Sample records for multiscale mathematical model

  1. Systems oncology: towards patient-specific treatment regimes informed by multiscale mathematical modelling.

    PubMed

    Powathil, Gibin G; Swat, Maciej; Chaplain, Mark A J

    2015-02-01

    The multiscale complexity of cancer as a disease necessitates a corresponding multiscale modelling approach to produce truly predictive mathematical models capable of improving existing treatment protocols. To capture all the dynamics of solid tumour growth and its progression, mathematical modellers need to couple biological processes occurring at various spatial and temporal scales (from genes to tissues). Because effectiveness of cancer therapy is considerably affected by intracellular and extracellular heterogeneities as well as by the dynamical changes in the tissue microenvironment, any model attempt to optimise existing protocols must consider these factors ultimately leading to improved multimodal treatment regimes. By improving existing and building new mathematical models of cancer, modellers can play important role in preventing the use of potentially sub-optimal treatment combinations. In this paper, we analyse a multiscale computational mathematical model for cancer growth and spread, incorporating the multiple effects of radiation therapy and chemotherapy in the patient survival probability and implement the model using two different cell based modelling techniques. We show that the insights provided by such multiscale modelling approaches can ultimately help in designing optimal patient-specific multi-modality treatment protocols that may increase patients quality of life. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plechac, Petr

    2016-03-01

    The overall objective of this project was to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics and developing rigorous mathematical techniques and computational algorithms to study such models. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals.

  3. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plechac, Petr; Vlachos, Dionisios; Katsoulakis, Markos

    2013-09-05

    The overall objective of this project is to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals. Specific goals include: (i) Development of rigorous spatio-temporal coarse-grained kinetic Monte Carlo (KMC) mathematics and simulation for microscopic processes encountered in biomassmore » transformation. (ii) Development of hybrid multiscale simulation that links stochastic simulation to a deterministic partial differential equation (PDE) model for an entire reactor. (iii) Development of hybrid multiscale simulation that links KMC simulation with quantum density functional theory (DFT) calculations. (iv) Development of parallelization of models of (i)-(iii) to take advantage of Petaflop computing and enable real world applications of complex, multiscale models. In this NCE period, we continued addressing these objectives and completed the proposed work. Main initiatives, key results, and activities are outlined.« less

  4. Multiscale Modeling: A Review

    NASA Astrophysics Data System (ADS)

    Horstemeyer, M. F.

    This review of multiscale modeling covers a brief history of various multiscale methodologies related to solid materials and the associated experimental influences, the various influence of multiscale modeling on different disciplines, and some examples of multiscale modeling in the design of structural components. Although computational multiscale modeling methodologies have been developed in the late twentieth century, the fundamental notions of multiscale modeling have been around since da Vinci studied different sizes of ropes. The recent rapid growth in multiscale modeling is the result of the confluence of parallel computing power, experimental capabilities to characterize structure-property relations down to the atomic level, and theories that admit multiple length scales. The ubiquitous research that focus on multiscale modeling has broached different disciplines (solid mechanics, fluid mechanics, materials science, physics, mathematics, biological, and chemistry), different regions of the world (most continents), and different length scales (from atoms to autos).

  5. Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success.

    PubMed

    Yankeelov, Thomas E; An, Gary; Saut, Oliver; Luebeck, E Georg; Popel, Aleksander S; Ribba, Benjamin; Vicini, Paolo; Zhou, Xiaobo; Weis, Jared A; Ye, Kaiming; Genin, Guy M

    2016-09-01

    Hierarchical processes spanning several orders of magnitude of both space and time underlie nearly all cancers. Multi-scale statistical, mathematical, and computational modeling methods are central to designing, implementing and assessing treatment strategies that account for these hierarchies. The basic science underlying these modeling efforts is maturing into a new discipline that is close to influencing and facilitating clinical successes. The purpose of this review is to capture the state-of-the-art as well as the key barriers to success for multi-scale modeling in clinical oncology. We begin with a summary of the long-envisioned promise of multi-scale modeling in clinical oncology, including the synthesis of disparate data types into models that reveal underlying mechanisms and allow for experimental testing of hypotheses. We then evaluate the mathematical techniques employed most widely and present several examples illustrating their application as well as the current gap between pre-clinical and clinical applications. We conclude with a discussion of what we view to be the key challenges and opportunities for multi-scale modeling in clinical oncology.

  6. Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success

    PubMed Central

    Yankeelov, Thomas E.; An, Gary; Saut, Oliver; Luebeck, E. Georg; Popel, Aleksander S.; Ribba, Benjamin; Vicini, Paolo; Zhou, Xiaobo; Weis, Jared A.; Ye, Kaiming; Genin, Guy M.

    2016-01-01

    Hierarchical processes spanning several orders of magnitude of both space and time underlie nearly all cancers. Multi-scale statistical, mathematical, and computational modeling methods are central to designing, implementing and assessing treatment strategies that account for these hierarchies. The basic science underlying these modeling efforts is maturing into a new discipline that is close to influencing and facilitating clinical successes. The purpose of this review is to capture the state-of-the-art as well as the key barriers to success for multi-scale modeling in clinical oncology. We begin with a summary of the long-envisioned promise of multi-scale modeling in clinical oncology, including the synthesis of disparate data types into models that reveal underlying mechanisms and allow for experimental testing of hypotheses. We then evaluate the mathematical techniques employed most widely and present several examples illustrating their application as well as the current gap between pre-clinical and clinical applications. We conclude with a discussion of what we view to be the key challenges and opportunities for multi-scale modeling in clinical oncology. PMID:27384942

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Qiang

    The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of whichmore » is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next generation atomistic-to-continuum multiscale simulations. In addition, a rigorous studyof nite element discretizations of peridynamics will be considered. Using the fact that peridynamics is spatially derivative free, we will also characterize the space of admissible peridynamic solutions and carry out systematic analyses of the models, in particular rigorously showing how peridynamics encompasses fracture and other failure phenomena. Additional aspects of the project include the mathematical and numerical analysis of peridynamics applied to stochastic peridynamics models. In summary, the project will make feasible mathematically consistent multiscale models for the analysis and design of advanced materials.« less

  8. Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabaras, Nicolas J.

    2016-11-08

    Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.

  9. Multiscale Cancer Modeling

    PubMed Central

    Macklin, Paul; Cristini, Vittorio

    2013-01-01

    Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insight on the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community. PMID:21529163

  10. Facing the challenges of multiscale modelling of bacterial and fungal pathogen–host interactions

    PubMed Central

    Schleicher, Jana; Conrad, Theresia; Gustafsson, Mika; Cedersund, Gunnar; Guthke, Reinhard

    2017-01-01

    Abstract Recent and rapidly evolving progress on high-throughput measurement techniques and computational performance has led to the emergence of new disciplines, such as systems medicine and translational systems biology. At the core of these disciplines lies the desire to produce multiscale models: mathematical models that integrate multiple scales of biological organization, ranging from molecular, cellular and tissue models to organ, whole-organism and population scale models. Using such models, hypotheses can systematically be tested. In this review, we present state-of-the-art multiscale modelling of bacterial and fungal infections, considering both the pathogen and host as well as their interaction. Multiscale modelling of the interactions of bacteria, especially Mycobacterium tuberculosis, with the human host is quite advanced. In contrast, models for fungal infections are still in their infancy, in particular regarding infections with the most important human pathogenic fungi, Candida albicans and Aspergillus fumigatus. We reflect on the current availability of computational approaches for multiscale modelling of host–pathogen interactions and point out current challenges. Finally, we provide an outlook for future requirements of multiscale modelling. PMID:26857943

  11. Invasion emerges from cancer cell adaptation to competitive microenvironments: Quantitative predictions from multiscale mathematical models

    PubMed Central

    Rejniak, Katarzyna A.; Gerlee, Philip

    2013-01-01

    Summary In this review we summarize our recent efforts using mathematical modeling and computation to simulate cancer invasion, with a special emphasis on the tumor microenvironment. We consider cancer progression as a complex multiscale process and approach it with three single-cell based mathematical models that examine the interactions between tumor microenvironment and cancer cells at several scales. The models exploit distinct mathematical and computational techniques, yet they share core elements and can be compared and/or related to each other. The overall aim of using mathematical models is to uncover the fundamental mechanisms that lend cancer progression its direction towards invasion and metastasis. The models effectively simulate various modes of cancer cell adaptation to the microenvironment in a growing tumor. All three point to a general mechanism underlying cancer invasion: competition for adaptation between distinct cancer cell phenotypes, driven by a tumor microenvironment with scarce resources. These theoretical predictions pose an intriguing experimental challenge: test the hypothesis that invasion is an emergent property of cancer cell populations adapting to selective microenvironment pressure, rather than culmination of cancer progression producing cells with the “invasive phenotype”. In broader terms, we propose that fundamental insights into cancer can be achieved by experimentation interacting with theoretical frameworks provided by computational and mathematical modeling. PMID:18524624

  12. Multi-scale modelling of rubber-like materials and soft tissues: an appraisal

    PubMed Central

    Puglisi, G.

    2016-01-01

    We survey, in a partial way, multi-scale approaches for the modelling of rubber-like and soft tissues and compare them with classical macroscopic phenomenological models. Our aim is to show how it is possible to obtain practical mathematical models for the mechanical behaviour of these materials incorporating mesoscopic (network scale) information. Multi-scale approaches are crucial for the theoretical comprehension and prediction of the complex mechanical response of these materials. Moreover, such models are fundamental in the perspective of the design, through manipulation at the micro- and nano-scales, of new polymeric and bioinspired materials with exceptional macroscopic properties. PMID:27118927

  13. Mathematical and Computational Aspects of Multiscale Materials Modeling, Mathematics-Numerical analysis, Section II.A.a.3.4, Conference and symposia organization II.A.2.a

    DTIC Science & Technology

    2015-02-04

    dislocation dynamics models ( DDD ), continuum representations). Coupling of these models is difficult. Coupling of atomistics and DDD models has been...explored to some extent, but the coupling between DDD and continuum models of the evolution of large populations of dislocations is essentially unexplored

  14. Multiscale Materials Science - A Mathematical Approach to the Role of Defects and Uncertainty

    DTIC Science & Technology

    2016-10-28

    AFRL-AFOSR-UK-TR-2016-0034 Multiscale materials science - a mathematical approach to the role of defects and uncertainty Claude Le Bris ECOLE...science - a mathematical approach to the role of defects and uncertainty 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA8655-13-1-3061 5c.  PROGRAM ELEMENT...1FORM SF 298 10/31/2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll Contract FA 8655-13-1-3061 Multiscale materials science: a mathematical

  15. A multiscale modelling approach to understand atherosclerosis formation: A patient-specific case study in the aortic bifurcation

    PubMed Central

    Alimohammadi, Mona; Pichardo-Almarza, Cesar; Agu, Obiekezie; Díaz-Zuccarini, Vanessa

    2017-01-01

    Atherogenesis, the formation of plaques in the wall of blood vessels, starts as a result of lipid accumulation (low-density lipoprotein cholesterol) in the vessel wall. Such accumulation is related to the site of endothelial mechanotransduction, the endothelial response to mechanical stimuli and haemodynamics, which determines biochemical processes regulating the vessel wall permeability. This interaction between biomechanical and biochemical phenomena is complex, spanning different biological scales and is patient-specific, requiring tools able to capture such mathematical and biological complexity in a unified framework. Mathematical models offer an elegant and efficient way of doing this, by taking into account multifactorial and multiscale processes and mechanisms, in order to capture the fundamentals of plaque formation in individual patients. In this study, a mathematical model to understand plaque and calcification locations is presented: this model provides a strong interpretability and physical meaning through a multiscale, complex index or metric (the penetration site of low-density lipoprotein cholesterol, expressed as volumetric flux). Computed tomography scans of the aortic bifurcation and iliac arteries are analysed and compared with the results of the multifactorial model. The results indicate that the model shows potential to predict the majority of the plaque locations, also not predicting regions where plaques are absent. The promising results from this case study provide a proof of concept that can be applied to a larger patient population. PMID:28427316

  16. Multiscale Space-Time Computational Methods for Fluid-Structure Interactions

    DTIC Science & Technology

    2015-09-13

    prescribed fully or partially, is from an actual locust, extracted from high-speed, multi-camera video recordings of the locust in a wind tunnel . We use...With creative methods for coupling the fluid and structure, we can increase the scope and efficiency of the FSI modeling . Multiscale methods, which now...play an important role in computational mathematics, can also increase the accuracy and efficiency of the computer modeling techniques. The main

  17. A tool for multi-scale modelling of the renal nephron

    PubMed Central

    Nickerson, David P.; Terkildsen, Jonna R.; Hamilton, Kirk L.; Hunter, Peter J.

    2011-01-01

    We present the development of a tool, which provides users with the ability to visualize and interact with a comprehensive description of a multi-scale model of the renal nephron. A one-dimensional anatomical model of the nephron has been created and is used for visualization and modelling of tubule transport in various nephron anatomical segments. Mathematical models of nephron segments are embedded in the one-dimensional model. At the cellular level, these segment models use models encoded in CellML to describe cellular and subcellular transport kinetics. A web-based presentation environment has been developed that allows the user to visualize and navigate through the multi-scale nephron model, including simulation results, at the different spatial scales encompassed by the model description. The Zinc extension to Firefox is used to provide an interactive three-dimensional view of the tubule model and the native Firefox rendering of scalable vector graphics is used to present schematic diagrams for cellular and subcellular scale models. The model viewer is embedded in a web page that dynamically presents content based on user input. For example, when viewing the whole nephron model, the user might be presented with information on the various embedded segment models as they select them in the three-dimensional model view. Alternatively, the user chooses to focus the model viewer on a cellular model located in a particular nephron segment in order to view the various membrane transport proteins. Selecting a specific protein may then present the user with a description of the mathematical model governing the behaviour of that protein—including the mathematical model itself and various simulation experiments used to validate the model against the literature. PMID:22670210

  18. Integrating Intracellular Dynamics Using CompuCell3D and Bionetsolver: Applications to Multiscale Modelling of Cancer Cell Growth and Invasion

    PubMed Central

    Andasari, Vivi; Roper, Ryan T.; Swat, Maciej H.; Chaplain, Mark A. J.

    2012-01-01

    In this paper we present a multiscale, individual-based simulation environment that integrates CompuCell3D for lattice-based modelling on the cellular level and Bionetsolver for intracellular modelling. CompuCell3D or CC3D provides an implementation of the lattice-based Cellular Potts Model or CPM (also known as the Glazier-Graner-Hogeweg or GGH model) and a Monte Carlo method based on the metropolis algorithm for system evolution. The integration of CC3D for cellular systems with Bionetsolver for subcellular systems enables us to develop a multiscale mathematical model and to study the evolution of cell behaviour due to the dynamics inside of the cells, capturing aspects of cell behaviour and interaction that is not possible using continuum approaches. We then apply this multiscale modelling technique to a model of cancer growth and invasion, based on a previously published model of Ramis-Conde et al. (2008) where individual cell behaviour is driven by a molecular network describing the dynamics of E-cadherin and -catenin. In this model, which we refer to as the centre-based model, an alternative individual-based modelling technique was used, namely, a lattice-free approach. In many respects, the GGH or CPM methodology and the approach of the centre-based model have the same overall goal, that is to mimic behaviours and interactions of biological cells. Although the mathematical foundations and computational implementations of the two approaches are very different, the results of the presented simulations are compatible with each other, suggesting that by using individual-based approaches we can formulate a natural way of describing complex multi-cell, multiscale models. The ability to easily reproduce results of one modelling approach using an alternative approach is also essential from a model cross-validation standpoint and also helps to identify any modelling artefacts specific to a given computational approach. PMID:22461894

  19. Multiscale Modeling in the Clinic: Drug Design and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancy, Colleen E.; An, Gary; Cannon, William R.

    A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multi-scale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multi-scale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions tomore » guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multi-scale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical techniques employed for multi-scale modeling approaches used in pharmacology and present several examples illustrating the current state-of-the-art regarding drug development for: Excitable Systems (Heart); Cancer (Metastasis and Differentiation); Cancer (Angiogenesis and Drug Targeting); Metabolic Disorders; and Inflammation and Sepsis. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multi-scale models.« less

  20. Finite Dimensional Approximations for Continuum Multiscale Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlyand, Leonid

    2017-01-24

    The completed research project concerns the development of novel computational techniques for modeling nonlinear multiscale physical and biological phenomena. Specifically, it addresses the theoretical development and applications of the homogenization theory (coarse graining) approach to calculation of the effective properties of highly heterogenous biological and bio-inspired materials with many spatial scales and nonlinear behavior. This theory studies properties of strongly heterogeneous media in problems arising in materials science, geoscience, biology, etc. Modeling of such media raises fundamental mathematical questions, primarily in partial differential equations (PDEs) and calculus of variations, the subject of the PI’s research. The focus of completed researchmore » was on mathematical models of biological and bio-inspired materials with the common theme of multiscale analysis and coarse grain computational techniques. Biological and bio-inspired materials offer the unique ability to create environmentally clean functional materials used for energy conversion and storage. These materials are intrinsically complex, with hierarchical organization occurring on many nested length and time scales. The potential to rationally design and tailor the properties of these materials for broad energy applications has been hampered by the lack of computational techniques, which are able to bridge from the molecular to the macroscopic scale. The project addressed the challenge of computational treatments of such complex materials by the development of a synergistic approach that combines innovative multiscale modeling/analysis techniques with high performance computing.« less

  1. Advances in multi-scale modeling of solidification and casting processes

    NASA Astrophysics Data System (ADS)

    Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang

    2011-04-01

    The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.

  2. Simulation of Left Atrial Function Using a Multi-Scale Model of the Cardiovascular System

    PubMed Central

    Pironet, Antoine; Dauby, Pierre C.; Paeme, Sabine; Kosta, Sarah; Chase, J. Geoffrey; Desaive, Thomas

    2013-01-01

    During a full cardiac cycle, the left atrium successively behaves as a reservoir, a conduit and a pump. This complex behavior makes it unrealistic to apply the time-varying elastance theory to characterize the left atrium, first, because this theory has known limitations, and second, because it is still uncertain whether the load independence hypothesis holds. In this study, we aim to bypass this uncertainty by relying on another kind of mathematical model of the cardiac chambers. In the present work, we describe both the left atrium and the left ventricle with a multi-scale model. The multi-scale property of this model comes from the fact that pressure inside a cardiac chamber is derived from a model of the sarcomere behavior. Macroscopic model parameters are identified from reference dog hemodynamic data. The multi-scale model of the cardiovascular system including the left atrium is then simulated to show that the physiological roles of the left atrium are correctly reproduced. This include a biphasic pressure wave and an eight-shaped pressure-volume loop. We also test the validity of our model in non basal conditions by reproducing a preload reduction experiment by inferior vena cava occlusion with the model. We compute the variation of eight indices before and after this experiment and obtain the same variation as experimentally observed for seven out of the eight indices. In summary, the multi-scale mathematical model presented in this work is able to correctly account for the three roles of the left atrium and also exhibits a realistic left atrial pressure-volume loop. Furthermore, the model has been previously presented and validated for the left ventricle. This makes it a proper alternative to the time-varying elastance theory if the focus is set on precisely representing the left atrial and left ventricular behaviors. PMID:23755183

  3. Multiscale Mathematical Modeling in Dental Tissue Engineering: Toward Computer-Aided Design of a Regenerative System Based on Hydroxyapatite Granules, Focussing on Early and Mid-Term Stiffness Recovery

    PubMed Central

    Scheiner, Stefan; Komlev, Vladimir S.; Gurin, Alexey N.; Hellmich, Christian

    2016-01-01

    We here explore for the very first time how an advanced multiscale mathematical modeling approach may support the design of a provenly successful tissue engineering concept for mandibular bone. The latter employs double-porous, potentially cracked, single millimeter-sized granules packed into an overall conglomerate-type scaffold material, which is then gradually penetrated and partially replaced by newly grown bone tissue. During this process, the newly developing scaffold-bone compound needs to attain the stiffness of mandibular bone under normal physiological conditions. In this context, the question arises how the compound stiffness is driven by the key design parameters of the tissue engineering system: macroporosity, crack density, as well as scaffold resorption/bone formation rates. We here tackle this question by combining the latest state-of-the-art mathematical modeling techniques in the field of multiscale micromechanics, into an unprecedented suite of highly efficient, semi-analytically defined computation steps resolving several levels of hierarchical organization, from the millimeter- down to the nanometer-scale. This includes several types of homogenization schemes, namely such for porous polycrystals with elongated solid elements, for cracked matrix-inclusion composites, as well as for assemblies of coated spherical compounds. Together with the experimentally known stiffnesses of hydroxyapatite crystals and mandibular bone tissue, the new mathematical model suggests that early stiffness recovery (i.e., within several weeks) requires total avoidance of microcracks in the hydroxyapatite scaffolds, while mid-term stiffness recovery (i.e., within several months) is additionally promoted by provision of small granule sizes, in combination with high bone formation and low scaffold resorption rates. PMID:27708584

  4. Modelling multiscale aspects of colorectal cancer

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Ingeborg M. M.; Byrne, Helen M.; Johnston, Matthew D.; Edwards, Carina M.; Chapman, S. Jonathan; Bodmer, Walter F.; Maini, Philip K.

    2008-01-01

    Colorectal cancer (CRC) is responsible for nearly half a million deaths annually world-wide [11]. We present a series of mathematical models describing the dynamics of the intestinal epithelium and the kinetics of the molecular pathway most commonly mutated in CRC, the Wnt signalling network. We also discuss how we are coupling such models to build a multiscale model of normal and aberrant guts. This will enable us to combine disparate experimental and clinical data, to investigate interactions between phenomena taking place at different levels of organisation and, eventually, to test the efficacy of new drugs on the system as a whole.

  5. Multiscale modelling and nonlinear simulation of vascular tumour growth

    PubMed Central

    Macklin, Paul; Anderson, Alexander R. A.; Chaplain, Mark A. J.; Cristini, Vittorio

    2011-01-01

    In this article, we present a new multiscale mathematical model for solid tumour growth which couples an improved model of tumour invasion with a model of tumour-induced angiogenesis. We perform nonlinear simulations of the multi-scale model that demonstrate the importance of the coupling between the development and remodeling of the vascular network, the blood flow through the network and the tumour progression. Consistent with clinical observations, the hydrostatic stress generated by tumour cell proliferation shuts down large portions of the vascular network dramatically affecting the flow, the subsequent network remodeling, the delivery of nutrients to the tumour and the subsequent tumour progression. In addition, extracellular matrix degradation by tumour cells is seen to have a dramatic affect on both the development of the vascular network and the growth response of the tumour. In particular, the newly developing vessels tend to encapsulate, rather than penetrate, the tumour and are thus less effective in delivering nutrients. PMID:18781303

  6. Numerical Simulations of a Multiscale Model of Stratified Langmuir Circulation

    NASA Astrophysics Data System (ADS)

    Malecha, Ziemowit; Chini, Gregory; Julien, Keith

    2012-11-01

    Langmuir circulation (LC), a prominent form of wind and surface-wave driven shear turbulence in the ocean surface boundary layer (BL), is commonly modeled using the Craik-Leibovich (CL) equations, a phase-averaged variant of the Navier-Stokes (NS) equations. Although surface-wave filtering renders the CL equations more amenable to simulation than are the instantaneous NS equations, simulations in wide domains, hundreds of times the BL depth, currently earn the ``grand challenge'' designation. To facilitate simulations of LC in such spatially-extended domains, we have derived multiscale CL equations by exploiting the scale separation between submesoscale and BL flows in the upper ocean. The numerical algorithm for simulating this multiscale model resembles super-parameterization schemes used in meteorology, but retains a firm mathematical basis. We have validated our algorithm and here use it to perform multiscale simulations of the interaction between LC and upper ocean density stratification. ZMM, GPC, KJ gratefully acknowledge funding from NSF CMG Award 0934827.

  7. Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools.

    PubMed

    Siettos, Constantinos; Starke, Jens

    2016-09-01

    The extreme complexity of the brain naturally requires mathematical modeling approaches on a large variety of scales; the spectrum ranges from single neuron dynamics over the behavior of groups of neurons to neuronal network activity. Thus, the connection between the microscopic scale (single neuron activity) to macroscopic behavior (emergent behavior of the collective dynamics) and vice versa is a key to understand the brain in its complexity. In this work, we attempt a review of a wide range of approaches, ranging from the modeling of single neuron dynamics to machine learning. The models include biophysical as well as data-driven phenomenological models. The discussed models include Hodgkin-Huxley, FitzHugh-Nagumo, coupled oscillators (Kuramoto oscillators, Rössler oscillators, and the Hindmarsh-Rose neuron), Integrate and Fire, networks of neurons, and neural field equations. In addition to the mathematical models, important mathematical methods in multiscale modeling and reconstruction of the causal connectivity are sketched. The methods include linear and nonlinear tools from statistics, data analysis, and time series analysis up to differential equations, dynamical systems, and bifurcation theory, including Granger causal connectivity analysis, phase synchronization connectivity analysis, principal component analysis (PCA), independent component analysis (ICA), and manifold learning algorithms such as ISOMAP, and diffusion maps and equation-free techniques. WIREs Syst Biol Med 2016, 8:438-458. doi: 10.1002/wsbm.1348 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  8. Multiscale geometric modeling of macromolecules II: Lagrangian representation

    PubMed Central

    Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2013-01-01

    Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR and cryo-EM, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger’s functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, while our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599

  9. On the interplay between mathematics and biology. Hallmarks toward a new systems biology

    NASA Astrophysics Data System (ADS)

    Bellomo, Nicola; Elaiw, Ahmed; Althiabi, Abdullah M.; Alghamdi, Mohammed Ali

    2015-03-01

    This paper proposes a critical analysis of the existing literature on mathematical tools developed toward systems biology approaches and, out of this overview, develops a new approach whose main features can be briefly summarized as follows: derivation of mathematical structures suitable to capture the complexity of biological, hence living, systems, modeling, by appropriate mathematical tools, Darwinian type dynamics, namely mutations followed by selection and evolution. Moreover, multiscale methods to move from genes to cells, and from cells to tissue are analyzed in view of a new systems biology approach.

  10. A Reduced Form Model for Ozone Based on Two Decades of CMAQ Simulations for the Continental United States

    EPA Science Inventory

    A Reduced Form Model (RFM) is a mathematical relationship between the inputs and outputs of an air quality model, permitting estimation of additional modeling without costly new regional-scale simulations. A 21-year Community Multiscale Air Quality (CMAQ) simulation for the con...

  11. Peridynamic Multiscale Finite Element Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Timothy; Bond, Stephen D.; Littlewood, David John

    The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic andmore » local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the art of local models with the flexibility and accuracy of the nonlocal peridynamic model. In the mixed locality method this coupling occurs across scales, so that the nonlocal model can be used to communicate material heterogeneity at scales inappropriate to local partial differential equation models. Additionally, the computational burden of the weak form of the peridynamic model is reduced dramatically by only requiring that the model be solved on local patches of the simulation domain which may be computed in parallel, taking advantage of the heterogeneous nature of next generation computing platforms. Addition- ally, we present a novel Galerkin framework, the 'Ambulant Galerkin Method', which represents a first step towards a unified mathematical analysis of local and nonlocal multiscale finite element methods, and whose future extension will allow the analysis of multiscale finite element methods that mix models across scales under certain assumptions of the consistency of those models.« less

  12. A multiscale computational model of spatially resolved calcium cycling in cardiac myocytes: from detailed cleft dynamics to the whole cell concentration profiles

    PubMed Central

    Vierheller, Janine; Neubert, Wilhelm; Falcke, Martin; Gilbert, Stephen H.; Chamakuri, Nagaiah

    2015-01-01

    Mathematical modeling of excitation-contraction coupling (ECC) in ventricular cardiac myocytes is a multiscale problem, and it is therefore difficult to develop spatially detailed simulation tools. ECC involves gradients on the length scale of 100 nm in dyadic spaces and concentration profiles along the 100 μm of the whole cell, as well as the sub-millisecond time scale of local concentration changes and the change of lumenal Ca2+ content within tens of seconds. Our concept for a multiscale mathematical model of Ca2+ -induced Ca2+ release (CICR) and whole cardiomyocyte electrophysiology incorporates stochastic simulation of individual LC- and RyR-channels, spatially detailed concentration dynamics in dyadic clefts, rabbit membrane potential dynamics, and a system of partial differential equations for myoplasmic and lumenal free Ca2+ and Ca2+-binding molecules in the bulk of the cell. We developed a novel computational approach to resolve the concentration gradients from dyadic space to cell level by using a quasistatic approximation within the dyad and finite element methods for integrating the partial differential equations. We show whole cell Ca2+-concentration profiles using three previously published RyR-channel Markov schemes. PMID:26441674

  13. Multiscale Mathematics for Nano-Particle-Endowed Active Membranes and Films

    DTIC Science & Technology

    2016-08-03

    Formation in Biofilms ,” Contemporary Mathematics (586), 2013, 105-116. 2. Yi Sun and Qi Wang, “Modeling and Simulations of Multicellular Aggregate Self...6402. 21. Hua Jiang, Hao Yang, Jun Zeng, Zhiyuan Zhou, Jin Peng, Qi Wang, Analytic Oncology, Electron J Metab Nutr Cancer ,Jun. 2015,Vol. 2, No. 2, 26...30. 22. Chen Chen, Dacheng Ren, Mingming Ren and Qi Wang, “3-D Spatial-Temporal Structures of Biofilms in A Water Channel,” Mathematical Methods

  14. A New Age-Structured Multiscale Model of the Hepatitis C Virus Life-Cycle During Infection and Therapy With Direct-Acting Antiviral Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quintela, Barbara de M.; Conway, Jessica M.; Hyman, James M.

    Here, the dynamics of hepatitis C virus (HCV) RNA during translation and replication within infected cells were added to a previous age-structured multiscale mathematical model of HCV infection and treatment. The model allows the study of the dynamics of HCV RNA inside infected cells as well as the release of virus from infected cells and the dynamics of subsequent new cell infections. The model was used to fit in vitro data and estimate parameters characterizing HCV replication. This is the first model to our knowledge to consider both positive and negative strands of HCV RNA with an age-structured multiscale modelingmore » approach. Using this model we also studied the effects of direct-acting antiviral agents (DAAs) in blocking HCV RNA intracellular replication and the release of new virions and fit the model to in vivo data obtained from HCV-infected subjects under therapy.« less

  15. A New Age-Structured Multiscale Model of the Hepatitis C Virus Life-Cycle During Infection and Therapy With Direct-Acting Antiviral Agents

    DOE PAGES

    Quintela, Barbara de M.; Conway, Jessica M.; Hyman, James M.; ...

    2018-04-04

    Here, the dynamics of hepatitis C virus (HCV) RNA during translation and replication within infected cells were added to a previous age-structured multiscale mathematical model of HCV infection and treatment. The model allows the study of the dynamics of HCV RNA inside infected cells as well as the release of virus from infected cells and the dynamics of subsequent new cell infections. The model was used to fit in vitro data and estimate parameters characterizing HCV replication. This is the first model to our knowledge to consider both positive and negative strands of HCV RNA with an age-structured multiscale modelingmore » approach. Using this model we also studied the effects of direct-acting antiviral agents (DAAs) in blocking HCV RNA intracellular replication and the release of new virions and fit the model to in vivo data obtained from HCV-infected subjects under therapy.« less

  16. Mathematics, Information, and Life Sciences

    DTIC Science & Technology

    2012-03-05

    INS • Chip -scale atomic clocks • Ad hoc networks • Polymorphic networks • Agile networks • Laser communications • Frequency-agile RF systems...FY12 BAA Bionavigation (Bio) Neuromorphic Computing (Human) Multi-scale Modeling (Math) Foundations of Information Systems (Info) BRI

  17. Efficient Integration of Coupled Electrical-Chemical Systems in Multiscale Neuronal Simulations

    PubMed Central

    Brocke, Ekaterina; Bhalla, Upinder S.; Djurfeldt, Mikael; Hellgren Kotaleski, Jeanette; Hanke, Michael

    2016-01-01

    Multiscale modeling and simulations in neuroscience is gaining scientific attention due to its growing importance and unexplored capabilities. For instance, it can help to acquire better understanding of biological phenomena that have important features at multiple scales of time and space. This includes synaptic plasticity, memory formation and modulation, homeostasis. There are several ways to organize multiscale simulations depending on the scientific problem and the system to be modeled. One of the possibilities is to simulate different components of a multiscale system simultaneously and exchange data when required. The latter may become a challenging task for several reasons. First, the components of a multiscale system usually span different spatial and temporal scales, such that rigorous analysis of possible coupling solutions is required. Then, the components can be defined by different mathematical formalisms. For certain classes of problems a number of coupling mechanisms have been proposed and successfully used. However, a strict mathematical theory is missing in many cases. Recent work in the field has not so far investigated artifacts that may arise during coupled integration of different approximation methods. Moreover, in neuroscience, the coupling of widely used numerical fixed step size solvers may lead to unexpected inefficiency. In this paper we address the question of possible numerical artifacts that can arise during the integration of a coupled system. We develop an efficient strategy to couple the components comprising a multiscale test problem in neuroscience. We introduce an efficient coupling method based on the second-order backward differentiation formula (BDF2) numerical approximation. The method uses an adaptive step size integration with an error estimation proposed by Skelboe (2000). The method shows a significant advantage over conventional fixed step size solvers used in neuroscience for similar problems. We explore different coupling strategies that define the organization of computations between system components. We study the importance of an appropriate approximation of exchanged variables during the simulation. The analysis shows a substantial impact of these aspects on the solution accuracy in the application to our multiscale neuroscientific test problem. We believe that the ideas presented in the paper may essentially contribute to the development of a robust and efficient framework for multiscale brain modeling and simulations in neuroscience. PMID:27672364

  18. Efficient Integration of Coupled Electrical-Chemical Systems in Multiscale Neuronal Simulations.

    PubMed

    Brocke, Ekaterina; Bhalla, Upinder S; Djurfeldt, Mikael; Hellgren Kotaleski, Jeanette; Hanke, Michael

    2016-01-01

    Multiscale modeling and simulations in neuroscience is gaining scientific attention due to its growing importance and unexplored capabilities. For instance, it can help to acquire better understanding of biological phenomena that have important features at multiple scales of time and space. This includes synaptic plasticity, memory formation and modulation, homeostasis. There are several ways to organize multiscale simulations depending on the scientific problem and the system to be modeled. One of the possibilities is to simulate different components of a multiscale system simultaneously and exchange data when required. The latter may become a challenging task for several reasons. First, the components of a multiscale system usually span different spatial and temporal scales, such that rigorous analysis of possible coupling solutions is required. Then, the components can be defined by different mathematical formalisms. For certain classes of problems a number of coupling mechanisms have been proposed and successfully used. However, a strict mathematical theory is missing in many cases. Recent work in the field has not so far investigated artifacts that may arise during coupled integration of different approximation methods. Moreover, in neuroscience, the coupling of widely used numerical fixed step size solvers may lead to unexpected inefficiency. In this paper we address the question of possible numerical artifacts that can arise during the integration of a coupled system. We develop an efficient strategy to couple the components comprising a multiscale test problem in neuroscience. We introduce an efficient coupling method based on the second-order backward differentiation formula (BDF2) numerical approximation. The method uses an adaptive step size integration with an error estimation proposed by Skelboe (2000). The method shows a significant advantage over conventional fixed step size solvers used in neuroscience for similar problems. We explore different coupling strategies that define the organization of computations between system components. We study the importance of an appropriate approximation of exchanged variables during the simulation. The analysis shows a substantial impact of these aspects on the solution accuracy in the application to our multiscale neuroscientific test problem. We believe that the ideas presented in the paper may essentially contribute to the development of a robust and efficient framework for multiscale brain modeling and simulations in neuroscience.

  19. On the interplay between mathematics and biology: hallmarks toward a new systems biology.

    PubMed

    Bellomo, Nicola; Elaiw, Ahmed; Althiabi, Abdullah M; Alghamdi, Mohammed Ali

    2015-03-01

    This paper proposes a critical analysis of the existing literature on mathematical tools developed toward systems biology approaches and, out of this overview, develops a new approach whose main features can be briefly summarized as follows: derivation of mathematical structures suitable to capture the complexity of biological, hence living, systems, modeling, by appropriate mathematical tools, Darwinian type dynamics, namely mutations followed by selection and evolution. Moreover, multiscale methods to move from genes to cells, and from cells to tissue are analyzed in view of a new systems biology approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control

    PubMed Central

    Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2014-01-01

    Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569

  1. Tensor Arithmetic, Geometric and Mathematic Principles of Fluid Mechanics in Implementation of Direct Computational Experiments

    NASA Astrophysics Data System (ADS)

    Bogdanov, Alexander; Khramushin, Vasily

    2016-02-01

    The architecture of a digital computing system determines the technical foundation of a unified mathematical language for exact arithmetic-logical description of phenomena and laws of continuum mechanics for applications in fluid mechanics and theoretical physics. The deep parallelization of the computing processes results in functional programming at a new technological level, providing traceability of the computing processes with automatic application of multiscale hybrid circuits and adaptive mathematical models for the true reproduction of the fundamental laws of physics and continuum mechanics.

  2. Multiscale modelling approaches for assessing cosmetic ingredients safety.

    PubMed

    Bois, Frédéric Y; Ochoa, Juan G Diaz; Gajewska, Monika; Kovarich, Simona; Mauch, Klaus; Paini, Alicia; Péry, Alexandre; Benito, Jose Vicente Sala; Teng, Sophie; Worth, Andrew

    2017-12-01

    The European Union's ban on animal testing for cosmetic ingredients and products has generated a strong momentum for the development of in silico and in vitro alternative methods. One of the focus of the COSMOS project was ab initio prediction of kinetics and toxic effects through multiscale pharmacokinetic modeling and in vitro data integration. In our experience, mathematical or computer modeling and in vitro experiments are complementary. We present here a summary of the main models and results obtained within the framework of the project on these topics. A first section presents our work at the organelle and cellular level. We then go toward modeling cell levels effects (monitored continuously), multiscale physiologically based pharmacokinetic and effect models, and route to route extrapolation. We follow with a short presentation of the automated KNIME workflows developed for dissemination and easy use of the models. We end with a discussion of two challenges to the field: our limited ability to deal with massive data and complex computations. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Multiscale mathematical modeling of the hypothalamo-pituitary-gonadal axis.

    PubMed

    Clément, Frédérique

    2016-07-01

    Although the fields of systems and integrative biology are in full expansion, few teams are involved worldwide into the study of reproductive function from the mathematical modeling viewpoint. This may be due to the fact that the reproductive function is not compulsory for individual organism survival, even if it is for species survival. Alternatively, the complexity of reproductive physiology may be discouraging. Indeed, the hypothalamo-pituitary-gonadal (HPG) axis involves not only several organs and tissues but also intricate time (from the neuronal millisecond timescale to circannual rhythmicity) and space (from molecules to organs) scales. Yet, mathematical modeling, and especially multiscale modeling, can renew our approaches of the molecular, cellular, and physiological processes underlying the control of reproductive functions. In turn, the remarkable dynamic features exhibited by the HPG axis raise intriguing and challenging questions to modelers and applied mathematicians. In this article, we draw a panoramic review of some mathematical models designed in the framework of the female HPG, with a special focus on the gonadal and central control of follicular development. On the gonadal side, the modeling of follicular development calls to the generic formalism of structured cell populations, that allows one to make mechanistic links between the control of cell fate (proliferation, differentiation, or apoptosis) and that of the follicle fate (ovulation or degeneration) or to investigate how the functional interactions between the oocyte and its surrounding cells shape the follicle morphogenesis. On the central, mainly hypothalamic side, models based on dynamical systems with multiple timescales allow one to represent within a single framework both the pulsatile and surge patterns of the neurohormone GnRH. Beyond their interest in basic research investigations, mathematical models can also be at the source of useful tools to study the encoding and decoding of the (neuro-) hormonal signals at play within the HPG axis and detect complex, possibly hidden rhythms, in experimental time series. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Explorations in Integrated Science

    ERIC Educational Resources Information Center

    Lega, Joceline C.; Buxner, Sanlyn; Blonder, Benjamin; Tama, Florence

    2014-01-01

    We describe a third-year undergraduate course that focuses on multiscale modeling and protein folding and has as its primary goal the encouragement of students to integrate thinking across and beyond disciplinary boundaries. The ability to perform innovative and successful research work in STEM (science, technology, engineering, and mathematics)…

  5. The Esophagiome: concept, status, and future perspectives.

    PubMed

    Gregersen, Hans; Liao, Donghua; Brasseur, James G

    2016-09-01

    The term "Esophagiome" is meant to imply a holistic, multiscale treatment of esophageal function from cellular and muscle physiology to the mechanical responses that transport and mix fluid contents. The development and application of multiscale mathematical models of esophageal function are central to the Esophagiome concept. These model elements underlie the development of a "virtual esophagus" modeling framework to characterize and analyze function and disease by quantitatively contrasting normal and pathophysiological function. Functional models incorporate anatomical details with sensory-motor properties and functional responses, especially related to biomechanical functions, such as bolus transport and gastrointestinal fluid mixing. This brief review provides insight into Esophagiome research. Future advanced models can provide predictive evaluations of the therapeutic consequences of surgical and endoscopic treatments and will aim to facilitate clinical diagnostics and treatment. © 2016 New York Academy of Sciences.

  6. Analysing and correcting the differences between multi-source and multi-scale spatial remote sensing observations.

    PubMed

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.

  7. Analysing and Correcting the Differences between Multi-Source and Multi-Scale Spatial Remote Sensing Observations

    PubMed Central

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760

  8. Final Technical Report: Mathematical Foundations for Uncertainty Quantification in Materials Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plechac, Petr; Vlachos, Dionisios G.

    We developed path-wise information theory-based and goal-oriented sensitivity analysis and parameter identification methods for complex high-dimensional dynamics and in particular of non-equilibrium extended molecular systems. The combination of these novel methodologies provided the first methods in the literature which are capable to handle UQ questions for stochastic complex systems with some or all of the following features: (a) multi-scale stochastic models such as (bio)chemical reaction networks, with a very large number of parameters, (b) spatially distributed systems such as Kinetic Monte Carlo or Langevin Dynamics, (c) non-equilibrium processes typically associated with coupled physico-chemical mechanisms, driven boundary conditions, hybrid micro-macro systems,more » etc. A particular computational challenge arises in simulations of multi-scale reaction networks and molecular systems. Mathematical techniques were applied to in silico prediction of novel materials with emphasis on the effect of microstructure on model uncertainty quantification (UQ). We outline acceleration methods to make calculations of real chemistry feasible followed by two complementary tasks on structure optimization and microstructure-induced UQ.« less

  9. Will big data yield new mathematics? An evolving synergy with neuroscience

    PubMed Central

    Feng, S.; Holmes, P.

    2016-01-01

    New mathematics has often been inspired by new insights into the natural world. Here we describe some ongoing and possible future interactions among the massive data sets being collected in neuroscience, methods for their analysis and mathematical models of the underlying, still largely uncharted neural substrates that generate these data. We start by recalling events that occurred in turbulence modelling when substantial space-time velocity field measurements and numerical simulations allowed a new perspective on the governing equations of fluid mechanics. While no analogous global mathematical model of neural processes exists, we argue that big data may enable validation or at least rejection of models at cellular to brain area scales and may illuminate connections among models. We give examples of such models and survey some relatively new experimental technologies, including optogenetics and functional imaging, that can report neural activity in live animals performing complex tasks. The search for analytical techniques for these data is already yielding new mathematics, and we believe their multi-scale nature may help relate well-established models, such as the Hodgkin–Huxley equations for single neurons, to more abstract models of neural circuits, brain areas and larger networks within the brain. In brief, we envisage a closer liaison, if not a marriage, between neuroscience and mathematics. PMID:27516705

  10. Will big data yield new mathematics? An evolving synergy with neuroscience.

    PubMed

    Feng, S; Holmes, P

    2016-06-01

    New mathematics has often been inspired by new insights into the natural world. Here we describe some ongoing and possible future interactions among the massive data sets being collected in neuroscience, methods for their analysis and mathematical models of the underlying, still largely uncharted neural substrates that generate these data. We start by recalling events that occurred in turbulence modelling when substantial space-time velocity field measurements and numerical simulations allowed a new perspective on the governing equations of fluid mechanics. While no analogous global mathematical model of neural processes exists, we argue that big data may enable validation or at least rejection of models at cellular to brain area scales and may illuminate connections among models. We give examples of such models and survey some relatively new experimental technologies, including optogenetics and functional imaging, that can report neural activity in live animals performing complex tasks. The search for analytical techniques for these data is already yielding new mathematics, and we believe their multi-scale nature may help relate well-established models, such as the Hodgkin-Huxley equations for single neurons, to more abstract models of neural circuits, brain areas and larger networks within the brain. In brief, we envisage a closer liaison, if not a marriage, between neuroscience and mathematics.

  11. Multiscale structure in eco-evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Stacey, Blake C.

    In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these complex interrelationships within a biological system affects the evolutionary dynamics of that system. I present a mathematical formalism for multiscale structure, grounded in information theory, which makes these intuitions quantitative, and I show how dynamics defined in terms of population genetics or evolutionary game theory can lead to multiscale organization. For complex systems, "more is different," and I address this from several perspectives. Spatial host--consumer models demonstrate the importance of the structures which can arise due to dynamical pattern formation. Evolutionary game theory reveals the novel effects which can result from multiplayer games, nonlinear payoffs and ecological stochasticity. Replicator dynamics in an environment with mesoscale structure relates to generalized conditionalization rules in probability theory. The idea of natural selection "acting at multiple levels" has been mathematized in a variety of ways, not all of which are equivalent. We will face down the confusion, using the experience developed over the course of this thesis to clarify the situation.

  12. Virtual Patients and Sensitivity Analysis of the Guyton Model of Blood Pressure Regulation: Towards Individualized Models of Whole-Body Physiology

    PubMed Central

    Moss, Robert; Grosse, Thibault; Marchant, Ivanny; Lassau, Nathalie; Gueyffier, François; Thomas, S. Randall

    2012-01-01

    Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a “virtual population” from which “virtual individuals” can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the “virtual individuals” that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models. PMID:22761561

  13. Research Area 3 - Mathematical Sciences: Multiscale Modeling of the Mechanics of Advanced Energetic Materials Relevant to Detonation Prediction

    DTIC Science & Technology

    2015-08-24

    new energetic materials with enhanced energy release rates and reduced sensitivity to unintentional detonation . The following results have been...Mechanics of Advanced Energetic Materials Relevant to Detonation Prediction The views, opinions and/or findings contained in this report are those of the...modeling, molecular simulations, detonation prediction REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S

  14. A global multiscale mathematical model for the human circulation with emphasis on the venous system.

    PubMed

    Müller, Lucas O; Toro, Eleuterio F

    2014-07-01

    We present a global, closed-loop, multiscale mathematical model for the human circulation including the arterial system, the venous system, the heart, the pulmonary circulation and the microcirculation. A distinctive feature of our model is the detailed description of the venous system, particularly for intracranial and extracranial veins. Medium to large vessels are described by one-dimensional hyperbolic systems while the rest of the components are described by zero-dimensional models represented by differential-algebraic equations. Robust, high-order accurate numerical methodology is implemented for solving the hyperbolic equations, which are adopted from a recent reformulation that includes variable material properties. Because of the large intersubject variability of the venous system, we perform a patient-specific characterization of major veins of the head and neck using MRI data. Computational results are carefully validated using published data for the arterial system and most regions of the venous system. For head and neck veins, validation is carried out through a detailed comparison of simulation results against patient-specific phase-contrast MRI flow quantification data. A merit of our model is its global, closed-loop character; the imposition of highly artificial boundary conditions is avoided. Applications in mind include a vast range of medical conditions. Of particular interest is the study of some neurodegenerative diseases, whose venous haemodynamic connection has recently been identified by medical researchers. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Parallel multiscale simulations of a brain aneurysm

    PubMed Central

    Grinberg, Leopold; Fedosov, Dmitry A.; Karniadakis, George Em

    2012-01-01

    Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multi-scale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier-Stokes solver εκ αr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers ( εκ αr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in future work. PMID:23734066

  16. Parallel multiscale simulations of a brain aneurysm.

    PubMed

    Grinberg, Leopold; Fedosov, Dmitry A; Karniadakis, George Em

    2013-07-01

    Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multi-scale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier-Stokes solver εκ αr . The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers ( εκ αr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in future work.

  17. Parallel multiscale simulations of a brain aneurysm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinberg, Leopold; Fedosov, Dmitry A.; Karniadakis, George Em, E-mail: george_karniadakis@brown.edu

    2013-07-01

    Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multiscale simulations of platelet depositions on the wall of a brain aneurysm.more » The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier–Stokes solver NεκTαr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers (NεκTαr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300 K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in future work.« less

  18. The topology of the cosmic web in terms of persistent Betti numbers

    NASA Astrophysics Data System (ADS)

    Pranav, Pratyush; Edelsbrunner, Herbert; van de Weygaert, Rien; Vegter, Gert; Kerber, Michael; Jones, Bernard J. T.; Wintraecken, Mathijs

    2017-03-01

    We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys.

  19. Mathematical Models of Blast-Induced TBI: Current Status, Challenges, and Prospects

    PubMed Central

    Gupta, Raj K.; Przekwas, Andrzej

    2013-01-01

    Blast-induced traumatic brain injury (TBI) has become a signature wound of recent military activities and is the leading cause of death and long-term disability among U.S. soldiers. The current limited understanding of brain injury mechanisms impedes the development of protection, diagnostic, and treatment strategies. We believe mathematical models of blast wave brain injury biomechanics and neurobiology, complemented with in vitro and in vivo experimental studies, will enable a better understanding of injury mechanisms and accelerate the development of both protective and treatment strategies. The goal of this paper is to review the current state of the art in mathematical and computational modeling of blast-induced TBI, identify research gaps, and recommend future developments. A brief overview of blast wave physics, injury biomechanics, and the neurobiology of brain injury is used as a foundation for a more detailed discussion of multiscale mathematical models of primary biomechanics and secondary injury and repair mechanisms. The paper also presents a discussion of model development strategies, experimental approaches to generate benchmark data for model validation, and potential applications of the model for prevention and protection against blast wave TBI. PMID:23755039

  20. Trends in modeling Biomedical Complex Systems

    PubMed Central

    Milanesi, Luciano; Romano, Paolo; Castellani, Gastone; Remondini, Daniel; Liò, Petro

    2009-01-01

    In this paper we provide an introduction to the techniques for multi-scale complex biological systems, from the single bio-molecule to the cell, combining theoretical modeling, experiments, informatics tools and technologies suitable for biological and biomedical research, which are becoming increasingly multidisciplinary, multidimensional and information-driven. The most important concepts on mathematical modeling methodologies and statistical inference, bioinformatics and standards tools to investigate complex biomedical systems are discussed and the prominent literature useful to both the practitioner and the theoretician are presented. PMID:19828068

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majda, Andrew J.; Xing, Yulong; Mohammadian, Majid

    Determining the finite-amplitude preconditioned states in the hurricane embryo, which lead to tropical cyclogenesis, is a central issue in contemporary meteorology. In the embryo there is competition between different preconditioning mechanisms involving hydrodynamics and moist thermodynamics, which can lead to cyclogenesis. Here systematic asymptotic methods from applied mathematics are utilized to develop new simplified moist multi-scale models starting from the moist anelastic equations. Three interesting multi-scale models emerge in the analysis. The balanced mesoscale vortex (BMV) dynamics and the microscale balanced hot tower (BHT) dynamics involve simplified balanced equations without gravity waves for vertical vorticity amplification due to moist heatmore » sources and incorporate nonlinear advective fluxes across scales. The BMV model is the central one for tropical cyclogenesis in the embryo. The moist mesoscale wave (MMW) dynamics involves simplified equations for mesoscale moisture fluctuations, as well as linear hydrostatic waves driven by heat sources from moisture and eddy flux divergences. A simplified cloud physics model for deep convection is introduced here and used to study moist axisymmetric plumes in the BHT model. A simple application in periodic geometry involving the effects of mesoscale vertical shear and moist microscale hot towers on vortex amplification is developed here to illustrate features of the coupled multi-scale models. These results illustrate the use of these models in isolating key mechanisms in the embryo in a simplified content.« less

  2. A mathematical multiscale model of bone remodeling, accounting for pore space-specific mechanosensation.

    PubMed

    Pastrama, Maria-Ioana; Scheiner, Stefan; Pivonka, Peter; Hellmich, Christian

    2018-02-01

    While bone tissue is a hierarchically organized material, mathematical formulations of bone remodeling are often defined on the level of a millimeter-sized representative volume element (RVE), "smeared" over all types of bone microstructures seen at lower observation scales. Thus, there is no explicit consideration of the fact that the biological cells and biochemical factors driving bone remodeling are actually located in differently sized pore spaces: active osteoblasts and osteoclasts can be found in the vascular pores, whereas the lacunar pores host osteocytes - bone cells originating from former osteoblasts which were then "buried" in newly deposited extracellular bone matrix. We here propose a mathematical description which considers size and shape of the pore spaces where the biological and biochemical events take place. In particular, a previously published systems biology formulation, accounting for biochemical regulatory mechanisms such as the rank-rankl-opg pathway, is cast into a multiscale framework coupled to a poromicromechanical model. The latter gives access to the vascular and lacunar pore pressures arising from macroscopic loading. Extensive experimental data on the biological consequences of this loading strongly suggest that the aforementioned pore pressures, together with the loading frequency, are essential drivers of bone remodeling. The novel approach presented here allows for satisfactory simulation of the evolution of bone tissue under various loading conditions, and for different species; including scenarios such as mechanical dis- and overuse of murine and human bone, or in osteocyte-free bone. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Decoding the Principles of Emergence and Resiliency in Biological Collective Systems - A Multi-Scale Approach: Final Report

    DTIC Science & Technology

    2018-02-15

    models and approaches are also valid using other invasive and non - invasive technologies. Finally, we illustrate and experimentally evaluate this...2017 Project Outline q  Pattern formation diversity in wild microbial societies q  Experimental and mathematical analysis methodology q  Skeleton...chemotaxis, nutrient degradation, and the exchange of amino acids between cells. Using both quantitative experimental methods and several theoretical

  4. Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques - project status and first results

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Hugentobler, U.; Jakowski, N.; Dettmering, D.; Liang, W.; Limberger, M.; Wilken, V.; Gerzen, T.; Hoque, M.; Berdermann, J.

    2012-04-01

    Near real-time high resolution and high precision ionosphere models are needed for a large number of applications, e.g. in navigation, positioning, telecommunications or astronautics. Today these ionosphere models are mostly empirical, i.e., based purely on mathematical approaches. In the DFG project 'Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques (MuSIK)' the complex phenomena within the ionosphere are described vertically by combining the Chapman electron density profile with a plasmasphere layer. In order to consider the horizontal and temporal behaviour the fundamental target parameters of this physics-motivated approach are modelled by series expansions in terms of tensor products of localizing B-spline functions depending on longitude, latitude and time. For testing the procedure the model will be applied to an appropriate region in South America, which covers relevant ionospheric processes and phenomena such as the Equatorial Anomaly. The project connects the expertise of the three project partners, namely Deutsches Geodätisches Forschungsinstitut (DGFI) Munich, the Institute of Astronomical and Physical Geodesy (IAPG) of the Technical University Munich (TUM) and the German Aerospace Center (DLR), Neustrelitz. In this presentation we focus on the current status of the project. In the first year of the project we studied the behaviour of the ionosphere in the test region, we setup appropriate test periods covering high and low solar activity as well as winter and summer and started the data collection, analysis, pre-processing and archiving. We developed partly the mathematical-physical modelling approach and performed first computations based on simulated input data. Here we present information on the data coverage for the area and the time periods of our investigations and we outline challenges of the multi-dimensional mathematical-physical modelling approach. We show first results, discuss problems in modelling and possible solution strategies and finally, we address open questions.

  5. Variational Integrators for Interconnected Lagrange-Dirac Systems

    NASA Astrophysics Data System (ADS)

    Parks, Helen; Leok, Melvin

    2017-10-01

    Interconnected systems are an important class of mathematical models, as they allow for the construction of complex, hierarchical, multiphysics, and multiscale models by the interconnection of simpler subsystems. Lagrange-Dirac mechanical systems provide a broad category of mathematical models that are closed under interconnection, and in this paper, we develop a framework for the interconnection of discrete Lagrange-Dirac mechanical systems, with a view toward constructing geometric structure-preserving discretizations of interconnected systems. This work builds on previous work on the interconnection of continuous Lagrange-Dirac systems (Jacobs and Yoshimura in J Geom Mech 6(1):67-98, 2014) and discrete Dirac variational integrators (Leok and Ohsawa in Found Comput Math 11(5), 529-562, 2011). We test our results by simulating some of the continuous examples given in Jacobs and Yoshimura (2014).

  6. The transport of drug in fibrosis. Comment on "Towards a unified approach in the modeling of fibrosis: A review with research perspectives" by Martine Ben Amar and Carlo Bianca

    NASA Astrophysics Data System (ADS)

    Ivancevic, Vladimir

    2016-07-01

    The topic of the review article [1] is the derivation of a multiscale paradigm for the modeling of fibrosis. Firstly, the biological process of the physiological and pathological fibrosis including therapeutical actions is reviewed. Fibrosis can be a consequence of tissue damage, infections and autoimmune diseases, foreign material, tumors. Some questions regarding the pathogenesis, progression and possible regression of fibrosis are lacking. At each scale of observation, different theoretical tools coming from computational, mathematical and physical biology have been proposed. However a complete framework that takes into account the different mechanisms occurring at different scales is still missing. Therefore with the main aim to define a multiscale approach for the modeling of fibrosis, the authors of [1] have presented different top-down and bottom-up approaches that have been developed in the literature. Specifically, their description refers to models for fibrosis diseases based on ordinary and partial differential equation, agents [2], thermostatted kinetic theory [3-5], coarse-grained structures [6-8] and constitutive laws for fibrous collagen networks [9]. A critical analysis has been addressed for all frameworks discussed in the paper. Open problems and future research directions referring to both biological and modeling insight of fibrosis are presented. The paper concludes with the ambitious aim of a multiscale model.

  7. A New Multiscale Model for the Madden-Julian Oscillation.

    NASA Astrophysics Data System (ADS)

    Biello, Joseph A.; Majda, Andrew J.

    2005-06-01

    A multiscale model of the MJO is developed here that accounts, in a simplified fashion, for both the upscale transfer from synoptic to planetary scales of momentum and temperature from wave trains of thermally driven equatorial synoptic-scale circulations in a moving convective envelope as well as direct mean heating on planetary scales. This model involves idealized thermally driven congestus synoptic-scale fluctuations in the eastern part of the moving wave envelope and convective superclusters in the western part of the envelope. The model self-consistently reproduces qualitatively many of the detailed structural features of the planetary circulation in the observations of the MJO, including the vertical structure in both the westerly onset region and the strong westerly wind burst region, as well as the horizontal quadrupole planetary vortex structure. The westerly midlevel inflow in the strong westerly region and the quadrupole vortex are largely produced in the model by the upscale transport of momentum to the planetary scales, while the midlevel easterly jet in the westerly onset region is substantially strengthened by this process. The role of wave trains of tilted organized synoptic-scale circulations is crucial for this fidelity with observations. The appeal of the multiscale models developed below is their firm mathematical underpinnings, simplicity, and analytic tractability while remaining self-consistent with many of the features of the observational record.

  8. Multilevel modeling of damage accumulation processes in metals

    NASA Astrophysics Data System (ADS)

    Kurmoiartseva, K. A.; Trusov, P. V.; Kotelnikova, N. V.

    2017-12-01

    To predict the behavior of components and constructions it is necessary to develop the methods and mathematical models which take into account the self-organization of microstructural processes and the strain localization. The damage accumulation processes and the evolution of material properties during deformation are important to take into account. The heterogeneity of the process of damage accumulation is due to the appropriate physical mechanisms at the scale levels, which are lower than the macro-level. The purpose of this work is to develop a mathematical model for analyzing the behavior of polycrystalline materials that allows describing the damage accumulation processes. Fracture is the multistage and multiscale process of the build-up of micro- and mesodefects over the wide range of loading rates. The formation of microcracks by mechanisms is caused by the interactions of the dislocations of different slip systems, barriers, boundaries and the inclusions of the secondary phase. This paper provides the description of some of the most well-known models of crack nucleation and also suggests the structure of a mathematical model based on crystal plasticity and dislocation models of crack nucleation.

  9. Multiscale Feature Analysis of Salivary Gland Branching Morphogenesis

    PubMed Central

    Baydil, Banu; Daley, William P.; Larsen, Melinda; Yener, Bülent

    2012-01-01

    Pattern formation in developing tissues involves dynamic spatio-temporal changes in cellular organization and subsequent evolution of functional adult structures. Branching morphogenesis is a developmental mechanism by which patterns are generated in many developing organs, which is controlled by underlying molecular pathways. Understanding the relationship between molecular signaling, cellular behavior and resulting morphological change requires quantification and categorization of the cellular behavior. In this study, tissue-level and cellular changes in developing salivary gland in response to disruption of ROCK-mediated signaling by are modeled by building cell-graphs to compute mathematical features capturing structural properties at multiple scales. These features were used to generate multiscale cell-graph signatures of untreated and ROCK signaling disrupted salivary gland organ explants. From confocal images of mouse submandibular salivary gland organ explants in which epithelial and mesenchymal nuclei were marked, a multiscale feature set capturing global structural properties, local structural properties, spectral, and morphological properties of the tissues was derived. Six feature selection algorithms and multiway modeling of the data was performed to identify distinct subsets of cell graph features that can uniquely classify and differentiate between different cell populations. Multiscale cell-graph analysis was most effective in classification of the tissue state. Cellular and tissue organization, as defined by a multiscale subset of cell-graph features, are both quantitatively distinct in epithelial and mesenchymal cell types both in the presence and absence of ROCK inhibitors. Whereas tensor analysis demonstrate that epithelial tissue was affected the most by inhibition of ROCK signaling, significant multiscale changes in mesenchymal tissue organization were identified with this analysis that were not identified in previous biological studies. We here show how to define and calculate a multiscale feature set as an effective computational approach to identify and quantify changes at multiple biological scales and to distinguish between different states in developing tissues. PMID:22403724

  10. Gravitational effects on global hemodynamics in different postures: A closed-loop multiscale mathematical analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Xiancheng; Noda, Shigeho; Himeno, Ryutaro; Liu, Hao

    2017-06-01

    We present a novel methodology and strategy to predict pressures and flow rates in the global cardiovascular network in different postures varying from supine to upright. A closed-loop, multiscale mathematical model of the entire cardiovascular system (CVS) is developed through an integration of one-dimensional (1D) modeling of the large systemic arteries and veins, and zero-dimensional (0D) lumped-parameter modeling of the heart, the cardiac-pulmonary circulation, the cardiac and venous valves, as well as the microcirculation. A versatile junction model is proposed and incorporated into the 1D model to cope with splitting and/or merging flows across a multibranched junction, which is validated to be capable of estimating both subcritical and supercritical flows while ensuring the mass conservation and total pressure continuity. To model gravitational effects on global hemodynamics during postural change, a robust venous valve model is further established for the 1D venous flows and distributed throughout the entire venous network with consideration of its anatomically realistic numbers and locations. The present integrated model is proven to enable reasonable prediction of pressure and flow rate waveforms associated with cardiopulmonary circulation, systemic circulation in arteries and veins, as well as microcirculation within normal physiological ranges, particularly in mean venous pressures, which well match the in vivo measurements. Applications of the cardiovascular model at different postures demonstrate that gravity exerts remarkable influence on arterial and venous pressures, venous returns and cardiac outputs whereas venous pressures below the heart level show a specific correlation between central venous and hydrostatic pressures in right atrium and veins.

  11. Soliton driven angiogenesis

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.

    2016-08-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.

  12. Self-consistent clustering analysis: an efficient multiscale scheme for inelastic heterogeneous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z.; Bessa, M. A.; Liu, W.K.

    A predictive computational theory is shown for modeling complex, hierarchical materials ranging from metal alloys to polymer nanocomposites. The theory can capture complex mechanisms such as plasticity and failure that span across multiple length scales. This general multiscale material modeling theory relies on sound principles of mathematics and mechanics, and a cutting-edge reduced order modeling method named self-consistent clustering analysis (SCA) [Zeliang Liu, M.A. Bessa, Wing Kam Liu, “Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials,” Comput. Methods Appl. Mech. Engrg. 306 (2016) 319–341]. SCA reduces by several orders of magnitude the computational cost of micromechanical andmore » concurrent multiscale simulations, while retaining the microstructure information. This remarkable increase in efficiency is achieved with a data-driven clustering method. Computationally expensive operations are performed in the so-called offline stage, where degrees of freedom (DOFs) are agglomerated into clusters. The interaction tensor of these clusters is computed. In the online or predictive stage, the Lippmann-Schwinger integral equation is solved cluster-wise using a self-consistent scheme to ensure solution accuracy and avoid path dependence. To construct a concurrent multiscale model, this scheme is applied at each material point in a macroscale structure, replacing a conventional constitutive model with the average response computed from the microscale model using just the SCA online stage. A regularized damage theory is incorporated in the microscale that avoids the mesh and RVE size dependence that commonly plagues microscale damage calculations. The SCA method is illustrated with two cases: a carbon fiber reinforced polymer (CFRP) structure with the concurrent multiscale model and an application to fatigue prediction for additively manufactured metals. For the CFRP problem, a speed up estimated to be about 43,000 is achieved by using the SCA method, as opposed to FE2, enabling the solution of an otherwise computationally intractable problem. The second example uses a crystal plasticity constitutive law and computes the fatigue potency of extrinsic microscale features such as voids. This shows that local stress and strain are capture sufficiently well by SCA. This model has been incorporated in a process-structure-properties prediction framework for process design in additive manufacturing.« less

  13. Multi-scale and Multi-physics Numerical Methods for Modeling Transport in Mesoscopic Systems

    DTIC Science & Technology

    2014-10-13

    function and wide band Fast multipole methods for Hankel waves. (2) a new linear scaling discontinuous Galerkin density functional theory, which provide a...inflow boundary condition for Wigner quantum transport equations. Also, a book titled "Computational Methods for Electromagnetic Phenomena...equationsin layered media with FMM for Bessel functions , Science China Mathematics, (12 2013): 2561. doi: TOTAL: 6 Number of Papers published in peer

  14. 3-D discrete shearlet transform and video processing.

    PubMed

    Negi, Pooran Singh; Labate, Demetrio

    2012-06-01

    In this paper, we introduce a digital implementation of the 3-D shearlet transform and illustrate its application to problems of video denoising and enhancement. The shearlet representation is a multiscale pyramid of well-localized waveforms defined at various locations and orientations, which was introduced to overcome the limitations of traditional multiscale systems in dealing with multidimensional data. While the shearlet approach shares the general philosophy of curvelets and surfacelets, it is based on a very different mathematical framework, which is derived from the theory of affine systems and uses shearing matrices rather than rotations. This allows a natural transition from the continuous setting to the digital setting and a more flexible mathematical structure. The 3-D digital shearlet transform algorithm presented in this paper consists in a cascade of a multiscale decomposition and a directional filtering stage. The filters employed in this decomposition are implemented as finite-length filters, and this ensures that the transform is local and numerically efficient. To illustrate its performance, the 3-D discrete shearlet transform is applied to problems of video denoising and enhancement, and compared against other state-of-the-art multiscale techniques, including curvelets and surfacelets.

  15. Modelling and simulating reaction-diffusion systems using coloured Petri nets.

    PubMed

    Liu, Fei; Blätke, Mary-Ann; Heiner, Monika; Yang, Ming

    2014-10-01

    Reaction-diffusion systems often play an important role in systems biology when developmental processes are involved. Traditional methods of modelling and simulating such systems require substantial prior knowledge of mathematics and/or simulation algorithms. Such skills may impose a challenge for biologists, when they are not equally well-trained in mathematics and computer science. Coloured Petri nets as a high-level and graphical language offer an attractive alternative, which is easily approachable. In this paper, we investigate a coloured Petri net framework integrating deterministic, stochastic and hybrid modelling formalisms and corresponding simulation algorithms for the modelling and simulation of reaction-diffusion processes that may be closely coupled with signalling pathways, metabolic reactions and/or gene expression. Such systems often manifest multiscaleness in time, space and/or concentration. We introduce our approach by means of some basic diffusion scenarios, and test it against an established case study, the Brusselator model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Preface of the "Symposium on Mathematical Models and Methods to investigate Heterogeneity in Cell and Cell Population Biology"

    NASA Astrophysics Data System (ADS)

    Clairambault, Jean

    2016-06-01

    This session investigates hot topics related to mathematical representations of cell and cell population dynamics in biology and medicine, in particular, but not only, with applications to cancer. Methods in mathematical modelling and analysis, and in statistical inference using single-cell and cell population data, should contribute to focus this session on heterogeneity in cell populations. Among other methods are proposed: a) Intracellular protein dynamics and gene regulatory networks using ordinary/partial/delay differential equations (ODEs, PDEs, DDEs); b) Representation of cell population dynamics using agent-based models (ABMs) and/or PDEs; c) Hybrid models and multiscale models to integrate single-cell dynamics into cell population behaviour; d) Structured cell population dynamics and asymptotic evolution w.r.t. relevant traits; e) Heterogeneity in cancer cell populations: origin, evolution, phylogeny and methods of reconstruction; f) Drug resistance as an evolutionary phenotype: predicting and overcoming it in therapeutics; g) Theoretical therapeutic optimisation of combined drug treatments in cancer cell populations and in populations of other organisms, such as bacteria.

  17. A 3D Hermite-based multiscale local active contour method with elliptical shape constraints for segmentation of cardiac MR and CT volumes.

    PubMed

    Barba-J, Leiner; Escalante-Ramírez, Boris; Vallejo Venegas, Enrique; Arámbula Cosío, Fernando

    2018-05-01

    Analysis of cardiac images is a fundamental task to diagnose heart problems. Left ventricle (LV) is one of the most important heart structures used for cardiac evaluation. In this work, we propose a novel 3D hierarchical multiscale segmentation method based on a local active contour (AC) model and the Hermite transform (HT) for LV analysis in cardiac magnetic resonance (MR) and computed tomography (CT) volumes in short axis view. Features such as directional edges, texture, and intensities are analyzed using the multiscale HT space. A local AC model is configured using the HT coefficients and geometrical constraints. The endocardial and epicardial boundaries are used for evaluation. Segmentation of the endocardium is controlled using elliptical shape constraints. The final endocardial shape is used to define the geometrical constraints for segmentation of the epicardium. We follow the assumption that epicardial and endocardial shapes are similar in volumes with short axis view. An initialization scheme based on a fuzzy C-means algorithm and mathematical morphology was designed. The algorithm performance was evaluated using cardiac MR and CT volumes in short axis view demonstrating the feasibility of the proposed method.

  18. Multiscale equation-free algorithms for molecular dynamics

    NASA Astrophysics Data System (ADS)

    Abi Mansour, Andrew

    Molecular dynamics is a physics-based computational tool that has been widely employed to study the dynamics and structure of macromolecules and their assemblies at the atomic scale. However, the efficiency of molecular dynamics simulation is limited because of the broad spectrum of timescales involved. To overcome this limitation, an equation-free algorithm is presented for simulating these systems using a multiscale model cast in terms of atomistic and coarse-grained variables. Both variables are evolved in time in such a way that the cross-talk between short and long scales is preserved. In this way, the coarse-grained variables guide the evolution of the atom-resolved states, while the latter provide the Newtonian physics for the former. While the atomistic variables are evolved using short molecular dynamics runs, time advancement at the coarse-grained level is achieved with a scheme that uses information from past and future states of the system while accounting for both the stochastic and deterministic features of the coarse-grained dynamics. To complete the multiscale cycle, an atom-resolved state consistent with the updated coarse-grained variables is recovered using algorithms from mathematical optimization. This multiscale paradigm is extended to nanofluidics using concepts from hydrodynamics, and it is demonstrated for macromolecular and nanofluidic systems. A toolkit is developed for prototyping these algorithms, which are then implemented within the GROMACS simulation package and released as an open source multiscale simulator.

  19. Using CellML with OpenCMISS to Simulate Multi-Scale Physiology

    PubMed Central

    Nickerson, David P.; Ladd, David; Hussan, Jagir R.; Safaei, Soroush; Suresh, Vinod; Hunter, Peter J.; Bradley, Christopher P.

    2014-01-01

    OpenCMISS is an open-source modeling environment aimed, in particular, at the solution of bioengineering problems. OpenCMISS consists of two main parts: a computational library (OpenCMISS-Iron) and a field manipulation and visualization library (OpenCMISS-Zinc). OpenCMISS is designed for the solution of coupled multi-scale, multi-physics problems in a general-purpose parallel environment. CellML is an XML format designed to encode biophysically based systems of ordinary differential equations and both linear and non-linear algebraic equations. A primary design goal of CellML is to allow mathematical models to be encoded in a modular and reusable format to aid reproducibility and interoperability of modeling studies. In OpenCMISS, we make use of CellML models to enable users to configure various aspects of their multi-scale physiological models. This avoids the need for users to be familiar with the OpenCMISS internal code in order to perform customized computational experiments. Examples of this are: cellular electrophysiology models embedded in tissue electrical propagation models; material constitutive relationships for mechanical growth and deformation simulations; time-varying boundary conditions for various problem domains; and fluid constitutive relationships and lumped-parameter models. In this paper, we provide implementation details describing how CellML models are integrated into multi-scale physiological models in OpenCMISS. The external interface OpenCMISS presents to users is also described, including specific examples exemplifying the extensibility and usability these tools provide the physiological modeling and simulation community. We conclude with some thoughts on future extension of OpenCMISS to make use of other community developed information standards, such as FieldML, SED-ML, and BioSignalML. Plans for the integration of accelerator code (graphical processing unit and field programmable gate array) generated from CellML models is also discussed. PMID:25601911

  20. A Hybrid Multiscale Framework for Subsurface Flow and Transport Simulations

    DOE PAGES

    Scheibe, Timothy D.; Yang, Xiaofan; Chen, Xingyuan; ...

    2015-06-01

    Extensive research efforts have been invested in reducing model errors to improve the predictive ability of biogeochemical earth and environmental system simulators, with applications ranging from contaminant transport and remediation to impacts of biogeochemical elemental cycling (e.g., carbon and nitrogen) on local ecosystems and regional to global climate. While the bulk of this research has focused on improving model parameterizations in the face of observational limitations, the more challenging type of model error/uncertainty to identify and quantify is model structural error which arises from incorrect mathematical representations of (or failure to consider) important physical, chemical, or biological processes, properties, ormore » system states in model formulations. While improved process understanding can be achieved through scientific study, such understanding is usually developed at small scales. Process-based numerical models are typically designed for a particular characteristic length and time scale. For application-relevant scales, it is generally necessary to introduce approximations and empirical parameterizations to describe complex systems or processes. This single-scale approach has been the best available to date because of limited understanding of process coupling combined with practical limitations on system characterization and computation. While computational power is increasing significantly and our understanding of biological and environmental processes at fundamental scales is accelerating, using this information to advance our knowledge of the larger system behavior requires the development of multiscale simulators. Accordingly there has been much recent interest in novel multiscale methods in which microscale and macroscale models are explicitly coupled in a single hybrid multiscale simulation. A limited number of hybrid multiscale simulations have been developed for biogeochemical earth systems, but they mostly utilize application-specific and sometimes ad-hoc approaches for model coupling. We are developing a generalized approach to hierarchical model coupling designed for high-performance computational systems, based on the Swift computing workflow framework. In this presentation we will describe the generalized approach and provide two use cases: 1) simulation of a mixing-controlled biogeochemical reaction coupling pore- and continuum-scale models, and 2) simulation of biogeochemical impacts of groundwater – river water interactions coupling fine- and coarse-grid model representations. This generalized framework can be customized for use with any pair of linked models (microscale and macroscale) with minimal intrusiveness to the at-scale simulators. It combines a set of python scripts with the Swift workflow environment to execute a complex multiscale simulation utilizing an approach similar to the well-known Heterogeneous Multiscale Method. User customization is facilitated through user-provided input and output file templates and processing function scripts, and execution within a high-performance computing environment is handled by Swift, such that minimal to no user modification of at-scale codes is required.« less

  1. A Unified Multi-scale Model for Cross-Scale Evaluation and Integration of Hydrological and Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Liu, C.; Yang, X.; Bailey, V. L.; Bond-Lamberty, B. P.; Hinkle, C.

    2013-12-01

    Mathematical representations of hydrological and biogeochemical processes in soil, plant, aquatic, and atmospheric systems vary with scale. Process-rich models are typically used to describe hydrological and biogeochemical processes at the pore and small scales, while empirical, correlation approaches are often used at the watershed and regional scales. A major challenge for multi-scale modeling is that water flow, biogeochemical processes, and reactive transport are described using different physical laws and/or expressions at the different scales. For example, the flow is governed by the Navier-Stokes equations at the pore-scale in soils, by the Darcy law in soil columns and aquifer, and by the Navier-Stokes equations again in open water bodies (ponds, lake, river) and atmosphere surface layer. This research explores whether the physical laws at the different scales and in different physical domains can be unified to form a unified multi-scale model (UMSM) to systematically investigate the cross-scale, cross-domain behavior of fundamental processes at different scales. This presentation will discuss our research on the concept, mathematical equations, and numerical execution of the UMSM. Three-dimensional, multi-scale hydrological processes at the Disney Wilderness Preservation (DWP) site, Florida will be used as an example for demonstrating the application of the UMSM. In this research, the UMSM was used to simulate hydrological processes in rooting zones at the pore and small scales including water migration in soils under saturated and unsaturated conditions, root-induced hydrological redistribution, and role of rooting zone biogeochemical properties (e.g., root exudates and microbial mucilage) on water storage and wetting/draining. The small scale simulation results were used to estimate effective water retention properties in soil columns that were superimposed on the bulk soil water retention properties at the DWP site. The UMSM parameterized from smaller scale simulations were then used to simulate coupled flow and moisture migration in soils in saturated and unsaturated zones, surface and groundwater exchange, and surface water flow in streams and lakes at the DWP site under dynamic precipitation conditions. Laboratory measurements of soil hydrological and biogeochemical properties are used to parameterize the UMSM at the small scales, and field measurements are used to evaluate the UMSM.

  2. Predictive oncology: multidisciplinary, multi-scale in-silico modeling linking phenotype, morphology and growth

    PubMed Central

    Sanga, Sandeep; Frieboes, Hermann B.; Zheng, Xiaoming; Gatenby, Robert; Bearer, Elaine L.; Cristini, Vittorio

    2007-01-01

    Empirical evidence and theoretical studies suggest that the phenotype, i.e., cellular- and molecular-scale dynamics, including proliferation rate and adhesiveness due to microenvironmental factors and gene expression that govern tumor growth and invasiveness, also determine gross tumor-scale morphology. It has been difficult to quantify the relative effect of these links on disease progression and prognosis using conventional clinical and experimental methods and observables. As a result, successful individualized treatment of highly malignant and invasive cancers, such as glioblastoma, via surgical resection and chemotherapy cannot be offered and outcomes are generally poor. What is needed is a deterministic, quantifiable method to enable understanding of the connections between phenotype and tumor morphology. Here, we critically review advantages and disadvantages of recent computational modeling efforts (e.g., continuum, discrete, and cellular automata models) that have pursued this understanding. Based on this assessment, we propose and discuss a multi-scale, i.e., from the molecular to the gross tumor scale, mathematical and computational “first-principle” approach based on mass conservation and other physical laws, such as employed in reaction-diffusion systems. Model variables describe known characteristics of tumor behavior, and parameters and functional relationships across scales are informed from in vitro, in vivo and ex vivo biology. We demonstrate that this methodology, once coupled to tumor imaging and tumor biopsy or cell culture data, should enable prediction of tumor growth and therapy outcome through quantification of the relation between the underlying dynamics and morphological characteristics. In particular, morphologic stability analysis of this mathematical model reveals that tumor cell patterning at the tumor-host interface is regulated by cell proliferation, adhesion and other phenotypic characteristics: histopathology information of tumor boundary can be inputted to the mathematical model and used as phenotype-diagnostic tool and thus to predict collective and individual tumor cell invasion of surrounding host. This approach further provides a means to deterministically test effects of novel and hypothetical therapy strategies on tumor behavior. PMID:17629503

  3. Multiscale Modeling of Dewetting Damage in Highly Filled Particulate Composites

    NASA Astrophysics Data System (ADS)

    Geubelle, P. H.; Inglis, H. M.; Kramer, J. D.; Patel, J. J.; Kumar, N. C.; Tan, H.

    2008-02-01

    Particle debonding or dewetting constitutes one of the key damage processes in highly filled particulate composites such as solid propellant and other energetic materials. To analyze this failure process, we have developed a multiscale finite element framework that combines, at the microscale, a nonlinear description of the binder response with a cohesive model of the damage process taking place in a representative periodic unit cell (PUC). To relate micro-scale damage to the macroscopic constitutive response of the material, we employ the mathematical theory of homogenization (MTH). After a description of the numerical scheme, we present the results of the damage response of a highly filled particulate composite subjected to a uniaxial macroscopic strain, and show the direct correlation between the complex damage processes taking place in the PUC and the nonlinear macroscopic constitutive response. We also present a detailed study of the PUC size and a comparison between the finite element MTH-based study and a micromechanics model of the dewetting process.

  4. Multiscale Multilevel Approach to Solution of Nanotechnology Problems

    NASA Astrophysics Data System (ADS)

    Polyakov, Sergey; Podryga, Viktoriia

    2018-02-01

    The paper is devoted to a multiscale multilevel approach for the solution of nanotechnology problems on supercomputer systems. The approach uses the combination of continuum mechanics models and the Newton dynamics for individual particles. This combination includes three scale levels: macroscopic, mesoscopic and microscopic. For gas-metal technical systems the following models are used. The quasihydrodynamic system of equations is used as a mathematical model at the macrolevel for gas and solid states. The system of Newton equations is used as a mathematical model at the mesoand microlevels; it is written for nanoparticles of the medium and larger particles moving in the medium. The numerical implementation of the approach is based on the method of splitting into physical processes. The quasihydrodynamic equations are solved by the finite volume method on grids of different types. The Newton equations of motion are solved by Verlet integration in each cell of the grid independently or in groups of connected cells. In the framework of the general methodology, four classes of algorithms and methods of their parallelization are provided. The parallelization uses the principles of geometric parallelism and the efficient partitioning of the computational domain. A special dynamic algorithm is used for load balancing the solvers. The testing of the developed approach was made by the example of the nitrogen outflow from a balloon with high pressure to a vacuum chamber through a micronozzle and a microchannel. The obtained results confirm the high efficiency of the developed methodology.

  5. Feature and contrast enhancement of mammographic image based on multiscale analysis and morphology.

    PubMed

    Wu, Shibin; Yu, Shaode; Yang, Yuhan; Xie, Yaoqin

    2013-01-01

    A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII).

  6. Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology

    PubMed Central

    Wu, Shibin; Xie, Yaoqin

    2013-01-01

    A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII). PMID:24416072

  7. Using network biology to bridge pharmacokinetics and pharmacodynamics in oncology.

    PubMed

    Kirouac, D C; Onsum, M D

    2013-09-04

    If mathematical modeling is to be used effectively in cancer drug development, future models must take into account both the mechanistic details of cellular signal transduction networks and the pharmacokinetics (PK) of drugs used to inhibit their oncogenic activity. In this perspective, we present an approach to building multiscale models that capture systems-level architectural features of oncogenic signaling networks, and describe how these models can be used to design combination therapies and identify predictive biomarkers in silico.CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e71; doi:10.1038/psp.2013.38; published online 4 September 2013.

  8. A Posteriori Error Analysis and Uncertainty Quantification for Adaptive Multiscale Operator Decomposition Methods for Multiphysics Problems

    DTIC Science & Technology

    2014-04-01

    Barrier methods for critical exponent problems in geometric analysis and mathematical physics, J. Erway and M. Holst, Submitted for publication ...TR-14-33 A Posteriori Error Analysis and Uncertainty Quantification for Adaptive Multiscale Operator Decomposition Methods for Multiphysics...Problems Approved for public release, distribution is unlimited. April 2014 HDTRA1-09-1-0036 Donald Estep and Michael

  9. A Validated Multiscale In-Silico Model for Mechano-sensitive Tumour Angiogenesis and Growth

    PubMed Central

    Loizidou, Marilena; Stylianopoulos, Triantafyllos; Hawkes, David J.

    2017-01-01

    Vascularisation is a key feature of cancer growth, invasion and metastasis. To better understand the governing biophysical processes and their relative importance, it is instructive to develop physiologically representative mathematical models with which to compare to experimental data. Previous studies have successfully applied this approach to test the effect of various biochemical factors on tumour growth and angiogenesis. However, these models do not account for the experimentally observed dependency of angiogenic network evolution on growth-induced solid stresses. This work introduces two novel features: the effects of hapto- and mechanotaxis on vessel sprouting, and mechano-sensitive dynamic vascular remodelling. The proposed three-dimensional, multiscale, in-silico model of dynamically coupled angiogenic tumour growth is specified to in-vivo and in-vitro data, chosen, where possible, to provide a physiologically consistent description. The model is then validated against in-vivo data from murine mammary carcinomas, with particular focus placed on identifying the influence of mechanical factors. Crucially, we find that it is necessary to include hapto- and mechanotaxis to recapitulate observed time-varying spatial distributions of angiogenic vasculature. PMID:28125582

  10. Modelling approaches for evaluating multiscale tendon mechanics

    PubMed Central

    Fang, Fei; Lake, Spencer P.

    2016-01-01

    Tendon exhibits anisotropic, inhomogeneous and viscoelastic mechanical properties that are determined by its complicated hierarchical structure and varying amounts/organization of different tissue constituents. Although extensive research has been conducted to use modelling approaches to interpret tendon structure–function relationships in combination with experimental data, many issues remain unclear (i.e. the role of minor components such as decorin, aggrecan and elastin), and the integration of mechanical analysis across different length scales has not been well applied to explore stress or strain transfer from macro- to microscale. This review outlines mathematical and computational models that have been used to understand tendon mechanics at different scales of the hierarchical organization. Model representations at the molecular, fibril and tissue levels are discussed, including formulations that follow phenomenological and microstructural approaches (which include evaluations of crimp, helical structure and the interaction between collagen fibrils and proteoglycans). Multiscale modelling approaches incorporating tendon features are suggested to be an advantageous methodology to understand further the physiological mechanical response of tendon and corresponding adaptation of properties owing to unique in vivo loading environments. PMID:26855747

  11. Biology meets physics: Reductionism and multi-scale modeling of morphogenesis.

    PubMed

    Green, Sara; Batterman, Robert

    2017-02-01

    A common reductionist assumption is that macro-scale behaviors can be described "bottom-up" if only sufficient details about lower-scale processes are available. The view that an "ideal" or "fundamental" physics would be sufficient to explain all macro-scale phenomena has been met with criticism from philosophers of biology. Specifically, scholars have pointed to the impossibility of deducing biological explanations from physical ones, and to the irreducible nature of distinctively biological processes such as gene regulation and evolution. This paper takes a step back in asking whether bottom-up modeling is feasible even when modeling simple physical systems across scales. By comparing examples of multi-scale modeling in physics and biology, we argue that the "tyranny of scales" problem presents a challenge to reductive explanations in both physics and biology. The problem refers to the scale-dependency of physical and biological behaviors that forces researchers to combine different models relying on different scale-specific mathematical strategies and boundary conditions. Analyzing the ways in which different models are combined in multi-scale modeling also has implications for the relation between physics and biology. Contrary to the assumption that physical science approaches provide reductive explanations in biology, we exemplify how inputs from physics often reveal the importance of macro-scale models and explanations. We illustrate this through an examination of the role of biomechanical modeling in developmental biology. In such contexts, the relation between models at different scales and from different disciplines is neither reductive nor completely autonomous, but interdependent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Crypt dynamics and colorectal cancer: advances in mathematical modelling.

    PubMed

    van Leeuwen, I M M; Byrne, H M; Jensen, O E; King, J R

    2006-06-01

    Mathematical modelling forms a key component of systems biology, offering insights that complement and stimulate experimental studies. In this review, we illustrate the role of theoretical models in elucidating the mechanisms involved in normal intestinal crypt dynamics and colorectal cancer. We discuss a range of modelling approaches, including models that describe cell proliferation, migration, differentiation, crypt fission, genetic instability, APC inactivation and tumour heterogeneity. We focus on the model assumptions, limitations and applications, rather than on the technical details. We also present a new stochastic model for stem-cell dynamics, which predicts that, on average, APC inactivation occurs more quickly in the stem-cell pool in the absence of symmetric cell division. This suggests that natural niche succession may protect stem cells against malignant transformation in the gut. Finally, we explain how we aim to gain further understanding of the crypt system and of colorectal carcinogenesis with the aid of multiscale models that cover all levels of organization from the molecular to the whole organ.

  13. Introduction to a special section on ecohydrology of semiarid environments: Confronting mathematical models with ecosystem complexity

    NASA Astrophysics Data System (ADS)

    Svoray, Tal; Assouline, Shmuel; Katul, Gabriel

    2015-11-01

    Current literature provides large number of publications about ecohydrological processes and their effect on the biota in drylands. Given the limited laboratory and field experiments in such systems, many of these publications are based on mathematical models of varying complexity. The underlying implicit assumption is that the data set used to evaluate these models covers the parameter space of conditions that characterize drylands and that the models represent the actual processes with acceptable certainty. However, a question raised is to what extent these mathematical models are valid when confronted with observed ecosystem complexity? This Introduction reviews the 16 papers that comprise the Special Section on Eco-hydrology of Semiarid Environments: Confronting Mathematical Models with Ecosystem Complexity. The subjects studied in these papers include rainfall regime, infiltration and preferential flow, evaporation and evapotranspiration, annual net primary production, dispersal and invasion, and vegetation greening. The findings in the papers published in this Special Section show that innovative mathematical modeling approaches can represent actual field measurements. Hence, there are strong grounds for suggesting that mathematical models can contribute to greater understanding of ecosystem complexity through characterization of space-time dynamics of biomass and water storage as well as their multiscale interactions. However, the generality of the models and their low-dimensional representation of many processes may also be a "curse" that results in failures when particulars of an ecosystem are required. It is envisaged that the search for a unifying "general" model, while seductive, may remain elusive in the foreseeable future. It is for this reason that improving the merger between experiments and models of various degrees of complexity continues to shape the future research agenda.

  14. Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study.

    PubMed

    Twycross, Jamie; Band, Leah R; Bennett, Malcolm J; King, John R; Krasnogor, Natalio

    2010-03-26

    Stochastic and asymptotic methods are powerful tools in developing multiscale systems biology models; however, little has been done in this context to compare the efficacy of these methods. The majority of current systems biology modelling research, including that of auxin transport, uses numerical simulations to study the behaviour of large systems of deterministic ordinary differential equations, with little consideration of alternative modelling frameworks. In this case study, we solve an auxin-transport model using analytical methods, deterministic numerical simulations and stochastic numerical simulations. Although the three approaches in general predict the same behaviour, the approaches provide different information that we use to gain distinct insights into the modelled biological system. We show in particular that the analytical approach readily provides straightforward mathematical expressions for the concentrations and transport speeds, while the stochastic simulations naturally provide information on the variability of the system. Our study provides a constructive comparison which highlights the advantages and disadvantages of each of the considered modelling approaches. This will prove helpful to researchers when weighing up which modelling approach to select. In addition, the paper goes some way to bridging the gap between these approaches, which in the future we hope will lead to integrative hybrid models.

  15. Simplification of Markov chains with infinite state space and the mathematical theory of random gene expression bursts.

    PubMed

    Jia, Chen

    2017-09-01

    Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.

  16. Simplification of Markov chains with infinite state space and the mathematical theory of random gene expression bursts

    NASA Astrophysics Data System (ADS)

    Jia, Chen

    2017-09-01

    Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.

  17. Discrete Mathematical Approaches to Graph-Based Traffic Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joslyn, Cliff A.; Cowley, Wendy E.; Hogan, Emilie A.

    2014-04-01

    Modern cyber defense and anlaytics requires general, formal models of cyber systems. Multi-scale network models are prime candidates for such formalisms, using discrete mathematical methods based in hierarchically-structured directed multigraphs which also include rich sets of labels. An exemplar of an application of such an approach is traffic analysis, that is, observing and analyzing connections between clients, servers, hosts, and actors within IP networks, over time, to identify characteristic or suspicious patterns. Towards that end, NetFlow (or more generically, IPFLOW) data are available from routers and servers which summarize coherent groups of IP packets flowing through the network. In thismore » paper, we consider traffic analysis of Netflow using both basic graph statistics and two new mathematical measures involving labeled degree distributions and time interval overlap measures. We do all of this over the VAST test data set of 96M synthetic Netflow graph edges, against which we can identify characteristic patterns of simulated ground-truth network attacks.« less

  18. Multilayer Brain Networks

    NASA Astrophysics Data System (ADS)

    Vaiana, Michael; Muldoon, Sarah Feldt

    2018-01-01

    The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently, multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure-function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems.

  19. Multicentric genesis of material structure: Development of the percolation model and some applications

    NASA Astrophysics Data System (ADS)

    Herega, Alexander; Sukhanov, Volodymyr; Vyrovoy, Valery

    2016-11-01

    The multiplicative measure and estimation method of ordering of the nearest neighborhood at the multiscale "site" percolation problem are considered. In the report also is shown the possibility of quantifying a relative degree of order of two nearest neighborhoods, which is based on the algorithm proposed by one of the authors. Moreover, the model of the oscillatory component of interaction of inner boundaries of different scales is proposed. In the context of our report, the concept of lacunarity and effective dimension (introduced by B. Mandelbrot) is discussed as effective tools of mathematical modeling.

  20. Delineating parameter unidentifiabilities in complex models

    NASA Astrophysics Data System (ADS)

    Raman, Dhruva V.; Anderson, James; Papachristodoulou, Antonis

    2017-03-01

    Scientists use mathematical modeling as a tool for understanding and predicting the properties of complex physical systems. In highly parametrized models there often exist relationships between parameters over which model predictions are identical, or nearly identical. These are known as structural or practical unidentifiabilities, respectively. They are hard to diagnose and make reliable parameter estimation from data impossible. They furthermore imply the existence of an underlying model simplification. We describe a scalable method for detecting unidentifiabilities, as well as the functional relations defining them, for generic models. This allows for model simplification, and appreciation of which parameters (or functions thereof) cannot be estimated from data. Our algorithm can identify features such as redundant mechanisms and fast time-scale subsystems, as well as the regimes in parameter space over which such approximations are valid. We base our algorithm on a quantification of regional parametric sensitivity that we call `multiscale sloppiness'. Traditionally, the link between parametric sensitivity and the conditioning of the parameter estimation problem is made locally, through the Fisher information matrix. This is valid in the regime of infinitesimal measurement uncertainty. We demonstrate the duality between multiscale sloppiness and the geometry of confidence regions surrounding parameter estimates made where measurement uncertainty is non-negligible. Further theoretical relationships are provided linking multiscale sloppiness to the likelihood-ratio test. From this, we show that a local sensitivity analysis (as typically done) is insufficient for determining the reliability of parameter estimation, even with simple (non)linear systems. Our algorithm can provide a tractable alternative. We finally apply our methods to a large-scale, benchmark systems biology model of necrosis factor (NF)-κ B , uncovering unidentifiabilities.

  1. Progression to multi-scale models and the application to food system intervention strategies.

    PubMed

    Gröhn, Yrjö T

    2015-02-01

    The aim of this article is to discuss how the systems science approach can be used to optimize intervention strategies in food animal systems. It advocates the idea that the challenges of maintaining a safe food supply are best addressed by integrating modeling and mathematics with biological studies critical to formulation of public policy to address these challenges. Much information on the biology and epidemiology of food animal systems has been characterized through single-discipline methods, but until now this information has not been thoroughly utilized in a fully integrated manner. The examples are drawn from our current research. The first, explained in depth, uses clinical mastitis to introduce the concept of dynamic programming to optimize management decisions in dairy cows (also introducing the curse of dimensionality problem). In the second example, a compartmental epidemic model for Johne's disease with different intervention strategies is optimized. The goal of the optimization strategy depends on whether there is a relationship between Johne's and Crohn's disease. If so, optimization is based on eradication of infection; if not, it is based on the cow's performance only (i.e., economic optimization, similar to the mastitis example). The third example focuses on food safety to introduce risk assessment using Listeria monocytogenes and Salmonella Typhimurium. The last example, practical interventions to effectively manage antibiotic resistance in beef and dairy cattle systems, introduces meta-population modeling that accounts for bacterial growth not only in the host (cow), but also in the cow's feed, drinking water and the housing environment. Each example stresses the need to progress toward multi-scale modeling. The article ends with examples of multi-scale systems, from food supply systems to Johne's disease. Reducing the consequences of foodborne illnesses (i.e., minimizing disease occurrence and associated costs) can only occur through an understanding of the system as a whole, including all its complexities. Thus the goal of future research should be to merge disciplines such as molecular biology, applied mathematics and social sciences to gain a better understanding of complex systems such as the food supply chain. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment.

    PubMed

    Anderson, Alexander R A; Weaver, Alissa M; Cummings, Peter T; Quaranta, Vito

    2006-12-01

    Emergence of invasive behavior in cancer is life-threatening, yet ill-defined due to its multifactorial nature. We present a multiscale mathematical model of cancer invasion, which considers cellular and microenvironmental factors simultaneously and interactively. Unexpectedly, the model simulations predict that harsh tumor microenvironment conditions (e.g., hypoxia, heterogenous extracellular matrix) exert a dramatic selective force on the tumor, which grows as an invasive mass with fingering margins, dominated by a few clones with aggressive traits. In contrast, mild microenvironment conditions (e.g., normoxia, homogeneous matrix) allow clones with similar aggressive traits to coexist with less aggressive phenotypes in a heterogeneous tumor mass with smooth, noninvasive margins. Thus, the genetic make-up of a cancer cell may realize its invasive potential through a clonal evolution process driven by definable microenvironmental selective forces. Our mathematical model provides a theoretical/experimental framework to quantitatively characterize this selective pressure for invasion and test ways to eliminate it.

  3. Linear theory for filtering nonlinear multiscale systems with model error

    PubMed Central

    Berry, Tyrus; Harlim, John

    2014-01-01

    In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online, as part of a filtering procedure, simultaneously produce accurate filtering and equilibrium statistical prediction. In contrast, an offline estimation technique based on a linear regression, which fits the parameters to a training dataset without using the filter, yields filter estimates which are worse than the observations or even divergent when the slow variables are not fully observed. This finding does not imply that all offline methods are inherently inferior to the online method for nonlinear estimation problems, it only suggests that an ideal estimation technique should estimate all parameters simultaneously whether it is online or offline. PMID:25002829

  4. Multiscale Modeling of Hematologic Disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedosov, Dmitry A.; Pivkin, Igor; Pan, Wenxiao

    Parasitic infectious diseases and other hereditary hematologic disorders are often associated with major changes in the shape and viscoelastic properties of red blood cells (RBCs). Such changes can disrupt blood flow and even brain perfusion, as in the case of cerebral malaria. Modeling of these hematologic disorders requires a seamless multiscale approach, where blood cells and blood flow in the entire arterial tree are represented accurately using physiologically consistent parameters. In this chapter, we present a computational methodology based on dissipative particle dynamics (DPD) which models RBCs as well as whole blood in health and disease. DPD is a Lagrangianmore » method that can be derived from systematic coarse-graining of molecular dynamics but can scale efficiently up to small arteries and can also be used to model RBCs down to spectrin level. To this end, we present two complementary mathematical models for RBCs and describe a systematic procedure on extracting the relevant input parameters from optical tweezers and microfluidic experiments for single RBCs. We then use these validated RBC models to predict the behavior of whole healthy blood and compare with experimental results. The same procedure is applied to modeling malaria, and results for infected single RBCs and whole blood are presented.« less

  5. Differential morphology and image processing.

    PubMed

    Maragos, P

    1996-01-01

    Image processing via mathematical morphology has traditionally used geometry to intuitively understand morphological signal operators and set or lattice algebra to analyze them in the space domain. We provide a unified view and analytic tools for morphological image processing that is based on ideas from differential calculus and dynamical systems. This includes ideas on using partial differential or difference equations (PDEs) to model distance propagation or nonlinear multiscale processes in images. We briefly review some nonlinear difference equations that implement discrete distance transforms and relate them to numerical solutions of the eikonal equation of optics. We also review some nonlinear PDEs that model the evolution of multiscale morphological operators and use morphological derivatives. Among the new ideas presented, we develop some general 2-D max/min-sum difference equations that model the space dynamics of 2-D morphological systems (including the distance computations) and some nonlinear signal transforms, called slope transforms, that can analyze these systems in a transform domain in ways conceptually similar to the application of Fourier transforms to linear systems. Thus, distance transforms are shown to be bandpass slope filters. We view the analysis of the multiscale morphological PDEs and of the eikonal PDE solved via weighted distance transforms as a unified area in nonlinear image processing, which we call differential morphology, and briefly discuss its potential applications to image processing and computer vision.

  6. Multiresolution multiscale active mask segmentation of fluorescence microscope images

    NASA Astrophysics Data System (ADS)

    Srinivasa, Gowri; Fickus, Matthew; Kovačević, Jelena

    2009-08-01

    We propose an active mask segmentation framework that combines the advantages of statistical modeling, smoothing, speed and flexibility offered by the traditional methods of region-growing, multiscale, multiresolution and active contours respectively. At the crux of this framework is a paradigm shift from evolving contours in the continuous domain to evolving multiple masks in the discrete domain. Thus, the active mask framework is particularly suited to segment digital images. We demonstrate the use of the framework in practice through the segmentation of punctate patterns in fluorescence microscope images. Experiments reveal that statistical modeling helps the multiple masks converge from a random initial configuration to a meaningful one. This obviates the need for an involved initialization procedure germane to most of the traditional methods used to segment fluorescence microscope images. While we provide the mathematical details of the functions used to segment fluorescence microscope images, this is only an instantiation of the active mask framework. We suggest some other instantiations of the framework to segment different types of images.

  7. Large-scale inverse and forward modeling of adaptive resonance in the tinnitus decompensation.

    PubMed

    Low, Yin Fen; Trenado, Carlos; Delb, Wolfgang; D'Amelio, Roberto; Falkai, Peter; Strauss, Daniel J

    2006-01-01

    Neural correlates of psychophysiological tinnitus models in humans may be used for their neurophysiological validation as well as for their refinement and improvement to better understand the pathogenesis of the tinnitus decompensation and to develop new therapeutic approaches. In this paper we make use of neural correlates of top-down projections, particularly, a recently introduced synchronization stability measure, together with a multiscale evoked response potential (ERP) model in order to study and evaluate the tinnitus decompensation by using a hybrid inverse-forward mathematical methodology. The neural synchronization stability, which according to the underlying model is linked to the focus of attention on the tinnitus signal, follows the experimental and inverse way and allows to discriminate between a group of compensated and decompensated tinnitus patients. The multiscale ERP model, which works in the forward direction, is used to consolidate hypotheses which are derived from the experiments for a known neural source dynamics related to attention. It is concluded that both methodologies agree and support each other in the description of the discriminatory character of the neural correlate proposed, but also help to fill the gap between the top-down adaptive resonance theory and the Jastreboff model of tinnitus.

  8. A Mathematical Motivation for Complex-Valued Convolutional Networks.

    PubMed

    Tygert, Mark; Bruna, Joan; Chintala, Soumith; LeCun, Yann; Piantino, Serkan; Szlam, Arthur

    2016-05-01

    A complex-valued convolutional network (convnet) implements the repeated application of the following composition of three operations, recursively applying the composition to an input vector of nonnegative real numbers: (1) convolution with complex-valued vectors, followed by (2) taking the absolute value of every entry of the resulting vectors, followed by (3) local averaging. For processing real-valued random vectors, complex-valued convnets can be viewed as data-driven multiscale windowed power spectra, data-driven multiscale windowed absolute spectra, data-driven multiwavelet absolute values, or (in their most general configuration) data-driven nonlinear multiwavelet packets. Indeed, complex-valued convnets can calculate multiscale windowed spectra when the convnet filters are windowed complex-valued exponentials. Standard real-valued convnets, using rectified linear units (ReLUs), sigmoidal (e.g., logistic or tanh) nonlinearities, or max pooling, for example, do not obviously exhibit the same exact correspondence with data-driven wavelets (whereas for complex-valued convnets, the correspondence is much more than just a vague analogy). Courtesy of the exact correspondence, the remarkably rich and rigorous body of mathematical analysis for wavelets applies directly to (complex-valued) convnets.

  9. Multiscale Persistent Functions for Biomolecular Structure Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Kelin; Li, Zhiming; Mu, Lin

    Here in this paper, we introduce multiscale persistent functions for biomolecular structure characterization. The essential idea is to combine our multiscale rigidity functions (MRFs) with persistent homology analysis, so as to construct a series of multiscale persistent functions, particularly multiscale persistent entropies, for structure characterization. To clarify the fundamental idea of our method, the multiscale persistent entropy (MPE) model is discussed in great detail. Mathematically, unlike the previous persistent entropy (Chintakunta et al. in Pattern Recognit 48(2):391–401, 2015; Merelli et al. in Entropy 17(10):6872–6892, 2015; Rucco et al. in: Proceedings of ECCS 2014, Springer, pp 117–128, 2016), a special resolutionmore » parameter is incorporated into our model. Various scales can be achieved by tuning its value. Physically, our MPE can be used in conformational entropy evaluation. More specifically, it is found that our method incorporates in it a natural classification scheme. This is achieved through a density filtration of an MRF built from angular distributions. To further validate our model, a systematical comparison with the traditional entropy evaluation model is done. Additionally, it is found that our model is able to preserve the intrinsic topological features of biomolecular data much better than traditional approaches, particularly for resolutions in the intermediate range. Moreover, by comparing with traditional entropies from various grid sizes, bond angle-based methods and a persistent homology-based support vector machine method (Cang et al. in Mol Based Math Biol 3:140–162, 2015), we find that our MPE method gives the best results in terms of average true positive rate in a classic protein structure classification test. More interestingly, all-alpha and all-beta protein classes can be clearly separated from each other with zero error only in our model. Finally, a special protein structure index (PSI) is proposed, for the first time, to describe the “regularity” of protein structures. Basically, a protein structure is deemed as regular if it has a consistent and orderly configuration. Our PSI model is tested on a database of 110 proteins; we find that structures with larger portions of loops and intrinsically disorder regions are always associated with larger PSI, meaning an irregular configuration, while proteins with larger portions of secondary structures, i.e., alpha-helix or beta-sheet, have smaller PSI. Essentially, PSI can be used to describe the “regularity” information in any systems.« less

  10. Multiscale Simulation of Microbe Structure and Dynamics

    PubMed Central

    Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V.; Cheluvaraja, Srinath C.; Ortoleva, Peter J.

    2012-01-01

    A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin. PMID:21802438

  11. A theoretical study of the initiation, maintenance and termination of gastric slow wave re-entry.

    PubMed

    Du, Peng; Paskaranandavadivel, Niranchan; O'Grady, Greg; Tang, Shou-Jiang; Cheng, Leo K

    2015-12-01

    Gastric slow wave dysrhythmias are associated with motility disorders. Periods of tachygastria associated with slow wave re-entry were recently recognized as one important dysrhythmia mechanism, but factors promoting and sustaining gastric re-entry are currently unknown. This study reports two experimental forms of gastric re-entry and presents a series of multi-scale models that define criteria for slow wave re-entry initiation, maintenance and termination. High-resolution electrical mapping was conducted in porcine and canine models and two spatiotemporal patterns of re-entrant activities were captured: single-loop rotor and double-loop figure-of-eight. Two separate multi-scale mathematical models were developed to reproduce the velocity and entrainment frequency of these experimental recordings. A single-pulse stimulus was used to invoke a rotor re-entry in the porcine model and a figure-of-eight re-entry in the canine model. In both cases, the simulated re-entrant activities were found to be perpetuated by tachygastria that was accompanied by a reduction in the propagation velocity in the re-entrant pathways. The simulated re-entrant activities were terminated by a single-pulse stimulus targeted at the tip of re-entrant wave, after which normal antegrade propagation was restored by the underlying intrinsic frequency gradient. (i) the stability of re-entry is regulated by stimulus timing, intrinsic frequency gradient and conductivity; (ii) tachygastria due to re-entry increases the frequency gradient while showing decreased propagation velocity; (iii) re-entry may be effectively terminated by a targeted stimulus at the core, allowing the intrinsic slow wave conduction system to re-establish itself. © The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  12. Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading.

    PubMed

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2016-09-06

    The loss of glycosaminoglycan (GAG) content is a major biochemical change during intervertebral disc (IVD) degeneration. Abnormal mechanical loading is one of the major factors causing disc degeneration. In this study, a multiscale mathematical model was developed to quantify the effect of mechanical loading on GAG synthesis. This model was based on a recently developed cell volume dependent GAG synthesis theory that predicts the variation of GAG synthesis rate of a cell under the influence of mechanical stimuli, and the biphasic theory that describes the deformation of IVD under mechanical loading. The GAG synthesis (at the cell level) was coupled with the mechanical loading (at the tissue level) via a cell-matrix unit approach which established a relationship between the variation of cell dilatation and the local tissue dilatation. This multiscale mathematical model was used to predict the effect of static load (creep load) on GAG synthesis in bovine tail discs. The predicted results are in the range of experimental results. This model was also used to investigate the effect of static (0.2MPa) and diurnal loads (0.1/0.3MPa and 0.15/0.25MPa in 12/12 hours shift with an average of 0.2MPa over a cycle) on GAG synthesis. It was found that static load and diurnal loads have different effects on GAG synthesis in a diurnal cycle, and the diurnal load effects depend on the amplitude of the load. The model is important to understand the effect of mechanical loading at the tissue level on GAG synthesis at the cellular level, as well as to optimize the mechanical loading in growing engineered tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A roadmap to computational social neuroscience.

    PubMed

    Tognoli, Emmanuelle; Dumas, Guillaume; Kelso, J A Scott

    2018-02-01

    To complement experimental efforts toward understanding human social interactions at both neural and behavioral levels, two computational approaches are presented: (1) a fully parameterizable mathematical model of a social partner, the Human Dynamic Clamp which, by virtue of experimentally controlled interactions between Virtual Partners and real people, allows for emergent behaviors to be studied; and (2) a multiscale neurocomputational model of social coordination that enables exploration of social self-organization at all levels-from neuronal patterns to people interacting with each other. These complementary frameworks and the cross product of their analysis aim at understanding the fundamental principles governing social behavior.

  14. Typograph: Multiscale Spatial Exploration of Text Documents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endert, Alexander; Burtner, Edwin R.; Cramer, Nicholas O.

    2013-12-01

    Visualizing large document collections using a spatial layout of terms can enable quick overviews of information. However, these metaphors (e.g., word clouds, tag clouds, etc.) often lack interactivity to explore the information and the location and rendering of the terms are often not based on mathematical models that maintain relative distances from other information based on similarity metrics. Further, transitioning between levels of detail (i.e., from terms to full documents) can be challanging. In this paper, we present Typograph, a multi-scale spatial exploration visualization for large document collections. Based on the term-based visualization methods, Typograh enables multipel levels of detailmore » (terms, phrases, snippets, and full documents) within the single spatialization. Further, the information is placed based on their relative similarity to other information to create the “near = similar” geography metaphor. This paper discusses the design principles and functionality of Typograph and presents a use case analyzing Wikipedia to demonstrate usage.« less

  15. On the Theory and Numerical Simulation of Cohesive Crack Propagation with Application to Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Rudraraju, Siva Shankar; Garikipati, Krishna; Waas, Anthony M.; Bednarcyk, Brett A.

    2013-01-01

    The phenomenon of crack propagation is among the predominant modes of failure in many natural and engineering structures, often leading to severe loss of structural integrity and catastrophic failure. Thus, the ability to understand and a priori simulate the evolution of this failure mode has been one of the cornerstones of applied mechanics and structural engineering and is broadly referred to as "fracture mechanics." The work reported herein focuses on extending this understanding, in the context of through-thickness crack propagation in cohesive materials, through the development of a continuum-level multiscale numerical framework, which represents cracks as displacement discontinuities across a surface of zero measure. This report presents the relevant theory, mathematical framework, numerical modeling, and experimental investigations of through-thickness crack propagation in fiber-reinforced composites using the Variational Multiscale Cohesive Method (VMCM) developed by the authors.

  16. CellML metadata standards, associated tools and repositories

    PubMed Central

    Beard, Daniel A.; Britten, Randall; Cooling, Mike T.; Garny, Alan; Halstead, Matt D.B.; Hunter, Peter J.; Lawson, James; Lloyd, Catherine M.; Marsh, Justin; Miller, Andrew; Nickerson, David P.; Nielsen, Poul M.F.; Nomura, Taishin; Subramanium, Shankar; Wimalaratne, Sarala M.; Yu, Tommy

    2009-01-01

    The development of standards for encoding mathematical models is an important component of model building and model sharing among scientists interested in understanding multi-scale physiological processes. CellML provides such a standard, particularly for models based on biophysical mechanisms, and a substantial number of models are now available in the CellML Model Repository. However, there is an urgent need to extend the current CellML metadata standard to provide biological and biophysical annotation of the models in order to facilitate model sharing, automated model reduction and connection to biological databases. This paper gives a broad overview of a number of new developments on CellML metadata and provides links to further methodological details available from the CellML website. PMID:19380315

  17. Coupling biomechanics to a cellular level model: an approach to patient-specific image driven multi-scale and multi-physics tumor simulation.

    PubMed

    May, Christian P; Kolokotroni, Eleni; Stamatakos, Georgios S; Büchler, Philippe

    2011-10-01

    Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Enhancement of low visibility aerial images using histogram truncation and an explicit Retinex representation for balancing contrast and color consistency

    NASA Astrophysics Data System (ADS)

    Liu, Changjiang; Cheng, Irene; Zhang, Yi; Basu, Anup

    2017-06-01

    This paper presents an improved multi-scale Retinex (MSR) based enhancement for ariel images under low visibility. For traditional multi-scale Retinex, three scales are commonly employed, which limits its application scenarios. We extend our research to a general purpose enhanced method, and design an MSR with more than three scales. Based on the mathematical analysis and deductions, an explicit multi-scale representation is proposed that balances image contrast and color consistency. In addition, a histogram truncation technique is introduced as a post-processing strategy to remap the multi-scale Retinex output to the dynamic range of the display. Analysis of experimental results and comparisons with existing algorithms demonstrate the effectiveness and generality of the proposed method. Results on image quality assessment proves the accuracy of the proposed method with respect to both objective and subjective criteria.

  19. Hybrid stochastic simplifications for multiscale gene networks.

    PubMed

    Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu

    2009-09-07

    Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach.

  20. Ordinary differential equations with applications in molecular biology.

    PubMed

    Ilea, M; Turnea, M; Rotariu, M

    2012-01-01

    Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances. Ordinary differential equations are used to model biological processes on various levels ranging from DNA molecules or biosynthesis phospholipids on the cellular level.

  1. Development of Semantic Description for Multiscale Models of Thermo-Mechanical Treatment of Metal Alloys

    NASA Astrophysics Data System (ADS)

    Macioł, Piotr; Regulski, Krzysztof

    2016-08-01

    We present a process of semantic meta-model development for data management in an adaptable multiscale modeling framework. The main problems in ontology design are discussed, and a solution achieved as a result of the research is presented. The main concepts concerning the application and data management background for multiscale modeling were derived from the AM3 approach—object-oriented Agile multiscale modeling methodology. The ontological description of multiscale models enables validation of semantic correctness of data interchange between submodels. We also present a possibility of using the ontological model as a supervisor in conjunction with a multiscale model controller and a knowledge base system. Multiscale modeling formal ontology (MMFO), designed for describing multiscale models' data and structures, is presented. A need for applying meta-ontology in the MMFO development process is discussed. Examples of MMFO application in describing thermo-mechanical treatment of metal alloys are discussed. Present and future applications of MMFO are described.

  2. Comparison of Multiscale Method of Cells-Based Models for Predicting Elastic Properties of Filament Wound C/C-SiC

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Fassin, Marek; Bednarcyk, Brett A.; Reese, Stefanie; Simon, Jaan-Willem

    2017-01-01

    Three different multiscale models, based on the method of cells (generalized and high fidelity) micromechanics models were developed and used to predict the elastic properties of C/C-SiC composites. In particular, the following multiscale modeling strategies were employed: Concurrent multiscale modeling of all phases using the generalized method of cells, synergistic (two-way coupling in space) multiscale modeling with the generalized method of cells, and hierarchical (one-way coupling in space) multiscale modeling with the high fidelity generalized method of cells. The three models are validated against data from a hierarchical multiscale finite element model in the literature for a repeating unit cell of C/C-SiC. Furthermore, the multiscale models are used in conjunction with classical lamination theory to predict the stiffness of C/C-SiC plates manufactured via a wet filament winding and liquid silicon infiltration process recently developed by the German Aerospace Institute.

  3. Multi-Scale Behavioral Modeling and Analysis Promoting a Fundamental Understanding of Agent-Based System Design and Operation

    DTIC Science & Technology

    2007-03-01

    Chains," Mathematics of Control, Signals, and Systems, vol. 3(1), pp. 1-29, 1990. [4] A . Arnold, J . A . Carrillo, and I. Gamba, "Low and High Field...Aronson, C. L. A ., and J . L. Vázquez, "Interfaces with a corner point in one- dimensional porous medium flow," Comm. Pure Appl. Math, vol. 38(4), pp. 375...K. Levin, "Damage analysis of fiber composites," Computer Methods in Applied Mechanics and Engineering. [10] K. S. Barber, A . Goel, T. J . Graser, T

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornreich, Drew E; Vaidya, Rajendra U; Ammerman, Curtt N

    Integrated Computational Materials Engineering (ICME) is a novel overarching approach to bridge length and time scales in computational materials science and engineering. This approach integrates all elements of multi-scale modeling (including various empirical and science-based models) with materials informatics to provide users the opportunity to tailor material selections based on stringent application needs. Typically, materials engineering has focused on structural requirements (stress, strain, modulus, fracture toughness etc.) while multi-scale modeling has been science focused (mechanical threshold strength model, grain-size models, solid-solution strengthening models etc.). Materials informatics (mechanical property inventories) on the other hand, is extensively data focused. All of thesemore » elements are combined within the framework of ICME to create architecture for the development, selection and design new composite materials for challenging environments. We propose development of the foundations for applying ICME to composite materials development for nuclear and high-radiation environments (including nuclear-fusion energy reactors, nuclear-fission reactors, and accelerators). We expect to combine all elements of current material models (including thermo-mechanical and finite-element models) into the ICME framework. This will be accomplished through the use of a various mathematical modeling constructs. These constructs will allow the integration of constituent models, which in tum would allow us to use the adaptive strengths of using a combinatorial scheme (fabrication and computational) for creating new composite materials. A sample problem where these concepts are used is provided in this summary.« less

  5. Module-based multiscale simulation of angiogenesis in skeletal muscle

    PubMed Central

    2011-01-01

    Background Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at different biological scales, ranging from the molecular to the tissue levels. Integration of models at different scales is a challenging and currently unsolved problem. Results We present an object-oriented module-based computational integration strategy to build a multiscale model of angiogenesis that links currently available models. As an example case, we use this approach to integrate modules representing microvascular blood flow, oxygen transport, vascular endothelial growth factor transport and endothelial cell behavior (sensing, migration and proliferation). Modeling methodologies in these modules include algebraic equations, partial differential equations and agent-based models with complex logical rules. We apply this integrated model to simulate exercise-induced angiogenesis in skeletal muscle. The simulation results compare capillary growth patterns between different exercise conditions for a single bout of exercise. Results demonstrate how the computational infrastructure can effectively integrate multiple modules by coordinating their connectivity and data exchange. Model parameterization offers simulation flexibility and a platform for performing sensitivity analysis. Conclusions This systems biology strategy can be applied to larger scale integration of computational models of angiogenesis in skeletal muscle, or other complex processes in other tissues under physiological and pathological conditions. PMID:21463529

  6. Heterogeneous continuous-time random walks

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.; Tupikina, Liubov

    2018-01-01

    We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.

  7. Parallelization of fine-scale computation in Agile Multiscale Modelling Methodology

    NASA Astrophysics Data System (ADS)

    Macioł, Piotr; Michalik, Kazimierz

    2016-10-01

    Nowadays, multiscale modelling of material behavior is an extensively developed area. An important obstacle against its wide application is high computational demands. Among others, the parallelization of multiscale computations is a promising solution. Heterogeneous multiscale models are good candidates for parallelization, since communication between sub-models is limited. In this paper, the possibility of parallelization of multiscale models based on Agile Multiscale Methodology framework is discussed. A sequential, FEM based macroscopic model has been combined with concurrently computed fine-scale models, employing a MatCalc thermodynamic simulator. The main issues, being investigated in this work are: (i) the speed-up of multiscale models with special focus on fine-scale computations and (ii) on decreasing the quality of computations enforced by parallel execution. Speed-up has been evaluated on the basis of Amdahl's law equations. The problem of `delay error', rising from the parallel execution of fine scale sub-models, controlled by the sequential macroscopic sub-model is discussed. Some technical aspects of combining third-party commercial modelling software with an in-house multiscale framework and a MPI library are also discussed.

  8. Quantum Dynamics in Continuum for Proton Transport I: Basic Formulation.

    PubMed

    Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Proton transport is one of the most important and interesting phenomena in living cells. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins. We describe proton dynamics quantum mechanically via a density functional approach while implicitly model other solvent ions as a dielectric continuum to reduce the number of degrees of freedom. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic level. We formulate a total free energy functional to put proton kinetic and potential energies as well as electrostatic energy of all ions on an equal footing. The variational principle is employed to derive nonlinear governing equations for the proton transport system. Generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained from the variational framework. Theoretical formulations for the proton density and proton conductance are constructed based on fundamental principles. The molecular surface of the channel protein is utilized to split the discrete protein domain and the continuum solvent domain, and facilitate the multiscale discrete/continuum/quantum descriptions. A number of mathematical algorithms, including the Dirichlet to Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The Gramicidin A (GA) channel is used to demonstrate the performance of the proposed proton transport model and validate the efficiency of proposed mathematical algorithms. The electrostatic characteristics of the GA channel is analyzed with a wide range of model parameters. The proton conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and validates the proposed model.

  9. Multi-Scale Modeling in Morphogenesis: A Critical Analysis of the Cellular Potts Model

    PubMed Central

    Voss-Böhme, Anja

    2012-01-01

    Cellular Potts models (CPMs) are used as a modeling framework to elucidate mechanisms of biological development. They allow a spatial resolution below the cellular scale and are applied particularly when problems are studied where multiple spatial and temporal scales are involved. Despite the increasing usage of CPMs in theoretical biology, this model class has received little attention from mathematical theory. To narrow this gap, the CPMs are subjected to a theoretical study here. It is asked to which extent the updating rules establish an appropriate dynamical model of intercellular interactions and what the principal behavior at different time scales characterizes. It is shown that the longtime behavior of a CPM is degenerate in the sense that the cells consecutively die out, independent of the specific interdependence structure that characterizes the model. While CPMs are naturally defined on finite, spatially bounded lattices, possible extensions to spatially unbounded systems are explored to assess to which extent spatio-temporal limit procedures can be applied to describe the emergent behavior at the tissue scale. To elucidate the mechanistic structure of CPMs, the model class is integrated into a general multiscale framework. It is shown that the central role of the surface fluctuations, which subsume several cellular and intercellular factors, entails substantial limitations for a CPM's exploitation both as a mechanistic and as a phenomenological model. PMID:22984409

  10. Use of mathematic modeling to compare and predict hemodynamic effects of the modified Blalock-Taussig and right ventricle-pulmonary artery shunts for hypoplastic left heart syndrome.

    PubMed

    Bove, Edward L; Migliavacca, Francesco; de Leval, Marc R; Balossino, Rossella; Pennati, Giancarlo; Lloyd, Thomas R; Khambadkone, Sachin; Hsia, Tain-Yen; Dubini, Gabriele

    2008-08-01

    Stage one reconstruction (Norwood operation) for hypoplastic left heart syndrome can be performed with either a modified Blalock-Taussig shunt or a right ventricle-pulmonary artery shunt. Both methods have certain inherent characteristics. It is postulated that mathematic modeling could help elucidate these differences. Three-dimensional computer models of the Blalock-Taussig shunt and right ventricle-pulmonary artery shunt modifications of the Norwood operation were developed by using the finite volume method. Conduits of 3, 3.5, and 4 mm were used in the Blalock-Taussig shunt model, whereas conduits of 4, 5, and 6 mm were used in the right ventricle-pulmonary artery shunt model. The hydraulic nets (lumped resistances, compliances, inertances, and elastances) were identical in the 2 models. A multiscale approach was adopted to couple the 3-dimensional models with the circulation net. Computer simulations were compared with postoperative catheterization data. Good correlation was found between predicted and observed data. For the right ventricle-pulmonary artery shunt modification, there was higher aortic diastolic pressure, decreased pulmonary artery pressure, lower Qp/Qs ratio, and higher coronary perfusion pressure. Mathematic modeling predicted minimal regurgitant flow in the right ventricle-pulmonary artery shunt model, which correlated with postoperative Doppler measurements. The right ventricle-pulmonary artery shunt demonstrated lower stroke work and a higher mechanical efficiency (stroke work/total mechanical energy). The close correlation between predicted and observed data supports the use of mathematic modeling in the design and assessment of surgical procedures. The potentially damaging effects of a systemic ventriculotomy in the right ventricle-pulmonary artery shunt modification of the Norwood operation have not been analyzed.

  11. Simulating and mapping spatial complexity using multi-scale techniques

    USGS Publications Warehouse

    De Cola, L.

    1994-01-01

    A central problem in spatial analysis is the mapping of data for complex spatial fields using relatively simple data structures, such as those of a conventional GIS. This complexity can be measured using such indices as multi-scale variance, which reflects spatial autocorrelation, and multi-fractal dimension, which characterizes the values of fields. These indices are computed for three spatial processes: Gaussian noise, a simple mathematical function, and data for a random walk. Fractal analysis is then used to produce a vegetation map of the central region of California based on a satellite image. This analysis suggests that real world data lie on a continuum between the simple and the random, and that a major GIS challenge is the scientific representation and understanding of rapidly changing multi-scale fields. -Author

  12. Dynamics of a neural system with a multiscale architecture

    PubMed Central

    Breakspear, Michael; Stam, Cornelis J

    2005-01-01

    The architecture of the brain is characterized by a modular organization repeated across a hierarchy of spatial scales—neurons, minicolumns, cortical columns, functional brain regions, and so on. It is important to consider that the processes governing neural dynamics at any given scale are not only determined by the behaviour of other neural structures at that scale, but also by the emergent behaviour of smaller scales, and the constraining influence of activity at larger scales. In this paper, we introduce a theoretical framework for neural systems in which the dynamics are nested within a multiscale architecture. In essence, the dynamics at each scale are determined by a coupled ensemble of nonlinear oscillators, which embody the principle scale-specific neurobiological processes. The dynamics at larger scales are ‘slaved’ to the emergent behaviour of smaller scales through a coupling function that depends on a multiscale wavelet decomposition. The approach is first explicated mathematically. Numerical examples are then given to illustrate phenomena such as between-scale bifurcations, and how synchronization in small-scale structures influences the dynamics in larger structures in an intuitive manner that cannot be captured by existing modelling approaches. A framework for relating the dynamical behaviour of the system to measured observables is presented and further extensions to capture wave phenomena and mode coupling are suggested. PMID:16087448

  13. Hybrid stochastic simplifications for multiscale gene networks

    PubMed Central

    Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu

    2009-01-01

    Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach. PMID:19735554

  14. Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity

    PubMed Central

    Cheng, Leo K; Komuro, Rie; Austin, Travis M; Buist, Martin L; Pullan, Andrew J

    2007-01-01

    One of the major aims of the International Union of Physiological Sciences (IUPS) Physiome Project is to develop multiscale mathematical and computer models that can be used to help understand human health. We present here a small facet of this broad plan that applies to the gastrointestinal system. Specifically, we present an anatomically and physiologically based modelling framework that is capable of simulating normal and pathological electrical activity within the stomach and small intestine. The continuum models used within this framework have been created using anatomical information derived from common medical imaging modalities and data from the Visible Human Project. These models explicitly incorporate the various smooth muscle layers and networks of interstitial cells of Cajal (ICC) that are known to exist within the walls of the stomach and small bowel. Electrical activity within individual ICCs and smooth muscle cells is simulated using a previously published simplified representation of the cell level electrical activity. This simulated cell level activity is incorporated into a bidomain representation of the tissue, allowing electrical activity of the entire stomach or intestine to be simulated in the anatomically derived models. This electrical modelling framework successfully replicates many of the qualitative features of the slow wave activity within the stomach and intestine and has also been used to investigate activity associated with functional uncoupling of the stomach. PMID:17457969

  15. Multi-scale modeling of the CD8 immune response

    NASA Astrophysics Data System (ADS)

    Barbarroux, Loic; Michel, Philippe; Adimy, Mostafa; Crauste, Fabien

    2016-06-01

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself in case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.

  16. Multi-scale modeling of the CD8 immune response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbarroux, Loic, E-mail: loic.barbarroux@doctorant.ec-lyon.fr; Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully; Michel, Philippe, E-mail: philippe.michel@ec-lyon.fr

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself inmore » case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.« less

  17. The wavelet response as a multiscale characterization of scattering processes at granular interfaces.

    PubMed

    Le Gonidec, Yves; Gibert, Dominique

    2006-11-01

    We perform a multiscale analysis of the backscattering properties of a complex interface between water and a layer of randomly arranged glass beads with diameter D=1 mm. An acoustical experiment is done to record the wavelet response of the interface in a large frequency range from lambda/D=0.3 to lambda/D=15. The wavelet response is a physical analog of the mathematical wavelet transform which possesses nice properties to detect and characterize abrupt changes in signals. The experimental wavelet response allows to identify five frequency domains corresponding to different backscattering properties of the complex interface. This puts quantitative limits to the validity domains of the models used to represent the interface and which are flat elastic, flat visco-elastic, rough random half-space with multiple scattering, and rough elastic from long to short wavelengths respectively. A physical explanation based on Mie scattering theory is proposed to explain the origin of the five frequency domains identified in the wavelet response.

  18. Typograph: Multiscale Spatial Exploration of Text Documents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endert, Alexander; Burtner, Edwin R.; Cramer, Nicholas O.

    2013-10-06

    Visualizing large document collections using a spatial layout of terms can enable quick overviews of information. These visual metaphors (e.g., word clouds, tag clouds, etc.) traditionally show a series of terms organized by space-filling algorithms. However, often lacking in these views is the ability to interactively explore the information to gain more detail, and the location and rendering of the terms are often not based on mathematical models that maintain relative distances from other information based on similarity metrics. In this paper, we present Typograph, a multi-scale spatial exploration visualization for large document collections. Based on the term-based visualization methods,more » Typograh enables multiple levels of detail (terms, phrases, snippets, and full documents) within the single spatialization. Further, the information is placed based on their relative similarity to other information to create the “near = similar” geographic metaphor. This paper discusses the design principles and functionality of Typograph and presents a use case analyzing Wikipedia to demonstrate usage.« less

  19. Multiscale measurement error models for aggregated small area health data.

    PubMed

    Aregay, Mehreteab; Lawson, Andrew B; Faes, Christel; Kirby, Russell S; Carroll, Rachel; Watjou, Kevin

    2016-08-01

    Spatial data are often aggregated from a finer (smaller) to a coarser (larger) geographical level. The process of data aggregation induces a scaling effect which smoothes the variation in the data. To address the scaling problem, multiscale models that link the convolution models at different scale levels via the shared random effect have been proposed. One of the main goals in aggregated health data is to investigate the relationship between predictors and an outcome at different geographical levels. In this paper, we extend multiscale models to examine whether a predictor effect at a finer level hold true at a coarser level. To adjust for predictor uncertainty due to aggregation, we applied measurement error models in the framework of multiscale approach. To assess the benefit of using multiscale measurement error models, we compare the performance of multiscale models with and without measurement error in both real and simulated data. We found that ignoring the measurement error in multiscale models underestimates the regression coefficient, while it overestimates the variance of the spatially structured random effect. On the other hand, accounting for the measurement error in multiscale models provides a better model fit and unbiased parameter estimates. © The Author(s) 2016.

  20. Multiscale Modeling in Computational Biomechanics: Determining Computational Priorities and Addressing Current Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tawhai, Merryn; Bischoff, Jeff; Einstein, Daniel R.

    2009-05-01

    Abstract In this article, we describe some current multiscale modeling issues in computational biomechanics from the perspective of the musculoskeletal and respiratory systems and mechanotransduction. First, we outline the necessity of multiscale simulations in these biological systems. Then we summarize challenges inherent to multiscale biomechanics modeling, regardless of the subdiscipline, followed by computational challenges that are system-specific. We discuss some of the current tools that have been utilized to aid research in multiscale mechanics simulations, and the priorities to further the field of multiscale biomechanics computation.

  1. Mathematical and computational approaches can complement experimental studies of host-pathogen interactions.

    PubMed

    Kirschner, Denise E; Linderman, Jennifer J

    2009-04-01

    In addition to traditional and novel experimental approaches to study host-pathogen interactions, mathematical and computer modelling have recently been applied to address open questions in this area. These modelling tools not only offer an additional avenue for exploring disease dynamics at multiple biological scales, but also complement and extend knowledge gained via experimental tools. In this review, we outline four examples where modelling has complemented current experimental techniques in a way that can or has already pushed our knowledge of host-pathogen dynamics forward. Two of the modelling approaches presented go hand in hand with articles in this issue exploring fluorescence resonance energy transfer and two-photon intravital microscopy. Two others explore virtual or 'in silico' deletion and depletion as well as a new method to understand and guide studies in genetic epidemiology. In each of these examples, the complementary nature of modelling and experiment is discussed. We further note that multi-scale modelling may allow us to integrate information across length (molecular, cellular, tissue, organism, population) and time (e.g. seconds to lifetimes). In sum, when combined, these compatible approaches offer new opportunities for understanding host-pathogen interactions.

  2. Variational multiscale models for charge transport.

    PubMed

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle for chemo-electro-fluid systems. A number of computational algorithms is developed to implement the proposed new variational multiscale models in an efficient manner. A set of ten protein molecules and a realistic ion channel, Gramicidin A, are employed to confirm the consistency and verify the capability. Extensive numerical experiment is designed to validate the proposed variational multiscale models. A good quantitative agreement between our model prediction and the experimental measurement of current-voltage curves is observed for the Gramicidin A channel transport. This paper also provides a brief review of the field.

  3. Variational multiscale models for charge transport

    PubMed Central

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle for chemo-electro-fluid systems. A number of computational algorithms is developed to implement the proposed new variational multiscale models in an efficient manner. A set of ten protein molecules and a realistic ion channel, Gramicidin A, are employed to confirm the consistency and verify the capability. Extensive numerical experiment is designed to validate the proposed variational multiscale models. A good quantitative agreement between our model prediction and the experimental measurement of current-voltage curves is observed for the Gramicidin A channel transport. This paper also provides a brief review of the field. PMID:23172978

  4. Towards Predicting the Response of a Solid Tumour to Chemotherapy and Radiotherapy Treatments: Clinical Insights from a Computational Model

    PubMed Central

    Powathil, Gibin G.; Adamson, Douglas J. A.; Chaplain, Mark A. J.

    2013-01-01

    In this paper we use a hybrid multiscale mathematical model that incorporates both individual cell behaviour through the cell-cycle and the effects of the changing microenvironment through oxygen dynamics to study the multiple effects of radiation therapy. The oxygenation status of the cells is considered as one of the important prognostic markers for determining radiation therapy, as hypoxic cells are less radiosensitive. Another factor that critically affects radiation sensitivity is cell-cycle regulation. The effects of radiation therapy are included in the model using a modified linear quadratic model for the radiation damage, incorporating the effects of hypoxia and cell-cycle in determining the cell-cycle phase-specific radiosensitivity. Furthermore, after irradiation, an individual cell's cell-cycle dynamics are intrinsically modified through the activation of pathways responsible for repair mechanisms, often resulting in a delay/arrest in the cell-cycle. The model is then used to study various combinations of multiple doses of cell-cycle dependent chemotherapies and radiation therapy, as radiation may work better by the partial synchronisation of cells in the most radiosensitive phase of the cell-cycle. Moreover, using this multi-scale model, we investigate the optimum sequencing and scheduling of these multi-modality treatments, and the impact of internal and external heterogeneity on the spatio-temporal patterning of the distribution of tumour cells and their response to different treatment schedules. PMID:23874170

  5. A complete categorization of multiscale models of infectious disease systems.

    PubMed

    Garira, Winston

    2017-12-01

    Modelling of infectious disease systems has entered a new era in which disease modellers are increasingly turning to multiscale modelling to extend traditional modelling frameworks into new application areas and to achieve higher levels of detail and accuracy in characterizing infectious disease systems. In this paper we present a categorization framework for categorizing multiscale models of infectious disease systems. The categorization framework consists of five integration frameworks and five criteria. We use the categorization framework to give a complete categorization of host-level immuno-epidemiological models (HL-IEMs). This categorization framework is also shown to be applicable in categorizing other types of multiscale models of infectious diseases beyond HL-IEMs through modifying the initial categorization framework presented in this study. Categorization of multiscale models of infectious disease systems in this way is useful in bringing some order to the discussion on the structure of these multiscale models.

  6. Multiscale modelling and analysis of collective decision making in swarm robotics.

    PubMed

    Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey

    2014-01-01

    We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable.

  7. Microphysics in Multi-scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2012-01-01

    Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.

  8. Community Multiscale Air Quality Model

    EPA Science Inventory

    The U.S. EPA developed the Community Multiscale Air Quality (CMAQ) system to apply a “one atmosphere” multiscale and multi-pollutant modeling approach based mainly on the “first principles” description of the atmosphere. The multiscale capability is supported by the governing di...

  9. Novel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation

    PubMed Central

    Biggs, Matthew B.; Papin, Jason A.

    2013-01-01

    Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool. PMID:24147108

  10. Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.

    PubMed

    Biggs, Matthew B; Papin, Jason A

    2013-01-01

    Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.

  11. An approach to multiscale modelling with graph grammars.

    PubMed

    Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried

    2014-09-01

    Functional-structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models.

  12. An approach to multiscale modelling with graph grammars

    PubMed Central

    Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried

    2014-01-01

    Background and Aims Functional–structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. Methods A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Key Results Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. Conclusions The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models. PMID:25134929

  13. Towards a Multiscale Approach to Cybersecurity Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Emilie A.; Hui, Peter SY; Choudhury, Sutanay

    2013-11-12

    We propose a multiscale approach to modeling cyber networks, with the goal of capturing a view of the network and overall situational awareness with respect to a few key properties--- connectivity, distance, and centrality--- for a system under an active attack. We focus on theoretical and algorithmic foundations of multiscale graphs, coming from an algorithmic perspective, with the goal of modeling cyber system defense as a specific use case scenario. We first define a notion of \\emph{multiscale} graphs, in contrast with their well-studied single-scale counterparts. We develop multiscale analogs of paths and distance metrics. As a simple, motivating example ofmore » a common metric, we present a multiscale analog of the all-pairs shortest-path problem, along with a multiscale analog of a well-known algorithm which solves it. From a cyber defense perspective, this metric might be used to model the distance from an attacker's position in the network to a sensitive machine. In addition, we investigate probabilistic models of connectivity. These models exploit the hierarchy to quantify the likelihood that sensitive targets might be reachable from compromised nodes. We believe that our novel multiscale approach to modeling cyber-physical systems will advance several aspects of cyber defense, specifically allowing for a more efficient and agile approach to defending these systems.« less

  14. Filters for Improvement of Multiscale Data from Atomistic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, David J.; Reynolds, Daniel R.

    Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less

  15. Filters for Improvement of Multiscale Data from Atomistic Simulations

    DOE PAGES

    Gardner, David J.; Reynolds, Daniel R.

    2017-01-05

    Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less

  16. Sensitivity of the model error parameter specification in weak-constraint four-dimensional variational data assimilation

    NASA Astrophysics Data System (ADS)

    Shaw, Jeremy A.; Daescu, Dacian N.

    2017-08-01

    This article presents the mathematical framework to evaluate the sensitivity of a forecast error aspect to the input parameters of a weak-constraint four-dimensional variational data assimilation system (w4D-Var DAS), extending the established theory from strong-constraint 4D-Var. Emphasis is placed on the derivation of the equations for evaluating the forecast sensitivity to parameters in the DAS representation of the model error statistics, including bias, standard deviation, and correlation structure. A novel adjoint-based procedure for adaptive tuning of the specified model error covariance matrix is introduced. Results from numerical convergence tests establish the validity of the model error sensitivity equations. Preliminary experiments providing a proof-of-concept are performed using the Lorenz multi-scale model to illustrate the theoretical concepts and potential benefits for practical applications.

  17. Scale Interactions in the Tropics from a Simple Multi-Cloud Model

    NASA Astrophysics Data System (ADS)

    Niu, X.; Biello, J. A.

    2017-12-01

    Our lack of a complete understanding of the interaction between the moisture convection and equatorial waves remains an impediment in the numerical simulation of large-scale organization, such as the Madden-Julian Oscillation (MJO). The aim of this project is to understand interactions across spatial scales in the tropics from a simplified framework for scale interactions while a using a simplified framework to describe the basic features of moist convection. Using multiple asymptotic scales, Biello and Majda[1] derived a multi-scale model of moist tropical dynamics (IMMD[1]), which separates three regimes: the planetary scale climatology, the synoptic scale waves, and the planetary scale anomalies regime. The scales and strength of the observed MJO would categorize it in the regime of planetary scale anomalies - which themselves are forced from non-linear upscale fluxes from the synoptic scales waves. In order to close this model and determine whether it provides a self-consistent theory of the MJO. A model for diabatic heating due to moist convection must be implemented along with the IMMD. The multi-cloud parameterization is a model proposed by Khouider and Majda[2] to describe the three basic cloud types (congestus, deep and stratiform) that are most responsible for tropical diabatic heating. We implement a simplified version of the multi-cloud model that is based on results derived from large eddy simulations of convection [3]. We present this simplified multi-cloud model and show results of numerical experiments beginning with a variety of convective forcing states. Preliminary results on upscale fluxes, from synoptic scales to planetary scale anomalies, will be presented. [1] Biello J A, Majda A J. Intraseasonal multi-scale moist dynamics of the tropical atmosphere[J]. Communications in Mathematical Sciences, 2010, 8(2): 519-540. [2] Khouider B, Majda A J. A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis[J]. Journal of the atmospheric sciences, 2006, 63(4): 1308-1323. [3] Dorrestijn J, Crommelin D T, Biello J A, et al. A data-driven multi-cloud model for stochastic parametrization of deep convection[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2013, 371(1991): 20120374.

  18. The role of alpha-rhythm states in perceptual learning: insights from experiments and computational models

    PubMed Central

    Sigala, Rodrigo; Haufe, Sebastian; Roy, Dipanjan; Dinse, Hubert R.; Ritter, Petra

    2014-01-01

    During the past two decades growing evidence indicates that brain oscillations in the alpha band (~10 Hz) not only reflect an “idle” state of cortical activity, but also take a more active role in the generation of complex cognitive functions. A recent study shows that more than 60% of the observed inter-subject variability in perceptual learning can be ascribed to ongoing alpha activity. This evidence indicates a significant role of alpha oscillations for perceptual learning and hence motivates to explore the potential underlying mechanisms. Hence, it is the purpose of this review to highlight existent evidence that ascribes intrinsic alpha oscillations a role in shaping our ability to learn. In the review, we disentangle the alpha rhythm into different neural signatures that control information processing within individual functional building blocks of perceptual learning. We further highlight computational studies that shed light on potential mechanisms regarding how alpha oscillations may modulate information transfer and connectivity changes relevant for learning. To enable testing of those model based hypotheses, we emphasize the need for multidisciplinary approaches combining assessment of behavior and multi-scale neuronal activity, active modulation of ongoing brain states and computational modeling to reveal the mathematical principles of the complex neuronal interactions. In particular we highlight the relevance of multi-scale modeling frameworks such as the one currently being developed by “The Virtual Brain” project. PMID:24772077

  19. Multiscale model of a freeze–thaw process for tree sap exudation

    PubMed Central

    Graf, Isabell; Ceseri, Maurizio; Stockie, John M.

    2015-01-01

    Sap transport in trees has long fascinated scientists, and a vast literature exists on experimental and modelling studies of trees during the growing season when large negative stem pressures are generated by transpiration from leaves. Much less attention has been paid to winter months when trees are largely dormant but nonetheless continue to exhibit interesting flow behaviour. A prime example is sap exudation, which refers to the peculiar ability of sugar maple (Acer saccharum) and related species to generate positive stem pressure while in a leafless state. Experiments demonstrate that ambient temperatures must oscillate about the freezing point before significantly heightened stem pressures are observed, but the precise causes of exudation remain unresolved. The prevailing hypothesis attributes exudation to a physical process combining freeze–thaw and osmosis, which has some support from experimental studies but remains a subject of active debate. We address this knowledge gap by developing the first mathematical model for exudation, while also introducing several essential modifications to this hypothesis. We derive a multiscale model consisting of a nonlinear system of differential equations governing phase change and transport within wood cells, coupled to a suitably homogenized equation for temperature on the macroscale. Numerical simulations yield stem pressures that are consistent with experiments and provide convincing evidence that a purely physical mechanism is capable of capturing exudation. PMID:26400199

  20. Multiscale model of a freeze-thaw process for tree sap exudation.

    PubMed

    Graf, Isabell; Ceseri, Maurizio; Stockie, John M

    2015-10-06

    Sap transport in trees has long fascinated scientists, and a vast literature exists on experimental and modelling studies of trees during the growing season when large negative stem pressures are generated by transpiration from leaves. Much less attention has been paid to winter months when trees are largely dormant but nonetheless continue to exhibit interesting flow behaviour. A prime example is sap exudation, which refers to the peculiar ability of sugar maple (Acer saccharum) and related species to generate positive stem pressure while in a leafless state. Experiments demonstrate that ambient temperatures must oscillate about the freezing point before significantly heightened stem pressures are observed, but the precise causes of exudation remain unresolved. The prevailing hypothesis attributes exudation to a physical process combining freeze-thaw and osmosis, which has some support from experimental studies but remains a subject of active debate. We address this knowledge gap by developing the first mathematical model for exudation, while also introducing several essential modifications to this hypothesis. We derive a multiscale model consisting of a nonlinear system of differential equations governing phase change and transport within wood cells, coupled to a suitably homogenized equation for temperature on the macroscale. Numerical simulations yield stem pressures that are consistent with experiments and provide convincing evidence that a purely physical mechanism is capable of capturing exudation. © 2015 The Author(s).

  1. Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach

    NASA Astrophysics Data System (ADS)

    Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J.

    2014-02-01

    Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation.

  2. ONE-ATMOSPHERE DYNAMICS DESCRIPTION IN THE MODELS-3 COMMUNITY MULTI-SCALE QUALITY (CMAQ) MODELING SYSTEM

    EPA Science Inventory

    This paper proposes a general procedure to link meteorological data with air quality models, such as U.S. EPA's Models-3 Community Multi-scale Air Quality (CMAQ) modeling system. CMAQ is intended to be used for studying multi-scale (urban and regional) and multi-pollutant (ozon...

  3. Multiscale Modelling and Analysis of Collective Decision Making in Swarm Robotics

    PubMed Central

    Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey

    2014-01-01

    We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable. PMID:25369026

  4. Integrating Multiscale Modeling with Drug Effects for Cancer Treatment.

    PubMed

    Li, Xiangfang L; Oduola, Wasiu O; Qian, Lijun; Dougherty, Edward R

    2015-01-01

    In this paper, we review multiscale modeling for cancer treatment with the incorporation of drug effects from an applied system's pharmacology perspective. Both the classical pharmacology and systems biology are inherently quantitative; however, systems biology focuses more on networks and multi factorial controls over biological processes rather than on drugs and targets in isolation, whereas systems pharmacology has a strong focus on studying drugs with regard to the pharmacokinetic (PK) and pharmacodynamic (PD) relations accompanying drug interactions with multiscale physiology as well as the prediction of dosage-exposure responses and economic potentials of drugs. Thus, it requires multiscale methods to address the need for integrating models from the molecular levels to the cellular, tissue, and organism levels. It is a common belief that tumorigenesis and tumor growth can be best understood and tackled by employing and integrating a multifaceted approach that includes in vivo and in vitro experiments, in silico models, multiscale tumor modeling, continuous/discrete modeling, agent-based modeling, and multiscale modeling with PK/PD drug effect inputs. We provide an example application of multiscale modeling employing stochastic hybrid system for a colon cancer cell line HCT-116 with the application of Lapatinib drug. It is observed that the simulation results are similar to those observed from the setup of the wet-lab experiments at the Translational Genomics Research Institute.

  5. Modeling Flow in Porous Media with Double Porosity/Permeability.

    NASA Astrophysics Data System (ADS)

    Seyed Joodat, S. H.; Nakshatrala, K. B.; Ballarini, R.

    2016-12-01

    Although several continuum models are available to study the flow of fluids in porous media with two pore-networks [1], they lack a firm theoretical basis. In this poster presentation, we will present a mathematical model with firm thermodynamic basis and a robust computational framework for studying flow in porous media that exhibit double porosity/permeability. The mathematical model will be derived by appealing to the maximization of rate of dissipation hypothesis, which ensures that the model is in accord with the second law of thermodynamics. We will also present important properties that the solutions under the model satisfy, along with an analytical solution procedure based on the Green's function method. On the computational front, a stabilized mixed finite element formulation will be derived based on the variational multi-scale formalism. The equal-order interpolation, which is computationally the most convenient, is stable under this formulation. The performance of this formulation will be demonstrated using patch tests, numerical convergence study, and representative problems. It will be shown that the pressure and velocity profiles under the double porosity/permeability model are qualitatively and quantitatively different from the corresponding ones under the classical Darcy equations. Finally, it will be illustrated that the surface pore-structure is not sufficient in characterizing the flow through a complex porous medium, which pitches a case for using advanced characterization tools like micro-CT. References [1] G. I. Barenblatt, I. P. Zheltov, and I. N. Kochina, "Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]," Journal of Applied Mathematics and Mechanics, vol. 24, pp. 1286-1303, 1960.

  6. Conceptual strategies and inter-theory relations: The case of nanoscale cracks

    NASA Astrophysics Data System (ADS)

    Bursten, Julia R.

    2018-05-01

    This paper introduces a new account of inter-theory relations in physics, which I call the conceptual strategies account. Using the example of a multiscale computer simulation model of nanoscale crack propagation in silicon, I illustrate this account and contrast it with existing reductive, emergent, and handshaking approaches. The conceptual strategies account develops the notion that relations among physical theories, and among their models, are constrained but not dictated by limitations from physics, mathematics, and computation, and that conceptual reasoning within those limits is required both to generate and to understand the relations between theories. Conceptual strategies result in a variety of types of relations between theories and models. These relations are themselves epistemic objects, like theories and models, and as such are an under-recognized part of the epistemic landscape of science.

  7. A Generalized Hybrid Multiscale Modeling Approach for Flow and Reactive Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Yang, X.; Meng, X.; Tang, Y. H.; Guo, Z.; Karniadakis, G. E.

    2017-12-01

    Using emerging understanding of biological and environmental processes at fundamental scales to advance predictions of the larger system behavior requires the development of multiscale approaches, and there is strong interest in coupling models at different scales together in a hybrid multiscale simulation framework. A limited number of hybrid multiscale simulation methods have been developed for subsurface applications, mostly using application-specific approaches for model coupling. The proposed generalized hybrid multiscale approach is designed with minimal intrusiveness to the at-scale simulators (pre-selected) and provides a set of lightweight C++ scripts to manage a complex multiscale workflow utilizing a concurrent coupling approach. The workflow includes at-scale simulators (using the lattice-Boltzmann method, LBM, at the pore and Darcy scale, respectively), scripts for boundary treatment (coupling and kriging), and a multiscale universal interface (MUI) for data exchange. The current study aims to apply the generalized hybrid multiscale modeling approach to couple pore- and Darcy-scale models for flow and mixing-controlled reaction with precipitation/dissolution in heterogeneous porous media. The model domain is packed heterogeneously that the mixing front geometry is more complex and not known a priori. To address those challenges, the generalized hybrid multiscale modeling approach is further developed to 1) adaptively define the locations of pore-scale subdomains, 2) provide a suite of physical boundary coupling schemes and 3) consider the dynamic change of the pore structures due to mineral precipitation/dissolution. The results are validated and evaluated by comparing with single-scale simulations in terms of velocities, reactive concentrations and computing cost.

  8. A systems theoretic approach to analysis and control of mammalian circadian dynamics

    PubMed Central

    Abel, John H.; Doyle, Francis J.

    2016-01-01

    The mammalian circadian clock is a complex multi-scale, multivariable biological control system. In the past two decades, methods from systems engineering have led to numerous insights into the architecture and functionality of this system. In this review, we examine the mammalian circadian system through a process systems lens. We present a mathematical framework for examining the cellular circadian oscillator, and show recent extensions for understanding population-scale dynamics. We provide an overview of the routes by which the circadian system can be systemically manipulated, and present in silico proof of concept results for phase resetting of the clock via model predictive control. PMID:28496287

  9. Heterogeneity and Self-Organization of Complex Systems Through an Application to Financial Market with Multiagent Systems

    NASA Astrophysics Data System (ADS)

    Lucas, Iris; Cotsaftis, Michel; Bertelle, Cyrille

    2017-12-01

    Multiagent systems (MAS) provide a useful tool for exploring the complex dynamics and behavior of financial markets and now MAS approach has been widely implemented and documented in the empirical literature. This paper introduces the implementation of an innovative multi-scale mathematical model for a computational agent-based financial market. The paper develops a method to quantify the degree of self-organization which emerges in the system and shows that the capacity of self-organization is maximized when the agent behaviors are heterogeneous. Numerical results are presented and analyzed, showing how the global market behavior emerges from specific individual behavior interactions.

  10. Petascale computation performance of lightweight multiscale cardiac models using hybrid programming models.

    PubMed

    Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias

    2011-01-01

    Future multiscale and multiphysics models must use the power of high performance computing (HPC) systems to enable research into human disease, translational medical science, and treatment. Previously we showed that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message passing processes (e.g. the message passing interface (MPI)) with multithreading (e.g. OpenMP, POSIX pthreads). The objective of this work is to compare the performance of such hybrid programming models when applied to the simulation of a lightweight multiscale cardiac model. Our results show that the hybrid models do not perform favourably when compared to an implementation using only MPI which is in contrast to our results using complex physiological models. Thus, with regards to lightweight multiscale cardiac models, the user may not need to increase programming complexity by using a hybrid programming approach. However, considering that model complexity will increase as well as the HPC system size in both node count and number of cores per node, it is still foreseeable that we will achieve faster than real time multiscale cardiac simulations on these systems using hybrid programming models.

  11. Nonlinear modelling of cancer: bridging the gap between cells and tumours

    PubMed Central

    Lowengrub, J S; Frieboes, H B; Jin, F; Chuang, Y-L; Li, X; Macklin, P; Wise, S M; Cristini, V

    2010-01-01

    Despite major scientific, medical and technological advances over the last few decades, a cure for cancer remains elusive. The disease initiation is complex, and including initiation and avascular growth, onset of hypoxia and acidosis due to accumulation of cells beyond normal physiological conditions, inducement of angiogenesis from the surrounding vasculature, tumour vascularization and further growth, and invasion of surrounding tissue and metastasis. Although the focus historically has been to study these events through experimental and clinical observations, mathematical modelling and simulation that enable analysis at multiple time and spatial scales have also complemented these efforts. Here, we provide an overview of this multiscale modelling focusing on the growth phase of tumours and bypassing the initial stage of tumourigenesis. While we briefly review discrete modelling, our focus is on the continuum approach. We limit the scope further by considering models of tumour progression that do not distinguish tumour cells by their age. We also do not consider immune system interactions nor do we describe models of therapy. We do discuss hybrid-modelling frameworks, where the tumour tissue is modelled using both discrete (cell-scale) and continuum (tumour-scale) elements, thus connecting the micrometre to the centimetre tumour scale. We review recent examples that incorporate experimental data into model parameters. We show that recent mathematical modelling predicts that transport limitations of cell nutrients, oxygen and growth factors may result in cell death that leads to morphological instability, providing a mechanism for invasion via tumour fingering and fragmentation. These conditions induce selection pressure for cell survivability, and may lead to additional genetic mutations. Mathematical modelling further shows that parameters that control the tumour mass shape also control its ability to invade. Thus, tumour morphology may serve as a predictor of invasiveness and treatment prognosis. PMID:20808719

  12. Nonlinear modelling of cancer: bridging the gap between cells and tumours

    NASA Astrophysics Data System (ADS)

    Lowengrub, J. S.; Frieboes, H. B.; Jin, F.; Chuang, Y.-L.; Li, X.; Macklin, P.; Wise, S. M.; Cristini, V.

    2010-01-01

    Despite major scientific, medical and technological advances over the last few decades, a cure for cancer remains elusive. The disease initiation is complex, and including initiation and avascular growth, onset of hypoxia and acidosis due to accumulation of cells beyond normal physiological conditions, inducement of angiogenesis from the surrounding vasculature, tumour vascularization and further growth, and invasion of surrounding tissue and metastasis. Although the focus historically has been to study these events through experimental and clinical observations, mathematical modelling and simulation that enable analysis at multiple time and spatial scales have also complemented these efforts. Here, we provide an overview of this multiscale modelling focusing on the growth phase of tumours and bypassing the initial stage of tumourigenesis. While we briefly review discrete modelling, our focus is on the continuum approach. We limit the scope further by considering models of tumour progression that do not distinguish tumour cells by their age. We also do not consider immune system interactions nor do we describe models of therapy. We do discuss hybrid-modelling frameworks, where the tumour tissue is modelled using both discrete (cell-scale) and continuum (tumour-scale) elements, thus connecting the micrometre to the centimetre tumour scale. We review recent examples that incorporate experimental data into model parameters. We show that recent mathematical modelling predicts that transport limitations of cell nutrients, oxygen and growth factors may result in cell death that leads to morphological instability, providing a mechanism for invasion via tumour fingering and fragmentation. These conditions induce selection pressure for cell survivability, and may lead to additional genetic mutations. Mathematical modelling further shows that parameters that control the tumour mass shape also control its ability to invade. Thus, tumour morphology may serve as a predictor of invasiveness and treatment prognosis.

  13. Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.

    PubMed

    Chen, Duan; Chen, Zhan; Wei, Guo-Wei

    2012-01-01

    Proton transport plays an important role in biological energy transduction and sensory systems. Therefore, it has attracted much attention in biological science and biomedical engineering in the past few decades. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins involving continuum, atomic, and quantum descriptions, assisted with the evolution, formation, and visualization of membrane channel surfaces. We describe proton dynamics quantum mechanically via a new density functional theory based on the Boltzmann statistics, while implicitly model numerous solvent molecules as a dielectric continuum to reduce the number of degrees of freedom. The density of all other ions in the solvent is assumed to obey the Boltzmann distribution in a dynamic manner. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic scale. A variational solute-solvent interface is designed to separate the explicit molecule and implicit solvent regions. We formulate a total free-energy functional to put proton kinetic and potential energies, the free energy of all other ions, and the polar and nonpolar energies of the whole system on an equal footing. The variational principle is employed to derive coupled governing equations for the proton transport system. Generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation, and generalized Kohn-Sham equation are obtained from the present variational framework. The variational solvent-solute interface is generated and visualized to facilitate the multiscale discrete/continuum/quantum descriptions. Theoretical formulations for the proton density and conductance are constructed based on fundamental laws of physics. A number of mathematical algorithms, including the Dirichlet-to-Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The gramicidin A channel is used to validate the performance of the proposed proton transport model and demonstrate the efficiency of the proposed mathematical algorithms. The proton channel conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and confirms the proposed model. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Mathematical modeling of atopic dermatitis reveals "double-switch" mechanisms underlying 4 common disease phenotypes.

    PubMed

    Domínguez-Hüttinger, Elisa; Christodoulides, Panayiotis; Miyauchi, Kosuke; Irvine, Alan D; Okada-Hatakeyama, Mariko; Kubo, Masato; Tanaka, Reiko J

    2017-06-01

    The skin barrier acts as the first line of defense against constant exposure to biological, microbial, physical, and chemical environmental stressors. Dynamic interplay between defects in the skin barrier, dysfunctional immune responses, and environmental stressors are major factors in the development of atopic dermatitis (AD). A systems biology modeling approach can yield significant insights into these complex and dynamic processes through integration of prior biological data. We sought to develop a multiscale mathematical model of AD pathogenesis that describes the dynamic interplay between the skin barrier, environmental stress, and immune dysregulation and use it to achieve a coherent mechanistic understanding of the onset, progression, and prevention of AD. We mathematically investigated synergistic effects of known genetic and environmental risk factors on the dynamic onset and progression of the AD phenotype, from a mostly asymptomatic mild phenotype to a severe treatment-resistant form. Our model analysis identified a "double switch," with 2 concatenated bistable switches, as a key network motif that dictates AD pathogenesis: the first switch is responsible for the reversible onset of inflammation, and the second switch is triggered by long-lasting or frequent activation of the first switch, causing irreversible onset of systemic T H 2 sensitization and worsening of AD symptoms. Our mathematical analysis of the bistable switch predicts that genetic risk factors decrease the threshold of environmental stressors to trigger systemic T H 2 sensitization. This analysis predicts and explains 4 common clinical AD phenotypes from a mild and reversible phenotype through to severe and recalcitrant disease and provides a mechanistic explanation for clinically demonstrated preventive effects of emollient treatments against development of AD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Development of a Patient-Specific Multi-Scale Model to Understand Atherosclerosis and Calcification Locations: Comparison with In vivo Data in an Aortic Dissection

    PubMed Central

    Alimohammadi, Mona; Pichardo-Almarza, Cesar; Agu, Obiekezie; Díaz-Zuccarini, Vanessa

    2016-01-01

    Vascular calcification results in stiffening of the aorta and is associated with hypertension and atherosclerosis. Atherogenesis is a complex, multifactorial, and systemic process; the result of a number of factors, each operating simultaneously at several spatial and temporal scales. The ability to predict sites of atherogenesis would be of great use to clinicians in order to improve diagnostic and treatment planning. In this paper, we present a mathematical model as a tool to understand why atherosclerotic plaque and calcifications occur in specific locations. This model is then used to analyze vascular calcification and atherosclerotic areas in an aortic dissection patient using a mechanistic, multi-scale modeling approach, coupling patient-specific, fluid-structure interaction simulations with a model of endothelial mechanotransduction. A number of hemodynamic factors based on state-of-the-art literature are used as inputs to the endothelial permeability model, in order to investigate plaque and calcification distributions, which are compared with clinical imaging data. A significantly improved correlation between elevated hydraulic conductivity or volume flux and the presence of calcification and plaques was achieved by using a shear index comprising both mean and oscillatory shear components (HOLMES) and a non-Newtonian viscosity model as inputs, as compared to widely used hemodynamic indicators. The proposed approach shows promise as a predictive tool. The improvements obtained using the combined biomechanical/biochemical modeling approach highlight the benefits of mechanistic modeling as a powerful tool to understand complex phenomena and provides insight into the relative importance of key hemodynamic parameters. PMID:27445834

  16. Intercomparison of Multiscale Modeling Approaches in Simulating Subsurface Flow and Transport

    NASA Astrophysics Data System (ADS)

    Yang, X.; Mehmani, Y.; Barajas-Solano, D. A.; Song, H. S.; Balhoff, M.; Tartakovsky, A. M.; Scheibe, T. D.

    2016-12-01

    Hybrid multiscale simulations that couple models across scales are critical to advance predictions of the larger system behavior using understanding of fundamental processes. In the current study, three hybrid multiscale methods are intercompared: multiscale loose-coupling method, multiscale finite volume (MsFV) method and multiscale mortar method. The loose-coupling method enables a parallel workflow structure based on the Swift scripting environment that manages the complex process of executing coupled micro- and macro-scale models without being intrusive to the at-scale simulators. The MsFV method applies microscale and macroscale models over overlapping subdomains of the modeling domain and enforces continuity of concentration and transport fluxes between models via restriction and prolongation operators. The mortar method is a non-overlapping domain decomposition approach capable of coupling all permutations of pore- and continuum-scale models with each other. In doing so, Lagrange multipliers are used at interfaces shared between the subdomains so as to establish continuity of species/fluid mass flux. Subdomain computations can be performed either concurrently or non-concurrently depending on the algorithm used. All the above methods have been proven to be accurate and efficient in studying flow and transport in porous media. However, there has not been any field-scale applications and benchmarking among various hybrid multiscale approaches. To address this challenge, we apply all three hybrid multiscale methods to simulate water flow and transport in a conceptualized 2D modeling domain of the hyporheic zone, where strong interactions between groundwater and surface water exist across multiple scales. In all three multiscale methods, fine-scale simulations are applied to a thin layer of riverbed alluvial sediments while the macroscopic simulations are used for the larger subsurface aquifer domain. Different numerical coupling methods are then applied between scales and inter-compared. Comparisons are drawn in terms of velocity distributions, solute transport behavior, algorithm-induced numerical error and computing cost. The intercomparison work provides support for confidence in a variety of hybrid multiscale methods and motivates further development and applications.

  17. Multiscale Materials Modeling Workshop Summary

    DOT National Transportation Integrated Search

    2013-12-01

    This report summarizes a 2-day workshop held to share information on multiscale material modeling. The aim was to gain expert feedback on the state of the art and identify Exploratory Advanced Research (EAR) Program opportunities for multiscale mater...

  18. Mathematical modeling and computational prediction of cancer drug resistance.

    PubMed

    Sun, Xiaoqiang; Hu, Bin

    2017-06-23

    Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic-pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of computational methods for studying drug resistance, including inferring drug-induced signaling networks, multiscale modeling, drug combinations and precision medicine. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. A Computational Model of the Rainbow Trout Hypothalamus-Pituitary-Ovary-Liver Axis

    PubMed Central

    Gillies, Kendall; Krone, Stephen M.; Nagler, James J.; Schultz, Irvin R.

    2016-01-01

    Reproduction in fishes and other vertebrates represents the timely coordination of many endocrine factors that culminate in the production of mature, viable gametes. In recent years there has been rapid growth in understanding fish reproductive biology, which has been motivated in part by recognition of the potential effects that climate change, habitat destruction and contaminant exposure can have on natural and cultured fish populations. New approaches to understanding the impacts of these stressors are being developed that require a systems biology approach with more biologically accurate and detailed mathematical models. We have developed a multi-scale mathematical model of the female rainbow trout hypothalamus-pituitary-ovary-liver axis to use as a tool to help understand the functioning of the system and for extrapolation of laboratory findings of stressor impacts on specific components of the axis. The model describes the essential endocrine components of the female rainbow trout reproductive axis. The model also describes the stage specific growth of maturing oocytes within the ovary and permits the presence of sub-populations of oocytes at different stages of development. Model formulation and parametrization was largely based on previously published in vivo and in vitro data in rainbow trout and new data on the synthesis of gonadotropins in the pituitary. Model predictions were validated against several previously published data sets for annual changes in gonadotropins and estradiol in rainbow trout. Estimates of select model parameters can be obtained from in vitro assays using either quantitative (direct estimation of rate constants) or qualitative (relative change from control values) approaches. This is an important aspect of mathematical models as in vitro, cell-based assays are expected to provide the bulk of experimental data for future risk assessments and will require quantitative physiological models to extrapolate across biological scales. PMID:27096735

  20. A Computational Model of the Rainbow Trout Hypothalamus-Pituitary-Ovary-Liver Axis.

    PubMed

    Gillies, Kendall; Krone, Stephen M; Nagler, James J; Schultz, Irvin R

    2016-04-01

    Reproduction in fishes and other vertebrates represents the timely coordination of many endocrine factors that culminate in the production of mature, viable gametes. In recent years there has been rapid growth in understanding fish reproductive biology, which has been motivated in part by recognition of the potential effects that climate change, habitat destruction and contaminant exposure can have on natural and cultured fish populations. New approaches to understanding the impacts of these stressors are being developed that require a systems biology approach with more biologically accurate and detailed mathematical models. We have developed a multi-scale mathematical model of the female rainbow trout hypothalamus-pituitary-ovary-liver axis to use as a tool to help understand the functioning of the system and for extrapolation of laboratory findings of stressor impacts on specific components of the axis. The model describes the essential endocrine components of the female rainbow trout reproductive axis. The model also describes the stage specific growth of maturing oocytes within the ovary and permits the presence of sub-populations of oocytes at different stages of development. Model formulation and parametrization was largely based on previously published in vivo and in vitro data in rainbow trout and new data on the synthesis of gonadotropins in the pituitary. Model predictions were validated against several previously published data sets for annual changes in gonadotropins and estradiol in rainbow trout. Estimates of select model parameters can be obtained from in vitro assays using either quantitative (direct estimation of rate constants) or qualitative (relative change from control values) approaches. This is an important aspect of mathematical models as in vitro, cell-based assays are expected to provide the bulk of experimental data for future risk assessments and will require quantitative physiological models to extrapolate across biological scales.

  1. Multiscale molecular dynamics/hydrodynamics implementation of two dimensional "Mercedes Benz" water model

    NASA Astrophysics Data System (ADS)

    Scukins, A.; Nerukh, D.; Pavlov, E.; Karabasov, S.; Markesteijn, A.

    2015-09-01

    A multiscale Molecular Dynamics/Hydrodynamics implementation of the 2D Mercedes Benz (MB or BN2D) [1] water model is developed and investigated. The concept and the governing equations of multiscale coupling together with the results of the two-way coupling implementation are reported. The sensitivity of the multiscale model for obtaining macroscopic and microscopic parameters of the system, such as macroscopic density and velocity fluctuations, radial distribution and velocity autocorrelation functions of MB particles, is evaluated. Critical issues for extending the current model to large systems are discussed.

  2. Prototype Biology-Based Radiation Risk Module Project

    NASA Technical Reports Server (NTRS)

    Terrier, Douglas; Clayton, Ronald G.; Patel, Zarana; Hu, Shaowen; Huff, Janice

    2015-01-01

    Biological effects of space radiation and risk mitigation are strategic knowledge gaps for the Evolvable Mars Campaign. The current epidemiology-based NASA Space Cancer Risk (NSCR) model contains large uncertainties (HAT #6.5a) due to lack of information on the radiobiology of galactic cosmic rays (GCR) and lack of human data. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. Our proposed study will compare DNA damage, histological, and cell kinetic parameters after irradiation in normal 2D human cells versus 3D tissue models, and it will use a multi-scale computational model (CHASTE) to investigate various biological processes that may contribute to carcinogenesis, including radiation-induced cellular signaling pathways. This cross-disciplinary work, with biological validation of an evolvable mathematical computational model, will help reduce uncertainties within NSCR and aid risk mitigation for radiation-induced carcinogenesis.

  3. Mathematical modeling of the female reproductive system: from oocyte to delivery.

    PubMed

    Clark, Alys R; Kruger, Jennifer A

    2017-01-01

    From ovulation to delivery, and through the menstrual cycle, the female reproductive system undergoes many dynamic changes to provide an optimal environment for the embryo to implant, and to develop successfully. It is difficult ethically and practically to observe the system over the timescales involved in growth and development (often hours to days). Even in carefully monitored conditions clinicians and biologists can only see snapshots of the development process. Mathematical models are emerging as a key means to supplement our knowledge of the reproductive process, and to tease apart complexity in the reproductive system. These models have been used successfully to test existing hypotheses regarding the mechanisms of female infertility and pathological fetal development, and also to provide new experimentally testable hypotheses regarding the process of development. This new knowledge has allowed for improvements in assisted reproductive technologies and is moving toward translation to clinical practice via multiscale assessments of the dynamics of ovulation, development in pregnancy, and the timing and mechanics of delivery. WIREs Syst Biol Med 2017, 9:e1353. doi: 10.1002/wsbm.1353 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  4. Exploration of cellular reaction systems.

    PubMed

    Kirkilionis, Markus

    2010-01-01

    We discuss and review different ways to map cellular components and their temporal interaction with other such components to different non-spatially explicit mathematical models. The essential choices made in the literature are between discrete and continuous state spaces, between rule and event-based state updates and between deterministic and stochastic series of such updates. The temporal modelling of cellular regulatory networks (dynamic network theory) is compared with static network approaches in two first introductory sections on general network modelling. We concentrate next on deterministic rate-based dynamic regulatory networks and their derivation. In the derivation, we include methods from multiscale analysis and also look at structured large particles, here called macromolecular machines. It is clear that mass-action systems and their derivatives, i.e. networks based on enzyme kinetics, play the most dominant role in the literature. The tools to analyse cellular reaction networks are without doubt most complete for mass-action systems. We devote a long section at the end of the review to make a comprehensive review of related tools and mathematical methods. The emphasis is to show how cellular reaction networks can be analysed with the help of different associated graphs and the dissection into modules, i.e. sub-networks.

  5. Multi-Scale Models for the Scale Interaction of Organized Tropical Convection

    NASA Astrophysics Data System (ADS)

    Yang, Qiu

    Assessing the upscale impact of organized tropical convection from small spatial and temporal scales is a research imperative, not only for having a better understanding of the multi-scale structures of dynamical and convective fields in the tropics, but also for eventually helping in the design of new parameterization strategies to improve the next-generation global climate models. Here self-consistent multi-scale models are derived systematically by following the multi-scale asymptotic methods and used to describe the hierarchical structures of tropical atmospheric flows. The advantages of using these multi-scale models lie in isolating the essential components of multi-scale interaction and providing assessment of the upscale impact of the small-scale fluctuations onto the large-scale mean flow through eddy flux divergences of momentum and temperature in a transparent fashion. Specifically, this thesis includes three research projects about multi-scale interaction of organized tropical convection, involving tropical flows at different scaling regimes and utilizing different multi-scale models correspondingly. Inspired by the observed variability of tropical convection on multiple temporal scales, including daily and intraseasonal time scales, the goal of the first project is to assess the intraseasonal impact of the diurnal cycle on the planetary-scale circulation such as the Hadley cell. As an extension of the first project, the goal of the second project is to assess the intraseasonal impact of the diurnal cycle over the Maritime Continent on the Madden-Julian Oscillation. In the third project, the goals are to simulate the baroclinic aspects of the ITCZ breakdown and assess its upscale impact on the planetary-scale circulation over the eastern Pacific. These simple multi-scale models should be useful to understand the scale interaction of organized tropical convection and help improve the parameterization of unresolved processes in global climate models.

  6. An analysis platform for multiscale hydrogeologic modeling with emphasis on hybrid multiscale methods.

    PubMed

    Scheibe, Timothy D; Murphy, Ellyn M; Chen, Xingyuan; Rice, Amy K; Carroll, Kenneth C; Palmer, Bruce J; Tartakovsky, Alexandre M; Battiato, Ilenia; Wood, Brian D

    2015-01-01

    One of the most significant challenges faced by hydrogeologic modelers is the disparity between the spatial and temporal scales at which fundamental flow, transport, and reaction processes can best be understood and quantified (e.g., microscopic to pore scales and seconds to days) and at which practical model predictions are needed (e.g., plume to aquifer scales and years to centuries). While the multiscale nature of hydrogeologic problems is widely recognized, technological limitations in computation and characterization restrict most practical modeling efforts to fairly coarse representations of heterogeneous properties and processes. For some modern problems, the necessary level of simplification is such that model parameters may lose physical meaning and model predictive ability is questionable for any conditions other than those to which the model was calibrated. Recently, there has been broad interest across a wide range of scientific and engineering disciplines in simulation approaches that more rigorously account for the multiscale nature of systems of interest. In this article, we review a number of such approaches and propose a classification scheme for defining different types of multiscale simulation methods and those classes of problems to which they are most applicable. Our classification scheme is presented in terms of a flowchart (Multiscale Analysis Platform), and defines several different motifs of multiscale simulation. Within each motif, the member methods are reviewed and example applications are discussed. We focus attention on hybrid multiscale methods, in which two or more models with different physics described at fundamentally different scales are directly coupled within a single simulation. Very recently these methods have begun to be applied to groundwater flow and transport simulations, and we discuss these applications in the context of our classification scheme. As computational and characterization capabilities continue to improve, we envision that hybrid multiscale modeling will become more common and also a viable alternative to conventional single-scale models in the near future. © 2014, National Ground Water Association.

  7. Multi-scale modelling of the dynamics of cell colonies: insights into cell-adhesion forces and cancer invasion from in silico simulations.

    PubMed

    Schlüter, Daniela K; Ramis-Conde, Ignacio; Chaplain, Mark A J

    2015-02-06

    Studying the biophysical interactions between cells is crucial to understanding how normal tissue develops, how it is structured and also when malfunctions occur. Traditional experiments try to infer events at the tissue level after observing the behaviour of and interactions between individual cells. This approach assumes that cells behave in the same biophysical manner in isolated experiments as they do within colonies and tissues. In this paper, we develop a multi-scale multi-compartment mathematical model that accounts for the principal biophysical interactions and adhesion pathways not only at a cell-cell level but also at the level of cell colonies (in contrast to the traditional approach). Our results suggest that adhesion/separation forces between cells may be lower in cell colonies than traditional isolated single-cell experiments infer. As a consequence, isolated single-cell experiments may be insufficient to deduce important biological processes such as single-cell invasion after detachment from a solid tumour. The simulations further show that kinetic rates and cell biophysical characteristics such as pressure-related cell-cycle arrest have a major influence on cell colony patterns and can allow for the development of protrusive cellular structures as seen in invasive cancer cell lines independent of expression levels of pro-invasion molecules.

  8. Multi-scale modelling of the dynamics of cell colonies: insights into cell-adhesion forces and cancer invasion from in silico simulations

    PubMed Central

    Schlüter, Daniela K.; Ramis-Conde, Ignacio; Chaplain, Mark A. J.

    2015-01-01

    Studying the biophysical interactions between cells is crucial to understanding how normal tissue develops, how it is structured and also when malfunctions occur. Traditional experiments try to infer events at the tissue level after observing the behaviour of and interactions between individual cells. This approach assumes that cells behave in the same biophysical manner in isolated experiments as they do within colonies and tissues. In this paper, we develop a multi-scale multi-compartment mathematical model that accounts for the principal biophysical interactions and adhesion pathways not only at a cell–cell level but also at the level of cell colonies (in contrast to the traditional approach). Our results suggest that adhesion/separation forces between cells may be lower in cell colonies than traditional isolated single-cell experiments infer. As a consequence, isolated single-cell experiments may be insufficient to deduce important biological processes such as single-cell invasion after detachment from a solid tumour. The simulations further show that kinetic rates and cell biophysical characteristics such as pressure-related cell-cycle arrest have a major influence on cell colony patterns and can allow for the development of protrusive cellular structures as seen in invasive cancer cell lines independent of expression levels of pro-invasion molecules. PMID:25519994

  9. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength.

    PubMed

    Fritsch, Andreas; Hellmich, Christian; Dormieux, Luc

    2009-09-21

    There is an ongoing discussion on how bone strength could be explained from its internal structure and composition. Reviewing recent experimental and molecular dynamics studies, we here propose a new vision on bone material failure: mutual ductile sliding of hydroxyapatite mineral crystals along layered water films is followed by rupture of collagen crosslinks. In order to cast this vision into a mathematical form, a multiscale continuum micromechanics theory for upscaling of elastoplastic properties is developed, based on the concept of concentration and influence tensors for eigenstressed microheterogeneous materials. The model reflects bone's hierarchical organization, in terms of representative volume elements for cortical bone, for extravascular and extracellular bone material, for mineralized fibrils and the extrafibrillar space, and for wet collagen. In order to get access to the stress states at the interfaces between crystals, the extrafibrillar mineral is resolved into an infinite amount of cylindrical material phases oriented in all directions in space. The multiscale micromechanics model is shown to be able to satisfactorily predict the strength characteristics of different bones from different species, on the basis of their mineral/collagen content, their intercrystalline, intermolecular, lacunar, and vascular porosities, and the elastic and strength properties of hydroxyapatite and (molecular) collagen.

  10. Multiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.

    2012-01-01

    A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.

  11. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    NASA Astrophysics Data System (ADS)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-05-01

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.

  12. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  13. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-04

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  14. An Analysis Platform for Multiscale Hydrogeologic Modeling with Emphasis on Hybrid Multiscale Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheibe, Timothy D.; Murphy, Ellyn M.; Chen, Xingyuan

    2015-01-01

    One of the most significant challenges facing hydrogeologic modelers is the disparity between those spatial and temporal scales at which fundamental flow, transport and reaction processes can best be understood and quantified (e.g., microscopic to pore scales, seconds to days) and those at which practical model predictions are needed (e.g., plume to aquifer scales, years to centuries). While the multiscale nature of hydrogeologic problems is widely recognized, technological limitations in computational and characterization restrict most practical modeling efforts to fairly coarse representations of heterogeneous properties and processes. For some modern problems, the necessary level of simplification is such that modelmore » parameters may lose physical meaning and model predictive ability is questionable for any conditions other than those to which the model was calibrated. Recently, there has been broad interest across a wide range of scientific and engineering disciplines in simulation approaches that more rigorously account for the multiscale nature of systems of interest. In this paper, we review a number of such approaches and propose a classification scheme for defining different types of multiscale simulation methods and those classes of problems to which they are most applicable. Our classification scheme is presented in terms of a flow chart (Multiscale Analysis Platform or MAP), and defines several different motifs of multiscale simulation. Within each motif, the member methods are reviewed and example applications are discussed. We focus attention on hybrid multiscale methods, in which two or more models with different physics described at fundamentally different scales are directly coupled within a single simulation. Very recently these methods have begun to be applied to groundwater flow and transport simulations, and we discuss these applications in the context of our classification scheme. As computational and characterization capabilities continue to improve, we envision that hybrid multiscale modeling will become more common and may become a viable alternative to conventional single-scale models in the near future.« less

  15. Strategies for efficient numerical implementation of hybrid multi-scale agent-based models to describe biological systems

    PubMed Central

    Cilfone, Nicholas A.; Kirschner, Denise E.; Linderman, Jennifer J.

    2015-01-01

    Biologically related processes operate across multiple spatiotemporal scales. For computational modeling methodologies to mimic this biological complexity, individual scale models must be linked in ways that allow for dynamic exchange of information across scales. A powerful methodology is to combine a discrete modeling approach, agent-based models (ABMs), with continuum models to form hybrid models. Hybrid multi-scale ABMs have been used to simulate emergent responses of biological systems. Here, we review two aspects of hybrid multi-scale ABMs: linking individual scale models and efficiently solving the resulting model. We discuss the computational choices associated with aspects of linking individual scale models while simultaneously maintaining model tractability. We demonstrate implementations of existing numerical methods in the context of hybrid multi-scale ABMs. Using an example model describing Mycobacterium tuberculosis infection, we show relative computational speeds of various combinations of numerical methods. Efficient linking and solution of hybrid multi-scale ABMs is key to model portability, modularity, and their use in understanding biological phenomena at a systems level. PMID:26366228

  16. Multiscale hidden Markov models for photon-limited imaging

    NASA Astrophysics Data System (ADS)

    Nowak, Robert D.

    1999-06-01

    Photon-limited image analysis is often hindered by low signal-to-noise ratios. A novel Bayesian multiscale modeling and analysis method is developed in this paper to assist in these challenging situations. In addition to providing a very natural and useful framework for modeling an d processing images, Bayesian multiscale analysis is often much less computationally demanding compared to classical Markov random field models. This paper focuses on a probabilistic graph model called the multiscale hidden Markov model (MHMM), which captures the key inter-scale dependencies present in natural image intensities. The MHMM framework presented here is specifically designed for photon-limited imagin applications involving Poisson statistics, and applications to image intensity analysis are examined.

  17. Random blebbing motion: A simple model linking cell structural properties to migration characteristics.

    PubMed

    Woolley, Thomas E; Gaffney, Eamonn A; Goriely, Alain

    2017-07-01

    If the plasma membrane of a cell is able to delaminate locally from its actin cortex, a cellular bleb can be produced. Blebs are pressure-driven protrusions, which are noteworthy for their ability to produce cellular motion. Starting from a general continuum mechanics description, we restrict ourselves to considering cell and bleb shapes that maintain approximately spherical forms. From this assumption, we obtain a tractable algebraic system for bleb formation. By including cell-substrate adhesions, we can model blebbing cell motility. Further, by considering mechanically isolated blebbing events, which are randomly distributed over the cell, we can derive equations linking the macroscopic migration characteristics to the microscopic structural parameters of the cell. This multiscale modeling framework is then used to provide parameter estimates, which are in agreement with current experimental data. In summary, the construction of the mathematical model provides testable relationships between the bleb size and cell motility.

  18. Multiscale modelling in immunology: a review.

    PubMed

    Cappuccio, Antonio; Tieri, Paolo; Castiglione, Filippo

    2016-05-01

    One of the greatest challenges in biomedicine is to get a unified view of observations made from the molecular up to the organism scale. Towards this goal, multiscale models have been highly instrumental in contexts such as the cardiovascular field, angiogenesis, neurosciences and tumour biology. More recently, such models are becoming an increasingly important resource to address immunological questions as well. Systematic mining of the literature in multiscale modelling led us to identify three main fields of immunological applications: host-virus interactions, inflammatory diseases and their treatment and development of multiscale simulation platforms for immunological research and for educational purposes. Here, we review the current developments in these directions, which illustrate that multiscale models can consistently integrate immunological data generated at several scales, and can be used to describe and optimize therapeutic treatments of complex immune diseases. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Performance of distributed multiscale simulations

    PubMed Central

    Borgdorff, J.; Ben Belgacem, M.; Bona-Casas, C.; Fazendeiro, L.; Groen, D.; Hoenen, O.; Mizeranschi, A.; Suter, J. L.; Coster, D.; Coveney, P. V.; Dubitzky, W.; Hoekstra, A. G.; Strand, P.; Chopard, B.

    2014-01-01

    Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption. PMID:24982258

  20. A multi-scale mathematical modeling framework to investigate anti-viral therapeutic opportunities in targeting HIV-1 accessory proteins

    PubMed Central

    Suryawanshi, Gajendra W.; Hoffmann, Alexander

    2015-01-01

    Human immunodeficiency virus-1 (HIV-1) employs accessory proteins to evade innate immune responses by neutralizing the anti-viral activity of host restriction factors. Apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G, A3G) and bone marrow stromal cell antigen 2 (BST2) are host resistance factors that potentially inhibit HIV-1 infection. BST2 reduces viral production by tethering budding HIV-1 particles to virus producing cells, while A3G inhibits the reverse transcription (RT) process and induces viral genome hypermutation through cytidine deamination, generating fewer replication competent progeny virus. Two HIV-1 proteins counter these cellular restriction factors: Vpu, which reduces surface BST2, and Vif, which degrades cellular A3G. The contest between these host and viral proteins influences whether HIV-1 infection is established and progresses towards AIDS. In this work, we present an age-structured multi-scale viral dynamics model of in vivo HIV-1 infection. We integrated the intracellular dynamics of anti-viral activity of the host factors and their neutralization by HIV-1 accessory proteins into the virus/cell population dynamics model. We calculate the basic reproductive ratio (Ro) as a function of host-viral protein interaction coefficients, and numerically simulated the multi-scale model to understand HIV-1 dynamics following host factor-induced perturbations. We found that reducing the influence of Vpu triggers a drop in Ro, revealing the impact of BST2 on viral infection control. Reducing Vif’s effect reveals the restrictive efficacy of A3G in blocking RT and in inducing lethal hypermutations, however, neither of these factors alone is sufficient to fully restrict HIV-1 infection. Interestingly, our model further predicts that BST2 and A3G function synergistically, and delineates their relative contribution in limiting HIV-1 infection and disease progression. We provide a robust modeling framework for devising novel combination therapies that target HIV-1 accessory proteins and boost antiviral activity of host factors. PMID:26385832

  1. Climate science in the tropics: waves, vortices and PDEs

    NASA Astrophysics Data System (ADS)

    Khouider, Boualem; Majda, Andrew J.; Stechmann, Samuel N.

    2013-01-01

    Clouds in the tropics can organize the circulation on planetary scales and profoundly impact long range seasonal forecasting and climate on the entire globe, yet contemporary operational computer models are often deficient in representing these phenomena. On the other hand, contemporary observations reveal remarkably complex coherent waves and vortices in the tropics interacting across a bewildering range of scales from kilometers to ten thousand kilometers. This paper reviews the interdisciplinary contributions over the last decade through the modus operandi of applied mathematics to these important scientific problems. Novel physical phenomena, new multiscale equations, novel PDEs, and numerical algorithms are presented here with the goal of attracting mathematicians and physicists to this exciting research area.

  2. Biomaterial science meets computational biology.

    PubMed

    Hutmacher, Dietmar W; Little, J Paige; Pettet, Graeme J; Loessner, Daniela

    2015-05-01

    There is a pressing need for a predictive tool capable of revealing a holistic understanding of fundamental elements in the normal and pathological cell physiology of organoids in order to decipher the mechanoresponse of cells. Therefore, the integration of a systems bioengineering approach into a validated mathematical model is necessary to develop a new simulation tool. This tool can only be innovative by combining biomaterials science with computational biology. Systems-level and multi-scale experimental data are incorporated into a single framework, thus representing both single cells and collective cell behaviour. Such a computational platform needs to be validated in order to discover key mechano-biological factors associated with cell-cell and cell-niche interactions.

  3. Localized Scale Coupling and New Educational Paradigms in Multiscale Mathematics and Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingber, Marc; Vorobieff, Peter

    2014-03-14

    We have experimentally demonstrated how microscale phenomena affect suspended particle behavior on the mesoscale, and how particle group behavior on the mesoscale influences the macroscale suspension behavior. Semi-analytical and numerical methods to treat flows on different scales have been developed, and a framework to combine these scale-dependent treatment has been described.

  4. Multiscale Shannon's Entropy Modeling of Orientation and Distance in Steel Fiber Micro-Tomography Data.

    PubMed

    Chiverton, John P; Ige, Olubisi; Barnett, Stephanie J; Parry, Tony

    2017-11-01

    This paper is concerned with the modeling and analysis of the orientation and distance between steel fibers in X-ray micro-tomography data. The advantage of combining both orientation and separation in a model is that it helps provide a detailed understanding of how the steel fibers are arranged, which is easy to compare. The developed models are designed to summarize the randomness of the orientation distribution of the steel fibers both locally and across an entire volume based on multiscale entropy. Theoretical modeling, simulation, and application to real imaging data are shown here. The theoretical modeling of multiscale entropy for orientation includes a proof showing the final form of the multiscale taken over a linear range of scales. A series of image processing operations are also included to overcome interslice connectivity issues to help derive the statistical descriptions of the orientation distributions of the steel fibers. The results demonstrate that multiscale entropy provides unique insights into both simulated and real imaging data of steel fiber reinforced concrete.

  5. A mathematical model for active contraction in healthy and failing myocytes and left ventricles.

    PubMed

    Cai, Li; Wang, Yongheng; Gao, Hao; Li, Yiqiang; Luo, Xiaoyu

    2017-01-01

    Cardiovascular disease is one of the leading causes of death worldwide, in particular myocardial dysfunction, which may lead to heart failure eventually. Understanding the electro-mechanics of the heart will help in developing more effective clinical treatments. In this paper, we present a multi-scale electro-mechanics model of the left ventricle (LV). The Holzapfel-Ogden constitutive law was used to describe the passive myocardial response in tissue level, a modified Grandi-Pasqualini-Bers model was adopted to model calcium dynamics in individual myocytes, and the active tension was described using the Niederer-Hunter-Smith myofilament model. We first studied the electro-mechanics coupling in a single myocyte in the healthy and diseased left ventricle, and then the single cell model was embedded in a dynamic LV model to investigate the compensation mechanism of LV pump function due to myocardial dysfunction caused by abnormality in cellular calcium dynamics. The multi-scale LV model was solved using an in-house developed hybrid immersed boundary method with finite element extension. The predictions of the healthy LV model agreed well with the clinical measurements and other studies, and likewise, the results in the failing states were also consistent with clinical observations. In particular, we found that a low level of intracellular Ca2+ transient in myocytes can result in LV pump function failure even with increased myocardial contractility, decreased systolic blood pressure, and increased diastolic filling pressure, even though they will increase LV stroke volume. Our work suggested that treatments targeted at increased contractility and lowering the systolic blood pressure alone are not sufficient in preventing LV pump dysfunction, restoring a balanced physiological Ca2+ handling mechanism is necessary.

  6. Image-based quantification and mathematical modeling of spatial heterogeneity in ESC colonies.

    PubMed

    Herberg, Maria; Zerjatke, Thomas; de Back, Walter; Glauche, Ingmar; Roeder, Ingo

    2015-06-01

    Pluripotent embryonic stem cells (ESCs) have the potential to differentiate into cells of all three germ layers. This unique property has been extensively studied on the intracellular, transcriptional level. However, ESCs typically form clusters of cells with distinct size and shape, and establish spatial structures that are vital for the maintenance of pluripotency. Even though it is recognized that the cells' arrangement and local interactions play a role in fate decision processes, the relations between transcriptional and spatial patterns have not yet been studied. We present a systems biology approach which combines live-cell imaging, quantitative image analysis, and multiscale, mathematical modeling of ESC growth. In particular, we develop quantitative measures of the morphology and of the spatial clustering of ESCs with different expression levels and apply them to images of both in vitro and in silico cultures. Using the same measures, we are able to compare model scenarios with different assumptions on cell-cell adhesions and intercellular feedback mechanisms directly with experimental data. Applying our methodology to microscopy images of cultured ESCs, we demonstrate that the emerging colonies are highly variable regarding both morphological and spatial fluorescence patterns. Moreover, we can show that most ESC colonies contain only one cluster of cells with high self-renewing capacity. These cells are preferentially located in the interior of a colony structure. The integrated approach combining image analysis with mathematical modeling allows us to reveal potential transcription factor related cellular and intercellular mechanisms behind the emergence of observed patterns that cannot be derived from images directly. © 2015 International Society for Advancement of Cytometry.

  7. Control and optimization in the modeling of fibrosis. Comment on "Towards a unified approach in the modeling of fibrosis: A review with research perspectives" by Martine Ben Amar and Carlo Bianca

    NASA Astrophysics Data System (ADS)

    Sivasundaram, Seenith

    2016-07-01

    The review paper [1] is devoted to the survey of different structures that have been developed for the modeling and analysis of various types of fibrosis. Biomathematics, bioinformatics, biomechanics and biophysics modeling have been treated by means of a brief description of the different models developed. The review is impressive and clearly written, addressed to a reader interested not only in the theoretical modeling but also in the biological description. The models have been described without recurring to technical statements or mathematical equations thus allowing the non-specialist reader to understand what framework is more suitable at a certain observation scale. The review [1] concludes with the possibility to develop a multiscale approach considering also the definition of a therapeutical strategy for pathological fibrosis. In particular the control and optimization of therapeutics action is an important issue and this article aims at commenting on this topic.

  8. Characterization of Cyclohexanone Inclusions in Class 1 RDX

    DTIC Science & Technology

    2014-06-01

    characterized with respect to solvent inclusions in support of a U.S. Army Research Laboratory (ARL) program to model Multiscale Response of Energetic...pertinent to their modeling effort under the Multiscale Response of Energetic Materials (MREM) program, and the Weapons and Materials Research...support of a U.S. Army Research Laboratory (ARL) initiative called “ Multiscale Modeling of Energetic Materials” (MREM). The MREM program aims, for

  9. Structural and Practical Identifiability Issues of Immuno-Epidemiological Vector-Host Models with Application to Rift Valley Fever.

    PubMed

    Tuncer, Necibe; Gulbudak, Hayriye; Cannataro, Vincent L; Martcheva, Maia

    2016-09-01

    In this article, we discuss the structural and practical identifiability of a nested immuno-epidemiological model of arbovirus diseases, where host-vector transmission rate, host recovery, and disease-induced death rates are governed by the within-host immune system. We incorporate the newest ideas and the most up-to-date features of numerical methods to fit multi-scale models to multi-scale data. For an immunological model, we use Rift Valley Fever Virus (RVFV) time-series data obtained from livestock under laboratory experiments, and for an epidemiological model we incorporate a human compartment to the nested model and use the number of human RVFV cases reported by the CDC during the 2006-2007 Kenya outbreak. We show that the immunological model is not structurally identifiable for the measurements of time-series viremia concentrations in the host. Thus, we study the non-dimensionalized and scaled versions of the immunological model and prove that both are structurally globally identifiable. After fixing estimated parameter values for the immunological model derived from the scaled model, we develop a numerical method to fit observable RVFV epidemiological data to the nested model for the remaining parameter values of the multi-scale system. For the given (CDC) data set, Monte Carlo simulations indicate that only three parameters of the epidemiological model are practically identifiable when the immune model parameters are fixed. Alternatively, we fit the multi-scale data to the multi-scale model simultaneously. Monte Carlo simulations for the simultaneous fitting suggest that the parameters of the immunological model and the parameters of the immuno-epidemiological model are practically identifiable. We suggest that analytic approaches for studying the structural identifiability of nested models are a necessity, so that identifiable parameter combinations can be derived to reparameterize the nested model to obtain an identifiable one. This is a crucial step in developing multi-scale models which explain multi-scale data.

  10. Multiscale Models in the Biomechanics of Plant Growth

    PubMed Central

    Fozard, John A.

    2015-01-01

    Plant growth occurs through the coordinated expansion of tightly adherent cells, driven by regulated softening of cell walls. It is an intrinsically multiscale process, with the integrated properties of multiple cell walls shaping the whole tissue. Multiscale models encode physical relationships to bring new understanding to plant physiology and development. PMID:25729061

  11. Solar Activity Across the Scales: From Small-Scale Quiet-Sun Dynamics to Magnetic Activity Cycles

    NASA Technical Reports Server (NTRS)

    Kitiashvili, Irina N.; Collins, Nancy N.; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2017-01-01

    Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.

  12. Solar activity across the scales: from small-scale quiet-Sun dynamics to magnetic activity cycles

    NASA Astrophysics Data System (ADS)

    Kitiashvili, I.; Collins, N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.

    2017-12-01

    Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high-resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.

  13. Modeling Framework for Fracture in Multiscale Cement-Based Material Structures

    PubMed Central

    Qian, Zhiwei; Schlangen, Erik; Ye, Guang; van Breugel, Klaas

    2017-01-01

    Multiscale modeling for cement-based materials, such as concrete, is a relatively young subject, but there are already a number of different approaches to study different aspects of these classical materials. In this paper, the parameter-passing multiscale modeling scheme is established and applied to address the multiscale modeling problem for the integrated system of cement paste, mortar, and concrete. The block-by-block technique is employed to solve the length scale overlap challenge between the mortar level (0.1–10 mm) and the concrete level (1–40 mm). The microstructures of cement paste are simulated by the HYMOSTRUC3D model, and the material structures of mortar and concrete are simulated by the Anm material model. Afterwards the 3D lattice fracture model is used to evaluate their mechanical performance by simulating a uniaxial tensile test. The simulated output properties at a lower scale are passed to the next higher scale to serve as input local properties. A three-level multiscale lattice fracture analysis is demonstrated, including cement paste at the micrometer scale, mortar at the millimeter scale, and concrete at centimeter scale. PMID:28772948

  14. Multiscale modeling and simulation of brain blood flow

    NASA Astrophysics Data System (ADS)

    Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em

    2016-02-01

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.

  15. Mathematical Model of the Processes of Heat and Mass Transfer and Diffusion of the Magnetic Field in an Induction Furnace

    NASA Astrophysics Data System (ADS)

    Perminov, A. V.; Nikulin, I. L.

    2016-03-01

    We propose a mathematical model describing the motion of a metal melt in a variable inhomogeneous magnetic field of a short solenoid. In formulating the problem, we made estimates and showed the possibility of splitting the complete magnetohydrodynamical problem into two subproblems: a magnetic field diffusion problem where the distributions of the external and induced magnetic fields and currents are determined, and a heat and mass transfer problem with known distributions of volume sources of heat and forces. The dimensionless form of the heat and mass transfer equation was obtained with the use of averaging and multiscale methods, which permitted writing and solving separately the equations for averaged flows and temperature fields and their oscillations. For the heat and mass transfer problem, the boundary conditions for a real technological facility are discussed. The dimensionless form of the magnetic field diffusion equation is presented, and the experimental computational procedure and results of the numerical simulation of the magnetic field structure in the melt for various magnetic Reynolds numbers are described. The extreme dependence of heat release on the magnetic Reynolds number has been interpreted.

  16. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Gibson, Richard L.

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  17. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai, E-mail: kaigao87@gmail.com; Fu, Shubin, E-mail: shubinfu89@gmail.com; Gibson, Richard L., E-mail: gibson@tamu.edu

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  18. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE PAGES

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; ...

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  19. The esophagiome: integrated anatomical, mechanical, and physiological analysis of the esophago-gastric segment.

    PubMed

    Zhao, Jingbo; McMahon, Barry; Fox, Mark; Gregersen, Hans

    2018-06-10

    Esophageal diseases are highly prevalent and carry significant socioeconomic burden. Despite the apparently simple function of the esophagus, we still struggle to better understand its physiology and pathophysiology. The assessment of large data sets and application of multiscale mathematical organ models have gained attention as part of the Physiome Project. This has long been recognized in cardiology but has only recently gained attention for the gastrointestinal(GI) tract. The term "esophagiome" implies a holistic assessment of esophageal function, from cellular and muscle physiology to the mechanical responses that transport and mix fluid contents. These anatomical, mechanical, and physiological models underlie the development of a "virtual esophagus" modeling framework to characterize and analyze function and disease. Functional models incorporate anatomical details with sensory-motor responses, especially related to biomechanical functions such as bolus transport. Our review builds on previous reviews and focuses on assessment of detailed anatomical and geometric data using advanced imaging technology for evaluation of gastro-esophageal reflux disease (GERD), and on esophageal mechanophysiology assessed using technologies that distend the esophagus. Integration of mechanics- and physiology-based analysis is a useful characteristic of the esophagiome. Experimental data on pressures and geometric characteristics are useful for the validation of mathematical and computer models of the esophagus that may provide predictions of novel endoscopic, surgical, and pharmaceutical treatment options. © 2018 New York Academy of Sciences.

  20. Shaken but not stirred: Multiscale habitat suitability modeling of sympatric marten species (Martes martes and Martes foina) in the northern Iberian Peninsula

    Treesearch

    Maria Vergara; Samuel A. Cushman; Fermin Urra; Aritz Ruiz-Gonzalez

    2016-01-01

    Multispecies and multiscale habitat suitability models (HSM) are important to identify the environmental variables and scales influencing habitat selection and facilitate the comparison of closely related species with different ecological requirements. Objectives This study explores the multiscale relationships of habitat suitability for the pine (Martes...

  1. Microphysics in the Multi-Scale Modeling Systems with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.

  2. Long-term Stable Conservative Multiscale Methods for Vortex Flows

    DTIC Science & Technology

    2017-10-31

    Computational and Applied Mathematics and Engeneering, Eccomas 2016 (Crete, June, 2016) - M. A. Olshanskii, Scientific computing seminar of Math ...UMass Dartmouth (October 2015) - L. Rebholz, Applied Math Seminar Talk, University of Alberta (October 2015) - L. Rebholz, Colloquium Talk, Scientific...Colloquium, (November 2016) - L. Rebholz, Joint Math Meetings 2017, Special session on recent advances in numerical analysis of PDEs, Atlanta GA

  3. A Liver-centric Multiscale Modeling Framework for Xenobiotics ...

    EPA Pesticide Factsheets

    We describe a multi-scale framework for modeling acetaminophen-induced liver toxicity. Acetaminophen is a widely used analgesic. Overdose of acetaminophen can result in liver injury via its biotransformation into toxic product, which further induce massive necrosis. Our study focuses on developing a multi-scale computational model to characterize both phase I and phase II metabolism of acetaminophen, by bridging Physiologically Based Pharmacokinetic (PBPK) modeling at the whole body level, cell movement and blood flow at the tissue level and cell signaling and drug metabolism at the sub-cellular level. To validate the model, we estimated our model parameters by fi?tting serum concentrations of acetaminophen and its glucuronide and sulfate metabolites to experiments, and carried out sensitivity analysis on 35 parameters selected from three modules. Our study focuses on developing a multi-scale computational model to characterize both phase I and phase II metabolism of acetaminophen, by bridging Physiologically Based Pharmacokinetic (PBPK) modeling at the whole body level, cell movement and blood flow at the tissue level and cell signaling and drug metabolism at the sub-cellular level. This multiscale model bridges the CompuCell3D tool used by the Virtual Tissue project with the httk tool developed by the Rapid Exposure and Dosimetry project.

  4. Multiscale Modeling of PEEK Using Reactive Molecular Dynamics Modeling and Micromechanics

    NASA Technical Reports Server (NTRS)

    Pisani, William A.; Radue, Matthew; Chinkanjanarot, Sorayot; Bednarcyk, Brett A.; Pineda, Evan J.; King, Julia A.; Odegard, Gregory M.

    2018-01-01

    Polyether ether ketone (PEEK) is a high-performance, semi-crystalline thermoplastic that is used in a wide range of engineering applications, including some structural components of aircraft. The design of new PEEK-based materials requires a precise understanding of the multiscale structure and behavior of semi-crystalline PEEK. Molecular Dynamics (MD) modeling can efficiently predict bulk-level properties of single phase polymers, and micromechanics can be used to homogenize those phases based on the overall polymer microstructure. In this study, MD modeling was used to predict the mechanical properties of the amorphous and crystalline phases of PEEK. The hierarchical microstructure of PEEK, which combines the aforementioned phases, was modeled using a multiscale modeling approach facilitated by NASA's MSGMC. The bulk mechanical properties of semi-crystalline PEEK predicted using MD modeling and MSGMC agree well with vendor data, thus validating the multiscale modeling approach.

  5. Semi-automated Modular Program Constructor for physiological modeling: Building cell and organ models.

    PubMed

    Jardine, Bartholomew; Raymond, Gary M; Bassingthwaighte, James B

    2015-01-01

    The Modular Program Constructor (MPC) is an open-source Java based modeling utility, built upon JSim's Mathematical Modeling Language (MML) ( http://www.physiome.org/jsim/) that uses directives embedded in model code to construct larger, more complicated models quickly and with less error than manually combining models. A major obstacle in writing complex models for physiological processes is the large amount of time it takes to model the myriad processes taking place simultaneously in cells, tissues, and organs. MPC replaces this task with code-generating algorithms that take model code from several different existing models and produce model code for a new JSim model. This is particularly useful during multi-scale model development where many variants are to be configured and tested against data. MPC encodes and preserves information about how a model is built from its simpler model modules, allowing the researcher to quickly substitute or update modules for hypothesis testing. MPC is implemented in Java and requires JSim to use its output. MPC source code and documentation are available at http://www.physiome.org/software/MPC/.

  6. Integrated multiscale biomaterials experiment and modelling: a perspective

    PubMed Central

    Buehler, Markus J.; Genin, Guy M.

    2016-01-01

    Advances in multiscale models and computational power have enabled a broad toolset to predict how molecules, cells, tissues and organs behave and develop. A key theme in biological systems is the emergence of macroscale behaviour from collective behaviours across a range of length and timescales, and a key element of these models is therefore hierarchical simulation. However, this predictive capacity has far outstripped our ability to validate predictions experimentally, particularly when multiple hierarchical levels are involved. The state of the art represents careful integration of multiscale experiment and modelling, and yields not only validation, but also insights into deformation and relaxation mechanisms across scales. We present here a sampling of key results that highlight both challenges and opportunities for integrated multiscale experiment and modelling in biological systems. PMID:28981126

  7. Nonlocal and Mixed-Locality Multiscale Finite Element Methods

    DOE PAGES

    Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.

    2018-03-27

    In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. Here, inmore » this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. Finally, we conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.« less

  8. Nonlocal and Mixed-Locality Multiscale Finite Element Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.

    In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. Here, inmore » this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. Finally, we conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.« less

  9. Community effort endorsing multiscale modelling, multiscale data science and multiscale computing for systems medicine.

    PubMed

    Zanin, Massimiliano; Chorbev, Ivan; Stres, Blaz; Stalidzans, Egils; Vera, Julio; Tieri, Paolo; Castiglione, Filippo; Groen, Derek; Zheng, Huiru; Baumbach, Jan; Schmid, Johannes A; Basilio, José; Klimek, Peter; Debeljak, Nataša; Rozman, Damjana; Schmidt, Harald H H W

    2017-12-05

    Systems medicine holds many promises, but has so far provided only a limited number of proofs of principle. To address this road block, possible barriers and challenges of translating systems medicine into clinical practice need to be identified and addressed. The members of the European Cooperation in Science and Technology (COST) Action CA15120 Open Multiscale Systems Medicine (OpenMultiMed) wish to engage the scientific community of systems medicine and multiscale modelling, data science and computing, to provide their feedback in a structured manner. This will result in follow-up white papers and open access resources to accelerate the clinical translation of systems medicine. © The Author 2017. Published by Oxford University Press.

  10. Multi-element least square HDMR methods and their applications for stochastic multiscale model reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Xinping, E-mail: exping@126.com

    Stochastic multiscale modeling has become a necessary approach to quantify uncertainty and characterize multiscale phenomena for many practical problems such as flows in stochastic porous media. The numerical treatment of the stochastic multiscale models can be very challengeable as the existence of complex uncertainty and multiple physical scales in the models. To efficiently take care of the difficulty, we construct a computational reduced model. To this end, we propose a multi-element least square high-dimensional model representation (HDMR) method, through which the random domain is adaptively decomposed into a few subdomains, and a local least square HDMR is constructed in eachmore » subdomain. These local HDMRs are represented by a finite number of orthogonal basis functions defined in low-dimensional random spaces. The coefficients in the local HDMRs are determined using least square methods. We paste all the local HDMR approximations together to form a global HDMR approximation. To further reduce computational cost, we present a multi-element reduced least-square HDMR, which improves both efficiency and approximation accuracy in certain conditions. To effectively treat heterogeneity properties and multiscale features in the models, we integrate multiscale finite element methods with multi-element least-square HDMR for stochastic multiscale model reduction. This approach significantly reduces the original model's complexity in both the resolution of the physical space and the high-dimensional stochastic space. We analyze the proposed approach, and provide a set of numerical experiments to demonstrate the performance of the presented model reduction techniques. - Highlights: • Multi-element least square HDMR is proposed to treat stochastic models. • Random domain is adaptively decomposed into some subdomains to obtain adaptive multi-element HDMR. • Least-square reduced HDMR is proposed to enhance computation efficiency and approximation accuracy in certain conditions. • Integrating MsFEM and multi-element least square HDMR can significantly reduce computation complexity.« less

  11. Identity in agent-based models : modeling dynamic multiscale social processes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozik, J.; Sallach, D. L.; Macal, C. M.

    Identity-related issues play central roles in many current events, including those involving factional politics, sectarianism, and tribal conflicts. Two popular models from the computational-social-science (CSS) literature - the Threat Anticipation Program and SharedID models - incorporate notions of identity (individual and collective) and processes of identity formation. A multiscale conceptual framework that extends some ideas presented in these models and draws other capabilities from the broader CSS literature is useful in modeling the formation of political identities. The dynamic, multiscale processes that constitute and transform social identities can be mapped to expressive structures of the framework

  12. Performance of hybrid programming models for multiscale cardiac simulations: preparing for petascale computation.

    PubMed

    Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias

    2011-10-01

    Future multiscale and multiphysics models that support research into human disease, translational medical science, and treatment can utilize the power of high-performance computing (HPC) systems. We anticipate that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message-passing processes [e.g., the message-passing interface (MPI)] with multithreading (e.g., OpenMP, Pthreads). The objective of this study is to compare the performance of such hybrid programming models when applied to the simulation of a realistic physiological multiscale model of the heart. Our results show that the hybrid models perform favorably when compared to an implementation using only the MPI and, furthermore, that OpenMP in combination with the MPI provides a satisfactory compromise between performance and code complexity. Having the ability to use threads within MPI processes enables the sophisticated use of all processor cores for both computation and communication phases. Considering that HPC systems in 2012 will have two orders of magnitude more cores than what was used in this study, we believe that faster than real-time multiscale cardiac simulations can be achieved on these systems.

  13. Multi-scale signed envelope inversion

    NASA Astrophysics Data System (ADS)

    Chen, Guo-Xin; Wu, Ru-Shan; Wang, Yu-Qing; Chen, Sheng-Chang

    2018-06-01

    Envelope inversion based on modulation signal mode was proposed to reconstruct large-scale structures of underground media. In order to solve the shortcomings of conventional envelope inversion, multi-scale envelope inversion was proposed using new envelope Fréchet derivative and multi-scale inversion strategy to invert strong contrast models. In multi-scale envelope inversion, amplitude demodulation was used to extract the low frequency information from envelope data. However, only to use amplitude demodulation method will cause the loss of wavefield polarity information, thus increasing the possibility of inversion to obtain multiple solutions. In this paper we proposed a new demodulation method which can contain both the amplitude and polarity information of the envelope data. Then we introduced this demodulation method into multi-scale envelope inversion, and proposed a new misfit functional: multi-scale signed envelope inversion. In the numerical tests, we applied the new inversion method to the salt layer model and SEG/EAGE 2-D Salt model using low-cut source (frequency components below 4 Hz were truncated). The results of numerical test demonstrated the effectiveness of this method.

  14. A dynamic multi-scale Markov model based methodology for remaining life prediction

    NASA Astrophysics Data System (ADS)

    Yan, Jihong; Guo, Chaozhong; Wang, Xing

    2011-05-01

    The ability to accurately predict the remaining life of partially degraded components is crucial in prognostics. In this paper, a performance degradation index is designed using multi-feature fusion techniques to represent deterioration severities of facilities. Based on this indicator, an improved Markov model is proposed for remaining life prediction. Fuzzy C-Means (FCM) algorithm is employed to perform state division for Markov model in order to avoid the uncertainty of state division caused by the hard division approach. Considering the influence of both historical and real time data, a dynamic prediction method is introduced into Markov model by a weighted coefficient. Multi-scale theory is employed to solve the state division problem of multi-sample prediction. Consequently, a dynamic multi-scale Markov model is constructed. An experiment is designed based on a Bently-RK4 rotor testbed to validate the dynamic multi-scale Markov model, experimental results illustrate the effectiveness of the methodology.

  15. Multi-scale Mexican spotted owl (Strix occidentalis lucida) nest/roost habitat selection in Arizona and a comparison with single-scale modeling results

    Treesearch

    Brad C. Timm; Kevin McGarigal; Samuel A. Cushman; Joseph L. Ganey

    2016-01-01

    Efficacy of future habitat selection studies will benefit by taking a multi-scale approach. In addition to potentially providing increased explanatory power and predictive capacity, multi-scale habitat models enhance our understanding of the scales at which species respond to their environment, which is critical knowledge required to implement effective...

  16. Multiscale Modeling of Damage Processes in fcc Aluminum: From Atoms to Grains

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Saether, E.; Yamakov, V.

    2008-01-01

    Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, current analysis is limited to small domains and increasing the size of the MD domain quickly presents intractable computational demands. A preferred approach to surmount this computational limitation has been to combine continuum mechanics-based modeling procedures, such as the finite element method (FEM), with MD analyses thereby reducing the region of atomic scale refinement. Such multiscale modeling strategies can be divided into two broad classifications: concurrent multiscale methods that directly incorporate an atomistic domain within a continuum domain and sequential multiscale methods that extract an averaged response from the atomistic simulation for later use as a constitutive model in a continuum analysis.

  17. The Onset of Type 2 Diabetes: Proposal for a Multi-Scale Model

    PubMed Central

    Tieri, Paolo; De Graaf, Albert; Franceschi, Claudio; Liò, Pietro; Van Ommen, Ben; Mazzà, Claudia; Tuchel, Alexander; Bernaschi, Massimo; Samson, Clare; Colombo, Teresa; Castellani, Gastone C; Capri, Miriam; Garagnani, Paolo; Salvioli, Stefano; Nguyen, Viet Anh; Bobeldijk-Pastorova, Ivana; Krishnan, Shaji; Cappozzo, Aurelio; Sacchetti, Massimo; Morettini, Micaela; Ernst, Marc

    2013-01-01

    Background Type 2 diabetes mellitus (T2D) is a common age-related disease, and is a major health concern, particularly in developed countries where the population is aging, including Europe. The multi-scale immune system simulator for the onset of type 2 diabetes (MISSION-T2D) is a European Union-funded project that aims to develop and validate an integrated, multilevel, and patient-specific model, incorporating genetic, metabolic, and nutritional data for the simulation and prediction of metabolic and inflammatory processes in the onset and progression of T2D. The project will ultimately provide a tool for diagnosis and clinical decision making that can estimate the risk of developing T2D and predict its progression in response to possible therapies. Recent data showed that T2D and its complications, specifically in the heart, kidney, retina, and feet, should be considered a systemic disease that is sustained by a pervasive, metabolically-driven state of inflammation. Accordingly, there is an urgent need (1) to understand the complex mechanisms underpinning the onset of this disease, and (2) to identify early patient-specific diagnostic parameters and related inflammatory indicators. Objective We aim to accomplish this mission by setting up a multi-scale model to study the systemic interactions of the biological mechanisms involved in response to a variety of nutritional and metabolic stimuli and stressors. Methods Specifically, we will be studying the biological mechanisms of immunological/inflammatory processes, energy intake/expenditure ratio, and cell cycle rate. The overall architecture of the model will exploit an already established immune system simulator as well as several discrete and continuous mathematical methods for modeling of the processes critically involved in the onset and progression of T2D. We aim to validate the predictions of our models using actual biological and clinical data. Results This study was initiated in March 2013 and is expected to be completed by February 2016. Conclusions MISSION-T2D aims to pave the way for translating validated multilevel immune-metabolic models into the clinical setting of T2D. This approach will eventually generate predictive biomarkers for this disease from the integration of clinical data with metabolic, nutritional, immune/inflammatory, genetic, and gut microbiota profiles. Eventually, it should prove possible to translate these into cost-effective and mobile-based diagnostic tools. PMID:24176906

  18. Computational models of the pulmonary circulation: Insights and the move towards clinically directed studies

    PubMed Central

    Tawhai, Merryn H.; Clark, Alys R.; Burrowes, Kelly S.

    2011-01-01

    Biophysically-based computational models provide a tool for integrating and explaining experimental data, observations, and hypotheses. Computational models of the pulmonary circulation have evolved from minimal and efficient constructs that have been used to study individual mechanisms that contribute to lung perfusion, to sophisticated multi-scale and -physics structure-based models that predict integrated structure-function relationships within a heterogeneous organ. This review considers the utility of computational models in providing new insights into the function of the pulmonary circulation, and their application in clinically motivated studies. We review mathematical and computational models of the pulmonary circulation based on their application; we begin with models that seek to answer questions in basic science and physiology and progress to models that aim to have clinical application. In looking forward, we discuss the relative merits and clinical relevance of computational models: what important features are still lacking; and how these models may ultimately be applied to further increasing our understanding of the mechanisms occurring in disease of the pulmonary circulation. PMID:22034608

  19. Towards the virtual artery: a multiscale model for vascular physiology at the physics-chemistry-biology interface.

    PubMed

    Hoekstra, Alfons G; Alowayyed, Saad; Lorenz, Eric; Melnikova, Natalia; Mountrakis, Lampros; van Rooij, Britt; Svitenkov, Andrew; Závodszky, Gábor; Zun, Pavel

    2016-11-13

    This discussion paper introduces the concept of the Virtual Artery as a multiscale model for arterial physiology and pathologies at the physics-chemistry-biology (PCB) interface. The cellular level is identified as the mesoscopic level, and we argue that by coupling cell-based models with other relevant models on the macro- and microscale, a versatile model of arterial health and disease can be composed. We review the necessary ingredients, both models of arteries at many different scales, as well as generic methods to compose multiscale models. Next, we discuss how this can be combined into the virtual artery. Finally, we argue that the concept of models at the PCB interface could or perhaps should become a powerful paradigm, not only as in our case for studying physiology, but also for many other systems that have such PCB interfaces.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Authors.

  20. Report of the proceedings of the Colloquium and Workshop on Multiscale Coupled Modeling

    NASA Technical Reports Server (NTRS)

    Koch, Steven E. (Editor)

    1993-01-01

    The Colloquium and Workshop on Multiscale Coupled Modeling was held for the purpose of addressing modeling issues of importance to planning for the Cooperative Multiscale Experiment (CME). The colloquium presentations attempted to assess the current ability of numerical models to accurately simulate the development and evolution of mesoscale cloud and precipitation systems and their cycling of water substance, energy, and trace species. The primary purpose of the workshop was to make specific recommendations for the improvement of mesoscale models prior to the CME, their coupling with cloud, cumulus ensemble, hydrology, air chemistry models, and the observational requirements to initialize and verify these models.

  1. Multiscale modeling of nerve agent hydrolysis mechanisms: a tale of two Nobel Prizes

    NASA Astrophysics Data System (ADS)

    Field, Martin J.; Wymore, Troy W.

    2014-10-01

    The 2013 Nobel Prize in Chemistry was awarded for the development of multiscale models for complex chemical systems, whereas the 2013 Peace Prize was given to the Organisation for the Prohibition of Chemical Weapons for their efforts to eliminate chemical warfare agents. This review relates the two by introducing the field of multiscale modeling and highlighting its application to the study of the biological mechanisms by which selected chemical weapon agents exert their effects at an atomic level.

  2. Chaotic Lagrangian models for turbulent relative dispersion.

    PubMed

    Lacorata, Guglielmo; Vulpiani, Angelo

    2017-04-01

    A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.

  3. Chaotic Lagrangian models for turbulent relative dispersion

    NASA Astrophysics Data System (ADS)

    Lacorata, Guglielmo; Vulpiani, Angelo

    2017-04-01

    A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.

  4. Multiscale analysis of neural spike trains.

    PubMed

    Ramezan, Reza; Marriott, Paul; Chenouri, Shojaeddin

    2014-01-30

    This paper studies the multiscale analysis of neural spike trains, through both graphical and Poisson process approaches. We introduce the interspike interval plot, which simultaneously visualizes characteristics of neural spiking activity at different time scales. Using an inhomogeneous Poisson process framework, we discuss multiscale estimates of the intensity functions of spike trains. We also introduce the windowing effect for two multiscale methods. Using quasi-likelihood, we develop bootstrap confidence intervals for the multiscale intensity function. We provide a cross-validation scheme, to choose the tuning parameters, and study its unbiasedness. Studying the relationship between the spike rate and the stimulus signal, we observe that adjusting for the first spike latency is important in cross-validation. We show, through examples, that the correlation between spike trains and spike count variability can be multiscale phenomena. Furthermore, we address the modeling of the periodicity of the spike trains caused by a stimulus signal or by brain rhythms. Within the multiscale framework, we introduce intensity functions for spike trains with multiplicative and additive periodic components. Analyzing a dataset from the retinogeniculate synapse, we compare the fit of these models with the Bayesian adaptive regression splines method and discuss the limitations of the methodology. Computational efficiency, which is usually a challenge in the analysis of spike trains, is one of the highlights of these new models. In an example, we show that the reconstruction quality of a complex intensity function demonstrates the ability of the multiscale methodology to crack the neural code. Copyright © 2013 John Wiley & Sons, Ltd.

  5. A theoretical study of the initiation, maintenance and termination of gastric slow wave re-entry

    PubMed Central

    Du, Peng; Paskaranandavadivel, Niranchan; O’Grady, Greg; Tang, Shou-Jiang; Cheng, Leo K.

    2015-01-01

    Gastric slow wave dysrhythmias are associated with motility disorders. Periods of tachygastria associated with slow wave re-entry were recently recognized as one important dysrhythmia mechanism, but factors promoting and sustaining gastric re-entry are currently unknown. This study reports two experimental forms of gastric re-entry and presents a series of multi-scale models that define criteria for slow wave re-entry initiation, maintenance and termination. High-resolution electrical mapping was conducted in porcine and canine models and two spatiotemporal patterns of re-entrant activities were captured: single-loop rotor and double-loop figure-of-eight. Two separate multi-scale mathematical models were developed to reproduce the velocity and entrainment frequency of these experimental recordings. A single-pulse stimulus was used to invoke a rotor re-entry in the porcine model and a figure-of-eight re-entry in the canine model. In both cases, the simulated re-entrant activities were found to be perpetuated by tachygastria that was accompanied by a reduction in the propagation velocity in the re-entrant pathways. The simulated re-entrant activities were terminated by a single-pulse stimulus targeted at the tip of re-entrant wave, after which normal antegrade propagation was restored by the underlying intrinsic frequency gradient. Main findings: (i) the stability of re-entry is regulated by stimulus timing, intrinsic frequency gradient and conductivity; (ii) tachygastria due to re-entry increases the frequency gradient while showing decreased propagation velocity; (iii) re-entry may be effectively terminated by a targeted stimulus at the core, allowing the intrinsic slow wave conduction system to re-establish itself. PMID:25552487

  6. Adaptation of a Fast Optimal Interpolation Algorithm to the Mapping of Oceangraphic Data

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris; Fieguth, Paul; Wunsch, Carl; Willsky, Alan

    1997-01-01

    A fast, recently developed, multiscale optimal interpolation algorithm has been adapted to the mapping of hydrographic and other oceanographic data. This algorithm produces solution and error estimates which are consistent with those obtained from exact least squares methods, but at a small fraction of the computational cost. Problems whose solution would be completely impractical using exact least squares, that is, problems with tens or hundreds of thousands of measurements and estimation grid points, can easily be solved on a small workstation using the multiscale algorithm. In contrast to methods previously proposed for solving large least squares problems, our approach provides estimation error statistics while permitting long-range correlations, using all measurements, and permitting arbitrary measurement locations. The multiscale algorithm itself, published elsewhere, is not the focus of this paper. However, the algorithm requires statistical models having a very particular multiscale structure; it is the development of a class of multiscale statistical models, appropriate for oceanographic mapping problems, with which we concern ourselves in this paper. The approach is illustrated by mapping temperature in the northeastern Pacific. The number of hydrographic stations is kept deliberately small to show that multiscale and exact least squares results are comparable. A portion of the data were not used in the analysis; these data serve to test the multiscale estimates. A major advantage of the present approach is the ability to repeat the estimation procedure a large number of times for sensitivity studies, parameter estimation, and model testing. We have made available by anonymous Ftp a set of MATLAB-callable routines which implement the multiscale algorithm and the statistical models developed in this paper.

  7. A Multi-scale Modeling System with Unified Physics to Study Precipitation Processes

    NASA Astrophysics Data System (ADS)

    Tao, W. K.

    2017-12-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), and (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF). The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitation, processes and their sensitivity on model resolution and microphysics schemes will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.

  8. Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the recent developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitating systems and hurricanes/typhoons will be presented. The high-resolution spatial and temporal visualization will be utilized to show the evolution of precipitation processes. Also how to use of the multi-satellite simulator tqimproy precipitation processes will be discussed.

  9. Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei--Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2010-01-01

    In recent years, exponentially increasing computer power extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 sq km in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale models can be run in grid size similar to cloud resolving models through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model). (2) a regional scale model (a NASA unified weather research and forecast, W8F). (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling systems to study the interactions between clouds, precipitation, and aerosols will be presented. Also how to use the multi-satellite simulator to improve precipitation processes will be discussed.

  10. Using Multi-Scale Modeling Systems to Study the Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2010-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.

  11. Wavelet-based multiscale performance analysis: An approach to assess and improve hydrological models

    NASA Astrophysics Data System (ADS)

    Rathinasamy, Maheswaran; Khosa, Rakesh; Adamowski, Jan; ch, Sudheer; Partheepan, G.; Anand, Jatin; Narsimlu, Boini

    2014-12-01

    The temporal dynamics of hydrological processes are spread across different time scales and, as such, the performance of hydrological models cannot be estimated reliably from global performance measures that assign a single number to the fit of a simulated time series to an observed reference series. Accordingly, it is important to analyze model performance at different time scales. Wavelets have been used extensively in the area of hydrological modeling for multiscale analysis, and have been shown to be very reliable and useful in understanding dynamics across time scales and as these evolve in time. In this paper, a wavelet-based multiscale performance measure for hydrological models is proposed and tested (i.e., Multiscale Nash-Sutcliffe Criteria and Multiscale Normalized Root Mean Square Error). The main advantage of this method is that it provides a quantitative measure of model performance across different time scales. In the proposed approach, model and observed time series are decomposed using the Discrete Wavelet Transform (known as the à trous wavelet transform), and performance measures of the model are obtained at each time scale. The applicability of the proposed method was explored using various case studies-both real as well as synthetic. The synthetic case studies included various kinds of errors (e.g., timing error, under and over prediction of high and low flows) in outputs from a hydrologic model. The real time case studies investigated in this study included simulation results of both the process-based Soil Water Assessment Tool (SWAT) model, as well as statistical models, namely the Coupled Wavelet-Volterra (WVC), Artificial Neural Network (ANN), and Auto Regressive Moving Average (ARMA) methods. For the SWAT model, data from Wainganga and Sind Basin (India) were used, while for the Wavelet Volterra, ANN and ARMA models, data from the Cauvery River Basin (India) and Fraser River (Canada) were used. The study also explored the effect of the choice of the wavelets in multiscale model evaluation. It was found that the proposed wavelet-based performance measures, namely the MNSC (Multiscale Nash-Sutcliffe Criteria) and MNRMSE (Multiscale Normalized Root Mean Square Error), are a more reliable measure than traditional performance measures such as the Nash-Sutcliffe Criteria (NSC), Root Mean Square Error (RMSE), and Normalized Root Mean Square Error (NRMSE). Further, the proposed methodology can be used to: i) compare different hydrological models (both physical and statistical models), and ii) help in model calibration.

  12. P-adic model of transport in porous disordered media

    NASA Astrophysics Data System (ADS)

    Khrennikov, Adrei Yu.; Oleschko, Klaudia

    2014-05-01

    The soil porosity and permeability are the most important quantitative indicators of soil dynamics under the land-use change. The main problema in the modeling of this dynamic is still poor correlation between the real measuring data and the mathematical and computer simulation models. In order to overpassed this deep divorce we have designed a new technique, able to compare the data arised from the multiscale image analices and time series of the basic physical properties dynamics in porous media studied in time and space. We present a model of the diffusion reaction type describing transport in disordered porous media, e.g., water or oil flow in a complex network of pores. Our model is based on p-adic representation of such networks. This is a kind of fractal representation. We explore advantages of p- adic representation, namely, the possibility to endow p-adic trees with an algebraic structure and ultrametric topology and, hence, to apply analysis which have (at least some) similarities with ordinary real analysis on the straight line. We present the system of two diffusion reaction equations describing propagation of particles in networks of pores in disordered media. As an application, one can consider water transport through the soil pore Networks, or oil flow through capillaries nets. Under some restrictions on potentials and rate coefficients we found the stationary regime corresponding to water content or concentration of oil in a cluster of capillaries. Usage of p-adic analysis (in particular, p-adic wavelets) gives a possibility to find the stationary solution in the analytic form which makes possible to present a clear pedological or geological picture of the process. The mathematical model elaborated in this paper (Khrennikov, 2013) can be applied to variety of problems from water concentration in aquifers to the problem of formation of oil reservoirs in disordered media with porous structures. Another possible application may have real practical output. In fact, our system of diffusion-reaction equations can be used to model the process of extraction of water or oil from an extended network of capillaries (Khrennikov et al., 2013). The accomplished analyses show that the time series of water content/pressure dynamics in saturated/unsaturated conditions reflect the fractal structure of pores separated by familias base don the seven geometric descriptors which we used for the soils multiscale images (Oleschko et al., 2012). The similar models were applied to the porous media behind the oil flow from wells. These results motivate usage of the fractal and, in particular, p-adic methods of modeling.

  13. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 1: MODEL DESCRIPTION

    EPA Science Inventory

    The aerosol component of the Community Multiscale Air Quality (CMAQ) model is designed to be an efficient and economical depiction of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdis...

  14. Evaluation of the Community Multiscale Air Quality model version 5.1

    EPA Science Inventory

    The Community Multiscale Air Quality model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Atmospheric Modeling and Analysis Division (AMAD) of the U.S. Environment...

  15. Measuring preschool cognitive growth while it's still happening: the Learning Express.

    PubMed

    McDermott, Paul A; Fantuzzo, John W; Waterman, Clare; Angelo, Lauren E; Warley, Heather P; Gadsden, Vivian L; Zhang, Xiuyuan

    2009-10-01

    Educators need accurate assessments of preschool cognitive growth to guide curriculum design, evaluation, and timely modification of their instructional programs. But available tests do not provide content breadth or growth sensitivity over brief intervals. This article details evidence for a multiform, multiscale test criterion-referenced to national standards for alphabet knowledge, vocabulary, listening comprehension and mathematics, developed in field trials with 3433 3-5(1/2)-year-old Head Start children. The test enables repeated assessments (20-30 min per time point) over a school year. Each subscale is calibrated to yield scaled scores based on item response theory and Bayesian estimation of ability. Multilevel modeling shows that nearly all score variation is associated with child performance rather than examiner performance and individual growth-curve modeling demonstrates the high sensitivity of scores to child growth, controlled for age, sex, prior schooling, and language and special needs status.

  16. BOOK REVIEW: Heterogeneous Materials I and Heterogeneous Materials II

    NASA Astrophysics Data System (ADS)

    Knowles, K. M.

    2004-02-01

    In these two volumes the author provides a comprehensive survey of the various mathematically-based models used in the research literature to predict the mechanical, thermal and electrical properties of hetereogeneous materials, i.e., materials containing two or more phases such as fibre-reinforced polymers, cast iron and porous ceramic kiln furniture. Volume I covers linear properties such as linear dielectric constant, effective electrical conductivity and elastic moduli, while Volume II covers nonlinear properties, fracture and atomistic and multiscale modelling. Where appropriate, particular attention is paid to the use of fractal geometry and percolation theory in describing the structure and properties of these materials. The books are advanced level texts reflecting the research interests of the author which will be of significant interest to research scientists working at the forefront of the areas covered by the books. Others working more generally in the field\

  17. Pattern formation in diffusive excitable systems under magnetic flow effects

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Takembo, Clovis N.; Ekobena Fouda, H. P.; Kofané, Timoléon C.

    2017-07-01

    We study the spatiotemporal formation of patterns in a diffusive FitzHugh-Nagumo network where the effect of electromagnetic induction has been introduced in the standard mathematical model by using magnetic flux, and the modulation of magnetic flux on membrane potential is realized by using memristor coupling. We use the multi-scale expansion to show that the system equations can be reduced to a single differential-difference nonlinear equation. The linear stability analysis is performed and discussed with emphasis on the impact of magnetic flux. It is observed that the effect of memristor coupling importantly modifies the features of modulational instability. Our analytical results are supported by the numerical experiments, which reveal that the improved model can lead to nonlinear quasi-periodic spatiotemporal patterns with some features of synchronization. It is observed also the generation of pulses and rhythmics behaviors like breathing or swimming which are important in brain researches.

  18. 3D braid scaffolds for regeneration of articular cartilage.

    PubMed

    Ahn, Hyunchul; Kim, Kyoung Ju; Park, Sook Young; Huh, Jeong Eun; Kim, Hyun Jeong; Yu, Woong-Ryeol

    2014-06-01

    Regenerating articular cartilage in vivo from cultured chondrocytes requires that the cells be cultured and implanted within a biocompatible, biodegradable scaffold. Such scaffolds must be mechanically stable; otherwise chondrocytes would not be supported and patients would experience severe pain. Here we report a new 3D braid scaffold that matches the anisotropic (gradient) mechanical properties of natural articular cartilage and is permissive to cell cultivation. To design an optimal structure, the scaffold unit cell was mathematically modeled and imported into finite element analysis. Based on this analysis, a 3D braid structure with gradient axial yarn distribution was designed and manufactured using a custom-built braiding machine. The mechanical properties of the 3D braid scaffold were evaluated and compared with simulated results, demonstrating that a multi-scale approach consisting of unit cell modeling and continuum analysis facilitates design of scaffolds that meet the requirements for mechanical compatibility with tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Multiple Scales in Fluid Dynamics and Meteorology: The DFG Priority Programme 1276 MetStröm

    NASA Astrophysics Data System (ADS)

    von Larcher, Th; Klein, R.

    2012-04-01

    Geophysical fluid motions are characterized by a very wide range of length and time scales, and by a rich collection of varying physical phenomena. The mathematical description of these motions reflects this multitude of scales and mechanisms in that it involves strong non-linearities and various scale-dependent singular limit regimes. Considerable progress has been made in recent years in the mathematical modelling and numerical simulation of such flows in detailed process studies, numerical weather forecasting, and climate research. One task of outstanding importance in this context has been and will remain for the foreseeable future the subgrid scale parameterization of the net effects of non-resolved processes that take place on spacio-temporal scales not resolvable even by the largest most recent supercomputers. Since the advent of numerical weather forecasting some 60 years ago, one simple but efficient means to achieve improved forecasting skills has been increased spacio-temporal resolution. This seems quite consistent with the concept of convergence of numerical methods in Applied Mathematics and Computational Fluid Dynamics (CFD) at a first glance. Yet, the very notion of increased resolution in atmosphere-ocean science is very different from the one used in Applied Mathematics: For the mathematician, increased resolution provides the benefit of getting closer to the ideal of a converged solution of some given partial differential equations. On the other hand, the atmosphere-ocean scientist would naturally refine the computational grid and adjust his mathematical model, such that it better represents the relevant physical processes that occur at smaller scales. This conceptual contradiction remains largely irrelevant as long as geophysical flow models operate with fixed computational grids and time steps and with subgrid scale parameterizations being optimized accordingly. The picture changes fundamentally when modern techniques from CFD involving spacio-temporal grid adaptivity get invoked in order to further improve the net efficiency in exploiting the given computational resources. In the setting of geophysical flow simulation one must then employ subgrid scale parameterizations that dynamically adapt to the changing grid sizes and time steps, implement ways to judiciously control and steer the newly available flexibility of resolution, and invent novel ways of quantifying the remaining errors. The DFG priority program MetStröm covers the expertise of Meteorology, Fluid Dynamics, and Applied Mathematics to develop model- as well as grid-adaptive numerical simulation concepts in multidisciplinary projects. The goal of this priority programme is to provide simulation models which combine scale-dependent (mathematical) descriptions of key physical processes with adaptive flow discretization schemes. Deterministic continuous approaches and discrete and/or stochastic closures and their possible interplay are taken into consideration. Research focuses on the theory and methodology of multiscale meteorological-fluid mechanics modelling. Accompanying reference experiments support model validation.

  20. Towards Personalized Cardiology: Multi-Scale Modeling of the Failing Heart

    PubMed Central

    Amr, Ali; Neumann, Dominik; Georgescu, Bogdan; Seegerer, Philipp; Kamen, Ali; Haas, Jan; Frese, Karen S.; Irawati, Maria; Wirsz, Emil; King, Vanessa; Buss, Sebastian; Mereles, Derliz; Zitron, Edgar; Keller, Andreas; Katus, Hugo A.; Comaniciu, Dorin; Meder, Benjamin

    2015-01-01

    Background Despite modern pharmacotherapy and advanced implantable cardiac devices, overall prognosis and quality of life of HF patients remain poor. This is in part due to insufficient patient stratification and lack of individualized therapy planning, resulting in less effective treatments and a significant number of non-responders. Methods and Results State-of-the-art clinical phenotyping was acquired, including magnetic resonance imaging (MRI) and biomarker assessment. An individualized, multi-scale model of heart function covering cardiac anatomy, electrophysiology, biomechanics and hemodynamics was estimated using a robust framework. The model was computed on n=46 HF patients, showing for the first time that advanced multi-scale models can be fitted consistently on large cohorts. Novel multi-scale parameters derived from the model of all cases were analyzed and compared against clinical parameters, cardiac imaging, lab tests and survival scores to evaluate the explicative power of the model and its potential for better patient stratification. Model validation was pursued by comparing clinical parameters that were not used in the fitting process against model parameters. Conclusion This paper illustrates how advanced multi-scale models can complement cardiovascular imaging and how they could be applied in patient care. Based on obtained results, it becomes conceivable that, after thorough validation, such heart failure models could be applied for patient management and therapy planning in the future, as we illustrate in one patient of our cohort who received CRT-D implantation. PMID:26230546

  1. Multiscale Modeling of Antibody-Drug Conjugates: Connecting Tissue and Cellular Distribution to Whole Animal Pharmacokinetics and Potential Implications for Efficacy.

    PubMed

    Cilliers, Cornelius; Guo, Hans; Liao, Jianshan; Christodolu, Nikolas; Thurber, Greg M

    2016-09-01

    Antibody-drug conjugates exhibit complex pharmacokinetics due to their combination of macromolecular and small molecule properties. These issues range from systemic concerns, such as deconjugation of the small molecule drug during the long antibody circulation time or rapid clearance from nonspecific interactions, to local tumor tissue heterogeneity, cell bystander effects, and endosomal escape. Mathematical models can be used to study the impact of these processes on overall distribution in an efficient manner, and several types of models have been used to analyze varying aspects of antibody distribution including physiologically based pharmacokinetic (PBPK) models and tissue-level simulations. However, these processes are quantitative in nature and cannot be handled qualitatively in isolation. For example, free antibody from deconjugation of the small molecule will impact the distribution of conjugated antibodies within the tumor. To incorporate these effects into a unified framework, we have coupled the systemic and organ-level distribution of a PBPK model with the tissue-level detail of a distributed parameter tumor model. We used this mathematical model to analyze new experimental results on the distribution of the clinical antibody-drug conjugate Kadcyla in HER2-positive mouse xenografts. This model is able to capture the impact of the drug-antibody ratio (DAR) on tumor penetration, the net result of drug deconjugation, and the effect of using unconjugated antibody to drive ADC penetration deeper into the tumor tissue. This modeling approach will provide quantitative and mechanistic support to experimental studies trying to parse the impact of multiple mechanisms of action for these complex drugs.

  2. Multiscale Modeling of Antibody Drug Conjugates: Connecting tissue and cellular distribution to whole animal pharmacokinetics and potential implications for efficacy

    PubMed Central

    Cilliers, Cornelius; Guo, Hans; Liao, Jianshan; Christodolu, Nikolas; Thurber, Greg M.

    2016-01-01

    Antibody drug conjugates exhibit complex pharmacokinetics due to their combination of macromolecular and small molecule properties. These issues range from systemic concerns, such as deconjugation of the small molecule drug during the long antibody circulation time or rapid clearance from non-specific interactions, to local tumor tissue heterogeneity, cell bystander effects, and endosomal escape. Mathematical models can be used to study the impact of these processes on overall distribution in an efficient manner, and several types of models have been used to analyze varying aspects of antibody distribution including physiologically based pharmacokinetic (PBPK) models and tissue-level simulations. However, these processes are quantitative in nature and cannot be handled qualitatively in isolation. For example, free antibody from deconjugation of the small molecule will impact the distribution of conjugated antibodies within the tumor. To incorporate these effects into a unified framework, we have coupled the systemic and organ-level distribution of a PBPK model with the tissue-level detail of a distributed parameter tumor model. We used this mathematical model to analyze new experimental results on the distribution of the clinical antibody drug conjugate Kadcyla in HER2 positive mouse xenografts. This model is able to capture the impact of the drug antibody ratio (DAR) on tumor penetration, the net result of drug deconjugation, and the effect of using unconjugated antibody to drive ADC penetration deeper into the tumor tissue. This modeling approach will provide quantitative and mechanistic support to experimental studies trying to parse the impact of multiple mechanisms of action for these complex drugs. PMID:27287046

  3. COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM (ONE ATMOSPHERE)

    EPA Science Inventory

    This task supports ORD's strategy by providing responsive technical support of EPA's mission and provides credible state of the art air quality models and guidance. This research effort is to develop and improve the Community Multiscale Air Quality (CMAQ) modeling system, a mu...

  4. Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a comprehensive multipollutant air quality modeling system developed and maintained by the US Environmental Protection Agency's (EPA) Office of Research and Development (ORD). Recently, version 5.1 of the CMAQ model (v5.1) was ...

  5. Multiscale modeling methods in biomechanics.

    PubMed

    Bhattacharya, Pinaki; Viceconti, Marco

    2017-05-01

    More and more frequently, computational biomechanics deals with problems where the portion of physical reality to be modeled spans over such a large range of spatial and temporal dimensions, that it is impossible to represent it as a single space-time continuum. We are forced to consider multiple space-time continua, each representing the phenomenon of interest at a characteristic space-time scale. Multiscale models describe a complex process across multiple scales, and account for how quantities transform as we move from one scale to another. This review offers a set of definitions for this emerging field, and provides a brief summary of the most recent developments on multiscale modeling in biomechanics. Of all possible perspectives, we chose that of the modeling intent, which vastly affect the nature and the structure of each research activity. To the purpose we organized all papers reviewed in three categories: 'causal confirmation,' where multiscale models are used as materializations of the causation theories; 'predictive accuracy,' where multiscale modeling is aimed to improve the predictive accuracy; and 'determination of effect,' where multiscale modeling is used to model how a change at one scale manifests in an effect at another radically different space-time scale. Consistent with how the volume of computational biomechanics research is distributed across application targets, we extensively reviewed papers targeting the musculoskeletal and the cardiovascular systems, and covered only a few exemplary papers targeting other organ systems. The review shows a research subdomain still in its infancy, where causal confirmation papers remain the most common. WIREs Syst Biol Med 2017, 9:e1375. doi: 10.1002/wsbm.1375 For further resources related to this article, please visit the WIREs website. © 2017 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.

  6. Multiscale Modeling and Simulation of Material Processing

    DTIC Science & Technology

    2006-07-01

    As a re- GIMP simulations . Fig. 2 illustrates the contact algo- suit, MPM using a single mesh tends to induce early con- rithm for the contact pair ...21-07-2006 Final Performance Report 05-01-2003 - 04-30-2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Multiscale Modeling and Simulation of Material...development of scaling laws for multiscale simulations from atomistic to continuum using material testing techniques, such as tension and indentation

  7. Multi-scale heat and mass transfer modelling of cell and tissue cryopreservation

    PubMed Central

    Xu, Feng; Moon, Sangjun; Zhang, Xiaohui; Shao, Lei; Song, Young Seok; Demirci, Utkan

    2010-01-01

    Cells and tissues undergo complex physical processes during cryopreservation. Understanding the underlying physical phenomena is critical to improve current cryopreservation methods and to develop new techniques. Here, we describe multi-scale approaches for modelling cell and tissue cryopreservation including heat transfer at macroscale level, crystallization, cell volume change and mass transport across cell membranes at microscale level. These multi-scale approaches allow us to study cell and tissue cryopreservation. PMID:20047939

  8. Multiscale Mechano-Biological Finite Element Modelling of Oncoplastic Breast Surgery—Numerical Study towards Surgical Planning and Cosmetic Outcome Prediction

    PubMed Central

    Eiben, Bjoern; Hipwell, John H.; Williams, Norman R.; Keshtgar, Mo; Hawkes, David J.

    2016-01-01

    Surgical treatment for early-stage breast carcinoma primarily necessitates breast conserving therapy (BCT), where the tumour is removed while preserving the breast shape. To date, there have been very few attempts to develop accurate and efficient computational tools that could be used in the clinical environment for pre-operative planning and oncoplastic breast surgery assessment. Moreover, from the breast cancer research perspective, there has been very little effort to model complex mechano-biological processes involved in wound healing. We address this by providing an integrated numerical framework that can simulate the therapeutic effects of BCT over the extended period of treatment and recovery. A validated, three-dimensional, multiscale finite element procedure that simulates breast tissue deformations and physiological wound healing is presented. In the proposed methodology, a partitioned, continuum-based mathematical model for tissue recovery and angiogenesis, and breast tissue deformation is considered. The effectiveness and accuracy of the proposed numerical scheme is illustrated through patient-specific representative examples. Wound repair and contraction numerical analyses of real MRI-derived breast geometries are investigated, and the final predictions of the breast shape are validated against post-operative follow-up optical surface scans from four patients. Mean (standard deviation) breast surface distance errors in millimetres of 3.1 (±3.1), 3.2 (±2.4), 2.8 (±2.7) and 4.1 (±3.3) were obtained, demonstrating the ability of the surgical simulation tool to predict, pre-operatively, the outcome of BCT to clinically useful accuracy. PMID:27466815

  9. Scale-dependent behavior of scale equations.

    PubMed

    Kim, Pilwon

    2009-09-01

    We propose a new mathematical framework to formulate scale structures of general systems. Stack equations characterize a system in terms of accumulative scales. Their behavior at each scale level is determined independently without referring to other levels. Most standard geometries in mathematics can be reformulated in such stack equations. By involving interaction between scales, we generalize stack equations into scale equations. Scale equations are capable to accommodate various behaviors at different scale levels into one integrated solution. On contrary to standard geometries, such solutions often reveal eccentric scale-dependent figures, providing a clue to understand multiscale nature of the real world. Especially, it is suggested that the Gaussian noise stems from nonlinear scale interactions.

  10. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wenxiao; Fedosov, Dmitry A.; Caswell, Bruce

    In this work we compare the predictive capability of two mathematical models for red blood cells (RBCs) focusing on blood flow in capillaries and arterioles. Both RBC models as well as their corresponding blood flows are based on the dissipative particle dynamics (DPD) method, a coarse-grained molecular dynamics approach. The first model employs a multiscale description of the RBC (MS-RBC), with its membrane represented by hundreds or even thousands of DPD-particles connected by springs into a triangular network in combination with out-of-plane elastic bending resistance. Extra dissipation within the network accounts for membrane viscosity, while the characteristic biconcave RBC shapemore » is achieved by imposition of constraints for constant membrane area and constant cell volume. The second model is based on a low-dimensional description (LD-RBC) constructed as a closed torus-like ring of only 10 large DPD colloidal particles. They are connected into a ring by worm-like chain (WLC) springs combined with bending resistance. The LD-RBC model can be fitted to represent the entire range of nonlinear elastic deformations as measured by optical-tweezers for healthy and for infected RBCs in malaria. MS-RBCs suspensions model the dynamics and rheology of blood flow accurately for any size vessel but this approach is computationally expensive above 100 microns. Surprisingly, the much more economical suspensions of LD-RBCs also capture the blood flow dynamics and rheology accurately except for vessels with sizes comparable to RBC diameter. In particular, the LD-RBC suspensions are shown to properly capture the experimental data for the apparent viscosity of blood and its cell-free layer (CFL) in tube flow. Taken together, these findings suggest a hierarchical approach in modeling blood flow in the arterial tree, whereby the MS-RBC model should be employed for capillaries and arterioles below 100 microns, the LD-RBC model for arterioles, and the continuum description for arteries.« less

  11. Multi-Scale Validation of a Nanodiamond Drug Delivery System and Multi-Scale Engineering Education

    ERIC Educational Resources Information Center

    Schwalbe, Michelle Kristin

    2010-01-01

    This dissertation has two primary concerns: (i) evaluating the uncertainty and prediction capabilities of a nanodiamond drug delivery model using Bayesian calibration and bias correction, and (ii) determining conceptual difficulties of multi-scale analysis from an engineering education perspective. A Bayesian uncertainty quantification scheme…

  12. A dynamic subgrid scale model for Large Eddy Simulations based on the Mori-Zwanzig formalism

    NASA Astrophysics Data System (ADS)

    Parish, Eric J.; Duraisamy, Karthik

    2017-11-01

    The development of reduced models for complex multiscale problems remains one of the principal challenges in computational physics. The optimal prediction framework of Chorin et al. [1], which is a reformulation of the Mori-Zwanzig (M-Z) formalism of non-equilibrium statistical mechanics, provides a framework for the development of mathematically-derived reduced models of dynamical systems. Several promising models have emerged from the optimal prediction community and have found application in molecular dynamics and turbulent flows. In this work, a new M-Z-based closure model that addresses some of the deficiencies of existing methods is developed. The model is constructed by exploiting similarities between two levels of coarse-graining via the Germano identity of fluid mechanics and by assuming that memory effects have a finite temporal support. The appeal of the proposed model, which will be referred to as the 'dynamic-MZ-τ' model, is that it is parameter-free and has a structural form imposed by the mathematics of the coarse-graining process (rather than the phenomenological assumptions made by the modeler, such as in classical subgrid scale models). To promote the applicability of M-Z models in general, two procedures are presented to compute the resulting model form, helping to bypass the tedious error-prone algebra that has proven to be a hindrance to the construction of M-Z-based models for complex dynamical systems. While the new formulation is applicable to the solution of general partial differential equations, demonstrations are presented in the context of Large Eddy Simulation closures for the Burgers equation, decaying homogeneous turbulence, and turbulent channel flow. The performance of the model and validity of the underlying assumptions are investigated in detail.

  13. COMMUNITY MULTISCALE AIR QUALITY ( CMAQ ) MODEL - QUALITY ASSURANCE AND VERSION CONTROL

    EPA Science Inventory

    This presentation will be given to the EPA Exposure Modeling Workgroup on January 24, 2006. The quality assurance and version control procedures for the Community Multiscale Air Quality (CMAQ) Model are presented. A brief background of CMAQ is given, then issues related to qual...

  14. Evaluation of the Community Multiscale Air Quality (CMAQ) Model Version 5.2

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Pr...

  15. Evaluation of the Community Multi-scale Air Quality Model Version 5.2

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Pr...

  16. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Thomas; Efendiev, Yalchin; Tchelepi, Hamdi

    2016-05-24

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scalemore » basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics.« less

  17. Multiscale analysis and computation for flows in heterogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efendiev, Yalchin; Hou, T. Y.; Durlofsky, L. J.

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scalemore » basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics. Below, we present a brief overview of each of these contributions.« less

  18. DEVELOPMENT OF AN AGGREGATION AND EPISODE SELECTION SCHEME TO SUPPORT THE MODELS-3 COMMUNITY MULTISCALE AIR QUALITY MODEL

    EPA Science Inventory

    The development of an episode selection and aggregation approach, designed to support distributional estimation of use with the Models-3 Community Multiscale Air Quality (CMAQ) model, is described. The approach utilized cluster analysis of the 700-hPa east-west and north-south...

  19. APPLICATION OF THE MODELS-3 COMMUNITY MULTI-SCALE AIR QUALITY (CMAQ) MODEL SYSTEM TO SOS/NASHVILLE 1999

    EPA Science Inventory

    The Models-3 Community Multi-scale Air Quality (CMAQ) model, first released by the USEPA in 1999 (Byun and Ching. 1999), continues to be developed and evaluated. The principal components of the CMAQ system include a comprehensive emission processor known as the Sparse Matrix O...

  20. Mathematical modeling of cell adhesion in shear flow: application to targeted drug delivery in inflammation and cancer metastasis.

    PubMed

    Jadhav, Sameer; Eggleton, Charles D; Konstantopoulos, Konstantinos

    2007-01-01

    Cell adhesion plays a pivotal role in diverse biological processes that occur in the dynamic setting of the vasculature, including inflammation and cancer metastasis. Although complex, the naturally occurring processes that have evolved to allow for cell adhesion in the vasculature can be exploited to direct drug carriers to targeted cells and tissues. Fluid (blood) flow influences cell adhesion at the mesoscale by affecting the mechanical response of cell membrane, the intercellular contact area and collisional frequency, and at the nanoscale level by modulating the kinetics and mechanics of receptor-ligand interactions. Consequently, elucidating the molecular and biophysical nature of cell adhesion requires a multidisciplinary approach involving the synthesis of fundamentals from hydrodynamic flow, molecular kinetics and cell mechanics with biochemistry/molecular cell biology. To date, significant advances have been made in the identification and characterization of the critical cell adhesion molecules involved in inflammatory disorders, and, to a lesser degree, in cancer metastasis. Experimental work at the nanoscale level to determine the lifetime, interaction distance and strain responses of adhesion receptor-ligand bonds has been spurred by the advent of atomic force microscopy and biomolecular force probes, although our current knowledge in this area is far from complete. Micropipette aspiration assays along with theoretical frameworks have provided vital information on cell mechanics. Progress in each of the aforementioned research areas is key to the development of mathematical models of cell adhesion that incorporate the appropriate biological, kinetic and mechanical parameters that would lead to reliable qualitative and quantitative predictions. These multiscale mathematical models can be employed to predict optimal drug carrier-cell binding through isolated parameter studies and engineering optimization schemes, which will be essential for developing effective drug carriers for delivery of therapeutic agents to afflicted sites of the host.

  1. Application of optimized multiscale mathematical morphology for bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Gong, Tingkai; Yuan, Yanbin; Yuan, Xiaohui; Wu, Xiaotao

    2017-04-01

    In order to suppress noise effectively and extract the impulsive features in the vibration signals of faulty rolling element bearings, an optimized multiscale morphology (OMM) based on conventional multiscale morphology (CMM) and iterative morphology (IM) is presented in this paper. Firstly, the operator used in the IM method must be non-idempotent; therefore, an optimized difference (ODIF) operator has been designed. Furthermore, in the iterative process the current operation is performed on the basis of the previous one. This means that if a larger scale is employed, more fault features are inhibited. Thereby, a unit scale is proposed as the structuring element (SE) scale in IM. According to the above definitions, the IM method is implemented on the results over different scales obtained by CMM. The validity of the proposed method is first evaluated by a simulated signal. Subsequently, aimed at an outer race fault two vibration signals sampled by different accelerometers are analyzed by OMM and CMM, respectively. The same is done for an inner race fault. The results show that the optimized method is effective in diagnosing the two bearing faults. Compared with the CMM method, the OMM method can extract much more fault features under strong noise background.

  2. Improving Embryonic Stem Cell Expansion through the Combination of Perfusion and Bioprocess Model Design

    PubMed Central

    Yeo, David; Kiparissides, Alexandros; Cha, Jae Min; Aguilar-Gallardo, Cristobal; Polak, Julia M.; Tsiridis, Elefterios; Pistikopoulos, Efstratios N.; Mantalaris, Athanasios

    2013-01-01

    Background High proliferative and differentiation capacity renders embryonic stem cells (ESCs) a promising cell source for tissue engineering and cell-based therapies. Harnessing their potential, however, requires well-designed, efficient and reproducible expansion and differentiation protocols as well as avoiding hazardous by-products, such as teratoma formation. Traditional, standard culture methodologies are fragmented and limited in their fed-batch feeding strategies that afford a sub-optimal environment for cellular metabolism. Herein, we investigate the impact of metabolic stress as a result of inefficient feeding utilizing a novel perfusion bioreactor and a mathematical model to achieve bioprocess improvement. Methodology/Principal Findings To characterize nutritional requirements, the expansion of undifferentiated murine ESCs (mESCs) encapsulated in hydrogels was performed in batch and perfusion cultures using bioreactors. Despite sufficient nutrient and growth factor provision, the accumulation of inhibitory metabolites resulted in the unscheduled differentiation of mESCs and a decline in their cell numbers in the batch cultures. In contrast, perfusion cultures maintained metabolite concentration below toxic levels, resulting in the robust expansion (>16-fold) of high quality ‘naïve’ mESCs within 4 days. A multi-scale mathematical model describing population segregated growth kinetics, metabolism and the expression of selected pluripotency (‘stemness’) genes was implemented to maximize information from available experimental data. A global sensitivity analysis (GSA) was employed that identified significant (6/29) model parameters and enabled model validation. Predicting the preferential propagation of undifferentiated ESCs in perfusion culture conditions demonstrates synchrony between theory and experiment. Conclusions/Significance The limitations of batch culture highlight the importance of cellular metabolism in maintaining pluripotency, which necessitates the design of suitable ESC bioprocesses. We propose a novel investigational framework that integrates a novel perfusion culture platform (controlled metabolic conditions) with mathematical modeling (information maximization) to enhance ESC bioprocess productivity and facilitate bioprocess optimization. PMID:24339957

  3. Multi-Scale Computational Models for Electrical Brain Stimulation

    PubMed Central

    Seo, Hyeon; Jun, Sung C.

    2017-01-01

    Electrical brain stimulation (EBS) is an appealing method to treat neurological disorders. To achieve optimal stimulation effects and a better understanding of the underlying brain mechanisms, neuroscientists have proposed computational modeling studies for a decade. Recently, multi-scale models that combine a volume conductor head model and multi-compartmental models of cortical neurons have been developed to predict stimulation effects on the macroscopic and microscopic levels more precisely. As the need for better computational models continues to increase, we overview here recent multi-scale modeling studies; we focused on approaches that coupled a simplified or high-resolution volume conductor head model and multi-compartmental models of cortical neurons, and constructed realistic fiber models using diffusion tensor imaging (DTI). Further implications for achieving better precision in estimating cellular responses are discussed. PMID:29123476

  4. Transition between inverse and direct energy cascades in multiscale optical turbulence

    DOE PAGES

    Malkin, V. M.; Fisch, N. J.

    2018-03-06

    Transition between inverse and direct energy cascades in multiscale optical turbulence. Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a singlemore » scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.« less

  5. Construction of multi-scale consistent brain networks: methods and applications.

    PubMed

    Ge, Bao; Tian, Yin; Hu, Xintao; Chen, Hanbo; Zhu, Dajiang; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming

    2015-01-01

    Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for a single resolution or scale of brain network, though the brain networks are multi-scale in nature. To address this problem, this paper presents a novel approach to constructing multi-scale common structural brain networks from DTI data via an improved multi-scale spectral clustering applied on our recently developed and validated DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks). Since the DICCCOL landmarks possess intrinsic structural correspondences across individuals and populations, we employed the multi-scale spectral clustering algorithm to group the DICCCOL landmarks and their connections into sub-networks, meanwhile preserving the intrinsically-established correspondences across multiple scales. Experimental results demonstrated that the proposed method can generate multi-scale consistent and common structural brain networks across subjects, and its reproducibility has been verified by multiple independent datasets. As an application, these multi-scale networks were used to guide the clustering of multi-scale fiber bundles and to compare the fiber integrity in schizophrenia and healthy controls. In general, our methods offer a novel and effective framework for brain network modeling and tract-based analysis of DTI data.

  6. A perspective on modeling the multiscale response of energetic materials

    NASA Astrophysics Data System (ADS)

    Rice, Betsy M.

    2017-01-01

    The response of an energetic material to insult is perhaps one of the most difficult processes to model due to concurrent chemical and physical phenomena occurring over scales ranging from atomistic to continuum. Unraveling the interdependencies of these complex processes across the scales through modeling can only be done within a multiscale framework. In this paper, I will describe progress in the development of a predictive, experimentally validated multiscale reactive modeling capability for energetic materials at the Army Research Laboratory. I will also describe new challenges and research opportunities that have arisen in the course of our development which should be pursued in the future.

  7. Evaluation of the Community Multi-scale Air Quality (CMAQ) Model Version 5.1

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Pr...

  8. Overview and Evaluation of the Community Multiscale Air Quality Model Version 5.2

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Pr...

  9. Evaluation of the Community Multi-scale Air Quality (CMAQ) Model Version 5.2

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Pr...

  10. Incremental Testing of the Community Multiscale Air Quality (CMAQ) Modeling System Version 4.7

    EPA Science Inventory

    This paper describes the scientific and structural updates to the latest release of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7 (v4.7) and points the reader to additional resources for further details. The model updates were evaluated relative to obse...

  11. Extending the Community Multiscale Air Quality (CMAQ) Modeling System to Hemispheric Scales: Overview of Process Considerations and Initial Applications

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modeled processes were examined and enhanced to suitably represent the extended space and timesca...

  12. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite while the effect on the axial properties is shown to be insignificant.

  13. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  14. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  15. High-resolution time-frequency representation of EEG data using multi-scale wavelets

    NASA Astrophysics Data System (ADS)

    Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina

    2017-09-01

    An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.

  16. Multiscale asymmetric orthogonal wavelet kernel for linear programming support vector learning and nonlinear dynamic systems identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2014-05-01

    Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.

  17. A multiscale, model-based analysis of the multi-tissue interplay underlying blood glucose regulation in type I diabetes.

    PubMed

    Wadehn, Federico; Schaller, Stephan; Eissing, Thomas; Krauss, Markus; Kupfer, Lars

    2016-08-01

    A multiscale model for blood glucose regulation in diabetes type I patients is constructed by integrating detailed metabolic network models for fat, liver and muscle cells into a whole body physiologically-based pharmacokinetic/pharmacodynamic (pBPK/PD) model. The blood glucose regulation PBPK/PD model simulates the distribution and metabolization of glucose, insulin and glucagon on an organ and whole body level. The genome-scale metabolic networks in contrast describe intracellular reactions. The developed multiscale model is fitted to insulin, glucagon and glucose measurements of a 48h clinical trial featuring 6 subjects and is subsequently used to simulate (in silico) the influence of geneknockouts and drug-induced enzyme inhibitions on whole body blood glucose levels. Simulations of diabetes associated gene knockouts and impaired cellular glucose metabolism, resulted in elevated whole body blood-glucose levels, but also in a metabolic shift within the cell's reaction network. Such multiscale models have the potential to be employed in the exploration of novel drug-targets or to be integrated into control algorithms for artificial pancreas systems.

  18. A Liver-centric Multiscale Modeling Framework for Xenobiotics

    EPA Science Inventory

    We describe a multi-scale framework for modeling acetaminophen-induced liver toxicity. Acetaminophen is a widely used analgesic. Overdose of acetaminophen can result in liver injury via its biotransformation into toxic product, which further induce massive necrosis. Our study foc...

  19. A MULTISCALE FRAMEWORK FOR THE STOCHASTIC ASSIMILATION AND MODELING OF UNCERTAINTY ASSOCIATED NCF COMPOSITE MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrez, Loujaine; Ghanem, Roger; McAuliffe, Colin

    multiscale framework to construct stochastic macroscopic constitutive material models is proposed. A spectral projection approach, specifically polynomial chaos expansion, has been used to construct explicit functional relationships between the homogenized properties and input parameters from finer scales. A homogenization engine embedded in Multiscale Designer, software for composite materials, has been used for the upscaling process. The framework is demonstrated using non-crimp fabric composite materials by constructing probabilistic models of the homogenized properties of a non-crimp fabric laminate in terms of the input parameters together with the homogenized properties from finer scales.

  20. Multi-scale Material Parameter Identification Using LS-DYNA® and LS-OPT®

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stander, Nielen; Basudhar, Anirban; Basu, Ushnish

    2015-09-14

    Ever-tightening regulations on fuel economy, and the likely future regulation of carbon emissions, demand persistent innovation in vehicle design to reduce vehicle mass. Classical methods for computational mass reduction include sizing, shape and topology optimization. One of the few remaining options for weight reduction can be found in materials engineering and material design optimization. Apart from considering different types of materials, by adding material diversity and composite materials, an appealing option in automotive design is to engineer steel alloys for the purpose of reducing plate thickness while retaining sufficient strength and ductility required for durability and safety. A project tomore » develop computational material models for advanced high strength steel is currently being executed under the auspices of the United States Automotive Materials Partnership (USAMP) funded by the US Department of Energy. Under this program, new Third Generation Advanced High Strength Steel (i.e., 3GAHSS) are being designed, tested and integrated with the remaining design variables of a benchmark vehicle Finite Element model. The objectives of the project are to integrate atomistic, microstructural, forming and performance models to create an integrated computational materials engineering (ICME) toolkit for 3GAHSS. The mechanical properties of Advanced High Strength Steels (AHSS) are controlled by many factors, including phase composition and distribution in the overall microstructure, volume fraction, size and morphology of phase constituents as well as stability of the metastable retained austenite phase. The complex phase transformation and deformation mechanisms in these steels make the well-established traditional techniques obsolete, and a multi-scale microstructure-based modeling approach following the ICME [0]strategy was therefore chosen in this project. Multi-scale modeling as a major area of research and development is an outgrowth of the Comprehensive Test Ban Treaty of 1996 which banned surface testing of nuclear devices [1]. This had the effect that experimental work was reduced from large scale tests to multiscale experiments to provide material models with validation at different length scales. In the subsequent years industry realized that multi-scale modeling and simulation-based design were transferable to the design optimization of any structural system. Horstemeyer [1] lists a number of advantages of the use of multiscale modeling. Among these are: the reduction of product development time by alleviating costly trial-and-error iterations as well as the reduction of product costs through innovations in material, product and process designs. Multi-scale modeling can reduce the number of costly large scale experiments and can increase product quality by providing more accurate predictions. Research tends to be focussed on each particular length scale, which enhances accuracy in the long term. This paper serves as an introduction to the LS-OPT and LS-DYNA methodology for multi-scale modeling. It mainly focuses on an approach to integrate material identification using material models of different length scales. As an example, a multi-scale material identification strategy, consisting of a Crystal Plasticity (CP) material model and a homogenized State Variable (SV) model, is discussed and the parameter identification of the individual material models of different length scales is demonstrated. The paper concludes with thoughts on integrating the multi-scale methodology into the overall vehicle design.« less

  1. FIRST RESULTS FROM OPERATIONAL TESTING OF THE U.S. EPA MODELS-3 COMMUNITY MULTISCALE MODEL FOR AIR QUALITY (CMAQ)

    EPA Science Inventory

    The Models 3 / Community Multiscale Model for Air Quality (CMAQ) has been designed for one-atmosphere assessments for multiple pollutants including ozone (O3), particulate matter (PM10, PM2.5), and acid / nutrient deposition. In this paper we report initial results of our evalu...

  2. EVALUATION OF THE COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL VERSION 4.5: UNCERTAINTIES AND SENSITIVITIES IMPACTING MODEL PERFORMANCE: PART I - OZONE

    EPA Science Inventory

    This study examines ozone (O3) predictions from the Community Multiscale Air Quality (CMAQ) model version 4.5 and discusses potential factors influencing the model results. Daily maximum 8-hr average O3 levels are largely underpredicted when observed O...

  3. Overview and Evaluation of the Community Multiscale Air Quality (CMAQ) Modeling System Version 5.2

    EPA Science Inventory

    A new version of the Community Multiscale Air Quality (CMAQ) model, version 5.2 (CMAQv5.2), is currently being developed, with a planned release date in 2017. The new model includes numerous updates from the previous version of the model (CMAQv5.1). Specific updates include a new...

  4. Multi-scale modeling in cell biology

    PubMed Central

    Meier-Schellersheim, Martin; Fraser, Iain D. C.; Klauschen, Frederick

    2009-01-01

    Biomedical research frequently involves performing experiments and developing hypotheses that link different scales of biological systems such as, for instance, the scales of intracellular molecular interactions to the scale of cellular behavior and beyond to the behavior of cell populations. Computational modeling efforts that aim at exploring such multi-scale systems quantitatively with the help of simulations have to incorporate several different simulation techniques due to the different time and space scales involved. Here, we provide a non-technical overview of how different scales of experimental research can be combined with the appropriate computational modeling techniques. We also show that current modeling software permits building and simulating multi-scale models without having to become involved with the underlying technical details of computational modeling. PMID:20448808

  5. A Posteriori Error Analysis and Uncertainty Quantification for Adaptive Multiscale Operator Decomposition Methods for Multiphysics Problems

    DTIC Science & Technology

    2013-06-24

    Barrier methods for critical exponent problems in geometric analysis and mathematical physics, J. Erway and M. Hoist, Submitted for publication . • Finite...1996. [20] C. LANCZOS, Linear Differential Operators, Dover Publications , Mineola, NY, 1997. [21] G.I. MARCHUK, Adjoint Equations and Analysis of...NUMBER(S) 16. SECURITY CLASSIFICATION OF: 19b. TELEPHONE NUMBER (Include area code) The public reporting burden for this collection of information is

  6. Measuring the Performance and Intelligence of Systems: Proceedings of the 2001 PerMIS Workshop

    DTIC Science & Technology

    2001-09-04

    35 1.1 Interval Mathematics for Analysis of Multiresolutional Systems V. Kreinovich, Univ. of Texas, R. Alo, Univ. of Houston-Downtown...the possible combinations. In non-deterministic real- time systems , the problem is compounded by the uncertainty in the execution times of various...multiresolutional, multiscale ) in their essence because of multiresolutional character of the meaning of words [Rieger, 01]. In integrating systems , the presence of a

  7. A Multi-scale Cognitive Approach to Intrusion Detection and Response

    DTIC Science & Technology

    2015-12-28

    the behavior of the traffic on the network, either by using mathematical formulas or by replaying packet streams. As a result, simulators depend...large scale. Summary of the most important results We obtained a powerful machine, which has 768 cores and 1.25 TB memory . RBG has been...time. Each client is configured with 1GB memory , 10 GB disk space, and one 100M Ethernet interface. The server nodes include web servers

  8. REVIEW OF THE GOVERNING EQUATIONS, COMPUTATIONAL ALGORITHMS, AND OTHER COMPONENTS OF THE MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODELING SYSTEM

    EPA Science Inventory

    This article describes the governing equations, computational algorithms, and other components entering into the Community Multiscale Air Quality (CMAQ) modeling system. This system has been designed to approach air quality as a whole by including state-of-the-science capabiliti...

  9. Models, Databases, and Simulation Tools Needed for the Realization of Integrated Computational Materials Engineering. Proceedings of the Symposium Held at Materials Science and Technology 2010

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M. (Editor); Wong, Terry T. (Editor)

    2011-01-01

    Topics covered include: An Annotative Review of Multiscale Modeling and its Application to Scales Inherent in the Field of ICME; and A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures.

  10. Evaluation of the Community Multiscale Air Quality Model for Simulating Winter Ozone Formation in the Uinta Basin.

    EPA Science Inventory

    The Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models were used to simulate a 10 day high‐ozone episode observed during the 2013 Uinta Basin Winter Ozone Study (UBWOS). The baseline model had a large negative bias when compared to ozo...

  11. Modelling an industrial anaerobic granular reactor using a multi-scale approach.

    PubMed

    Feldman, H; Flores-Alsina, X; Ramin, P; Kjellberg, K; Jeppsson, U; Batstone, D J; Gernaey, K V

    2017-12-01

    The objective of this paper is to show the results of an industrial project dealing with modelling of anaerobic digesters. A multi-scale mathematical approach is developed to describe reactor hydrodynamics, granule growth/distribution and microbial competition/inhibition for substrate/space within the biofilm. The main biochemical and physico-chemical processes in the model are based on the Anaerobic Digestion Model No 1 (ADM1) extended with the fate of phosphorus (P), sulfur (S) and ethanol (Et-OH). Wastewater dynamic conditions are reproduced and data frequency increased using the Benchmark Simulation Model No 2 (BSM2) influent generator. All models are tested using two plant data sets corresponding to different operational periods (#D1, #D2). Simulation results reveal that the proposed approach can satisfactorily describe the transformation of organics, nutrients and minerals, the production of methane, carbon dioxide and sulfide and the potential formation of precipitates within the bulk (average deviation between computer simulations and measurements for both #D1, #D2 is around 10%). Model predictions suggest a stratified structure within the granule which is the result of: 1) applied loading rates, 2) mass transfer limitations and 3) specific (bacterial) affinity for substrate. Hence, inerts (X I ) and methanogens (X ac ) are situated in the inner zone, and this fraction lowers as the radius increases favouring the presence of acidogens (X su ,X aa , X fa ) and acetogens (X c4 ,X pro ). Additional simulations show the effects on the overall process performance when operational (pH) and loading (S:COD) conditions are modified. Lastly, the effect of intra-granular precipitation on the overall organic/inorganic distribution is assessed at: 1) different times; and, 2) reactor heights. Finally, the possibilities and opportunities offered by the proposed approach for conducting engineering optimization projects are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Multiscale modeling of mucosal immune responses

    PubMed Central

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation. PMID:26329787

  13. Multiscale modeling of mucosal immune responses.

    PubMed

    Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep

    2015-01-01

    Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM.

  14. Iterative Self-Dual Reconstruction on Radar Image Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins, Charles; Medeiros, Fatima; Ushizima, Daniela

    2010-05-21

    Imaging systems as ultrasound, sonar, laser and synthetic aperture radar (SAR) are subjected to speckle noise during image acquisition. Before analyzing these images, it is often necessary to remove the speckle noise using filters. We combine properties of two mathematical morphology filters with speckle statistics to propose a signal-dependent noise filter to multiplicative noise. We describe a multiscale scheme that preserves sharp edges while it smooths homogeneous areas, by combining local statistics with two mathematical morphology filters: the alternating sequential and the self-dual reconstruction algorithms. The experimental results show that the proposed approach is less sensitive to varying window sizesmore » when applied to simulated and real SAR images in comparison with standard filters.« less

  15. Grooms receives 2011 Donald L. Turcotte Award

    NASA Astrophysics Data System (ADS)

    2012-02-01

    Ian Grooms has been awarded the AGU Donald L. Turcotte Award, given annually to recent Ph.D. recipients for outstanding dissertation research that contributes directly to the field of nonlinear geophysics. Grooms's thesis is entitled “Asymptotic and numerical methods for rapidly rotating buoyant flow.” He presented an invited talk and was formally presented with the award at the 2011 AGU Fall Meeting, held 5-9 December in San Francisco, Calif. Grooms received his B.S. in mathematics from the College of William and Mary, Williamsburg, Va., in 2005. He received a Ph.D. in applied mathematics in 2011 under the supervision of Keith Julien at the University of Colorado at Boulder. His research interests include asymptotic and numerical methods for multiscale problems in geophysical fluid dynamics.

  16. Recent Enhancements to the Community Multiscale Air Quality Modeling System (CMAQ)

    EPA Science Inventory

    EPA’s Office of Research and Development, Computational Exposure Division held a webinar on January 31, 2017 to present the recent scientific and computational updates made by EPA to the Community Multi-Scale Air Quality Model (CMAQ). Topics covered included: (1) Improveme...

  17. Sensitivity of the Community Multiscale Air Quality (CMAQ) Model v4.7 Results for the Eastern United States to MM5 and WRF Meteorological Drivers

    EPA Science Inventory

    This paper presents a comparison of the operational performance of two Community Multiscale Air Quality (CMAQ) model v4.7 simulations that utilize input data from the 5th generation Mesoscale Model MM5 and the Weather Research and Forecasting (WRF) meteorological models.

  18. Internal Coordinate Molecular Dynamics: A Foundation for Multiscale Dynamics

    PubMed Central

    2015-01-01

    Internal coordinates such as bond lengths, bond angles, and torsion angles (BAT) are natural coordinates for describing a bonded molecular system. However, the molecular dynamics (MD) simulation methods that are widely used for proteins, DNA, and polymers are based on Cartesian coordinates owing to the mathematical simplicity of the equations of motion. However, constraints are often needed with Cartesian MD simulations to enhance the conformational sampling. This makes the equations of motion in the Cartesian coordinates differential-algebraic, which adversely impacts the complexity and the robustness of the simulations. On the other hand, constraints can be easily placed in BAT coordinates by removing the degrees of freedom that need to be constrained. Thus, the internal coordinate MD (ICMD) offers an attractive alternative to Cartesian coordinate MD for developing multiscale MD method. The torsional MD method is a special adaptation of the ICMD method, where all the bond lengths and bond angles are kept rigid. The advantages of ICMD simulation methods are the longer time step size afforded by freezing high frequency degrees of freedom and performing a conformational search in the more important low frequency torsional degrees of freedom. However, the advancements in the ICMD simulations have been slow and stifled by long-standing mathematical bottlenecks. In this review, we summarize the recent mathematical advancements we have made based on spatial operator algebra, in developing a robust long time scale ICMD simulation toolkit useful for various applications. We also present the applications of ICMD simulations to study conformational changes in proteins and protein structure refinement. We review the advantages of the ICMD simulations over the Cartesian simulations when used with enhanced sampling methods and project the future use of ICMD simulations in protein dynamics. PMID:25517406

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perdikaris, Paris, E-mail: parisp@mit.edu; Grinberg, Leopold, E-mail: leopoldgrinberg@us.ibm.com; Karniadakis, George Em, E-mail: george-karniadakis@brown.edu

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process takingmore » place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.« less

  20. eDNAoccupancy: An R package for multi-scale occupancy modeling of environmental DNA data

    USGS Publications Warehouse

    Dorazio, Robert; Erickson, Richard A.

    2017-01-01

    In this article we describe eDNAoccupancy, an R package for fitting Bayesian, multi-scale occupancy models. These models are appropriate for occupancy surveys that include three, nested levels of sampling: primary sample units within a study area, secondary sample units collected from each primary unit, and replicates of each secondary sample unit. This design is commonly used in occupancy surveys of environmental DNA (eDNA). eDNAoccupancy allows users to specify and fit multi-scale occupancy models with or without covariates, to estimate posterior summaries of occurrence and detection probabilities, and to compare different models using Bayesian model-selection criteria. We illustrate these features by analyzing two published data sets: eDNA surveys of a fungal pathogen of amphibians and eDNA surveys of an endangered fish species.

  1. Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estep, Donald; El-Azab, Anter; Pernice, Michael

    2017-03-23

    In this project, we will address the challenges associated with constructing high fidelity multiscale models of nuclear fuel performance. We (*) propose a novel approach for coupling mesoscale and macroscale models, (*) devise efficient numerical methods for simulating the coupled system, and (*) devise and analyze effective numerical approaches for error and uncertainty quantification for the coupled multiscale system. As an integral part of the project, we will carry out analysis of the effects of upscaling and downscaling, investigate efficient methods for stochastic sensitivity analysis of the individual macroscale and mesoscale models, and carry out a posteriori error analysis formore » computed results. We will pursue development and implementation of solutions in software used at Idaho National Laboratories on models of interest to the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.« less

  2. Multiscale virtual particle based elastic network model (MVP-ENM) for normal mode analysis of large-sized biomolecules.

    PubMed

    Xia, Kelin

    2017-12-20

    In this paper, a multiscale virtual particle based elastic network model (MVP-ENM) is proposed for the normal mode analysis of large-sized biomolecules. The multiscale virtual particle (MVP) model is proposed for the discretization of biomolecular density data. With this model, large-sized biomolecular structures can be coarse-grained into virtual particles such that a balance between model accuracy and computational cost can be achieved. An elastic network is constructed by assuming "connections" between virtual particles. The connection is described by a special harmonic potential function, which considers the influence from both the mass distributions and distance relations of the virtual particles. Two independent models, i.e., the multiscale virtual particle based Gaussian network model (MVP-GNM) and the multiscale virtual particle based anisotropic network model (MVP-ANM), are proposed. It has been found that in the Debye-Waller factor (B-factor) prediction, the results from our MVP-GNM with a high resolution are as good as the ones from GNM. Even with low resolutions, our MVP-GNM can still capture the global behavior of the B-factor very well with mismatches predominantly from the regions with large B-factor values. Further, it has been demonstrated that the low-frequency eigenmodes from our MVP-ANM are highly consistent with the ones from ANM even with very low resolutions and a coarse grid. Finally, the great advantage of MVP-ANM model for large-sized biomolecules has been demonstrated by using two poliovirus virus structures. The paper ends with a conclusion.

  3. Multiscale computational modeling of a radiantly driven solar thermal collector

    NASA Astrophysics Data System (ADS)

    Ponnuru, Koushik

    The objectives of the master's thesis are to present, discuss and apply sequential multiscale modeling that combines analytical, numerical (finite element-based) and computational fluid dynamic (CFD) analysis to assist in the development of a radiantly driven macroscale solar thermal collector for energy harvesting. The solar thermal collector is a novel green energy system that converts solar energy to heat and utilizes dry air as a working heat transfer fluid (HTF). This energy system has important advantages over competitive technologies: it is self-contained (no energy sources are needed), there are no moving parts, no oil or supplementary fluids are needed and it is environmentally friendly since it is powered by solar radiation. This work focuses on the development of multi-physics and multiscale models for predicting the performance of the solar thermal collector. Model construction and validation is organized around three distinct and complementary levels. The first level involves an analytical analysis of the thermal transpiration phenomenon and models for predicting the associated mass flow pumping that occurs in an aerogel membrane in the presence of a large thermal gradient. Within the aerogel, a combination of convection, conduction and radiation occurs simultaneously in a domain where the pore size is comparable to the mean free path of the gas molecules. CFD modeling of thermal transpiration is not possible because all the available commercial CFD codes solve the Navier Stokes equations only for continuum flow, which is based on the assumption that the net molecular mass diffusion is zero. However, thermal transpiration occurs in a flow regime where a non-zero net molecular mass diffusion exists. Thus these effects are modeled by using Sharipov's [2] analytical expression for gas flow characterized by high Knudsen number. The second level uses a detailed CFD model solving Navier Stokes equations for momentum, heat and mass transfer in the various components of the device. We have used state-of-the-art computational fluid dynamics (CFD) software, Flow3D (www.flow3d.com) to model the effects of multiple coupled physical processes including buoyancy driven flow from local temperature differences within the plenums, fluid-solid momentum and heat transfer, and coupled radiation exchange between the aerogel, top glazing and environment. In addition, the CFD models include both convection and radiation exchange between the top glazing and the environment. Transient and steady-state thermal models have been constructed using COMSOL Multiphysics. The third level consists of a lumped-element system model, which enables rapid parametric analysis and helps to develop an understanding of the system behavior; the mathematical models developed and multiple CFD simulations studies focus on simultaneous solution of heat, momentum, mass and gas volume fraction balances and succeed in accurate state variable distributions confirmed by experimental measurements.

  4. Multiscale Modeling of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  5. Nonlinear and Stochastic Dynamics in the Heart

    PubMed Central

    Qu, Zhilin; Hu, Gang; Garfinkel, Alan; Weiss, James N.

    2014-01-01

    In a normal human life span, the heart beats about 2 to 3 billion times. Under diseased conditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and irregular rhythms, called arrhythmias, which may lead to sudden death. The transition from a normal rhythm to an arrhythmia is a transition from regular electrical wave conduction to irregular or turbulent wave conduction in the heart, and thus this medical problem is also a problem of physics and mathematics. In the last century, clinical, experimental, and theoretical studies have shown that dynamical theories play fundamental roles in understanding the mechanisms of the genesis of the normal heart rhythm as well as lethal arrhythmias. In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in the heart and their links to normal cardiac functions and arrhythmias, providing a holistic view through integrating dynamics from the molecular (microscopic) scale, to the organelle (mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what existing problems and challenges are waiting to be solved and how multi-scale mathematical modeling and nonlinear dynamics may be helpful for solving these problems. PMID:25267872

  6. Revisiting of Multiscale Static Analysis of Notched Laminates Using the Generalized Method of Cells

    NASA Technical Reports Server (NTRS)

    Naghipour Ghezeljeh, Paria; Arnold, Steven M.; Pineda, Evan J.

    2016-01-01

    Composite material systems generally exhibit a range of behavior on different length scales (from constituent level to macro); therefore, a multiscale framework is beneficial for the design and engineering of these material systems. The complex nature of the observed composite failure during experiments suggests the need for a three-dimensional (3D) multiscale model to attain a reliable prediction. However, the size of a multiscale three-dimensional finite element model can become prohibitively large and computationally costly. Two-dimensional (2D) models are preferred due to computational efficiency, especially if many different configurations have to be analyzed for an in-depth damage tolerance and durability design study. In this study, various 2D and 3D multiscale analyses will be employed to conduct a detailed investigation into the tensile failure of a given multidirectional, notched carbon fiber reinforced polymer laminate. Threedimensional finite element analysis is typically considered more accurate than a 2D finite element model, as compared with experiments. Nevertheless, in the absence of adequate mesh refinement, large differences may be observed between a 2D and 3D analysis, especially for a shear-dominated layup. This observed difference has not been widely addressed in previous literature and is the main focus of this paper.

  7. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model

    EPA Science Inventory

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions,...

  8. Industrial process system assessment: bridging process engineering and life cycle assessment through multiscale modeling.

    EPA Science Inventory

    The Industrial Process System Assessment (IPSA) methodology is a multiple step allocation approach for connecting information from the production line level up to the facility level and vice versa using a multiscale model of process systems. The allocation procedure assigns inpu...

  9. Cloud processing of gases and aerosols in the Community Multiscale Air Quality (CMAQ) model: Impacts of extended chemistry

    EPA Science Inventory

    Clouds and fogs can significantly impact the concentration and distribution of atmospheric gases and aerosols through chemistry, scavenging, and transport. This presentation summarizes the representation of cloud processes in the Community Multiscale Air Quality (CMAQ) modeling ...

  10. Multi-scale habitat selection modeling: A review and outlook

    Treesearch

    Kevin McGarigal; Ho Yi Wan; Kathy A. Zeller; Brad C. Timm; Samuel A. Cushman

    2016-01-01

    Scale is the lens that focuses ecological relationships. Organisms select habitat at multiple hierarchical levels and at different spatial and/or temporal scales within each level. Failure to properly address scale dependence can result in incorrect inferences in multi-scale habitat selection modeling studies.

  11. A Multi-Resolution Assessment of the Community Multiscale Air Quality (CMAQ) Model v4.7 Wet Deposition Estimates for 2002 - 2006

    EPA Science Inventory

    This paper examines the operational performance of the Community Multiscale Air Quality (CMAQ) model simulations for 2002 - 2006 using both 36-km and 12-km horizontal grid spacing, with a primary focus on the performance of the CMAQ model in predicting wet deposition of sulfate (...

  12. Developing a novel hierarchical approach for multiscale structural reliability predictions for ultra-high consequence applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, John M.; Coffin, Peter; Robbins, Brian A.

    Microstructural variabilities are among the predominant sources of uncertainty in structural performance and reliability. We seek to develop efficient algorithms for multiscale calcu- lations for polycrystalline alloys such as aluminum alloy 6061-T6 in environments where ductile fracture is the dominant failure mode. Our approach employs concurrent multiscale methods, but does not focus on their development. They are a necessary but not sufficient ingredient to multiscale reliability predictions. We have focused on how to efficiently use concurrent models for forward propagation because practical applications cannot include fine-scale details throughout the problem domain due to exorbitant computational demand. Our approach begins withmore » a low-fidelity prediction at the engineering scale that is sub- sequently refined with multiscale simulation. The results presented in this report focus on plasticity and damage at the meso-scale, efforts to expedite Monte Carlo simulation with mi- crostructural considerations, modeling aspects regarding geometric representation of grains and second-phase particles, and contrasting algorithms for scale coupling.« less

  13. Theoretical analysis of insulin-dependent glucose uptake heterogeneity in 3D bioreactor cell culture.

    PubMed

    Magrofuoco, Enrico; Elvassore, Nicola; Doyle, Francis J

    2012-01-01

    Three-dimensional (3D) cell cultures in bioreactors are becoming relevant as models for biological and physiological in vitro studies. In such systems, mathematical models can assist the experiment design that links the macroscopic properties to single-cell responses. We investigated the relationship between biochemical stimuli and cell response within a 3D cell culture in scaffold with heterogeneous porosity. Specifically, we studied the effect of insulin on the local glucose metabolism as a function of 3D pore size distribution. The multiscale mathematical model combines the mass transport within a 3D scaffold and a signaling pathways model. It considers the scaffold heterogeneity, and it describes spatiotemporal concentration of metabolites, biochemical stimuli, and cell density. The signaling model was integrated into this model, linking the local insulin concentration at cell membrane to the glucose uptake rate through glucose transporter type 4 (GLUT4) translocation from the cytosol to the cell membrane. The integrated model determines the cell response heterogeneities in a single channel, hence the biological response distribution in a 3D system. It also provides macroscopic outcomes to evaluate the feasibility of an experimental measurement of the system response. From our analysis, it became apparent that the flow rate is the most important operative variable, and that an optimum value ensures a fast and detectable cell response. This model on insulin-dependent glucose consumption rate offers insight into the cell metabolism physiology, which is a fundamental requirement for the study metabolic disorder such as Type 2 diabetes mellitus, in which the physiological insulin-dependent glucose metabolism is impaired. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  14. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Matouš, Karel; Geers, Marc G. D.; Kouznetsova, Varvara G.; Gillman, Andrew

    2017-02-01

    Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platform in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.

  15. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matouš, Karel, E-mail: kmatous@nd.edu; Geers, Marc G.D.; Kouznetsova, Varvara G.

    2017-02-01

    Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platformmore » in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.« less

  16. Beyond Low Rank + Sparse: Multi-scale Low Rank Matrix Decomposition

    PubMed Central

    Ong, Frank; Lustig, Michael

    2016-01-01

    We present a natural generalization of the recent low rank + sparse matrix decomposition and consider the decomposition of matrices into components of multiple scales. Such decomposition is well motivated in practice as data matrices often exhibit local correlations in multiple scales. Concretely, we propose a multi-scale low rank modeling that represents a data matrix as a sum of block-wise low rank matrices with increasing scales of block sizes. We then consider the inverse problem of decomposing the data matrix into its multi-scale low rank components and approach the problem via a convex formulation. Theoretically, we show that under various incoherence conditions, the convex program recovers the multi-scale low rank components either exactly or approximately. Practically, we provide guidance on selecting the regularization parameters and incorporate cycle spinning to reduce blocking artifacts. Experimentally, we show that the multi-scale low rank decomposition provides a more intuitive decomposition than conventional low rank methods and demonstrate its effectiveness in four applications, including illumination normalization for face images, motion separation for surveillance videos, multi-scale modeling of the dynamic contrast enhanced magnetic resonance imaging and collaborative filtering exploiting age information. PMID:28450978

  17. Multivariate Multiscale Analysis

    DTIC Science & Technology

    1990-11-08

    The conditions on k in the second half of the statement of the proposition can be somewhat relaxed. In the cases n = 2 and n = 3 the details are given...of Mathematical Func- lions, Dover, New York, N.Y., 1965. [2] Bray and D. C. Solmon, The horocycle transform and harmonic analysis on the Poincare disk...H. Izen, Inversion of the k- plane transform by orthogonal function series expansions, Inverse Problems, 5 (1989), 181-202. [20] J. V. Leahy, K. T

  18. Shape in Picture: Mathematical Description of Shape in Grey-Level Images

    DTIC Science & Technology

    1992-09-11

    representation is scale-space, derived frrr- the linear isotropic diffusion equation; recently other types of equations have been considered. Multiscale...recognition of dimensions in the general case of an arbitrary denominator is similar to that just explained. 3 Linear Inequalities in the Two-Dimensional...solid region containing all pixels of the space, whose coordinates satisfy a linear inequality. A Um C scspt fr Digital Geometry 41 s a a v--’ -0 7 O

  19. Physicochemical properties affect the synthesis, controlled delivery, degradation and pharmacokinetics of inorganic nanoporous materials.

    PubMed

    Yazdi, Iman K; Ziemys, Arturas; Evangelopoulos, Michael; Martinez, Jonathan O; Kojic, Milos; Tasciotti, Ennio

    2015-10-01

    Controlling size, shape and uniformity of porous constructs remains a major focus of the development of porous materials. Over the past two decades, we have seen significant developments in the fabrication of new, porous-ordered structures using a wide range of materials, resulting in properties well beyond their traditional use. Porous materials have been considered appealing, due to attractive properties such as pore size length, morphology and surface chemistry. Furthermore, their utilization within the life sciences and medicine has resulted in significant developments in pharmaceutics and medical diagnosis. This article focuses on various classes of porous materials, providing an overview of principle concepts with regard to design and fabrication, surface chemistry and loading and release kinetics. Furthermore, predictions from a multiscale mathematical model revealed the role pore length and diameter could have on payload release kinetics.

  20. Transition between inverse and direct energy cascades in multiscale optical turbulence.

    PubMed

    Malkin, V M; Fisch, N J

    2018-03-01

    Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a single scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.

  1. Transition between inverse and direct energy cascades in multiscale optical turbulence

    NASA Astrophysics Data System (ADS)

    Malkin, V. M.; Fisch, N. J.

    2018-03-01

    Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a single scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.

  2. A Multiscale, Mechanism-Driven, Dynamic Model for the Effects of 5α-Reductase Inhibition on Prostate Maintenance

    PubMed Central

    Zager, Michael G.; Barton, Hugh A.

    2012-01-01

    A systems-level mathematical model is presented that describes the effects of inhibiting the enzyme 5α-reductase (5aR) on the ventral prostate of the adult male rat under chronic administration of the 5aR inhibitor, finasteride. 5aR is essential for androgen regulation in males, both in normal conditions and disease states. The hormone kinetics and downstream effects on reproductive organs associated with perturbing androgen regulation are complex and not necessarily intuitive. Inhibition of 5aR decreases the metabolism of testosterone (T) to the potent androgen 5α-dihydrotestosterone (DHT). This results in decreased cell proliferation, fluid production and 5aR expression as well as increased apoptosis in the ventral prostate. These regulatory changes collectively result in decreased prostate size and function, which can be beneficial to men suffering from benign prostatic hyperplasia (BPH) and could play a role in prostate cancer. There are two distinct isoforms of 5aR in male humans and rats, and thus developing a 5aR inhibitor is a challenging pursuit. Several inhibitors are on the market for treatment of BPH, including finasteride and dutasteride. In this effort, comparisons of simulated vs. experimental T and DHT levels and prostate size are depicted, demonstrating the model accurately described an approximate 77% decrease in prostate size and nearly complete depletion of prostatic DHT following 21 days of daily finasteride dosing in rats. This implies T alone is not capable of maintaining a normal prostate size. Further model analysis suggests the possibility of alternative dosing strategies resulting in similar or greater effects on prostate size, due to complex kinetics between T, DHT and gene occupancy. With appropriate scaling and parameterization for humans, this model provides a multiscale modeling platform for drug discovery teams to test and generate hypotheses about drugging strategies for indications like BPH and prostate cancer, such as compound binding properties, dosing regimens, and target validation. PMID:22970204

  3. Hybrid multiscale modeling and prediction of cancer cell behavior

    PubMed Central

    Habibi, Jafar

    2017-01-01

    Background Understanding cancer development crossing several spatial-temporal scales is of great practical significance to better understand and treat cancers. It is difficult to tackle this challenge with pure biological means. Moreover, hybrid modeling techniques have been proposed that combine the advantages of the continuum and the discrete methods to model multiscale problems. Methods In light of these problems, we have proposed a new hybrid vascular model to facilitate the multiscale modeling and simulation of cancer development with respect to the agent-based, cellular automata and machine learning methods. The purpose of this simulation is to create a dataset that can be used for prediction of cell phenotypes. By using a proposed Q-learning based on SVR-NSGA-II method, the cells have the capability to predict their phenotypes autonomously that is, to act on its own without external direction in response to situations it encounters. Results Computational simulations of the model were performed in order to analyze its performance. The most striking feature of our results is that each cell can select its phenotype at each time step according to its condition. We provide evidence that the prediction of cell phenotypes is reliable. Conclusion Our proposed model, which we term a hybrid multiscale modeling of cancer cell behavior, has the potential to combine the best features of both continuum and discrete models. The in silico results indicate that the 3D model can represent key features of cancer growth, angiogenesis, and its related micro-environment and show that the findings are in good agreement with biological tumor behavior. To the best of our knowledge, this paper is the first hybrid vascular multiscale modeling of cancer cell behavior that has the capability to predict cell phenotypes individually by a self-generated dataset. PMID:28846712

  4. Hybrid multiscale modeling and prediction of cancer cell behavior.

    PubMed

    Zangooei, Mohammad Hossein; Habibi, Jafar

    2017-01-01

    Understanding cancer development crossing several spatial-temporal scales is of great practical significance to better understand and treat cancers. It is difficult to tackle this challenge with pure biological means. Moreover, hybrid modeling techniques have been proposed that combine the advantages of the continuum and the discrete methods to model multiscale problems. In light of these problems, we have proposed a new hybrid vascular model to facilitate the multiscale modeling and simulation of cancer development with respect to the agent-based, cellular automata and machine learning methods. The purpose of this simulation is to create a dataset that can be used for prediction of cell phenotypes. By using a proposed Q-learning based on SVR-NSGA-II method, the cells have the capability to predict their phenotypes autonomously that is, to act on its own without external direction in response to situations it encounters. Computational simulations of the model were performed in order to analyze its performance. The most striking feature of our results is that each cell can select its phenotype at each time step according to its condition. We provide evidence that the prediction of cell phenotypes is reliable. Our proposed model, which we term a hybrid multiscale modeling of cancer cell behavior, has the potential to combine the best features of both continuum and discrete models. The in silico results indicate that the 3D model can represent key features of cancer growth, angiogenesis, and its related micro-environment and show that the findings are in good agreement with biological tumor behavior. To the best of our knowledge, this paper is the first hybrid vascular multiscale modeling of cancer cell behavior that has the capability to predict cell phenotypes individually by a self-generated dataset.

  5. Adaptive cornea modeling from keratometric data.

    PubMed

    Martínez-Finkelshtein, Andrei; López, Darío Ramos; Castro, Gracia M; Alió, Jorge L

    2011-07-01

    To introduce an iterative, multiscale procedure that allows for better reconstruction of the shape of the anterior surface of the cornea from altimetric data collected by a corneal topographer. The report describes, first, an adaptive, multiscale mathematical algorithm for the parsimonious fit of the corneal surface data that adapts the number of functions used in the reconstruction to the conditions of each cornea. The method also implements a dynamic selection of the parameters and the management of noise. Then, several numerical experiments are performed, comparing it with the results obtained by the standard Zernike-based procedure. The numerical experiments showed that the algorithm exhibits steady exponential error decay, independent of the level of aberration of the cornea. The complexity of each anisotropic Gaussian-basis function in the functional representation is the same, but the parameters vary to fit the current scale. This scale is determined only by the residual errors and not by the number of the iteration. Finally, the position and clustering of the centers, as well as the size of the shape parameters, provides additional spatial information about the regions of higher irregularity. The methodology can be used for the real-time reconstruction of both altimetric data and corneal power maps from the data collected by keratoscopes, such as the Placido ring-based topographers, that will be decisive in early detection of corneal diseases such as keratoconus.

  6. SHORT RANGE ENSEMBLE Products

    Science.gov Websites

    - CONUS Double Resolution (Lambert Conformal - 40km) NEMS Non-hydrostatic Multiscale Model on the B grid AWIPS grid 212 Regional - CONUS Double Resolution (Lambert Conformal - 40km) NEMS Non-hydrostatic 132 - Double Resolution (Lambert Conformal - 16km) NEMS Non-hydrostatic Multiscale Model on the B grid

  7. Extending the Applicability of the Community Multiscale Air Quality Model to Hemispheric Scales: Motivation, Challenges, and Progress

    EPA Science Inventory

    The adaptation of the Community Multiscale Air Quality (CMAQ) modeling system to simulate O3, particulate matter, and related precursor distributions over the northern hemisphere is presented. Hemispheric simulations with CMAQ and the Weather Research and Forecasting (...

  8. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinoza, I., E-mail: iespinoza@fis.puc.cl; Peschke, P.; Karger, C. P.

    2015-01-15

    Purpose: In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. Methods: A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii)more » hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. Results: The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the model, tumor shrinkage was found to be significantly more important for reoxygenation than angiogenesis or decreased oxygen consumption due to an increased fraction of dead cells. In the studied HNSSC-case, the TCD{sub 50} values (dose at 50% TCP) decreased from 71.0 Gy under hypoxic to 53.6 Gy under the oxic condition. Conclusions: The results obtained with the developed multiscale model are in accordance with expectations based on radiobiological principles and clinical experience. As the model is voxel-based, radiological imaging methods may help to provide the required 3D-characterization of the tumor prior to irradiation. For clinical application, the model has to be further validated with experimental and clinical data. If this is achieved, the model may be used to optimize fractionation schedules and dose distributions for the treatment of hypoxic tumors.« less

  9. Combining wet and dry research: experience with model development for cardiac mechano-electric structure-function studies

    PubMed Central

    Quinn, T. Alexander; Kohl, Peter

    2013-01-01

    Since the development of the first mathematical cardiac cell model 50 years ago, computational modelling has become an increasingly powerful tool for the analysis of data and for the integration of information related to complex cardiac behaviour. Current models build on decades of iteration between experiment and theory, representing a collective understanding of cardiac function. All models, whether computational, experimental, or conceptual, are simplified representations of reality and, like tools in a toolbox, suitable for specific applications. Their range of applicability can be explored (and expanded) by iterative combination of ‘wet’ and ‘dry’ investigation, where experimental or clinical data are used to first build and then validate computational models (allowing integration of previous findings, quantitative assessment of conceptual models, and projection across relevant spatial and temporal scales), while computational simulations are utilized for plausibility assessment, hypotheses-generation, and prediction (thereby defining further experimental research targets). When implemented effectively, this combined wet/dry research approach can support the development of a more complete and cohesive understanding of integrated biological function. This review illustrates the utility of such an approach, based on recent examples of multi-scale studies of cardiac structure and mechano-electric function. PMID:23334215

  10. An Integrative Model for Phytochrome B Mediated Photomorphogenesis: From Protein Dynamics to Physiology

    PubMed Central

    Kircher, Stefan; Kirchenbauer, Daniel; Timmer, Jens; Nagy, Ferenc; Schäfer, Eberhard; Fleck, Christian

    2010-01-01

    Background Plants have evolved various sophisticated mechanisms to respond and adapt to changes of abiotic factors in their natural environment. Light is one of the most important abiotic environmental factors and it regulates plant growth and development throughout their entire life cycle. To monitor the intensity and spectral composition of the ambient light environment, plants have evolved multiple photoreceptors, including the red/far-red light-sensing phytochromes. Methodology/Principal Findings We have developed an integrative mathematical model that describes how phytochrome B (phyB), an essential receptor in Arabidopsis thaliana, controls growth. Our model is based on a multiscale approach and connects the mesoscopic intracellular phyB protein dynamics to the macroscopic growth phenotype. To establish reliable and relevant parameters for the model phyB regulated growth we measured: accumulation and degradation, dark reversion kinetics and the dynamic behavior of different nuclear phyB pools using in vivo spectroscopy, western blotting and Fluorescence Recovery After Photobleaching (FRAP) technique, respectively. Conclusions/Significance The newly developed model predicts that the phyB-containing nuclear bodies (NBs) (i) serve as storage sites for phyB and (ii) control prolonged dark reversion kinetics as well as partial reversibility of phyB Pfr in extended darkness. The predictive power of this mathematical model is further validated by the fact that we are able to formalize a basic photobiological observation, namely that in light-grown seedlings hypocotyl length depends on the total amount of phyB. In addition, we demonstrate that our theoretical predictions are in excellent agreement with quantitative data concerning phyB levels and the corresponding hypocotyl lengths. Hence, we conclude that the integrative model suggested in this study captures the main features of phyB-mediated photomorphogenesis in Arabidopsis. PMID:20502669

  11. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.; hide

    2008-01-01

    Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.

  12. Towards multiscale modeling of influenza infection

    PubMed Central

    Murillo, Lisa N.; Murillo, Michael S.; Perelson, Alan S.

    2013-01-01

    Aided by recent advances in computational power, algorithms, and higher fidelity data, increasingly detailed theoretical models of infection with influenza A virus are being developed. We review single scale models as they describe influenza infection from intracellular to global scales, and, in particular, we consider those models that capture details specific to influenza and can be used to link different scales. We discuss the few multiscale models of influenza infection that have been developed in this emerging field. In addition to discussing modeling approaches, we also survey biological data on influenza infection and transmission that is relevant for constructing influenza infection models. We envision that, in the future, multiscale models that capitalize on technical advances in experimental biology and high performance computing could be used to describe the large spatial scale epidemiology of influenza infection, evolution of the virus, and transmission between hosts more accurately. PMID:23608630

  13. Hybrid methods for simulating hydrodynamics and heat transfer in multiscale (1D-3D) models

    NASA Astrophysics Data System (ADS)

    Filimonov, S. A.; Mikhienkova, E. I.; Dekterev, A. A.; Boykov, D. V.

    2017-09-01

    The work is devoted to application of different-scale models in the simulation of hydrodynamics and heat transfer of large and/or complex systems, which can be considered as a combination of extended and “compact” elements. The model consisting of simultaneously existing three-dimensional and network (one-dimensional) elements is called multiscale. The paper examines the relevance of building such models and considers three main options for their implementation: the spatial and the network parts of the model are calculated separately; spatial and network parts are calculated simultaneously (hydraulically unified model); network elements “penetrate” the spatial part and are connected through the integral characteristics at the tube/channel walls (hydraulically disconnected model). Each proposed method is analyzed in terms of advantages and disadvantages. The paper presents a number of practical examples demonstrating the application of multiscale models.

  14. Versatile Micromechanics Model for Multiscale Analysis of Composite Structures

    NASA Astrophysics Data System (ADS)

    Kwon, Y. W.; Park, M. S.

    2013-08-01

    A general-purpose micromechanics model was developed so that the model could be applied to various composite materials such as reinforced by particles, long fibers and short fibers as well as those containing micro voids. Additionally, the model can be used with hierarchical composite materials. The micromechanics model can be used to compute effective material properties like elastic moduli, shear moduli, Poisson's ratios, and coefficients of thermal expansion for the various composite materials. The model can also calculate the strains and stresses at the constituent material level such as fibers, particles, and whiskers from the composite level stresses and strains. The model was implemented into ABAQUS using the UMAT option for multiscale analysis. An extensive set of examples are presented to demonstrate the reliability and accuracy of the developed micromechanics model for different kinds of composite materials. Another set of examples is provided to study the multiscale analysis of composite structures.

  15. Suppression of chaos at slow variables by rapidly mixing fast dynamics through linear energy-preserving coupling

    NASA Astrophysics Data System (ADS)

    Abramov, R. V.

    2011-12-01

    Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger chaotic system would result in general increase of chaos at the slow variables.

  16. Multiscale-Driven approach to detecting change in Synthetic Aperture Radar (SAR) imagery

    NASA Astrophysics Data System (ADS)

    Gens, R.; Hogenson, K.; Ajadi, O. A.; Meyer, F. J.; Myers, A.; Logan, T. A.; Arnoult, K., Jr.

    2017-12-01

    Detecting changes between Synthetic Aperture Radar (SAR) images can be a useful but challenging exercise. SAR with its all-weather capabilities can be an important resource in identifying and estimating the expanse of events such as flooding, river ice breakup, earthquake damage, oil spills, and forest growth, as it can overcome shortcomings of optical methods related to cloud cover. However, detecting change in SAR imagery can be impeded by many factors including speckle, complex scattering responses, low temporal sampling, and difficulty delineating boundaries. In this presentation we use a change detection method based on a multiscale-driven approach. By using information at different resolution levels, we attempt to obtain more accurate change detection maps in both heterogeneous and homogeneous regions. Integrated within the processing flow are processes that 1) improve classification performance by combining Expectation-Maximization algorithms with mathematical morphology, 2) achieve high accuracy in preserving boundaries using measurement level fusion techniques, and 3) combine modern non-local filtering and 2D-discrete stationary wavelet transform to provide robustness against noise. This multiscale-driven approach to change detection has recently been incorporated into the Alaska Satellite Facility (ASF) Hybrid Pluggable Processing Pipeline (HyP3) using radiometrically terrain corrected SAR images. Examples primarily from natural hazards are presented to illustrate the capabilities and limitations of the change detection method.

  17. Cell adhesion heterogeneity reinforces tumour cell dissemination: novel insights from a mathematical model.

    PubMed

    Reher, David; Klink, Barbara; Deutsch, Andreas; Voss-Böhme, Anja

    2017-08-11

    Cancer cell invasion, dissemination, and metastasis have been linked to an epithelial-mesenchymal transition (EMT) of individual tumour cells. During EMT, adhesion molecules like E-cadherin are downregulated and the decrease of cell-cell adhesion allows tumour cells to dissociate from the primary tumour mass. This complex process depends on intracellular cues that are subject to genetic and epigenetic variability, as well as extrinsic cues from the local environment resulting in a spatial heterogeneity in the adhesive phenotype of individual tumour cells. Here, we use a novel mathematical model to study how adhesion heterogeneity, influenced by intrinsic and extrinsic factors, affects the dissemination of tumour cells from an epithelial cell population. The model is a multiscale cellular automaton that couples intracellular adhesion receptor regulation with cell-cell adhesion. Simulations of our mathematical model indicate profound effects of adhesion heterogeneity on tumour cell dissemination. In particular, we show that a large variation of intracellular adhesion receptor concentrations in a cell population reinforces cell dissemination, regardless of extrinsic cues mediated through the local cell density. However, additional control of adhesion receptor concentration through the local cell density, which can be assumed in healthy cells, weakens the effect. Furthermore, we provide evidence that adhesion heterogeneity can explain the remarkable differences in adhesion receptor concentrations of epithelial and mesenchymal phenotypes observed during EMT and might drive early dissemination of tumour cells. Our results suggest that adhesion heterogeneity may be a universal trigger to reinforce cell dissemination in epithelial cell populations. This effect can be at least partially compensated by a control of adhesion receptor regulation through neighbouring cells. Accordingly, our findings explain how both an increase in intra-tumour adhesion heterogeneity and the loss of control through the local environment can promote tumour cell dissemination. This article was reviewed by Hanspeter Herzel, Thomas Dandekar and Marek Kimmel.

  18. Multiscale Modeling of Multiphase Fluid Flow

    DTIC Science & Technology

    2016-08-01

    the disparate time and length scales involved in modeling fluid flow and heat transfer. Molecular dynamics simulations were carried out to provide a...fluid dynamics methods were used to investigate the heat transfer process in open-cell micro-foam with phase change material; enhancement of natural...Computational fluid dynamics, Heat transfer, Phase change material in Micro-foam, Molecular Dynamics, Multiphase flow, Multiscale modeling, Natural

  19. Multi-Scale Characterization of Orthotropic Microstructures

    DTIC Science & Technology

    2008-04-01

    D. Valiveti, S. J. Harris, J. Boileau, A domain partitioning based pre-processor for multi-scale modelling of cast aluminium alloys , Modelling and...SUPPLEMENTARY NOTES Journal article submitted to Modeling and Simulation in Materials Science and Engineering. PAO Case Number: WPAFB 08-3362...element for charac- terization or simulation to avoid misleading predictions of macroscopic defor- mation, fracture, or transport behavior. Likewise

  20. Simulations of Tornadoes, Tropical Cyclones, MJOs, and QBOs, using GFDL's multi-scale global climate modeling system

    NASA Astrophysics Data System (ADS)

    Lin, Shian-Jiann; Harris, Lucas; Chen, Jan-Huey; Zhao, Ming

    2014-05-01

    A multi-scale High-Resolution Atmosphere Model (HiRAM) is being developed at NOAA/Geophysical Fluid Dynamics Laboratory. The model's dynamical framework is the non-hydrostatic extension of the vertically Lagrangian finite-volume dynamical core (Lin 2004, Monthly Wea. Rev.) constructed on a stretchable (via Schmidt transformation) cubed-sphere grid. Physical parametrizations originally designed for IPCC-type climate predictions are in the process of being modified and made more "scale-aware", in an effort to make the model suitable for multi-scale weather-climate applications, with horizontal resolution ranging from 1 km (near the target high-resolution region) to as low as 400 km (near the antipodal point). One of the main goals of this development is to enable simulation of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously thought impossible. We will present preliminary results, covering a very wide spectrum of temporal-spatial scales, ranging from simulation of tornado genesis (hours), Madden-Julian Oscillations (intra-seasonal), topical cyclones (seasonal), to Quasi Biennial Oscillations (intra-decadal), using the same global multi-scale modeling system.

  1. Bayesian inference on multiscale models for poisson intensity estimation: applications to photon-limited image denoising.

    PubMed

    Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George

    2009-08-01

    We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.

  2. Voluntary EMG-to-force estimation with a multi-scale physiological muscle model

    PubMed Central

    2013-01-01

    Background EMG-to-force estimation based on muscle models, for voluntary contraction has many applications in human motion analysis. The so-called Hill model is recognized as a standard model for this practical use. However, it is a phenomenological model whereby muscle activation, force-length and force-velocity properties are considered independently. Perreault reported Hill modeling errors were large for different firing frequencies, level of activation and speed of contraction. It may be due to the lack of coupling between activation and force-velocity properties. In this paper, we discuss EMG-force estimation with a multi-scale physiology based model, which has a link to underlying crossbridge dynamics. Differently from the Hill model, the proposed method provides dual dynamics of recruitment and calcium activation. Methods The ankle torque was measured for the plantar flexion along with EMG measurements of the medial gastrocnemius (GAS) and soleus (SOL). In addition to Hill representation of the passive elements, three models of the contractile parts have been compared. Using common EMG signals during isometric contraction in four able-bodied subjects, torque was estimated by the linear Hill model, the nonlinear Hill model and the multi-scale physiological model that refers to Huxley theory. The comparison was made in normalized scale versus the case in maximum voluntary contraction. Results The estimation results obtained with the multi-scale model showed the best performances both in fast-short and slow-long term contraction in randomized tests for all the four subjects. The RMS errors were improved with the nonlinear Hill model compared to linear Hill, however it showed limitations to account for the different speed of contractions. Average error was 16.9% with the linear Hill model, 9.3% with the modified Hill model. In contrast, the error in the multi-scale model was 6.1% while maintaining a uniform estimation performance in both fast and slow contractions schemes. Conclusions We introduced a novel approach that allows EMG-force estimation based on a multi-scale physiology model integrating Hill approach for the passive elements and microscopic cross-bridge representations for the contractile element. The experimental evaluation highlights estimation improvements especially a larger range of contraction conditions with integration of the neural activation frequency property and force-velocity relationship through cross-bridge dynamics consideration. PMID:24007560

  3. Statistical Field Estimation for Complex Coastal Regions and Archipelagos (PREPRINT)

    DTIC Science & Technology

    2011-04-09

    and study the computational properties of these schemes. Specifically, we extend a multiscale Objective Analysis (OA) approach to complex coastal...computational properties of these schemes. Specifically, we extend a multiscale Objective Analysis (OA) approach to complex coastal regions and... multiscale free-surface code builds on the primitive-equation model of the Harvard Ocean Predic- tion System (HOPS, Haley et al. (2009)). Additionally

  4. Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing

    DTIC Science & Technology

    2016-07-15

    AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER... electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study

  5. Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing

    DTIC Science & Technology

    2016-07-15

    AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER...electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study

  6. The role of myosin II in glioma invasion: A mathematical model

    PubMed Central

    Lee, Wanho; Lim, Sookkyung; Kim, Yangjin

    2017-01-01

    Gliomas are malignant tumors that are commonly observed in primary brain cancer. Glioma cells migrate through a dense network of normal cells in microenvironment and spread long distances within brain. In this paper we present a two-dimensional multiscale model in which a glioma cell is surrounded by normal cells and its migration is controlled by cell-mechanical components in the microenvironment via the regulation of myosin II in response to chemoattractants. Our simulation results show that the myosin II plays a key role in the deformation of the cell nucleus as the glioma cell passes through the narrow intercellular space smaller than its nuclear diameter. We also demonstrate that the coordination of biochemical and mechanical components within the cell enables a glioma cell to take the mode of amoeboid migration. This study sheds lights on the understanding of glioma infiltration through the narrow intercellular spaces and may provide a potential approach for the development of anti-invasion strategies via the injection of chemoattractants for localization. PMID:28166231

  7. Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2015-10-01

    We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.

  8. Complexity of cardiac signals for predicting changes in alpha-waves after stress in patients undergoing cardiac catheterization

    NASA Astrophysics Data System (ADS)

    Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang

    2015-08-01

    The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress.

  9. Complexity of cardiac signals for predicting changes in alpha-waves after stress in patients undergoing cardiac catheterization

    PubMed Central

    Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang

    2015-01-01

    The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress. PMID:26286628

  10. Mathematical modeling of the infrastructure of attosecond actuators and femtosecond sensors of nonequilibrium physical media in smart materials

    NASA Astrophysics Data System (ADS)

    Beznosyuk, Sergey A.; Maslova, Olga A.; Zhukovsky, Mark S.; Valeryeva, Ekaterina V.; Terentyeva, Yulia V.

    2017-12-01

    The task of modeling the multiscale infrastructure of quantum attosecond actuators and femtosecond sensors of nonequilibrium physical media in smart materials is considered. Computer design and calculation of supra-atomic femtosecond sensors of nonequilibrium physical media in materials based on layered graphene-transition metal nanosystems are carried out by vdW-DF and B3LYP methods. It is shown that the molybdenum substrate provides fixation of graphene nanosheets by Van der Waals forces at a considerable distance (5.3 Å) from the metal surface. This minimizes the effect of the electronic and nuclear subsystem of the substrate metal on the sensory properties of "pure" graphene. The conclusion is substantiated that graphene-molybdenum nanosensors are able to accurately orient and position one molecule of carbon monoxide. It is shown that graphene selectively adsorbs CO and fixes the oxygen atom of the molecule at the position of the center of the graphene ring C6.

  11. Radiomics Evaluation of Histological Heterogeneity Using Multiscale Textures Derived From 3D Wavelet Transformation of Multispectral Images.

    PubMed

    Chaddad, Ahmad; Daniel, Paul; Niazi, Tamim

    2018-01-01

    Colorectal cancer (CRC) is markedly heterogeneous and develops progressively toward malignancy through several stages which include stroma (ST), benign hyperplasia (BH), intraepithelial neoplasia (IN) or precursor cancerous lesion, and carcinoma (CA). Identification of the malignancy stage of CRC pathology tissues (PT) allows the most appropriate therapeutic intervention. This study investigates multiscale texture features extracted from CRC pathology sections using 3D wavelet transform (3D-WT) filter. Multiscale features were extracted from digital whole slide images of 39 patients that were segmented in a pre-processing step using an active contour model. The capacity for multiscale texture to compare and classify between PTs was investigated using ANOVA significance test and random forest classifier models, respectively. 12 significant features derived from the multiscale texture (i.e., variance, entropy, and energy) were found to discriminate between CRC grades at a significance value of p  < 0.01 after correction. Combining multiscale texture features lead to a better predictive capacity compared to prediction models based on individual scale features with an average (±SD) classification accuracy of 93.33 (±3.52)%, sensitivity of 88.33 (± 4.12)%, and specificity of 96.89 (± 3.88)%. Entropy was found to be the best classifier feature across all the PT grades with an average of the area under the curve (AUC) value of 91.17, 94.21, 97.70, 100% for ST, BH, IN, and CA, respectively. Our results suggest that multiscale texture features based on 3D-WT are sensitive enough to discriminate between CRC grades with the entropy feature, the best predictor of pathology grade.

  12. Localized Scale Coupling and New Educational Paradigms in Multiscale Mathematics and Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LEAL, L. GARY

    2013-06-30

    One of the most challenging multi-scale simulation problems in the area of multi-phase materials is to develop effective computational techniques for the prediction of coalescence and related phenomena involving rupture of a thin liquid film due to the onset of instability driven by van der Waals or other micro-scale attractive forces. Accurate modeling of this process is critical to prediction of the outcome of milling processes for immiscible polymer blends, one of the most important routes to new advanced polymeric materials. In typical situations, the blend evolves into an ?emulsion? of dispersed phase drops in a continuous matrix fluid. Coalescencemore » is then a critical factor in determining the size distribution of the dispersed phase, but is extremely difficult to predict from first principles. The thin film separating two drops may only achieve rupture at dimensions of approximately 10 nm while the drop sizes are 0(10 ?m). It is essential to achieve very accurate solutions for the flow and for the interface shape at both the macroscale of the full drops, and within the thin film (where the destabilizing disjoining pressure due to van der Waals forces is proportional approximately to the inverse third power of the local film thickness, h-3). Furthermore, the fluids of interest are polymeric (through Newtonian) and the classical continuum description begins to fail as the film thins ? requiring incorporation of molecular effects, such as a hybrid code that incorporates a version of coarse grain molecular dynamics within the thin film coupled with a classical continuum description elsewhere in the flow domain. Finally, the presence of surface active additions, either surfactants (in the form of di-block copolymers) or surface-functionalized micro- or nano-scale particles, adds an additional level of complexity, requiring development of a distinct numerical method to predict the nonuniform concentration gradients of these additives that are responsible for Marangoni stresses at the interface. Again, the physical dimensions of these additives may become comparable to the thin film dimensions, requiring an additional layer of multi-scale modeling.« less

  13. Multiscale Modeling of Virus Entry via Receptor-Mediated Endocytosis

    NASA Astrophysics Data System (ADS)

    Liu, Jin

    2012-11-01

    Virus infections are ubiquitous and remain major threats to human health worldwide. Viruses are intracellular parasites and must enter host cells to initiate infection. Receptor-mediated endocytosis is the most common entry pathway taken by viruses, the whole process is highly complex and dictated by various events, such as virus motions, membrane deformations, receptor diffusion and ligand-receptor reactions, occurring at multiple length and time scales. We develop a multiscale model for virus entry through receptor-mediated endocytosis. The binding of virus to cell surface is based on a mesoscale three dimensional stochastic adhesion model, the internalization (endocytosis) of virus and cellular membrane deformation is based on the discretization of Helfrich Hamiltonian in a curvilinear space using Monte Carlo method. The multiscale model is based on the combination of these two models. We will implement this model to study the herpes simplex virus entry into B78 cells and compare the model predictions with experimental measurements.

  14. Modeling crack propagation in polycrystalline microstructure using variational multiscale method

    DOE PAGES

    Sun, Shang; Sundararaghavan, Veera

    2016-01-01

    Crack propagation in a polycrystalline microstructure is analyzed using a novel multiscale model. The model includes an explicit microstructural representation at critical regions (stress concentrators such as notches and cracks) and a reduced order model that statistically captures the microstructure at regions far away from stress concentrations. Crack propagation is modeled in these critical regions using the variational multiscale method. In this approach, a discontinuous displacement field is added to elements that exceed the critical values of normal or tangential tractions during loading. Compared to traditional cohesive zone modeling approaches, the method does not require the use of any specialmore » interface elements in the microstructure and thus can model arbitrary crack paths. As a result, the capability of the method in predicting both intergranular and transgranular failure modes in an elastoplastic polycrystal is demonstrated under tensile and three-point bending loads.« less

  15. A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1

    EPA Science Inventory

    This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM − KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.2.3, is used t...

  16. Observations and modeling of air quality trends over 1990-2010 across the northern hemisphere: China, the United States and Europe

    EPA Science Inventory

    Trends in air quality across the Northern Hemisphere over a 21-year period (1990–2010) were simulated using the Community Multiscale Air Quality (CMAQ) multiscale chemical transport model driven by meteorology from Weather Research and Forecasting WRF) simulations and internally ...

  17. Comparing AMSR-E soil moisture estimates to the extended record of the U.S. Climate Reference Network (USCRN)

    USDA-ARS?s Scientific Manuscript database

    Soil moisture plays an integral role in various aspects ranging from multi-scale hydrologic modeling to agricultural decision analysis to multi-scale hydrologic modeling, from climate change assessments to drought prediction and prevention. The broad availability of soil moisture estimates has only...

  18. Evaluation of the Community Multiscale Air Quality (CMAQ) modeling system against size-resolved measurements of inorganic particle composition across sites in North America

    EPA Science Inventory

    This work evaluates particle size-composition distributions simulated by the Community Multiscale Air Quality (CMAQ) model using Micro-Orifice Uniform Deposit Impactor (MOUDI) measurements at 18 sites across North America. Size-resolved measurements of particulate SO4<...

  19. Active and Passive Hydrologic Tomographic Surveys:A Revolution in Hydrology (Invited)

    NASA Astrophysics Data System (ADS)

    Yeh, T. J.

    2013-12-01

    Mathematical forward or inverse problems of flow through geological media always have unique solutions if necessary conditions are givens. Unique mathematical solutions to forward or inverse modeling of field problems are however always uncertain (an infinite number of possibilities) due to many reasons. They include non-representativeness of the governing equations, inaccurate necessary conditions, multi-scale heterogeneity, scale discrepancies between observation and model, noise and others. Conditional stochastic approaches, which derives the unbiased solution and quantifies the solution uncertainty, are therefore most appropriate for forward and inverse modeling of hydrological processes. Conditioning using non-redundant data sets reduces uncertainty. In this presentation, we explain non-redundant data sets in cross-hole aquifer tests, and demonstrate that active hydraulic tomographic survey (using man-made excitations) is a cost-effective approach to collect the same type but non-redundant data sets for reducing uncertainty in the inverse modeling. We subsequently show that including flux measurements (a piece of non-redundant data set) collected in the same well setup as in hydraulic tomography improves the estimated hydraulic conductivity field. We finally conclude with examples and propositions regarding how to collect and analyze data intelligently by exploiting natural recurrent events (river stage fluctuations, earthquakes, lightning, etc.) as energy sources for basin-scale passive tomographic surveys. The development of information fusion technologies that integrate traditional point measurements and active/passive hydrogeophysical tomographic surveys, as well as advances in sensor, computing, and information technologies may ultimately advance our capability of characterizing groundwater basins to achieve resolution far beyond the feat of current science and technology.

  20. Multiscale Materials Science: A Mathematical Approach to the Role of Defects and Uncertainty

    DTIC Science & Technology

    2015-03-01

    ADDRESS(ES) Ecole Nationale des Ponts et Chaussees 6 et 8 avenue Blaise Pascal, Cite Descartes , Champs sur Marne 77 455 Marne la Vallee Cedex 2...nationale des ponts et chaussees 6 et 8 avenue Blaise-Pascal, Cite Descartes Champs-sur-Marne F-77455 Mame-la-Vallee cedex 2 www.enpc.fr tel...CHAUSSEES 6, AVENUE BLAISE PASCAL 6 ET 8 CITE DESCARTES CHAMPS SUR MARNE, 77420 FR 13d. BUSINESS OFFICE CONTACT: CAROLINA GARCIA-OLMEDO 13e

  1. Optimizing Discharge Capacity of Li-O 2 Batteries by Design of Air-Electrode Porous Structure: Multifidelity Modeling and Optimization

    DOE PAGES

    Pan, Wenxiao; Yang, Xiu; Bao, Jie; ...

    2017-01-01

    We develop a new mathematical framework to study the optimal design of air electrode microstructures for lithium-oxygen (Li-O2) batteries. It can eectively reduce the number of expensive experiments for testing dierent air-electrodes, thereby minimizing the cost in the design of Li-O2 batteries. The design parameters to characterize an air-electrode microstructure include the porosity, surface-to-volume ratio, and parameters associated with the pore-size distribution. A surrogate model (also known as response surface) for discharge capacity is rst constructed as a function of these design parameters. The surrogate model is accurate and easy to evaluate such that an optimization can be performed basedmore » on it. In particular, a Gaussian process regression method, co-kriging, is employed due to its accuracy and eciency in predicting high-dimensional responses from a combination of multidelity data. Specically, a small amount of data from high-delity simulations are combined with a large number of data obtained from computationally ecient low-delity simulations. The high-delity simulation is based on a multiscale modeling approach that couples the microscale (pore-scale) and macroscale (device-scale) models. Whereas, the low-delity simulation is based on an empirical macroscale model. The constructed response surface provides quantitative understanding and prediction about how air electrode microstructures aect the discharge performance of Li-O2 batteries. The succeeding sensitivity analysis via Sobol indices and optimization via genetic algorithm ultimately oer a reliable guidance on the optimal design of air electrode microstructures. The proposed mathematical framework can be generalized to investigate other new energy storage techniques and materials.« less

  2. Optimizing Discharge Capacity of Li-O 2 Batteries by Design of Air-Electrode Porous Structure: Multifidelity Modeling and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wenxiao; Yang, Xiu; Bao, Jie

    We develop a new mathematical framework to study the optimal design of air electrode microstructures for lithium-oxygen (Li-O2) batteries. It can eectively reduce the number of expensive experiments for testing dierent air-electrodes, thereby minimizing the cost in the design of Li-O2 batteries. The design parameters to characterize an air-electrode microstructure include the porosity, surface-to-volume ratio, and parameters associated with the pore-size distribution. A surrogate model (also known as response surface) for discharge capacity is rst constructed as a function of these design parameters. The surrogate model is accurate and easy to evaluate such that an optimization can be performed basedmore » on it. In particular, a Gaussian process regression method, co-kriging, is employed due to its accuracy and eciency in predicting high-dimensional responses from a combination of multidelity data. Specically, a small amount of data from high-delity simulations are combined with a large number of data obtained from computationally ecient low-delity simulations. The high-delity simulation is based on a multiscale modeling approach that couples the microscale (pore-scale) and macroscale (device-scale) models. Whereas, the low-delity simulation is based on an empirical macroscale model. The constructed response surface provides quantitative understanding and prediction about how air electrode microstructures aect the discharge performance of Li-O2 batteries. The succeeding sensitivity analysis via Sobol indices and optimization via genetic algorithm ultimately oer a reliable guidance on the optimal design of air electrode microstructures. The proposed mathematical framework can be generalized to investigate other new energy storage techniques and materials.« less

  3. Computational Chemistry Toolkit for Energetic Materials Design

    DTIC Science & Technology

    2006-11-01

    industry are aggressively engaged in efforts to develop multiscale modeling and simulation methodologies to model and analyze complex phenomena across...energetic materials design. It is hoped that this toolkit will evolve into a collection of well-integrated multiscale modeling methodologies...Experimenta Theoreticala This Work 1-5-Diamino-4- methyl- tetrazolium nitrate 8.4 41.7 47.5 1-5-Diamino-4- methyl- tetrazolium azide 138.1 161.6

  4. Application of Mortar Coupling in Multiscale Modelling of Coupled Flow, Transport, and Biofilm Growth in Porous Media

    NASA Astrophysics Data System (ADS)

    Laleian, A.; Valocchi, A. J.; Werth, C. J.

    2017-12-01

    Multiscale models of reactive transport in porous media are capable of capturing complex pore-scale processes while leveraging the efficiency of continuum-scale models. In particular, porosity changes caused by biofilm development yield complex feedbacks between transport and reaction that are difficult to quantify at the continuum scale. Pore-scale models, needed to accurately resolve these dynamics, are often impractical for applications due to their computational cost. To address this challenge, we are developing a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled with a mortar method providing continuity at interfaces. We explore two decompositions of coupled pore-scale and continuum-scale regions to study biofilm growth in a transverse mixing zone. In the first decomposition, all reaction is confined to a pore-scale region extending the transverse mixing zone length. Only solute transport occurs in the surrounding continuum-scale regions. Relative to a fully pore-scale result, we find the multiscale model with this decomposition has a reduced run time and consistent result in terms of biofilm growth and solute utilization. In the second decomposition, reaction occurs in both an up-gradient pore-scale region and a down-gradient continuum-scale region. To quantify clogging, the continuum-scale model implements empirical relations between porosity and continuum-scale parameters, such as permeability and the transverse dispersion coefficient. Solutes are sufficiently mixed at the end of the pore-scale region, such that the initial reaction rate is accurately computed using averaged concentrations in the continuum-scale region. Relative to a fully pore-scale result, we find accuracy of biomass growth in the multiscale model with this decomposition improves as the interface between pore-scale and continuum-scale regions moves downgradient where transverse mixing is more fully developed. Also, this decomposition poses additional challenges with respect to mortar coupling. We explore these challenges and potential solutions. While recent work has demonstrated growing interest in multiscale models, further development is needed for their application to field-scale subsurface contaminant transport and remediation.

  5. Multiscale turbulence models based on convected fluid microstructure

    NASA Astrophysics Data System (ADS)

    Holm, Darryl D.; Tronci, Cesare

    2012-11-01

    The Euler-Poincaré approach to complex fluids is used to derive multiscale equations for computationally modeling Euler flows as a basis for modeling turbulence. The model is based on a kinematic sweeping ansatz (KSA) which assumes that the mean fluid flow serves as a Lagrangian frame of motion for the fluctuation dynamics. Thus, we regard the motion of a fluid parcel on the computationally resolvable length scales as a moving Lagrange coordinate for the fluctuating (zero-mean) motion of fluid parcels at the unresolved scales. Even in the simplest two-scale version on which we concentrate here, the contributions of the fluctuating motion under the KSA to the mean motion yields a system of equations that extends known results and appears to be suitable for modeling nonlinear backscatter (energy transfer from smaller to larger scales) in turbulence using multiscale methods.

  6. Anatomy and Physiology of Multiscale Modeling and Simulation in Systems Medicine.

    PubMed

    Mizeranschi, Alexandru; Groen, Derek; Borgdorff, Joris; Hoekstra, Alfons G; Chopard, Bastien; Dubitzky, Werner

    2016-01-01

    Systems medicine is the application of systems biology concepts, methods, and tools to medical research and practice. It aims to integrate data and knowledge from different disciplines into biomedical models and simulations for the understanding, prevention, cure, and management of complex diseases. Complex diseases arise from the interactions among disease-influencing factors across multiple levels of biological organization from the environment to molecules. To tackle the enormous challenges posed by complex diseases, we need a modeling and simulation framework capable of capturing and integrating information originating from multiple spatiotemporal and organizational scales. Multiscale modeling and simulation in systems medicine is an emerging methodology and discipline that has already demonstrated its potential in becoming this framework. The aim of this chapter is to present some of the main concepts, requirements, and challenges of multiscale modeling and simulation in systems medicine.

  7. Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2002-01-01

    This document contains the proceedings of the Training Workshop on Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems held at NASA Langley Research Center, Hampton, Virginia, March 5 - 6, 2002. The workshop was jointly sponsored by Old Dominion University's Center for Advanced Engineering Environments and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objectives of the workshop were to give overviews of the diverse activities in hierarchical approach to material modeling from continuum to atomistics; applications of multiscale modeling to advanced and improved material synthesis; defects, dislocations, and material deformation; fracture and friction; thin-film growth; characterization at nano and micro scales; and, verification and validation of numerical simulations, and to identify their potential for future aerospace systems.

  8. On a sparse pressure-flow rate condensation of rigid circulation models

    PubMed Central

    Schiavazzi, D. E.; Hsia, T. Y.; Marsden, A. L.

    2015-01-01

    Cardiovascular simulation has shown potential value in clinical decision-making, providing a framework to assess changes in hemodynamics produced by physiological and surgical alterations. State-of-the-art predictions are provided by deterministic multiscale numerical approaches coupling 3D finite element Navier Stokes simulations to lumped parameter circulation models governed by ODEs. Development of next-generation stochastic multiscale models whose parameters can be learned from available clinical data under uncertainty constitutes a research challenge made more difficult by the high computational cost typically associated with the solution of these models. We present a methodology for constructing reduced representations that condense the behavior of 3D anatomical models using outlet pressure-flow polynomial surrogates, based on multiscale model solutions spanning several heart cycles. Relevance vector machine regression is compared with maximum likelihood estimation, showing that sparse pressure/flow rate approximations offer superior performance in producing working surrogate models to be included in lumped circulation networks. Sensitivities of outlets flow rates are also quantified through a Sobol’ decomposition of their total variance encoded in the orthogonal polynomial expansion. Finally, we show that augmented lumped parameter models including the proposed surrogates accurately reproduce the response of multiscale models they were derived from. In particular, results are presented for models of the coronary circulation with closed loop boundary conditions and the abdominal aorta with open loop boundary conditions. PMID:26671219

  9. Effect of Mesoscale and Multiscale Modeling on the Performance of Kevlar Woven Fabric Subjected to Ballistic Impact: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Jia, Xin; Huang, Zhengxiang; Zu, Xudong; Gu, Xiaohui; Xiao, Qiangqiang

    2013-12-01

    In this study, an optimal finite element model of Kevlar woven fabric that is more computational efficient compared with existing models was developed to simulate ballistic impact onto fabric. Kevlar woven fabric was modeled to yarn level architecture by using the hybrid elements analysis (HEA), which uses solid elements in modeling the yarns at the impact region and uses shell elements in modeling the yarns away from the impact region. Three HEA configurations were constructed, in which the solid element region was set as about one, two, and three times that of the projectile's diameter with impact velocities of 30 m/s (non-perforation case) and 200 m/s (perforation case) to determine the optimal ratio between the solid element region and the shell element region. To further reduce computational time and to maintain the necessary accuracy, three multiscale models were presented also. These multiscale models combine the local region with the yarn level architecture by using the HEA approach and the global region with homogenous level architecture. The effect of the varying ratios of the local and global area on the ballistic performance of fabric was discussed. The deformation and damage mechanisms of fabric were analyzed and compared among numerical models. Simulation results indicate that the multiscale model based on HEA accurately reproduces the baseline results and obviously decreases computational time.

  10. Multi-scale streamflow variability responses to precipitation over the headwater catchments in southern China

    NASA Astrophysics Data System (ADS)

    Niu, Jun; Chen, Ji; Wang, Keyi; Sivakumar, Bellie

    2017-08-01

    This paper examines the multi-scale streamflow variability responses to precipitation over 16 headwater catchments in the Pearl River basin, South China. The long-term daily streamflow data (1952-2000), obtained using a macro-scale hydrological model, the Variable Infiltration Capacity (VIC) model, and a routing scheme, are studied. Temporal features of streamflow variability at 10 different timescales, ranging from 6 days to 8.4 years, are revealed with the Haar wavelet transform. The principal component analysis (PCA) is performed to categorize the headwater catchments with the coherent modes of multi-scale wavelet spectra. The results indicate that three distinct modes, with different variability distributions at small timescales and seasonal scales, can explain 95% of the streamflow variability. A large majority of the catchments (i.e. 12 out of 16) exhibit consistent mode feature on multi-scale variability throughout three sub-periods (1952-1968, 1969-1984, and 1985-2000). The multi-scale streamflow variability responses to precipitation are identified to be associated with the regional flood and drought tendency over the headwater catchments in southern China.

  11. Upscaling the Coupled Water and Heat Transport in the Shallow Subsurface

    NASA Astrophysics Data System (ADS)

    Sviercoski, R. F.; Efendiev, Y.; Mohanty, B. P.

    2018-02-01

    Predicting simultaneous movement of liquid water, water vapor, and heat in the shallow subsurface has many practical interests. The demand for multidimensional multiscale models for this region is important given: (a) the critical role that these processes play in the global water and energy balances, (b) that more data from air-borne and space-borne sensors are becoming available for parameterizations of modeling efforts. On the other hand, numerical models that consider spatial variations of the soil properties, termed here as multiscale, are prohibitively expensive. Thus, there is a need for upscaled models that take into consideration these features, and be computationally affordable. In this paper, a multidimensional multiscale model coupling the water flow and heat transfer and its respective upscaled version are proposed. The formulation is novel as it describes the multidimensional and multiscale tensorial versions of the hydraulic conductivity and the vapor diffusivity, taking into account the tortuosity and porosity properties of the medium. It also includes the coupling with the energy balance equation as a boundary describing atmospheric influences at the shallow subsurface. To demonstrate the accuracy of both models, comparisons were made between simulation and field experiments for soil moisture and temperature at 2, 7, and 12 cm deep, during 11 days. The root-mean-square errors showed that the upscaled version of the system captured the multiscale features with similar accuracy. Given the good matching between simulated and field data for near-surface soil temperature, the results suggest that it can be regarded as a 1-D variable.

  12. Modeling and Simulations in Photoelectrochemical Water Oxidation: From Single Level to Multiscale Modeling.

    PubMed

    Zhang, Xueqing; Bieberle-Hütter, Anja

    2016-06-08

    This review summarizes recent developments, challenges, and strategies in the field of modeling and simulations of photoelectrochemical (PEC) water oxidation. We focus on water splitting by metal-oxide semiconductors and discuss topics such as theoretical calculations of light absorption, band gap/band edge, charge transport, and electrochemical reactions at the electrode-electrolyte interface. In particular, we review the mechanisms of the oxygen evolution reaction, strategies to lower overpotential, and computational methods applied to PEC systems with particular focus on multiscale modeling. The current challenges in modeling PEC interfaces and their processes are summarized. At the end, we propose a new multiscale modeling approach to simulate the PEC interface under conditions most similar to those of experiments. This approach will contribute to identifying the limitations at PEC interfaces. Its generic nature allows its application to a number of electrochemical systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Multiscale Systems Analysis of Root Growth and Development: Modeling Beyond the Network and Cellular Scales

    PubMed Central

    Band, Leah R.; Fozard, John A.; Godin, Christophe; Jensen, Oliver E.; Pridmore, Tony; Bennett, Malcolm J.; King, John R.

    2012-01-01

    Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move beyond the network and cellular scales, to use multiscale modeling to predict emergent dynamics at the tissue and organ levels. In this review, we highlight recent developments in multiscale modeling, illustrating how these are generating new mechanistic insights into the regulation of root growth and development. We consider how these models are motivating new biological data analysis and explore directions for future research. This modeling progress will be crucial as we move from a qualitative to an increasingly quantitative understanding of root biology, generating predictive tools that accelerate the development of improved crop varieties. PMID:23110897

  14. Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldhaber, Steve; Holland, Marika

    The major goal of this project was to contribute improvements to the infrastructure of an Earth System Model in order to support research in the Multiscale Methods for Accurate, Efficient, and Scale-Aware models of the Earth System project. In support of this, the NCAR team accomplished two main tasks: improving input/output performance of the model and improving atmospheric model simulation quality. Improvement of the performance and scalability of data input and diagnostic output within the model required a new infrastructure which can efficiently handle the unstructured grids common in multiscale simulations. This allows for a more computationally efficient model, enablingmore » more years of Earth System simulation. The quality of the model simulations was improved by reducing grid-point noise in the spectral element version of the Community Atmosphere Model (CAM-SE). This was achieved by running the physics of the model using grid-cell data on a finite-volume grid.« less

  15. A new class of finite element variational multiscale turbulence models for incompressible magnetohydrodynamics

    DOE PAGES

    Sondak, D.; Shadid, J. N.; Oberai, A. A.; ...

    2015-04-29

    New large eddy simulation (LES) turbulence models for incompressible magnetohydrodynamics (MHD) derived from the variational multiscale (VMS) formulation for finite element simulations are introduced. The new models include the variational multiscale formulation, a residual-based eddy viscosity model, and a mixed model that combines both of these component models. Each model contains terms that are proportional to the residual of the incompressible MHD equations and is therefore numerically consistent. Moreover, each model is also dynamic, in that its effect vanishes when this residual is small. The new models are tested on the decaying MHD Taylor Green vortex at low and highmore » Reynolds numbers. The evaluation of the models is based on comparisons with available data from direct numerical simulations (DNS) of the time evolution of energies as well as energy spectra at various discrete times. Thus a numerical study, on a sequence of meshes, is presented that demonstrates that the large eddy simulation approaches the DNS solution for these quantities with spatial mesh refinement.« less

  16. Multiscale model reduction for shale gas transport in poroelastic fractured media

    NASA Astrophysics Data System (ADS)

    Akkutlu, I. Yucel; Efendiev, Yalchin; Vasilyeva, Maria; Wang, Yuhe

    2018-01-01

    Inherently coupled flow and geomechanics processes in fractured shale media have implications for shale gas production. The system involves highly complex geo-textures comprised of a heterogeneous anisotropic fracture network spatially embedded in an ultra-tight matrix. In addition, nonlinearities due to viscous flow, diffusion, and desorption in the matrix and high velocity gas flow in the fractures complicates the transport. In this paper, we develop a multiscale model reduction approach to couple gas flow and geomechanics in fractured shale media. A Discrete Fracture Model (DFM) is used to treat the complex network of fractures on a fine grid. The coupled flow and geomechanics equations are solved using a fixed stress-splitting scheme by solving the pressure equation using a continuous Galerkin method and the displacement equation using an interior penalty discontinuous Galerkin method. We develop a coarse grid approximation and coupling using the Generalized Multiscale Finite Element Method (GMsFEM). GMsFEM constructs the multiscale basis functions in a systematic way to capture the fracture networks and their interactions with the shale matrix. Numerical results and an error analysis is provided showing that the proposed approach accurately captures the coupled process using a few multiscale basis functions, i.e. a small fraction of the degrees of freedom of the fine-scale problem.

  17. The trend of the multi-scale temporal variability of precipitation in Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Yu, Z.

    2011-12-01

    Hydrological problems like estimation of flood and drought frequencies under future climate change are not well addressed as a result of the disability of current climate models to provide reliable prediction (especially for precipitation) shorter than 1 month. In order to assess the possible impacts that multi-scale temporal distribution of precipitation may have on the hydrological processes in Colorado River Basin (CRB), a comparative analysis of multi-scale temporal variability of precipitation as well as the trend of extreme precipitation is conducted in four regions controlled by different climate systems. Multi-scale precipitation variability including within-storm patterns and intra-annual, inter-annual and decadal variabilities will be analyzed to explore the possible trends of storm durations, inter-storm periods, average storm precipitation intensities and extremes under both long-term natural climate variability and human-induced warming. Further more, we will examine the ability of current climate models to simulate the multi-scale temporal variability and extremes of precipitation. On the basis of these analyses, a statistical downscaling method will be developed to disaggregate the future precipitation scenarios which will provide a more reliable and finer temporal scale precipitation time series for hydrological modeling. Analysis results and downscaling results will be presented.

  18. Multiscale Granger causality

    NASA Astrophysics Data System (ADS)

    Faes, Luca; Nollo, Giandomenico; Stramaglia, Sebastiano; Marinazzo, Daniele

    2017-10-01

    In the study of complex physical and biological systems represented by multivariate stochastic processes, an issue of great relevance is the description of the system dynamics spanning multiple temporal scales. While methods to assess the dynamic complexity of individual processes at different time scales are well established, multiscale analysis of directed interactions has never been formalized theoretically, and empirical evaluations are complicated by practical issues such as filtering and downsampling. Here we extend the very popular measure of Granger causality (GC), a prominent tool for assessing directed lagged interactions between joint processes, to quantify information transfer across multiple time scales. We show that the multiscale processing of a vector autoregressive (AR) process introduces a moving average (MA) component, and describe how to represent the resulting ARMA process using state space (SS) models and to combine the SS model parameters for computing exact GC values at arbitrarily large time scales. We exploit the theoretical formulation to identify peculiar features of multiscale GC in basic AR processes, and demonstrate with numerical simulations the much larger estimation accuracy of the SS approach compared to pure AR modeling of filtered and downsampled data. The improved computational reliability is exploited to disclose meaningful multiscale patterns of information transfer between global temperature and carbon dioxide concentration time series, both in paleoclimate and in recent years.

  19. Multiscale information modelling for heart morphogenesis

    NASA Astrophysics Data System (ADS)

    Abdulla, T.; Imms, R.; Schleich, J. M.; Summers, R.

    2010-07-01

    Science is made feasible by the adoption of common systems of units. As research has become more data intensive, especially in the biomedical domain, it requires the adoption of a common system of information models, to make explicit the relationship between one set of data and another, regardless of format. This is being realised through the OBO Foundry to develop a suite of reference ontologies, and NCBO Bioportal to provide services to integrate biomedical resources and functionality to visualise and create mappings between ontology terms. Biomedical experts tend to be focused at one level of spatial scale, be it biochemistry, cell biology, or anatomy. Likewise, the ontologies they use tend to be focused at a particular level of scale. There is increasing interest in a multiscale systems approach, which attempts to integrate between different levels of scale to gain understanding of emergent effects. This is a return to physiological medicine with a computational emphasis, exemplified by the worldwide Physiome initiative, and the European Union funded Network of Excellence in the Virtual Physiological Human. However, little work has been done on how information modelling itself may be tailored to a multiscale systems approach. We demonstrate how this can be done for the complex process of heart morphogenesis, which requires multiscale understanding in both time and spatial domains. Such an effort enables the integration of multiscale metrology.

  20. Introducing Enabling Computational Tools to the Climate Sciences: Multi-Resolution Climate Modeling with Adaptive Cubed-Sphere Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonowski, Christiane

    The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively withmore » advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project demonstrate significant advances in all six research areas. The major conclusions are that statically-adaptive variable-resolution modeling is currently becoming mature in the climate sciences, and that AMR holds outstanding promise for future-generation weather and climate models on high-performance computing architectures.« less

  1. Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform.

    PubMed

    Marshall-Colon, Amy; Long, Stephen P; Allen, Douglas K; Allen, Gabrielle; Beard, Daniel A; Benes, Bedrich; von Caemmerer, Susanne; Christensen, A J; Cox, Donna J; Hart, John C; Hirst, Peter M; Kannan, Kavya; Katz, Daniel S; Lynch, Jonathan P; Millar, Andrew J; Panneerselvam, Balaji; Price, Nathan D; Prusinkiewicz, Przemyslaw; Raila, David; Shekar, Rachel G; Shrivastava, Stuti; Shukla, Diwakar; Srinivasan, Venkatraman; Stitt, Mark; Turk, Matthew J; Voit, Eberhard O; Wang, Yu; Yin, Xinyou; Zhu, Xin-Guang

    2017-01-01

    Multi-scale models can facilitate whole plant simulations by linking gene networks, protein synthesis, metabolic pathways, physiology, and growth. Whole plant models can be further integrated with ecosystem, weather, and climate models to predict how various interactions respond to environmental perturbations. These models have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts. Outcomes will potentially accelerate improvement of crop yield, sustainability, and increase future food security. It is time for a paradigm shift in plant modeling, from largely isolated efforts to a connected community that takes advantage of advances in high performance computing and mechanistic understanding of plant processes. Tools for guiding future crop breeding and engineering, understanding the implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment are urgently needed. The purpose of this perspective is to introduce Crops in silico (cropsinsilico.org), an integrative and multi-scale modeling platform, as one solution that combines isolated modeling efforts toward the generation of virtual crops, which is open and accessible to the entire plant biology community. The major challenges involved both in the development and deployment of a shared, multi-scale modeling platform, which are summarized in this prospectus, were recently identified during the first Crops in silico Symposium and Workshop.

  2. Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform

    PubMed Central

    Marshall-Colon, Amy; Long, Stephen P.; Allen, Douglas K.; Allen, Gabrielle; Beard, Daniel A.; Benes, Bedrich; von Caemmerer, Susanne; Christensen, A. J.; Cox, Donna J.; Hart, John C.; Hirst, Peter M.; Kannan, Kavya; Katz, Daniel S.; Lynch, Jonathan P.; Millar, Andrew J.; Panneerselvam, Balaji; Price, Nathan D.; Prusinkiewicz, Przemyslaw; Raila, David; Shekar, Rachel G.; Shrivastava, Stuti; Shukla, Diwakar; Srinivasan, Venkatraman; Stitt, Mark; Turk, Matthew J.; Voit, Eberhard O.; Wang, Yu; Yin, Xinyou; Zhu, Xin-Guang

    2017-01-01

    Multi-scale models can facilitate whole plant simulations by linking gene networks, protein synthesis, metabolic pathways, physiology, and growth. Whole plant models can be further integrated with ecosystem, weather, and climate models to predict how various interactions respond to environmental perturbations. These models have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts. Outcomes will potentially accelerate improvement of crop yield, sustainability, and increase future food security. It is time for a paradigm shift in plant modeling, from largely isolated efforts to a connected community that takes advantage of advances in high performance computing and mechanistic understanding of plant processes. Tools for guiding future crop breeding and engineering, understanding the implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment are urgently needed. The purpose of this perspective is to introduce Crops in silico (cropsinsilico.org), an integrative and multi-scale modeling platform, as one solution that combines isolated modeling efforts toward the generation of virtual crops, which is open and accessible to the entire plant biology community. The major challenges involved both in the development and deployment of a shared, multi-scale modeling platform, which are summarized in this prospectus, were recently identified during the first Crops in silico Symposium and Workshop. PMID:28555150

  3. Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites

    DTIC Science & Technology

    2016-03-09

    A - Approved for Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Incorporation of carbon nanotubes (CNTs) into epoxy-based composites for...materials with higher moduli and strength characteristics. 15. SUBJECT TERMS Molecular Dynamics, Carbon Nanotubes , Multi-scale Modeling, Micromechanics...Gregory M. Odegard Michigan Technological University Introduction This project was inspired from the AFOSR-sponsored workshop “ Nanotube

  4. A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1

    EPA Science Inventory

    This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM − KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.2.3, is used to generate a Rosen...

  5. Multiscale Modeling for Linking Growth, Microstructure, and Properties of Inorganic Microporous Films

    NASA Technical Reports Server (NTRS)

    Vlachos, Dion G.

    2002-01-01

    The focus of this presentation is on multiscale modeling in order to link processing, microstructure, and properties of materials. Overview of problems we study includes: Growth mechanisms in chemical and physical vapor epitaxy; thin films of zeolites for separation and sensing; thin Pd films for hydrogen separation and pattern formation by self-regulation routes.

  6. Multiscale simulations of anisotropic particles combining molecular dynamics and Green's function reaction dynamics

    NASA Astrophysics Data System (ADS)

    Vijaykumar, Adithya; Ouldridge, Thomas E.; ten Wolde, Pieter Rein; Bolhuis, Peter G.

    2017-03-01

    The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.

  7. Multi-scale modeling for the transmission of influenza and the evaluation of interventions toward it.

    PubMed

    Guo, Dongmin; Li, King C; Peters, Timothy R; Snively, Beverly M; Poehling, Katherine A; Zhou, Xiaobo

    2015-03-11

    Mathematical modeling of influenza epidemic is important for analyzing the main cause of the epidemic and finding effective interventions towards it. The epidemic is a dynamic process. In this process, daily infections are caused by people's contacts, and the frequency of contacts can be mainly influenced by their cognition to the disease. The cognition is in turn influenced by daily illness attack rate, climate, and other environment factors. Few existing methods considered the dynamic process in their models. Therefore, their prediction results can hardly be explained by the mechanisms of epidemic spreading. In this paper, we developed a heterogeneous graph modeling approach (HGM) to describe the dynamic process of influenza virus transmission by taking advantage of our unique clinical data. We built social network of studied region and embedded an Agent-Based Model (ABM) in the HGM to describe the dynamic change of an epidemic. Our simulations have a good agreement with clinical data. Parameter sensitivity analysis showed that temperature influences the dynamic of epidemic significantly and system behavior analysis showed social network degree is a critical factor determining the size of an epidemic. Finally, multiple scenarios for vaccination and school closure strategies were simulated and their performance was analyzed.

  8. Patterns of recruitment and injury in a heterogeneous airway network model

    PubMed Central

    Stewart, Peter S.; Jensen, Oliver E.

    2015-01-01

    In respiratory distress, lung airways become flooded with liquid and may collapse due to surface-tension forces acting on air–liquid interfaces, inhibiting gas exchange. This paper proposes a mathematical multiscale model for the mechanical ventilation of a network of occluded airways, where air is forced into the network at a fixed tidal volume, allowing investigation of optimal recruitment strategies. The temporal response is derived from mechanistic models of individual airway reopening, incorporating feedback on the airway pressure due to recruitment. The model accounts for stochastic variability in airway diameter and stiffness across and between generations. For weak heterogeneity, the network is completely ventilated via one or more avalanches of recruitment (with airways recruited in quick succession), each characterized by a transient decrease in the airway pressure; avalanches become more erratic for airways that are initially more flooded. However, the time taken for complete ventilation of the network increases significantly as the network becomes more heterogeneous, leading to increased stresses on airway walls. The model predicts that the most peripheral airways are most at risk of ventilation-induced damage. A positive-end-expiratory pressure reduces the total recruitment time but at the cost of larger stresses exerted on airway walls. PMID:26423440

  9. Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields.

    PubMed

    Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F; Harger, Matthew; Torabifard, Hedieh; Cisneros, G Andrés; Schnieders, Michael J; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y; Ponder, Jay W; Piquemal, Jean-Philip

    2018-01-28

    We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed.

  10. Jet Fuel Exacerbated Noise-Induced Hearing Loss: Focus on Prediction of Central Auditory Processing Dysfunction

    DTIC Science & Technology

    2017-09-01

    to develop a multi-scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated noise induced hearing loss. In...scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated noise-induced hearing loss. Such hearing loss...project was to develop a multi-scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated NIHL. Herein we

  11. Analysis of the stability of nonlinear suspension system with slow-varying sprung mass under dual-excitation

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Zhang, Jinqiu; Zhao, Mingmei; Li, Xin

    2018-07-01

    This study investigated the stability of vibration in a nonlinear suspension system with slow-varying sprung mass under dual-excitation. A mathematical model of the system was first established and then solved using the multi-scale method. Finally, the amplitude-frequency curve of vehicle vibration, the solution's stable region and time-domain curve in Hopf bifurcation were derived. The obtained results revealed that an increase in the lower excitation would reduce the system's stability while an increase in the upper excitation can make the system more stable. The slow-varying sprung mass will change the system's damping from negative to positive, leading to the appearance of limit cycle and Hopf bifurcation. As a result, the vehicle's vibration state is forced to change. The stability of this system is extremely fragile under the effect of dynamic Hopf bifurcation as well as static bifurcation.

  12. An Optimal Partial Differential Equations-based Stopping Criterion for Medical Image Denoising.

    PubMed

    Khanian, Maryam; Feizi, Awat; Davari, Ali

    2014-01-01

    Improving the quality of medical images at pre- and post-surgery operations are necessary for beginning and speeding up the recovery process. Partial differential equations-based models have become a powerful and well-known tool in different areas of image processing such as denoising, multiscale image analysis, edge detection and other fields of image processing and computer vision. In this paper, an algorithm for medical image denoising using anisotropic diffusion filter with a convenient stopping criterion is presented. In this regard, the current paper introduces two strategies: utilizing the efficient explicit method due to its advantages with presenting impressive software technique to effectively solve the anisotropic diffusion filter which is mathematically unstable, proposing an automatic stopping criterion, that takes into consideration just input image, as opposed to other stopping criteria, besides the quality of denoised image, easiness and time. Various medical images are examined to confirm the claim.

  13. Modeling oscillations and spiral waves in Dictyostelium populations

    NASA Astrophysics Data System (ADS)

    Noorbakhsh, Javad; Schwab, David J.; Sgro, Allyson E.; Gregor, Thomas; Mehta, Pankaj

    2015-06-01

    Unicellular organisms exhibit elaborate collective behaviors in response to environmental cues. These behaviors are controlled by complex biochemical networks within individual cells and coordinated through cell-to-cell communication. Describing these behaviors requires new mathematical models that can bridge scales—from biochemical networks within individual cells to spatially structured cellular populations. Here we present a family of "multiscale" models for the emergence of spiral waves in the social amoeba Dictyostelium discoideum. Our models exploit new experimental advances that allow for the direct measurement and manipulation of the small signaling molecule cyclic adenosine monophosphate (cAMP) used by Dictyostelium cells to coordinate behavior in cellular populations. Inspired by recent experiments, we model the Dictyostelium signaling network as an excitable system coupled to various preprocessing modules. We use this family of models to study spatially unstructured populations of "fixed" cells by constructing phase diagrams that relate the properties of population-level oscillations to parameters in the underlying biochemical network. We then briefly discuss an extension of our model that includes spatial structure and show how this naturally gives rise to spiral waves. Our models exhibit a wide range of novel phenomena. including a density-dependent frequency change, bistability, and dynamic death due to slow cAMP dynamics. Our modeling approach provides a powerful tool for bridging scales in modeling of Dictyostelium populations.

  14. Multiscale Phenomena in the Solid-Liquid Transition State of a Granular Material: Analysis and Modelling of Dense Granular Materials

    DTIC Science & Technology

    2011-09-26

    most challenging to characterize and model of the gamut of granular behaviour encountered in practice. In particular, it exhibits self-organized...is intrinsically multiscale and is arguably one of, if not, the most challenging to characterize and model of the gamut of granular behaviour...the most challenging to characterize and model of the gamut of granular behaviour encountered in practice. In particular, it exhibits self-organized

  15. PFLOTRAN Verification: Development of a Testing Suite to Ensure Software Quality

    NASA Astrophysics Data System (ADS)

    Hammond, G. E.; Frederick, J. M.

    2016-12-01

    In scientific computing, code verification ensures the reliability and numerical accuracy of a model simulation by comparing the simulation results to experimental data or known analytical solutions. The model is typically defined by a set of partial differential equations with initial and boundary conditions, and verification ensures whether the mathematical model is solved correctly by the software. Code verification is especially important if the software is used to model high-consequence systems which cannot be physically tested in a fully representative environment [Oberkampf and Trucano (2007)]. Justified confidence in a particular computational tool requires clarity in the exercised physics and transparency in its verification process with proper documentation. We present a quality assurance (QA) testing suite developed by Sandia National Laboratories that performs code verification for PFLOTRAN, an open source, massively-parallel subsurface simulator. PFLOTRAN solves systems of generally nonlinear partial differential equations describing multiphase, multicomponent and multiscale reactive flow and transport processes in porous media. PFLOTRAN's QA test suite compares the numerical solutions of benchmark problems in heat and mass transport against known, closed-form, analytical solutions, including documentation of the exercised physical process models implemented in each PFLOTRAN benchmark simulation. The QA test suite development strives to follow the recommendations given by Oberkampf and Trucano (2007), which describes four essential elements in high-quality verification benchmark construction: (1) conceptual description, (2) mathematical description, (3) accuracy assessment, and (4) additional documentation and user information. Several QA tests within the suite will be presented, including details of the benchmark problems and their closed-form analytical solutions, implementation of benchmark problems in PFLOTRAN simulations, and the criteria used to assess PFLOTRAN's performance in the code verification procedure. References Oberkampf, W. L., and T. G. Trucano (2007), Verification and Validation Benchmarks, SAND2007-0853, 67 pgs., Sandia National Laboratories, Albuquerque, NM.

  16. Towards Characterization, Modeling, and Uncertainty Quantification in Multi-scale Mechanics of Oragnic-rich Shales

    NASA Astrophysics Data System (ADS)

    Abedi, S.; Mashhadian, M.; Noshadravan, A.

    2015-12-01

    Increasing the efficiency and sustainability in operation of hydrocarbon recovery from organic-rich shales requires a fundamental understanding of chemomechanical properties of organic-rich shales. This understanding is manifested in form of physics-bases predictive models capable of capturing highly heterogeneous and multi-scale structure of organic-rich shale materials. In this work we present a framework of experimental characterization, micromechanical modeling, and uncertainty quantification that spans from nanoscale to macroscale. Application of experiments such as coupled grid nano-indentation and energy dispersive x-ray spectroscopy and micromechanical modeling attributing the role of organic maturity to the texture of the material, allow us to identify unique clay mechanical properties among different samples that are independent of maturity of shale formations and total organic content. The results can then be used to inform the physically-based multiscale model for organic rich shales consisting of three levels that spans from the scale of elementary building blocks (e.g. clay minerals in clay-dominated formations) of organic rich shales to the scale of the macroscopic inorganic/organic hard/soft inclusion composite. Although this approach is powerful in capturing the effective properties of organic-rich shale in an average sense, it does not account for the uncertainty in compositional and mechanical model parameters. Thus, we take this model one step forward by systematically incorporating the main sources of uncertainty in modeling multiscale behavior of organic-rich shales. In particular we account for the uncertainty in main model parameters at different scales such as porosity, elastic properties and mineralogy mass percent. To that end, we use Maximum Entropy Principle and random matrix theory to construct probabilistic descriptions of model inputs based on available information. The Monte Carlo simulation is then carried out to propagate the uncertainty and consequently construct probabilistic descriptions of properties at multiple length-scales. The combination of experimental characterization and stochastic multi-scale modeling presented in this work improves the robustness in the prediction of essential subsurface parameters in engineering scale.

  17. An optimized algorithm for multiscale wideband deconvolution of radio astronomical images

    NASA Astrophysics Data System (ADS)

    Offringa, A. R.; Smirnov, O.

    2017-10-01

    We describe a new multiscale deconvolution algorithm that can also be used in a multifrequency mode. The algorithm only affects the minor clean loop. In single-frequency mode, the minor loop of our improved multiscale algorithm is over an order of magnitude faster than the casa multiscale algorithm, and produces results of similar quality. For multifrequency deconvolution, a technique named joined-channel cleaning is used. In this mode, the minor loop of our algorithm is two to three orders of magnitude faster than casa msmfs. We extend the multiscale mode with automated scale-dependent masking, which allows structures to be cleaned below the noise. We describe a new scale-bias function for use in multiscale cleaning. We test a second deconvolution method that is a variant of the moresane deconvolution technique, and uses a convex optimization technique with isotropic undecimated wavelets as dictionary. On simple well-calibrated data, the convex optimization algorithm produces visually more representative models. On complex or imperfect data, the convex optimization algorithm has stability issues.

  18. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth.

    PubMed

    de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-12-01

    The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth.

  19. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth

    NASA Astrophysics Data System (ADS)

    de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-12-01

    The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth.

  20. A Multiscale Progressive Failure Modeling Methodology for Composites that Includes Fiber Strength Stochastics

    NASA Technical Reports Server (NTRS)

    Ricks, Trenton M.; Lacy, Thomas E., Jr.; Bednarcyk, Brett A.; Arnold, Steven M.; Hutchins, John W.

    2014-01-01

    A multiscale modeling methodology was developed for continuous fiber composites that incorporates a statistical distribution of fiber strengths into coupled multiscale micromechanics/finite element (FE) analyses. A modified two-parameter Weibull cumulative distribution function, which accounts for the effect of fiber length on the probability of failure, was used to characterize the statistical distribution of fiber strengths. A parametric study using the NASA Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) was performed to assess the effect of variable fiber strengths on local composite failure within a repeating unit cell (RUC) and subsequent global failure. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a unidirectional SCS-6/TIMETAL 21S metal matrix composite tensile dogbone specimen at 650 degC. Multiscale progressive failure analyses were performed to quantify the effect of spatially varying fiber strengths on the RUC-averaged and global stress-strain responses and failure. The ultimate composite strengths and distribution of failure locations (predominately within the gage section) reasonably matched the experimentally observed failure behavior. The predicted composite failure behavior suggests that use of macroscale models that exploit global geometric symmetries are inappropriate for cases where the actual distribution of local fiber strengths displays no such symmetries. This issue has not received much attention in the literature. Moreover, the model discretization at a specific length scale can have a profound effect on the computational costs associated with multiscale simulations.models that yield accurate yet tractable results.

  1. Quantifying restoration effectiveness using multi-scale habitat models: Implications for sage-grouse in the Great Basin

    Treesearch

    Robert S. Arkle; David S. Pilliod; Steven E. Hanser; Matthew L. Brooks; Jeanne C. Chambers; James B. Grace; Kevin C. Knutson; David A. Pyke; Justin L. Welty; Troy A. Wirth

    2014-01-01

    A recurrent challenge in the conservation of wide-ranging, imperiled species is understanding which habitats to protect and whether we are capable of restoring degraded landscapes. For Greater Sage-grouse (Centrocercus urophasianus), a species of conservation concern in the western United States, we approached this problem by developing multi-scale empirical models of...

  2. Capturing remote mixing due to internal tides using multi-scale modeling tool: SOMAR-LES

    NASA Astrophysics Data System (ADS)

    Santilli, Edward; Chalamalla, Vamsi; Scotti, Alberto; Sarkar, Sutanu

    2016-11-01

    Internal tides that are generated during the interaction of an oscillating barotropic tide with the bottom bathymetry dissipate only a fraction of their energy near the generation region. The rest is radiated away in the form of low- high-mode internal tides. These internal tides dissipate energy at remote locations when they interact with the upper ocean pycnocline, continental slope, and large scale eddies. Capturing the wide range of length and time scales involved during the life-cycle of internal tides is computationally very expensive. A recently developed multi-scale modeling tool called SOMAR-LES combines the adaptive grid refinement features of SOMAR with the turbulence modeling features of a Large Eddy Simulation (LES) to capture multi-scale processes at a reduced computational cost. Numerical simulations of internal tide generation at idealized bottom bathymetries are performed to demonstrate this multi-scale modeling technique. Although each of the remote mixing phenomena have been considered independently in previous studies, this work aims to capture remote mixing processes during the life cycle of an internal tide in more realistic settings, by allowing multi-level (coarse and fine) grids to co-exist and exchange information during the time stepping process.

  3. Computational design and multiscale modeling of a nanoactuator using DNA actuation.

    PubMed

    Hamdi, Mustapha

    2009-12-02

    Developments in the field of nanobiodevices coupling nanostructures and biological components are of great interest in medical nanorobotics. As the fundamentals of bio/non-bio interaction processes are still poorly understood in the design of these devices, design tools and multiscale dynamics modeling approaches are necessary at the fabrication pre-project stage. This paper proposes a new concept of optimized carbon nanotube based servomotor design for drug delivery and biomolecular transport applications. The design of an encapsulated DNA-multi-walled carbon nanotube actuator is prototyped using multiscale modeling. The system is parametrized by using a quantum level approach and characterized by using a molecular dynamics simulation. Based on the analysis of the simulation results, a servo nanoactuator using ionic current feedback is simulated and analyzed for application as a drug delivery carrier.

  4. Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction

    DOE PAGES

    Chen, Zhangxing; Huang, Tianyu; Shao, Yimin; ...

    2018-03-15

    Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less

  5. Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhangxing; Huang, Tianyu; Shao, Yimin

    Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less

  6. Applied mathematical problems in modern electromagnetics

    NASA Astrophysics Data System (ADS)

    Kriegsman, Gregory

    1994-05-01

    We have primarily investigated two classes of electromagnetic problems. The first contains the quantitative description of microwave heating of dispersive and conductive materials. Such problems arise, for example, when biological tissue are exposed, accidentally or purposefully, to microwave radiation. Other instances occur in ceramic processing, such as sintering and microwave assisted chemical vapor infiltration and other industrial drying processes, such as the curing of paints and concrete. The second class characterizes the scattering of microwaves by complex targets which possess two or more disparate length and/or time scales. Spatially complex scatterers arise in a variety of applications, such as large gratings and slowly changing guiding structures. The former are useful in developing microstrip energy couplers while the later can be used to model anatomical subsystems (e.g., the open guiding structure composed of two legs and the adjoining lower torso). Temporally complex targets occur in applications involving dispersive media whose relaxation times differ by orders of magnitude from thermal and/or electromagnetic time scales. For both cases the mathematical description of the problems gives rise to complicated ill-conditioned boundary value problems, whose accurate solutions require a blend of both asymptotic techniques, such as multiscale methods and matched asymptotic expansions, and numerical methods incorporating radiation boundary conditions, such as finite differences and finite elements.

  7. PDF-based heterogeneous multiscale filtration model.

    PubMed

    Gong, Jian; Rutland, Christopher J

    2015-04-21

    Motivated by modeling of gasoline particulate filters (GPFs), a probability density function (PDF) based heterogeneous multiscale filtration (HMF) model is developed to calculate filtration efficiency of clean particulate filters. A new methodology based on statistical theory and classic filtration theory is developed in the HMF model. Based on the analysis of experimental porosimetry data, a pore size probability density function is introduced to represent heterogeneity and multiscale characteristics of the porous wall. The filtration efficiency of a filter can be calculated as the sum of the contributions of individual collectors. The resulting HMF model overcomes the limitations of classic mean filtration models which rely on tuning of the mean collector size. Sensitivity analysis shows that the HMF model recovers the classical mean model when the pore size variance is very small. The HMF model is validated by fundamental filtration experimental data from different scales of filter samples. The model shows a good agreement with experimental data at various operating conditions. The effects of the microstructure of filters on filtration efficiency as well as the most penetrating particle size are correctly predicted by the model.

  8. Computational aspects in mechanical modeling of the articular cartilage tissue.

    PubMed

    Mohammadi, Hadi; Mequanint, Kibret; Herzog, Walter

    2013-04-01

    This review focuses on the modeling of articular cartilage (at the tissue level), chondrocyte mechanobiology (at the cell level) and a combination of both in a multiscale computation scheme. The primary objective is to evaluate the advantages and disadvantages of conventional models implemented to study the mechanics of the articular cartilage tissue and chondrocytes. From monophasic material models as the simplest form to more complicated multiscale theories, these approaches have been frequently used to model articular cartilage and have contributed significantly to modeling joint mechanics, addressing and resolving numerous issues regarding cartilage mechanics and function. It should be noted that attentiveness is important when using different modeling approaches, as the choice of the model limits the applications available. In this review, we discuss the conventional models applicable to some of the mechanical aspects of articular cartilage such as lubrication, swelling pressure and chondrocyte mechanics and address some of the issues associated with the current modeling approaches. We then suggest future pathways for a more realistic modeling strategy as applied for the simulation of the mechanics of the cartilage tissue using multiscale and parallelized finite element method.

  9. Spatially extended hybrid methods: a review

    PubMed Central

    2018-01-01

    Many biological and physical systems exhibit behaviour at multiple spatial, temporal or population scales. Multiscale processes provide challenges when they are to be simulated using numerical techniques. While coarser methods such as partial differential equations are typically fast to simulate, they lack the individual-level detail that may be required in regions of low concentration or small spatial scale. However, to simulate at such an individual level throughout a domain and in regions where concentrations are high can be computationally expensive. Spatially coupled hybrid methods provide a bridge, allowing for multiple representations of the same species in one spatial domain by partitioning space into distinct modelling subdomains. Over the past 20 years, such hybrid methods have risen to prominence, leading to what is now a very active research area across multiple disciplines including chemistry, physics and mathematics. There are three main motivations for undertaking this review. Firstly, we have collated a large number of spatially extended hybrid methods and presented them in a single coherent document, while comparing and contrasting them, so that anyone who requires a multiscale hybrid method will be able to find the most appropriate one for their need. Secondly, we have provided canonical examples with algorithms and accompanying code, serving to demonstrate how these types of methods work in practice. Finally, we have presented papers that employ these methods on real biological and physical problems, demonstrating their utility. We also consider some open research questions in the area of hybrid method development and the future directions for the field. PMID:29491179

  10. Structural dynamics of the lac repressor-DNA complex revealed by a multiscale simulation.

    PubMed

    Villa, Elizabeth; Balaeff, Alexander; Schulten, Klaus

    2005-05-10

    A multiscale simulation of a complex between the lac repressor protein (LacI) and a 107-bp-long DNA segment is reported. The complex between the repressor and two operator DNA segments is described by all-atom molecular dynamics; the size of the simulated system comprises either 226,000 or 314,000 atoms. The DNA loop connecting the operators is modeled as a continuous elastic ribbon, described mathematically by the nonlinear Kirchhoff differential equations with boundary conditions obtained from the coordinates of the terminal base pairs of each operator. The forces stemming from the looped DNA are included in the molecular dynamics simulations; the loop structure and the forces are continuously recomputed because the protein motions during the simulations shift the operators and the presumed termini of the loop. The simulations reveal the structural dynamics of the LacI-DNA complex in unprecedented detail. The multiple domains of LacI exhibit remarkable structural stability during the simulation, moving much like rigid bodies. LacI is shown to absorb the strain from the looped DNA mainly through its mobile DNA-binding head groups. Even with large fluctuating forces applied, the head groups tilt strongly and keep their grip on the operator DNA, while the remainder of the protein retains its V-shaped structure. A simulated opening of the cleft of LacI by 500-pN forces revealed the interactions responsible for locking LacI in the V-conformation.

  11. Patient-Specific, Multi-Scale Modeling of Neointimal Hyperplasia in Vein Grafts

    PubMed Central

    Donadoni, Francesca; Pichardo-Almarza, Cesar; Bartlett, Matthew; Dardik, Alan; Homer-Vanniasinkam, Shervanthi; Díaz-Zuccarini, Vanessa

    2017-01-01

    Neointimal hyperplasia is amongst the major causes of failure of bypass grafts. The disease progression varies from patient to patient due to a range of different factors. In this paper, a mathematical model will be used to understand neointimal hyperplasia in individual patients, combining information from biological experiments and patient-specific data to analyze some aspects of the disease, particularly with regard to mechanical stimuli due to shear stresses on the vessel wall. By combining a biochemical model of cell growth and a patient-specific computational fluid dynamics analysis of blood flow in the lumen, remodeling of the blood vessel is studied by means of a novel computational framework. The framework was used to analyze two vein graft bypasses from one patient: a femoro-popliteal and a femoro-distal bypass. The remodeling of the vessel wall and analysis of the flow for each case was then compared to clinical data and discussed as a potential tool for a better understanding of the disease. Simulation results from this first computational approach showed an overall agreement on the locations of hyperplasia in these patients and demonstrated the potential of using new integrative modeling tools to understand disease progression. PMID:28458640

  12. A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2012-01-01

    A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.

  13. Multiscale modeling of a low magnetostrictive Fe-27wt%Co-0.5wt%Cr alloy

    NASA Astrophysics Data System (ADS)

    Savary, M.; Hubert, O.; Helbert, A. L.; Baudin, T.; Batonnet, R.; Waeckerlé, T.

    2018-05-01

    The present paper deals with the improvement of a multi-scale approach describing the magneto-mechanical coupling of Fe-27wt%Co-0.5wt%Cr alloy. The magnetostriction behavior is demonstrated as very different (low magnetostriction vs. high magnetostriction) when this material is submitted to two different final annealing conditions after cold rolling. The numerical data obtained from a multi-scale approach are in accordance with experimental data corresponding to the high magnetostriction level material. A bi-domain structure hypothesis is employed to explain the low magnetostriction behavior, in accordance with the effect of an applied tensile stress. A modification of the multiscale approach is proposed to match this result.

  14. A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2011-01-01

    A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.

  15. Multi-scale genetic dynamic modelling II: application to synthetic biology: an algorithmic Markov chain based approach.

    PubMed

    Kirkilionis, Markus; Janus, Ulrich; Sbano, Luca

    2011-09-01

    We model in detail a simple synthetic genetic clock that was engineered in Atkinson et al. (Cell 113(5):597-607, 2003) using Escherichia coli as a host organism. Based on this engineered clock its theoretical description uses the modelling framework presented in Kirkilionis et al. (Theory Biosci. doi: 10.1007/s12064-011-0125-0 , 2011, this volume). The main goal of this accompanying article was to illustrate that parts of the modelling process can be algorithmically automatised once the model framework we called 'average dynamics' is accepted (Sbano and Kirkilionis, WMI Preprint 7/2007, 2008c; Kirkilionis and Sbano, Adv Complex Syst 13(3):293-326, 2010). The advantage of the 'average dynamics' framework is that system components (especially in genetics) can be easier represented in the model. In particular, if once discovered and characterised, specific molecular players together with their function can be incorporated. This means that, for example, the 'gene' concept becomes more clear, for example, in the way the genetic component would react under different regulatory conditions. Using the framework it has become a realistic aim to link mathematical modelling to novel tools of bioinformatics in the future, at least if the number of regulatory units can be estimated. This should hold in any case in synthetic environments due to the fact that the different synthetic genetic components are simply known (Elowitz and Leibler, Nature 403(6767):335-338, 2000; Gardner et al., Nature 403(6767):339-342, 2000; Hasty et al., Nature 420(6912):224-230, 2002). The paper illustrates therefore as a necessary first step how a detailed modelling of molecular interactions with known molecular components leads to a dynamic mathematical model that can be compared to experimental results on various levels or scales. The different genetic modules or components are represented in different detail by model variants. We explain how the framework can be used for investigating other more complex genetic systems in terms of regulation and feedback.

  16. Multiscale simulation of molecular processes in cellular environments.

    PubMed

    Chiricotto, Mara; Sterpone, Fabio; Derreumaux, Philippe; Melchionna, Simone

    2016-11-13

    We describe the recent advances in studying biological systems via multiscale simulations. Our scheme is based on a coarse-grained representation of the macromolecules and a mesoscopic description of the solvent. The dual technique handles particles, the aqueous solvent and their mutual exchange of forces resulting in a stable and accurate methodology allowing biosystems of unprecedented size to be simulated.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  17. A physics based multiscale modeling of cavitating flows.

    PubMed

    Ma, Jingsen; Hsiao, Chao-Tsung; Chahine, Georges L

    2017-03-02

    Numerical modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Singularities Model (DSM) for dispersed microbubbles and a two-phase Navier Stokes solver for the bubbly medium, which includes a level set approach to describe large cavities or gaseous pockets. Inter-scale schemes are used to smoothly bridge the two transitioning subgrid DSM bubbles into larger discretized cavities. This approach is demonstrated on several problems including cavitation inception and vapor core formation in a vortex flow, sheet-to-cloud cavitation over a hydrofoil, cavitation behind a blunt body, and cavitation on a propeller. These examples highlight the capabilities of the developed multiscale model in simulating various form of cavitation.

  18. A grain boundary damage model for delamination

    NASA Astrophysics Data System (ADS)

    Messner, M. C.; Beaudoin, A. J.; Dodds, R. H.

    2015-07-01

    Intergranular failure in metallic materials represents a multiscale damage mechanism: some feature of the material microstructure triggers the separation of grain boundaries on the microscale, but the intergranular fractures develop into long cracks on the macroscale. This work develops a multiscale model of grain boundary damage for modeling intergranular delamination—a failure of one particular family of grain boundaries sharing a common normal direction. The key feature of the model is a physically-consistent and mesh independent, multiscale scheme that homogenizes damage at many grain boundaries on the microscale into a single damage parameter on the macroscale to characterize material failure across a plane. The specific application of the damage framework developed here considers delamination failure in modern Al-Li alloys. However, the framework may be readily applied to other metals or composites and to other non-delamination interface geometries—for example, multiple populations of material interfaces with different geometric characteristics.

  19. A physics based multiscale modeling of cavitating flows

    PubMed Central

    Ma, Jingsen; Hsiao, Chao-Tsung; Chahine, Georges L.

    2018-01-01

    Numerical modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Singularities Model (DSM) for dispersed microbubbles and a two-phase Navier Stokes solver for the bubbly medium, which includes a level set approach to describe large cavities or gaseous pockets. Inter-scale schemes are used to smoothly bridge the two transitioning subgrid DSM bubbles into larger discretized cavities. This approach is demonstrated on several problems including cavitation inception and vapor core formation in a vortex flow, sheet-to-cloud cavitation over a hydrofoil, cavitation behind a blunt body, and cavitation on a propeller. These examples highlight the capabilities of the developed multiscale model in simulating various form of cavitation. PMID:29720773

  20. Multi-scale Rule-of-Mixtures Model of Carbon Nanotube/Carbon Fiber/Epoxy Lamina

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Roddick, Jaret C.; Gates, Thomas S.

    2005-01-01

    A unidirectional carbon fiber/epoxy lamina in which the carbon fibers are coated with single-walled carbon nanotubes is modeled with a multi-scale method, the atomistically informed rule-of-mixtures. This multi-scale model is designed to include the effect of the carbon nanotubes on the constitutive properties of the lamina. It included concepts from the molecular dynamics/equivalent continuum methods, micromechanics, and the strength of materials. Within the model both the nanotube volume fraction and nanotube distribution were varied. It was found that for a lamina with 60% carbon fiber volume fraction, the Young's modulus in the fiber direction varied with changes in the nanotube distribution, from 138.8 to 140 GPa with nanotube volume fractions ranging from 0.0001 to 0.0125. The presence of nanotube near the surface of the carbon fiber is therefore expected to have a small, but positive, effect on the constitutive properties of the lamina.

  1. Systems Chronotherapeutics

    PubMed Central

    Innominato, Pasquale F.; Dallmann, Robert; Rand, David A.; Lévi, Francis A.

    2017-01-01

    Chronotherapeutics aim at treating illnesses according to the endogenous biologic rhythms, which moderate xenobiotic metabolism and cellular drug response. The molecular clocks present in individual cells involve approximately fifteen clock genes interconnected in regulatory feedback loops. They are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker, which also adjusts the circadian rhythms to environmental cycles. As a result, many mechanisms of diseases and drug effects are controlled by the circadian timing system. Thus, the tolerability of nearly 500 medications varies by up to fivefold according to circadian scheduling, both in experimental models and/or patients. Moreover, treatment itself disrupted, maintained, or improved the circadian timing system as a function of drug timing. Improved patient outcomes on circadian-based treatments (chronotherapy) have been demonstrated in randomized clinical trials, especially for cancer and inflammatory diseases. However, recent technological advances have highlighted large interpatient differences in circadian functions resulting in significant variability in chronotherapy response. Such findings advocate for the advancement of personalized chronotherapeutics through interdisciplinary systems approaches. Thus, the combination of mathematical, statistical, technological, experimental, and clinical expertise is now shaping the development of dedicated devices and diagnostic and delivery algorithms enabling treatment individualization. In particular, multiscale systems chronopharmacology approaches currently combine mathematical modeling based on cellular and whole-body physiology to preclinical and clinical investigations toward the design of patient-tailored chronotherapies. We review recent systems research works aiming to the individualization of disease treatment, with emphasis on both cancer management and circadian timing system–resetting strategies for improving chronic disease control and patient outcomes. PMID:28351863

  2. Systems Chronotherapeutics.

    PubMed

    Ballesta, Annabelle; Innominato, Pasquale F; Dallmann, Robert; Rand, David A; Lévi, Francis A

    2017-04-01

    Chronotherapeutics aim at treating illnesses according to the endogenous biologic rhythms, which moderate xenobiotic metabolism and cellular drug response. The molecular clocks present in individual cells involve approximately fifteen clock genes interconnected in regulatory feedback loops. They are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker, which also adjusts the circadian rhythms to environmental cycles. As a result, many mechanisms of diseases and drug effects are controlled by the circadian timing system. Thus, the tolerability of nearly 500 medications varies by up to fivefold according to circadian scheduling, both in experimental models and/or patients. Moreover, treatment itself disrupted, maintained, or improved the circadian timing system as a function of drug timing. Improved patient outcomes on circadian-based treatments (chronotherapy) have been demonstrated in randomized clinical trials, especially for cancer and inflammatory diseases. However, recent technological advances have highlighted large interpatient differences in circadian functions resulting in significant variability in chronotherapy response. Such findings advocate for the advancement of personalized chronotherapeutics through interdisciplinary systems approaches. Thus, the combination of mathematical, statistical, technological, experimental, and clinical expertise is now shaping the development of dedicated devices and diagnostic and delivery algorithms enabling treatment individualization. In particular, multiscale systems chronopharmacology approaches currently combine mathematical modeling based on cellular and whole-body physiology to preclinical and clinical investigations toward the design of patient-tailored chronotherapies. We review recent systems research works aiming to the individualization of disease treatment, with emphasis on both cancer management and circadian timing system-resetting strategies for improving chronic disease control and patient outcomes. Copyright © 2017 by The Author(s).

  3. Thermal Testing and Model Correlation of the Magnetospheric Multiscale (MMS) Observatories

    NASA Technical Reports Server (NTRS)

    Kim, Jong S.; Teti, Nicholas M.

    2015-01-01

    International Conference on Envronmental Systems (ICES), Seattle WA NCTS 20964-15. The Magnetospheric Multiscale (MMS) mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earths magnetosphere as a laboratory tostudy the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration, and turbulence. This paper presents the complete thermal balance (TB) test performed on the first of four observatories to go through thermal vacuum (TV) and the minibalance testing that was performed on the subsequent observatories to provide a comparison of all four. The TV and TB tests were conducted in a thermal vacuum chamber at the Naval Research Laboratory (NRL) in Washington, D.C. with the vacuum level higher than 1.3 x 10-4 Pa (10-6 torr)and the surrounding temperature achieving -180 C. Three TB test cases were performed that included hot operational science, cold operational science and a cold survival case. In addition to the three balance cases a two hour eclipse and a four hour eclipse simulation was performed during the TV test to provide additional transient data points that represent the orbit in eclipse (or Earth's shadow) The goal was to perform testing such that the flight orbital environments could be simulated as closely as possible. A thermal model correlation between the thermal analysis and the test results was completed. Over 400 1-Wire temperature sensors, 200 thermocouples and 125 flight thermistor temperature sensors recorded data during TV and TB testing. These temperatureversus time profiles and their agreements with the analytical results obtained using Thermal Desktop and SINDAFLUINT are discussed. The model correlation for the thermal mathematical model (TMM) is conducted based on the numerical analysis results and the test data. The philosophy of model correlation was to correlate the model to within 3 C of the test data using the standard deviation and mean deviation error calculation. Individual temperature error goal is to be within 5 C and the heater power goal is to be within 5 of test data. The results of the model correlation are discussed and the effect of some material and interface parameters on the temperature profiles are presented.

  4. Thermal Testing and Model Correlation of the Magnetospheric Multiscale (MMS) Observatories

    NASA Technical Reports Server (NTRS)

    Kim, Jong S.; Teti, Nicholas M.

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth's magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration, and turbulence. This paper presents the complete thermal balance (TB) test performed on the first of four observatories to go through thermal vacuum (TV) and the minibalance testing that was performed on the subsequent observatories to provide a comparison of all four. The TV and TB tests were conducted in a thermal vacuum chamber at the Naval Research Laboratory (NRL) in Washington, D.C. with the vacuum level higher than 1.3 x 10 (sup -4) pascals (10 (sup -6) torr) and the surrounding temperature achieving -180 degrees Centigrade. Three TB test cases were performed that included hot operational science, cold operational science and a cold survival case. In addition to the three balance cases a two hour eclipse and a four hour eclipse simulation was performed during the TV test to provide additional transient data points that represent the orbit in eclipse (or Earth's shadow) The goal was to perform testing such that the flight orbital environments could be simulated as closely as possible. A thermal model correlation between the thermal analysis and the test results was completed. Over 400 1-Wire temperature sensors, 200 thermocouples and 125 flight thermistor temperature sensors recorded data during TV and TB testing. These temperature versus time profiles and their agreements with the analytical results obtained using Thermal Desktop and SINDA/FLUINT are discussed. The model correlation for the thermal mathematical model (TMM) is conducted based on the numerical analysis results and the test data. The philosophy of model correlation was to correlate the model to within 3 degrees Centigrade of the test data using the standard deviation and mean deviation error calculation. Individual temperature error goal is to be within 5 degrees Centigrade and the heater power goal is to be within 5 percent of test data. The results of the model correlation are discussed and the effect of some material and interface parameters on the temperature profiles are presented.

  5. Three-Dimensional Visualization of Ozone Process Data.

    DTIC Science & Technology

    1997-06-18

    Scattered Multivariate Data. IEEE Computer Graphics & Applications. 11 (May), 47-55. Odman, M.T. and Ingram, C.L. (1996) Multiscale Air Quality Simulation...the Multiscale Air Quality Simulation Platform (MAQSIP) modeling system. MAQSIP is a modular comprehensive air quality modeling system which MCNC...photolyzed back again to nitric oxide. Finally, oxides of 6 nitrogen are terminated through loss or combination into nitric acid, organic nitrates

  6. Harnessing Big Data for Systems Pharmacology

    PubMed Central

    Xie, Lei; Draizen, Eli J.; Bourne, Philip E.

    2017-01-01

    Systems pharmacology aims to holistically understand mechanisms of drug actions to support drug discovery and clinical practice. Systems pharmacology modeling (SPM) is data driven. It integrates an exponentially growing amount of data at multiple scales (genetic, molecular, cellular, organismal, and environmental). The goal of SPM is to develop mechanistic or predictive multiscale models that are interpretable and actionable. The current explosions in genomics and other omics data, as well as the tremendous advances in big data technologies, have already enabled biologists to generate novel hypotheses and gain new knowledge through computational models of genome-wide, heterogeneous, and dynamic data sets. More work is needed to interpret and predict a drug response phenotype, which is dependent on many known and unknown factors. To gain a comprehensive understanding of drug actions, SPM requires close collaborations between domain experts from diverse fields and integration of heterogeneous models from biophysics, mathematics, statistics, machine learning, and semantic webs. This creates challenges in model management, model integration, model translation, and knowledge integration. In this review, we discuss several emergent issues in SPM and potential solutions using big data technology and analytics. The concurrent development of high-throughput techniques, cloud computing, data science, and the semantic web will likely allow SPM to be findable, accessible, interoperable, reusable, reliable, interpretable, and actionable. PMID:27814027

  7. Harnessing Big Data for Systems Pharmacology.

    PubMed

    Xie, Lei; Draizen, Eli J; Bourne, Philip E

    2017-01-06

    Systems pharmacology aims to holistically understand mechanisms of drug actions to support drug discovery and clinical practice. Systems pharmacology modeling (SPM) is data driven. It integrates an exponentially growing amount of data at multiple scales (genetic, molecular, cellular, organismal, and environmental). The goal of SPM is to develop mechanistic or predictive multiscale models that are interpretable and actionable. The current explosions in genomics and other omics data, as well as the tremendous advances in big data technologies, have already enabled biologists to generate novel hypotheses and gain new knowledge through computational models of genome-wide, heterogeneous, and dynamic data sets. More work is needed to interpret and predict a drug response phenotype, which is dependent on many known and unknown factors. To gain a comprehensive understanding of drug actions, SPM requires close collaborations between domain experts from diverse fields and integration of heterogeneous models from biophysics, mathematics, statistics, machine learning, and semantic webs. This creates challenges in model management, model integration, model translation, and knowledge integration. In this review, we discuss several emergent issues in SPM and potential solutions using big data technology and analytics. The concurrent development of high-throughput techniques, cloud computing, data science, and the semantic web will likely allow SPM to be findable, accessible, interoperable, reusable, reliable, interpretable, and actionable.

  8. Mathematical modeling of postmenopausal osteoporosis and its treatment by the anti-catabolic drug denosumab

    PubMed Central

    Scheiner, S; Pivonka, P; Smith, D W; Dunstan, C R; Hellmich, C

    2014-01-01

    Denosumab, a fully human monoclonal antibody, has been approved for the treatment of postmenopausal osteoporosis. The therapeutic effect of denosumab rests on its ability to inhibit osteoclast differentiation. Here, we present a computational approach on the basis of coupling a pharmacokinetics model of denosumab with a pharmacodynamics model for quantifying the effect of denosumab on bone remodeling. The pharmacodynamics model comprises an integrated systems biology-continuum micromechanics approach, including a bone cell population model, considering the governing biochemical factors of bone remodeling (including the action of denosumab), and a multiscale micromechanics-based bone mechanics model, for implementing the mechanobiology of bone remodeling in our model. Numerical studies of postmenopausal osteoporosis show that denosumab suppresses osteoclast differentiation, thus strongly curtailing bone resorption. Simulation results also suggest that denosumab may trigger a short-term bone volume gain, which is, however, followed by constant or decreasing bone volume. This evolution is accompanied by a dramatic decrease of the bone turnover rate by more than one order of magnitude. The latter proposes dominant occurrence of secondary mineralization (which is not anymore impeded through cellular activity), leading to higher mineral concentration per bone volume. This explains the overall higher bone mineral density observed in denosumab-related clinical studies. Copyright © 2013 John Wiley & Sons, Ltd. PMID:24039120

  9. Multiscale Simulation of Blood Flow in Brain Arteries with an Aneurysm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leopold Grinberg; Vitali Morozov; Dmitry A. Fedosov

    2013-04-24

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations.This animation presents results of studies used in the development of a multi-scale visualization methodology. First we use streamlines to show the path the flow is taking as it moves through the system, including the aneurysm. Next we investigate themore » process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of the aneurysm.« less

  10. Goal-oriented robot navigation learning using a multi-scale space representation.

    PubMed

    Llofriu, M; Tejera, G; Contreras, M; Pelc, T; Fellous, J M; Weitzenfeld, A

    2015-12-01

    There has been extensive research in recent years on the multi-scale nature of hippocampal place cells and entorhinal grid cells encoding which led to many speculations on their role in spatial cognition. In this paper we focus on the multi-scale nature of place cells and how they contribute to faster learning during goal-oriented navigation when compared to a spatial cognition system composed of single scale place cells. The task consists of a circular arena with a fixed goal location, in which a robot is trained to find the shortest path to the goal after a number of learning trials. Synaptic connections are modified using a reinforcement learning paradigm adapted to the place cells multi-scale architecture. The model is evaluated in both simulation and physical robots. We find that larger scale and combined multi-scale representations favor goal-oriented navigation task learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Multiscale Modeling for the Analysis for Grain-Scale Fracture Within Aluminum Microstructures

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Phillips, Dawn R.; Yamakov, Vesselin; Saether, Erik

    2005-01-01

    Multiscale modeling methods for the analysis of metallic microstructures are discussed. Both molecular dynamics and the finite element method are used to analyze crack propagation and stress distribution in a nanoscale aluminum bicrystal model subjected to hydrostatic loading. Quantitative similarity is observed between the results from the two very different analysis methods. A bilinear traction-displacement relationship that may be embedded into cohesive zone finite elements is extracted from the nanoscale molecular dynamics results.

  12. Evaluation of the Community Multiscale Air Quality (CMAQ) ...

    EPA Pesticide Factsheets

    This work evaluates particle size-composition distributions simulated by the Community Multiscale Air Quality (CMAQ) model using Micro-Orifice Uniform Deposit Impactor (MOUDI) measurements at 18 sites across North America. Size-resolved measurements of particulate SO4+, with the model ranging from an underestimation to overestimation of both the peak diameter and peak particle concentration across the sites. Computing PM2.5 from the modeled size distribution parameters rather than by summing the masses in the Aitken and a

  13. Multiscale Analysis of Structurally-Graded Microstructures Using Molecular Dynamics, Discrete Dislocation Dynamics and Continuum Crystal Plasticity

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.; Mishin, Yuri

    2014-01-01

    A multiscale modeling methodology is developed for structurally-graded material microstructures. Molecular dynamic (MD) simulations are performed at the nanoscale to determine fundamental failure mechanisms and quantify material constitutive parameters. These parameters are used to calibrate material processes at the mesoscale using discrete dislocation dynamics (DD). Different grain boundary interactions with dislocations are analyzed using DD to predict grain-size dependent stress-strain behavior. These relationships are mapped into crystal plasticity (CP) parameters to develop a computationally efficient finite element-based DD/CP model for continuum-level simulations and complete the multiscale analysis by predicting the behavior of macroscopic physical specimens. The present analysis is focused on simulating the behavior of a graded microstructure in which grain sizes are on the order of nanometers in the exterior region and transition to larger, multi-micron size in the interior domain. This microstructural configuration has been shown to offer improved mechanical properties over homogeneous coarse-grained materials by increasing yield stress while maintaining ductility. Various mesoscopic polycrystal models of structurally-graded microstructures are generated, analyzed and used as a benchmark for comparison between multiscale DD/CP model and DD predictions. A final series of simulations utilize the DD/CP analysis method exclusively to study macroscopic models that cannot be analyzed by MD or DD methods alone due to the model size.

  14. Simulation of the optical coating deposition

    NASA Astrophysics Data System (ADS)

    Grigoriev, Fedor; Sulimov, Vladimir; Tikhonravov, Alexander

    2018-04-01

    A brief review of the mathematical methods of thin-film growth simulation and results of their applications is presented. Both full-atomistic and multi-scale approaches that were used in the studies of thin-film deposition are considered. The results of the structural parameter simulation including density profiles, roughness, porosity, point defect concentration, and others are discussed. The application of the quantum level methods to the simulation of the thin-film electronic and optical properties is considered. Special attention is paid to the simulation of the silicon dioxide thin films.

  15. Multiscale Modeling of Deformation Twinning Based on Field Theory of Multiscale Plasticity (FTMP)

    DTIC Science & Technology

    2013-09-01

    of the deformation twinning: nucleation, growth (into, e.g., lenticular shapes), lattice rotation (satisfying the mirror symmetry), the attendant...Nucleation and subsequent growth into lenticular shapes is realistically captured. • Stress-strain responses accompanied by serration and overall softening

  16. Multiscale synchrony behaviors of paired financial time series by 3D multi-continuum percolation

    NASA Astrophysics Data System (ADS)

    Wang, M.; Wang, J.; Wang, B. T.

    2018-02-01

    Multiscale synchrony behaviors and nonlinear dynamics of paired financial time series are investigated, in an attempt to study the cross correlation relationships between two stock markets. A random stock price model is developed by a new system called three-dimensional (3D) multi-continuum percolation system, which is utilized to imitate the formation mechanism of price dynamics and explain the nonlinear behaviors found in financial time series. We assume that the price fluctuations are caused by the spread of investment information. The cluster of 3D multi-continuum percolation represents the cluster of investors who share the same investment attitude. In this paper, we focus on the paired return series, the paired volatility series, and the paired intrinsic mode functions which are decomposed by empirical mode decomposition. A new cross recurrence quantification analysis is put forward, combining with multiscale cross-sample entropy, to investigate the multiscale synchrony of these paired series from the proposed model. The corresponding research is also carried out for two China stock markets as comparison.

  17. Multiscale simulation of DC corona discharge and ozone generation from nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Pengxiang

    Atmospheric direct current (dc) corona discharge from micro-sized objects has been widely used as an ion source in many devices, such as photocopiers, laser printers, and electronic air cleaners. Shrinking the size of the discharge electrode to the nanometer range (e.g., through the use of carbon nanotubes or CNTs) is expected to lead to a significant reduction in power consumption and detrimental ozone production in these devices. The objectives of this study are to unveil the fundamental physics of the nanoscale corona discharge and to evaluate its performance and ozone production through numerical models. The extremely small size of CNTs presents considerable complexity and challenges in modeling CNT corona discharges. A hybrid multiscale model, which combines a kinetic particle-in-cell plus Monte Carlo collision (PIC-MCC) model and a continuum model, is developed to simulate the corona discharge from nanostructures. The multiscale model is developed in several steps. First, a pure PIC-MCC model is developed and PIC-MCC simulations of corona plasma from micro-sized electrode with same boundary conditions as prior model are performed to validate the PIC-MCC scheme. The agreement between the PIC-MCC model and the prior continuum model indicates the validity of the PIC-MCC scheme. The validated PIC-MCC scheme is then coupled with a continuum model to simulate the corona discharge from a micro-sized electrode. Unlike the prior continuum model which only predicts the corona plasma region, the hybrid model successfully predicts the self-consistent discharge process in the entire corona discharge gap that includes both corona plasma region and unipolar ion region. The voltage-current density curves obtained by the hybrid model agree well with analytical prediction and experimental results. The hybrid modeling approach, which combines the accuracy of a kinetic model and the efficiency of a continuum model, is thus validated for modeling dc corona discharges. For simulation of corona discharges from nanostructures, a one-dimensional (1-D) multiscale model is used due to the prohibitive computational expense associated with two-dimensional (2-D) modeling. Near the nanoscale discharge electrode surface, a kinetic model based on PIC-MCC is used due to a relatively large Knudsen number in this region. Far away from the nanoscale discharge electrode, a continuum model is used since the Knudsen number is very small there. The multiscale modeling results are compared with experimental data. The quantitative agreement in positive discharges and qualitative agreement in negative discharges validate the modeling approach. The mechanism of sustaining the discharge process from nanostructures is revealed and is found to be different from that of discharge from micro- or macro-sized electrodes. Finally, the corona plasma model is combined with a plasma chemistry model and a transport model to predict the ozone production from the nanoscale corona. The dependence of ozone production on the applied potential and air velocity is studied. The electric field distribution in a 2-D multiscale domain (from nanoscale to microscale) is predicted by solving the Poisson's equation using a finite difference scheme. The discretized linear equations are solved using a multigrid method under the framework of PETSc on a paralleled supercomputer. Although the Poisson solver is able to resolve the multiscale field, the prohibitively long computation time limits the use of a 2-D solver in the current PIC-MCC scheme.

  18. Molecular systems biology of ErbB1 signaling: bridging the gap through multiscale modeling and high-performance computing.

    PubMed

    Shih, Andrew J; Purvis, Jeremy; Radhakrishnan, Ravi

    2008-12-01

    The complexity in intracellular signaling mechanisms relevant for the conquest of many diseases resides at different levels of organization with scales ranging from the subatomic realm relevant to catalytic functions of enzymes to the mesoscopic realm relevant to the cooperative association of molecular assemblies and membrane processes. Consequently, the challenge of representing and quantifying functional or dysfunctional modules within the networks remains due to the current limitations in our understanding of mesoscopic biology, i.e., how the components assemble into functional molecular ensembles. A multiscale approach is necessary to treat a hierarchy of interactions ranging from molecular (nm, ns) to signaling (microm, ms) length and time scales, which necessitates the development and application of specialized modeling tools. Complementary to multiscale experimentation (encompassing structural biology, mechanistic enzymology, cell biology, and single molecule studies) multiscale modeling offers a powerful and quantitative alternative for the study of functional intracellular signaling modules. Here, we describe the application of a multiscale approach to signaling mediated by the ErbB1 receptor which constitutes a network hub for the cell's proliferative, migratory, and survival programs. Through our multiscale model, we mechanistically describe how point-mutations in the ErbB1 receptor can profoundly alter signaling characteristics leading to the onset of oncogenic transformations. Specifically, we describe how the point mutations induce cascading fragility mechanisms at the molecular scale as well as at the scale of the signaling network to preferentially activate the survival factor Akt. We provide a quantitative explanation for how the hallmark of preferential Akt activation in cell-lines harboring the constitutively active mutant ErbB1 receptors causes these cell-lines to be addicted to ErbB1-mediated generation of survival signals. Consequently, inhibition of ErbB1 activity leads to a remarkable therapeutic response in the addicted cell lines.

  19. Introduction: Cancer Gene Networks.

    PubMed

    Clarke, Robert

    2017-01-01

    Constructing, evaluating, and interpreting gene networks generally sits within the broader field of systems biology, which continues to emerge rapidly, particular with respect to its application to understanding the complexity of signaling in the context of cancer biology. For the purposes of this volume, we take a broad definition of systems biology. Considering an organism or disease within an organism as a system, systems biology is the study of the integrated and coordinated interactions of the network(s) of genes, their variants both natural and mutated (e.g., polymorphisms, rearrangements, alternate splicing, mutations), their proteins and isoforms, and the organic and inorganic molecules with which they interact, to execute the biochemical reactions (e.g., as enzymes, substrates, products) that reflect the function of that system. Central to systems biology, and perhaps the only approach that can effectively manage the complexity of such systems, is the building of quantitative multiscale predictive models. The predictions of the models can vary substantially depending on the nature of the model and its inputoutput relationships. For example, a model may predict the outcome of a specific molecular reaction(s), a cellular phenotype (e.g., alive, dead, growth arrest, proliferation, and motility), a change in the respective prevalence of cell or subpopulations, a patient or patient subgroup outcome(s). Such models necessarily require computers. Computational modeling can be thought of as using machine learning and related tools to integrate the very high dimensional data generated from modern, high throughput omics technologies including genomics (next generation sequencing), transcriptomics (gene expression microarrays; RNAseq), metabolomics and proteomics (ultra high performance liquid chromatography, mass spectrometry), and "subomic" technologies to study the kinome, methylome, and others. Mathematical modeling can be thought of as the use of ordinary differential equations and related tools to create dynamic, semi-mechanistic models of low dimensional data including gene/protein signaling as a function of time/dose. More recently, the integration of imaging technologies into predictive multiscale modeling has begun to extend further the scales across which data can be obtained and used to gain insight into system function.There are several goals for predictive multiscale modeling including the more academic pursuit of understanding how the system or local feature thereof is regulated or functions, to the more practical or translational goals of identifying predictive (selecting which patient should receive which drug/therapy) or prognostic (disease progress and outcome in an individual patient) biomarkers and/or identifying network vulnerabilities that represent potential targets for therapeutic benefit with existing drugs (including drug repurposing) or for the development of new drugs. These various goals are not necessarily mutually exclusive or inclusive. Within this volume, readers will find examples of many of the activities noted above. Each chapter contains practical and/or methodological insights to guide readers in the design and interpretation of their own and published work.

  20. Multiscale modeling and computation of nano-electronic transistors and transmembrane proton channels

    NASA Astrophysics Data System (ADS)

    Chen, Duan

    The miniaturization of nano-scale electronic transistors, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. In biology, proton dynamics and transport across membrane proteins are of paramount importance to the normal function of living cells. Similar physical characteristics are behind the two subjects, and model simulations share common mathematical interests/challenges. In this thesis work, multiscale and multiphysical models are proposed to study the mechanisms of nanotransistors and proton transport in transmembrane at the atomic level. For nano-electronic transistors, we introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential. This framework enables us to put microscopic and macroscopic descriptions on an equal footing at nano-scale. Additionally, this model includes layered structures and random doping effect of nano-transistors. For transmembrane proton channels, we describe proton dynamics quantum mechanically via a density functional approach while implicitly treat numerous solvent molecules as a dielectric continuum. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered in atomic details. We formulate a total free energy functional to include kinetic and potential energies of protons, as well as electrostatic energy of all other ions on an equal footing. For both nano-transistors and proton channels systems, the variational principle is employed to derive nonlinear governing equations. The Poisson-Kohn-Sham equations are derived for nano-transistors while the generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained for proton channels. Related numerical challenges in simulations are addressed: the matched interface and boundary (MIB) method, the Dirichlet-to-Neumann mapping (DNM) technique, and the Krylov subspace and preconditioner theory are introduced to improve the computational efficiency of the Poisson-type equation. The quantum transport theory is employed to solve the Kohn-Sham equation. The Gummel iteration and relaxation technique are utilized for overall self-consistent iterations. Finally, applications are considered and model validations are verified by realistic nano-transistors and transmembrane proteins. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our threedimensional numerical simulations. For these devices, the current uctuation and voltage threshold lowering effect induced by discrete dopants are explored. For proton transport, a realistic channel protein, the Gramicidin A (GA) is used to demonstrate the performance of the proposed proton channel model and validate the efficiency of the proposed mathematical algorithms. The electrostatic characteristics of the GA channel is analyzed with a wide range of model parameters. Proton channel conductances are studied over a number of applied voltages and reference concentrations. Comparisons with experimental data are utilized to verify our model predictions.

  1. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    EPA Pesticide Factsheets

    The uploaded data consists of the BRACE Na aerosol observations paired with CMAQ model output, the updated model's parameterization of sea salt aerosol emission size distribution, and the model's parameterization of the sea salt emission factor as a function of sea surface temperature. This dataset is associated with the following publication:Gantt , B., J. Kelly , and J. Bash. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2. Geoscientific Model Development. Copernicus Publications, Katlenburg-Lindau, GERMANY, 8: 3733-3746, (2015).

  2. Multiscale Aspects of Modeling Gas-Phase Nanoparticle Synthesis

    PubMed Central

    Buesser, B.; Gröhn, A.J.

    2013-01-01

    Aerosol reactors are utilized to manufacture nanoparticles in industrially relevant quantities. The development, understanding and scale-up of aerosol reactors can be facilitated with models and computer simulations. This review aims to provide an overview of recent developments of models and simulations and discuss their interconnection in a multiscale approach. A short introduction of the various aerosol reactor types and gas-phase particle dynamics is presented as a background for the later discussion of the models and simulations. Models are presented with decreasing time and length scales in sections on continuum, mesoscale, molecular dynamics and quantum mechanics models. PMID:23729992

  3. A perspective on bridging scales and design of models using low-dimensional manifolds and data-driven model inference

    PubMed Central

    Zenil, Hector; Kiani, Narsis A.; Ball, Gordon; Gomez-Cabrero, David

    2016-01-01

    Systems in nature capable of collective behaviour are nonlinear, operating across several scales. Yet our ability to account for their collective dynamics differs in physics, chemistry and biology. Here, we briefly review the similarities and differences between mathematical modelling of adaptive living systems versus physico-chemical systems. We find that physics-based chemistry modelling and computational neuroscience have a shared interest in developing techniques for model reductions aiming at the identification of a reduced subsystem or slow manifold, capturing the effective dynamics. By contrast, as relations and kinetics between biological molecules are less characterized, current quantitative analysis under the umbrella of bioinformatics focuses on signal extraction, correlation, regression and machine-learning analysis. We argue that model reduction analysis and the ensuing identification of manifolds bridges physics and biology. Furthermore, modelling living systems presents deep challenges as how to reconcile rich molecular data with inherent modelling uncertainties (formalism, variables selection and model parameters). We anticipate a new generative data-driven modelling paradigm constrained by identified governing principles extracted from low-dimensional manifold analysis. The rise of a new generation of models will ultimately connect biology to quantitative mechanistic descriptions, thereby setting the stage for investigating the character of the model language and principles driving living systems. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698038

  4. CellML and associated tools and techniques.

    PubMed

    Garny, Alan; Nickerson, David P; Cooper, Jonathan; Weber dos Santos, Rodrigo; Miller, Andrew K; McKeever, Steve; Nielsen, Poul M F; Hunter, Peter J

    2008-09-13

    We have, in the last few years, witnessed the development and availability of an ever increasing number of computer models that describe complex biological structures and processes. The multi-scale and multi-physics nature of these models makes their development particularly challenging, not only from a biological or biophysical viewpoint but also from a mathematical and computational perspective. In addition, the issue of sharing and reusing such models has proved to be particularly problematic, with the published models often lacking information that is required to accurately reproduce the published results. The International Union of Physiological Sciences Physiome Project was launched in 1997 with the aim of tackling the aforementioned issues by providing a framework for the modelling of the human body. As part of this initiative, the specifications of the CellML mark-up language were released in 2001. Now, more than 7 years later, the time has come to assess the situation, in particular with regard to the tools and techniques that are now available to the modelling community. Thus, after introducing CellML, we review and discuss existing editors, validators, online repository, code generators and simulation environments, as well as the CellML Application Program Interface. We also address possible future directions including the need for additional mark-up languages.

  5. Day-Ahead Crude Oil Price Forecasting Using a Novel Morphological Component Analysis Based Model

    PubMed Central

    Zhu, Qing; Zou, Yingchao; Lai, Kin Keung

    2014-01-01

    As a typical nonlinear and dynamic system, the crude oil price movement is difficult to predict and its accurate forecasting remains the subject of intense research activity. Recent empirical evidence suggests that the multiscale data characteristics in the price movement are another important stylized fact. The incorporation of mixture of data characteristics in the time scale domain during the modelling process can lead to significant performance improvement. This paper proposes a novel morphological component analysis based hybrid methodology for modeling the multiscale heterogeneous characteristics of the price movement in the crude oil markets. Empirical studies in two representative benchmark crude oil markets reveal the existence of multiscale heterogeneous microdata structure. The significant performance improvement of the proposed algorithm incorporating the heterogeneous data characteristics, against benchmark random walk, ARMA, and SVR models, is also attributed to the innovative methodology proposed to incorporate this important stylized fact during the modelling process. Meanwhile, work in this paper offers additional insights into the heterogeneous market microstructure with economic viable interpretations. PMID:25061614

  6. Collaborative Multi-Scale 3d City and Infrastructure Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Breunig, M.; Borrmann, A.; Rank, E.; Hinz, S.; Kolbe, T.; Schilcher, M.; Mundani, R.-P.; Jubierre, J. R.; Flurl, M.; Thomsen, A.; Donaubauer, A.; Ji, Y.; Urban, S.; Laun, S.; Vilgertshofer, S.; Willenborg, B.; Menninghaus, M.; Steuer, H.; Wursthorn, S.; Leitloff, J.; Al-Doori, M.; Mazroobsemnani, N.

    2017-09-01

    Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future.

  7. Day-ahead crude oil price forecasting using a novel morphological component analysis based model.

    PubMed

    Zhu, Qing; He, Kaijian; Zou, Yingchao; Lai, Kin Keung

    2014-01-01

    As a typical nonlinear and dynamic system, the crude oil price movement is difficult to predict and its accurate forecasting remains the subject of intense research activity. Recent empirical evidence suggests that the multiscale data characteristics in the price movement are another important stylized fact. The incorporation of mixture of data characteristics in the time scale domain during the modelling process can lead to significant performance improvement. This paper proposes a novel morphological component analysis based hybrid methodology for modeling the multiscale heterogeneous characteristics of the price movement in the crude oil markets. Empirical studies in two representative benchmark crude oil markets reveal the existence of multiscale heterogeneous microdata structure. The significant performance improvement of the proposed algorithm incorporating the heterogeneous data characteristics, against benchmark random walk, ARMA, and SVR models, is also attributed to the innovative methodology proposed to incorporate this important stylized fact during the modelling process. Meanwhile, work in this paper offers additional insights into the heterogeneous market microstructure with economic viable interpretations.

  8. Multi-Scale Simulation of High Energy Density Ionic Liquids

    DTIC Science & Technology

    2007-06-19

    and simulation of ionic liquids (ILs). A polarizable model was developed to simulate ILs more accurately at the atomistic level. A multiscale coarse...propellant, 1- hydroxyethyl-4-amino-1, 2, 4-triazolium nitrate (HEATN), were studied with the all-atom polarizable model. The mechanism suggested for HEATN...with this AFOSR-supported project, a polarizable forcefield for the ionic liquids such as 1-ethyl-3-methylimidazolium nitrate (EMIM*/NO3-) was

  9. Multiscale agent-based cancer modeling.

    PubMed

    Zhang, Le; Wang, Zhihui; Sagotsky, Jonathan A; Deisboeck, Thomas S

    2009-04-01

    Agent-based modeling (ABM) is an in silico technique that is being used in a variety of research areas such as in social sciences, economics and increasingly in biomedicine as an interdisciplinary tool to study the dynamics of complex systems. Here, we describe its applicability to integrative tumor biology research by introducing a multi-scale tumor modeling platform that understands brain cancer as a complex dynamic biosystem. We summarize significant findings of this work, and discuss both challenges and future directions for ABM in the field of cancer research.

  10. On unified modeling, theory, and method for solving multi-scale global optimization problems

    NASA Astrophysics Data System (ADS)

    Gao, David Yang

    2016-10-01

    A unified model is proposed for general optimization problems in multi-scale complex systems. Based on this model and necessary assumptions in physics, the canonical duality theory is presented in a precise way to include traditional duality theories and popular methods as special applications. Two conjectures on NP-hardness are proposed, which should play important roles for correctly understanding and efficiently solving challenging real-world problems. Applications are illustrated for both nonconvex continuous optimization and mixed integer nonlinear programming.

  11. Multiscale modeling of the human arterial tree on the TeraGrid.

    NASA Astrophysics Data System (ADS)

    Karniadakis, Gerorge

    2009-03-01

    A multiscale model of the human arterial tree will be presented consisting of the macrovascular network (MaN, arteries above 1-2 mm), the mesovascular network (MeN, arterioles above 10 micro-m) and the microvascular network (MiN, capillaries). Coupling conditions between the MaN-MeN-MiN will be discussed and three different methods in modeling each network will be presented. Specific examples will be shown for the intracranial arterial tree for healthy subjects but also for patients with hydrocephalus.

  12. An Expanded Multi-scale Monte Carlo Simulation Method for Personalized Radiobiological Effect Estimation in Radiotherapy: a feasibility study

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Feng, Yuanming; Wang, Wei; Yang, Chengwen; Wang, Ping

    2017-03-01

    A novel and versatile “bottom-up” approach is developed to estimate the radiobiological effect of clinic radiotherapy. The model consists of multi-scale Monte Carlo simulations from organ to cell levels. At cellular level, accumulated damages are computed using a spectrum-based accumulation algorithm and predefined cellular damage database. The damage repair mechanism is modeled by an expanded reaction-rate two-lesion kinetic model, which were calibrated through replicating a radiobiological experiment. Multi-scale modeling is then performed on a lung cancer patient under conventional fractionated irradiation. The cell killing effects of two representative voxels (isocenter and peripheral voxel of the tumor) are computed and compared. At microscopic level, the nucleus dose and damage yields vary among all nucleuses within the voxels. Slightly larger percentage of cDSB yield is observed for the peripheral voxel (55.0%) compared to the isocenter one (52.5%). For isocenter voxel, survival fraction increase monotonically at reduced oxygen environment. Under an extreme anoxic condition (0.001%), survival fraction is calculated to be 80% and the hypoxia reduction factor reaches a maximum value of 2.24. In conclusion, with biological-related variations, the proposed multi-scale approach is more versatile than the existing approaches for evaluating personalized radiobiological effects in radiotherapy.

  13. Multiscale decoding for reliable brain-machine interface performance over time.

    PubMed

    Han-Lin Hsieh; Wong, Yan T; Pesaran, Bijan; Shanechi, Maryam M

    2017-07-01

    Recordings from invasive implants can degrade over time, resulting in a loss of spiking activity for some electrodes. For brain-machine interfaces (BMI), such a signal degradation lowers control performance. Achieving reliable performance over time is critical for BMI clinical viability. One approach to improve BMI longevity is to simultaneously use spikes and other recording modalities such as local field potentials (LFP), which are more robust to signal degradation over time. We have developed a multiscale decoder that can simultaneously model the different statistical profiles of multi-scale spike/LFP activity (discrete spikes vs. continuous LFP). This decoder can also run at multiple time-scales (millisecond for spikes vs. tens of milliseconds for LFP). Here, we validate the multiscale decoder for estimating the movement of 7 major upper-arm joint angles in a non-human primate (NHP) during a 3D reach-to-grasp task. The multiscale decoder uses motor cortical spike/LFP recordings as its input. We show that the multiscale decoder can improve decoding accuracy by adding information from LFP to spikes, while running at the fast millisecond time-scale of the spiking activity. Moreover, this improvement is achieved using relatively few LFP channels, demonstrating the robustness of the approach. These results suggest that using multiscale decoders has the potential to improve the reliability and longevity of BMIs.

  14. Blended particle filters for large-dimensional chaotic dynamical systems

    PubMed Central

    Majda, Andrew J.; Qi, Di; Sapsis, Themistoklis P.

    2014-01-01

    A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below. PMID:24825886

  15. Length scale effects and multiscale modeling of thermally induced phase transformation kinetics in NiTi SMA

    NASA Astrophysics Data System (ADS)

    Frantziskonis, George N.; Gur, Sourav

    2017-06-01

    Thermally induced phase transformation in NiTi shape memory alloys (SMAs) shows strong size and shape, collectively termed length scale effects, at the nano to micrometer scales, and that has important implications for the design and use of devices and structures at such scales. This paper, based on a recently developed multiscale model that utilizes molecular dynamics (MDs) simulations at small scales and MD-verified phase field (PhF) simulations at larger scales, reports results on specific length scale effects, i.e. length scale effects in martensite phase fraction (MPF) evolution, transformation temperatures (martensite and austenite start and finish) and in the thermally cyclic transformation between austenitic and martensitic phase. The multiscale study identifies saturation points for length scale effects and studies, for the first time, the length scale effect on the kinetics (i.e. developed internal strains) in the B19‧ phase during phase transformation. The major part of the work addresses small scale single crystals in specific orientations. However, the multiscale method is used in a unique and novel way to indirectly study length scale and grain size effects on evolution kinetics in polycrystalline NiTi, and to compare the simulation results to experiments. The interplay of the grain size and the length scale effect on the thermally induced MPF evolution is also shown in this present study. Finally, the multiscale coupling results are employed to improve phenomenological material models for NiTi SMA.

  16. An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-13

    The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less

  17. An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less

  18. Bridging scales through multiscale modeling: a case study on protein kinase A.

    PubMed

    Boras, Britton W; Hirakis, Sophia P; Votapka, Lane W; Malmstrom, Robert D; Amaro, Rommie E; McCulloch, Andrew D

    2015-01-01

    The goal of multiscale modeling in biology is to use structurally based physico-chemical models to integrate across temporal and spatial scales of biology and thereby improve mechanistic understanding of, for example, how a single mutation can alter organism-scale phenotypes. This approach may also inform therapeutic strategies or identify candidate drug targets that might otherwise have been overlooked. However, in many cases, it remains unclear how best to synthesize information obtained from various scales and analysis approaches, such as atomistic molecular models, Markov state models (MSM), subcellular network models, and whole cell models. In this paper, we use protein kinase A (PKA) activation as a case study to explore how computational methods that model different physical scales can complement each other and integrate into an improved multiscale representation of the biological mechanisms. Using measured crystal structures, we show how molecular dynamics (MD) simulations coupled with atomic-scale MSMs can provide conformations for Brownian dynamics (BD) simulations to feed transitional states and kinetic parameters into protein-scale MSMs. We discuss how milestoning can give reaction probabilities and forward-rate constants of cAMP association events by seamlessly integrating MD and BD simulation scales. These rate constants coupled with MSMs provide a robust representation of the free energy landscape, enabling access to kinetic, and thermodynamic parameters unavailable from current experimental data. These approaches have helped to illuminate the cooperative nature of PKA activation in response to distinct cAMP binding events. Collectively, this approach exemplifies a general strategy for multiscale model development that is applicable to a wide range of biological problems.

  19. Multi-Scale Computational Modeling of Two-Phased Metal Using GMC Method

    NASA Technical Reports Server (NTRS)

    Moghaddam, Masoud Ghorbani; Achuthan, A.; Bednacyk, B. A.; Arnold, S. M.; Pineda, E. J.

    2014-01-01

    A multi-scale computational model for determining plastic behavior in two-phased CMSX-4 Ni-based superalloys is developed on a finite element analysis (FEA) framework employing crystal plasticity constitutive model that can capture the microstructural scale stress field. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, GMC as stand-alone is validated by analyzing a repeating unit cell (RUC) as a two-phased sample with 72.9% volume fraction of gamma'-precipitate in the gamma-matrix phase and comparing the results with those predicted by finite element analysis (FEA) models incorporating the same crystal plasticity constitutive model. The global stress-strain behavior and the local field quantity distributions predicted by GMC demonstrated good agreement with FEA. High computational saving, at the expense of some accuracy in the components of local tensor field quantities, was obtained with GMC. Finally, the capability of the developed multi-scale model linking FEA and GMC to solve real life sized structures is demonstrated by analyzing an engine disc component and determining the microstructural scale details of the field quantities.

  20. Towards a new multiscale air quality transport model using the fully unstructured anisotropic adaptive mesh technology of Fluidity (version 4.1.9)

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.

    2015-10-01

    An integrated method of advanced anisotropic hr-adaptive mesh and discretization numerical techniques has been, for first time, applied to modelling of multiscale advection-diffusion problems, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been set up for two-dimensional (2-D) advection phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes. Performance achieved in 3-D simulation of power plant plumes indicates that this new adaptive multiscale model has the potential to provide accurate air quality modelling solutions effectively.

  1. Multi-scale damage modelling in a ceramic matrix composite using a finite-element microstructure meshfree methodology

    PubMed Central

    2016-01-01

    The problem of multi-scale modelling of damage development in a SiC ceramic fibre-reinforced SiC matrix ceramic composite tube is addressed, with the objective of demonstrating the ability of the finite-element microstructure meshfree (FEMME) model to introduce important aspects of the microstructure into a larger scale model of the component. These are particularly the location, orientation and geometry of significant porosity and the load-carrying capability and quasi-brittle failure behaviour of the fibre tows. The FEMME model uses finite-element and cellular automata layers, connected by a meshfree layer, to efficiently couple the damage in the microstructure with the strain field at the component level. Comparison is made with experimental observations of damage development in an axially loaded composite tube, studied by X-ray computed tomography and digital volume correlation. Recommendations are made for further development of the model to achieve greater fidelity to the microstructure. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242308

  2. Blood Flow: Multi-scale Modeling and Visualization (July 2011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-01-01

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations. This animation presents early results of two studies used in the development of a multi-scale visualization methodology. The fisrt illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each bloodmore » cell is represented by a mesh, small spheres show a sub-set of particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. In the second we investigate the process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of an aneruysm. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.« less

  3. A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Møyner, Olav, E-mail: olav.moyner@sintef.no; Lie, Knut-Andreas, E-mail: knut-andreas.lie@sintef.no

    2016-01-01

    A wide variety of multiscale methods have been proposed in the literature to reduce runtime and provide better scaling for the solution of Poisson-type equations modeling flow in porous media. We present a new multiscale restricted-smoothed basis (MsRSB) method that is designed to be applicable to both rectilinear grids and unstructured grids. Like many other multiscale methods, MsRSB relies on a coarse partition of the underlying fine grid and a set of local prolongation operators (multiscale basis functions) that map unknowns associated with the fine grid cells to unknowns associated with blocks in the coarse partition. These mappings are constructedmore » by restricted smoothing: Starting from a constant, a localized iterative scheme is applied directly to the fine-scale discretization to compute prolongation operators that are consistent with the local properties of the differential operators. The resulting method has three main advantages: First of all, both the coarse and the fine grid can have general polyhedral geometry and unstructured topology. This means that partitions and good prolongation operators can easily be constructed for complex models involving high media contrasts and unstructured cell connections introduced by faults, pinch-outs, erosion, local grid refinement, etc. In particular, the coarse partition can be adapted to geological or flow-field properties represented on cells or faces to improve accuracy. Secondly, the method is accurate and robust when compared to existing multiscale methods and does not need expensive recomputation of local basis functions to account for transient behavior: Dynamic mobility changes are incorporated by continuing to iterate a few extra steps on existing basis functions. This way, the cost of updating the prolongation operators becomes proportional to the amount of change in fluid mobility and one reduces the need for expensive, tolerance-based updates. Finally, since the MsRSB method is formulated on top of a cell-centered, conservative, finite-volume method, it is applicable to any flow model in which one can isolate a pressure equation. Herein, we only discuss single and two-phase incompressible models. Compressible flow, e.g., as modeled by the black-oil equations, is discussed in a separate paper.« less

  4. The Parameterization of Top-Hat Particle Sensors with Microchannel-Plate-Based Detection Systems and its Application to the Fast Plasma Investigation on NASA's Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Gershman, Daniel J.; Gliese, Ulrik; Dorelli, John C.; Avanov, Levon A.; Barrie, Alexander C.; Chornay, Dennis J.; MacDonald, Elizabeth A.; Holland, Matthew P.; Pollock, Craig J.

    2015-01-01

    The most common instrument for low energy plasmas consists of a top-hat electrostatic analyzer geometry coupled with a microchannel-plate (MCP)-based detection system. While the electrostatic optics for such sensors are readily simulated and parameterized during the laboratory calibration process, the detection system is often less well characterized. Furthermore, due to finite resources, for large sensor suites such as the Fast Plasma Investigation (FPI) on NASA's Magnetospheric Multiscale (MMS) mission, calibration data are increasingly sparse. Measurements must be interpolated and extrapolated to understand instrument behavior for untestable operating modes and yet sensor inter-calibration is critical to mission success. To characterize instruments from a minimal set of parameters we have developed the first comprehensive mathematical description of both sensor electrostatic optics and particle detection systems. We include effects of MCP efficiency, gain, scattering, capacitive crosstalk, and charge cloud spreading at the detector output. Our parameterization enables the interpolation and extrapolation of instrument response to all relevant particle energies, detector high voltage settings, and polar angles from a small set of calibration data. We apply this model to the 32 sensor heads in the Dual Electron Sensor (DES) and 32 sensor heads in the Dual Ion Sensor (DIS) instruments on the 4 MMS observatories and use least squares fitting of calibration data to extract all key instrument parameters. Parameters that will evolve in flight, namely MCP gain, will be determined daily through application of this model to specifically tailored in-flight calibration activities, providing a robust characterization of sensor suite performance throughout mission lifetime. Beyond FPI, our model provides a valuable framework for the simulation and evaluation of future detection system designs and can be used to maximize instrument understanding with minimal calibration resources.

  5. Design of a framework for modeling, integration and simulation of physiological models.

    PubMed

    Erson, E Zeynep; Cavuşoğlu, M Cenk

    2012-09-01

    Multiscale modeling and integration of physiological models carry challenges due to the complex nature of physiological processes. High coupling within and among scales present a significant challenge in constructing and integrating multiscale physiological models. In order to deal with such challenges in a systematic way, there is a significant need for an information technology framework together with related analytical and computational tools that will facilitate integration of models and simulations of complex biological systems. Physiological Model Simulation, Integration and Modeling Framework (Phy-SIM) is an information technology framework providing the tools to facilitate development, integration and simulation of integrated models of human physiology. Phy-SIM brings software level solutions to the challenges raised by the complex nature of physiological systems. The aim of Phy-SIM, and this paper is to lay some foundation with the new approaches such as information flow and modular representation of the physiological models. The ultimate goal is to enhance the development of both the models and the integration approaches of multiscale physiological processes and thus this paper focuses on the design approaches that would achieve such a goal. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Classification of JERS-1 Image Mosaic of Central Africa Using A Supervised Multiscale Classifier of Texture Features

    NASA Technical Reports Server (NTRS)

    Saatchi, Sassan; DeGrandi, Franco; Simard, Marc; Podest, Erika

    1999-01-01

    In this paper, a multiscale approach is introduced to classify the Japanese Research Satellite-1 (JERS-1) mosaic image over the Central African rainforest. A series of texture maps are generated from the 100 m mosaic image at various scales. Using a quadtree model and relating classes at each scale by a Markovian relationship, the multiscale images are classified from course to finer scale. The results are verified at various scales and the evolution of classification is monitored by calculating the error at each stage.

  7. Multiscale characterization and mechanical modeling of an Al-Zn-Mg electron beam weld

    NASA Astrophysics Data System (ADS)

    Puydt, Quentin; Flouriot, Sylvain; Ringeval, Sylvain; Parry, Guillaume; De Geuser, Frédéric; Deschamps, Alexis

    Welding of precipitation hardening alloys results in multi-scale microstructural heterogeneities, from the hardening nano-scale precipitates to the micron-scale solidification structures and to the component geometry. This heterogeneity results in a complex mechanical response, with gradients in strength, stress triaxiality and damage initiation sites.

  8. A systematic multiscale modeling and experimental approach to protect grain boundaries in magnesium alloys from corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horstemeyer, Mark R.; Chaudhuri, Santanu

    2015-09-30

    A multiscale modeling Internal State Variable (ISV) constitutive model was developed that captures the fundamental structure-property relationships. The macroscale ISV model used lower length scale simulations (Butler-Volmer and Electronics Structures results) in order to inform the ISVs at the macroscale. The chemomechanical ISV model was calibrated and validated from experiments with magnesium (Mg) alloys that were investigated under corrosive environments coupled with experimental electrochemical studies. Because the ISV chemomechanical model is physically based, it can be used for other material systems to predict corrosion behavior. As such, others can use the chemomechanical model for analyzing corrosion effects on their designs.

  9. Multi-Scale Modeling, Surrogate-Based Analysis, and Optimization of Lithium-Ion Batteries for Vehicle Applications

    NASA Astrophysics Data System (ADS)

    Du, Wenbo

    A common attribute of electric-powered aerospace vehicles and systems such as unmanned aerial vehicles, hybrid- and fully-electric aircraft, and satellites is that their performance is usually limited by the energy density of their batteries. Although lithium-ion batteries offer distinct advantages such as high voltage and low weight over other battery technologies, they are a relatively new development, and thus significant gaps in the understanding of the physical phenomena that govern battery performance remain. As a result of this limited understanding, batteries must often undergo a cumbersome design process involving many manual iterations based on rules of thumb and ad-hoc design principles. A systematic study of the relationship between operational, geometric, morphological, and material-dependent properties and performance metrics such as energy and power density is non-trivial due to the multiphysics, multiphase, and multiscale nature of the battery system. To address these challenges, two numerical frameworks are established in this dissertation: a process for analyzing and optimizing several key design variables using surrogate modeling tools and gradient-based optimizers, and a multi-scale model that incorporates more detailed microstructural information into the computationally efficient but limited macro-homogeneous model. In the surrogate modeling process, multi-dimensional maps for the cell energy density with respect to design variables such as the particle size, ion diffusivity, and electron conductivity of the porous cathode material are created. A combined surrogate- and gradient-based approach is employed to identify optimal values for cathode thickness and porosity under various operating conditions, and quantify the uncertainty in the surrogate model. The performance of multiple cathode materials is also compared by defining dimensionless transport parameters. The multi-scale model makes use of detailed 3-D FEM simulations conducted at the particle-level. A monodisperse system of ellipsoidal particles is used to simulate the effective transport coefficients and interfacial reaction current density within the porous microstructure. Microscopic simulation results are shown to match well with experimental measurements, while differing significantly from homogenization approximations used in the macroscopic model. Global sensitivity analysis and surrogate modeling tools are applied to couple the two length scales and complete the multi-scale model.

  10. Analysis of Hepatitis C Virus Decline during Treatment with the Protease Inhibitor Danoprevir Using a Multiscale Model

    DOE PAGES

    Rong, Libin; Guedj, Jeremie; Dahari, Harel; ...

    2013-03-14

    The current paradigm for studying hepatitis C virus (HCV) dynamics in patients utilizes a standard viral dynamic model that keeps track of uninfected (target) cells, infected cells, and virus. The model does not account for the dynamics of intracellular viral replication, which is the major target of direct-acting antiviral agents (DAAs). In this paper, we describe and study a recently developed multiscale age-structured model that explicitly considers the potential effects of DAAs on intracellular viral RNA production, degradation, and secretion as virus into the circulation. We show that when therapy significantly blocks both intracellular viral RNA production and virus secretion,more » the serum viral load decline has three phases, with slopes reflecting the rate of serum viral clearance, the rate of loss of intracellular viral RNA, and the rate of loss of intracellular replication templates and infected cells, respectively. We also derive analytical approximations of the multiscale model and use one of them to analyze data from patients treated for 14 days with the HCV protease inhibitor danoprevir. Analysis suggests that danoprevir significantly blocks intracellular viral production (with mean effectiveness 99.2%), enhances intracellular viral RNA degradation about 5-fold, and moderately inhibits viral secretion (with mean effectiveness 56%). Finally, the multiscale model can be used to study viral dynamics in patients treated with other DAAs and explore their mechanisms of action in treatment of hepatitis C.« less

  11. Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model.

    PubMed

    Aregawi, Wondwosen A; Abera, Metadel K; Fanta, Solomon W; Verboven, Pieter; Nicolai, Bart

    2014-11-19

    A two-dimensional multiscale water transport and mechanical model was developed to predict the water loss and deformation of apple tissue (Malus × domestica Borkh. cv. 'Jonagold') during dehydration. At the macroscopic level, a continuum approach was used to construct a coupled water transport and mechanical model. Water transport in the tissue was simulated using a phenomenological approach using Fick's second law of diffusion. Mechanical deformation due to shrinkage was based on a structural mechanics model consisting of two parts: Yeoh strain energy functions to account for non-linearity and Maxwell's rheological model of visco-elasticity. Apparent parameters of the macroscale model were computed from a microscale model. The latter accounted for water exchange between different microscopic structures of the tissue (intercellular space, the cell wall network and cytoplasm) using transport laws with the water potential as the driving force for water exchange between different compartments of tissue. The microscale deformation mechanics were computed using a model where the cells were represented as a closed thin walled structure. The predicted apparent water transport properties of apple cortex tissue from the microscale model showed good agreement with the experimentally measured values. Deviations between calculated and measured mechanical properties of apple tissue were observed at strains larger than 3%, and were attributed to differences in water transport behavior between the experimental compression tests and the simulated dehydration-deformation behavior. Tissue dehydration and deformation in the high relative humidity range ( > 97% RH) could, however, be accurately predicted by the multiscale model. The multiscale model helped to understand the dynamics of the dehydration process and the importance of the different microstructural compartments (intercellular space, cell wall, membrane and cytoplasm) for water transport and mechanical deformation.

  12. Augmenting Surgery via Multi-scale Modeling and Translational Systems Biology in the Era of Precision Medicine: A Multidisciplinary Perspective

    PubMed Central

    Kassab, Ghassan S.; An, Gary; Sander, Edward A.; Miga, Michael; Guccione, Julius M.; Ji, Songbai; Vodovotz, Yoram

    2016-01-01

    In this era of tremendous technological capabilities and increased focus on improving clinical outcomes, decreasing costs, and increasing precision, there is a need for a more quantitative approach to the field of surgery. Multiscale computational modeling has the potential to bridge the gap to the emerging paradigms of Precision Medicine and Translational Systems Biology, in which quantitative metrics and data guide patient care through improved stratification, diagnosis, and therapy. Achievements by multiple groups have demonstrated the potential for 1) multiscale computational modeling, at a biological level, of diseases treated with surgery and the surgical procedure process at the level of the individual and the population; along with 2) patient-specific, computationally-enabled surgical planning, delivery, and guidance and robotically-augmented manipulation. In this perspective article, we discuss these concepts, and cite emerging examples from the fields of trauma, wound healing, and cardiac surgery. PMID:27015816

  13. Evaluating and Improving Cloud Processes in the Multi-Scale Modeling Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, Thomas P.

    2015-03-01

    The research performed under this grant was intended to improve the embedded cloud model in the Multi-scale Modeling Framework (MMF) for convective clouds by using a 2-moment microphysics scheme rather than the single moment scheme used in all the MMF runs to date. The technical report and associated documents describe the results of testing the cloud resolving model with fixed boundary conditions and evaluation of model results with data. The overarching conclusion is that such model evaluations are problematic because errors in the forcing fields control the results so strongly that variations in parameterization values cannot be usefully constrained

  14. Improvements in the Scalability of the NASA Goddard Multiscale Modeling Framework for Hurricane Climate Studies

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Tao, Wei-Kuo; Chern, Jiun-Dar

    2007-01-01

    Improving our understanding of hurricane inter-annual variability and the impact of climate change (e.g., doubling CO2 and/or global warming) on hurricanes brings both scientific and computational challenges to researchers. As hurricane dynamics involves multiscale interactions among synoptic-scale flows, mesoscale vortices, and small-scale cloud motions, an ideal numerical model suitable for hurricane studies should demonstrate its capabilities in simulating these interactions. The newly-developed multiscale modeling framework (MMF, Tao et al., 2007) and the substantial computing power by the NASA Columbia supercomputer show promise in pursuing the related studies, as the MMF inherits the advantages of two NASA state-of-the-art modeling components: the GEOS4/fvGCM and 2D GCEs. This article focuses on the computational issues and proposes a revised methodology to improve the MMF's performance and scalability. It is shown that this prototype implementation enables 12-fold performance improvements with 364 CPUs, thereby making it more feasible to study hurricane climate.

  15. Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Held, Eric D.

    2015-09-01

    Neoclassical tearing modes are macroscopic (L ∼ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves (λ ∼ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale (Jenkins and Kruger, 2012 [21]); the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD (Sovinec et al., 2004 [22]) and GENRAY RF (Smirnov et al., 1994 [23]) codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.

  16. Multi-scale simulations of space problems with iPIC3D

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Bettarini, Lapo; Markidis, Stefano

    The implicit Particle-in-Cell method for the computer simulation of space plasma, and its im-plementation in a three-dimensional parallel code, called iPIC3D, are presented. The implicit integration in time of the Vlasov-Maxwell system removes the numerical stability constraints and enables kinetic plasma simulations at magnetohydrodynamics scales. Simulations of mag-netic reconnection in plasma are presented to show the effectiveness of the algorithm. In particular we will show a number of simulations done for large scale 3D systems using the physical mass ratio for Hydrogen. Most notably one simulation treats kinetically a box of tens of Earth radii in each direction and was conducted using about 16000 processors of the Pleiades NASA computer. The work is conducted in collaboration with the MMS-IDS theory team from University of Colorado (M. Goldman, D. Newman and L. Andersson). Reference: Stefano Markidis, Giovanni Lapenta, Rizwan-uddin Multi-scale simulations of plasma with iPIC3D Mathematics and Computers in Simulation, Available online 17 October 2009, http://dx.doi.org/10.1016/j.matcom.2009.08.038

  17. Suppression of chaos at slow variables by rapidly mixing fast dynamics

    NASA Astrophysics Data System (ADS)

    Abramov, R.

    2012-04-01

    One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger mixing system would result in general increase of chaos at the slow variables.

  18. The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models

    PubMed Central

    2013-01-01

    Background The complexity and multiscale nature of the mammalian immune response provides an excellent test bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically, mathematical models of the immune response focused on subsets of the immune system and/or specific aspects of the response. Mathematical models have been developed for the humoral side of the immune response, or for the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system complexity. We propose here a framework for integration of subset models, based on a system biology approach. Results A dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion by integrating published subset models and adding novel features. The approach used to build the model includes the formulation of the network of interacting species and the subsequent introduction of rate laws to describe each biological process. The resulting model represents a multi-organ structure, comprised of the target organ where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell activation to plasma cells. Four different cytokines were accounted for: IFN-γ, IL-4, IL-10 and IL-12. In addition, generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-β. Cell recruitment, differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The model is a hybrid structure containing information from several mammalian species. The structure of the network was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The results demonstrate how this framework can be used to integrate mathematical models of the immune response from several published sources and describe qualitative predictions of global immune system response arising from the integrated, hybrid model. In addition, we show how the model can be expanded to include novel biological findings. Case studies were carried out to simulate TB infection, tumor rejection, response to a blood borne pathogen and the consequences of accounting for regulatory T-cells. Conclusions The final result of this work is a postulated and increasingly comprehensive representation of the mammalian immune system, based on physiological knowledge and susceptible to further experimental testing and validation. We believe that the integrated nature of FIRM has the potential to simulate a range of responses under a variety of conditions, from modeling of immune responses after tuberculosis (TB) infection to tumor formation in tissues. FIRM also has the flexibility to be expanded to include both complex and novel immunological response features as our knowledge of the immune system advances. PMID:24074340

  19. A fast solver for the Helmholtz equation based on the generalized multiscale finite-element method

    NASA Astrophysics Data System (ADS)

    Fu, Shubin; Gao, Kai

    2017-11-01

    Conventional finite-element methods for solving the acoustic-wave Helmholtz equation in highly heterogeneous media usually require finely discretized mesh to represent the medium property variations with sufficient accuracy. Computational costs for solving the Helmholtz equation can therefore be considerably expensive for complicated and large geological models. Based on the generalized multiscale finite-element theory, we develop a novel continuous Galerkin method to solve the Helmholtz equation in acoustic media with spatially variable velocity and mass density. Instead of using conventional polynomial basis functions, we use multiscale basis functions to form the approximation space on the coarse mesh. The multiscale basis functions are obtained from multiplying the eigenfunctions of a carefully designed local spectral problem with an appropriate multiscale partition of unity. These multiscale basis functions can effectively incorporate the characteristics of heterogeneous media's fine-scale variations, thus enable us to obtain accurate solution to the Helmholtz equation without directly solving the large discrete system formed on the fine mesh. Numerical results show that our new solver can significantly reduce the dimension of the discrete Helmholtz equation system, and can also obviously reduce the computational time.

  20. Different rates of DNA replication at early versus late S-phase sections: multiscale modeling of stochastic events related to DNA content/EdU (5-ethynyl-2'deoxyuridine) incorporation distributions.

    PubMed

    Li, Biao; Zhao, Hong; Rybak, Paulina; Dobrucki, Jurek W; Darzynkiewicz, Zbigniew; Kimmel, Marek

    2014-09-01

    Mathematical modeling allows relating molecular events to single-cell characteristics assessed by multiparameter cytometry. In the present study we labeled newly synthesized DNA in A549 human lung carcinoma cells with 15-120 min pulses of EdU. All DNA was stained with DAPI and cellular fluorescence was measured by laser scanning cytometry. The frequency of cells in the ascending (left) side of the "horseshoe"-shaped EdU/DAPI bivariate distributions reports the rate of DNA replication at the time of entrance to S phase while their frequency in the descending (right) side is a marker of DNA replication rate at the time of transition from S to G2 phase. To understand the connection between molecular-scale events and scatterplot asymmetry, we developed a multiscale stochastic model, which simulates DNA replication and cell cycle progression of individual cells and produces in silico EdU/DAPI scatterplots. For each S-phase cell the time points at which replication origins are fired are modeled by a non-homogeneous Poisson Process (NHPP). Shifted gamma distributions are assumed for durations of cell cycle phases (G1, S and G2 M), Depending on the rate of DNA synthesis being an increasing or decreasing function, simulated EdU/DAPI bivariate graphs show predominance of cells in left (early-S) or right (late-S) side of the horseshoe distribution. Assuming NHPP rate estimated from independent experiments, simulated EdU/DAPI graphs are nearly indistinguishable from those experimentally observed. This finding proves consistency between the S-phase DNA-replication rate based on molecular-scale analyses, and cell population kinetics ascertained from EdU/DAPI scatterplots and demonstrates that DNA replication rate at entrance to S is relatively slow compared with its rather abrupt termination during S to G2 transition. Our approach opens a possibility of similar modeling to study the effect of anticancer drugs on DNA replication/cell cycle progression and also to quantify other kinetic events that can be measured during S-phase. © 2014 International Society for Advancement of Cytometry.

Top