and design the optimal formula of medicine for best medical treatments. A system of hardware and software has been built with complete sets of functions including living cardiac myocyte image acquisition, image processing, motion image analysis, and image recognition. In this paper, theories and approaches are introduced for analysis of living cardiac myocyte motion images and implementing quantitative analysis of cardiac myocyte features. A motion estimation algorithm is used for motion vector detection of particular points and amplitude and frequency detection of a cardiac myocyte. Beatings of cardiac myocytes are sometimes very small. In such case, it is difficult to detect the motion vectors from the particular points in a time sequence of images. For this reason, an image correlation theory is employed to detect the beating frequencies. Active contour algorithm in terms of energy function is proposed to approximate the boundary and detect the changes of edge of myocyte.
Retinal vessel enhancement based on the Gaussian function and image fusion
NASA Astrophysics Data System (ADS)
Moraru, Luminita; Obreja, Cristian Dragoş
2017-01-01
The Gaussian function is essential in the construction of the Frangi and COSFIRE (combination of shifted filter responses) filters. The connection of the broken vessels and an accurate extraction of the vascular structure is the main goal of this study. Thus, the outcome of the Frangi and COSFIRE edge detection algorithms are fused using the Dempster-Shafer algorithm with the aim to improve detection and to enhance the retinal vascular structure. For objective results, the average diameters of the retinal vessels provided by Frangi, COSFIRE and Dempster-Shafer fusion algorithms are measured. These experimental values are compared to the ground truth values provided by manually segmented retinal images. We prove the superiority of the fusion algorithm in terms of image quality by using the figure of merit objective metric that correlates the effects of all post-processing techniques.
Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plechac, Petr
2016-03-01
The overall objective of this project was to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics and developing rigorous mathematical techniques and computational algorithms to study such models. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals.
Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabaras, Nicolas J.
2016-11-08
Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitrios
Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A totalmore » of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A new wavelet-based EFCM clustering model was introduced toward noise reduction and detail preservation. The proposed method improves the overall US image quality, which in turn could affect the decision-making on whether additional imaging and/or intervention is needed.« less
Tsantis, Stavros; Spiliopoulos, Stavros; Skouroliakou, Aikaterini; Karnabatidis, Dimitrios; Hazle, John D; Kagadis, George C
2014-07-01
Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. A total of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists' qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. A new wavelet-based EFCM clustering model was introduced toward noise reduction and detail preservation. The proposed method improves the overall US image quality, which in turn could affect the decision-making on whether additional imaging and/or intervention is needed.
Low Dose CT Reconstruction via Edge-preserving Total Variation Regularization
Tian, Zhen; Jia, Xun; Yuan, Kehong; Pan, Tinsu; Jiang, Steve B.
2014-01-01
High radiation dose in CT scans increases a lifetime risk of cancer and has become a major clinical concern. Recently, iterative reconstruction algorithms with Total Variation (TV) regularization have been developed to reconstruct CT images from highly undersampled data acquired at low mAs levels in order to reduce the imaging dose. Nonetheless, the low contrast structures tend to be smoothed out by the TV regularization, posing a great challenge for the TV method. To solve this problem, in this work we develop an iterative CT reconstruction algorithm with edge-preserving TV regularization to reconstruct CT images from highly undersampled data obtained at low mAs levels. The CT image is reconstructed by minimizing an energy consisting of an edge-preserving TV norm and a data fidelity term posed by the x-ray projections. The edge-preserving TV term is proposed to preferentially perform smoothing only on non-edge part of the image in order to better preserve the edges, which is realized by introducing a penalty weight to the original total variation norm. During the reconstruction process, the pixels at edges would be gradually identified and given small penalty weight. Our iterative algorithm is implemented on GPU to improve its speed. We test our reconstruction algorithm on a digital NCAT phantom, a physical chest phantom, and a Catphan phantom. Reconstruction results from a conventional FBP algorithm and a TV regularization method without edge preserving penalty are also presented for comparison purpose. The experimental results illustrate that both TV-based algorithm and our edge-preserving TV algorithm outperform the conventional FBP algorithm in suppressing the streaking artifacts and image noise under the low dose context. Our edge-preserving algorithm is superior to the TV-based algorithm in that it can preserve more information of low contrast structures and therefore maintain acceptable spatial resolution. PMID:21860076
Wang, Yuliang; Zhang, Zaicheng; Wang, Huimin; Bi, Shusheng
2015-01-01
Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells. PMID:26066315
Automatic Detection of Frontal Face Midline by Chain-coded Merlin-Farber Hough Trasform
NASA Astrophysics Data System (ADS)
Okamoto, Daichi; Ohyama, Wataru; Wakabayashi, Tetsushi; Kimura, Fumitaka
We propose a novel approach for detection of the facial midline (facial symmetry axis) from a frontal face image. The facial midline has several applications, for instance reducing computational cost required for facial feature extraction (FFE) and postoperative assessment for cosmetic or dental surgery. The proposed method detects the facial midline of a frontal face from an edge image as the symmetry axis using the Merlin-Faber Hough transformation. And a new performance improvement scheme for midline detection by MFHT is present. The main concept of the proposed scheme is suppression of redundant vote on the Hough parameter space by introducing chain code representation for the binary edge image. Experimental results on the image dataset containing 2409 images from FERET database indicate that the proposed algorithm can improve the accuracy of midline detection from 89.9% to 95.1 % for face images with different scales and rotation.
Samant, Asawari; Ogunnaike, Babatunde A; Vlachos, Dionisios G
2007-05-24
The fundamental role that intrinsic stochasticity plays in cellular functions has been shown via numerous computational and experimental studies. In the face of such evidence, it is important that intracellular networks are simulated with stochastic algorithms that can capture molecular fluctuations. However, separation of time scales and disparity in species population, two common features of intracellular networks, make stochastic simulation of such networks computationally prohibitive. While recent work has addressed each of these challenges separately, a generic algorithm that can simultaneously tackle disparity in time scales and population scales in stochastic systems is currently lacking. In this paper, we propose the hybrid, multiscale Monte Carlo (HyMSMC) method that fills in this void. The proposed HyMSMC method blends stochastic singular perturbation concepts, to deal with potential stiffness, with a hybrid of exact and coarse-grained stochastic algorithms, to cope with separation in population sizes. In addition, we introduce the computational singular perturbation (CSP) method as a means of systematically partitioning fast and slow networks and computing relaxation times for convergence. We also propose a new criteria of convergence of fast networks to stochastic low-dimensional manifolds, which further accelerates the algorithm. We use several prototype and biological examples, including a gene expression model displaying bistability, to demonstrate the efficiency, accuracy and applicability of the HyMSMC method. Bistable models serve as stringent tests for the success of multiscale MC methods and illustrate limitations of some literature methods.
Application of Time-Frequency Domain Transform to Three-Dimensional Interpolation of Medical Images.
Lv, Shengqing; Chen, Yimin; Li, Zeyu; Lu, Jiahui; Gao, Mingke; Lu, Rongrong
2017-11-01
Medical image three-dimensional (3D) interpolation is an important means to improve the image effect in 3D reconstruction. In image processing, the time-frequency domain transform is an efficient method. In this article, several time-frequency domain transform methods are applied and compared in 3D interpolation. And a Sobel edge detection and 3D matching interpolation method based on wavelet transform is proposed. We combine wavelet transform, traditional matching interpolation methods, and Sobel edge detection together in our algorithm. What is more, the characteristics of wavelet transform and Sobel operator are used. They deal with the sub-images of wavelet decomposition separately. Sobel edge detection 3D matching interpolation method is used in low-frequency sub-images under the circumstances of ensuring high frequency undistorted. Through wavelet reconstruction, it can get the target interpolation image. In this article, we make 3D interpolation of the real computed tomography (CT) images. Compared with other interpolation methods, our proposed method is verified to be effective and superior.
A median filter approach for correcting errors in a vector field
NASA Technical Reports Server (NTRS)
Schultz, H.
1985-01-01
Techniques are presented for detecting and correcting errors in a vector field. These methods employ median filters which are frequently used in image processing to enhance edges and remove noise. A detailed example is given for wind field maps produced by a spaceborne scatterometer. The error detection and replacement algorithm was tested with simulation data from the NASA Scatterometer (NSCAT) project.
Using Deep Learning Algorithm to Enhance Image-review Software for Surveillance Cameras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Yonggang; Thomas, Maikael A.
We propose the development of proven deep learning algorithms to flag objects and events of interest in Next Generation Surveillance System (NGSS) surveillance to make IAEA image review more efficient. Video surveillance is one of the core monitoring technologies used by the IAEA Department of Safeguards when implementing safeguards at nuclear facilities worldwide. The current image review software GARS has limited automated functions, such as scene-change detection, black image detection and missing scene analysis, but struggles with highly cluttered backgrounds. A cutting-edge algorithm to be developed in this project will enable efficient and effective searches in images and video streamsmore » by identifying and tracking safeguards relevant objects and detect anomalies in their vicinity. In this project, we will develop the algorithm, test it with the IAEA surveillance cameras and data sets collected at simulated nuclear facilities at BNL and SNL, and implement it in a software program for potential integration into the IAEA’s IRAP (Integrated Review and Analysis Program).« less
NASA Astrophysics Data System (ADS)
Cautun, Marius; van de Weygaert, Rien; Jones, Bernard J. T.; Frenk, Carlos S.; Hellwing, Wojciech A.
2015-01-01
One of the important unknowns of current cosmology concerns the effects of the large scale distribution of matter on the formation and evolution of dark matter haloes and galaxies. One main difficulty in answering this question lies in the absence of a robust and natural way of identifying the large scale environments and their characteristics. This work summarizes the NEXUS+ formalism which extends and improves our multiscale scale-space MMF method. The new algorithm is very successful in tracing the Cosmic Web components, mainly due to its novel filtering of the density in logarithmic space. The method, due to its multiscale and hierarchical character, has the advantage of detecting all the cosmic structures, either prominent or tenuous, without preference for a certain size or shape. The resulting filamentary and wall networks can easily be characterized by their direction, thickness, mass density and density profile. These additional environmental properties allows to us to investigate not only the effect of environment on haloes, but also how it correlates with the environment characteristics.
NASA Astrophysics Data System (ADS)
Ajadi, O. A.; Meyer, F. J.
2014-12-01
Automatic oil spill detection and tracking from Synthetic Aperture Radar (SAR) images is a difficult task, due in large part to the inhomogeneous properties of the sea surface, the high level of speckle inherent in SAR data, the complexity and the highly non-Gaussian nature of amplitude information, and the low temporal sampling that is often achieved with SAR systems. This research presents a promising new oil spill detection and tracking method that is based on time series of SAR images. Through the combination of a number of advanced image processing techniques, the develop approach is able to mitigate some of these previously mentioned limitations of SAR-based oil-spill detection and enables fully automatic spill detection and tracking across a wide range of spatial scales. The method combines an initial automatic texture analysis with a consecutive change detection approach based on multi-scale image decomposition. The first step of the approach, a texture transformation of the original SAR images, is performed in order to normalize the ocean background and enhance the contrast between oil-covered and oil-free ocean surfaces. The Lipschitz regularity (LR), a local texture parameter, is used here due to its proven ability to normalize the reflectivity properties of ocean water and maximize the visibly of oil in water. To calculate LR, the images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), and transformed into Holder space to measure LR. After texture transformation, the now normalized images are inserted into our multi-temporal change detection algorithm. The multi-temporal change detection approach is a two-step procedure including (1) data enhancement and filtering and (2) multi-scale automatic change detection. The performance of the developed approach is demonstrated by an application to oil spill areas in the Gulf of Mexico. In this example, areas affected by oil spills were identified from a series of ALOS PALSAR images acquired in 2010. The comparison showed exceptional performance of our method. This method can be applied to emergency management and decision support systems with a need for real-time data, and it shows great potential for rapid data analysis in other areas, including volcano detection, flood boundaries, forest health, and wildfires.
Glue detection based on teaching points constraint and tracking model of pixel convolution
NASA Astrophysics Data System (ADS)
Geng, Lei; Ma, Xiao; Xiao, Zhitao; Wang, Wen
2018-01-01
On-line glue detection based on machine version is significant for rust protection and strengthening in car production. Shadow stripes caused by reflect light and unevenness of inside front cover of car reduce the accuracy of glue detection. In this paper, we propose an effective algorithm to distinguish the edges of the glue and shadow stripes. Teaching points are utilized to calculate slope between the two adjacent points. Then a tracking model based on pixel convolution along motion direction is designed to segment several local rectangular regions using distance. The distance is the height of rectangular region. The pixel convolution along the motion direction is proposed to extract edges of gules in local rectangular region. A dataset with different illumination and complexity shape stripes are used to evaluate proposed method, which include 500 thousand images captured from the camera of glue gun machine. Experimental results demonstrate that the proposed method can detect the edges of glue accurately. The shadow stripes are distinguished and removed effectively. Our method achieves the 99.9% accuracies for the image dataset.
Kobayashi, M; Irino, T; Sweldens, W
2001-10-23
Multiscale computing (MSC) involves the computation, manipulation, and analysis of information at different resolution levels. Widespread use of MSC algorithms and the discovery of important relationships between different approaches to implementation were catalyzed, in part, by the recent interest in wavelets. We present two examples that demonstrate how MSC can help scientists understand complex data. The first is from acoustical signal processing and the second is from computer graphics.
Fusion of infrared polarization and intensity images based on improved toggle operator
NASA Astrophysics Data System (ADS)
Zhu, Pan; Ding, Lei; Ma, Xiaoqing; Huang, Zhanhua
2018-01-01
Integration of infrared polarization and intensity images has been a new topic in infrared image understanding and interpretation. The abundant infrared details and target from infrared image and the salient edge and shape information from polarization image should be preserved or even enhanced in the fused result. In this paper, a new fusion method is proposed for infrared polarization and intensity images based on the improved multi-scale toggle operator with spatial scale, which can effectively extract the feature information of source images and heavily reduce redundancy among different scale. Firstly, the multi-scale image features of infrared polarization and intensity images are respectively extracted at different scale levels by the improved multi-scale toggle operator. Secondly, the redundancy of the features among different scales is reduced by using spatial scale. Thirdly, the final image features are combined by simply adding all scales of feature images together, and a base image is calculated by performing mean value weighted method on smoothed source images. Finally, the fusion image is obtained by importing the combined image features into the base image with a suitable strategy. Both objective assessment and subjective vision of the experimental results indicate that the proposed method obtains better performance in preserving the details and edge information as well as improving the image contrast.
Edge Pushing is Equivalent to Vertex Elimination for Computing Hessians
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mu; Pothen, Alex; Hovland, Paul
We prove the equivalence of two different Hessian evaluation algorithms in AD. The first is the Edge Pushing algorithm of Gower and Mello, which may be viewed as a second order Reverse mode algorithm for computing the Hessian. In earlier work, we have derived the Edge Pushing algorithm by exploiting a Reverse mode invariant based on the concept of live variables in compiler theory. The second algorithm is based on eliminating vertices in a computational graph of the gradient, in which intermediate variables are successively eliminated from the graph, and the weights of the edges are updated suitably. We provemore » that if the vertices are eliminated in a reverse topological order while preserving symmetry in the computational graph of the gradient, then the Vertex Elimination algorithm and the Edge Pushing algorithm perform identical computations. In this sense, the two algorithms are equivalent. This insight that unifies two seemingly disparate approaches to Hessian computations could lead to improved algorithms and implementations for computing Hessians. Read More: http://epubs.siam.org/doi/10.1137/1.9781611974690.ch11« less
Automated vehicle detection in forward-looking infrared imagery.
Der, Sandor; Chan, Alex; Nasrabadi, Nasser; Kwon, Heesung
2004-01-10
We describe an algorithm for the detection and clutter rejection of military vehicles in forward-looking infrared (FLIR) imagery. The detection algorithm is designed to be a prescreener that selects regions for further analysis and uses a spatial anomaly approach that looks for target-sized regions of the image that differ in texture, brightness, edge strength, or other spatial characteristics. The features are linearly combined to form a confidence image that is thresholded to find likely target locations. The clutter rejection portion uses target-specific information extracted from training samples to reduce the false alarms of the detector. The outputs of the clutter rejecter and detector are combined by a higher-level evidence integrator to improve performance over simple concatenation of the detector and clutter rejecter. The algorithm has been applied to a large number of FLIR imagery sets, and some of these results are presented here.
Detecting Edges in Images by Use of Fuzzy Reasoning
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A.; Klinko, Steve
2003-01-01
A method of processing digital image data to detect edges includes the use of fuzzy reasoning. The method is completely adaptive and does not require any advance knowledge of an image. During initial processing of image data at a low level of abstraction, the nature of the data is indeterminate. Fuzzy reasoning is used in the present method because it affords an ability to construct useful abstractions from approximate, incomplete, and otherwise imperfect sets of data. Humans are able to make some sense of even unfamiliar objects that have imperfect high-level representations. It appears that to perceive unfamiliar objects or to perceive familiar objects in imperfect images, humans apply heuristic algorithms to understand the images
2D deblending using the multi-scale shaping scheme
NASA Astrophysics Data System (ADS)
Li, Qun; Ban, Xingan; Gong, Renbin; Li, Jinnuo; Ge, Qiang; Zu, Shaohuan
2018-01-01
Deblending can be posed as an inversion problem, which is ill-posed and requires constraint to obtain unique and stable solution. In blended record, signal is coherent, whereas interference is incoherent in some domains (e.g., common receiver domain and common offset domain). Due to the different sparsity, coefficients of signal and interference locate in different curvelet scale domains and have different amplitudes. Take into account the two differences, we propose a 2D multi-scale shaping scheme to constrain the sparsity to separate the blended record. In the domain where signal concentrates, the multi-scale scheme passes all the coefficients representing signal, while, in the domain where interference focuses, the multi-scale scheme suppresses the coefficients representing interference. Because the interference is suppressed evidently at each iteration, the constraint of multi-scale shaping operator in all scale domains are weak to guarantee the convergence of algorithm. We evaluate the performance of the multi-scale shaping scheme and the traditional global shaping scheme by using two synthetic and one field data examples.
Focal liver lesions segmentation and classification in nonenhanced T2-weighted MRI.
Gatos, Ilias; Tsantis, Stavros; Karamesini, Maria; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Hazle, John D; Kagadis, George C
2017-07-01
To automatically segment and classify focal liver lesions (FLLs) on nonenhanced T2-weighted magnetic resonance imaging (MRI) scans using a computer-aided diagnosis (CAD) algorithm. 71 FLLs (30 benign lesions, 19 hepatocellular carcinomas, and 22 metastases) on T2-weighted MRI scans were delineated by the proposed CAD scheme. The FLL segmentation procedure involved wavelet multiscale analysis to extract accurate edge information and mean intensity values for consecutive edges computed using horizontal and vertical analysis that were fed into the subsequent fuzzy C-means algorithm for final FLL border extraction. Texture information for each extracted lesion was derived using 42 first- and second-order textural features from grayscale value histogram, co-occurrence, and run-length matrices. Twelve morphological features were also extracted to capture any shape differentiation between classes. Feature selection was performed with stepwise multilinear regression analysis that led to a reduced feature subset. A multiclass Probabilistic Neural Network (PNN) classifier was then designed and used for lesion classification. PNN model evaluation was performed using the leave-one-out (LOO) method and receiver operating characteristic (ROC) curve analysis. The mean overlap between the automatically segmented FLLs and the manual segmentations performed by radiologists was 0.91 ± 0.12. The highest classification accuracies in the PNN model for the benign, hepatocellular carcinoma, and metastatic FLLs were 94.1%, 91.4%, and 94.1%, respectively, with sensitivity/specificity values of 90%/97.3%, 89.5%/92.2%, and 90.9%/95.6% respectively. The overall classification accuracy for the proposed system was 90.1%. Our diagnostic system using sophisticated FLL segmentation and classification algorithms is a powerful tool for routine clinical MRI-based liver evaluation and can be a supplement to contrast-enhanced MRI to prevent unnecessary invasive procedures. © 2017 American Association of Physicists in Medicine.
A spectral method to detect community structure based on distance modularity matrix
NASA Astrophysics Data System (ADS)
Yang, Jin-Xuan; Zhang, Xiao-Dong
2017-08-01
There are many community organizations in social and biological networks. How to identify these community structure in complex networks has become a hot issue. In this paper, an algorithm to detect community structure of networks is proposed by using spectra of distance modularity matrix. The proposed algorithm focuses on the distance of vertices within communities, rather than the most weakly connected vertex pairs or number of edges between communities. The experimental results show that our method achieves better effectiveness to identify community structure for a variety of real-world networks and computer generated networks with a little more time-consumption.
Fast Edge Detection and Segmentation of Terrestrial Laser Scans Through Normal Variation Analysis
NASA Astrophysics Data System (ADS)
Che, E.; Olsen, M. J.
2017-09-01
Terrestrial Laser Scanning (TLS) utilizes light detection and ranging (lidar) to effectively and efficiently acquire point cloud data for a wide variety of applications. Segmentation is a common procedure of post-processing to group the point cloud into a number of clusters to simplify the data for the sequential modelling and analysis needed for most applications. This paper presents a novel method to rapidly segment TLS data based on edge detection and region growing. First, by computing the projected incidence angles and performing the normal variation analysis, the silhouette edges and intersection edges are separated from the smooth surfaces. Then a modified region growing algorithm groups the points lying on the same smooth surface. The proposed method efficiently exploits the gridded scan pattern utilized during acquisition of TLS data from most sensors and takes advantage of parallel programming to process approximately 1 million points per second. Moreover, the proposed segmentation does not require estimation of the normal at each point, which limits the errors in normal estimation propagating to segmentation. Both an indoor and outdoor scene are used for an experiment to demonstrate and discuss the effectiveness and robustness of the proposed segmentation method.
Multiscale Simulation of Blood Flow in Brain Arteries with an Aneurysm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leopold Grinberg; Vitali Morozov; Dmitry A. Fedosov
2013-04-24
Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations.This animation presents results of studies used in the development of a multi-scale visualization methodology. First we use streamlines to show the path the flow is taking as it moves through the system, including the aneurysm. Next we investigate themore » process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of the aneurysm.« less
Alignment and integration of complex networks by hypergraph-based spectral clustering
NASA Astrophysics Data System (ADS)
Michoel, Tom; Nachtergaele, Bruno
2012-11-01
Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.
Alignment and integration of complex networks by hypergraph-based spectral clustering.
Michoel, Tom; Nachtergaele, Bruno
2012-11-01
Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.
Robotic Vision-Based Localization in an Urban Environment
NASA Technical Reports Server (NTRS)
Mchenry, Michael; Cheng, Yang; Matthies
2007-01-01
A system of electronic hardware and software, now undergoing development, automatically estimates the location of a robotic land vehicle in an urban environment using a somewhat imprecise map, which has been generated in advance from aerial imagery. This system does not utilize the Global Positioning System and does not include any odometry, inertial measurement units, or any other sensors except a stereoscopic pair of black-and-white digital video cameras mounted on the vehicle. Of course, the system also includes a computer running software that processes the video image data. The software consists mostly of three components corresponding to the three major image-data-processing functions: Visual Odometry This component automatically tracks point features in the imagery and computes the relative motion of the cameras between sequential image frames. This component incorporates a modified version of a visual-odometry algorithm originally published in 1989. The algorithm selects point features, performs multiresolution area-correlation computations to match the features in stereoscopic images, tracks the features through the sequence of images, and uses the tracking results to estimate the six-degree-of-freedom motion of the camera between consecutive stereoscopic pairs of images (see figure). Urban Feature Detection and Ranging Using the same data as those processed by the visual-odometry component, this component strives to determine the three-dimensional (3D) coordinates of vertical and horizontal lines that are likely to be parts of, or close to, the exterior surfaces of buildings. The basic sequence of processes performed by this component is the following: 1. An edge-detection algorithm is applied, yielding a set of linked lists of edge pixels, a horizontal-gradient image, and a vertical-gradient image. 2. Straight-line segments of edges are extracted from the linked lists generated in step 1. Any straight-line segments longer than an arbitrary threshold (e.g., 30 pixels) are assumed to belong to buildings or other artificial objects. 3. A gradient-filter algorithm is used to test straight-line segments longer than the threshold to determine whether they represent edges of natural or artificial objects. In somewhat oversimplified terms, the test is based on the assumption that the gradient of image intensity varies little along a segment that represents the edge of an artificial object.
A Novel Binarization Algorithm for Ballistics Firearm Identification
NASA Astrophysics Data System (ADS)
Li, Dongguang
The identification of ballistics specimens from imaging systems is of paramount importance in criminal investigation. Binarization plays a key role in preprocess of recognizing cartridges in the ballistic imaging systems. Unfortunately, it is very difficult to get the satisfactory binary image using existing binary algorithms. In this paper, we utilize the global and local thresholds to enhance the image binarization. Importantly, we present a novel criterion for effectively detecting edges in the images. Comprehensive experiments have been conducted over sample ballistic images. The empirical results demonstrate the proposed method can provide a better solution than existing binary algorithms.
Quantitative three-dimensional transrectal ultrasound (TRUS) for prostate imaging
NASA Astrophysics Data System (ADS)
Pathak, Sayan D.; Aarnink, Rene G.; de la Rosette, Jean J.; Chalana, Vikram; Wijkstra, Hessel; Haynor, David R.; Debruyne, Frans M. J.; Kim, Yongmin
1998-06-01
With the number of men seeking medical care for prostate diseases rising steadily, the need of a fast and accurate prostate boundary detection and volume estimation tool is being increasingly experienced by the clinicians. Currently, these measurements are made manually, which results in a large examination time. A possible solution is to improve the efficiency by automating the boundary detection and volume estimation process with minimal involvement from the human experts. In this paper, we present an algorithm based on SNAKES to detect the boundaries. Our approach is to selectively enhance the contrast along the edges using an algorithm called sticks and integrate it with a SNAKES model. This integrated algorithm requires an initial curve for each ultrasound image to initiate the boundary detection process. We have used different schemes to generate the curves with a varying degree of automation and evaluated its effects on the algorithm performance. After the boundaries are identified, the prostate volume is calculated using planimetric volumetry. We have tested our algorithm on 6 different prostate volumes and compared the performance against the volumes manually measured by 3 experts. With the increase in the user inputs, the algorithm performance improved as expected. The results demonstrate that given an initial contour reasonably close to the prostate boundaries, the algorithm successfully delineates the prostate boundaries in an image, and the resulting volume measurements are in close agreement with those made by the human experts.
Zulkifley, Mohd Asyraf; Moran, Bill; Rawlinson, David
2012-01-01
Foreground detection has been used extensively in many applications such as people counting, traffic monitoring and face recognition. However, most of the existing detectors can only work under limited conditions. This happens because of the inability of the detector to distinguish foreground and background pixels, especially in complex situations. Our aim is to improve the robustness of foreground detection under sudden and gradual illumination change, colour similarity issue, moving background and shadow noise. Since it is hard to achieve robustness using a single model, we have combined several methods into an integrated system. The masked grey world algorithm is introduced to handle sudden illumination change. Colour co-occurrence modelling is then fused with the probabilistic edge-based background modelling. Colour co-occurrence modelling is good in filtering moving background and robust to gradual illumination change, while an edge-based modelling is used for solving a colour similarity problem. Finally, an extended conditional random field approach is used to filter out shadow and afterimage noise. Simulation results show that our algorithm performs better compared to the existing methods, which makes it suitable for higher-level applications.
Image segmentation on adaptive edge-preserving smoothing
NASA Astrophysics Data System (ADS)
He, Kun; Wang, Dan; Zheng, Xiuqing
2016-09-01
Nowadays, typical active contour models are widely applied in image segmentation. However, they perform badly on real images with inhomogeneous subregions. In order to overcome the drawback, this paper proposes an edge-preserving smoothing image segmentation algorithm. At first, this paper analyzes the edge-preserving smoothing conditions for image segmentation and constructs an edge-preserving smoothing model inspired by total variation. The proposed model has the ability to smooth inhomogeneous subregions and preserve edges. Then, a kind of clustering algorithm, which reasonably trades off edge-preserving and subregion-smoothing according to the local information, is employed to learn the edge-preserving parameter adaptively. At last, according to the confidence level of segmentation subregions, this paper constructs a smoothing convergence condition to avoid oversmoothing. Experiments indicate that the proposed algorithm has superior performance in precision, recall, and F-measure compared with other segmentation algorithms, and it is insensitive to noise and inhomogeneous-regions.
Computer assisted diagnostic system in tumor radiography.
Faisal, Ahmed; Parveen, Sharmin; Badsha, Shahriar; Sarwar, Hasan; Reza, Ahmed Wasif
2013-06-01
An improved and efficient method is presented in this paper to achieve a better trade-off between noise removal and edge preservation, thereby detecting the tumor region of MRI brain images automatically. Compass operator has been used in the fourth order Partial Differential Equation (PDE) based denoising technique to preserve the anatomically significant information at the edges. A new morphological technique is also introduced for stripping skull region from the brain images, which consequently leading to the process of detecting tumor accurately. Finally, automatic seeded region growing segmentation based on an improved single seed point selection algorithm is applied to detect the tumor. The method is tested on publicly available MRI brain images and it gives an average PSNR (Peak Signal to Noise Ratio) of 36.49. The obtained results also show detection accuracy of 99.46%, which is a significant improvement than that of the existing results.
Object-oriented recognition of high-resolution remote sensing image
NASA Astrophysics Data System (ADS)
Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan
2016-01-01
With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .
Data-Driven Hierarchical Structure Kernel for Multiscale Part-Based Object Recognition
Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Zheng, Yuan F.
2017-01-01
Detecting generic object categories in images and videos are a fundamental issue in computer vision. However, it faces the challenges from inter and intraclass diversity, as well as distortions caused by viewpoints, poses, deformations, and so on. To solve object variations, this paper constructs a structure kernel and proposes a multiscale part-based model incorporating the discriminative power of kernels. The structure kernel would measure the resemblance of part-based objects in three aspects: 1) the global similarity term to measure the resemblance of the global visual appearance of relevant objects; 2) the part similarity term to measure the resemblance of the visual appearance of distinctive parts; and 3) the spatial similarity term to measure the resemblance of the spatial layout of parts. In essence, the deformation of parts in the structure kernel is penalized in a multiscale space with respect to horizontal displacement, vertical displacement, and scale difference. Part similarities are combined with different weights, which are optimized efficiently to maximize the intraclass similarities and minimize the interclass similarities by the normalized stochastic gradient ascent algorithm. In addition, the parameters of the structure kernel are learned during the training process with regard to the distribution of the data in a more discriminative way. With flexible part sizes on scale and displacement, it can be more robust to the intraclass variations, poses, and viewpoints. Theoretical analysis and experimental evaluations demonstrate that the proposed multiscale part-based representation model with structure kernel exhibits accurate and robust performance, and outperforms state-of-the-art object classification approaches. PMID:24808345
An Improved Method of Pose Estimation for Lighthouse Base Station Extension.
Yang, Yi; Weng, Dongdong; Li, Dong; Xun, Hang
2017-10-22
In 2015, HTC and Valve launched a virtual reality headset empowered with Lighthouse, the cutting-edge space positioning technology. Although Lighthouse is superior in terms of accuracy, latency and refresh rate, its algorithms do not support base station expansion, and is flawed concerning occlusion in moving targets, that is, it is unable to calculate their poses with a small set of sensors, resulting in the loss of optical tracking data. In view of these problems, this paper proposes an improved pose estimation algorithm for cases where occlusion is involved. Our algorithm calculates the pose of a given object with a unified dataset comprising of inputs from sensors recognized by all base stations, as long as three or more sensors detect a signal in total, no matter from which base station. To verify our algorithm, HTC official base stations and autonomous developed receivers are used for prototyping. The experiment result shows that our pose calculation algorithm can achieve precise positioning when a few sensors detect the signal.
An Improved Method of Pose Estimation for Lighthouse Base Station Extension
Yang, Yi; Weng, Dongdong; Li, Dong; Xun, Hang
2017-01-01
In 2015, HTC and Valve launched a virtual reality headset empowered with Lighthouse, the cutting-edge space positioning technology. Although Lighthouse is superior in terms of accuracy, latency and refresh rate, its algorithms do not support base station expansion, and is flawed concerning occlusion in moving targets, that is, it is unable to calculate their poses with a small set of sensors, resulting in the loss of optical tracking data. In view of these problems, this paper proposes an improved pose estimation algorithm for cases where occlusion is involved. Our algorithm calculates the pose of a given object with a unified dataset comprising of inputs from sensors recognized by all base stations, as long as three or more sensors detect a signal in total, no matter from which base station. To verify our algorithm, HTC official base stations and autonomous developed receivers are used for prototyping. The experiment result shows that our pose calculation algorithm can achieve precise positioning when a few sensors detect the signal. PMID:29065509
NASA Astrophysics Data System (ADS)
Lebedev, M. A.; Stepaniants, D. G.; Komarov, D. V.; Vygolov, O. V.; Vizilter, Yu. V.; Zheltov, S. Yu.
2014-08-01
The paper addresses a promising visualization concept related to combination of sensor and synthetic images in order to enhance situation awareness of a pilot during an aircraft landing. A real-time algorithm for a fusion of a sensor image, acquired by an onboard camera, and a synthetic 3D image of the external view, generated in an onboard computer, is proposed. The pixel correspondence between the sensor and the synthetic images is obtained by an exterior orientation of a "virtual" camera using runway points as a geospatial reference. The runway points are detected by the Projective Hough Transform, which idea is to project the edge map onto a horizontal plane in the object space (the runway plane) and then to calculate intensity projections of edge pixels on different directions of intensity gradient. The performed experiments on simulated images show that on a base glide path the algorithm provides image fusion with pixel accuracy, even in the case of significant navigation errors.
Kim, Jihun; Kim, Jonghong; Jang, Gil-Jin; Lee, Minho
2017-03-01
Deep learning has received significant attention recently as a promising solution to many problems in the area of artificial intelligence. Among several deep learning architectures, convolutional neural networks (CNNs) demonstrate superior performance when compared to other machine learning methods in the applications of object detection and recognition. We use a CNN for image enhancement and the detection of driving lanes on motorways. In general, the process of lane detection consists of edge extraction and line detection. A CNN can be used to enhance the input images before lane detection by excluding noise and obstacles that are irrelevant to the edge detection result. However, training conventional CNNs requires considerable computation and a big dataset. Therefore, we suggest a new learning algorithm for CNNs using an extreme learning machine (ELM). The ELM is a fast learning method used to calculate network weights between output and hidden layers in a single iteration and thus, can dramatically reduce learning time while producing accurate results with minimal training data. A conventional ELM can be applied to networks with a single hidden layer; as such, we propose a stacked ELM architecture in the CNN framework. Further, we modify the backpropagation algorithm to find the targets of hidden layers and effectively learn network weights while maintaining performance. Experimental results confirm that the proposed method is effective in reducing learning time and improving performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Toward a first-principles integrated simulation of tokamak edge plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C S; Klasky, Scott A; Cummings, Julian
2008-01-01
Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary firstprinciples, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); andmore » (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles.« less
Enhancement of IVR images by combining an ICA shrinkage filter with a multi-scale filter
NASA Astrophysics Data System (ADS)
Chen, Yen-Wei; Matsuo, Kiyotaka; Han, Xianhua; Shimizu, Atsumoto; Shibata, Koichi; Mishina, Yukio; Mukuta, Yoshihiro
2007-11-01
Interventional Radiology (IVR) is an important technique to visualize and diagnosis the vascular disease. In real medical application, a weak x-ray radiation source is used for imaging in order to reduce the radiation dose, resulting in a low contrast noisy image. It is important to develop a method to smooth out the noise while enhance the vascular structure. In this paper, we propose to combine an ICA Shrinkage filter with a multiscale filter for enhancement of IVR images. The ICA shrinkage filter is used for noise reduction and the multiscale filter is used for enhancement of vascular structure. Experimental results show that the quality of the image can be dramatically improved without any blurring in edge by the proposed method. Simultaneous noise reduction and vessel enhancement have been achieved.
Adaptive cornea modeling from keratometric data.
Martínez-Finkelshtein, Andrei; López, Darío Ramos; Castro, Gracia M; Alió, Jorge L
2011-07-01
To introduce an iterative, multiscale procedure that allows for better reconstruction of the shape of the anterior surface of the cornea from altimetric data collected by a corneal topographer. The report describes, first, an adaptive, multiscale mathematical algorithm for the parsimonious fit of the corneal surface data that adapts the number of functions used in the reconstruction to the conditions of each cornea. The method also implements a dynamic selection of the parameters and the management of noise. Then, several numerical experiments are performed, comparing it with the results obtained by the standard Zernike-based procedure. The numerical experiments showed that the algorithm exhibits steady exponential error decay, independent of the level of aberration of the cornea. The complexity of each anisotropic Gaussian-basis function in the functional representation is the same, but the parameters vary to fit the current scale. This scale is determined only by the residual errors and not by the number of the iteration. Finally, the position and clustering of the centers, as well as the size of the shape parameters, provides additional spatial information about the regions of higher irregularity. The methodology can be used for the real-time reconstruction of both altimetric data and corneal power maps from the data collected by keratoscopes, such as the Placido ring-based topographers, that will be decisive in early detection of corneal diseases such as keratoconus.
Han, Zhifeng; Liu, Jianye; Li, Rongbing; Zeng, Qinghua; Wang, Yi
2017-07-04
BeiDou system navigation messages are modulated with a secondary NH (Neumann-Hoffman) code of 1 kbps, where frequent bit transitions limit the coherent integration time to 1 millisecond. Therefore, a bit synchronization algorithm is necessary to obtain bit edges and NH code phases. In order to realize bit synchronization for BeiDou weak signals with large frequency deviation, a bit synchronization algorithm based on differential coherent and maximum likelihood is proposed. Firstly, a differential coherent approach is used to remove the effect of frequency deviation, and the differential delay time is set to be a multiple of bit cycle to remove the influence of NH code. Secondly, the maximum likelihood function detection is used to improve the detection probability of weak signals. Finally, Monte Carlo simulations are conducted to analyze the detection performance of the proposed algorithm compared with a traditional algorithm under the CN0s of 20~40 dB-Hz and different frequency deviations. The results show that the proposed algorithm outperforms the traditional method with a frequency deviation of 50 Hz. This algorithm can remove the effect of BeiDou NH code effectively and weaken the influence of frequency deviation. To confirm the feasibility of the proposed algorithm, real data tests are conducted. The proposed algorithm is suitable for BeiDou weak signal bit synchronization with large frequency deviation.
An infrared small target detection method based on multiscale local homogeneity measure
NASA Astrophysics Data System (ADS)
Nie, Jinyan; Qu, Shaocheng; Wei, Yantao; Zhang, Liming; Deng, Lizhen
2018-05-01
Infrared (IR) small target detection plays an important role in the field of image detection area owing to its intrinsic characteristics. This paper presents a multiscale local homogeneity measure (MLHM) for infrared small target detection, which can enhance the performance of IR small target detection system. Firstly, intra-patch homogeneity of the target itself and the inter-patch heterogeneity between target and the local background regions are integrated to enhance the significant of small target. Secondly, a multiscale measure based on local regions is proposed to obtain the most appropriate response. Finally, an adaptive threshold method is applied to small target segmentation. Experimental results on three different scenarios indicate that the MLHM has good performance under the interference of strong noise.
Mansouri, Majdi; Nounou, Mohamed N; Nounou, Hazem N
2017-09-01
In our previous work, we have demonstrated the effectiveness of the linear multiscale principal component analysis (PCA)-based moving window (MW)-generalized likelihood ratio test (GLRT) technique over the classical PCA and multiscale principal component analysis (MSPCA)-based GLRT methods. The developed fault detection algorithm provided optimal properties by maximizing the detection probability for a particular false alarm rate (FAR) with different values of windows, and however, most real systems are nonlinear, which make the linear PCA method not able to tackle the issue of non-linearity to a great extent. Thus, in this paper, first, we apply a nonlinear PCA to obtain an accurate principal component of a set of data and handle a wide range of nonlinearities using the kernel principal component analysis (KPCA) model. The KPCA is among the most popular nonlinear statistical methods. Second, we extend the MW-GLRT technique to one that utilizes exponential weights to residuals in the moving window (instead of equal weightage) as it might be able to further improve fault detection performance by reducing the FAR using exponentially weighed moving average (EWMA). The developed detection method, which is called EWMA-GLRT, provides improved properties, such as smaller missed detection and FARs and smaller average run length. The idea behind the developed EWMA-GLRT is to compute a new GLRT statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data. This provides a more accurate estimation of the GLRT statistic and provides a stronger memory that will enable better decision making with respect to fault detection. Therefore, in this paper, a KPCA-based EWMA-GLRT method is developed and utilized in practice to improve fault detection in biological phenomena modeled by S-systems and to enhance monitoring process mean. The idea behind a KPCA-based EWMA-GLRT fault detection algorithm is to combine the advantages brought forward by the proposed EWMA-GLRT fault detection chart with the KPCA model. Thus, it is used to enhance fault detection of the Cad System in E. coli model through monitoring some of the key variables involved in this model such as enzymes, transport proteins, regulatory proteins, lysine, and cadaverine. The results demonstrate the effectiveness of the proposed KPCA-based EWMA-GLRT method over Q , GLRT, EWMA, Shewhart, and moving window-GLRT methods. The detection performance is assessed and evaluated in terms of FAR, missed detection rates, and average run length (ARL 1 ) values.
Large Footprint LiDAR Data Processing for Ground Detection and Biomass Estimation
NASA Astrophysics Data System (ADS)
Zhuang, Wei
Ground detection in large footprint waveform Light Detection And Ranging (LiDAR) data is important in calculating and estimating downstream products, especially in forestry applications. For example, tree heights are calculated as the difference between the ground peak and first returned signal in a waveform. Forest attributes, such as aboveground biomass, are estimated based on the tree heights. This dissertation investigated new metrics and algorithms for estimating aboveground biomass and extracting ground peak location in large footprint waveform LiDAR data. In the first manuscript, an accurate and computationally efficient algorithm, named Filtering and Clustering Algorithm (FICA), was developed based on a set of multiscale second derivative filters for automatically detecting the ground peak in an waveform from Land, Vegetation and Ice Sensor. Compared to existing ground peak identification algorithms, FICA was tested in different land cover type plots and showed improved accuracy in ground detections of the vegetation plots and similar accuracy in developed area plots. Also, FICA adopted a peak identification strategy rather than following a curve-fitting process, and therefore, exhibited improved efficiency. In the second manuscript, an algorithm was developed specifically for shrub waveforms. The algorithm only partially fitted the shrub canopy reflection and detected the ground peak by investigating the residual signal, which was generated by deducting a Gaussian fitting function from the raw waveform. After the deduction, the overlapping ground peak was identified as the local maximum of the residual signal. In addition, an applicability model was built for determining waveforms where the proposed PCF algorithm should be applied. In the third manuscript, a new set of metrics was developed to increase accuracy in biomass estimation models. The metrics were based on the results of Gaussian decomposition. They incorporated both waveform intensity represented by the area covered by a Gaussian function and its associated heights, which was the centroid of the Gaussian function. By considering signal reflection of different vegetation layers, the developed metrics obtained better estimation accuracy in aboveground biomass when compared to existing metrics. In addition, the new developed metrics showed strong correlation with other forest structural attributes, such as mean Diameter at Breast Height (DBH) and stem density. In sum, the dissertation investigated the various techniques for large footprint waveform LiDAR processing for detecting the ground peak and estimating biomass. The novel techniques developed in this dissertation showed better performance than existing methods or metrics.
NASA Astrophysics Data System (ADS)
Bratsun, D. A.; Krasnyakov, I. V.; Pismen, L.
2017-09-01
We present a further development of a multiscale chemo-mechanical model of carcinoma growth in the epithelium tissue proposed earlier. The epithelium is represented by an elastic 2D array of polygonal cells, each with its own gene regulation dynamics. The model allows the simulation of evolution of multiple cells interacting via the chemical signaling or mechanically induced strain. The algorithm takes into account the division and intercalation of cells. The latter is most important since, first of all, carcinoma cells lose cell-cell adhesion and polarity via the oncogenic variant of the epithelial-mesenchymal transition (EMT) at which cells gain migratory and invasive properties. This process is mediated by E-cadherin repression and requires the differentiation of tumor cells with respect to the edge of the tumor that means that front cells should be most mobile. Taking into account this suggestion, we present the results of simulations demonstrating different patterns of carcinoma invasion. The comparison of our results with recent experimental observations is given and discussed.
A cloud masking algorithm for EARLINET lidar systems
NASA Astrophysics Data System (ADS)
Binietoglou, Ioannis; Baars, Holger; D'Amico, Giuseppe; Nicolae, Doina
2015-04-01
Cloud masking is an important first step in any aerosol lidar processing chain as most data processing algorithms can only be applied on cloud free observations. Up to now, the selection of a cloud-free time interval for data processing is typically performed manually, and this is one of the outstanding problems for automatic processing of lidar data in networks such as EARLINET. In this contribution we present initial developments of a cloud masking algorithm that permits the selection of the appropriate time intervals for lidar data processing based on uncalibrated lidar signals. The algorithm is based on a signal normalization procedure using the range of observed values of lidar returns, designed to work with different lidar systems with minimal user input. This normalization procedure can be applied to measurement periods of only few hours, even if no suitable cloud-free interval exists, and thus can be used even when only a short period of lidar measurements is available. Clouds are detected based on a combination of criteria including the magnitude of the normalized lidar signal and time-space edge detection performed using the Sobel operator. In this way the algorithm avoids misclassification of strong aerosol layers as clouds. Cloud detection is performed using the highest available time and vertical resolution of the lidar signals, allowing the effective detection of low-level clouds (e.g. cumulus humilis). Special attention is given to suppress false cloud detection due to signal noise that can affect the algorithm's performance, especially during day-time. In this contribution we present the details of algorithm, the effect of lidar characteristics (space-time resolution, available wavelengths, signal-to-noise ratio) to detection performance, and highlight the current strengths and limitations of the algorithm using lidar scenes from different lidar systems in different locations across Europe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacón, L., E-mail: chacon@lanl.gov; Chen, G.; Knoll, D.A.
We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLOmore » approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.« less
Mori, S
2014-05-01
To ensure accuracy in respiratory-gating treatment, X-ray fluoroscopic imaging is used to detect tumour position in real time. Detection accuracy is strongly dependent on image quality, particularly positional differences between the patient and treatment couch. We developed a new algorithm to improve the quality of images obtained in X-ray fluoroscopic imaging and report the preliminary results. Two oblique X-ray fluoroscopic images were acquired using a dynamic flat panel detector (DFPD) for two patients with lung cancer. The weighting factor was applied to the DFPD image in respective columns, because most anatomical structures, as well as the treatment couch and port cover edge, were aligned in the superior-inferior direction when the patient lay on the treatment couch. The weighting factors for the respective columns were varied until the standard deviation of the pixel values within the image region was minimized. Once the weighting factors were calculated, the quality of the DFPD image was improved by applying the factors to multiframe images. Applying the image-processing algorithm produced substantial improvement in the quality of images, and the image contrast was increased. The treatment couch and irradiation port edge, which were not related to a patient's position, were removed. The average image-processing time was 1.1 ms, showing that this fast image processing can be applied to real-time tumour-tracking systems. These findings indicate that this image-processing algorithm improves the image quality in patients with lung cancer and successfully removes objects not related to the patient. Our image-processing algorithm might be useful in improving gated-treatment accuracy.
Visual Detection and Tracking System for a Spherical Amphibious Robot
Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun
2017-01-01
With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation. PMID:28420134
Visual Detection and Tracking System for a Spherical Amphibious Robot.
Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun
2017-04-15
With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation.
Bright Retinal Lesions Detection using Colour Fundus Images Containing Reflective Features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giancardo, Luca; Karnowski, Thomas Paul; Chaum, Edward
2009-01-01
In the last years the research community has developed many techniques to detect and diagnose diabetic retinopathy with retinal fundus images. This is a necessary step for the implementation of a large scale screening effort in rural areas where ophthalmologists are not available. In the United States of America, the incidence of diabetes is worryingly increasing among the young population. Retina fundus images of patients younger than 20 years old present a high amount of reflection due to the Nerve Fibre Layer (NFL), the younger the patient the more these reflections are visible. To our knowledge we are not awaremore » of algorithms able to explicitly deal with this type of reflection artefact. This paper presents a technique to detect bright lesions also in patients with a high degree of reflective NFL. First, the candidate bright lesions are detected using image equalization and relatively simple histogram analysis. Then, a classifier is trained using texture descriptor (Multi-scale Local Binary Patterns) and other features in order to remove the false positives in the lesion detection. Finally, the area of the lesions is used to diagnose diabetic retinopathy. Our database consists of 33 images from a telemedicine network currently developed. When determining moderate to high diabetic retinopathy using the bright lesions detected the algorithm achieves a sensitivity of 100% at a specificity of 100% using hold-one-out testing.« less
The impact of skull bone intensity on the quality of compressed CT neuro images
NASA Astrophysics Data System (ADS)
Kowalik-Urbaniak, Ilona; Vrscay, Edward R.; Wang, Zhou; Cavaro-Menard, Christine; Koff, David; Wallace, Bill; Obara, Boguslaw
2012-02-01
The increasing use of technologies such as CT and MRI, along with a continuing improvement in their resolution, has contributed to the explosive growth of digital image data being generated. Medical communities around the world have recognized the need for efficient storage, transmission and display of medical images. For example, the Canadian Association of Radiologists (CAR) has recommended compression ratios for various modalities and anatomical regions to be employed by lossy JPEG and JPEG2000 compression in order to preserve diagnostic quality. Here we investigate the effects of the sharp skull edges present in CT neuro images on JPEG and JPEG2000 lossy compression. We conjecture that this atypical effect is caused by the sharp edges between the skull bone and the background regions as well as between the skull bone and the interior regions. These strong edges create large wavelet coefficients that consume an unnecessarily large number of bits in JPEG2000 compression because of its bitplane coding scheme, and thus result in reduced quality at the interior region, which contains most diagnostic information in the image. To validate the conjecture, we investigate a segmentation based compression algorithm based on simple thresholding and morphological operators. As expected, quality is improved in terms of PSNR as well as the structural similarity (SSIM) image quality measure, and its multiscale (MS-SSIM) and informationweighted (IW-SSIM) versions. This study not only supports our conjecture, but also provides a solution to improve the performance of JPEG and JPEG2000 compression for specific types of CT images.
A thesis on the Development of an Automated SWIFT Edge Detection Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trujillo, Christopher J.
Throughout the world, scientists and engineers such as those at Los Alamos National Laboratory, perform research and testing unique only to applications aimed towards advancing technology, and understanding the nature of materials. With this testing, comes a need for advanced methods of data acquisition and most importantly, a means of analyzing and extracting the necessary information from such acquired data. In this thesis, I aim to produce an automated method implementing advanced image processing techniques and tools to analyze SWIFT image datasets for Detonator Technology at Los Alamos National Laboratory. Such an effective method for edge detection and point extractionmore » can prove to be advantageous in analyzing such unique datasets and provide for consistency in producing results.« less
Chest CT window settings with multiscale adaptive histogram equalization: pilot study.
Fayad, Laura M; Jin, Yinpeng; Laine, Andrew F; Berkmen, Yahya M; Pearson, Gregory D; Freedman, Benjamin; Van Heertum, Ronald
2002-06-01
Multiscale adaptive histogram equalization (MAHE), a wavelet-based algorithm, was investigated as a method of automatic simultaneous display of the full dynamic contrast range of a computed tomographic image. Interpretation times were significantly lower for MAHE-enhanced images compared with those for conventionally displayed images. Diagnostic accuracy, however, was insufficient in this pilot study to allow recommendation of MAHE as a replacement for conventional window display.
Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms.
Adams, Luise; Chaubey, Ekta; Weinzierl, Stefan
2017-04-07
In this Letter we exploit factorization properties of Picard-Fuchs operators to decouple differential equations for multiscale Feynman integrals. The algorithm reduces the differential equations to blocks of the size of the order of the irreducible factors of the Picard-Fuchs operator. As a side product, our method can be used to easily convert the differential equations for Feynman integrals which evaluate to multiple polylogarithms to an ϵ form.
Chen, Zhangxing; Huang, Tianyu; Shao, Yimin; ...
2018-03-15
Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhangxing; Huang, Tianyu; Shao, Yimin
Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less
Development of a fully automatic scheme for detection of masses in whole breast ultrasound images.
Ikedo, Yuji; Fukuoka, Daisuke; Hara, Takeshi; Fujita, Hiroshi; Takada, Etsuo; Endo, Tokiko; Morita, Takako
2007-11-01
Ultrasonography has been used for breast cancer screening in Japan. Screening using a conventional hand-held probe is operator dependent and thus it is possible that some areas of the breast may not be scanned. To overcome such problems, a mechanical whole breast ultrasound (US) scanner has been proposed and developed for screening purposes. However, another issue is that radiologists might tire while interpreting all images in a large-volume screening; this increases the likelihood that masses may remain undetected. Therefore, the aim of this study is to develop a fully automatic scheme for the detection of masses in whole breast US images in order to assist the interpretations of radiologists and potentially improve the screening accuracy. The authors database comprised 109 whole breast US imagoes, which include 36 masses (16 malignant masses, 5 fibroadenomas, and 15 cysts). A whole breast US image with 84 slice images (interval between two slice images: 2 mm) was obtained by the ASU-1004 US scanner (ALOKA Co., Ltd., Japan). The feature based on the edge directions in each slice and a method for subtracting between the slice images were used for the detection of masses in the authors proposed scheme. The Canny edge detector was applied to detect edges in US images; these edges were classified as near-vertical edges or near-horizontal edges using a morphological method. The positions of mass candidates were located using the near-vertical edges as a cue. Then, the located positions were segmented by the watershed algorithm and mass candidate regions were detected using the segmented regions and the low-density regions extracted by the slice subtraction method. For the removal of false positives (FPs), rule-based schemes and a quadratic discriminant analysis were applied for the distribution between masses and FPs. As a result, the sensitivity of the authors scheme for the detection of masses was 80.6% (29/36) with 3.8 FPs per whole breast image. The authors scheme for a computer-aided detection may be useful in improving the screening performance and efficiency.
Yu, Xiuling; Lu, Shenggao
2016-12-01
Technogenic magnetic particles (TMPs) are carriers of heavy metals and organic contaminants, which derived from anthropogenic activities. However, little information on the relationship between heavy metals and TMP carrier phases at the micrometer scale is available. This study determined the distribution and association of heavy metals and magnetic phases in TMPs in three contaminated soils at the micrometer scale using micro-X-ray fluorescence (μ-XRF) and micro-X-ray absorption near-edge structure (μ-XANES) spectroscopy. Multiscale correlations of heavy metals in TMPs were elucidated using wavelet transform analysis. μ-XRF mapping showed that Fe was enriched and closely correlated with Co, Cr, and Pb in TMPs from steel industrial areas. Fluorescence mapping and wavelet analysis showed that ferroalloy was a major magnetic signature and heavy metal carrier in TMPs, because most heavy metals were highly associated with ferroalloy at all size scales. Multiscale analysis revealed that heavy metals in the TMPs were from multiple sources. Iron K-edge μ-XANES spectra revealed that metallic iron, ferroalloy, and magnetite were the main iron magnetic phases in the TMPs. The relative percentage of these magnetic phases depended on their emission sources. Heatmap analysis revealed that Co, Pb, Cu, Cr, and Ni were mainly derived from ferroalloy particles, while As was derived from both ferroalloy and metallic iron phases. Our results indicated the scale-dependent correlations of magnetic phases and heavy metals in TMPs. The combination of synchrotron based X-ray microprobe techniques and multiscale analysis provides a powerful tool for identifying the magnetic phases from different sources and quantifying the association of iron phases and heavy metals at micrometer scale. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wavelet-based edge correlation incorporated iterative reconstruction for undersampled MRI.
Hu, Changwei; Qu, Xiaobo; Guo, Di; Bao, Lijun; Chen, Zhong
2011-09-01
Undersampling k-space is an effective way to decrease acquisition time for MRI. However, aliasing artifacts introduced by undersampling may blur the edges of magnetic resonance images, which often contain important information for clinical diagnosis. Moreover, k-space data is often contaminated by the noise signals of unknown intensity. To better preserve the edge features while suppressing the aliasing artifacts and noises, we present a new wavelet-based algorithm for undersampled MRI reconstruction. The algorithm solves the image reconstruction as a standard optimization problem including a ℓ(2) data fidelity term and ℓ(1) sparsity regularization term. Rather than manually setting the regularization parameter for the ℓ(1) term, which is directly related to the threshold, an automatic estimated threshold adaptive to noise intensity is introduced in our proposed algorithm. In addition, a prior matrix based on edge correlation in wavelet domain is incorporated into the regularization term. Compared with nonlinear conjugate gradient descent algorithm, iterative shrinkage/thresholding algorithm, fast iterative soft-thresholding algorithm and the iterative thresholding algorithm using exponentially decreasing threshold, the proposed algorithm yields reconstructions with better edge recovery and noise suppression. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einstein, Daniel R.; Kuprat, Andrew P.; Jiao, Xiangmin
2013-01-01
Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous information other than geometry that are relevant to such simulations either as initial conditions or in the form of model parameters. In this manuscript, we present an algorithm for the efficient and robust mapping of such data to imaging based unstructured polyhedral grids in parallel. We then illustrate the application of our mapping algorithm to three different mapping problems: 1) the mapping of MRI diffusion tensor data to an unstuctured ventricular grid; 2) the mappingmore » of serial cyro-section histology data to an unstructured mouse brain grid; and 3) the mapping of CT-derived volumetric strain data to an unstructured multiscale lung grid. Execution times and parallel performance are reported for each case.« less
NASA Astrophysics Data System (ADS)
Zimoń, M. J.; Prosser, R.; Emerson, D. R.; Borg, M. K.; Bray, D. J.; Grinberg, L.; Reese, J. M.
2016-11-01
Filtering of particle-based simulation data can lead to reduced computational costs and enable more efficient information transfer in multi-scale modelling. This paper compares the effectiveness of various signal processing methods to reduce numerical noise and capture the structures of nano-flow systems. In addition, a novel combination of these algorithms is introduced, showing the potential of hybrid strategies to improve further the de-noising performance for time-dependent measurements. The methods were tested on velocity and density fields, obtained from simulations performed with molecular dynamics and dissipative particle dynamics. Comparisons between the algorithms are given in terms of performance, quality of the results and sensitivity to the choice of input parameters. The results provide useful insights on strategies for the analysis of particle-based data and the reduction of computational costs in obtaining ensemble solutions.
Feature and contrast enhancement of mammographic image based on multiscale analysis and morphology.
Wu, Shibin; Yu, Shaode; Yang, Yuhan; Xie, Yaoqin
2013-01-01
A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII).
Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology
Wu, Shibin; Xie, Yaoqin
2013-01-01
A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII). PMID:24416072
Quantum Image Processing and Its Application to Edge Detection: Theory and Experiment
NASA Astrophysics Data System (ADS)
Yao, Xi-Wei; Wang, Hengyan; Liao, Zeyang; Chen, Ming-Cheng; Pan, Jian; Li, Jun; Zhang, Kechao; Lin, Xingcheng; Wang, Zhehui; Luo, Zhihuang; Zheng, Wenqiang; Li, Jianzhong; Zhao, Meisheng; Peng, Xinhua; Suter, Dieter
2017-07-01
Processing of digital images is continuously gaining in volume and relevance, with concomitant demands on data storage, transmission, and processing power. Encoding the image information in quantum-mechanical systems instead of classical ones and replacing classical with quantum information processing may alleviate some of these challenges. By encoding and processing the image information in quantum-mechanical systems, we here demonstrate the framework of quantum image processing, where a pure quantum state encodes the image information: we encode the pixel values in the probability amplitudes and the pixel positions in the computational basis states. Our quantum image representation reduces the required number of qubits compared to existing implementations, and we present image processing algorithms that provide exponential speed-up over their classical counterparts. For the commonly used task of detecting the edge of an image, we propose and implement a quantum algorithm that completes the task with only one single-qubit operation, independent of the size of the image. This demonstrates the potential of quantum image processing for highly efficient image and video processing in the big data era.
Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model
NASA Technical Reports Server (NTRS)
Putman, William M.
2010-01-01
NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system
Overlapping communities detection based on spectral analysis of line graphs
NASA Astrophysics Data System (ADS)
Gui, Chun; Zhang, Ruisheng; Hu, Rongjing; Huang, Guoming; Wei, Jiaxuan
2018-05-01
Community in networks are often overlapping where one vertex belongs to several clusters. Meanwhile, many networks show hierarchical structure such that community is recursively grouped into hierarchical organization. In order to obtain overlapping communities from a global hierarchy of vertices, a new algorithm (named SAoLG) is proposed to build the hierarchical organization along with detecting the overlap of community structure. SAoLG applies the spectral analysis into line graphs to unify the overlap and hierarchical structure of the communities. In order to avoid the limitation of absolute distance such as Euclidean distance, SAoLG employs Angular distance to compute the similarity between vertices. Furthermore, we make a micro-improvement partition density to evaluate the quality of community structure and use it to obtain the more reasonable and sensible community numbers. The proposed SAoLG algorithm achieves a balance between overlap and hierarchy by applying spectral analysis to edge community detection. The experimental results on one standard network and six real-world networks show that the SAoLG algorithm achieves higher modularity and reasonable community number values than those generated by Ahn's algorithm, the classical CPM and GN ones.
A generalised significance test for individual communities in networks.
Kojaku, Sadamori; Masuda, Naoki
2018-05-09
Many empirical networks have community structure, in which nodes are densely interconnected within each community (i.e., a group of nodes) and sparsely across different communities. Like other local and meso-scale structure of networks, communities are generally heterogeneous in various aspects such as the size, density of edges, connectivity to other communities and significance. In the present study, we propose a method to statistically test the significance of individual communities in a given network. Compared to the previous methods, the present algorithm is unique in that it accepts different community-detection algorithms and the corresponding quality function for single communities. The present method requires that a quality of each community can be quantified and that community detection is performed as optimisation of such a quality function summed over the communities. Various community detection algorithms including modularity maximisation and graph partitioning meet this criterion. Our method estimates a distribution of the quality function for randomised networks to calculate a likelihood of each community in the given network. We illustrate our algorithm by synthetic and empirical networks.
Collision detection for spacecraft proximity operations. Ph.D. Thesis - MIT
NASA Technical Reports Server (NTRS)
Vaughan, Robin M.
1987-01-01
The development of a new collision detection algorithm to be used when two spacecraft are operating in the same vicinity is described. The two spacecraft are modeled as unions of convex polyhedra, where the polyhedron resulting from the union may be either convex or nonconvex. The relative motion of the two spacecraft is assumed to be such that one vehicle is moving with constant linear and angular velocity with respect to the other. The algorithm determines if a collision is possible and, if so, predicts the time when the collision will take place. The theoretical basis for the new collision detection algorithm is the C-function formulation of the configuration space approach recently introduced by researchers in robotics. Three different types of C-functions are defined that model the contacts between the vertices, edges, and faces of the polyhedra representing the two spacecraft. The C-functions are shown to be transcendental functions of time for the assumed trajectory of the moving spacecraft. The capabilities of the new algorithm are demonstrated for several example cases.
White blood cell segmentation by circle detection using electromagnetism-like optimization.
Cuevas, Erik; Oliva, Diego; Díaz, Margarita; Zaldivar, Daniel; Pérez-Cisneros, Marco; Pajares, Gonzalo
2013-01-01
Medical imaging is a relevant field of application of image processing algorithms. In particular, the analysis of white blood cell (WBC) images has engaged researchers from fields of medicine and computer vision alike. Since WBCs can be approximated by a quasicircular form, a circular detector algorithm may be successfully applied. This paper presents an algorithm for the automatic detection of white blood cells embedded into complicated and cluttered smear images that considers the complete process as a circle detection problem. The approach is based on a nature-inspired technique called the electromagnetism-like optimization (EMO) algorithm which is a heuristic method that follows electromagnetism principles for solving complex optimization problems. The proposed approach uses an objective function which measures the resemblance of a candidate circle to an actual WBC. Guided by the values of such objective function, the set of encoded candidate circles are evolved by using EMO, so that they can fit into the actual blood cells contained in the edge map of the image. Experimental results from blood cell images with a varying range of complexity are included to validate the efficiency of the proposed technique regarding detection, robustness, and stability.
Space moving target detection and tracking method in complex background
NASA Astrophysics Data System (ADS)
Lv, Ping-Yue; Sun, Sheng-Li; Lin, Chang-Qing; Liu, Gao-Rui
2018-06-01
The background of the space-borne detectors in real space-based environment is extremely complex and the signal-to-clutter ratio is very low (SCR ≈ 1), which increases the difficulty for detecting space moving targets. In order to solve this problem, an algorithm combining background suppression processing based on two-dimensional least mean square filter (TDLMS) and target enhancement based on neighborhood gray-scale difference (GSD) is proposed in this paper. The latter can filter out most of the residual background clutter processed by the former such as cloud edge. Through this procedure, both global and local SCR have obtained substantial improvement, indicating that the target has been greatly enhanced. After removing the detector's inherent clutter region through connected domain processing, the image only contains the target point and the isolated noise, in which the isolated noise could be filtered out effectively through multi-frame association. The proposed algorithm in this paper has been compared with some state-of-the-art algorithms for moving target detection and tracking tasks. The experimental results show that the performance of this algorithm is the best in terms of SCR gain, background suppression factor (BSF) and detection results.
White Blood Cell Segmentation by Circle Detection Using Electromagnetism-Like Optimization
Oliva, Diego; Díaz, Margarita; Zaldivar, Daniel; Pérez-Cisneros, Marco; Pajares, Gonzalo
2013-01-01
Medical imaging is a relevant field of application of image processing algorithms. In particular, the analysis of white blood cell (WBC) images has engaged researchers from fields of medicine and computer vision alike. Since WBCs can be approximated by a quasicircular form, a circular detector algorithm may be successfully applied. This paper presents an algorithm for the automatic detection of white blood cells embedded into complicated and cluttered smear images that considers the complete process as a circle detection problem. The approach is based on a nature-inspired technique called the electromagnetism-like optimization (EMO) algorithm which is a heuristic method that follows electromagnetism principles for solving complex optimization problems. The proposed approach uses an objective function which measures the resemblance of a candidate circle to an actual WBC. Guided by the values of such objective function, the set of encoded candidate circles are evolved by using EMO, so that they can fit into the actual blood cells contained in the edge map of the image. Experimental results from blood cell images with a varying range of complexity are included to validate the efficiency of the proposed technique regarding detection, robustness, and stability. PMID:23476713
Chung, Ji Ryang; Sung, Chul; Mayerich, David; Kwon, Jaerock; Miller, Daniel E.; Huffman, Todd; Keyser, John; Abbott, Louise C.; Choe, Yoonsuck
2011-01-01
Connectomics is the study of the full connection matrix of the brain. Recent advances in high-throughput, high-resolution 3D microscopy methods have enabled the imaging of whole small animal brains at a sub-micrometer resolution, potentially opening the road to full-blown connectomics research. One of the first such instruments to achieve whole-brain-scale imaging at sub-micrometer resolution is the Knife-Edge Scanning Microscope (KESM). KESM whole-brain data sets now include Golgi (neuronal circuits), Nissl (soma distribution), and India ink (vascular networks). KESM data can contribute greatly to connectomics research, since they fill the gap between lower resolution, large volume imaging methods (such as diffusion MRI) and higher resolution, small volume methods (e.g., serial sectioning electron microscopy). Furthermore, KESM data are by their nature multiscale, ranging from the subcellular to the whole organ scale. Due to this, visualization alone is a huge challenge, before we even start worrying about quantitative connectivity analysis. To solve this issue, we developed a web-based neuroinformatics framework for efficient visualization and analysis of the multiscale KESM data sets. In this paper, we will first provide an overview of KESM, then discuss in detail the KESM data sets and the web-based neuroinformatics framework, which is called the KESM brain atlas (KESMBA). Finally, we will discuss the relevance of the KESMBA to connectomics research, and identify challenges and future directions. PMID:22275895
Multiple crack detection in 3D using a stable XFEM and global optimization
NASA Astrophysics Data System (ADS)
Agathos, Konstantinos; Chatzi, Eleni; Bordas, Stéphane P. A.
2018-02-01
A numerical scheme is proposed for the detection of multiple cracks in three dimensional (3D) structures. The scheme is based on a variant of the extended finite element method (XFEM) and a hybrid optimizer solution. The proposed XFEM variant is particularly well-suited for the simulation of 3D fracture problems, and as such serves as an efficient solution to the so-called forward problem. A set of heuristic optimization algorithms are recombined into a multiscale optimization scheme. The introduced approach proves effective in tackling the complex inverse problem involved, where identification of multiple flaws is sought on the basis of sparse measurements collected near the structural boundary. The potential of the scheme is demonstrated through a set of numerical case studies of varying complexity.
Towards designing an optical-flow based colonoscopy tracking algorithm: a comparative study
NASA Astrophysics Data System (ADS)
Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.
2013-03-01
Automatic co-alignment of optical and virtual colonoscopy images can supplement traditional endoscopic procedures, by providing more complete information of clinical value to the gastroenterologist. In this work, we present a comparative analysis of our optical flow based technique for colonoscopy tracking, in relation to current state of the art methods, in terms of tracking accuracy, system stability, and computational efficiency. Our optical-flow based colonoscopy tracking algorithm starts with computing multi-scale dense and sparse optical flow fields to measure image displacements. Camera motion parameters are then determined from optical flow fields by employing a Focus of Expansion (FOE) constrained egomotion estimation scheme. We analyze the design choices involved in the three major components of our algorithm: dense optical flow, sparse optical flow, and egomotion estimation. Brox's optical flow method,1 due to its high accuracy, was used to compare and evaluate our multi-scale dense optical flow scheme. SIFT6 and Harris-affine features7 were used to assess the accuracy of the multi-scale sparse optical flow, because of their wide use in tracking applications; the FOE-constrained egomotion estimation was compared with collinear,2 image deformation10 and image derivative4 based egomotion estimation methods, to understand the stability of our tracking system. Two virtual colonoscopy (VC) image sequences were used in the study, since the exact camera parameters(for each frame) were known; dense optical flow results indicated that Brox's method was superior to multi-scale dense optical flow in estimating camera rotational velocities, but the final tracking errors were comparable, viz., 6mm vs. 8mm after the VC camera traveled 110mm. Our approach was computationally more efficient, averaging 7.2 sec. vs. 38 sec. per frame. SIFT and Harris affine features resulted in tracking errors of up to 70mm, while our sparse optical flow error was 6mm. The comparison among egomotion estimation algorithms showed that our FOE-constrained egomotion estimation method achieved the optimal balance between tracking accuracy and robustness. The comparative study demonstrated that our optical-flow based colonoscopy tracking algorithm maintains good accuracy and stability for routine use in clinical practice.
NASA Astrophysics Data System (ADS)
Zheng, Jinde; Pan, Haiyang; Cheng, Junsheng
2017-02-01
To timely detect the incipient failure of rolling bearing and find out the accurate fault location, a novel rolling bearing fault diagnosis method is proposed based on the composite multiscale fuzzy entropy (CMFE) and ensemble support vector machines (ESVMs). Fuzzy entropy (FuzzyEn), as an improvement of sample entropy (SampEn), is a new nonlinear method for measuring the complexity of time series. Since FuzzyEn (or SampEn) in single scale can not reflect the complexity effectively, multiscale fuzzy entropy (MFE) is developed by defining the FuzzyEns of coarse-grained time series, which represents the system dynamics in different scales. However, the MFE values will be affected by the data length, especially when the data are not long enough. By combining information of multiple coarse-grained time series in the same scale, the CMFE algorithm is proposed in this paper to enhance MFE, as well as FuzzyEn. Compared with MFE, with the increasing of scale factor, CMFE obtains much more stable and consistent values for a short-term time series. In this paper CMFE is employed to measure the complexity of vibration signals of rolling bearings and is applied to extract the nonlinear features hidden in the vibration signals. Also the physically meanings of CMFE being suitable for rolling bearing fault diagnosis are explored. Based on these, to fulfill an automatic fault diagnosis, the ensemble SVMs based multi-classifier is constructed for the intelligent classification of fault features. Finally, the proposed fault diagnosis method of rolling bearing is applied to experimental data analysis and the results indicate that the proposed method could effectively distinguish different fault categories and severities of rolling bearings.
Han, Miaomiao; Guo, Zhirong; Liu, Haifeng; Li, Qinghua
2018-05-01
Tomographic Gamma Scanning (TGS) is a method used for the nondestructive assay of radioactive wastes. In TGS, the actual irregular edge voxels are regarded as regular cubic voxels in the traditional treatment method. In this study, in order to improve the performance of TGS, a novel edge treatment method is proposed that considers the actual shapes of these voxels. The two different edge voxel treatment methods were compared by computing the pixel-level relative errors and normalized mean square errors (NMSEs) between the reconstructed transmission images and the ideal images. Both methods were coupled with two different interative algorithms comprising Algebraic Reconstruction Technique (ART) with a non-negativity constraint and Maximum Likelihood Expectation Maximization (MLEM). The results demonstrated that the traditional method for edge voxel treatment can introduce significant error and that the real irregular edge voxel treatment method can improve the performance of TGS by obtaining better transmission reconstruction images. With the real irregular edge voxel treatment method, MLEM algorithm and ART algorithm can be comparable when assaying homogenous matrices, but MLEM algorithm is superior to ART algorithm when assaying heterogeneous matrices. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Shaojie; Tang Xiangyang; School of Automation, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121
2012-09-15
Purposes: The suppression of noise in x-ray computed tomography (CT) imaging is of clinical relevance for diagnostic image quality and the potential for radiation dose saving. Toward this purpose, statistical noise reduction methods in either the image or projection domain have been proposed, which employ a multiscale decomposition to enhance the performance of noise suppression while maintaining image sharpness. Recognizing the advantages of noise suppression in the projection domain, the authors propose a projection domain multiscale penalized weighted least squares (PWLS) method, in which the angular sampling rate is explicitly taken into consideration to account for the possible variation ofmore » interview sampling rate in advanced clinical or preclinical applications. Methods: The projection domain multiscale PWLS method is derived by converting an isotropic diffusion partial differential equation in the image domain into the projection domain, wherein a multiscale decomposition is carried out. With adoption of the Markov random field or soft thresholding objective function, the projection domain multiscale PWLS method deals with noise at each scale. To compensate for the degradation in image sharpness caused by the projection domain multiscale PWLS method, an edge enhancement is carried out following the noise reduction. The performance of the proposed method is experimentally evaluated and verified using the projection data simulated by computer and acquired by a CT scanner. Results: The preliminary results show that the proposed projection domain multiscale PWLS method outperforms the projection domain single-scale PWLS method and the image domain multiscale anisotropic diffusion method in noise reduction. In addition, the proposed method can preserve image sharpness very well while the occurrence of 'salt-and-pepper' noise and mosaic artifacts can be avoided. Conclusions: Since the interview sampling rate is taken into account in the projection domain multiscale decomposition, the proposed method is anticipated to be useful in advanced clinical and preclinical applications where the interview sampling rate varies.« less
Pedestal and edge electrostatic turbulence characteristics from an XGC1 gyrokinetic simulation
NASA Astrophysics Data System (ADS)
Churchill, R. M.; Chang, C. S.; Ku, S.; Dominski, J.
2017-10-01
Understanding the multi-scale neoclassical and turbulence physics in the edge region (pedestal + scrape-off layer (SOL)) is required in order to reliably predict performance in future fusion devices. We explore turbulent characteristics in the edge region from a multi-scale neoclassical and turbulent XGC1 gyrokinetic simulation in a DIII-D like tokamak geometry, here excluding neutrals and collisions. For an H-mode type plasma with steep pedestal, it is found that the electron density fluctuations increase towards the separatrix, and stay high well into the SOL, reaching a maximum value of δ {n}e/{\\bar{n}}e˜ 0.18. Blobs are observed, born around the magnetic separatrix surface and propagate radially outward with velocities generally less than 1 km s-1. Strong poloidal motion of the blobs is also present, near 20 km s-1, consistent with E × B rotation. The electron density fluctuations show a negative skewness in the closed field-line pedestal region, consistent with the presence of ‘holes’, followed by a transition to strong positive skewness across the separatrix and into the SOL. These simulations indicate that not only neoclassical phenomena, but also turbulence, including the blob-generation mechanism, can remain important in the steep H-mode pedestal and SOL. Qualitative comparisons will be made to experimental observations.
Detectability Thresholds and Optimal Algorithms for Community Structure in Dynamic Networks
NASA Astrophysics Data System (ADS)
Ghasemian, Amir; Zhang, Pan; Clauset, Aaron; Moore, Cristopher; Peel, Leto
2016-07-01
The detection of communities within a dynamic network is a common means for obtaining a coarse-grained view of a complex system and for investigating its underlying processes. While a number of methods have been proposed in the machine learning and physics literature, we lack a theoretical analysis of their strengths and weaknesses, or of the ultimate limits on when communities can be detected. Here, we study the fundamental limits of detecting community structure in dynamic networks. Specifically, we analyze the limits of detectability for a dynamic stochastic block model where nodes change their community memberships over time, but where edges are generated independently at each time step. Using the cavity method, we derive a precise detectability threshold as a function of the rate of change and the strength of the communities. Below this sharp threshold, we claim that no efficient algorithm can identify the communities better than chance. We then give two algorithms that are optimal in the sense that they succeed all the way down to this threshold. The first uses belief propagation, which gives asymptotically optimal accuracy, and the second is a fast spectral clustering algorithm, based on linearizing the belief propagation equations. These results extend our understanding of the limits of community detection in an important direction, and introduce new mathematical tools for similar extensions to networks with other types of auxiliary information.
Real-Time flare detection using guided filter
NASA Astrophysics Data System (ADS)
Lin, Jiaben; Deng, Yuanyong; Yuan, Fei; Guo, Juan
2017-04-01
A procedure is introduced for the automatic detection of solar flare using full-disk solar images from Huairou Solar Observing Station (HSOS), National Astronomical Observatories of China. In image preprocessing, median filter is applied to remove the noises. And then we adopt guided filter, which is first introduced into the astronomical image detection, to enhance the edges of flares and restrain the solar limb darkening. Flares are then detected by modified Otsu algorithm and further threshold processing technique. Compared with other automatic detection procedure, the new procedure has some advantages such as real time and reliability as well as no need of image division and local threshold. Also, it reduces the amount of computation largely, which is benefited from the efficient guided filter algorithm. The procedure has been tested on one month sequences (December 2013) of HSOS full-disk solar images and the result of flares detection shows that the number of flares detected by our procedure is well consistent with the manual one.
Application of Laser Imaging for Bio/geophysical Studies
NASA Technical Reports Server (NTRS)
Hummel, J. R.; Goltz, S. M.; Depiero, N. L.; Degloria, D. P.; Pagliughi, F. M.
1992-01-01
SPARTA, Inc. has developed a low-cost, portable laser imager that, among other applications, can be used in bio/geophysical applications. In the application to be discussed here, the system was utilized as an imaging system for background features in a forested locale. The SPARTA mini-ladar system was used at the International Paper Northern Experimental Forest near Howland, Maine to assist in a project designed to study the thermal and radiometric phenomenology at forest edges. The imager was used to obtain data from three complex sites, a 'seed' orchard, a forest edge, and a building. The goal of the study was to demonstrate the usefulness of the laser imager as a tool to obtain geometric and internal structure data about complex 3-D objects in a natural background. The data from these images have been analyzed to obtain information about the distributions of the objects in a scene. A range detection algorithm has been used to identify individual objects in a laser image and an edge detection algorithm then applied to highlight the outlines of discrete objects. An example of an image processed in such a manner is shown. Described here are the results from the study. In addition, results are presented outlining how the laser imaging system could be used to obtain other important information about bio/geophysical systems, such as the distribution of woody material in forests.
Zhang, Xueqing; Bieberle-Hütter, Anja
2016-06-08
This review summarizes recent developments, challenges, and strategies in the field of modeling and simulations of photoelectrochemical (PEC) water oxidation. We focus on water splitting by metal-oxide semiconductors and discuss topics such as theoretical calculations of light absorption, band gap/band edge, charge transport, and electrochemical reactions at the electrode-electrolyte interface. In particular, we review the mechanisms of the oxygen evolution reaction, strategies to lower overpotential, and computational methods applied to PEC systems with particular focus on multiscale modeling. The current challenges in modeling PEC interfaces and their processes are summarized. At the end, we propose a new multiscale modeling approach to simulate the PEC interface under conditions most similar to those of experiments. This approach will contribute to identifying the limitations at PEC interfaces. Its generic nature allows its application to a number of electrochemical systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing
2018-06-01
In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.
Multiscale modeling and simulation of brain blood flow
NASA Astrophysics Data System (ADS)
Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em
2016-02-01
The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.
Visual navigation using edge curve matching for pinpoint planetary landing
NASA Astrophysics Data System (ADS)
Cui, Pingyuan; Gao, Xizhen; Zhu, Shengying; Shao, Wei
2018-05-01
Pinpoint landing is challenging for future Mars and asteroid exploration missions. Vision-based navigation scheme based on feature detection and matching is practical and can achieve the required precision. However, existing algorithms are computationally prohibitive and utilize poor-performance measurements, which pose great challenges for the application of visual navigation. This paper proposes an innovative visual navigation scheme using crater edge curves during descent and landing phase. In the algorithm, the edge curves of the craters tracked from two sequential images are utilized to determine the relative attitude and position of the lander through a normalized method. Then, considering error accumulation of relative navigation, a method is developed. That is to integrate the crater-based relative navigation method with crater-based absolute navigation method that identifies craters using a georeferenced database for continuous estimation of absolute states. In addition, expressions of the relative state estimate bias are derived. Novel necessary and sufficient observability criteria based on error analysis are provided to improve the navigation performance, which hold true for similar navigation systems. Simulation results demonstrate the effectiveness and high accuracy of the proposed navigation method.
Infrared image enhancement based on the edge detection and mathematical morphology
NASA Astrophysics Data System (ADS)
Zhang, Linlin; Zhao, Yuejin; Dong, Liquan; Liu, Xiaohua; Yu, Xiaomei; Hui, Mei; Chu, Xuhong; Gong, Cheng
2010-11-01
The development of the un-cooled infrared imaging technology from military necessity. At present, It is widely applied in industrial, medicine, scientific and technological research and so on. The infrared radiation temperature distribution of the measured object's surface can be observed visually. The collection of infrared images from our laboratory has following characteristics: Strong spatial correlation, Low contrast , Poor visual effect; Without color or shadows because of gray image , and has low resolution; Low definition compare to the visible light image; Many kinds of noise are brought by the random disturbances of the external environment. Digital image processing are widely applied in many areas, it can now be studied up close and in detail in many research field. It has become one kind of important means of the human visual continuation. Traditional methods for image enhancement cannot capture the geometric information of images and tend to amplify noise. In order to remove noise and improve visual effect. Meanwhile, To overcome the above enhancement issues. The mathematical model of FPA unit was constructed based on matrix transformation theory. According to characteristics of FPA, Image enhancement algorithm which combined with mathematical morphology and edge detection are established. First of all, Image profile is obtained by using the edge detection combine with mathematical morphological operators. And then, through filling the template profile by original image to get the ideal background image, The image noise can be removed on the base of the above method. The experiments show that utilizing the proposed algorithm can enhance image detail and the signal to noise ratio.
NASA Astrophysics Data System (ADS)
Labate, Demetrio; Negi, Pooran; Ozcan, Burcin; Papadakis, Manos
2015-09-01
As advances in imaging technologies make more and more data available for biomedical applications, there is an increasing need to develop efficient quantitative algorithms for the analysis and processing of imaging data. In this paper, we introduce an innovative multiscale approach called Directional Ratio which is especially effective to distingush isotropic from anisotropic structures. This task is especially useful in the analysis of images of neurons, the main units of the nervous systems which consist of a main cell body called the soma and many elongated processes called neurites. We analyze the theoretical properties of our method on idealized models of neurons and develop a numerical implementation of this approach for analysis of fluorescent images of cultured neurons. We show that this algorithm is very effective for the detection of somas and the extraction of neurites in images of small circuits of neurons.
Multiscale structural gradients enhance the biomechanical functionality of the spider fang
Bar-On, Benny; Barth, Friedrich G.; Fratzl, Peter; Politi, Yael
2014-01-01
The spider fang is a natural injection needle, hierarchically built from a complex composite material comprising multiscale architectural gradients. Considering its biomechanical function, the spider fang has to sustain significant mechanical loads. Here we apply experiment-based structural modelling of the fang, followed by analytical mechanical description and Finite-Element simulations, the results of which indicate that the naturally evolved fang architecture results in highly adapted effective structural stiffness and damage resilience. The analysis methods and physical insights of this work are potentially important for investigating and understanding the architecture and structural motifs of sharp-edge biological elements such as stingers, teeth, claws and more. PMID:24866935
Computational Design of Materials: Planetary Entry to Electric Aircraft and Beyond
NASA Technical Reports Server (NTRS)
Thompson, Alexander; Lawson, John W.
2014-01-01
NASA's projects and missions push the bounds of what is possible. To support the agency's work, materials development must stay on the cutting edge in order to keep pace. Today, researchers at NASA Ames Research Center perform multiscale modeling to aid the development of new materials and provide insight into existing ones. Multiscale modeling enables researchers to determine micro- and macroscale properties by connecting computational methods ranging from the atomic level (density functional theory, molecular dynamics) to the macroscale (finite element method). The output of one level is passed on as input to the next level, creating a powerful predictive model.
A multi-scale hybrid neural network retrieval model for dust storm detection, a study in Asia
NASA Astrophysics Data System (ADS)
Wong, Man Sing; Xiao, Fei; Nichol, Janet; Fung, Jimmy; Kim, Jhoon; Campbell, James; Chan, P. W.
2015-05-01
Dust storms are known to have adverse effects on human health and significant impact on weather, air quality, hydrological cycle, and ecosystem. Atmospheric dust loading is also one of the large uncertainties in global climate modeling, due to its significant impact on the radiation budget and atmospheric stability. Observations of dust storms in humid tropical south China (e.g. Hong Kong), are challenging due to high industrial pollution from the nearby Pearl River Delta region. This study develops a method for dust storm detection by combining ground station observations (PM10 concentration, AERONET data), geostationary satellite images (MTSAT), and numerical weather and climatic forecasting products (WRF/Chem). The method is based on a hybrid neural network (NN) retrieval model for two scales: (i) a NN model for near real-time detection of dust storms at broader regional scale; (ii) a NN model for detailed dust storm mapping for Hong Kong and Taiwan. A feed-forward multilayer perceptron (MLP) NN, trained using back propagation (BP) algorithm, was developed and validated by the k-fold cross validation approach. The accuracy of the near real-time detection MLP-BP network is 96.6%, and the accuracies for the detailed MLP-BP neural network for Hong Kong and Taiwan is 74.8%. This newly automated multi-scale hybrid method can be used to give advance near real-time mapping of dust storms for environmental authorities and the public. It is also beneficial for identifying spatial locations of adverse air quality conditions, and estimates of low visibility associated with dust events for port and airport authorities.
A real-time multi-scale 2D Gaussian filter based on FPGA
NASA Astrophysics Data System (ADS)
Luo, Haibo; Gai, Xingqin; Chang, Zheng; Hui, Bin
2014-11-01
Multi-scale 2-D Gaussian filter has been widely used in feature extraction (e.g. SIFT, edge etc.), image segmentation, image enhancement, image noise removing, multi-scale shape description etc. However, their computational complexity remains an issue for real-time image processing systems. Aimed at this problem, we propose a framework of multi-scale 2-D Gaussian filter based on FPGA in this paper. Firstly, a full-hardware architecture based on parallel pipeline was designed to achieve high throughput rate. Secondly, in order to save some multiplier, the 2-D convolution is separated into two 1-D convolutions. Thirdly, a dedicate first in first out memory named as CAFIFO (Column Addressing FIFO) was designed to avoid the error propagating induced by spark on clock. Finally, a shared memory framework was designed to reduce memory costs. As a demonstration, we realized a 3 scales 2-D Gaussian filter on a single ALTERA Cyclone III FPGA chip. Experimental results show that, the proposed framework can computing a Multi-scales 2-D Gaussian filtering within one pixel clock period, is further suitable for real-time image processing. Moreover, the main principle can be popularized to the other operators based on convolution, such as Gabor filter, Sobel operator and so on.
Multiscale computations with a wavelet-adaptive algorithm
NASA Astrophysics Data System (ADS)
Rastigejev, Yevgenii Anatolyevich
A wavelet-based adaptive multiresolution algorithm for the numerical solution of multiscale problems governed by partial differential equations is introduced. The main features of the method include fast algorithms for the calculation of wavelet coefficients and approximation of derivatives on nonuniform stencils. The connection between the wavelet order and the size of the stencil is established. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution which are used in conjunction with an appropriate threshold criteria to adapt the collocation grid. The efficient data structures for grid representation as well as related computational algorithms to support grid rearrangement procedure are developed. The algorithm is applied to the simulation of phenomena described by Navier-Stokes equations. First, we undertake the study of the ignition and subsequent viscous detonation of a H2 : O2 : Ar mixture in a one-dimensional shock tube. Subsequently, we apply the algorithm to solve the two- and three-dimensional benchmark problem of incompressible flow in a lid-driven cavity at large Reynolds numbers. For these cases we show that solutions of comparable accuracy as the benchmarks are obtained with more than an order of magnitude reduction in degrees of freedom. The simulations show the striking ability of the algorithm to adapt to a solution having different scales at different spatial locations so as to produce accurate results at a relatively low computational cost.
Hair segmentation using adaptive threshold from edge and branch length measures.
Lee, Ian; Du, Xian; Anthony, Brian
2017-10-01
Non-invasive imaging techniques allow the monitoring of skin structure and diagnosis of skin diseases in clinical applications. However, hair in skin images hampers the imaging and classification of the skin structure of interest. Although many hair segmentation methods have been proposed for digital hair removal, a major challenge in hair segmentation remains in detecting hairs that are thin, overlapping, of similar contrast or color to underlying skin, or overlaid on highly-textured skin structure. To solve the problem, we present an automatic hair segmentation method that uses edge density (ED) and mean branch length (MBL) to measure hair. First, hair is detected by the integration of top-hat transform and modified second-order Gaussian filter. Second, we employ a robust adaptive threshold of ED and MBL to generate a hair mask. Third, the hair mask is refined by k-NN classification of hair and skin pixels. The proposed algorithm was tested using two datasets of healthy skin images and lesion images respectively. These datasets were taken from different imaging platforms in various illumination levels and varying skin colors. We compared the hair detection and segmentation results from our algorithm and six other hair segmentation methods of state of the art. Our method exhibits high value of sensitivity: 75% and specificity: 95%, which indicates significantly higher accuracy and better balance between true positive and false positive detection than the other methods. Published by Elsevier Ltd.
Locating and decoding barcodes in fuzzy images captured by smart phones
NASA Astrophysics Data System (ADS)
Deng, Wupeng; Hu, Jiwei; Liu, Quan; Lou, Ping
2017-07-01
With the development of barcodes for commercial use, people's requirements for detecting barcodes by smart phone become increasingly pressing. The low quality of barcode image captured by mobile phone always affects the decoding and recognition rates. This paper focuses on locating and decoding EAN-13 barcodes in fuzzy images. We present a more accurate locating algorithm based on segment length and high fault-tolerant rate algorithm for decoding barcodes. Unlike existing approaches, location algorithm is based on the edge segment length of EAN -13 barcodes, while our decoding algorithm allows the appearance of fuzzy region in barcode image. Experimental results are performed on damaged, contaminated and scratched digital images, and provide a quite promising result for EAN -13 barcode location and decoding.
An improved silhouette for human pose estimation
NASA Astrophysics Data System (ADS)
Hawes, Anthony H.; Iftekharuddin, Khan M.
2017-08-01
We propose a novel method for analyzing images that exploits the natural lines of a human poses to find areas where self-occlusion could be present. Errors caused by self-occlusion cause several modern human pose estimation methods to mis-identify body parts, which reduces the performance of most action recognition algorithms. Our method is motivated by the observation that, in several cases, occlusion can be reasoned using only boundary lines of limbs. An intelligent edge detection algorithm based on the above principle could be used to augment the silhouette with information useful for pose estimation algorithms and push forward progress on occlusion handling for human action recognition. The algorithm described is applicable to computer vision scenarios involving 2D images and (appropriated flattened) 3D images.
Undercut feature recognition for core and cavity generation
NASA Astrophysics Data System (ADS)
Yusof, Mursyidah Md; Salman Abu Mansor, Mohd
2018-01-01
Core and cavity is one of the important components in injection mould where the quality of the final product is mostly dependent on it. In the industry, with years of experience and skill, mould designers commonly use commercial CAD software to design the core and cavity which is time consuming. This paper proposes an algorithm that detect possible undercut features and generate the core and cavity. Two approaches are presented; edge convexity and face connectivity approach. The edge convexity approach is used to recognize undercut features while face connectivity is used to divide the faces into top and bottom region.
Construction of multi-scale consistent brain networks: methods and applications.
Ge, Bao; Tian, Yin; Hu, Xintao; Chen, Hanbo; Zhu, Dajiang; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming
2015-01-01
Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for a single resolution or scale of brain network, though the brain networks are multi-scale in nature. To address this problem, this paper presents a novel approach to constructing multi-scale common structural brain networks from DTI data via an improved multi-scale spectral clustering applied on our recently developed and validated DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks). Since the DICCCOL landmarks possess intrinsic structural correspondences across individuals and populations, we employed the multi-scale spectral clustering algorithm to group the DICCCOL landmarks and their connections into sub-networks, meanwhile preserving the intrinsically-established correspondences across multiple scales. Experimental results demonstrated that the proposed method can generate multi-scale consistent and common structural brain networks across subjects, and its reproducibility has been verified by multiple independent datasets. As an application, these multi-scale networks were used to guide the clustering of multi-scale fiber bundles and to compare the fiber integrity in schizophrenia and healthy controls. In general, our methods offer a novel and effective framework for brain network modeling and tract-based analysis of DTI data.
1988-11-17
NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if ntcestary and identify by block number) FIELD GROUP SUB-GROUP ,-.:image...ambiguity in the recognition of partially occluded objects. V 1 , t : ., , ’ -, L: \\ : _ 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT...constraints involved in the problem. More information can be found in [ 1 ]. Motion-based segmentation. Edge detection algorithms based on visual motion
2010-03-01
Employ NetFlow on Edge Router ......................................... 45 E. IMPLEMENT AN INTEGRATED VULNERABILITY ASSESSMENT. 48 1. Conduct...45 Figure 18. Netflow Information on Unauthorized Connections ............................ 46 Figure 19. Algorithm for Detecting...indicating that an attack has being initiated from this port. Figure 17. Information on Traffic Generated by Suspicious Host 3. Employ NetFlow
Progressively expanded neural network for automatic material identification in hyperspectral imagery
NASA Astrophysics Data System (ADS)
Paheding, Sidike
The science of hyperspectral remote sensing focuses on the exploitation of the spectral signatures of various materials to enhance capabilities including object detection, recognition, and material characterization. Hyperspectral imagery (HSI) has been extensively used for object detection and identification applications since it provides plenty of spectral information to uniquely identify materials by their reflectance spectra. HSI-based object detection algorithms can be generally classified into stochastic and deterministic approaches. Deterministic approaches are comparatively simple to apply since it is usually based on direct spectral similarity such as spectral angles or spectral correlation. In contrast, stochastic algorithms require statistical modeling and estimation for target class and non-target class. Over the decades, many single class object detection methods have been proposed in the literature, however, deterministic multiclass object detection in HSI has not been explored. In this work, we propose a deterministic multiclass object detection scheme, named class-associative spectral fringe-adjusted joint transform correlation. Human brain is capable of simultaneously processing high volumes of multi-modal data received every second of the day. In contrast, a machine sees input data simply as random binary numbers. Although machines are computationally efficient, they are inferior when comes to data abstraction and interpretation. Thus, mimicking the learning strength of human brain has been current trend in artificial intelligence. In this work, we present a biological inspired neural network, named progressively expanded neural network (PEN Net), based on nonlinear transformation of input neurons to a feature space for better pattern differentiation. In PEN Net, discrete fixed excitations are disassembled and scattered in the feature space as a nonlinear line. Each disassembled element on the line corresponds to a pattern with similar features. Unlike the conventional neural network where hidden neurons need to be iteratively adjusted to achieve better accuracy, our proposed PEN Net does not require hidden neurons tuning which achieves better computational efficiency, and it has also shown superior performance in HSI classification tasks compared to the state-of-the-arts. Spectral-spatial features based HSI classification framework has shown stronger strength compared to spectral-only based methods. In our lastly proposed technique, PEN Net is incorporated with multiscale spatial features (i.e., multiscale complete local binary pattern) to perform a spectral-spatial classification of HSI. Several experiments demonstrate excellent performance of our proposed technique compared to the more recent developed approaches.
GPU accelerated edge-region based level set evolution constrained by 2D gray-scale histogram.
Balla-Arabé, Souleymane; Gao, Xinbo; Wang, Bin
2013-07-01
Due to its intrinsic nature which allows to easily handle complex shapes and topological changes, the level set method (LSM) has been widely used in image segmentation. Nevertheless, LSM is computationally expensive, which limits its applications in real-time systems. For this purpose, we propose a new level set algorithm, which uses simultaneously edge, region, and 2D histogram information in order to efficiently segment objects of interest in a given scene. The computational complexity of the proposed LSM is greatly reduced by using the highly parallelizable lattice Boltzmann method (LBM) with a body force to solve the level set equation (LSE). The body force is the link with image data and is defined from the proposed LSE. The proposed LSM is then implemented using an NVIDIA graphics processing units to fully take advantage of the LBM local nature. The new algorithm is effective, robust against noise, independent to the initial contour, fast, and highly parallelizable. The edge and region information enable to detect objects with and without edges, and the 2D histogram information enable the effectiveness of the method in a noisy environment. Experimental results on synthetic and real images demonstrate subjectively and objectively the performance of the proposed method.
Automatic detection of solar features in HSOS full-disk solar images using guided filter
NASA Astrophysics Data System (ADS)
Yuan, Fei; Lin, Jiaben; Guo, Jingjing; Wang, Gang; Tong, Liyue; Zhang, Xinwei; Wang, Bingxiang
2018-02-01
A procedure is introduced for the automatic detection of solar features using full-disk solar images from Huairou Solar Observing Station (HSOS), National Astronomical Observatories of China. In image preprocessing, median filter is applied to remove the noises. Guided filter is adopted to enhance the edges of solar features and restrain the solar limb darkening, which is first introduced into the astronomical target detection. Then specific features are detected by Otsu algorithm and further threshold processing technique. Compared with other automatic detection procedures, our procedure has some advantages such as real time and reliability as well as no need of local threshold. Also, it reduces the amount of computation largely, which is benefited from the efficient guided filter algorithm. The procedure has been tested on one month sequences (December 2013) of HSOS full-disk solar images and the result shows that the number of features detected by our procedure is well consistent with the manual one.
Rigid shape matching by segmentation averaging.
Wang, Hongzhi; Oliensis, John
2010-04-01
We use segmentations to match images by shape. The new matching technique does not require point-to-point edge correspondence and is robust to small shape variations and spatial shifts. To address the unreliability of segmentations computed bottom-up, we give a closed form approximation to an average over all segmentations. Our method has many extensions, yielding new algorithms for tracking, object detection, segmentation, and edge-preserving smoothing. For segmentation, instead of a maximum a posteriori approach, we compute the "central" segmentation minimizing the average distance to all segmentations of an image. For smoothing, instead of smoothing images based on local structures, we smooth based on the global optimal image structures. Our methods for segmentation, smoothing, and object detection perform competitively, and we also show promising results in shape-based tracking.
Bonny, Jean Marie; Boespflug-Tanguly, Odile; Zanca, Michel; Renou, Jean Pierre
2003-03-01
A solution for discrete multi-exponential analysis of T(2) relaxation decay curves obtained in current multi-echo imaging protocol conditions is described. We propose a preprocessing step to improve the signal-to-noise ratio and thus lower the signal-to-noise ratio threshold from which a high percentage of true multi-exponential detection is detected. It consists of a multispectral nonlinear edge-preserving filter that takes into account the signal-dependent Rician distribution of noise affecting magnitude MR images. Discrete multi-exponential decomposition, which requires no a priori knowledge, is performed by a non-linear least-squares procedure initialized with estimates obtained from a total least-squares linear prediction algorithm. This approach was validated and optimized experimentally on simulated data sets of normal human brains.
Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding
NASA Astrophysics Data System (ADS)
Luo, Masiyang; Shin, Yung C.
2015-01-01
In keyhole fiber laser welding processes, the weld pool behavior is essential to determining welding quality. To better observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. This work presents a weld pool edge detection technique based on an off axial green illumination laser and a coaxial image capturing system that consists of a CMOS camera and optic filters. According to the difference of image quality, a complete developed edge detection algorithm is proposed based on the local maximum gradient of greyness searching approach and linear interpolation. The extracted weld pool geometry and the width are validated by the actual welding width measurement and predictions by a numerical multi-phase model.
NASA Astrophysics Data System (ADS)
Pan, Xiao-Min; Wei, Jian-Gong; Peng, Zhen; Sheng, Xin-Qing
2012-02-01
The interpolative decomposition (ID) is combined with the multilevel fast multipole algorithm (MLFMA), denoted by ID-MLFMA, to handle multiscale problems. The ID-MLFMA first generates ID levels by recursively dividing the boxes at the finest MLFMA level into smaller boxes. It is specifically shown that near-field interactions with respect to the MLFMA, in the form of the matrix vector multiplication (MVM), are efficiently approximated at the ID levels. Meanwhile, computations on far-field interactions at the MLFMA levels remain unchanged. Only a small portion of matrix entries are required to approximate coupling among well-separated boxes at the ID levels, and these submatrices can be filled without computing the complete original coupling matrix. It follows that the matrix filling in the ID-MLFMA becomes much less expensive. The memory consumed is thus greatly reduced and the MVM is accelerated as well. Several factors that may influence the accuracy, efficiency and reliability of the proposed ID-MLFMA are investigated by numerical experiments. Complex targets are calculated to demonstrate the capability of the ID-MLFMA algorithm.
Fractal analysis of multiscale spatial autocorrelation among point data
De Cola, L.
1991-01-01
The analysis of spatial autocorrelation among point-data quadrats is a well-developed technique that has made limited but intriguing use of the multiscale aspects of pattern. In this paper are presented theoretical and algorithmic approaches to the analysis of aggregations of quadrats at or above a given density, in which these sets are treated as multifractal regions whose fractal dimension, D, may vary with phenomenon intensity, scale, and location. The technique is illustrated with Matui's quadrat house-count data, which yield measurements consistent with a nonautocorrelated simulated Poisson process but not with an orthogonal unit-step random walk. The paper concludes with a discussion of the implications of such analysis for multiscale geographic analysis systems. -Author
Salient object detection: manifold-based similarity adaptation approach
NASA Astrophysics Data System (ADS)
Zhou, Jingbo; Ren, Yongfeng; Yan, Yunyang; Gao, Shangbing
2014-11-01
A saliency detection algorithm based on manifold-based similarity adaptation is proposed. The proposed algorithm is divided into three steps. First, we segment an input image into superpixels, which are represented as the nodes in a graph. Second, a new similarity measurement is used in the proposed algorithm. The weight matrix of the graph, which indicates the similarities between the nodes, uses a similarity-based method. It also captures the manifold structure of the image patches, in which the graph edges are determined in a data adaptive manner in terms of both similarity and manifold structure. Then, we use local reconstruction method as a diffusion method to obtain the saliency maps. The objective function in the proposed method is based on local reconstruction, with which estimated weights capture the manifold structure. Experiments on four bench-mark databases demonstrate the accuracy and robustness of the proposed method.
BFL: a node and edge betweenness based fast layout algorithm for large scale networks
Hashimoto, Tatsunori B; Nagasaki, Masao; Kojima, Kaname; Miyano, Satoru
2009-01-01
Background Network visualization would serve as a useful first step for analysis. However, current graph layout algorithms for biological pathways are insensitive to biologically important information, e.g. subcellular localization, biological node and graph attributes, or/and not available for large scale networks, e.g. more than 10000 elements. Results To overcome these problems, we propose the use of a biologically important graph metric, betweenness, a measure of network flow. This metric is highly correlated with many biological phenomena such as lethality and clusters. We devise a new fast parallel algorithm calculating betweenness to minimize the preprocessing cost. Using this metric, we also invent a node and edge betweenness based fast layout algorithm (BFL). BFL places the high-betweenness nodes to optimal positions and allows the low-betweenness nodes to reach suboptimal positions. Furthermore, BFL reduces the runtime by combining a sequential insertion algorim with betweenness. For a graph with n nodes, this approach reduces the expected runtime of the algorithm to O(n2) when considering edge crossings, and to O(n log n) when considering only density and edge lengths. Conclusion Our BFL algorithm is compared against fast graph layout algorithms and approaches requiring intensive optimizations. For gene networks, we show that our algorithm is faster than all layout algorithms tested while providing readability on par with intensive optimization algorithms. We achieve a 1.4 second runtime for a graph with 4000 nodes and 12000 edges on a standard desktop computer. PMID:19146673
NASA Astrophysics Data System (ADS)
Chen, Y.; Zhang, Y.; Gao, J.; Yuan, Y.; Lv, Z.
2018-04-01
Recently, built-up area detection from high-resolution satellite images (HRSI) has attracted increasing attention because HRSI can provide more detailed object information. In this paper, multi-resolution wavelet transform and local spatial autocorrelation statistic are introduced to model the spatial patterns of built-up areas. First, the input image is decomposed into high- and low-frequency subbands by wavelet transform at three levels. Then the high-frequency detail information in three directions (horizontal, vertical and diagonal) are extracted followed by a maximization operation to integrate the information in all directions. Afterward, a cross-scale operation is implemented to fuse different levels of information. Finally, local spatial autocorrelation statistic is introduced to enhance the saliency of built-up features and an adaptive threshold algorithm is used to achieve the detection of built-up areas. Experiments are conducted on ZY-3 and Quickbird panchromatic satellite images, and the results show that the proposed method is very effective for built-up area detection.
New clinical grading scales and objective measurement for conjunctival injection.
Park, In Ki; Chun, Yeoun Sook; Kim, Kwang Gi; Yang, Hee Kyung; Hwang, Jeong-Min
2013-08-05
To establish a new clinical grading scale and objective measurement method to evaluate conjunctival injection. Photographs of conjunctival injection with variable ocular diseases in 429 eyes were reviewed. Seventy-three images with concordance by three ophthalmologists were classified into a 4-step and 10-step subjective grading scale, and used as standard photographs. Each image was quantified in four ways: the relative magnitude of the redness component of each red-green-blue (RGB) pixel; two different algorithms based on the occupied area by blood vessels (K-means clustering with LAB color model and contrast-limited adaptive histogram equalization [CLAHE] algorithm); and the presence of blood vessel edges, based on the Canny edge-detection algorithm. Area under the receiver operating characteristic curves (AUCs) were calculated to summarize diagnostic accuracies of the four algorithms. The RGB color model, K-means clustering with LAB color model, and CLAHE algorithm showed good correlation with the clinical 10-step grading scale (R = 0.741, 0.784, 0.919, respectively) and with the clinical 4-step grading scale (R = 0.645, 0.702, 0.838, respectively). The CLAHE method showed the largest AUC, best distinction power (P < 0.001, ANOVA, Bonferroni multiple comparison test), and high reproducibility (R = 0.996). CLAHE algorithm showed the best correlation with the 10-step and 4-step subjective clinical grading scales together with high distinction power and reproducibility. CLAHE algorithm can be a useful for method for assessment of conjunctival injection.
Coherent Structure Detection using Persistent Homology and other Topological Tools
NASA Astrophysics Data System (ADS)
Smith, Spencer; Roberts, Eric; Sindi, Suzanne; Mitchell, Kevin
2017-11-01
For non-autonomous, aperiodic fluid flows, coherent structures help organize the dynamics, much as invariant manifolds and periodic orbits do for autonomous or periodic systems. The prevalence of such flows in nature and industry has motivated many successful techniques for defining and detecting coherent structures. However, often these approaches require very fine trajectory data to reconstruct velocity fields and compute Cauchy-Green-tensor-related quantities. We use topological techniques to help detect coherent trajectory sets in relatively sparse 2D advection problems. More specifically, we have developed a homotopy-based algorithm, the ensemble-based topological entropy calculation (E-tec), which assigns to each edge in an initial triangulation of advected points a topologically forced lower bound on its future stretching rate. The triangulation and its weighted edges allow us to analyze flows using persistent homology. This topological data analysis tool detects clusters and loops in the triangulation that are robust in the presence of noise and in this case correspond to coherent trajectory sets.
Multiscale entropy analysis of human gait dynamics
NASA Astrophysics Data System (ADS)
Costa, M.; Peng, C.-K.; L. Goldberger, Ary; Hausdorff, Jeffrey M.
2003-12-01
We compare the complexity of human gait time series from healthy subjects under different conditions. Using the recently developed multiscale entropy algorithm, which provides a way to measure complexity over a range of scales, we observe that normal spontaneous walking has the highest complexity when compared to slow and fast walking and also to walking paced by a metronome. These findings have implications for modeling locomotor control and for quantifying gait dynamics in physiologic and pathologic states.
NASA Astrophysics Data System (ADS)
Jiang, Guo-Qian; Xie, Ping; Wang, Xiao; Chen, Meng; He, Qun
2017-11-01
The performance of traditional vibration based fault diagnosis methods greatly depends on those handcrafted features extracted using signal processing algorithms, which require significant amounts of domain knowledge and human labor, and do not generalize well to new diagnosis domains. Recently, unsupervised representation learning provides an alternative promising solution to feature extraction in traditional fault diagnosis due to its superior learning ability from unlabeled data. Given that vibration signals usually contain multiple temporal structures, this paper proposes a multiscale representation learning (MSRL) framework to learn useful features directly from raw vibration signals, with the aim to capture rich and complementary fault pattern information at different scales. In our proposed approach, a coarse-grained procedure is first employed to obtain multiple scale signals from an original vibration signal. Then, sparse filtering, a newly developed unsupervised learning algorithm, is applied to automatically learn useful features from each scale signal, respectively, and then the learned features at each scale to be concatenated one by one to obtain multiscale representations. Finally, the multiscale representations are fed into a supervised classifier to achieve diagnosis results. Our proposed approach is evaluated using two different case studies: motor bearing and wind turbine gearbox fault diagnosis. Experimental results show that the proposed MSRL approach can take full advantages of the availability of unlabeled data to learn discriminative features and achieved better performance with higher accuracy and stability compared to the traditional approaches.
Rareş, Andrei; Reinders, Marcel J T; Biemond, Jan
2005-10-01
In this paper, we propose a new image inpainting algorithm that relies on explicit edge information. The edge information is used both for the reconstruction of a skeleton image structure in the missing areas, as well as for guiding the interpolation that follows. The structure reconstruction part exploits different properties of the edges, such as the colors of the objects they separate, an estimate of how well one edge continues into another one, and the spatial order of the edges with respect to each other. In order to preserve both sharp and smooth edges, the areas delimited by the recovered structure are interpolated independently, and the process is guided by the direction of the nearby edges. The novelty of our approach lies primarily in exploiting explicitly the constraint enforced by the numerical interpretation of the sequential order of edges, as well as in the pixel filling method which takes into account the proximity and direction of edges. Extensive experiments are carried out in order to validate and compare the algorithm both quantitatively and qualitatively. They show the advantages of our algorithm and its readily application to real world cases.
Extraction of linear features on SAR imagery
NASA Astrophysics Data System (ADS)
Liu, Junyi; Li, Deren; Mei, Xin
2006-10-01
Linear features are usually extracted from SAR imagery by a few edge detectors derived from the contrast ratio edge detector with a constant probability of false alarm. On the other hand, the Hough Transform is an elegant way of extracting global features like curve segments from binary edge images. Randomized Hough Transform can reduce the computation time and memory usage of the HT drastically. While Randomized Hough Transform will bring about a great deal of cells invalid during the randomized sample. In this paper, we propose a new approach to extract linear features on SAR imagery, which is an almost automatic algorithm based on edge detection and Randomized Hough Transform. The presented improved method makes full use of the directional information of each edge candidate points so as to solve invalid cumulate problems. Applied result is in good agreement with the theoretical study, and the main linear features on SAR imagery have been extracted automatically. The method saves storage space and computational time, which shows its effectiveness and applicability.
A dynamic multi-scale Markov model based methodology for remaining life prediction
NASA Astrophysics Data System (ADS)
Yan, Jihong; Guo, Chaozhong; Wang, Xing
2011-05-01
The ability to accurately predict the remaining life of partially degraded components is crucial in prognostics. In this paper, a performance degradation index is designed using multi-feature fusion techniques to represent deterioration severities of facilities. Based on this indicator, an improved Markov model is proposed for remaining life prediction. Fuzzy C-Means (FCM) algorithm is employed to perform state division for Markov model in order to avoid the uncertainty of state division caused by the hard division approach. Considering the influence of both historical and real time data, a dynamic prediction method is introduced into Markov model by a weighted coefficient. Multi-scale theory is employed to solve the state division problem of multi-sample prediction. Consequently, a dynamic multi-scale Markov model is constructed. An experiment is designed based on a Bently-RK4 rotor testbed to validate the dynamic multi-scale Markov model, experimental results illustrate the effectiveness of the methodology.
Complexity multiscale asynchrony measure and behavior for interacting financial dynamics
NASA Astrophysics Data System (ADS)
Yang, Ge; Wang, Jun; Niu, Hongli
2016-08-01
A stochastic financial price process is proposed and investigated by the finite-range multitype contact dynamical system, in an attempt to study the nonlinear behaviors of real asset markets. The viruses spreading process in a finite-range multitype system is used to imitate the interacting behaviors of diverse investment attitudes in a financial market, and the empirical research on descriptive statistics and autocorrelation behaviors of return time series is performed for different values of propagation rates. Then the multiscale entropy analysis is adopted to study several different shuffled return series, including the original return series, the corresponding reversal series, the random shuffled series, the volatility shuffled series and the Zipf-type shuffled series. Furthermore, we propose and compare the multiscale cross-sample entropy and its modification algorithm called composite multiscale cross-sample entropy. We apply them to study the asynchrony of pairs of time series under different time scales.
NASA Astrophysics Data System (ADS)
Liu, Changjiang; Cheng, Irene; Zhang, Yi; Basu, Anup
2017-06-01
This paper presents an improved multi-scale Retinex (MSR) based enhancement for ariel images under low visibility. For traditional multi-scale Retinex, three scales are commonly employed, which limits its application scenarios. We extend our research to a general purpose enhanced method, and design an MSR with more than three scales. Based on the mathematical analysis and deductions, an explicit multi-scale representation is proposed that balances image contrast and color consistency. In addition, a histogram truncation technique is introduced as a post-processing strategy to remap the multi-scale Retinex output to the dynamic range of the display. Analysis of experimental results and comparisons with existing algorithms demonstrate the effectiveness and generality of the proposed method. Results on image quality assessment proves the accuracy of the proposed method with respect to both objective and subjective criteria.
NASA Astrophysics Data System (ADS)
Liu, Y.; Wu, W.; Zhang, Y.; Kucera, P. A.; Liu, Y.; Pan, L.
2012-12-01
Weather forecasting in the Middle East is challenging because of its complicated geographical nature including massive coastal area and heterogeneous land, and regional spare observational network. Strong air-land-sea interactions form multi-scale weather regimes in the area, which require a numerical weather prediction model capable of properly representing multi-scale atmospheric flow with appropriate initial conditions. The WRF-based Real-Time Four Dimensional Data Assimilation (RTFDDA) system is one of advanced multi-scale weather analysis and forecasting facilities developed at the Research Applications Laboratory (RAL) of NCAR. The forecasting system is applied for the Middle East with careful configuration. To overcome the limitation of the very sparsely available conventional observations in the region, we develop a hybrid data assimilation algorithm combining RTFDDA and WRF-3DVAR, which ingests remote sensing data from satellites and radar. This hybrid data assimilation blends Newtonian nudging FDDA and 3DVAR technology to effectively assimilate both conventional observations and remote sensing measurements and provide improved initial conditions for the forecasting system. For brevity, the forecasting system is called RTF3H (RTFDDA-3DVAR Hybrid). In this presentation, we will discuss the hybrid data assimilation algorithm, and its implementation, and the applications for high-impact weather events in the area. Sensitivity studies are conducted to understand the strength and limitations of this hybrid data assimilation algorithm.
NASA Astrophysics Data System (ADS)
Hsiao, Y. R.; Tsai, C.
2017-12-01
As the WHO Air Quality Guideline indicates, ambient air pollution exposes world populations under threat of fatal symptoms (e.g. heart disease, lung cancer, asthma etc.), raising concerns of air pollution sources and relative factors. This study presents a novel approach to investigating the multiscale variations of PM2.5 in southern Taiwan over the past decade, with four meteorological influencing factors (Temperature, relative humidity, precipitation and wind speed),based on Noise-assisted Multivariate Empirical Mode Decomposition(NAMEMD) algorithm, Hilbert Spectral Analysis(HSA) and Time-dependent Intrinsic Correlation(TDIC) method. NAMEMD algorithm is a fully data-driven approach designed for nonlinear and nonstationary multivariate signals, and is performed to decompose multivariate signals into a collection of channels of Intrinsic Mode Functions (IMFs). TDIC method is an EMD-based method using a set of sliding window sizes to quantify localized correlation coefficients for multiscale signals. With the alignment property and quasi-dyadic filter bank of NAMEMD algorithm, one is able to produce same number of IMFs for all variables and estimates the cross correlation in a more accurate way. The performance of spectral representation of NAMEMD-HSA method is compared with Complementary Empirical Mode Decomposition/ Hilbert Spectral Analysis (CEEMD-HSA) and Wavelet Analysis. The nature of NAMAMD-based TDICC analysis is then compared with CEEMD-based TDIC analysis and the traditional correlation analysis.
EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis
NASA Astrophysics Data System (ADS)
Žvokelj, Matej; Zupan, Samo; Prebil, Ivan
2016-05-01
A novel multivariate and multiscale statistical process monitoring method is proposed with the aim of detecting incipient failures in large slewing bearings, where subjective influence plays a minor role. The proposed method integrates the strengths of the Independent Component Analysis (ICA) multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD), which adaptively decomposes signals into different time scales and can thus cope with multiscale system dynamics. The method, which was named EEMD-based multiscale ICA (EEMD-MSICA), not only enables bearing fault detection but also offers a mechanism of multivariate signal denoising and, in combination with the Envelope Analysis (EA), a diagnostic tool. The multiscale nature of the proposed approach makes the method convenient to cope with data which emanate from bearings in complex real-world rotating machinery and frequently represent the cumulative effect of many underlying phenomena occupying different regions in the time-frequency plane. The efficiency of the proposed method was tested on simulated as well as real vibration and Acoustic Emission (AE) signals obtained through conducting an accelerated run-to-failure lifetime experiment on a purpose-built laboratory slewing bearing test stand. The ability to detect and locate the early-stage rolling-sliding contact fatigue failure of the bearing indicates that AE and vibration signals carry sufficient information on the bearing condition and that the developed EEMD-MSICA method is able to effectively extract it, thereby representing a reliable bearing fault detection and diagnosis strategy.
NASA Astrophysics Data System (ADS)
Selva Bhuvaneswari, K.; Geetha, P.
2017-05-01
Magnetic resonance imaging segmentation refers to a process of assigning labels to set of pixels or multiple regions. It plays a major role in the field of biomedical applications as it is widely used by the radiologists to segment the medical images input into meaningful regions. In recent years, various brain tumour detection techniques are presented in the literature. The entire segmentation process of our proposed work comprises three phases: threshold generation with dynamic modified region growing phase, texture feature generation phase and region merging phase. by dynamically changing two thresholds in the modified region growing approach, the first phase of the given input image can be performed as dynamic modified region growing process, in which the optimisation algorithm, firefly algorithm help to optimise the two thresholds in modified region growing. After obtaining the region growth segmented image using modified region growing, the edges can be detected with edge detection algorithm. In the second phase, the texture feature can be extracted using entropy-based operation from the input image. In region merging phase, the results obtained from the texture feature-generation phase are combined with the results of dynamic modified region growing phase and similar regions are merged using a distance comparison between regions. After identifying the abnormal tissues, the classification can be done by hybrid kernel-based SVM (Support Vector Machine). The performance analysis of the proposed method will be carried by K-cross fold validation method. The proposed method will be implemented in MATLAB with various images.
Accurate characterisation of hole size and location by projected fringe profilometry
NASA Astrophysics Data System (ADS)
Wu, Yuxiang; Dantanarayana, Harshana G.; Yue, Huimin; Huntley, Jonathan M.
2018-06-01
The ability to accurately estimate the location and geometry of holes is often required in the field of quality control and automated assembly. Projected fringe profilometry is a potentially attractive technique on account of being non-contacting, of lower cost, and orders of magnitude faster than the traditional coordinate measuring machine. However, we demonstrate in this paper that fringe projection is susceptible to significant (hundreds of µm) measurement artefacts in the neighbourhood of hole edges, which give rise to errors of a similar magnitude in the estimated hole geometry. A mechanism for the phenomenon is identified based on the finite size of the imaging system’s point spread function and the resulting bias produced near to sample discontinuities in geometry and reflectivity. A mathematical model is proposed, from which a post-processing compensation algorithm is developed to suppress such errors around the holes. The algorithm includes a robust and accurate sub-pixel edge detection method based on a Fourier descriptor of the hole contour. The proposed algorithm was found to reduce significantly the measurement artefacts near the hole edges. As a result, the errors in estimated hole radius were reduced by up to one order of magnitude, to a few tens of µm for hole radii in the range 2–15 mm, compared to those from the uncompensated measurements.
Fast hierarchical knowledge-based approach for human face detection in color images
NASA Astrophysics Data System (ADS)
Jiang, Jun; Gong, Jie; Zhang, Guilin; Hu, Ruolan
2001-09-01
This paper presents a fast hierarchical knowledge-based approach for automatically detecting multi-scale upright faces in still color images. The approach consists of three levels. At the highest level, skin-like regions are determinated by skin model, which is based on the color attributes hue and saturation in HSV color space, as well color attributes red and green in normalized color space. In level 2, a new eye model is devised to select human face candidates in segmented skin-like regions. An important feature of the eye model is that it is independent of the scale of human face. So it is possible for finding human faces in different scale with scanning image only once, and it leads to reduction the computation time of face detection greatly. In level 3, a human face mosaic image model, which is consistent with physical structure features of human face well, is applied to judge whether there are face detects in human face candidate regions. This model includes edge and gray rules. Experiment results show that the approach has high robustness and fast speed. It has wide application perspective at human-computer interactions and visual telephone etc.
Linear Algebra and Sequential Importance Sampling for Network Reliability
2011-12-01
first test case is an Erdős- Renyi graph with 100 vertices and 150 edges. Figure 1 depicts the relative variance of the three Algorithms: Algorithm TOP...e va ria nc e Figure 1: Relative variance of various algorithms on Erdős Renyi graph, 100 vertices 250 edges. Key: Solid = TOP-DOWN algorithm
Multi-scale analytical investigation of fly ash in concrete
NASA Astrophysics Data System (ADS)
Aboustait, Mohammed B.
Much research has been conducted to find an acceptable concrete ingredient that would act as cement replacement. One promising material is fly ash. Fly ash is a by-product from coal-fired power plants. Throughout this document work on the characterization of fly ash structure and composition will be explored. This effort was conducted through a mixture of cutting edge multi-scale analytical X-ray based techniques that use both bulk experimentation and nano/micro analytical techniques. Furtherly, this examination was coupled by performing Physical/Mechanical ASTM based testing on fly ash-enrolled-concrete to examine the effects of fly ash introduction. The most exotic of the cutting edge characterization techniques endorsed in this work uses the Nano-Computed Tomography and the Nano X-ray Fluorescence at Argonne National Laboratory to investigate single fly ash particles. Additional Work on individual fly ash particles was completed by laboratory-based Micro-Computed Tomography and Scanning Electron Microscopy. By combining the results of individual particles and bulk property tests, a compiled perspective is introduced, and accessed to try and make new insights into the reactivity of fly ash within concrete.
High-accuracy peak picking of proteomics data using wavelet techniques.
Lange, Eva; Gröpl, Clemens; Reinert, Knut; Kohlbacher, Oliver; Hildebrandt, Andreas
2006-01-01
A new peak picking algorithm for the analysis of mass spectrometric (MS) data is presented. It is independent of the underlying machine or ionization method, and is able to resolve highly convoluted and asymmetric signals. The method uses the multiscale nature of spectrometric data by first detecting the mass peaks in the wavelet-transformed signal before a given asymmetric peak function is fitted to the raw data. In an optional third stage, the resulting fit can be further improved using techniques from nonlinear optimization. In contrast to currently established techniques (e.g. SNAP, Apex) our algorithm is able to separate overlapping peaks of multiply charged peptides in ESI-MS data of low resolution. Its improved accuracy with respect to peak positions makes it a valuable preprocessing method for MS-based identification and quantification experiments. The method has been validated on a number of different annotated test cases, where it compares favorably in both runtime and accuracy with currently established techniques. An implementation of the algorithm is freely available in our open source framework OpenMS.
Extensions of algebraic image operators: An approach to model-based vision
NASA Technical Reports Server (NTRS)
Lerner, Bao-Ting; Morelli, Michael V.
1990-01-01
Researchers extend their previous research on a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets. Addition and multiplication are defined for the set of all grey-level images, which can then be described as polynomials of two variables. Utilizing this new algebraic structure, researchers devised an innovative, efficient edge detection scheme. An accurate method for deriving gradient component information from this edge detector is presented. Based upon this new edge detection system researchers developed a robust method for linear feature extraction by combining the techniques of a Hough transform and a line follower. The major advantage of this feature extractor is its general, object-independent nature. Target attributes, such as line segment lengths, intersections, angles of intersection, and endpoints are derived by the feature extraction algorithm and employed during model matching. The algebraic operators are global operations which are easily reconfigured to operate on any size or shape region. This provides a natural platform from which to pursue dynamic scene analysis. A method for optimizing the linear feature extractor which capitalizes on the spatially reconfiguration nature of the edge detector/gradient component operator is discussed.
Iris recognition using image moments and k-means algorithm.
Khan, Yaser Daanial; Khan, Sher Afzal; Ahmad, Farooq; Islam, Saeed
2014-01-01
This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%.
Iris Recognition Using Image Moments and k-Means Algorithm
Khan, Yaser Daanial; Khan, Sher Afzal; Ahmad, Farooq; Islam, Saeed
2014-01-01
This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%. PMID:24977221
NASA Astrophysics Data System (ADS)
Pal, Siddharth; Basak, Aniruddha; Das, Swagatam
In many manufacturing areas the detection of surface defects is one of the most important processes in quality control. Currently in order to detect small scratches on solid surfaces most of the industries working on material manufacturing rely on visual inspection primarily. In this article we propose a hybrid computational intelligence technique to automatically detect a linear scratch from a solid surface and estimate its length (in pixel unit) simultaneously. The approach is based on a swarm intelligence algorithm called Ant Colony Optimization (ACO) and image preprocessing with Wiener and Sobel filters as well as the Canny edge detector. The ACO algorithm is mostly used to compensate for the broken parts of the scratch. Our experimental results confirm that the proposed technique can be used for detecting scratches from noisy and degraded images, even when it is very difficult for conventional image processing to distinguish the scratch area from its background.
NASA Astrophysics Data System (ADS)
Lao, Zhiqiang; Zheng, Xin
2011-03-01
This paper proposes a multiscale method to quantify tissue spiculation and distortion in mammography CAD systems that aims at improving the sensitivity in detecting architectural distortion and spiculated mass. This approach addresses the difficulty of predetermining the neighborhood size for feature extraction in characterizing lesions demonstrating spiculated mass/architectural distortion that may appear in different sizes. The quantification is based on the recognition of tissue spiculation and distortion pattern using multiscale first-order phase portrait model in texture orientation field generated by Gabor filter bank. A feature map is generated based on the multiscale quantification for each mammogram and two features are then extracted from the feature map. These two features will be combined with other mass features to provide enhanced discriminate ability in detecting lesions demonstrating spiculated mass and architectural distortion. The efficiency and efficacy of the proposed method are demonstrated with results obtained by applying the method to over 500 cancer cases and over 1000 normal cases.
Lu, Xiaofeng; Song, Li; Shen, Sumin; He, Kang; Yu, Songyu; Ling, Nam
2013-01-01
Hough Transform has been widely used for straight line detection in low-definition and still images, but it suffers from execution time and resource requirements. Field Programmable Gate Arrays (FPGA) provide a competitive alternative for hardware acceleration to reap tremendous computing performance. In this paper, we propose a novel parallel Hough Transform (PHT) and FPGA architecture-associated framework for real-time straight line detection in high-definition videos. A resource-optimized Canny edge detection method with enhanced non-maximum suppression conditions is presented to suppress most possible false edges and obtain more accurate candidate edge pixels for subsequent accelerated computation. Then, a novel PHT algorithm exploiting spatial angle-level parallelism is proposed to upgrade computational accuracy by improving the minimum computational step. Moreover, the FPGA based multi-level pipelined PHT architecture optimized by spatial parallelism ensures real-time computation for 1,024 × 768 resolution videos without any off-chip memory consumption. This framework is evaluated on ALTERA DE2-115 FPGA evaluation platform at a maximum frequency of 200 MHz, and it can calculate straight line parameters in 15.59 ms on the average for one frame. Qualitative and quantitative evaluation results have validated the system performance regarding data throughput, memory bandwidth, resource, speed and robustness. PMID:23867746
Lu, Xiaofeng; Song, Li; Shen, Sumin; He, Kang; Yu, Songyu; Ling, Nam
2013-07-17
Hough Transform has been widely used for straight line detection in low-definition and still images, but it suffers from execution time and resource requirements. Field Programmable Gate Arrays (FPGA) provide a competitive alternative for hardware acceleration to reap tremendous computing performance. In this paper, we propose a novel parallel Hough Transform (PHT) and FPGA architecture-associated framework for real-time straight line detection in high-definition videos. A resource-optimized Canny edge detection method with enhanced non-maximum suppression conditions is presented to suppress most possible false edges and obtain more accurate candidate edge pixels for subsequent accelerated computation. Then, a novel PHT algorithm exploiting spatial angle-level parallelism is proposed to upgrade computational accuracy by improving the minimum computational step. Moreover, the FPGA based multi-level pipelined PHT architecture optimized by spatial parallelism ensures real-time computation for 1,024 × 768 resolution videos without any off-chip memory consumption. This framework is evaluated on ALTERA DE2-115 FPGA evaluation platform at a maximum frequency of 200 MHz, and it can calculate straight line parameters in 15.59 ms on the average for one frame. Qualitative and quantitative evaluation results have validated the system performance regarding data throughput, memory bandwidth, resource, speed and robustness.
Metallicity-Corrected Tip of the Red Giant Branch Distances to M66 and M96
NASA Astrophysics Data System (ADS)
Mager, Violet; Madore, Barry F.; Freedman, Wendy L.
2018-06-01
We present distances to M66 and M96 obtained through measurements of the tip of the red giant branch (TRGB) in HST ACS/WFC images, and give details of our method. The TRGB can be difficult to determine in color-magnitude diagrams where it is not a hard, well-defined edge. We discuss our approach to this in our edge-detection algorithm. Furthermore, metals affect the magnitude of the TRGB as a function of color, creating a slope to the edge that has been dealt with in the past by applying a red color cut-off. We instead apply a metallicity correction to the data that removes this effect, increasing the number of useable stars and providing a more accurate distance measurement.
NASA Astrophysics Data System (ADS)
Choi, Jae Hyung; Kuk, Jung Gap; Kim, Young Il; Cho, Nam Ik
2012-01-01
This paper proposes an algorithm for the detection of pillars or posts in the video captured by a single camera implemented on the fore side of a room mirror in a car. The main purpose of this algorithm is to complement the weakness of current ultrasonic parking assist system, which does not well find the exact position of pillars or does not recognize narrow posts. The proposed algorithm is consisted of three steps: straight line detection, line tracking, and the estimation of 3D position of pillars. In the first step, the strong lines are found by the Hough transform. Second step is the combination of detection and tracking, and the third is the calculation of 3D position of the line by the analysis of trajectory of relative positions and the parameters of camera. Experiments on synthetic and real images show that the proposed method successfully locates and tracks the position of pillars, which helps the ultrasonic system to correctly locate the edges of pillars. It is believed that the proposed algorithm can also be employed as a basic element for vision based autonomous driving system.
Christodoulidis, Argyrios; Hurtut, Thomas; Tahar, Houssem Ben; Cheriet, Farida
2016-09-01
Segmenting the retinal vessels from fundus images is a prerequisite for many CAD systems for the automatic detection of diabetic retinopathy lesions. So far, research efforts have concentrated mainly on the accurate localization of the large to medium diameter vessels. However, failure to detect the smallest vessels at the segmentation step can lead to false positive lesion detection counts in a subsequent lesion analysis stage. In this study, a new hybrid method for the segmentation of the smallest vessels is proposed. Line detection and perceptual organization techniques are combined in a multi-scale scheme. Small vessels are reconstructed from the perceptual-based approach via tracking and pixel painting. The segmentation was validated in a high resolution fundus image database including healthy and diabetic subjects using pixel-based as well as perceptual-based measures. The proposed method achieves 85.06% sensitivity rate, while the original multi-scale line detection method achieves 81.06% sensitivity rate for the corresponding images (p<0.05). The improvement in the sensitivity rate for the database is 6.47% when only the smallest vessels are considered (p<0.05). For the perceptual-based measure, the proposed method improves the detection of the vasculature by 7.8% against the original multi-scale line detection method (p<0.05). Copyright © 2016 Elsevier Ltd. All rights reserved.
Pedestal and edge electrostatic turbulence characteristics from an XGC1 gyrokinetic simulation
Churchill, R. M.; Chang, C. S.; Ku, S.; ...
2017-08-30
Understanding the multi-scale neoclassical and turbulence physics in the edge region (pedestal + scrape-off layer (SOL)) is required in order to reliably predict performance in future fusion devices. We explore turbulent characteristics in the edge region from a multi-scale neoclassical and turbulent XGC1 gyrokinetic simulation in a DIII-D like tokamak geometry, here excluding neutrals and collisions. For an H-mode type plasma with steep pedestal, it is found that the electron density fluctuations increase towards the separatrix, and stay high well into the SOL, reaching a maximum value ofmore » $$\\delta {n}_{e}/{\\bar{n}}_{e}\\sim 0.18$$. Blobs are observed, born around the magnetic separatrix surface and propagate radially outward with velocities generally less than 1 km s –1. Strong poloidal motion of the blobs is also present, near 20 km s –1, consistent with E × B rotation. The electron density fluctuations show a negative skewness in the closed field-line pedestal region, consistent with the presence of 'holes', followed by a transition to strong positive skewness across the separatrix and into the SOL. These simulations indicate that not only neoclassical phenomena, but also turbulence, including the blob-generation mechanism, can remain important in the steep H-mode pedestal and SOL. Lastly, qualitative comparisons will be made to experimental observations.« less
Multiscale time-dependent density functional theory: Demonstration for plasmons.
Jiang, Jiajian; Abi Mansour, Andrew; Ortoleva, Peter J
2017-08-07
Plasmon properties are of significant interest in pure and applied nanoscience. While time-dependent density functional theory (TDDFT) can be used to study plasmons, it becomes impractical for elucidating the effect of size, geometric arrangement, and dimensionality in complex nanosystems. In this study, a new multiscale formalism that addresses this challenge is proposed. This formalism is based on Trotter factorization and the explicit introduction of a coarse-grained (CG) structure function constructed as the Weierstrass transform of the electron wavefunction. This CG structure function is shown to vary on a time scale much longer than that of the latter. A multiscale propagator that coevolves both the CG structure function and the electron wavefunction is shown to bring substantial efficiency over classical propagators used in TDDFT. This efficiency follows from the enhanced numerical stability of the multiscale method and the consequence of larger time steps that can be used in a discrete time evolution. The multiscale algorithm is demonstrated for plasmons in a group of interacting sodium nanoparticles (15-240 atoms), and it achieves improved efficiency over TDDFT without significant loss of accuracy or space-time resolution.
Local electron tomography using angular variations of surface tangents: Stomo version 2
NASA Astrophysics Data System (ADS)
Petersen, T. C.; Ringer, S. P.
2012-03-01
In a recent publication, we investigated the prospect of measuring the outer three-dimensional (3D) shapes of nano-scale atom probe specimens from tilt-series of images collected in the transmission electron microscope. For this purpose alone, an algorithm and simplified reconstruction theory were developed to circumvent issues that arise in commercial "back-projection" computations in this context. In our approach, we give up the difficult task of computing the complete 3D continuum structure and instead seek only the 3D morphology of internal and external scattering interfaces. These interfaces can be described as embedded 2D surfaces projected onto each image in a tilt series. Curves and other features in the images are interpreted as inscribed sets of tangent lines, which intersect the scattering interfaces at unknown locations along the direction of the incident electron beam. Smooth angular variations of the tangent line abscissa are used to compute the surface tangent intersections and hence the 3D morphology as a "point cloud". We have published the explicit details of our alternative algorithm along with the source code entitled "stomo_version_1". For this work, we have further modified the code to efficiently handle rectangular image sets, perform much faster tangent-line "edge detection" and smoother tilt-axis image alignment using simple bi-linear interpolation. We have also adapted the algorithm to detect tangent lines as "ridges", based upon 2nd order partial derivatives of the image intensity; the magnitude and orientation of which is described by a Hessian matrix. Ridges are more appropriate descriptors for tangent-line curves in phase contrast images outlined by Fresnel fringes or absorption contrast data from fine-scale objects. Improved accuracy, efficiency and speed for "stomo_version_2" is demonstrated in this paper using both high resolution electron tomography data of a nano-sized atom probe tip and simulated absorption-contrast images. Program summaryProgram title: STOMO version 2 Catalogue identifier: AEFS_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFS_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2854 No. of bytes in distributed program, including test data, etc.: 23 559 Distribution format: tar.gz Programming language: C/C++ Computer: PC Operating system: Windows XP RAM: Scales as the product of experimental image dimensions multiplied by the number of points chosen by the user in polynomial fitting. Typical runs require between 50 Mb and 100 Mb of RAM. Supplementary material: Sample output files, for the test run provided, are available. Classification: 7.4, 14 Catalogue identifier of previous version: AEFS_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 676 Does the new version supersede the previous version?: Yes Nature of problem: A local electron tomography algorithm of specimens for which conventional back projection may fail and or data for which there is a limited angular range (which would otherwise cause significant 'missing-wedge' artefacts). The algorithm does not solve the tomography back projection problem but rather locally reconstructs the 3D morphology of surfaces defined by varied scattering densities. Solution method: Local reconstruction is effected using image-analysis edge and ridge detection computations on experimental tilt series to measure smooth angular variations of surface tangent-line intersections, which generate point clouds decorating the embedded and or external scattering surfaces of a specimen. Reasons for new version: The new version was coded to cater for rectangular images in experimental tilt-series, ensure smoother image rotations, provide ridge detection (suitable for sensing phase-contrast Fresnel fringes and other fine-scale structures), faster/larger kernel edge detection and also greatly reduce RAM usage. Specimen surface normals are also explicitly computed from tangent-line and edge intersections, providing new information for potential use in point cloud rendering. Hysteresis thresholding implemented in the version 1 edge-detection algorithm provided only sparse edge-linking. Version 2 now implements edge tracking using recursion to fully link the edges during hysteresis thresholding. Furthermore in version 1 the minimum number of fitted polynomial points (specified in the input file) was not correctly imposed, which has been fixed for version 2. Most of these changes increase the accuracy of 3d morphology surface-tomography reconstructions by facilitating the use of more/finer tilt angles and experimental images of increased spatial-resolution. The ridge detection was incorporated to specifically improve the reconstruction of internal specimen morphology. Summary of revisions: Included Hessian() function to compute 2nd order spatial derivatives of image intensities (operates in the same fashion as the previous and existing Sobel() function). Changed convolve_Gaussian() function to alternatively use successive 1D convolutions (rather than cumbersome 2D summations implemented in version 1), resulting in a large increase in computational speed without any loss in accuracy. The convolution kernel size was hence widened to three times the full width half maximum of the Gaussian filter to improve scale-space selection accuracy. A ridge detection option was included to compute edge maps sensitive to ridges, rather than edges, using elements from a Hessian matrix; the eigenvalues of which were used to define ridge direction for Canny-type hysteresis thresholding. Function edge_detect_Canny() was also altered to pass the gradient-direction maps (from either Hessian or Sobel based operators) in and out of scope for computation of surface normals; thereby enabling the output of both point-cloud and corresponding unstructured vector-field surface descriptors. Function rotate_imgs() was changed to incorporate basic bi-linear interpolation for improved tilt-axis alignment of the entire tilt series in exp_data.dat. Smoother and more accurate edge maps are thereby produced. Algorithm convert_point_cloud_to_tomogram() was created to output the tomogram 3d_imgs.dat in a more memory efficient manner. The function shell_sort(), adapted from numerical recipes in C, was also coded for this purpose. The new function compute_xyz() was coded to calculate point-clouds and tomogram surface normals using information from single tilt images, as opposed to the entire stack. This function is hence used iteratively throughout the reconstruction as each tilt image is analysed in succession. The new function reconstruct_local() is the heart of stomo_version_2.cpp. the main() source code in stomo_version_1.cpp has been rewritten here to process experimental images and edge maps one at a time, using a buffered 3d array of dimensions dictated solely by the number of tilt images required for the local SVD fit of the angular variations. These changes (along with similar iterative file writing) have been made to vastly reduce memory usage and hence allow higher spatial and angular resolution data sets to be analysed without recourse to high performance computing resources. The input file has been simplified by removing the 'slices' and 'channels' settings (used in version 1 for crude image binning), which are now equal to the respective numbers of image rows and columns. Every summation over image rows and columns has been checked to enable the analysis of rectangular images without error. For images of specimens with high aspect-ratios, such as narrow tips, these fixes allow significant reductions in computation time and memory usage. Some arrays in the source code were not appropriately zeroed in version 1, causing reconstruction artefacts in some cases. These problems have now been fixed. Fixed an if-statement to correctly impose the minimum number of fitted polynomial points, thereby reducing noise in the reconstructed data. Implemented proper edge linking in the hysteresis thresholding code for Canny edge detection. Restrictions: The input experimental tilt-series of images must be registered with respect to a common single tilt axis with known orientation and position. Running time: For high quality reconstruction, 2-5 min.
Accurate airway segmentation based on intensity structure analysis and graph-cut
NASA Astrophysics Data System (ADS)
Meng, Qier; Kitsaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Mori, Kensaku
2016-03-01
This paper presents a novel airway segmentation method based on intensity structure analysis and graph-cut. Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3-D airway tree structure from a CT volume is quite challenging. Several researchers have proposed automated algorithms basically based on region growing and machine learning techniques. However these methods failed to detect the peripheral bronchi branches. They caused a large amount of leakage. This paper presents a novel approach that permits more accurate extraction of complex bronchial airway region. Our method are composed of three steps. First, the Hessian analysis is utilized for enhancing the line-like structure in CT volumes, then a multiscale cavity-enhancement filter is employed to detect the cavity-like structure from the previous enhanced result. In the second step, we utilize the support vector machine (SVM) to construct a classifier for removing the FP regions generated. Finally, the graph-cut algorithm is utilized to connect all of the candidate voxels to form an integrated airway tree. We applied this method to sixteen cases of 3D chest CT volumes. The results showed that the branch detection rate of this method can reach about 77.7% without leaking into the lung parenchyma areas.
Lost in Virtual Reality: Pathfinding Algorithms Detect Rock Fractures and Contacts in Point Clouds
NASA Astrophysics Data System (ADS)
Thiele, S.; Grose, L.; Micklethwaite, S.
2016-12-01
UAV-based photogrammetric and LiDAR techniques provide high resolution 3D point clouds and ortho-rectified photomontages that can capture surface geology in outstanding detail over wide areas. Automated and semi-automated methods are vital to extract full value from these data in practical time periods, though the nuances of geological structures and materials (natural variability in colour and geometry, soft and hard linkage, shadows and multiscale properties) make this a challenging task. We present a novel method for computer assisted trace detection in dense point clouds, using a lowest cost path solver to "follow" fracture traces and lithological contacts between user defined end points. This is achieved by defining a local neighbourhood network where each point in the cloud is linked to its neighbours, and then using a least-cost path algorithm to search this network and estimate the trace of the fracture or contact. A variety of different algorithms can then be applied to calculate the best fit plane, produce a fracture network, or map properties such as roughness, curvature and fracture intensity. Our prototype of this method (Fig. 1) suggests the technique is feasible and remarkably good at following traces under non-optimal conditions such as variable-shadow, partial occlusion and complex fracturing. Furthermore, if a fracture is initially mapped incorrectly, the user can easily provide further guidance by defining intermediate waypoints. Future development will include optimization of the algorithm to perform well on large point clouds and modifications that permit the detection of features such as step-overs. We also plan on implementing this approach in an interactive graphical user environment.
Page layout analysis and classification for complex scanned documents
NASA Astrophysics Data System (ADS)
Erkilinc, M. Sezer; Jaber, Mustafa; Saber, Eli; Bauer, Peter; Depalov, Dejan
2011-09-01
A framework for region/zone classification in color and gray-scale scanned documents is proposed in this paper. The algorithm includes modules for extracting text, photo, and strong edge/line regions. Firstly, a text detection module which is based on wavelet analysis and Run Length Encoding (RLE) technique is employed. Local and global energy maps in high frequency bands of the wavelet domain are generated and used as initial text maps. Further analysis using RLE yields a final text map. The second module is developed to detect image/photo and pictorial regions in the input document. A block-based classifier using basis vector projections is employed to identify photo candidate regions. Then, a final photo map is obtained by applying probabilistic model based on Markov random field (MRF) based maximum a posteriori (MAP) optimization with iterated conditional mode (ICM). The final module detects lines and strong edges using Hough transform and edge-linkages analysis, respectively. The text, photo, and strong edge/line maps are combined to generate a page layout classification of the scanned target document. Experimental results and objective evaluation show that the proposed technique has a very effective performance on variety of simple and complex scanned document types obtained from MediaTeam Oulu document database. The proposed page layout classifier can be used in systems for efficient document storage, content based document retrieval, optical character recognition, mobile phone imagery, and augmented reality.
Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures.
Costa, Madalena D; Peng, Chung-Kang; Goldberger, Ary L
2008-06-01
Cardiovascular signals are largely analyzed using traditional time and frequency domain measures. However, such measures fail to account for important properties related to multiscale organization and non-equilibrium dynamics. The complementary role of conventional signal analysis methods and emerging multiscale techniques, is, therefore, an important frontier area of investigation. The key finding of this presentation is that two recently developed multiscale computational tools--multiscale entropy and multiscale time irreversibility--are able to extract information from cardiac interbeat interval time series not contained in traditional methods based on mean, variance or Fourier spectrum (two-point correlation) techniques. These new methods, with careful attention to their limitations, may be useful in diagnostics, risk stratification and detection of toxicity of cardiac drugs.
Multiscale Analysis of Heart Rate Dynamics: Entropy and Time Irreversibility Measures
Peng, Chung-Kang; Goldberger, Ary L.
2016-01-01
Cardiovascular signals are largely analyzed using traditional time and frequency domain measures. However, such measures fail to account for important properties related to multiscale organization and nonequilibrium dynamics. The complementary role of conventional signal analysis methods and emerging multiscale techniques, is, therefore, an important frontier area of investigation. The key finding of this presentation is that two recently developed multiscale computational tools— multiscale entropy and multiscale time irreversibility—are able to extract information from cardiac interbeat interval time series not contained in traditional methods based on mean, variance or Fourier spectrum (two-point correlation) techniques. These new methods, with careful attention to their limitations, may be useful in diagnostics, risk stratification and detection of toxicity of cardiac drugs. PMID:18172763
Cloud Detection by Fusing Multi-Scale Convolutional Features
NASA Astrophysics Data System (ADS)
Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang
2018-04-01
Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.
Image registration based on subpixel localization and Cauchy-Schwarz divergence
NASA Astrophysics Data System (ADS)
Ge, Yongxin; Yang, Dan; Zhang, Xiaohong; Lu, Jiwen
2010-07-01
We define a new matching metric-corner Cauchy-Schwarz divergence (CCSD) and present a new approach based on the proposed CCSD and subpixel localization for image registration. First, we detect the corners in an image by a multiscale Harris operator and take them as initial interest points. And then, a subpixel localization technique is applied to determine the locations of the corners and eliminate the false and unstable corners. After that, CCSD is defined to obtain the initial matching corners. Finally, we use random sample consensus to robustly estimate the parameters based on the initial matching. The experimental results demonstrate that the proposed algorithm has a good performance in terms of both accuracy and efficiency.
Online Mapping and Perception Algorithms for Multi-robot Teams Operating in Urban Environments
2015-01-01
each method on a 2.53 GHz Intel i5 laptop. All our algorithms are hand-optimized, implemented in Java and single threaded. To determine which algorithm...approach would be to label all the pixels in the image with an x, y, z point. However, the angular resolution of the camera is finer than that of the...edge criterion. That is, each edge is either present or absent. In [42], edge existence is further screened by a fixed threshold for angular
Inoue, Kentaro; Shimozono, Shinichi; Yoshida, Hideaki; Kurata, Hiroyuki
2012-01-01
Background For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. Results We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. Conclusions Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html. PMID:22679486
Inoue, Kentaro; Shimozono, Shinichi; Yoshida, Hideaki; Kurata, Hiroyuki
2012-01-01
For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html.
Three-dimensional unstructured grid refinement and optimization using edge-swapping
NASA Technical Reports Server (NTRS)
Gandhi, Amar; Barth, Timothy
1993-01-01
This paper presents a three-dimensional (3-D) 'edge-swapping method based on local transformations. This method extends Lawson's edge-swapping algorithm into 3-D. The 3-D edge-swapping algorithm is employed for the purpose of refining and optimizing unstructured meshes according to arbitrary mesh-quality measures. Several criteria including Delaunay triangulations are examined. Extensions from two to three dimensions of several known properties of Delaunay triangulations are also discussed.
Development of an FBG Sensor Array for Multi-Impact Source Localization on CFRP Structures.
Jiang, Mingshun; Sai, Yaozhang; Geng, Xiangyi; Sui, Qingmei; Liu, Xiaohui; Jia, Lei
2016-10-24
We proposed and studied an impact detection system based on a fiber Bragg grating (FBG) sensor array and multiple signal classification (MUSIC) algorithm to determine the location and the number of low velocity impacts on a carbon fiber-reinforced polymer (CFRP) plate. A FBG linear array, consisting of seven FBG sensors, was used for detecting the ultrasonic signals from impacts. The edge-filter method was employed for signal demodulation. Shannon wavelet transform was used to extract narrow band signals from the impacts. The Gerschgorin disc theorem was used for estimating the number of impacts. We used the MUSIC algorithm to obtain the coordinates of multi-impacts. The impact detection system was tested on a 500 mm × 500 mm × 1.5 mm CFRP plate. The results show that the maximum error and average error of the multi-impacts' localization are 9.2 mm and 7.4 mm, respectively.
Sign Language Recognition System using Neural Network for Digital Hardware Implementation
NASA Astrophysics Data System (ADS)
Vargas, Lorena P.; Barba, Leiner; Torres, C. O.; Mattos, L.
2011-01-01
This work presents an image pattern recognition system using neural network for the identification of sign language to deaf people. The system has several stored image that show the specific symbol in this kind of language, which is employed to teach a multilayer neural network using a back propagation algorithm. Initially, the images are processed to adapt them and to improve the performance of discriminating of the network, including in this process of filtering, reduction and elimination noise algorithms as well as edge detection. The system is evaluated using the signs without including movement in their representation.