Sample records for multiscale modeling study

  1. Multiscale Modeling: A Review

    NASA Astrophysics Data System (ADS)

    Horstemeyer, M. F.

    This review of multiscale modeling covers a brief history of various multiscale methodologies related to solid materials and the associated experimental influences, the various influence of multiscale modeling on different disciplines, and some examples of multiscale modeling in the design of structural components. Although computational multiscale modeling methodologies have been developed in the late twentieth century, the fundamental notions of multiscale modeling have been around since da Vinci studied different sizes of ropes. The recent rapid growth in multiscale modeling is the result of the confluence of parallel computing power, experimental capabilities to characterize structure-property relations down to the atomic level, and theories that admit multiple length scales. The ubiquitous research that focus on multiscale modeling has broached different disciplines (solid mechanics, fluid mechanics, materials science, physics, mathematics, biological, and chemistry), different regions of the world (most continents), and different length scales (from atoms to autos).

  2. A complete categorization of multiscale models of infectious disease systems.

    PubMed

    Garira, Winston

    2017-12-01

    Modelling of infectious disease systems has entered a new era in which disease modellers are increasingly turning to multiscale modelling to extend traditional modelling frameworks into new application areas and to achieve higher levels of detail and accuracy in characterizing infectious disease systems. In this paper we present a categorization framework for categorizing multiscale models of infectious disease systems. The categorization framework consists of five integration frameworks and five criteria. We use the categorization framework to give a complete categorization of host-level immuno-epidemiological models (HL-IEMs). This categorization framework is also shown to be applicable in categorizing other types of multiscale models of infectious diseases beyond HL-IEMs through modifying the initial categorization framework presented in this study. Categorization of multiscale models of infectious disease systems in this way is useful in bringing some order to the discussion on the structure of these multiscale models.

  3. ONE-ATMOSPHERE DYNAMICS DESCRIPTION IN THE MODELS-3 COMMUNITY MULTI-SCALE QUALITY (CMAQ) MODELING SYSTEM

    EPA Science Inventory

    This paper proposes a general procedure to link meteorological data with air quality models, such as U.S. EPA's Models-3 Community Multi-scale Air Quality (CMAQ) modeling system. CMAQ is intended to be used for studying multi-scale (urban and regional) and multi-pollutant (ozon...

  4. An approach to multiscale modelling with graph grammars.

    PubMed

    Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried

    2014-09-01

    Functional-structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models.

  5. An approach to multiscale modelling with graph grammars

    PubMed Central

    Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried

    2014-01-01

    Background and Aims Functional–structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. Methods A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Key Results Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. Conclusions The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models. PMID:25134929

  6. Towards a Multiscale Approach to Cybersecurity Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Emilie A.; Hui, Peter SY; Choudhury, Sutanay

    2013-11-12

    We propose a multiscale approach to modeling cyber networks, with the goal of capturing a view of the network and overall situational awareness with respect to a few key properties--- connectivity, distance, and centrality--- for a system under an active attack. We focus on theoretical and algorithmic foundations of multiscale graphs, coming from an algorithmic perspective, with the goal of modeling cyber system defense as a specific use case scenario. We first define a notion of \\emph{multiscale} graphs, in contrast with their well-studied single-scale counterparts. We develop multiscale analogs of paths and distance metrics. As a simple, motivating example ofmore » a common metric, we present a multiscale analog of the all-pairs shortest-path problem, along with a multiscale analog of a well-known algorithm which solves it. From a cyber defense perspective, this metric might be used to model the distance from an attacker's position in the network to a sensitive machine. In addition, we investigate probabilistic models of connectivity. These models exploit the hierarchy to quantify the likelihood that sensitive targets might be reachable from compromised nodes. We believe that our novel multiscale approach to modeling cyber-physical systems will advance several aspects of cyber defense, specifically allowing for a more efficient and agile approach to defending these systems.« less

  7. Intercomparison of Multiscale Modeling Approaches in Simulating Subsurface Flow and Transport

    NASA Astrophysics Data System (ADS)

    Yang, X.; Mehmani, Y.; Barajas-Solano, D. A.; Song, H. S.; Balhoff, M.; Tartakovsky, A. M.; Scheibe, T. D.

    2016-12-01

    Hybrid multiscale simulations that couple models across scales are critical to advance predictions of the larger system behavior using understanding of fundamental processes. In the current study, three hybrid multiscale methods are intercompared: multiscale loose-coupling method, multiscale finite volume (MsFV) method and multiscale mortar method. The loose-coupling method enables a parallel workflow structure based on the Swift scripting environment that manages the complex process of executing coupled micro- and macro-scale models without being intrusive to the at-scale simulators. The MsFV method applies microscale and macroscale models over overlapping subdomains of the modeling domain and enforces continuity of concentration and transport fluxes between models via restriction and prolongation operators. The mortar method is a non-overlapping domain decomposition approach capable of coupling all permutations of pore- and continuum-scale models with each other. In doing so, Lagrange multipliers are used at interfaces shared between the subdomains so as to establish continuity of species/fluid mass flux. Subdomain computations can be performed either concurrently or non-concurrently depending on the algorithm used. All the above methods have been proven to be accurate and efficient in studying flow and transport in porous media. However, there has not been any field-scale applications and benchmarking among various hybrid multiscale approaches. To address this challenge, we apply all three hybrid multiscale methods to simulate water flow and transport in a conceptualized 2D modeling domain of the hyporheic zone, where strong interactions between groundwater and surface water exist across multiple scales. In all three multiscale methods, fine-scale simulations are applied to a thin layer of riverbed alluvial sediments while the macroscopic simulations are used for the larger subsurface aquifer domain. Different numerical coupling methods are then applied between scales and inter-compared. Comparisons are drawn in terms of velocity distributions, solute transport behavior, algorithm-induced numerical error and computing cost. The intercomparison work provides support for confidence in a variety of hybrid multiscale methods and motivates further development and applications.

  8. Integrating Multiscale Modeling with Drug Effects for Cancer Treatment.

    PubMed

    Li, Xiangfang L; Oduola, Wasiu O; Qian, Lijun; Dougherty, Edward R

    2015-01-01

    In this paper, we review multiscale modeling for cancer treatment with the incorporation of drug effects from an applied system's pharmacology perspective. Both the classical pharmacology and systems biology are inherently quantitative; however, systems biology focuses more on networks and multi factorial controls over biological processes rather than on drugs and targets in isolation, whereas systems pharmacology has a strong focus on studying drugs with regard to the pharmacokinetic (PK) and pharmacodynamic (PD) relations accompanying drug interactions with multiscale physiology as well as the prediction of dosage-exposure responses and economic potentials of drugs. Thus, it requires multiscale methods to address the need for integrating models from the molecular levels to the cellular, tissue, and organism levels. It is a common belief that tumorigenesis and tumor growth can be best understood and tackled by employing and integrating a multifaceted approach that includes in vivo and in vitro experiments, in silico models, multiscale tumor modeling, continuous/discrete modeling, agent-based modeling, and multiscale modeling with PK/PD drug effect inputs. We provide an example application of multiscale modeling employing stochastic hybrid system for a colon cancer cell line HCT-116 with the application of Lapatinib drug. It is observed that the simulation results are similar to those observed from the setup of the wet-lab experiments at the Translational Genomics Research Institute.

  9. Shaken but not stirred: Multiscale habitat suitability modeling of sympatric marten species (Martes martes and Martes foina) in the northern Iberian Peninsula

    Treesearch

    Maria Vergara; Samuel A. Cushman; Fermin Urra; Aritz Ruiz-Gonzalez

    2016-01-01

    Multispecies and multiscale habitat suitability models (HSM) are important to identify the environmental variables and scales influencing habitat selection and facilitate the comparison of closely related species with different ecological requirements. Objectives This study explores the multiscale relationships of habitat suitability for the pine (Martes...

  10. A Generalized Hybrid Multiscale Modeling Approach for Flow and Reactive Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Yang, X.; Meng, X.; Tang, Y. H.; Guo, Z.; Karniadakis, G. E.

    2017-12-01

    Using emerging understanding of biological and environmental processes at fundamental scales to advance predictions of the larger system behavior requires the development of multiscale approaches, and there is strong interest in coupling models at different scales together in a hybrid multiscale simulation framework. A limited number of hybrid multiscale simulation methods have been developed for subsurface applications, mostly using application-specific approaches for model coupling. The proposed generalized hybrid multiscale approach is designed with minimal intrusiveness to the at-scale simulators (pre-selected) and provides a set of lightweight C++ scripts to manage a complex multiscale workflow utilizing a concurrent coupling approach. The workflow includes at-scale simulators (using the lattice-Boltzmann method, LBM, at the pore and Darcy scale, respectively), scripts for boundary treatment (coupling and kriging), and a multiscale universal interface (MUI) for data exchange. The current study aims to apply the generalized hybrid multiscale modeling approach to couple pore- and Darcy-scale models for flow and mixing-controlled reaction with precipitation/dissolution in heterogeneous porous media. The model domain is packed heterogeneously that the mixing front geometry is more complex and not known a priori. To address those challenges, the generalized hybrid multiscale modeling approach is further developed to 1) adaptively define the locations of pore-scale subdomains, 2) provide a suite of physical boundary coupling schemes and 3) consider the dynamic change of the pore structures due to mineral precipitation/dissolution. The results are validated and evaluated by comparing with single-scale simulations in terms of velocities, reactive concentrations and computing cost.

  11. A Liver-centric Multiscale Modeling Framework for Xenobiotics ...

    EPA Pesticide Factsheets

    We describe a multi-scale framework for modeling acetaminophen-induced liver toxicity. Acetaminophen is a widely used analgesic. Overdose of acetaminophen can result in liver injury via its biotransformation into toxic product, which further induce massive necrosis. Our study focuses on developing a multi-scale computational model to characterize both phase I and phase II metabolism of acetaminophen, by bridging Physiologically Based Pharmacokinetic (PBPK) modeling at the whole body level, cell movement and blood flow at the tissue level and cell signaling and drug metabolism at the sub-cellular level. To validate the model, we estimated our model parameters by fi?tting serum concentrations of acetaminophen and its glucuronide and sulfate metabolites to experiments, and carried out sensitivity analysis on 35 parameters selected from three modules. Our study focuses on developing a multi-scale computational model to characterize both phase I and phase II metabolism of acetaminophen, by bridging Physiologically Based Pharmacokinetic (PBPK) modeling at the whole body level, cell movement and blood flow at the tissue level and cell signaling and drug metabolism at the sub-cellular level. This multiscale model bridges the CompuCell3D tool used by the Virtual Tissue project with the httk tool developed by the Rapid Exposure and Dosimetry project.

  12. Wavelet-based multiscale performance analysis: An approach to assess and improve hydrological models

    NASA Astrophysics Data System (ADS)

    Rathinasamy, Maheswaran; Khosa, Rakesh; Adamowski, Jan; ch, Sudheer; Partheepan, G.; Anand, Jatin; Narsimlu, Boini

    2014-12-01

    The temporal dynamics of hydrological processes are spread across different time scales and, as such, the performance of hydrological models cannot be estimated reliably from global performance measures that assign a single number to the fit of a simulated time series to an observed reference series. Accordingly, it is important to analyze model performance at different time scales. Wavelets have been used extensively in the area of hydrological modeling for multiscale analysis, and have been shown to be very reliable and useful in understanding dynamics across time scales and as these evolve in time. In this paper, a wavelet-based multiscale performance measure for hydrological models is proposed and tested (i.e., Multiscale Nash-Sutcliffe Criteria and Multiscale Normalized Root Mean Square Error). The main advantage of this method is that it provides a quantitative measure of model performance across different time scales. In the proposed approach, model and observed time series are decomposed using the Discrete Wavelet Transform (known as the à trous wavelet transform), and performance measures of the model are obtained at each time scale. The applicability of the proposed method was explored using various case studies-both real as well as synthetic. The synthetic case studies included various kinds of errors (e.g., timing error, under and over prediction of high and low flows) in outputs from a hydrologic model. The real time case studies investigated in this study included simulation results of both the process-based Soil Water Assessment Tool (SWAT) model, as well as statistical models, namely the Coupled Wavelet-Volterra (WVC), Artificial Neural Network (ANN), and Auto Regressive Moving Average (ARMA) methods. For the SWAT model, data from Wainganga and Sind Basin (India) were used, while for the Wavelet Volterra, ANN and ARMA models, data from the Cauvery River Basin (India) and Fraser River (Canada) were used. The study also explored the effect of the choice of the wavelets in multiscale model evaluation. It was found that the proposed wavelet-based performance measures, namely the MNSC (Multiscale Nash-Sutcliffe Criteria) and MNRMSE (Multiscale Normalized Root Mean Square Error), are a more reliable measure than traditional performance measures such as the Nash-Sutcliffe Criteria (NSC), Root Mean Square Error (RMSE), and Normalized Root Mean Square Error (NRMSE). Further, the proposed methodology can be used to: i) compare different hydrological models (both physical and statistical models), and ii) help in model calibration.

  13. Structural and Practical Identifiability Issues of Immuno-Epidemiological Vector-Host Models with Application to Rift Valley Fever.

    PubMed

    Tuncer, Necibe; Gulbudak, Hayriye; Cannataro, Vincent L; Martcheva, Maia

    2016-09-01

    In this article, we discuss the structural and practical identifiability of a nested immuno-epidemiological model of arbovirus diseases, where host-vector transmission rate, host recovery, and disease-induced death rates are governed by the within-host immune system. We incorporate the newest ideas and the most up-to-date features of numerical methods to fit multi-scale models to multi-scale data. For an immunological model, we use Rift Valley Fever Virus (RVFV) time-series data obtained from livestock under laboratory experiments, and for an epidemiological model we incorporate a human compartment to the nested model and use the number of human RVFV cases reported by the CDC during the 2006-2007 Kenya outbreak. We show that the immunological model is not structurally identifiable for the measurements of time-series viremia concentrations in the host. Thus, we study the non-dimensionalized and scaled versions of the immunological model and prove that both are structurally globally identifiable. After fixing estimated parameter values for the immunological model derived from the scaled model, we develop a numerical method to fit observable RVFV epidemiological data to the nested model for the remaining parameter values of the multi-scale system. For the given (CDC) data set, Monte Carlo simulations indicate that only three parameters of the epidemiological model are practically identifiable when the immune model parameters are fixed. Alternatively, we fit the multi-scale data to the multi-scale model simultaneously. Monte Carlo simulations for the simultaneous fitting suggest that the parameters of the immunological model and the parameters of the immuno-epidemiological model are practically identifiable. We suggest that analytic approaches for studying the structural identifiability of nested models are a necessity, so that identifiable parameter combinations can be derived to reparameterize the nested model to obtain an identifiable one. This is a crucial step in developing multi-scale models which explain multi-scale data.

  14. Multiscale analysis of neural spike trains.

    PubMed

    Ramezan, Reza; Marriott, Paul; Chenouri, Shojaeddin

    2014-01-30

    This paper studies the multiscale analysis of neural spike trains, through both graphical and Poisson process approaches. We introduce the interspike interval plot, which simultaneously visualizes characteristics of neural spiking activity at different time scales. Using an inhomogeneous Poisson process framework, we discuss multiscale estimates of the intensity functions of spike trains. We also introduce the windowing effect for two multiscale methods. Using quasi-likelihood, we develop bootstrap confidence intervals for the multiscale intensity function. We provide a cross-validation scheme, to choose the tuning parameters, and study its unbiasedness. Studying the relationship between the spike rate and the stimulus signal, we observe that adjusting for the first spike latency is important in cross-validation. We show, through examples, that the correlation between spike trains and spike count variability can be multiscale phenomena. Furthermore, we address the modeling of the periodicity of the spike trains caused by a stimulus signal or by brain rhythms. Within the multiscale framework, we introduce intensity functions for spike trains with multiplicative and additive periodic components. Analyzing a dataset from the retinogeniculate synapse, we compare the fit of these models with the Bayesian adaptive regression splines method and discuss the limitations of the methodology. Computational efficiency, which is usually a challenge in the analysis of spike trains, is one of the highlights of these new models. In an example, we show that the reconstruction quality of a complex intensity function demonstrates the ability of the multiscale methodology to crack the neural code. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Performance of hybrid programming models for multiscale cardiac simulations: preparing for petascale computation.

    PubMed

    Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias

    2011-10-01

    Future multiscale and multiphysics models that support research into human disease, translational medical science, and treatment can utilize the power of high-performance computing (HPC) systems. We anticipate that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message-passing processes [e.g., the message-passing interface (MPI)] with multithreading (e.g., OpenMP, Pthreads). The objective of this study is to compare the performance of such hybrid programming models when applied to the simulation of a realistic physiological multiscale model of the heart. Our results show that the hybrid models perform favorably when compared to an implementation using only the MPI and, furthermore, that OpenMP in combination with the MPI provides a satisfactory compromise between performance and code complexity. Having the ability to use threads within MPI processes enables the sophisticated use of all processor cores for both computation and communication phases. Considering that HPC systems in 2012 will have two orders of magnitude more cores than what was used in this study, we believe that faster than real-time multiscale cardiac simulations can be achieved on these systems.

  16. Development of Semantic Description for Multiscale Models of Thermo-Mechanical Treatment of Metal Alloys

    NASA Astrophysics Data System (ADS)

    Macioł, Piotr; Regulski, Krzysztof

    2016-08-01

    We present a process of semantic meta-model development for data management in an adaptable multiscale modeling framework. The main problems in ontology design are discussed, and a solution achieved as a result of the research is presented. The main concepts concerning the application and data management background for multiscale modeling were derived from the AM3 approach—object-oriented Agile multiscale modeling methodology. The ontological description of multiscale models enables validation of semantic correctness of data interchange between submodels. We also present a possibility of using the ontological model as a supervisor in conjunction with a multiscale model controller and a knowledge base system. Multiscale modeling formal ontology (MMFO), designed for describing multiscale models' data and structures, is presented. A need for applying meta-ontology in the MMFO development process is discussed. Examples of MMFO application in describing thermo-mechanical treatment of metal alloys are discussed. Present and future applications of MMFO are described.

  17. Comparison of Multiscale Method of Cells-Based Models for Predicting Elastic Properties of Filament Wound C/C-SiC

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Fassin, Marek; Bednarcyk, Brett A.; Reese, Stefanie; Simon, Jaan-Willem

    2017-01-01

    Three different multiscale models, based on the method of cells (generalized and high fidelity) micromechanics models were developed and used to predict the elastic properties of C/C-SiC composites. In particular, the following multiscale modeling strategies were employed: Concurrent multiscale modeling of all phases using the generalized method of cells, synergistic (two-way coupling in space) multiscale modeling with the generalized method of cells, and hierarchical (one-way coupling in space) multiscale modeling with the high fidelity generalized method of cells. The three models are validated against data from a hierarchical multiscale finite element model in the literature for a repeating unit cell of C/C-SiC. Furthermore, the multiscale models are used in conjunction with classical lamination theory to predict the stiffness of C/C-SiC plates manufactured via a wet filament winding and liquid silicon infiltration process recently developed by the German Aerospace Institute.

  18. Multi-scale Mexican spotted owl (Strix occidentalis lucida) nest/roost habitat selection in Arizona and a comparison with single-scale modeling results

    Treesearch

    Brad C. Timm; Kevin McGarigal; Samuel A. Cushman; Joseph L. Ganey

    2016-01-01

    Efficacy of future habitat selection studies will benefit by taking a multi-scale approach. In addition to potentially providing increased explanatory power and predictive capacity, multi-scale habitat models enhance our understanding of the scales at which species respond to their environment, which is critical knowledge required to implement effective...

  19. Parallelization of fine-scale computation in Agile Multiscale Modelling Methodology

    NASA Astrophysics Data System (ADS)

    Macioł, Piotr; Michalik, Kazimierz

    2016-10-01

    Nowadays, multiscale modelling of material behavior is an extensively developed area. An important obstacle against its wide application is high computational demands. Among others, the parallelization of multiscale computations is a promising solution. Heterogeneous multiscale models are good candidates for parallelization, since communication between sub-models is limited. In this paper, the possibility of parallelization of multiscale models based on Agile Multiscale Methodology framework is discussed. A sequential, FEM based macroscopic model has been combined with concurrently computed fine-scale models, employing a MatCalc thermodynamic simulator. The main issues, being investigated in this work are: (i) the speed-up of multiscale models with special focus on fine-scale computations and (ii) on decreasing the quality of computations enforced by parallel execution. Speed-up has been evaluated on the basis of Amdahl's law equations. The problem of `delay error', rising from the parallel execution of fine scale sub-models, controlled by the sequential macroscopic sub-model is discussed. Some technical aspects of combining third-party commercial modelling software with an in-house multiscale framework and a MPI library are also discussed.

  20. Multiscale modeling and simulation of brain blood flow

    NASA Astrophysics Data System (ADS)

    Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em

    2016-02-01

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.

  1. Multiscale modeling of nerve agent hydrolysis mechanisms: a tale of two Nobel Prizes

    NASA Astrophysics Data System (ADS)

    Field, Martin J.; Wymore, Troy W.

    2014-10-01

    The 2013 Nobel Prize in Chemistry was awarded for the development of multiscale models for complex chemical systems, whereas the 2013 Peace Prize was given to the Organisation for the Prohibition of Chemical Weapons for their efforts to eliminate chemical warfare agents. This review relates the two by introducing the field of multiscale modeling and highlighting its application to the study of the biological mechanisms by which selected chemical weapon agents exert their effects at an atomic level.

  2. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plechac, Petr

    2016-03-01

    The overall objective of this project was to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics and developing rigorous mathematical techniques and computational algorithms to study such models. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals.

  3. Multiscale Modeling of PEEK Using Reactive Molecular Dynamics Modeling and Micromechanics

    NASA Technical Reports Server (NTRS)

    Pisani, William A.; Radue, Matthew; Chinkanjanarot, Sorayot; Bednarcyk, Brett A.; Pineda, Evan J.; King, Julia A.; Odegard, Gregory M.

    2018-01-01

    Polyether ether ketone (PEEK) is a high-performance, semi-crystalline thermoplastic that is used in a wide range of engineering applications, including some structural components of aircraft. The design of new PEEK-based materials requires a precise understanding of the multiscale structure and behavior of semi-crystalline PEEK. Molecular Dynamics (MD) modeling can efficiently predict bulk-level properties of single phase polymers, and micromechanics can be used to homogenize those phases based on the overall polymer microstructure. In this study, MD modeling was used to predict the mechanical properties of the amorphous and crystalline phases of PEEK. The hierarchical microstructure of PEEK, which combines the aforementioned phases, was modeled using a multiscale modeling approach facilitated by NASA's MSGMC. The bulk mechanical properties of semi-crystalline PEEK predicted using MD modeling and MSGMC agree well with vendor data, thus validating the multiscale modeling approach.

  4. Multi-Scale Computational Models for Electrical Brain Stimulation

    PubMed Central

    Seo, Hyeon; Jun, Sung C.

    2017-01-01

    Electrical brain stimulation (EBS) is an appealing method to treat neurological disorders. To achieve optimal stimulation effects and a better understanding of the underlying brain mechanisms, neuroscientists have proposed computational modeling studies for a decade. Recently, multi-scale models that combine a volume conductor head model and multi-compartmental models of cortical neurons have been developed to predict stimulation effects on the macroscopic and microscopic levels more precisely. As the need for better computational models continues to increase, we overview here recent multi-scale modeling studies; we focused on approaches that coupled a simplified or high-resolution volume conductor head model and multi-compartmental models of cortical neurons, and constructed realistic fiber models using diffusion tensor imaging (DTI). Further implications for achieving better precision in estimating cellular responses are discussed. PMID:29123476

  5. Modeling Framework for Fracture in Multiscale Cement-Based Material Structures

    PubMed Central

    Qian, Zhiwei; Schlangen, Erik; Ye, Guang; van Breugel, Klaas

    2017-01-01

    Multiscale modeling for cement-based materials, such as concrete, is a relatively young subject, but there are already a number of different approaches to study different aspects of these classical materials. In this paper, the parameter-passing multiscale modeling scheme is established and applied to address the multiscale modeling problem for the integrated system of cement paste, mortar, and concrete. The block-by-block technique is employed to solve the length scale overlap challenge between the mortar level (0.1–10 mm) and the concrete level (1–40 mm). The microstructures of cement paste are simulated by the HYMOSTRUC3D model, and the material structures of mortar and concrete are simulated by the Anm material model. Afterwards the 3D lattice fracture model is used to evaluate their mechanical performance by simulating a uniaxial tensile test. The simulated output properties at a lower scale are passed to the next higher scale to serve as input local properties. A three-level multiscale lattice fracture analysis is demonstrated, including cement paste at the micrometer scale, mortar at the millimeter scale, and concrete at centimeter scale. PMID:28772948

  6. Multi-scale heat and mass transfer modelling of cell and tissue cryopreservation

    PubMed Central

    Xu, Feng; Moon, Sangjun; Zhang, Xiaohui; Shao, Lei; Song, Young Seok; Demirci, Utkan

    2010-01-01

    Cells and tissues undergo complex physical processes during cryopreservation. Understanding the underlying physical phenomena is critical to improve current cryopreservation methods and to develop new techniques. Here, we describe multi-scale approaches for modelling cell and tissue cryopreservation including heat transfer at macroscale level, crystallization, cell volume change and mass transport across cell membranes at microscale level. These multi-scale approaches allow us to study cell and tissue cryopreservation. PMID:20047939

  7. Multiscale measurement error models for aggregated small area health data.

    PubMed

    Aregay, Mehreteab; Lawson, Andrew B; Faes, Christel; Kirby, Russell S; Carroll, Rachel; Watjou, Kevin

    2016-08-01

    Spatial data are often aggregated from a finer (smaller) to a coarser (larger) geographical level. The process of data aggregation induces a scaling effect which smoothes the variation in the data. To address the scaling problem, multiscale models that link the convolution models at different scale levels via the shared random effect have been proposed. One of the main goals in aggregated health data is to investigate the relationship between predictors and an outcome at different geographical levels. In this paper, we extend multiscale models to examine whether a predictor effect at a finer level hold true at a coarser level. To adjust for predictor uncertainty due to aggregation, we applied measurement error models in the framework of multiscale approach. To assess the benefit of using multiscale measurement error models, we compare the performance of multiscale models with and without measurement error in both real and simulated data. We found that ignoring the measurement error in multiscale models underestimates the regression coefficient, while it overestimates the variance of the spatially structured random effect. On the other hand, accounting for the measurement error in multiscale models provides a better model fit and unbiased parameter estimates. © The Author(s) 2016.

  8. A Liver-centric Multiscale Modeling Framework for Xenobiotics

    EPA Science Inventory

    We describe a multi-scale framework for modeling acetaminophen-induced liver toxicity. Acetaminophen is a widely used analgesic. Overdose of acetaminophen can result in liver injury via its biotransformation into toxic product, which further induce massive necrosis. Our study foc...

  9. A Multi-scale Modeling System with Unified Physics to Study Precipitation Processes

    NASA Astrophysics Data System (ADS)

    Tao, W. K.

    2017-12-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), and (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF). The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitation, processes and their sensitivity on model resolution and microphysics schemes will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.

  10. Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the recent developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitating systems and hurricanes/typhoons will be presented. The high-resolution spatial and temporal visualization will be utilized to show the evolution of precipitation processes. Also how to use of the multi-satellite simulator tqimproy precipitation processes will be discussed.

  11. Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei--Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2010-01-01

    In recent years, exponentially increasing computer power extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 sq km in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale models can be run in grid size similar to cloud resolving models through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model). (2) a regional scale model (a NASA unified weather research and forecast, W8F). (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling systems to study the interactions between clouds, precipitation, and aerosols will be presented. Also how to use the multi-satellite simulator to improve precipitation processes will be discussed.

  12. Using Multi-Scale Modeling Systems to Study the Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2010-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.

  13. Multiscale Modeling in Computational Biomechanics: Determining Computational Priorities and Addressing Current Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tawhai, Merryn; Bischoff, Jeff; Einstein, Daniel R.

    2009-05-01

    Abstract In this article, we describe some current multiscale modeling issues in computational biomechanics from the perspective of the musculoskeletal and respiratory systems and mechanotransduction. First, we outline the necessity of multiscale simulations in these biological systems. Then we summarize challenges inherent to multiscale biomechanics modeling, regardless of the subdiscipline, followed by computational challenges that are system-specific. We discuss some of the current tools that have been utilized to aid research in multiscale mechanics simulations, and the priorities to further the field of multiscale biomechanics computation.

  14. Towards the virtual artery: a multiscale model for vascular physiology at the physics-chemistry-biology interface.

    PubMed

    Hoekstra, Alfons G; Alowayyed, Saad; Lorenz, Eric; Melnikova, Natalia; Mountrakis, Lampros; van Rooij, Britt; Svitenkov, Andrew; Závodszky, Gábor; Zun, Pavel

    2016-11-13

    This discussion paper introduces the concept of the Virtual Artery as a multiscale model for arterial physiology and pathologies at the physics-chemistry-biology (PCB) interface. The cellular level is identified as the mesoscopic level, and we argue that by coupling cell-based models with other relevant models on the macro- and microscale, a versatile model of arterial health and disease can be composed. We review the necessary ingredients, both models of arteries at many different scales, as well as generic methods to compose multiscale models. Next, we discuss how this can be combined into the virtual artery. Finally, we argue that the concept of models at the PCB interface could or perhaps should become a powerful paradigm, not only as in our case for studying physiology, but also for many other systems that have such PCB interfaces.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Authors.

  15. EVALUATION OF THE COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL VERSION 4.5: UNCERTAINTIES AND SENSITIVITIES IMPACTING MODEL PERFORMANCE: PART I - OZONE

    EPA Science Inventory

    This study examines ozone (O3) predictions from the Community Multiscale Air Quality (CMAQ) model version 4.5 and discusses potential factors influencing the model results. Daily maximum 8-hr average O3 levels are largely underpredicted when observed O...

  16. Nonlocal and Mixed-Locality Multiscale Finite Element Methods

    DOE PAGES

    Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.

    2018-03-27

    In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. Here, inmore » this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. Finally, we conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.« less

  17. Nonlocal and Mixed-Locality Multiscale Finite Element Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.

    In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. Here, inmore » this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. Finally, we conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.« less

  18. Microphysics in the Multi-Scale Modeling Systems with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.

  19. Microphysics in Multi-scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2012-01-01

    Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.

  20. Evaluation of the Community Multiscale Air Quality Model for Simulating Winter Ozone Formation in the Uinta Basin.

    EPA Science Inventory

    The Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models were used to simulate a 10 day high‐ozone episode observed during the 2013 Uinta Basin Winter Ozone Study (UBWOS). The baseline model had a large negative bias when compared to ozo...

  1. Community Multiscale Air Quality Model

    EPA Science Inventory

    The U.S. EPA developed the Community Multiscale Air Quality (CMAQ) system to apply a “one atmosphere” multiscale and multi-pollutant modeling approach based mainly on the “first principles” description of the atmosphere. The multiscale capability is supported by the governing di...

  2. Novel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation

    PubMed Central

    Biggs, Matthew B.; Papin, Jason A.

    2013-01-01

    Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool. PMID:24147108

  3. Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.

    PubMed

    Biggs, Matthew B; Papin, Jason A

    2013-01-01

    Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.

  4. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model

    EPA Science Inventory

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions,...

  5. Multi-scale habitat selection modeling: A review and outlook

    Treesearch

    Kevin McGarigal; Ho Yi Wan; Kathy A. Zeller; Brad C. Timm; Samuel A. Cushman

    2016-01-01

    Scale is the lens that focuses ecological relationships. Organisms select habitat at multiple hierarchical levels and at different spatial and/or temporal scales within each level. Failure to properly address scale dependence can result in incorrect inferences in multi-scale habitat selection modeling studies.

  6. Revisiting of Multiscale Static Analysis of Notched Laminates Using the Generalized Method of Cells

    NASA Technical Reports Server (NTRS)

    Naghipour Ghezeljeh, Paria; Arnold, Steven M.; Pineda, Evan J.

    2016-01-01

    Composite material systems generally exhibit a range of behavior on different length scales (from constituent level to macro); therefore, a multiscale framework is beneficial for the design and engineering of these material systems. The complex nature of the observed composite failure during experiments suggests the need for a three-dimensional (3D) multiscale model to attain a reliable prediction. However, the size of a multiscale three-dimensional finite element model can become prohibitively large and computationally costly. Two-dimensional (2D) models are preferred due to computational efficiency, especially if many different configurations have to be analyzed for an in-depth damage tolerance and durability design study. In this study, various 2D and 3D multiscale analyses will be employed to conduct a detailed investigation into the tensile failure of a given multidirectional, notched carbon fiber reinforced polymer laminate. Threedimensional finite element analysis is typically considered more accurate than a 2D finite element model, as compared with experiments. Nevertheless, in the absence of adequate mesh refinement, large differences may be observed between a 2D and 3D analysis, especially for a shear-dominated layup. This observed difference has not been widely addressed in previous literature and is the main focus of this paper.

  7. Filters for Improvement of Multiscale Data from Atomistic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, David J.; Reynolds, Daniel R.

    Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less

  8. Filters for Improvement of Multiscale Data from Atomistic Simulations

    DOE PAGES

    Gardner, David J.; Reynolds, Daniel R.

    2017-01-05

    Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less

  9. Facing the challenges of multiscale modelling of bacterial and fungal pathogen–host interactions

    PubMed Central

    Schleicher, Jana; Conrad, Theresia; Gustafsson, Mika; Cedersund, Gunnar; Guthke, Reinhard

    2017-01-01

    Abstract Recent and rapidly evolving progress on high-throughput measurement techniques and computational performance has led to the emergence of new disciplines, such as systems medicine and translational systems biology. At the core of these disciplines lies the desire to produce multiscale models: mathematical models that integrate multiple scales of biological organization, ranging from molecular, cellular and tissue models to organ, whole-organism and population scale models. Using such models, hypotheses can systematically be tested. In this review, we present state-of-the-art multiscale modelling of bacterial and fungal infections, considering both the pathogen and host as well as their interaction. Multiscale modelling of the interactions of bacteria, especially Mycobacterium tuberculosis, with the human host is quite advanced. In contrast, models for fungal infections are still in their infancy, in particular regarding infections with the most important human pathogenic fungi, Candida albicans and Aspergillus fumigatus. We reflect on the current availability of computational approaches for multiscale modelling of host–pathogen interactions and point out current challenges. Finally, we provide an outlook for future requirements of multiscale modelling. PMID:26857943

  10. Adaptation of a Fast Optimal Interpolation Algorithm to the Mapping of Oceangraphic Data

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris; Fieguth, Paul; Wunsch, Carl; Willsky, Alan

    1997-01-01

    A fast, recently developed, multiscale optimal interpolation algorithm has been adapted to the mapping of hydrographic and other oceanographic data. This algorithm produces solution and error estimates which are consistent with those obtained from exact least squares methods, but at a small fraction of the computational cost. Problems whose solution would be completely impractical using exact least squares, that is, problems with tens or hundreds of thousands of measurements and estimation grid points, can easily be solved on a small workstation using the multiscale algorithm. In contrast to methods previously proposed for solving large least squares problems, our approach provides estimation error statistics while permitting long-range correlations, using all measurements, and permitting arbitrary measurement locations. The multiscale algorithm itself, published elsewhere, is not the focus of this paper. However, the algorithm requires statistical models having a very particular multiscale structure; it is the development of a class of multiscale statistical models, appropriate for oceanographic mapping problems, with which we concern ourselves in this paper. The approach is illustrated by mapping temperature in the northeastern Pacific. The number of hydrographic stations is kept deliberately small to show that multiscale and exact least squares results are comparable. A portion of the data were not used in the analysis; these data serve to test the multiscale estimates. A major advantage of the present approach is the ability to repeat the estimation procedure a large number of times for sensitivity studies, parameter estimation, and model testing. We have made available by anonymous Ftp a set of MATLAB-callable routines which implement the multiscale algorithm and the statistical models developed in this paper.

  11. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite while the effect on the axial properties is shown to be insignificant.

  12. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  13. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  14. Statistical Field Estimation for Complex Coastal Regions and Archipelagos (PREPRINT)

    DTIC Science & Technology

    2011-04-09

    and study the computational properties of these schemes. Specifically, we extend a multiscale Objective Analysis (OA) approach to complex coastal...computational properties of these schemes. Specifically, we extend a multiscale Objective Analysis (OA) approach to complex coastal regions and... multiscale free-surface code builds on the primitive-equation model of the Harvard Ocean Predic- tion System (HOPS, Haley et al. (2009)). Additionally

  15. Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing

    DTIC Science & Technology

    2016-07-15

    AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER... electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study

  16. Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing

    DTIC Science & Technology

    2016-07-15

    AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER...electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study

  17. eDNAoccupancy: An R package for multi-scale occupancy modeling of environmental DNA data

    USGS Publications Warehouse

    Dorazio, Robert; Erickson, Richard A.

    2017-01-01

    In this article we describe eDNAoccupancy, an R package for fitting Bayesian, multi-scale occupancy models. These models are appropriate for occupancy surveys that include three, nested levels of sampling: primary sample units within a study area, secondary sample units collected from each primary unit, and replicates of each secondary sample unit. This design is commonly used in occupancy surveys of environmental DNA (eDNA). eDNAoccupancy allows users to specify and fit multi-scale occupancy models with or without covariates, to estimate posterior summaries of occurrence and detection probabilities, and to compare different models using Bayesian model-selection criteria. We illustrate these features by analyzing two published data sets: eDNA surveys of a fungal pathogen of amphibians and eDNA surveys of an endangered fish species.

  18. Petascale computation performance of lightweight multiscale cardiac models using hybrid programming models.

    PubMed

    Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias

    2011-01-01

    Future multiscale and multiphysics models must use the power of high performance computing (HPC) systems to enable research into human disease, translational medical science, and treatment. Previously we showed that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message passing processes (e.g. the message passing interface (MPI)) with multithreading (e.g. OpenMP, POSIX pthreads). The objective of this work is to compare the performance of such hybrid programming models when applied to the simulation of a lightweight multiscale cardiac model. Our results show that the hybrid models do not perform favourably when compared to an implementation using only MPI which is in contrast to our results using complex physiological models. Thus, with regards to lightweight multiscale cardiac models, the user may not need to increase programming complexity by using a hybrid programming approach. However, considering that model complexity will increase as well as the HPC system size in both node count and number of cores per node, it is still foreseeable that we will achieve faster than real time multiscale cardiac simulations on these systems using hybrid programming models.

  19. Multiscale asymmetric orthogonal wavelet kernel for linear programming support vector learning and nonlinear dynamic systems identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2014-05-01

    Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.

  20. Construction of multi-scale consistent brain networks: methods and applications.

    PubMed

    Ge, Bao; Tian, Yin; Hu, Xintao; Chen, Hanbo; Zhu, Dajiang; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming

    2015-01-01

    Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for a single resolution or scale of brain network, though the brain networks are multi-scale in nature. To address this problem, this paper presents a novel approach to constructing multi-scale common structural brain networks from DTI data via an improved multi-scale spectral clustering applied on our recently developed and validated DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks). Since the DICCCOL landmarks possess intrinsic structural correspondences across individuals and populations, we employed the multi-scale spectral clustering algorithm to group the DICCCOL landmarks and their connections into sub-networks, meanwhile preserving the intrinsically-established correspondences across multiple scales. Experimental results demonstrated that the proposed method can generate multi-scale consistent and common structural brain networks across subjects, and its reproducibility has been verified by multiple independent datasets. As an application, these multi-scale networks were used to guide the clustering of multi-scale fiber bundles and to compare the fiber integrity in schizophrenia and healthy controls. In general, our methods offer a novel and effective framework for brain network modeling and tract-based analysis of DTI data.

  1. Multiscale Modeling for Linking Growth, Microstructure, and Properties of Inorganic Microporous Films

    NASA Technical Reports Server (NTRS)

    Vlachos, Dion G.

    2002-01-01

    The focus of this presentation is on multiscale modeling in order to link processing, microstructure, and properties of materials. Overview of problems we study includes: Growth mechanisms in chemical and physical vapor epitaxy; thin films of zeolites for separation and sensing; thin Pd films for hydrogen separation and pattern formation by self-regulation routes.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perdikaris, Paris, E-mail: parisp@mit.edu; Grinberg, Leopold, E-mail: leopoldgrinberg@us.ibm.com; Karniadakis, George Em, E-mail: george-karniadakis@brown.edu

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process takingmore » place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.« less

  3. Multiscale Materials Modeling Workshop Summary

    DOT National Transportation Integrated Search

    2013-12-01

    This report summarizes a 2-day workshop held to share information on multiscale material modeling. The aim was to gain expert feedback on the state of the art and identify Exploratory Advanced Research (EAR) Program opportunities for multiscale mater...

  4. Effect of Mesoscale and Multiscale Modeling on the Performance of Kevlar Woven Fabric Subjected to Ballistic Impact: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Jia, Xin; Huang, Zhengxiang; Zu, Xudong; Gu, Xiaohui; Xiao, Qiangqiang

    2013-12-01

    In this study, an optimal finite element model of Kevlar woven fabric that is more computational efficient compared with existing models was developed to simulate ballistic impact onto fabric. Kevlar woven fabric was modeled to yarn level architecture by using the hybrid elements analysis (HEA), which uses solid elements in modeling the yarns at the impact region and uses shell elements in modeling the yarns away from the impact region. Three HEA configurations were constructed, in which the solid element region was set as about one, two, and three times that of the projectile's diameter with impact velocities of 30 m/s (non-perforation case) and 200 m/s (perforation case) to determine the optimal ratio between the solid element region and the shell element region. To further reduce computational time and to maintain the necessary accuracy, three multiscale models were presented also. These multiscale models combine the local region with the yarn level architecture by using the HEA approach and the global region with homogenous level architecture. The effect of the varying ratios of the local and global area on the ballistic performance of fabric was discussed. The deformation and damage mechanisms of fabric were analyzed and compared among numerical models. Simulation results indicate that the multiscale model based on HEA accurately reproduces the baseline results and obviously decreases computational time.

  5. Multiscale molecular dynamics/hydrodynamics implementation of two dimensional "Mercedes Benz" water model

    NASA Astrophysics Data System (ADS)

    Scukins, A.; Nerukh, D.; Pavlov, E.; Karabasov, S.; Markesteijn, A.

    2015-09-01

    A multiscale Molecular Dynamics/Hydrodynamics implementation of the 2D Mercedes Benz (MB or BN2D) [1] water model is developed and investigated. The concept and the governing equations of multiscale coupling together with the results of the two-way coupling implementation are reported. The sensitivity of the multiscale model for obtaining macroscopic and microscopic parameters of the system, such as macroscopic density and velocity fluctuations, radial distribution and velocity autocorrelation functions of MB particles, is evaluated. Critical issues for extending the current model to large systems are discussed.

  6. Multiscale Cancer Modeling

    PubMed Central

    Macklin, Paul; Cristini, Vittorio

    2013-01-01

    Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insight on the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community. PMID:21529163

  7. A New Age-Structured Multiscale Model of the Hepatitis C Virus Life-Cycle During Infection and Therapy With Direct-Acting Antiviral Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quintela, Barbara de M.; Conway, Jessica M.; Hyman, James M.

    Here, the dynamics of hepatitis C virus (HCV) RNA during translation and replication within infected cells were added to a previous age-structured multiscale mathematical model of HCV infection and treatment. The model allows the study of the dynamics of HCV RNA inside infected cells as well as the release of virus from infected cells and the dynamics of subsequent new cell infections. The model was used to fit in vitro data and estimate parameters characterizing HCV replication. This is the first model to our knowledge to consider both positive and negative strands of HCV RNA with an age-structured multiscale modelingmore » approach. Using this model we also studied the effects of direct-acting antiviral agents (DAAs) in blocking HCV RNA intracellular replication and the release of new virions and fit the model to in vivo data obtained from HCV-infected subjects under therapy.« less

  8. A New Age-Structured Multiscale Model of the Hepatitis C Virus Life-Cycle During Infection and Therapy With Direct-Acting Antiviral Agents

    DOE PAGES

    Quintela, Barbara de M.; Conway, Jessica M.; Hyman, James M.; ...

    2018-04-04

    Here, the dynamics of hepatitis C virus (HCV) RNA during translation and replication within infected cells were added to a previous age-structured multiscale mathematical model of HCV infection and treatment. The model allows the study of the dynamics of HCV RNA inside infected cells as well as the release of virus from infected cells and the dynamics of subsequent new cell infections. The model was used to fit in vitro data and estimate parameters characterizing HCV replication. This is the first model to our knowledge to consider both positive and negative strands of HCV RNA with an age-structured multiscale modelingmore » approach. Using this model we also studied the effects of direct-acting antiviral agents (DAAs) in blocking HCV RNA intracellular replication and the release of new virions and fit the model to in vivo data obtained from HCV-infected subjects under therapy.« less

  9. Multi-Scale Models for the Scale Interaction of Organized Tropical Convection

    NASA Astrophysics Data System (ADS)

    Yang, Qiu

    Assessing the upscale impact of organized tropical convection from small spatial and temporal scales is a research imperative, not only for having a better understanding of the multi-scale structures of dynamical and convective fields in the tropics, but also for eventually helping in the design of new parameterization strategies to improve the next-generation global climate models. Here self-consistent multi-scale models are derived systematically by following the multi-scale asymptotic methods and used to describe the hierarchical structures of tropical atmospheric flows. The advantages of using these multi-scale models lie in isolating the essential components of multi-scale interaction and providing assessment of the upscale impact of the small-scale fluctuations onto the large-scale mean flow through eddy flux divergences of momentum and temperature in a transparent fashion. Specifically, this thesis includes three research projects about multi-scale interaction of organized tropical convection, involving tropical flows at different scaling regimes and utilizing different multi-scale models correspondingly. Inspired by the observed variability of tropical convection on multiple temporal scales, including daily and intraseasonal time scales, the goal of the first project is to assess the intraseasonal impact of the diurnal cycle on the planetary-scale circulation such as the Hadley cell. As an extension of the first project, the goal of the second project is to assess the intraseasonal impact of the diurnal cycle over the Maritime Continent on the Madden-Julian Oscillation. In the third project, the goals are to simulate the baroclinic aspects of the ITCZ breakdown and assess its upscale impact on the planetary-scale circulation over the eastern Pacific. These simple multi-scale models should be useful to understand the scale interaction of organized tropical convection and help improve the parameterization of unresolved processes in global climate models.

  10. Improvements in the Scalability of the NASA Goddard Multiscale Modeling Framework for Hurricane Climate Studies

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Tao, Wei-Kuo; Chern, Jiun-Dar

    2007-01-01

    Improving our understanding of hurricane inter-annual variability and the impact of climate change (e.g., doubling CO2 and/or global warming) on hurricanes brings both scientific and computational challenges to researchers. As hurricane dynamics involves multiscale interactions among synoptic-scale flows, mesoscale vortices, and small-scale cloud motions, an ideal numerical model suitable for hurricane studies should demonstrate its capabilities in simulating these interactions. The newly-developed multiscale modeling framework (MMF, Tao et al., 2007) and the substantial computing power by the NASA Columbia supercomputer show promise in pursuing the related studies, as the MMF inherits the advantages of two NASA state-of-the-art modeling components: the GEOS4/fvGCM and 2D GCEs. This article focuses on the computational issues and proposes a revised methodology to improve the MMF's performance and scalability. It is shown that this prototype implementation enables 12-fold performance improvements with 364 CPUs, thereby making it more feasible to study hurricane climate.

  11. An analysis platform for multiscale hydrogeologic modeling with emphasis on hybrid multiscale methods.

    PubMed

    Scheibe, Timothy D; Murphy, Ellyn M; Chen, Xingyuan; Rice, Amy K; Carroll, Kenneth C; Palmer, Bruce J; Tartakovsky, Alexandre M; Battiato, Ilenia; Wood, Brian D

    2015-01-01

    One of the most significant challenges faced by hydrogeologic modelers is the disparity between the spatial and temporal scales at which fundamental flow, transport, and reaction processes can best be understood and quantified (e.g., microscopic to pore scales and seconds to days) and at which practical model predictions are needed (e.g., plume to aquifer scales and years to centuries). While the multiscale nature of hydrogeologic problems is widely recognized, technological limitations in computation and characterization restrict most practical modeling efforts to fairly coarse representations of heterogeneous properties and processes. For some modern problems, the necessary level of simplification is such that model parameters may lose physical meaning and model predictive ability is questionable for any conditions other than those to which the model was calibrated. Recently, there has been broad interest across a wide range of scientific and engineering disciplines in simulation approaches that more rigorously account for the multiscale nature of systems of interest. In this article, we review a number of such approaches and propose a classification scheme for defining different types of multiscale simulation methods and those classes of problems to which they are most applicable. Our classification scheme is presented in terms of a flowchart (Multiscale Analysis Platform), and defines several different motifs of multiscale simulation. Within each motif, the member methods are reviewed and example applications are discussed. We focus attention on hybrid multiscale methods, in which two or more models with different physics described at fundamentally different scales are directly coupled within a single simulation. Very recently these methods have begun to be applied to groundwater flow and transport simulations, and we discuss these applications in the context of our classification scheme. As computational and characterization capabilities continue to improve, we envision that hybrid multiscale modeling will become more common and also a viable alternative to conventional single-scale models in the near future. © 2014, National Ground Water Association.

  12. Multiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.

    2012-01-01

    A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.

  13. Length scale effects and multiscale modeling of thermally induced phase transformation kinetics in NiTi SMA

    NASA Astrophysics Data System (ADS)

    Frantziskonis, George N.; Gur, Sourav

    2017-06-01

    Thermally induced phase transformation in NiTi shape memory alloys (SMAs) shows strong size and shape, collectively termed length scale effects, at the nano to micrometer scales, and that has important implications for the design and use of devices and structures at such scales. This paper, based on a recently developed multiscale model that utilizes molecular dynamics (MDs) simulations at small scales and MD-verified phase field (PhF) simulations at larger scales, reports results on specific length scale effects, i.e. length scale effects in martensite phase fraction (MPF) evolution, transformation temperatures (martensite and austenite start and finish) and in the thermally cyclic transformation between austenitic and martensitic phase. The multiscale study identifies saturation points for length scale effects and studies, for the first time, the length scale effect on the kinetics (i.e. developed internal strains) in the B19‧ phase during phase transformation. The major part of the work addresses small scale single crystals in specific orientations. However, the multiscale method is used in a unique and novel way to indirectly study length scale and grain size effects on evolution kinetics in polycrystalline NiTi, and to compare the simulation results to experiments. The interplay of the grain size and the length scale effect on the thermally induced MPF evolution is also shown in this present study. Finally, the multiscale coupling results are employed to improve phenomenological material models for NiTi SMA.

  14. Versatile Micromechanics Model for Multiscale Analysis of Composite Structures

    NASA Astrophysics Data System (ADS)

    Kwon, Y. W.; Park, M. S.

    2013-08-01

    A general-purpose micromechanics model was developed so that the model could be applied to various composite materials such as reinforced by particles, long fibers and short fibers as well as those containing micro voids. Additionally, the model can be used with hierarchical composite materials. The micromechanics model can be used to compute effective material properties like elastic moduli, shear moduli, Poisson's ratios, and coefficients of thermal expansion for the various composite materials. The model can also calculate the strains and stresses at the constituent material level such as fibers, particles, and whiskers from the composite level stresses and strains. The model was implemented into ABAQUS using the UMAT option for multiscale analysis. An extensive set of examples are presented to demonstrate the reliability and accuracy of the developed micromechanics model for different kinds of composite materials. Another set of examples is provided to study the multiscale analysis of composite structures.

  15. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    NASA Astrophysics Data System (ADS)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-05-01

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.

  16. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  17. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-04

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  18. An Analysis Platform for Multiscale Hydrogeologic Modeling with Emphasis on Hybrid Multiscale Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheibe, Timothy D.; Murphy, Ellyn M.; Chen, Xingyuan

    2015-01-01

    One of the most significant challenges facing hydrogeologic modelers is the disparity between those spatial and temporal scales at which fundamental flow, transport and reaction processes can best be understood and quantified (e.g., microscopic to pore scales, seconds to days) and those at which practical model predictions are needed (e.g., plume to aquifer scales, years to centuries). While the multiscale nature of hydrogeologic problems is widely recognized, technological limitations in computational and characterization restrict most practical modeling efforts to fairly coarse representations of heterogeneous properties and processes. For some modern problems, the necessary level of simplification is such that modelmore » parameters may lose physical meaning and model predictive ability is questionable for any conditions other than those to which the model was calibrated. Recently, there has been broad interest across a wide range of scientific and engineering disciplines in simulation approaches that more rigorously account for the multiscale nature of systems of interest. In this paper, we review a number of such approaches and propose a classification scheme for defining different types of multiscale simulation methods and those classes of problems to which they are most applicable. Our classification scheme is presented in terms of a flow chart (Multiscale Analysis Platform or MAP), and defines several different motifs of multiscale simulation. Within each motif, the member methods are reviewed and example applications are discussed. We focus attention on hybrid multiscale methods, in which two or more models with different physics described at fundamentally different scales are directly coupled within a single simulation. Very recently these methods have begun to be applied to groundwater flow and transport simulations, and we discuss these applications in the context of our classification scheme. As computational and characterization capabilities continue to improve, we envision that hybrid multiscale modeling will become more common and may become a viable alternative to conventional single-scale models in the near future.« less

  19. Multiscale Modeling of Virus Entry via Receptor-Mediated Endocytosis

    NASA Astrophysics Data System (ADS)

    Liu, Jin

    2012-11-01

    Virus infections are ubiquitous and remain major threats to human health worldwide. Viruses are intracellular parasites and must enter host cells to initiate infection. Receptor-mediated endocytosis is the most common entry pathway taken by viruses, the whole process is highly complex and dictated by various events, such as virus motions, membrane deformations, receptor diffusion and ligand-receptor reactions, occurring at multiple length and time scales. We develop a multiscale model for virus entry through receptor-mediated endocytosis. The binding of virus to cell surface is based on a mesoscale three dimensional stochastic adhesion model, the internalization (endocytosis) of virus and cellular membrane deformation is based on the discretization of Helfrich Hamiltonian in a curvilinear space using Monte Carlo method. The multiscale model is based on the combination of these two models. We will implement this model to study the herpes simplex virus entry into B78 cells and compare the model predictions with experimental measurements.

  20. Strategies for efficient numerical implementation of hybrid multi-scale agent-based models to describe biological systems

    PubMed Central

    Cilfone, Nicholas A.; Kirschner, Denise E.; Linderman, Jennifer J.

    2015-01-01

    Biologically related processes operate across multiple spatiotemporal scales. For computational modeling methodologies to mimic this biological complexity, individual scale models must be linked in ways that allow for dynamic exchange of information across scales. A powerful methodology is to combine a discrete modeling approach, agent-based models (ABMs), with continuum models to form hybrid models. Hybrid multi-scale ABMs have been used to simulate emergent responses of biological systems. Here, we review two aspects of hybrid multi-scale ABMs: linking individual scale models and efficiently solving the resulting model. We discuss the computational choices associated with aspects of linking individual scale models while simultaneously maintaining model tractability. We demonstrate implementations of existing numerical methods in the context of hybrid multi-scale ABMs. Using an example model describing Mycobacterium tuberculosis infection, we show relative computational speeds of various combinations of numerical methods. Efficient linking and solution of hybrid multi-scale ABMs is key to model portability, modularity, and their use in understanding biological phenomena at a systems level. PMID:26366228

  1. Multiscale hidden Markov models for photon-limited imaging

    NASA Astrophysics Data System (ADS)

    Nowak, Robert D.

    1999-06-01

    Photon-limited image analysis is often hindered by low signal-to-noise ratios. A novel Bayesian multiscale modeling and analysis method is developed in this paper to assist in these challenging situations. In addition to providing a very natural and useful framework for modeling an d processing images, Bayesian multiscale analysis is often much less computationally demanding compared to classical Markov random field models. This paper focuses on a probabilistic graph model called the multiscale hidden Markov model (MHMM), which captures the key inter-scale dependencies present in natural image intensities. The MHMM framework presented here is specifically designed for photon-limited imagin applications involving Poisson statistics, and applications to image intensity analysis are examined.

  2. Multiscale modeling of mucosal immune responses

    PubMed Central

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation. PMID:26329787

  3. Multiscale modeling of mucosal immune responses.

    PubMed

    Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep

    2015-01-01

    Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM.

  4. Multiscale modelling in immunology: a review.

    PubMed

    Cappuccio, Antonio; Tieri, Paolo; Castiglione, Filippo

    2016-05-01

    One of the greatest challenges in biomedicine is to get a unified view of observations made from the molecular up to the organism scale. Towards this goal, multiscale models have been highly instrumental in contexts such as the cardiovascular field, angiogenesis, neurosciences and tumour biology. More recently, such models are becoming an increasingly important resource to address immunological questions as well. Systematic mining of the literature in multiscale modelling led us to identify three main fields of immunological applications: host-virus interactions, inflammatory diseases and their treatment and development of multiscale simulation platforms for immunological research and for educational purposes. Here, we review the current developments in these directions, which illustrate that multiscale models can consistently integrate immunological data generated at several scales, and can be used to describe and optimize therapeutic treatments of complex immune diseases. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Performance of distributed multiscale simulations

    PubMed Central

    Borgdorff, J.; Ben Belgacem, M.; Bona-Casas, C.; Fazendeiro, L.; Groen, D.; Hoenen, O.; Mizeranschi, A.; Suter, J. L.; Coster, D.; Coveney, P. V.; Dubitzky, W.; Hoekstra, A. G.; Strand, P.; Chopard, B.

    2014-01-01

    Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption. PMID:24982258

  6. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plechac, Petr; Vlachos, Dionisios; Katsoulakis, Markos

    2013-09-05

    The overall objective of this project is to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals. Specific goals include: (i) Development of rigorous spatio-temporal coarse-grained kinetic Monte Carlo (KMC) mathematics and simulation for microscopic processes encountered in biomassmore » transformation. (ii) Development of hybrid multiscale simulation that links stochastic simulation to a deterministic partial differential equation (PDE) model for an entire reactor. (iii) Development of hybrid multiscale simulation that links KMC simulation with quantum density functional theory (DFT) calculations. (iv) Development of parallelization of models of (i)-(iii) to take advantage of Petaflop computing and enable real world applications of complex, multiscale models. In this NCE period, we continued addressing these objectives and completed the proposed work. Main initiatives, key results, and activities are outlined.« less

  7. Multiscale Modeling in the Clinic: Drug Design and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancy, Colleen E.; An, Gary; Cannon, William R.

    A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multi-scale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multi-scale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions tomore » guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multi-scale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical techniques employed for multi-scale modeling approaches used in pharmacology and present several examples illustrating the current state-of-the-art regarding drug development for: Excitable Systems (Heart); Cancer (Metastasis and Differentiation); Cancer (Angiogenesis and Drug Targeting); Metabolic Disorders; and Inflammation and Sepsis. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multi-scale models.« less

  8. Multiscale simulation of molecular processes in cellular environments.

    PubMed

    Chiricotto, Mara; Sterpone, Fabio; Derreumaux, Philippe; Melchionna, Simone

    2016-11-13

    We describe the recent advances in studying biological systems via multiscale simulations. Our scheme is based on a coarse-grained representation of the macromolecules and a mesoscopic description of the solvent. The dual technique handles particles, the aqueous solvent and their mutual exchange of forces resulting in a stable and accurate methodology allowing biosystems of unprecedented size to be simulated.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  9. Analysis of Hepatitis C Virus Decline during Treatment with the Protease Inhibitor Danoprevir Using a Multiscale Model

    DOE PAGES

    Rong, Libin; Guedj, Jeremie; Dahari, Harel; ...

    2013-03-14

    The current paradigm for studying hepatitis C virus (HCV) dynamics in patients utilizes a standard viral dynamic model that keeps track of uninfected (target) cells, infected cells, and virus. The model does not account for the dynamics of intracellular viral replication, which is the major target of direct-acting antiviral agents (DAAs). In this paper, we describe and study a recently developed multiscale age-structured model that explicitly considers the potential effects of DAAs on intracellular viral RNA production, degradation, and secretion as virus into the circulation. We show that when therapy significantly blocks both intracellular viral RNA production and virus secretion,more » the serum viral load decline has three phases, with slopes reflecting the rate of serum viral clearance, the rate of loss of intracellular viral RNA, and the rate of loss of intracellular replication templates and infected cells, respectively. We also derive analytical approximations of the multiscale model and use one of them to analyze data from patients treated for 14 days with the HCV protease inhibitor danoprevir. Analysis suggests that danoprevir significantly blocks intracellular viral production (with mean effectiveness 99.2%), enhances intracellular viral RNA degradation about 5-fold, and moderately inhibits viral secretion (with mean effectiveness 56%). Finally, the multiscale model can be used to study viral dynamics in patients treated with other DAAs and explore their mechanisms of action in treatment of hepatitis C.« less

  10. A new class of finite element variational multiscale turbulence models for incompressible magnetohydrodynamics

    DOE PAGES

    Sondak, D.; Shadid, J. N.; Oberai, A. A.; ...

    2015-04-29

    New large eddy simulation (LES) turbulence models for incompressible magnetohydrodynamics (MHD) derived from the variational multiscale (VMS) formulation for finite element simulations are introduced. The new models include the variational multiscale formulation, a residual-based eddy viscosity model, and a mixed model that combines both of these component models. Each model contains terms that are proportional to the residual of the incompressible MHD equations and is therefore numerically consistent. Moreover, each model is also dynamic, in that its effect vanishes when this residual is small. The new models are tested on the decaying MHD Taylor Green vortex at low and highmore » Reynolds numbers. The evaluation of the models is based on comparisons with available data from direct numerical simulations (DNS) of the time evolution of energies as well as energy spectra at various discrete times. Thus a numerical study, on a sequence of meshes, is presented that demonstrates that the large eddy simulation approaches the DNS solution for these quantities with spatial mesh refinement.« less

  11. Multi-scale streamflow variability responses to precipitation over the headwater catchments in southern China

    NASA Astrophysics Data System (ADS)

    Niu, Jun; Chen, Ji; Wang, Keyi; Sivakumar, Bellie

    2017-08-01

    This paper examines the multi-scale streamflow variability responses to precipitation over 16 headwater catchments in the Pearl River basin, South China. The long-term daily streamflow data (1952-2000), obtained using a macro-scale hydrological model, the Variable Infiltration Capacity (VIC) model, and a routing scheme, are studied. Temporal features of streamflow variability at 10 different timescales, ranging from 6 days to 8.4 years, are revealed with the Haar wavelet transform. The principal component analysis (PCA) is performed to categorize the headwater catchments with the coherent modes of multi-scale wavelet spectra. The results indicate that three distinct modes, with different variability distributions at small timescales and seasonal scales, can explain 95% of the streamflow variability. A large majority of the catchments (i.e. 12 out of 16) exhibit consistent mode feature on multi-scale variability throughout three sub-periods (1952-1968, 1969-1984, and 1985-2000). The multi-scale streamflow variability responses to precipitation are identified to be associated with the regional flood and drought tendency over the headwater catchments in southern China.

  12. Multiscale Shannon's Entropy Modeling of Orientation and Distance in Steel Fiber Micro-Tomography Data.

    PubMed

    Chiverton, John P; Ige, Olubisi; Barnett, Stephanie J; Parry, Tony

    2017-11-01

    This paper is concerned with the modeling and analysis of the orientation and distance between steel fibers in X-ray micro-tomography data. The advantage of combining both orientation and separation in a model is that it helps provide a detailed understanding of how the steel fibers are arranged, which is easy to compare. The developed models are designed to summarize the randomness of the orientation distribution of the steel fibers both locally and across an entire volume based on multiscale entropy. Theoretical modeling, simulation, and application to real imaging data are shown here. The theoretical modeling of multiscale entropy for orientation includes a proof showing the final form of the multiscale taken over a linear range of scales. A series of image processing operations are also included to overcome interslice connectivity issues to help derive the statistical descriptions of the orientation distributions of the steel fibers. The results demonstrate that multiscale entropy provides unique insights into both simulated and real imaging data of steel fiber reinforced concrete.

  13. Relative entropy as a universal metric for multiscale errors

    NASA Astrophysics Data System (ADS)

    Chaimovich, Aviel; Shell, M. Scott

    2010-06-01

    We show that the relative entropy, Srel , suggests a fundamental indicator of the success of multiscale studies, in which coarse-grained (CG) models are linked to first-principles (FP) ones. We demonstrate that Srel inherently measures fluctuations in the differences between CG and FP potential energy landscapes, and develop a theory that tightly and generally links it to errors associated with coarse graining. We consider two simple case studies substantiating these results, and suggest that Srel has important ramifications for evaluating and designing coarse-grained models.

  14. Relative entropy as a universal metric for multiscale errors.

    PubMed

    Chaimovich, Aviel; Shell, M Scott

    2010-06-01

    We show that the relative entropy, Srel, suggests a fundamental indicator of the success of multiscale studies, in which coarse-grained (CG) models are linked to first-principles (FP) ones. We demonstrate that Srel inherently measures fluctuations in the differences between CG and FP potential energy landscapes, and develop a theory that tightly and generally links it to errors associated with coarse graining. We consider two simple case studies substantiating these results, and suggest that Srel has important ramifications for evaluating and designing coarse-grained models.

  15. Multi-Scale Simulation of High Energy Density Ionic Liquids

    DTIC Science & Technology

    2007-06-19

    and simulation of ionic liquids (ILs). A polarizable model was developed to simulate ILs more accurately at the atomistic level. A multiscale coarse...propellant, 1- hydroxyethyl-4-amino-1, 2, 4-triazolium nitrate (HEATN), were studied with the all-atom polarizable model. The mechanism suggested for HEATN...with this AFOSR-supported project, a polarizable forcefield for the ionic liquids such as 1-ethyl-3-methylimidazolium nitrate (EMIM*/NO3-) was

  16. Characterization of Cyclohexanone Inclusions in Class 1 RDX

    DTIC Science & Technology

    2014-06-01

    characterized with respect to solvent inclusions in support of a U.S. Army Research Laboratory (ARL) program to model Multiscale Response of Energetic...pertinent to their modeling effort under the Multiscale Response of Energetic Materials (MREM) program, and the Weapons and Materials Research...support of a U.S. Army Research Laboratory (ARL) initiative called “ Multiscale Modeling of Energetic Materials” (MREM). The MREM program aims, for

  17. Multiscale Models in the Biomechanics of Plant Growth

    PubMed Central

    Fozard, John A.

    2015-01-01

    Plant growth occurs through the coordinated expansion of tightly adherent cells, driven by regulated softening of cell walls. It is an intrinsically multiscale process, with the integrated properties of multiple cell walls shaping the whole tissue. Multiscale models encode physical relationships to bring new understanding to plant physiology and development. PMID:25729061

  18. Systems oncology: towards patient-specific treatment regimes informed by multiscale mathematical modelling.

    PubMed

    Powathil, Gibin G; Swat, Maciej; Chaplain, Mark A J

    2015-02-01

    The multiscale complexity of cancer as a disease necessitates a corresponding multiscale modelling approach to produce truly predictive mathematical models capable of improving existing treatment protocols. To capture all the dynamics of solid tumour growth and its progression, mathematical modellers need to couple biological processes occurring at various spatial and temporal scales (from genes to tissues). Because effectiveness of cancer therapy is considerably affected by intracellular and extracellular heterogeneities as well as by the dynamical changes in the tissue microenvironment, any model attempt to optimise existing protocols must consider these factors ultimately leading to improved multimodal treatment regimes. By improving existing and building new mathematical models of cancer, modellers can play important role in preventing the use of potentially sub-optimal treatment combinations. In this paper, we analyse a multiscale computational mathematical model for cancer growth and spread, incorporating the multiple effects of radiation therapy and chemotherapy in the patient survival probability and implement the model using two different cell based modelling techniques. We show that the insights provided by such multiscale modelling approaches can ultimately help in designing optimal patient-specific multi-modality treatment protocols that may increase patients quality of life. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Radiomics Evaluation of Histological Heterogeneity Using Multiscale Textures Derived From 3D Wavelet Transformation of Multispectral Images.

    PubMed

    Chaddad, Ahmad; Daniel, Paul; Niazi, Tamim

    2018-01-01

    Colorectal cancer (CRC) is markedly heterogeneous and develops progressively toward malignancy through several stages which include stroma (ST), benign hyperplasia (BH), intraepithelial neoplasia (IN) or precursor cancerous lesion, and carcinoma (CA). Identification of the malignancy stage of CRC pathology tissues (PT) allows the most appropriate therapeutic intervention. This study investigates multiscale texture features extracted from CRC pathology sections using 3D wavelet transform (3D-WT) filter. Multiscale features were extracted from digital whole slide images of 39 patients that were segmented in a pre-processing step using an active contour model. The capacity for multiscale texture to compare and classify between PTs was investigated using ANOVA significance test and random forest classifier models, respectively. 12 significant features derived from the multiscale texture (i.e., variance, entropy, and energy) were found to discriminate between CRC grades at a significance value of p  < 0.01 after correction. Combining multiscale texture features lead to a better predictive capacity compared to prediction models based on individual scale features with an average (±SD) classification accuracy of 93.33 (±3.52)%, sensitivity of 88.33 (± 4.12)%, and specificity of 96.89 (± 3.88)%. Entropy was found to be the best classifier feature across all the PT grades with an average of the area under the curve (AUC) value of 91.17, 94.21, 97.70, 100% for ST, BH, IN, and CA, respectively. Our results suggest that multiscale texture features based on 3D-WT are sensitive enough to discriminate between CRC grades with the entropy feature, the best predictor of pathology grade.

  20. Multiscale agent-based cancer modeling.

    PubMed

    Zhang, Le; Wang, Zhihui; Sagotsky, Jonathan A; Deisboeck, Thomas S

    2009-04-01

    Agent-based modeling (ABM) is an in silico technique that is being used in a variety of research areas such as in social sciences, economics and increasingly in biomedicine as an interdisciplinary tool to study the dynamics of complex systems. Here, we describe its applicability to integrative tumor biology research by introducing a multi-scale tumor modeling platform that understands brain cancer as a complex dynamic biosystem. We summarize significant findings of this work, and discuss both challenges and future directions for ABM in the field of cancer research.

  1. Multiscale Granger causality

    NASA Astrophysics Data System (ADS)

    Faes, Luca; Nollo, Giandomenico; Stramaglia, Sebastiano; Marinazzo, Daniele

    2017-10-01

    In the study of complex physical and biological systems represented by multivariate stochastic processes, an issue of great relevance is the description of the system dynamics spanning multiple temporal scales. While methods to assess the dynamic complexity of individual processes at different time scales are well established, multiscale analysis of directed interactions has never been formalized theoretically, and empirical evaluations are complicated by practical issues such as filtering and downsampling. Here we extend the very popular measure of Granger causality (GC), a prominent tool for assessing directed lagged interactions between joint processes, to quantify information transfer across multiple time scales. We show that the multiscale processing of a vector autoregressive (AR) process introduces a moving average (MA) component, and describe how to represent the resulting ARMA process using state space (SS) models and to combine the SS model parameters for computing exact GC values at arbitrarily large time scales. We exploit the theoretical formulation to identify peculiar features of multiscale GC in basic AR processes, and demonstrate with numerical simulations the much larger estimation accuracy of the SS approach compared to pure AR modeling of filtered and downsampled data. The improved computational reliability is exploited to disclose meaningful multiscale patterns of information transfer between global temperature and carbon dioxide concentration time series, both in paleoclimate and in recent years.

  2. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.; hide

    2008-01-01

    Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.

  3. Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success.

    PubMed

    Yankeelov, Thomas E; An, Gary; Saut, Oliver; Luebeck, E Georg; Popel, Aleksander S; Ribba, Benjamin; Vicini, Paolo; Zhou, Xiaobo; Weis, Jared A; Ye, Kaiming; Genin, Guy M

    2016-09-01

    Hierarchical processes spanning several orders of magnitude of both space and time underlie nearly all cancers. Multi-scale statistical, mathematical, and computational modeling methods are central to designing, implementing and assessing treatment strategies that account for these hierarchies. The basic science underlying these modeling efforts is maturing into a new discipline that is close to influencing and facilitating clinical successes. The purpose of this review is to capture the state-of-the-art as well as the key barriers to success for multi-scale modeling in clinical oncology. We begin with a summary of the long-envisioned promise of multi-scale modeling in clinical oncology, including the synthesis of disparate data types into models that reveal underlying mechanisms and allow for experimental testing of hypotheses. We then evaluate the mathematical techniques employed most widely and present several examples illustrating their application as well as the current gap between pre-clinical and clinical applications. We conclude with a discussion of what we view to be the key challenges and opportunities for multi-scale modeling in clinical oncology.

  4. Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success

    PubMed Central

    Yankeelov, Thomas E.; An, Gary; Saut, Oliver; Luebeck, E. Georg; Popel, Aleksander S.; Ribba, Benjamin; Vicini, Paolo; Zhou, Xiaobo; Weis, Jared A.; Ye, Kaiming; Genin, Guy M.

    2016-01-01

    Hierarchical processes spanning several orders of magnitude of both space and time underlie nearly all cancers. Multi-scale statistical, mathematical, and computational modeling methods are central to designing, implementing and assessing treatment strategies that account for these hierarchies. The basic science underlying these modeling efforts is maturing into a new discipline that is close to influencing and facilitating clinical successes. The purpose of this review is to capture the state-of-the-art as well as the key barriers to success for multi-scale modeling in clinical oncology. We begin with a summary of the long-envisioned promise of multi-scale modeling in clinical oncology, including the synthesis of disparate data types into models that reveal underlying mechanisms and allow for experimental testing of hypotheses. We then evaluate the mathematical techniques employed most widely and present several examples illustrating their application as well as the current gap between pre-clinical and clinical applications. We conclude with a discussion of what we view to be the key challenges and opportunities for multi-scale modeling in clinical oncology. PMID:27384942

  5. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Gibson, Richard L.

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  6. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai, E-mail: kaigao87@gmail.com; Fu, Shubin, E-mail: shubinfu89@gmail.com; Gibson, Richard L., E-mail: gibson@tamu.edu

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  7. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE PAGES

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; ...

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  8. Integrating Intracellular Dynamics Using CompuCell3D and Bionetsolver: Applications to Multiscale Modelling of Cancer Cell Growth and Invasion

    PubMed Central

    Andasari, Vivi; Roper, Ryan T.; Swat, Maciej H.; Chaplain, Mark A. J.

    2012-01-01

    In this paper we present a multiscale, individual-based simulation environment that integrates CompuCell3D for lattice-based modelling on the cellular level and Bionetsolver for intracellular modelling. CompuCell3D or CC3D provides an implementation of the lattice-based Cellular Potts Model or CPM (also known as the Glazier-Graner-Hogeweg or GGH model) and a Monte Carlo method based on the metropolis algorithm for system evolution. The integration of CC3D for cellular systems with Bionetsolver for subcellular systems enables us to develop a multiscale mathematical model and to study the evolution of cell behaviour due to the dynamics inside of the cells, capturing aspects of cell behaviour and interaction that is not possible using continuum approaches. We then apply this multiscale modelling technique to a model of cancer growth and invasion, based on a previously published model of Ramis-Conde et al. (2008) where individual cell behaviour is driven by a molecular network describing the dynamics of E-cadherin and -catenin. In this model, which we refer to as the centre-based model, an alternative individual-based modelling technique was used, namely, a lattice-free approach. In many respects, the GGH or CPM methodology and the approach of the centre-based model have the same overall goal, that is to mimic behaviours and interactions of biological cells. Although the mathematical foundations and computational implementations of the two approaches are very different, the results of the presented simulations are compatible with each other, suggesting that by using individual-based approaches we can formulate a natural way of describing complex multi-cell, multiscale models. The ability to easily reproduce results of one modelling approach using an alternative approach is also essential from a model cross-validation standpoint and also helps to identify any modelling artefacts specific to a given computational approach. PMID:22461894

  9. Introduction and application of the multiscale coefficient of variation analysis.

    PubMed

    Abney, Drew H; Kello, Christopher T; Balasubramaniam, Ramesh

    2017-10-01

    Quantifying how patterns of behavior relate across multiple levels of measurement typically requires long time series for reliable parameter estimation. We describe a novel analysis that estimates patterns of variability across multiple scales of analysis suitable for time series of short duration. The multiscale coefficient of variation (MSCV) measures the distance between local coefficient of variation estimates within particular time windows and the overall coefficient of variation across all time samples. We first describe the MSCV analysis and provide an example analytical protocol with corresponding MATLAB implementation and code. Next, we present a simulation study testing the new analysis using time series generated by ARFIMA models that span white noise, short-term and long-term correlations. The MSCV analysis was observed to be sensitive to specific parameters of ARFIMA models varying in the type of temporal structure and time series length. We then apply the MSCV analysis to short time series of speech phrases and musical themes to show commonalities in multiscale structure. The simulation and application studies provide evidence that the MSCV analysis can discriminate between time series varying in multiscale structure and length.

  10. Multiscale analysis of information dynamics for linear multivariate processes.

    PubMed

    Faes, Luca; Montalto, Alessandro; Stramaglia, Sebastiano; Nollo, Giandomenico; Marinazzo, Daniele

    2016-08-01

    In the study of complex physical and physiological systems represented by multivariate time series, an issue of great interest is the description of the system dynamics over a range of different temporal scales. While information-theoretic approaches to the multiscale analysis of complex dynamics are being increasingly used, the theoretical properties of the applied measures are poorly understood. This study introduces for the first time a framework for the analytical computation of information dynamics for linear multivariate stochastic processes explored at different time scales. After showing that the multiscale processing of a vector autoregressive (VAR) process introduces a moving average (MA) component, we describe how to represent the resulting VARMA process using statespace (SS) models and how to exploit the SS model parameters to compute analytical measures of information storage and information transfer for the original and rescaled processes. The framework is then used to quantify multiscale information dynamics for simulated unidirectionally and bidirectionally coupled VAR processes, showing that rescaling may lead to insightful patterns of information storage and transfer but also to potentially misleading behaviors.

  11. Molecular systems biology of ErbB1 signaling: bridging the gap through multiscale modeling and high-performance computing.

    PubMed

    Shih, Andrew J; Purvis, Jeremy; Radhakrishnan, Ravi

    2008-12-01

    The complexity in intracellular signaling mechanisms relevant for the conquest of many diseases resides at different levels of organization with scales ranging from the subatomic realm relevant to catalytic functions of enzymes to the mesoscopic realm relevant to the cooperative association of molecular assemblies and membrane processes. Consequently, the challenge of representing and quantifying functional or dysfunctional modules within the networks remains due to the current limitations in our understanding of mesoscopic biology, i.e., how the components assemble into functional molecular ensembles. A multiscale approach is necessary to treat a hierarchy of interactions ranging from molecular (nm, ns) to signaling (microm, ms) length and time scales, which necessitates the development and application of specialized modeling tools. Complementary to multiscale experimentation (encompassing structural biology, mechanistic enzymology, cell biology, and single molecule studies) multiscale modeling offers a powerful and quantitative alternative for the study of functional intracellular signaling modules. Here, we describe the application of a multiscale approach to signaling mediated by the ErbB1 receptor which constitutes a network hub for the cell's proliferative, migratory, and survival programs. Through our multiscale model, we mechanistically describe how point-mutations in the ErbB1 receptor can profoundly alter signaling characteristics leading to the onset of oncogenic transformations. Specifically, we describe how the point mutations induce cascading fragility mechanisms at the molecular scale as well as at the scale of the signaling network to preferentially activate the survival factor Akt. We provide a quantitative explanation for how the hallmark of preferential Akt activation in cell-lines harboring the constitutively active mutant ErbB1 receptors causes these cell-lines to be addicted to ErbB1-mediated generation of survival signals. Consequently, inhibition of ErbB1 activity leads to a remarkable therapeutic response in the addicted cell lines.

  12. Bridging scales through multiscale modeling: a case study on protein kinase A.

    PubMed

    Boras, Britton W; Hirakis, Sophia P; Votapka, Lane W; Malmstrom, Robert D; Amaro, Rommie E; McCulloch, Andrew D

    2015-01-01

    The goal of multiscale modeling in biology is to use structurally based physico-chemical models to integrate across temporal and spatial scales of biology and thereby improve mechanistic understanding of, for example, how a single mutation can alter organism-scale phenotypes. This approach may also inform therapeutic strategies or identify candidate drug targets that might otherwise have been overlooked. However, in many cases, it remains unclear how best to synthesize information obtained from various scales and analysis approaches, such as atomistic molecular models, Markov state models (MSM), subcellular network models, and whole cell models. In this paper, we use protein kinase A (PKA) activation as a case study to explore how computational methods that model different physical scales can complement each other and integrate into an improved multiscale representation of the biological mechanisms. Using measured crystal structures, we show how molecular dynamics (MD) simulations coupled with atomic-scale MSMs can provide conformations for Brownian dynamics (BD) simulations to feed transitional states and kinetic parameters into protein-scale MSMs. We discuss how milestoning can give reaction probabilities and forward-rate constants of cAMP association events by seamlessly integrating MD and BD simulation scales. These rate constants coupled with MSMs provide a robust representation of the free energy landscape, enabling access to kinetic, and thermodynamic parameters unavailable from current experimental data. These approaches have helped to illuminate the cooperative nature of PKA activation in response to distinct cAMP binding events. Collectively, this approach exemplifies a general strategy for multiscale model development that is applicable to a wide range of biological problems.

  13. Multiscale Simulation of Blood Flow in Brain Arteries with an Aneurysm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leopold Grinberg; Vitali Morozov; Dmitry A. Fedosov

    2013-04-24

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations.This animation presents results of studies used in the development of a multi-scale visualization methodology. First we use streamlines to show the path the flow is taking as it moves through the system, including the aneurysm. Next we investigate themore » process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of the aneurysm.« less

  14. Capturing remote mixing due to internal tides using multi-scale modeling tool: SOMAR-LES

    NASA Astrophysics Data System (ADS)

    Santilli, Edward; Chalamalla, Vamsi; Scotti, Alberto; Sarkar, Sutanu

    2016-11-01

    Internal tides that are generated during the interaction of an oscillating barotropic tide with the bottom bathymetry dissipate only a fraction of their energy near the generation region. The rest is radiated away in the form of low- high-mode internal tides. These internal tides dissipate energy at remote locations when they interact with the upper ocean pycnocline, continental slope, and large scale eddies. Capturing the wide range of length and time scales involved during the life-cycle of internal tides is computationally very expensive. A recently developed multi-scale modeling tool called SOMAR-LES combines the adaptive grid refinement features of SOMAR with the turbulence modeling features of a Large Eddy Simulation (LES) to capture multi-scale processes at a reduced computational cost. Numerical simulations of internal tide generation at idealized bottom bathymetries are performed to demonstrate this multi-scale modeling technique. Although each of the remote mixing phenomena have been considered independently in previous studies, this work aims to capture remote mixing processes during the life cycle of an internal tide in more realistic settings, by allowing multi-level (coarse and fine) grids to co-exist and exchange information during the time stepping process.

  15. Integrated multiscale biomaterials experiment and modelling: a perspective

    PubMed Central

    Buehler, Markus J.; Genin, Guy M.

    2016-01-01

    Advances in multiscale models and computational power have enabled a broad toolset to predict how molecules, cells, tissues and organs behave and develop. A key theme in biological systems is the emergence of macroscale behaviour from collective behaviours across a range of length and timescales, and a key element of these models is therefore hierarchical simulation. However, this predictive capacity has far outstripped our ability to validate predictions experimentally, particularly when multiple hierarchical levels are involved. The state of the art represents careful integration of multiscale experiment and modelling, and yields not only validation, but also insights into deformation and relaxation mechanisms across scales. We present here a sampling of key results that highlight both challenges and opportunities for integrated multiscale experiment and modelling in biological systems. PMID:28981126

  16. Biological materials by design.

    PubMed

    Qin, Zhao; Dimas, Leon; Adler, David; Bratzel, Graham; Buehler, Markus J

    2014-02-19

    In this topical review we discuss recent advances in the use of physical insight into the way biological materials function, to design novel engineered materials 'from scratch', or from the level of fundamental building blocks upwards and by using computational multiscale methods that link chemistry to material function. We present studies that connect advances in multiscale hierarchical material structuring with material synthesis and testing, review case studies of wood and other biological materials, and illustrate how engineered fiber composites and bulk materials are designed, modeled, and then synthesized and tested experimentally. The integration of experiment and simulation in multiscale design opens new avenues to explore the physics of materials from a fundamental perspective, and using complementary strengths from models and empirical techniques. Recent developments in this field illustrate a new paradigm by which complex material functionality is achieved through hierarchical structuring in spite of simple material constituents.

  17. Computational aspects in mechanical modeling of the articular cartilage tissue.

    PubMed

    Mohammadi, Hadi; Mequanint, Kibret; Herzog, Walter

    2013-04-01

    This review focuses on the modeling of articular cartilage (at the tissue level), chondrocyte mechanobiology (at the cell level) and a combination of both in a multiscale computation scheme. The primary objective is to evaluate the advantages and disadvantages of conventional models implemented to study the mechanics of the articular cartilage tissue and chondrocytes. From monophasic material models as the simplest form to more complicated multiscale theories, these approaches have been frequently used to model articular cartilage and have contributed significantly to modeling joint mechanics, addressing and resolving numerous issues regarding cartilage mechanics and function. It should be noted that attentiveness is important when using different modeling approaches, as the choice of the model limits the applications available. In this review, we discuss the conventional models applicable to some of the mechanical aspects of articular cartilage such as lubrication, swelling pressure and chondrocyte mechanics and address some of the issues associated with the current modeling approaches. We then suggest future pathways for a more realistic modeling strategy as applied for the simulation of the mechanics of the cartilage tissue using multiscale and parallelized finite element method.

  18. A systematic multiscale modeling and experimental approach to protect grain boundaries in magnesium alloys from corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horstemeyer, Mark R.; Chaudhuri, Santanu

    2015-09-30

    A multiscale modeling Internal State Variable (ISV) constitutive model was developed that captures the fundamental structure-property relationships. The macroscale ISV model used lower length scale simulations (Butler-Volmer and Electronics Structures results) in order to inform the ISVs at the macroscale. The chemomechanical ISV model was calibrated and validated from experiments with magnesium (Mg) alloys that were investigated under corrosive environments coupled with experimental electrochemical studies. Because the ISV chemomechanical model is physically based, it can be used for other material systems to predict corrosion behavior. As such, others can use the chemomechanical model for analyzing corrosion effects on their designs.

  19. Application of Mortar Coupling in Multiscale Modelling of Coupled Flow, Transport, and Biofilm Growth in Porous Media

    NASA Astrophysics Data System (ADS)

    Laleian, A.; Valocchi, A. J.; Werth, C. J.

    2017-12-01

    Multiscale models of reactive transport in porous media are capable of capturing complex pore-scale processes while leveraging the efficiency of continuum-scale models. In particular, porosity changes caused by biofilm development yield complex feedbacks between transport and reaction that are difficult to quantify at the continuum scale. Pore-scale models, needed to accurately resolve these dynamics, are often impractical for applications due to their computational cost. To address this challenge, we are developing a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled with a mortar method providing continuity at interfaces. We explore two decompositions of coupled pore-scale and continuum-scale regions to study biofilm growth in a transverse mixing zone. In the first decomposition, all reaction is confined to a pore-scale region extending the transverse mixing zone length. Only solute transport occurs in the surrounding continuum-scale regions. Relative to a fully pore-scale result, we find the multiscale model with this decomposition has a reduced run time and consistent result in terms of biofilm growth and solute utilization. In the second decomposition, reaction occurs in both an up-gradient pore-scale region and a down-gradient continuum-scale region. To quantify clogging, the continuum-scale model implements empirical relations between porosity and continuum-scale parameters, such as permeability and the transverse dispersion coefficient. Solutes are sufficiently mixed at the end of the pore-scale region, such that the initial reaction rate is accurately computed using averaged concentrations in the continuum-scale region. Relative to a fully pore-scale result, we find accuracy of biomass growth in the multiscale model with this decomposition improves as the interface between pore-scale and continuum-scale regions moves downgradient where transverse mixing is more fully developed. Also, this decomposition poses additional challenges with respect to mortar coupling. We explore these challenges and potential solutions. While recent work has demonstrated growing interest in multiscale models, further development is needed for their application to field-scale subsurface contaminant transport and remediation.

  20. A Numerical Wind Tunnel Study of Viscous-Inviscid Interaction

    DTIC Science & Technology

    1992-01-01

    partially successful. In Task 1 we devised surface boundary conditions for the multiscale model including effects of roughness and blowing. This work tied up ...directed at cleaning up some loose ends in de- veloping the Wilcox multiscale model (see Appendix R). The most significant issue was the development of...the following correlation between SR and k , will reproduce measured effects of sand-grain roughness for values of k up to about 400. ( k, ញ SiR (42

  1. Multiscale synchrony behaviors of paired financial time series by 3D multi-continuum percolation

    NASA Astrophysics Data System (ADS)

    Wang, M.; Wang, J.; Wang, B. T.

    2018-02-01

    Multiscale synchrony behaviors and nonlinear dynamics of paired financial time series are investigated, in an attempt to study the cross correlation relationships between two stock markets. A random stock price model is developed by a new system called three-dimensional (3D) multi-continuum percolation system, which is utilized to imitate the formation mechanism of price dynamics and explain the nonlinear behaviors found in financial time series. We assume that the price fluctuations are caused by the spread of investment information. The cluster of 3D multi-continuum percolation represents the cluster of investors who share the same investment attitude. In this paper, we focus on the paired return series, the paired volatility series, and the paired intrinsic mode functions which are decomposed by empirical mode decomposition. A new cross recurrence quantification analysis is put forward, combining with multiscale cross-sample entropy, to investigate the multiscale synchrony of these paired series from the proposed model. The corresponding research is also carried out for two China stock markets as comparison.

  2. Community effort endorsing multiscale modelling, multiscale data science and multiscale computing for systems medicine.

    PubMed

    Zanin, Massimiliano; Chorbev, Ivan; Stres, Blaz; Stalidzans, Egils; Vera, Julio; Tieri, Paolo; Castiglione, Filippo; Groen, Derek; Zheng, Huiru; Baumbach, Jan; Schmid, Johannes A; Basilio, José; Klimek, Peter; Debeljak, Nataša; Rozman, Damjana; Schmidt, Harald H H W

    2017-12-05

    Systems medicine holds many promises, but has so far provided only a limited number of proofs of principle. To address this road block, possible barriers and challenges of translating systems medicine into clinical practice need to be identified and addressed. The members of the European Cooperation in Science and Technology (COST) Action CA15120 Open Multiscale Systems Medicine (OpenMultiMed) wish to engage the scientific community of systems medicine and multiscale modelling, data science and computing, to provide their feedback in a structured manner. This will result in follow-up white papers and open access resources to accelerate the clinical translation of systems medicine. © The Author 2017. Published by Oxford University Press.

  3. Multi-element least square HDMR methods and their applications for stochastic multiscale model reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Xinping, E-mail: exping@126.com

    Stochastic multiscale modeling has become a necessary approach to quantify uncertainty and characterize multiscale phenomena for many practical problems such as flows in stochastic porous media. The numerical treatment of the stochastic multiscale models can be very challengeable as the existence of complex uncertainty and multiple physical scales in the models. To efficiently take care of the difficulty, we construct a computational reduced model. To this end, we propose a multi-element least square high-dimensional model representation (HDMR) method, through which the random domain is adaptively decomposed into a few subdomains, and a local least square HDMR is constructed in eachmore » subdomain. These local HDMRs are represented by a finite number of orthogonal basis functions defined in low-dimensional random spaces. The coefficients in the local HDMRs are determined using least square methods. We paste all the local HDMR approximations together to form a global HDMR approximation. To further reduce computational cost, we present a multi-element reduced least-square HDMR, which improves both efficiency and approximation accuracy in certain conditions. To effectively treat heterogeneity properties and multiscale features in the models, we integrate multiscale finite element methods with multi-element least-square HDMR for stochastic multiscale model reduction. This approach significantly reduces the original model's complexity in both the resolution of the physical space and the high-dimensional stochastic space. We analyze the proposed approach, and provide a set of numerical experiments to demonstrate the performance of the presented model reduction techniques. - Highlights: • Multi-element least square HDMR is proposed to treat stochastic models. • Random domain is adaptively decomposed into some subdomains to obtain adaptive multi-element HDMR. • Least-square reduced HDMR is proposed to enhance computation efficiency and approximation accuracy in certain conditions. • Integrating MsFEM and multi-element least square HDMR can significantly reduce computation complexity.« less

  4. Identity in agent-based models : modeling dynamic multiscale social processes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozik, J.; Sallach, D. L.; Macal, C. M.

    Identity-related issues play central roles in many current events, including those involving factional politics, sectarianism, and tribal conflicts. Two popular models from the computational-social-science (CSS) literature - the Threat Anticipation Program and SharedID models - incorporate notions of identity (individual and collective) and processes of identity formation. A multiscale conceptual framework that extends some ideas presented in these models and draws other capabilities from the broader CSS literature is useful in modeling the formation of political identities. The dynamic, multiscale processes that constitute and transform social identities can be mapped to expressive structures of the framework

  5. Multi-scale signed envelope inversion

    NASA Astrophysics Data System (ADS)

    Chen, Guo-Xin; Wu, Ru-Shan; Wang, Yu-Qing; Chen, Sheng-Chang

    2018-06-01

    Envelope inversion based on modulation signal mode was proposed to reconstruct large-scale structures of underground media. In order to solve the shortcomings of conventional envelope inversion, multi-scale envelope inversion was proposed using new envelope Fréchet derivative and multi-scale inversion strategy to invert strong contrast models. In multi-scale envelope inversion, amplitude demodulation was used to extract the low frequency information from envelope data. However, only to use amplitude demodulation method will cause the loss of wavefield polarity information, thus increasing the possibility of inversion to obtain multiple solutions. In this paper we proposed a new demodulation method which can contain both the amplitude and polarity information of the envelope data. Then we introduced this demodulation method into multi-scale envelope inversion, and proposed a new misfit functional: multi-scale signed envelope inversion. In the numerical tests, we applied the new inversion method to the salt layer model and SEG/EAGE 2-D Salt model using low-cut source (frequency components below 4 Hz were truncated). The results of numerical test demonstrated the effectiveness of this method.

  6. A Multiscale Progressive Failure Modeling Methodology for Composites that Includes Fiber Strength Stochastics

    NASA Technical Reports Server (NTRS)

    Ricks, Trenton M.; Lacy, Thomas E., Jr.; Bednarcyk, Brett A.; Arnold, Steven M.; Hutchins, John W.

    2014-01-01

    A multiscale modeling methodology was developed for continuous fiber composites that incorporates a statistical distribution of fiber strengths into coupled multiscale micromechanics/finite element (FE) analyses. A modified two-parameter Weibull cumulative distribution function, which accounts for the effect of fiber length on the probability of failure, was used to characterize the statistical distribution of fiber strengths. A parametric study using the NASA Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) was performed to assess the effect of variable fiber strengths on local composite failure within a repeating unit cell (RUC) and subsequent global failure. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a unidirectional SCS-6/TIMETAL 21S metal matrix composite tensile dogbone specimen at 650 degC. Multiscale progressive failure analyses were performed to quantify the effect of spatially varying fiber strengths on the RUC-averaged and global stress-strain responses and failure. The ultimate composite strengths and distribution of failure locations (predominately within the gage section) reasonably matched the experimentally observed failure behavior. The predicted composite failure behavior suggests that use of macroscale models that exploit global geometric symmetries are inappropriate for cases where the actual distribution of local fiber strengths displays no such symmetries. This issue has not received much attention in the literature. Moreover, the model discretization at a specific length scale can have a profound effect on the computational costs associated with multiscale simulations.models that yield accurate yet tractable results.

  7. A Computational Systems Biology Software Platform for Multiscale Modeling and Simulation: Integrating Whole-Body Physiology, Disease Biology, and Molecular Reaction Networks

    PubMed Central

    Eissing, Thomas; Kuepfer, Lars; Becker, Corina; Block, Michael; Coboeken, Katrin; Gaub, Thomas; Goerlitz, Linus; Jaeger, Juergen; Loosen, Roland; Ludewig, Bernd; Meyer, Michaela; Niederalt, Christoph; Sevestre, Michael; Siegmund, Hans-Ulrich; Solodenko, Juri; Thelen, Kirstin; Telle, Ulrich; Weiss, Wolfgang; Wendl, Thomas; Willmann, Stefan; Lippert, Joerg

    2011-01-01

    Today, in silico studies and trial simulations already complement experimental approaches in pharmaceutical R&D and have become indispensable tools for decision making and communication with regulatory agencies. While biology is multiscale by nature, project work, and software tools usually focus on isolated aspects of drug action, such as pharmacokinetics at the organism scale or pharmacodynamic interaction on the molecular level. We present a modeling and simulation software platform consisting of PK-Sim® and MoBi® capable of building and simulating models that integrate across biological scales. A prototypical multiscale model for the progression of a pancreatic tumor and its response to pharmacotherapy is constructed and virtual patients are treated with a prodrug activated by hepatic metabolization. Tumor growth is driven by signal transduction leading to cell cycle transition and proliferation. Free tumor concentrations of the active metabolite inhibit Raf kinase in the signaling cascade and thereby cell cycle progression. In a virtual clinical study, the individual therapeutic outcome of the chemotherapeutic intervention is simulated for a large population with heterogeneous genomic background. Thereby, the platform allows efficient model building and integration of biological knowledge and prior data from all biological scales. Experimental in vitro model systems can be linked with observations in animal experiments and clinical trials. The interplay between patients, diseases, and drugs and topics with high clinical relevance such as the role of pharmacogenomics, drug–drug, or drug–metabolite interactions can be addressed using this mechanistic, insight driven multiscale modeling approach. PMID:21483730

  8. Key Factors Influencing the Energy Absorption of Dual-Phase Steels: Multiscale Material Model Approach and Microstructural Optimization

    NASA Astrophysics Data System (ADS)

    Belgasam, Tarek M.; Zbib, Hussein M.

    2018-06-01

    The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro-macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.

  9. Key Factors Influencing the Energy Absorption of Dual-Phase Steels: Multiscale Material Model Approach and Microstructural Optimization

    NASA Astrophysics Data System (ADS)

    Belgasam, Tarek M.; Zbib, Hussein M.

    2018-03-01

    The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro-macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.

  10. A dynamic multi-scale Markov model based methodology for remaining life prediction

    NASA Astrophysics Data System (ADS)

    Yan, Jihong; Guo, Chaozhong; Wang, Xing

    2011-05-01

    The ability to accurately predict the remaining life of partially degraded components is crucial in prognostics. In this paper, a performance degradation index is designed using multi-feature fusion techniques to represent deterioration severities of facilities. Based on this indicator, an improved Markov model is proposed for remaining life prediction. Fuzzy C-Means (FCM) algorithm is employed to perform state division for Markov model in order to avoid the uncertainty of state division caused by the hard division approach. Considering the influence of both historical and real time data, a dynamic prediction method is introduced into Markov model by a weighted coefficient. Multi-scale theory is employed to solve the state division problem of multi-sample prediction. Consequently, a dynamic multi-scale Markov model is constructed. An experiment is designed based on a Bently-RK4 rotor testbed to validate the dynamic multi-scale Markov model, experimental results illustrate the effectiveness of the methodology.

  11. Day-Ahead Crude Oil Price Forecasting Using a Novel Morphological Component Analysis Based Model

    PubMed Central

    Zhu, Qing; Zou, Yingchao; Lai, Kin Keung

    2014-01-01

    As a typical nonlinear and dynamic system, the crude oil price movement is difficult to predict and its accurate forecasting remains the subject of intense research activity. Recent empirical evidence suggests that the multiscale data characteristics in the price movement are another important stylized fact. The incorporation of mixture of data characteristics in the time scale domain during the modelling process can lead to significant performance improvement. This paper proposes a novel morphological component analysis based hybrid methodology for modeling the multiscale heterogeneous characteristics of the price movement in the crude oil markets. Empirical studies in two representative benchmark crude oil markets reveal the existence of multiscale heterogeneous microdata structure. The significant performance improvement of the proposed algorithm incorporating the heterogeneous data characteristics, against benchmark random walk, ARMA, and SVR models, is also attributed to the innovative methodology proposed to incorporate this important stylized fact during the modelling process. Meanwhile, work in this paper offers additional insights into the heterogeneous market microstructure with economic viable interpretations. PMID:25061614

  12. Day-ahead crude oil price forecasting using a novel morphological component analysis based model.

    PubMed

    Zhu, Qing; He, Kaijian; Zou, Yingchao; Lai, Kin Keung

    2014-01-01

    As a typical nonlinear and dynamic system, the crude oil price movement is difficult to predict and its accurate forecasting remains the subject of intense research activity. Recent empirical evidence suggests that the multiscale data characteristics in the price movement are another important stylized fact. The incorporation of mixture of data characteristics in the time scale domain during the modelling process can lead to significant performance improvement. This paper proposes a novel morphological component analysis based hybrid methodology for modeling the multiscale heterogeneous characteristics of the price movement in the crude oil markets. Empirical studies in two representative benchmark crude oil markets reveal the existence of multiscale heterogeneous microdata structure. The significant performance improvement of the proposed algorithm incorporating the heterogeneous data characteristics, against benchmark random walk, ARMA, and SVR models, is also attributed to the innovative methodology proposed to incorporate this important stylized fact during the modelling process. Meanwhile, work in this paper offers additional insights into the heterogeneous market microstructure with economic viable interpretations.

  13. Multiscale Modeling of Damage Processes in fcc Aluminum: From Atoms to Grains

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Saether, E.; Yamakov, V.

    2008-01-01

    Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, current analysis is limited to small domains and increasing the size of the MD domain quickly presents intractable computational demands. A preferred approach to surmount this computational limitation has been to combine continuum mechanics-based modeling procedures, such as the finite element method (FEM), with MD analyses thereby reducing the region of atomic scale refinement. Such multiscale modeling strategies can be divided into two broad classifications: concurrent multiscale methods that directly incorporate an atomistic domain within a continuum domain and sequential multiscale methods that extract an averaged response from the atomistic simulation for later use as a constitutive model in a continuum analysis.

  14. Simulation of Left Atrial Function Using a Multi-Scale Model of the Cardiovascular System

    PubMed Central

    Pironet, Antoine; Dauby, Pierre C.; Paeme, Sabine; Kosta, Sarah; Chase, J. Geoffrey; Desaive, Thomas

    2013-01-01

    During a full cardiac cycle, the left atrium successively behaves as a reservoir, a conduit and a pump. This complex behavior makes it unrealistic to apply the time-varying elastance theory to characterize the left atrium, first, because this theory has known limitations, and second, because it is still uncertain whether the load independence hypothesis holds. In this study, we aim to bypass this uncertainty by relying on another kind of mathematical model of the cardiac chambers. In the present work, we describe both the left atrium and the left ventricle with a multi-scale model. The multi-scale property of this model comes from the fact that pressure inside a cardiac chamber is derived from a model of the sarcomere behavior. Macroscopic model parameters are identified from reference dog hemodynamic data. The multi-scale model of the cardiovascular system including the left atrium is then simulated to show that the physiological roles of the left atrium are correctly reproduced. This include a biphasic pressure wave and an eight-shaped pressure-volume loop. We also test the validity of our model in non basal conditions by reproducing a preload reduction experiment by inferior vena cava occlusion with the model. We compute the variation of eight indices before and after this experiment and obtain the same variation as experimentally observed for seven out of the eight indices. In summary, the multi-scale mathematical model presented in this work is able to correctly account for the three roles of the left atrium and also exhibits a realistic left atrial pressure-volume loop. Furthermore, the model has been previously presented and validated for the left ventricle. This makes it a proper alternative to the time-varying elastance theory if the focus is set on precisely representing the left atrial and left ventricular behaviors. PMID:23755183

  15. Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabaras, Nicolas J.

    2016-11-08

    Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.

  16. Report of the proceedings of the Colloquium and Workshop on Multiscale Coupled Modeling

    NASA Technical Reports Server (NTRS)

    Koch, Steven E. (Editor)

    1993-01-01

    The Colloquium and Workshop on Multiscale Coupled Modeling was held for the purpose of addressing modeling issues of importance to planning for the Cooperative Multiscale Experiment (CME). The colloquium presentations attempted to assess the current ability of numerical models to accurately simulate the development and evolution of mesoscale cloud and precipitation systems and their cycling of water substance, energy, and trace species. The primary purpose of the workshop was to make specific recommendations for the improvement of mesoscale models prior to the CME, their coupling with cloud, cumulus ensemble, hydrology, air chemistry models, and the observational requirements to initialize and verify these models.

  17. Multiscale Analysis of Structurally-Graded Microstructures Using Molecular Dynamics, Discrete Dislocation Dynamics and Continuum Crystal Plasticity

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.; Mishin, Yuri

    2014-01-01

    A multiscale modeling methodology is developed for structurally-graded material microstructures. Molecular dynamic (MD) simulations are performed at the nanoscale to determine fundamental failure mechanisms and quantify material constitutive parameters. These parameters are used to calibrate material processes at the mesoscale using discrete dislocation dynamics (DD). Different grain boundary interactions with dislocations are analyzed using DD to predict grain-size dependent stress-strain behavior. These relationships are mapped into crystal plasticity (CP) parameters to develop a computationally efficient finite element-based DD/CP model for continuum-level simulations and complete the multiscale analysis by predicting the behavior of macroscopic physical specimens. The present analysis is focused on simulating the behavior of a graded microstructure in which grain sizes are on the order of nanometers in the exterior region and transition to larger, multi-micron size in the interior domain. This microstructural configuration has been shown to offer improved mechanical properties over homogeneous coarse-grained materials by increasing yield stress while maintaining ductility. Various mesoscopic polycrystal models of structurally-graded microstructures are generated, analyzed and used as a benchmark for comparison between multiscale DD/CP model and DD predictions. A final series of simulations utilize the DD/CP analysis method exclusively to study macroscopic models that cannot be analyzed by MD or DD methods alone due to the model size.

  18. Multi-scale damage modelling in a ceramic matrix composite using a finite-element microstructure meshfree methodology

    PubMed Central

    2016-01-01

    The problem of multi-scale modelling of damage development in a SiC ceramic fibre-reinforced SiC matrix ceramic composite tube is addressed, with the objective of demonstrating the ability of the finite-element microstructure meshfree (FEMME) model to introduce important aspects of the microstructure into a larger scale model of the component. These are particularly the location, orientation and geometry of significant porosity and the load-carrying capability and quasi-brittle failure behaviour of the fibre tows. The FEMME model uses finite-element and cellular automata layers, connected by a meshfree layer, to efficiently couple the damage in the microstructure with the strain field at the component level. Comparison is made with experimental observations of damage development in an axially loaded composite tube, studied by X-ray computed tomography and digital volume correlation. Recommendations are made for further development of the model to achieve greater fidelity to the microstructure. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242308

  19. Intergranular Strain Evolution During Biaxial Loading: A Multiscale FE-FFT Approach

    NASA Astrophysics Data System (ADS)

    Upadhyay, M. V.; Capek, J.; Van Petegem, S.; Lebensohn, R. A.; Van Swygenhoven, H.

    2017-05-01

    Predicting the macroscopic and microscopic mechanical response of metals and alloys subjected to complex loading conditions necessarily requires a synergistic combination of multiscale material models and characterization techniques. This article focuses on the use of a multiscale approach to study the difference between intergranular lattice strain evolution for various grain families measured during in situ neutron diffraction on dog bone and cruciform 316L samples. At the macroscale, finite element simulations capture the complex coupling between applied forces and gauge stresses in cruciform geometries. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale full-field elasto-viscoplastic fast Fourier transform crystal plasticity model. The results highlight the role of grain neighborhood on the intergranular strain evolution under uniaxial and equibiaxial loading.

  20. Multiscale simulation of DC corona discharge and ozone generation from nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Pengxiang

    Atmospheric direct current (dc) corona discharge from micro-sized objects has been widely used as an ion source in many devices, such as photocopiers, laser printers, and electronic air cleaners. Shrinking the size of the discharge electrode to the nanometer range (e.g., through the use of carbon nanotubes or CNTs) is expected to lead to a significant reduction in power consumption and detrimental ozone production in these devices. The objectives of this study are to unveil the fundamental physics of the nanoscale corona discharge and to evaluate its performance and ozone production through numerical models. The extremely small size of CNTs presents considerable complexity and challenges in modeling CNT corona discharges. A hybrid multiscale model, which combines a kinetic particle-in-cell plus Monte Carlo collision (PIC-MCC) model and a continuum model, is developed to simulate the corona discharge from nanostructures. The multiscale model is developed in several steps. First, a pure PIC-MCC model is developed and PIC-MCC simulations of corona plasma from micro-sized electrode with same boundary conditions as prior model are performed to validate the PIC-MCC scheme. The agreement between the PIC-MCC model and the prior continuum model indicates the validity of the PIC-MCC scheme. The validated PIC-MCC scheme is then coupled with a continuum model to simulate the corona discharge from a micro-sized electrode. Unlike the prior continuum model which only predicts the corona plasma region, the hybrid model successfully predicts the self-consistent discharge process in the entire corona discharge gap that includes both corona plasma region and unipolar ion region. The voltage-current density curves obtained by the hybrid model agree well with analytical prediction and experimental results. The hybrid modeling approach, which combines the accuracy of a kinetic model and the efficiency of a continuum model, is thus validated for modeling dc corona discharges. For simulation of corona discharges from nanostructures, a one-dimensional (1-D) multiscale model is used due to the prohibitive computational expense associated with two-dimensional (2-D) modeling. Near the nanoscale discharge electrode surface, a kinetic model based on PIC-MCC is used due to a relatively large Knudsen number in this region. Far away from the nanoscale discharge electrode, a continuum model is used since the Knudsen number is very small there. The multiscale modeling results are compared with experimental data. The quantitative agreement in positive discharges and qualitative agreement in negative discharges validate the modeling approach. The mechanism of sustaining the discharge process from nanostructures is revealed and is found to be different from that of discharge from micro- or macro-sized electrodes. Finally, the corona plasma model is combined with a plasma chemistry model and a transport model to predict the ozone production from the nanoscale corona. The dependence of ozone production on the applied potential and air velocity is studied. The electric field distribution in a 2-D multiscale domain (from nanoscale to microscale) is predicted by solving the Poisson's equation using a finite difference scheme. The discretized linear equations are solved using a multigrid method under the framework of PETSc on a paralleled supercomputer. Although the Poisson solver is able to resolve the multiscale field, the prohibitively long computation time limits the use of a 2-D solver in the current PIC-MCC scheme.

  1. Multiscale Modeling of Grain-Boundary Fracture: Cohesive Zone Models Parameterized From Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Phillips, Dawn R.; Yamakov, Vesselin

    2006-01-01

    A multiscale modeling strategy is developed to study grain boundary fracture in polycrystalline aluminum. Atomistic simulation is used to model fundamental nanoscale deformation and fracture mechanisms and to develop a constitutive relationship for separation along a grain boundary interface. The nanoscale constitutive relationship is then parameterized within a cohesive zone model to represent variations in grain boundary properties. These variations arise from the presence of vacancies, intersticies, and other defects in addition to deviations in grain boundary angle from the baseline configuration considered in the molecular dynamics simulation. The parameterized cohesive zone models are then used to model grain boundaries within finite element analyses of aluminum polycrystals.

  2. Multi-level, multi-scale resource selection functions and resistance surfaces for conservation planning: Pumas as a case study

    PubMed Central

    Vickers, T. Winston; Ernest, Holly B.; Boyce, Walter M.

    2017-01-01

    The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species. PMID:28609466

  3. Multi-level, multi-scale resource selection functions and resistance surfaces for conservation planning: Pumas as a case study.

    PubMed

    Zeller, Katherine A; Vickers, T Winston; Ernest, Holly B; Boyce, Walter M

    2017-01-01

    The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species.

  4. An Expanded Multi-scale Monte Carlo Simulation Method for Personalized Radiobiological Effect Estimation in Radiotherapy: a feasibility study

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Feng, Yuanming; Wang, Wei; Yang, Chengwen; Wang, Ping

    2017-03-01

    A novel and versatile “bottom-up” approach is developed to estimate the radiobiological effect of clinic radiotherapy. The model consists of multi-scale Monte Carlo simulations from organ to cell levels. At cellular level, accumulated damages are computed using a spectrum-based accumulation algorithm and predefined cellular damage database. The damage repair mechanism is modeled by an expanded reaction-rate two-lesion kinetic model, which were calibrated through replicating a radiobiological experiment. Multi-scale modeling is then performed on a lung cancer patient under conventional fractionated irradiation. The cell killing effects of two representative voxels (isocenter and peripheral voxel of the tumor) are computed and compared. At microscopic level, the nucleus dose and damage yields vary among all nucleuses within the voxels. Slightly larger percentage of cDSB yield is observed for the peripheral voxel (55.0%) compared to the isocenter one (52.5%). For isocenter voxel, survival fraction increase monotonically at reduced oxygen environment. Under an extreme anoxic condition (0.001%), survival fraction is calculated to be 80% and the hypoxia reduction factor reaches a maximum value of 2.24. In conclusion, with biological-related variations, the proposed multi-scale approach is more versatile than the existing approaches for evaluating personalized radiobiological effects in radiotherapy.

  5. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 1: MODEL DESCRIPTION

    EPA Science Inventory

    The aerosol component of the Community Multiscale Air Quality (CMAQ) model is designed to be an efficient and economical depiction of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdis...

  6. Evaluation of the Community Multiscale Air Quality model version 5.1

    EPA Science Inventory

    The Community Multiscale Air Quality model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Atmospheric Modeling and Analysis Division (AMAD) of the U.S. Environment...

  7. Towards Personalized Cardiology: Multi-Scale Modeling of the Failing Heart

    PubMed Central

    Amr, Ali; Neumann, Dominik; Georgescu, Bogdan; Seegerer, Philipp; Kamen, Ali; Haas, Jan; Frese, Karen S.; Irawati, Maria; Wirsz, Emil; King, Vanessa; Buss, Sebastian; Mereles, Derliz; Zitron, Edgar; Keller, Andreas; Katus, Hugo A.; Comaniciu, Dorin; Meder, Benjamin

    2015-01-01

    Background Despite modern pharmacotherapy and advanced implantable cardiac devices, overall prognosis and quality of life of HF patients remain poor. This is in part due to insufficient patient stratification and lack of individualized therapy planning, resulting in less effective treatments and a significant number of non-responders. Methods and Results State-of-the-art clinical phenotyping was acquired, including magnetic resonance imaging (MRI) and biomarker assessment. An individualized, multi-scale model of heart function covering cardiac anatomy, electrophysiology, biomechanics and hemodynamics was estimated using a robust framework. The model was computed on n=46 HF patients, showing for the first time that advanced multi-scale models can be fitted consistently on large cohorts. Novel multi-scale parameters derived from the model of all cases were analyzed and compared against clinical parameters, cardiac imaging, lab tests and survival scores to evaluate the explicative power of the model and its potential for better patient stratification. Model validation was pursued by comparing clinical parameters that were not used in the fitting process against model parameters. Conclusion This paper illustrates how advanced multi-scale models can complement cardiovascular imaging and how they could be applied in patient care. Based on obtained results, it becomes conceivable that, after thorough validation, such heart failure models could be applied for patient management and therapy planning in the future, as we illustrate in one patient of our cohort who received CRT-D implantation. PMID:26230546

  8. Multiscale Feature Analysis of Salivary Gland Branching Morphogenesis

    PubMed Central

    Baydil, Banu; Daley, William P.; Larsen, Melinda; Yener, Bülent

    2012-01-01

    Pattern formation in developing tissues involves dynamic spatio-temporal changes in cellular organization and subsequent evolution of functional adult structures. Branching morphogenesis is a developmental mechanism by which patterns are generated in many developing organs, which is controlled by underlying molecular pathways. Understanding the relationship between molecular signaling, cellular behavior and resulting morphological change requires quantification and categorization of the cellular behavior. In this study, tissue-level and cellular changes in developing salivary gland in response to disruption of ROCK-mediated signaling by are modeled by building cell-graphs to compute mathematical features capturing structural properties at multiple scales. These features were used to generate multiscale cell-graph signatures of untreated and ROCK signaling disrupted salivary gland organ explants. From confocal images of mouse submandibular salivary gland organ explants in which epithelial and mesenchymal nuclei were marked, a multiscale feature set capturing global structural properties, local structural properties, spectral, and morphological properties of the tissues was derived. Six feature selection algorithms and multiway modeling of the data was performed to identify distinct subsets of cell graph features that can uniquely classify and differentiate between different cell populations. Multiscale cell-graph analysis was most effective in classification of the tissue state. Cellular and tissue organization, as defined by a multiscale subset of cell-graph features, are both quantitatively distinct in epithelial and mesenchymal cell types both in the presence and absence of ROCK inhibitors. Whereas tensor analysis demonstrate that epithelial tissue was affected the most by inhibition of ROCK signaling, significant multiscale changes in mesenchymal tissue organization were identified with this analysis that were not identified in previous biological studies. We here show how to define and calculate a multiscale feature set as an effective computational approach to identify and quantify changes at multiple biological scales and to distinguish between different states in developing tissues. PMID:22403724

  9. Virtual Patients and Sensitivity Analysis of the Guyton Model of Blood Pressure Regulation: Towards Individualized Models of Whole-Body Physiology

    PubMed Central

    Moss, Robert; Grosse, Thibault; Marchant, Ivanny; Lassau, Nathalie; Gueyffier, François; Thomas, S. Randall

    2012-01-01

    Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a “virtual population” from which “virtual individuals” can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the “virtual individuals” that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models. PMID:22761561

  10. A Hybrid Multiscale Framework for Subsurface Flow and Transport Simulations

    DOE PAGES

    Scheibe, Timothy D.; Yang, Xiaofan; Chen, Xingyuan; ...

    2015-06-01

    Extensive research efforts have been invested in reducing model errors to improve the predictive ability of biogeochemical earth and environmental system simulators, with applications ranging from contaminant transport and remediation to impacts of biogeochemical elemental cycling (e.g., carbon and nitrogen) on local ecosystems and regional to global climate. While the bulk of this research has focused on improving model parameterizations in the face of observational limitations, the more challenging type of model error/uncertainty to identify and quantify is model structural error which arises from incorrect mathematical representations of (or failure to consider) important physical, chemical, or biological processes, properties, ormore » system states in model formulations. While improved process understanding can be achieved through scientific study, such understanding is usually developed at small scales. Process-based numerical models are typically designed for a particular characteristic length and time scale. For application-relevant scales, it is generally necessary to introduce approximations and empirical parameterizations to describe complex systems or processes. This single-scale approach has been the best available to date because of limited understanding of process coupling combined with practical limitations on system characterization and computation. While computational power is increasing significantly and our understanding of biological and environmental processes at fundamental scales is accelerating, using this information to advance our knowledge of the larger system behavior requires the development of multiscale simulators. Accordingly there has been much recent interest in novel multiscale methods in which microscale and macroscale models are explicitly coupled in a single hybrid multiscale simulation. A limited number of hybrid multiscale simulations have been developed for biogeochemical earth systems, but they mostly utilize application-specific and sometimes ad-hoc approaches for model coupling. We are developing a generalized approach to hierarchical model coupling designed for high-performance computational systems, based on the Swift computing workflow framework. In this presentation we will describe the generalized approach and provide two use cases: 1) simulation of a mixing-controlled biogeochemical reaction coupling pore- and continuum-scale models, and 2) simulation of biogeochemical impacts of groundwater – river water interactions coupling fine- and coarse-grid model representations. This generalized framework can be customized for use with any pair of linked models (microscale and macroscale) with minimal intrusiveness to the at-scale simulators. It combines a set of python scripts with the Swift workflow environment to execute a complex multiscale simulation utilizing an approach similar to the well-known Heterogeneous Multiscale Method. User customization is facilitated through user-provided input and output file templates and processing function scripts, and execution within a high-performance computing environment is handled by Swift, such that minimal to no user modification of at-scale codes is required.« less

  11. Blood Flow: Multi-scale Modeling and Visualization (July 2011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-01-01

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations. This animation presents early results of two studies used in the development of a multi-scale visualization methodology. The fisrt illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each bloodmore » cell is represented by a mesh, small spheres show a sub-set of particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. In the second we investigate the process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of an aneruysm. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.« less

  12. COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM (ONE ATMOSPHERE)

    EPA Science Inventory

    This task supports ORD's strategy by providing responsive technical support of EPA's mission and provides credible state of the art air quality models and guidance. This research effort is to develop and improve the Community Multiscale Air Quality (CMAQ) modeling system, a mu...

  13. Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a comprehensive multipollutant air quality modeling system developed and maintained by the US Environmental Protection Agency's (EPA) Office of Research and Development (ORD). Recently, version 5.1 of the CMAQ model (v5.1) was ...

  14. An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-13

    The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less

  15. An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less

  16. Multiscale modeling methods in biomechanics.

    PubMed

    Bhattacharya, Pinaki; Viceconti, Marco

    2017-05-01

    More and more frequently, computational biomechanics deals with problems where the portion of physical reality to be modeled spans over such a large range of spatial and temporal dimensions, that it is impossible to represent it as a single space-time continuum. We are forced to consider multiple space-time continua, each representing the phenomenon of interest at a characteristic space-time scale. Multiscale models describe a complex process across multiple scales, and account for how quantities transform as we move from one scale to another. This review offers a set of definitions for this emerging field, and provides a brief summary of the most recent developments on multiscale modeling in biomechanics. Of all possible perspectives, we chose that of the modeling intent, which vastly affect the nature and the structure of each research activity. To the purpose we organized all papers reviewed in three categories: 'causal confirmation,' where multiscale models are used as materializations of the causation theories; 'predictive accuracy,' where multiscale modeling is aimed to improve the predictive accuracy; and 'determination of effect,' where multiscale modeling is used to model how a change at one scale manifests in an effect at another radically different space-time scale. Consistent with how the volume of computational biomechanics research is distributed across application targets, we extensively reviewed papers targeting the musculoskeletal and the cardiovascular systems, and covered only a few exemplary papers targeting other organ systems. The review shows a research subdomain still in its infancy, where causal confirmation papers remain the most common. WIREs Syst Biol Med 2017, 9:e1375. doi: 10.1002/wsbm.1375 For further resources related to this article, please visit the WIREs website. © 2017 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.

  17. Multiscale Modeling and Simulation of Material Processing

    DTIC Science & Technology

    2006-07-01

    As a re- GIMP simulations . Fig. 2 illustrates the contact algo- suit, MPM using a single mesh tends to induce early con- rithm for the contact pair ...21-07-2006 Final Performance Report 05-01-2003 - 04-30-2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Multiscale Modeling and Simulation of Material...development of scaling laws for multiscale simulations from atomistic to continuum using material testing techniques, such as tension and indentation

  18. Multiscale Particle-Based Modeling of Flowing Platelets in Blood Plasma Using Dissipative Particle Dynamics and Coarse Grained Molecular Dynamics

    PubMed Central

    Zhang, Peng; Gao, Chao; Zhang, Na; Slepian, Marvin J.; Deng, Yuefan; Bluestein, Danny

    2014-01-01

    We developed a multiscale particle-based model of platelets, to study the transport dynamics of shear stresses between the surrounding fluid and the platelet membrane. This model facilitates a more accurate prediction of the activation potential of platelets by viscous shear stresses - one of the major mechanisms leading to thrombus formation in cardiovascular diseases and in prosthetic cardiovascular devices. The interface of the model couples coarse-grained molecular dynamics (CGMD) with dissipative particle dynamics (DPD). The CGMD handles individual platelets while the DPD models the macroscopic transport of blood plasma in vessels. A hybrid force field is formulated for establishing a functional interface between the platelet membrane and the surrounding fluid, in which the microstructural changes of platelets may respond to the extracellular viscous shear stresses transferred to them. The interaction between the two systems preserves dynamic properties of the flowing platelets, such as the flipping motion. Using this multiscale particle-based approach, we have further studied the effects of the platelet elastic modulus by comparing the action of the flow-induced shear stresses on rigid and deformable platelet models. The results indicate that neglecting the platelet deformability may overestimate the stress on the platelet membrane, which in turn may lead to erroneous predictions of the platelet activation under viscous shear flow conditions. This particle-based fluid-structure interaction multiscale model offers for the first time a computationally feasible approach for simulating deformable platelets interacting with viscous blood flow, aimed at predicting flow induced platelet activation by using a highly resolved mapping of the stress distribution on the platelet membrane under dynamic flow conditions. PMID:25530818

  19. Multi-scale modelling of rubber-like materials and soft tissues: an appraisal

    PubMed Central

    Puglisi, G.

    2016-01-01

    We survey, in a partial way, multi-scale approaches for the modelling of rubber-like and soft tissues and compare them with classical macroscopic phenomenological models. Our aim is to show how it is possible to obtain practical mathematical models for the mechanical behaviour of these materials incorporating mesoscopic (network scale) information. Multi-scale approaches are crucial for the theoretical comprehension and prediction of the complex mechanical response of these materials. Moreover, such models are fundamental in the perspective of the design, through manipulation at the micro- and nano-scales, of new polymeric and bioinspired materials with exceptional macroscopic properties. PMID:27118927

  20. The topology of the cosmic web in terms of persistent Betti numbers

    NASA Astrophysics Data System (ADS)

    Pranav, Pratyush; Edelsbrunner, Herbert; van de Weygaert, Rien; Vegter, Gert; Kerber, Michael; Jones, Bernard J. T.; Wintraecken, Mathijs

    2017-03-01

    We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys.

  1. Multiscale Modeling and Process Optimization for Engineered Microstructural Complexity

    DTIC Science & Technology

    2007-10-26

    Ferroelectric Ceramics , Materials Science Forum, 404-407, 413-418 2002. 42. R. T. Brewer, H. A. Atwater Rapid biaxial texture development during...Multiscale Study of Internal Stress and Texture in Electroceramics, 106th Annual Meeting of the American Ceramic Society, Indianapolis, Indiana, 20...Rogan, Texture and Strain Analysis of PZT by In-Situ Neutron Diffraction, MRS Spring Meeting, San Francisco, CA; April 2002. 43. E. Ustundag

  2. Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm

    NASA Astrophysics Data System (ADS)

    Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun

    2017-10-01

    A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.

  3. A FSI computational framework for vascular physiopathology: A novel flow-tissue multiscale strategy.

    PubMed

    Bianchi, Daniele; Monaldo, Elisabetta; Gizzi, Alessio; Marino, Michele; Filippi, Simonetta; Vairo, Giuseppe

    2017-09-01

    A novel fluid-structure computational framework for vascular applications is herein presented. It is developed by combining the double multi-scale nature of vascular physiopathology in terms of both tissue properties and blood flow. Addressing arterial tissues, they are modelled via a nonlinear multiscale constitutive rationale, based only on parameters having a clear histological and biochemical meaning. Moreover, blood flow is described by coupling a three-dimensional fluid domain (undergoing physiological inflow conditions) with a zero-dimensional model, which allows to reproduce the influence of the downstream vasculature, furnishing a realistic description of the outflow proximal pressure. The fluid-structure interaction is managed through an explicit time-marching approach, able to accurately describe tissue nonlinearities within each computational step for the fluid problem. A case study associated to a patient-specific aortic abdominal aneurysmatic geometry is numerically investigated, highlighting advantages gained from the proposed multiscale strategy, as well as showing soundness and effectiveness of the established framework for assessing useful clinical quantities and risk indexes. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Li, Zhaoxia

    2018-05-01

    A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.

  5. A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Li, Zhaoxia

    2018-04-01

    A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.

  6. Based on a multi-agent system for multi-scale simulation and application of household's LUCC: a case study for Mengcha village, Mizhi county, Shaanxi province.

    PubMed

    Chen, Hai; Liang, Xiaoying; Li, Rui

    2013-01-01

    Multi-Agent Systems (MAS) offer a conceptual approach to include multi-actor decision making into models of land use change. Through the simulation based on the MAS, this paper tries to show the application of MAS in the micro scale LUCC, and reveal the transformation mechanism of difference scale. This paper starts with a description of the context of MAS research. Then, it adopts the Nested Spatial Choice (NSC) method to construct the multi-scale LUCC decision-making model. And a case study for Mengcha village, Mizhi County, Shaanxi Province is reported. Finally, the potentials and drawbacks of the following approach is discussed and concluded. From our design and implementation of the MAS in multi-scale model, a number of observations and conclusions can be drawn on the implementation and future research directions. (1) The use of the LUCC decision-making and multi-scale transformation framework provides, according to us, a more realistic modeling of multi-scale decision making process. (2) By using continuous function, rather than discrete function, to construct the decision-making of the households is more realistic to reflect the effect. (3) In this paper, attempts have been made to give a quantitative analysis to research the household interaction. And it provides the premise and foundation for researching the communication and learning among the households. (4) The scale transformation architecture constructed in this paper helps to accumulate theory and experience for the interaction research between the micro land use decision-making and the macro land use landscape pattern. Our future research work will focus on: (1) how to rational use risk aversion principle, and put the rule on rotation between household parcels into model. (2) Exploring the methods aiming at researching the household decision-making over a long period, it allows us to find the bridge between the long-term LUCC data and the short-term household decision-making. (3) Researching the quantitative method and model, especially the scenario analysis model which may reflect the interaction among different household types.

  7. Multi-Scale Validation of a Nanodiamond Drug Delivery System and Multi-Scale Engineering Education

    ERIC Educational Resources Information Center

    Schwalbe, Michelle Kristin

    2010-01-01

    This dissertation has two primary concerns: (i) evaluating the uncertainty and prediction capabilities of a nanodiamond drug delivery model using Bayesian calibration and bias correction, and (ii) determining conceptual difficulties of multi-scale analysis from an engineering education perspective. A Bayesian uncertainty quantification scheme…

  8. COMMUNITY MULTISCALE AIR QUALITY ( CMAQ ) MODEL - QUALITY ASSURANCE AND VERSION CONTROL

    EPA Science Inventory

    This presentation will be given to the EPA Exposure Modeling Workgroup on January 24, 2006. The quality assurance and version control procedures for the Community Multiscale Air Quality (CMAQ) Model are presented. A brief background of CMAQ is given, then issues related to qual...

  9. Evaluation of the Community Multiscale Air Quality (CMAQ) Model Version 5.2

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Pr...

  10. Evaluation of the Community Multi-scale Air Quality Model Version 5.2

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Pr...

  11. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Thomas; Efendiev, Yalchin; Tchelepi, Hamdi

    2016-05-24

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scalemore » basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics.« less

  12. Multiscale analysis and computation for flows in heterogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efendiev, Yalchin; Hou, T. Y.; Durlofsky, L. J.

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scalemore » basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics. Below, we present a brief overview of each of these contributions.« less

  13. DEVELOPMENT OF AN AGGREGATION AND EPISODE SELECTION SCHEME TO SUPPORT THE MODELS-3 COMMUNITY MULTISCALE AIR QUALITY MODEL

    EPA Science Inventory

    The development of an episode selection and aggregation approach, designed to support distributional estimation of use with the Models-3 Community Multiscale Air Quality (CMAQ) model, is described. The approach utilized cluster analysis of the 700-hPa east-west and north-south...

  14. APPLICATION OF THE MODELS-3 COMMUNITY MULTI-SCALE AIR QUALITY (CMAQ) MODEL SYSTEM TO SOS/NASHVILLE 1999

    EPA Science Inventory

    The Models-3 Community Multi-scale Air Quality (CMAQ) model, first released by the USEPA in 1999 (Byun and Ching. 1999), continues to be developed and evaluated. The principal components of the CMAQ system include a comprehensive emission processor known as the Sparse Matrix O...

  15. Complexity and multifractal behaviors of multiscale-continuum percolation financial system for Chinese stock markets

    NASA Astrophysics Data System (ADS)

    Zeng, Yayun; Wang, Jun; Xu, Kaixuan

    2017-04-01

    A new financial agent-based time series model is developed and investigated by multiscale-continuum percolation system, which can be viewed as an extended version of continuum percolation system. In this financial model, for different parameters of proportion and density, two Poisson point processes (where the radii of points represent the ability of receiving or transmitting information among investors) are applied to model a random stock price process, in an attempt to investigate the fluctuation dynamics of the financial market. To validate its effectiveness and rationality, we compare the statistical behaviors and the multifractal behaviors of the simulated data derived from the proposed model with those of the real stock markets. Further, the multiscale sample entropy analysis is employed to study the complexity of the returns, and the cross-sample entropy analysis is applied to measure the degree of asynchrony of return autocorrelation time series. The empirical results indicate that the proposed financial model can simulate and reproduce some significant characteristics of the real stock markets to a certain extent.

  16. A multiscale quantum mechanics/electromagnetics method for device simulations.

    PubMed

    Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua

    2015-04-07

    Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method.

  17. Transition between inverse and direct energy cascades in multiscale optical turbulence

    DOE PAGES

    Malkin, V. M.; Fisch, N. J.

    2018-03-06

    Transition between inverse and direct energy cascades in multiscale optical turbulence. Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a singlemore » scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.« less

  18. A perspective on modeling the multiscale response of energetic materials

    NASA Astrophysics Data System (ADS)

    Rice, Betsy M.

    2017-01-01

    The response of an energetic material to insult is perhaps one of the most difficult processes to model due to concurrent chemical and physical phenomena occurring over scales ranging from atomistic to continuum. Unraveling the interdependencies of these complex processes across the scales through modeling can only be done within a multiscale framework. In this paper, I will describe progress in the development of a predictive, experimentally validated multiscale reactive modeling capability for energetic materials at the Army Research Laboratory. I will also describe new challenges and research opportunities that have arisen in the course of our development which should be pursued in the future.

  19. Evaluation of the Community Multi-scale Air Quality (CMAQ) Model Version 5.1

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Pr...

  20. Overview and Evaluation of the Community Multiscale Air Quality Model Version 5.2

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Pr...

  1. Evaluation of the Community Multi-scale Air Quality (CMAQ) Model Version 5.2

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Pr...

  2. Incremental Testing of the Community Multiscale Air Quality (CMAQ) Modeling System Version 4.7

    EPA Science Inventory

    This paper describes the scientific and structural updates to the latest release of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7 (v4.7) and points the reader to additional resources for further details. The model updates were evaluated relative to obse...

  3. Extending the Community Multiscale Air Quality (CMAQ) Modeling System to Hemispheric Scales: Overview of Process Considerations and Initial Applications

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modeled processes were examined and enhanced to suitably represent the extended space and timesca...

  4. High-resolution time-frequency representation of EEG data using multi-scale wavelets

    NASA Astrophysics Data System (ADS)

    Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina

    2017-09-01

    An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.

  5. A multiscale modelling approach to understand atherosclerosis formation: A patient-specific case study in the aortic bifurcation

    PubMed Central

    Alimohammadi, Mona; Pichardo-Almarza, Cesar; Agu, Obiekezie; Díaz-Zuccarini, Vanessa

    2017-01-01

    Atherogenesis, the formation of plaques in the wall of blood vessels, starts as a result of lipid accumulation (low-density lipoprotein cholesterol) in the vessel wall. Such accumulation is related to the site of endothelial mechanotransduction, the endothelial response to mechanical stimuli and haemodynamics, which determines biochemical processes regulating the vessel wall permeability. This interaction between biomechanical and biochemical phenomena is complex, spanning different biological scales and is patient-specific, requiring tools able to capture such mathematical and biological complexity in a unified framework. Mathematical models offer an elegant and efficient way of doing this, by taking into account multifactorial and multiscale processes and mechanisms, in order to capture the fundamentals of plaque formation in individual patients. In this study, a mathematical model to understand plaque and calcification locations is presented: this model provides a strong interpretability and physical meaning through a multiscale, complex index or metric (the penetration site of low-density lipoprotein cholesterol, expressed as volumetric flux). Computed tomography scans of the aortic bifurcation and iliac arteries are analysed and compared with the results of the multifactorial model. The results indicate that the model shows potential to predict the majority of the plaque locations, also not predicting regions where plaques are absent. The promising results from this case study provide a proof of concept that can be applied to a larger patient population. PMID:28427316

  6. A multiscale, model-based analysis of the multi-tissue interplay underlying blood glucose regulation in type I diabetes.

    PubMed

    Wadehn, Federico; Schaller, Stephan; Eissing, Thomas; Krauss, Markus; Kupfer, Lars

    2016-08-01

    A multiscale model for blood glucose regulation in diabetes type I patients is constructed by integrating detailed metabolic network models for fat, liver and muscle cells into a whole body physiologically-based pharmacokinetic/pharmacodynamic (pBPK/PD) model. The blood glucose regulation PBPK/PD model simulates the distribution and metabolization of glucose, insulin and glucagon on an organ and whole body level. The genome-scale metabolic networks in contrast describe intracellular reactions. The developed multiscale model is fitted to insulin, glucagon and glucose measurements of a 48h clinical trial featuring 6 subjects and is subsequently used to simulate (in silico) the influence of geneknockouts and drug-induced enzyme inhibitions on whole body blood glucose levels. Simulations of diabetes associated gene knockouts and impaired cellular glucose metabolism, resulted in elevated whole body blood-glucose levels, but also in a metabolic shift within the cell's reaction network. Such multiscale models have the potential to be employed in the exploration of novel drug-targets or to be integrated into control algorithms for artificial pancreas systems.

  7. Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention.

    PubMed

    Zhang, Yanhang; Barocas, Victor H; Berceli, Scott A; Clancy, Colleen E; Eckmann, David M; Garbey, Marc; Kassab, Ghassan S; Lochner, Donna R; McCulloch, Andrew D; Tran-Son-Tay, Roger; Trayanova, Natalia A

    2016-09-01

    Cardiovascular diseases (CVDs) are the leading cause of death in the western world. With the current development of clinical diagnostics to more accurately measure the extent and specifics of CVDs, a laudable goal is a better understanding of the structure-function relation in the cardiovascular system. Much of this fundamental understanding comes from the development and study of models that integrate biology, medicine, imaging, and biomechanics. Information from these models provides guidance for developing diagnostics, and implementation of these diagnostics to the clinical setting, in turn, provides data for refining the models. In this review, we introduce multi-scale and multi-physical models for understanding disease development, progression, and designing clinical interventions. We begin with multi-scale models of cardiac electrophysiology and mechanics for diagnosis, clinical decision support, personalized and precision medicine in cardiology with examples in arrhythmia and heart failure. We then introduce computational models of vasculature mechanics and associated mechanical forces for understanding vascular disease progression, designing clinical interventions, and elucidating mechanisms that underlie diverse vascular conditions. We conclude with a discussion of barriers that must be overcome to provide enhanced insights, predictions, and decisions in pre-clinical and clinical applications.

  8. Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention

    PubMed Central

    Zhang, Yanhang; Barocas, Victor H.; Berceli, Scott A.; Clancy, Colleen E.; Eckmann, David M.; Garbey, Marc; Kassab, Ghassan S.; Lochner, Donna R.; McCulloch, Andrew D.; Tran-Son-Tay, Roger; Trayanova, Natalia A.

    2016-01-01

    Cardiovascular diseases (CVDs) are the leading cause of death in the western world. With the current development of clinical diagnostics to more accurately measure the extent and specifics of CVDs, a laudable goal is a better understanding of the structure-function relation in the cardiovascular system. Much of this fundamental understanding comes from the development and study of models that integrate biology, medicine, imaging, and biomechanics. Information from these models provides guidance for developing diagnostics, and implementation of these diagnostics to the clinical setting, in turn, provides data for refining the models. In this review, we introduce multi-scale and multi-physical models for understanding disease development, progression, and designing clinical interventions. We begin with multi-scale models of cardiac electrophysiology and mechanics for diagnosis, clinical decision support, personalized and precision medicine in cardiology with examples in arrhythmia and heart failure. We then introduce computational models of vasculature mechanics and associated mechanical forces for understanding vascular disease progression, designing clinical interventions, and elucidating mechanisms that underlie diverse vascular conditions. We conclude with a discussion of barriers that must be overcome to provide enhanced insights, predictions, and decisions in pre-clinical and clinical applications. PMID:27138523

  9. COMPUTATIONAL CHALLENGES IN BUILDING MULTI-SCALE AND MULTI-PHYSICS MODELS OF CARDIAC ELECTRO-MECHANICS

    PubMed Central

    Plank, G; Prassl, AJ; Augustin, C

    2014-01-01

    Despite the evident multiphysics nature of the heart – it is an electrically controlled mechanical pump – most modeling studies considered electrophysiology and mechanics in isolation. In no small part, this is due to the formidable modeling challenges involved in building strongly coupled anatomically accurate and biophyically detailed multi-scale multi-physics models of cardiac electro-mechanics. Among the main challenges are the selection of model components and their adjustments to achieve integration into a consistent organ-scale model, dealing with technical difficulties such as the exchange of data between electro-physiological and mechanical model, particularly when using different spatio-temporal grids for discretization, and, finally, the implementation of advanced numerical techniques to deal with the substantial computational. In this study we report on progress made in developing a novel modeling framework suited to tackle these challenges. PMID:24043050

  10. Multiscale Enaction Model (MEM): the case of complexity and “context-sensitivity” in vision

    PubMed Central

    Laurent, Éric

    2014-01-01

    I review the data on human visual perception that reveal the critical role played by non-visual contextual factors influencing visual activity. The global perspective that progressively emerges reveals that vision is sensitive to multiple couplings with other systems whose nature and levels of abstraction in science are highly variable. Contrary to some views where vision is immersed in modular hard-wired modules, rather independent from higher-level or other non-cognitive processes, converging data gathered in this article suggest that visual perception can be theorized in the larger context of biological, physical, and social systems with which it is coupled, and through which it is enacted. Therefore, any attempt to model complexity and multiscale couplings, or to develop a complex synthesis in the fields of mind, brain, and behavior, shall involve a systematic empirical study of both connectedness between systems or subsystems, and the embodied, multiscale and flexible teleology of subsystems. The conceptual model (Multiscale Enaction Model [MEM]) that is introduced in this paper finally relates empirical evidence gathered from psychology to biocomputational data concerning the human brain. Both psychological and biocomputational descriptions of MEM are proposed in order to help fill in the gap between scales of scientific analysis and to provide an account for both the autopoiesis-driven search for information, and emerging perception. PMID:25566115

  11. Finite Dimensional Approximations for Continuum Multiscale Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlyand, Leonid

    2017-01-24

    The completed research project concerns the development of novel computational techniques for modeling nonlinear multiscale physical and biological phenomena. Specifically, it addresses the theoretical development and applications of the homogenization theory (coarse graining) approach to calculation of the effective properties of highly heterogenous biological and bio-inspired materials with many spatial scales and nonlinear behavior. This theory studies properties of strongly heterogeneous media in problems arising in materials science, geoscience, biology, etc. Modeling of such media raises fundamental mathematical questions, primarily in partial differential equations (PDEs) and calculus of variations, the subject of the PI’s research. The focus of completed researchmore » was on mathematical models of biological and bio-inspired materials with the common theme of multiscale analysis and coarse grain computational techniques. Biological and bio-inspired materials offer the unique ability to create environmentally clean functional materials used for energy conversion and storage. These materials are intrinsically complex, with hierarchical organization occurring on many nested length and time scales. The potential to rationally design and tailor the properties of these materials for broad energy applications has been hampered by the lack of computational techniques, which are able to bridge from the molecular to the macroscopic scale. The project addressed the challenge of computational treatments of such complex materials by the development of a synergistic approach that combines innovative multiscale modeling/analysis techniques with high performance computing.« less

  12. A MULTISCALE FRAMEWORK FOR THE STOCHASTIC ASSIMILATION AND MODELING OF UNCERTAINTY ASSOCIATED NCF COMPOSITE MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrez, Loujaine; Ghanem, Roger; McAuliffe, Colin

    multiscale framework to construct stochastic macroscopic constitutive material models is proposed. A spectral projection approach, specifically polynomial chaos expansion, has been used to construct explicit functional relationships between the homogenized properties and input parameters from finer scales. A homogenization engine embedded in Multiscale Designer, software for composite materials, has been used for the upscaling process. The framework is demonstrated using non-crimp fabric composite materials by constructing probabilistic models of the homogenized properties of a non-crimp fabric laminate in terms of the input parameters together with the homogenized properties from finer scales.

  13. Multi-scale Material Parameter Identification Using LS-DYNA® and LS-OPT®

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stander, Nielen; Basudhar, Anirban; Basu, Ushnish

    2015-09-14

    Ever-tightening regulations on fuel economy, and the likely future regulation of carbon emissions, demand persistent innovation in vehicle design to reduce vehicle mass. Classical methods for computational mass reduction include sizing, shape and topology optimization. One of the few remaining options for weight reduction can be found in materials engineering and material design optimization. Apart from considering different types of materials, by adding material diversity and composite materials, an appealing option in automotive design is to engineer steel alloys for the purpose of reducing plate thickness while retaining sufficient strength and ductility required for durability and safety. A project tomore » develop computational material models for advanced high strength steel is currently being executed under the auspices of the United States Automotive Materials Partnership (USAMP) funded by the US Department of Energy. Under this program, new Third Generation Advanced High Strength Steel (i.e., 3GAHSS) are being designed, tested and integrated with the remaining design variables of a benchmark vehicle Finite Element model. The objectives of the project are to integrate atomistic, microstructural, forming and performance models to create an integrated computational materials engineering (ICME) toolkit for 3GAHSS. The mechanical properties of Advanced High Strength Steels (AHSS) are controlled by many factors, including phase composition and distribution in the overall microstructure, volume fraction, size and morphology of phase constituents as well as stability of the metastable retained austenite phase. The complex phase transformation and deformation mechanisms in these steels make the well-established traditional techniques obsolete, and a multi-scale microstructure-based modeling approach following the ICME [0]strategy was therefore chosen in this project. Multi-scale modeling as a major area of research and development is an outgrowth of the Comprehensive Test Ban Treaty of 1996 which banned surface testing of nuclear devices [1]. This had the effect that experimental work was reduced from large scale tests to multiscale experiments to provide material models with validation at different length scales. In the subsequent years industry realized that multi-scale modeling and simulation-based design were transferable to the design optimization of any structural system. Horstemeyer [1] lists a number of advantages of the use of multiscale modeling. Among these are: the reduction of product development time by alleviating costly trial-and-error iterations as well as the reduction of product costs through innovations in material, product and process designs. Multi-scale modeling can reduce the number of costly large scale experiments and can increase product quality by providing more accurate predictions. Research tends to be focussed on each particular length scale, which enhances accuracy in the long term. This paper serves as an introduction to the LS-OPT and LS-DYNA methodology for multi-scale modeling. It mainly focuses on an approach to integrate material identification using material models of different length scales. As an example, a multi-scale material identification strategy, consisting of a Crystal Plasticity (CP) material model and a homogenized State Variable (SV) model, is discussed and the parameter identification of the individual material models of different length scales is demonstrated. The paper concludes with thoughts on integrating the multi-scale methodology into the overall vehicle design.« less

  14. FIRST RESULTS FROM OPERATIONAL TESTING OF THE U.S. EPA MODELS-3 COMMUNITY MULTISCALE MODEL FOR AIR QUALITY (CMAQ)

    EPA Science Inventory

    The Models 3 / Community Multiscale Model for Air Quality (CMAQ) has been designed for one-atmosphere assessments for multiple pollutants including ozone (O3), particulate matter (PM10, PM2.5), and acid / nutrient deposition. In this paper we report initial results of our evalu...

  15. Overview and Evaluation of the Community Multiscale Air Quality (CMAQ) Modeling System Version 5.2

    EPA Science Inventory

    A new version of the Community Multiscale Air Quality (CMAQ) model, version 5.2 (CMAQv5.2), is currently being developed, with a planned release date in 2017. The new model includes numerous updates from the previous version of the model (CMAQv5.1). Specific updates include a new...

  16. Multi-scale modeling in cell biology

    PubMed Central

    Meier-Schellersheim, Martin; Fraser, Iain D. C.; Klauschen, Frederick

    2009-01-01

    Biomedical research frequently involves performing experiments and developing hypotheses that link different scales of biological systems such as, for instance, the scales of intracellular molecular interactions to the scale of cellular behavior and beyond to the behavior of cell populations. Computational modeling efforts that aim at exploring such multi-scale systems quantitatively with the help of simulations have to incorporate several different simulation techniques due to the different time and space scales involved. Here, we provide a non-technical overview of how different scales of experimental research can be combined with the appropriate computational modeling techniques. We also show that current modeling software permits building and simulating multi-scale models without having to become involved with the underlying technical details of computational modeling. PMID:20448808

  17. A Micromechanics-Based Method for Multiscale Fatigue Prediction

    NASA Astrophysics Data System (ADS)

    Moore, John Allan

    An estimated 80% of all structural failures are due to mechanical fatigue, often resulting in catastrophic, dangerous and costly failure events. However, an accurate model to predict fatigue remains an elusive goal. One of the major challenges is that fatigue is intrinsically a multiscale process, which is dependent on a structure's geometric design as well as its material's microscale morphology. The following work begins with a microscale study of fatigue nucleation around non- metallic inclusions. Based on this analysis, a novel multiscale method for fatigue predictions is developed. This method simulates macroscale geometries explicitly while concurrently calculating the simplified response of microscale inclusions. Thus, providing adequate detail on multiple scales for accurate fatigue life predictions. The methods herein provide insight into the multiscale nature of fatigue, while also developing a tool to aid in geometric design and material optimization for fatigue critical devices such as biomedical stents and artificial heart valves.

  18. Multiscale modelling of hydraulic conductivity in vuggy porous media

    PubMed Central

    Daly, K. R.; Roose, T.

    2014-01-01

    Flow in both saturated and non-saturated vuggy porous media, i.e. soil, is inherently multiscale. The complex microporous structure of the soil aggregates and the wider vugs provides a multitude of flow pathways and has received significant attention from the X-ray computed tomography (CT) community with a constant drive to image at higher resolution. Using multiscale homogenization, we derive averaged equations to study the effects of the microscale structure on the macroscopic flow. The averaged model captures the underlying geometry through a series of cell problems and is verified through direct comparison to numerical simulations of the full structure. These methods offer significant reductions in computation time and allow us to perform three-dimensional calculations with complex geometries on a desktop PC. The results show that the surface roughness of the aggregate has a significantly greater effect on the flow than the microstructure within the aggregate. Hence, this is the region in which the resolution of X-ray CT for image-based modelling has the greatest impact. PMID:24511248

  19. Toward a multiscale modeling framework for understanding serotonergic function

    PubMed Central

    Wong-Lin, KongFatt; Wang, Da-Hui; Moustafa, Ahmed A; Cohen, Jeremiah Y; Nakamura, Kae

    2017-01-01

    Despite its importance in regulating emotion and mental wellbeing, the complex structure and function of the serotonergic system present formidable challenges toward understanding its mechanisms. In this paper, we review studies investigating the interactions between serotonergic and related brain systems and their behavior at multiple scales, with a focus on biologically-based computational modeling. We first discuss serotonergic intracellular signaling and neuronal excitability, followed by neuronal circuit and systems levels. At each level of organization, we will discuss the experimental work accompanied by related computational modeling work. We then suggest that a multiscale modeling approach that integrates the various levels of neurobiological organization could potentially transform the way we understand the complex functions associated with serotonin. PMID:28417684

  20. Multi-Scale Modeling, Surrogate-Based Analysis, and Optimization of Lithium-Ion Batteries for Vehicle Applications

    NASA Astrophysics Data System (ADS)

    Du, Wenbo

    A common attribute of electric-powered aerospace vehicles and systems such as unmanned aerial vehicles, hybrid- and fully-electric aircraft, and satellites is that their performance is usually limited by the energy density of their batteries. Although lithium-ion batteries offer distinct advantages such as high voltage and low weight over other battery technologies, they are a relatively new development, and thus significant gaps in the understanding of the physical phenomena that govern battery performance remain. As a result of this limited understanding, batteries must often undergo a cumbersome design process involving many manual iterations based on rules of thumb and ad-hoc design principles. A systematic study of the relationship between operational, geometric, morphological, and material-dependent properties and performance metrics such as energy and power density is non-trivial due to the multiphysics, multiphase, and multiscale nature of the battery system. To address these challenges, two numerical frameworks are established in this dissertation: a process for analyzing and optimizing several key design variables using surrogate modeling tools and gradient-based optimizers, and a multi-scale model that incorporates more detailed microstructural information into the computationally efficient but limited macro-homogeneous model. In the surrogate modeling process, multi-dimensional maps for the cell energy density with respect to design variables such as the particle size, ion diffusivity, and electron conductivity of the porous cathode material are created. A combined surrogate- and gradient-based approach is employed to identify optimal values for cathode thickness and porosity under various operating conditions, and quantify the uncertainty in the surrogate model. The performance of multiple cathode materials is also compared by defining dimensionless transport parameters. The multi-scale model makes use of detailed 3-D FEM simulations conducted at the particle-level. A monodisperse system of ellipsoidal particles is used to simulate the effective transport coefficients and interfacial reaction current density within the porous microstructure. Microscopic simulation results are shown to match well with experimental measurements, while differing significantly from homogenization approximations used in the macroscopic model. Global sensitivity analysis and surrogate modeling tools are applied to couple the two length scales and complete the multi-scale model.

  1. Efficient Integration of Coupled Electrical-Chemical Systems in Multiscale Neuronal Simulations

    PubMed Central

    Brocke, Ekaterina; Bhalla, Upinder S.; Djurfeldt, Mikael; Hellgren Kotaleski, Jeanette; Hanke, Michael

    2016-01-01

    Multiscale modeling and simulations in neuroscience is gaining scientific attention due to its growing importance and unexplored capabilities. For instance, it can help to acquire better understanding of biological phenomena that have important features at multiple scales of time and space. This includes synaptic plasticity, memory formation and modulation, homeostasis. There are several ways to organize multiscale simulations depending on the scientific problem and the system to be modeled. One of the possibilities is to simulate different components of a multiscale system simultaneously and exchange data when required. The latter may become a challenging task for several reasons. First, the components of a multiscale system usually span different spatial and temporal scales, such that rigorous analysis of possible coupling solutions is required. Then, the components can be defined by different mathematical formalisms. For certain classes of problems a number of coupling mechanisms have been proposed and successfully used. However, a strict mathematical theory is missing in many cases. Recent work in the field has not so far investigated artifacts that may arise during coupled integration of different approximation methods. Moreover, in neuroscience, the coupling of widely used numerical fixed step size solvers may lead to unexpected inefficiency. In this paper we address the question of possible numerical artifacts that can arise during the integration of a coupled system. We develop an efficient strategy to couple the components comprising a multiscale test problem in neuroscience. We introduce an efficient coupling method based on the second-order backward differentiation formula (BDF2) numerical approximation. The method uses an adaptive step size integration with an error estimation proposed by Skelboe (2000). The method shows a significant advantage over conventional fixed step size solvers used in neuroscience for similar problems. We explore different coupling strategies that define the organization of computations between system components. We study the importance of an appropriate approximation of exchanged variables during the simulation. The analysis shows a substantial impact of these aspects on the solution accuracy in the application to our multiscale neuroscientific test problem. We believe that the ideas presented in the paper may essentially contribute to the development of a robust and efficient framework for multiscale brain modeling and simulations in neuroscience. PMID:27672364

  2. Efficient Integration of Coupled Electrical-Chemical Systems in Multiscale Neuronal Simulations.

    PubMed

    Brocke, Ekaterina; Bhalla, Upinder S; Djurfeldt, Mikael; Hellgren Kotaleski, Jeanette; Hanke, Michael

    2016-01-01

    Multiscale modeling and simulations in neuroscience is gaining scientific attention due to its growing importance and unexplored capabilities. For instance, it can help to acquire better understanding of biological phenomena that have important features at multiple scales of time and space. This includes synaptic plasticity, memory formation and modulation, homeostasis. There are several ways to organize multiscale simulations depending on the scientific problem and the system to be modeled. One of the possibilities is to simulate different components of a multiscale system simultaneously and exchange data when required. The latter may become a challenging task for several reasons. First, the components of a multiscale system usually span different spatial and temporal scales, such that rigorous analysis of possible coupling solutions is required. Then, the components can be defined by different mathematical formalisms. For certain classes of problems a number of coupling mechanisms have been proposed and successfully used. However, a strict mathematical theory is missing in many cases. Recent work in the field has not so far investigated artifacts that may arise during coupled integration of different approximation methods. Moreover, in neuroscience, the coupling of widely used numerical fixed step size solvers may lead to unexpected inefficiency. In this paper we address the question of possible numerical artifacts that can arise during the integration of a coupled system. We develop an efficient strategy to couple the components comprising a multiscale test problem in neuroscience. We introduce an efficient coupling method based on the second-order backward differentiation formula (BDF2) numerical approximation. The method uses an adaptive step size integration with an error estimation proposed by Skelboe (2000). The method shows a significant advantage over conventional fixed step size solvers used in neuroscience for similar problems. We explore different coupling strategies that define the organization of computations between system components. We study the importance of an appropriate approximation of exchanged variables during the simulation. The analysis shows a substantial impact of these aspects on the solution accuracy in the application to our multiscale neuroscientific test problem. We believe that the ideas presented in the paper may essentially contribute to the development of a robust and efficient framework for multiscale brain modeling and simulations in neuroscience.

  3. Multiscale geometric modeling of macromolecules II: Lagrangian representation

    PubMed Central

    Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2013-01-01

    Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR and cryo-EM, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger’s functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, while our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599

  4. REVIEW OF THE GOVERNING EQUATIONS, COMPUTATIONAL ALGORITHMS, AND OTHER COMPONENTS OF THE MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODELING SYSTEM

    EPA Science Inventory

    This article describes the governing equations, computational algorithms, and other components entering into the Community Multiscale Air Quality (CMAQ) modeling system. This system has been designed to approach air quality as a whole by including state-of-the-science capabiliti...

  5. Models, Databases, and Simulation Tools Needed for the Realization of Integrated Computational Materials Engineering. Proceedings of the Symposium Held at Materials Science and Technology 2010

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M. (Editor); Wong, Terry T. (Editor)

    2011-01-01

    Topics covered include: An Annotative Review of Multiscale Modeling and its Application to Scales Inherent in the Field of ICME; and A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rong, Libin; Guedj, Jeremie; Dahari, Harel

    The current paradigm for studying hepatitis C virus (HCV) dynamics in patients utilizes a standard viral dynamic model that keeps track of uninfected (target) cells, infected cells, and virus. The model does not account for the dynamics of intracellular viral replication, which is the major target of direct-acting antiviral agents (DAAs). In this paper, we describe and study a recently developed multiscale age-structured model that explicitly considers the potential effects of DAAs on intracellular viral RNA production, degradation, and secretion as virus into the circulation. We show that when therapy significantly blocks both intracellular viral RNA production and virus secretion,more » the serum viral load decline has three phases, with slopes reflecting the rate of serum viral clearance, the rate of loss of intracellular viral RNA, and the rate of loss of intracellular replication templates and infected cells, respectively. We also derive analytical approximations of the multiscale model and use one of them to analyze data from patients treated for 14 days with the HCV protease inhibitor danoprevir. Analysis suggests that danoprevir significantly blocks intracellular viral production (with mean effectiveness 99.2%), enhances intracellular viral RNA degradation about 5-fold, and moderately inhibits viral secretion (with mean effectiveness 56%). Finally, the multiscale model can be used to study viral dynamics in patients treated with other DAAs and explore their mechanisms of action in treatment of hepatitis C.« less

  7. Multiscale Modeling of Carbon Fiber Reinforced Polymer (CFRP) for Integrated Computational Materials Engineering Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Jiaying; Liang, Biao; Zhang, Weizhao

    In this work, a multiscale modeling framework for CFRP is introduced to study hierarchical structure of CFRP. Four distinct scales are defined: nanoscale, microscale, mesoscale, and macroscale. Information at lower scales can be passed to higher scale, which is beneficial for studying effect of constituents on macroscale part’s mechanical property. This bottom-up modeling approach enables better understanding of CFRP from finest details. Current study focuses on microscale and mesoscale. Representative volume element is used at microscale and mesoscale to model material’s properties. At microscale, unidirection CFRP (UD) RVE is used to study properties of UD. The UD RVE can bemore » modeled with different volumetric fraction to encounter non-uniform fiber distribution in CFRP part. Such consideration is important in modeling uncertainties at microscale level. Currently, we identified volumetric fraction as the only uncertainty parameters in UD RVE. To measure effective material properties of UD RVE, periodic boundary conditions (PBC) are applied to UD RVE to ensure convergence of obtained properties. Properties of UD is directly used at mesoscale woven RVE modeling, where each yarn is assumed to have same properties as UD. Within woven RVE, there can be many potential uncertainties parameters to consider for a physical modeling of CFRP. Currently, we will consider fiber misalignment within yarn and angle between wrap and weft yarns. PBC is applied to woven RVE to calculate its effective material properties. The effect of uncertainties are investigated quantitatively by Gaussian process. Preliminary results of UD and Woven study are analyzed for efficacy of the RVE modeling. This work is considered as the foundation for future multiscale modeling framework development for ICME project.« less

  8. Recent Enhancements to the Community Multiscale Air Quality Modeling System (CMAQ)

    EPA Science Inventory

    EPA’s Office of Research and Development, Computational Exposure Division held a webinar on January 31, 2017 to present the recent scientific and computational updates made by EPA to the Community Multi-Scale Air Quality Model (CMAQ). Topics covered included: (1) Improveme...

  9. Sensitivity of the Community Multiscale Air Quality (CMAQ) Model v4.7 Results for the Eastern United States to MM5 and WRF Meteorological Drivers

    EPA Science Inventory

    This paper presents a comparison of the operational performance of two Community Multiscale Air Quality (CMAQ) model v4.7 simulations that utilize input data from the 5th generation Mesoscale Model MM5 and the Weather Research and Forecasting (WRF) meteorological models.

  10. Multiscale Information Transfer in Functional Corticomuscular Coupling Estimation Following Stroke: A Pilot Study

    PubMed Central

    Chen, Xiaoling; Xie, Ping; Zhang, Yuanyuan; Chen, Yuling; Yang, Fangmei; Zhang, Litai; Li, Xiaoli

    2018-01-01

    Recently, functional corticomuscular coupling (FCMC) between the cortex and the contralateral muscle has been used to evaluate motor function after stroke. As we know, the motor-control system is a closed-loop system that is regulated by complex self-regulating and interactive mechanisms which operate in multiple spatial and temporal scales. Multiscale analysis can represent the inherent complexity. However, previous studies in FCMC for stroke patients mainly focused on the coupling strength in single-time scale, without considering the changes of the inherently directional and multiscale properties in sensorimotor systems. In this paper, a multiscale-causal model, named multiscale transfer entropy, was used to quantify the functional connection between electroencephalogram over the scalp and electromyogram from the flexor digitorum superficialis (FDS) recorded simultaneously during steady-state grip task in eight stroke patients and eight healthy controls. Our results showed that healthy controls exhibited higher coupling when the scale reached up to about 12, and the FCMC in descending direction was stronger at certain scales (1, 7, 12, and 14) than that in ascending direction. Further analysis showed these multi-time scale characteristics mainly focused on the beta1 band at scale 11 and beta2 band at scale 9, 11, 13, and 15. Compared to controls, the multiscale properties of the FCMC for stroke were changed, the strengths in both directions were reduced, and the gaps between the descending and ascending directions were disappeared over all scales. Further analysis in specific bands showed that the reduced FCMC mainly focused on the alpha2 at higher scale, beta1 and beta2 across almost the entire scales. This study about multi-scale confirms that the FCMC between the brain and muscles is capable of complex and directional characteristics, and these characteristics in functional connection for stroke are destroyed by the structural lesion in the brain that might disrupt coordination, feedback, and information transmission in efferent control and afferent feedback. The study demonstrates for the first time the multiscale and directional characteristics of the FCMC for stroke patients, and provides a preliminary observation for application in clinical assessment following stroke. PMID:29765351

  11. A Comprehensive Specimen-Specific Multiscale Data Set for Anatomical and Mechanical Characterization of the Tibiofemoral Joint

    PubMed Central

    Chokhandre, Snehal; Colbrunn, Robb; Bennetts, Craig; Erdemir, Ahmet

    2015-01-01

    Understanding of tibiofemoral joint mechanics at multiple spatial scales is essential for developing effective preventive measures and treatments for both pathology and injury management. Currently, there is a distinct lack of specimen-specific biomechanical data at multiple spatial scales, e.g., joint, tissue, and cell scales. Comprehensive multiscale data may improve the understanding of the relationship between biomechanical and anatomical markers across various scales. Furthermore, specimen-specific multiscale data for the tibiofemoral joint may assist development and validation of specimen-specific computational models that may be useful for more thorough analyses of the biomechanical behavior of the joint. This study describes an aggregation of procedures for acquisition of multiscale anatomical and biomechanical data for the tibiofemoral joint. Magnetic resonance imaging was used to acquire anatomical morphology at the joint scale. A robotic testing system was used to quantify joint level biomechanical response under various loading scenarios. Tissue level material properties were obtained from the same specimen for the femoral and tibial articular cartilage, medial and lateral menisci, anterior and posterior cruciate ligaments, and medial and lateral collateral ligaments. Histology data were also obtained for all tissue types to measure specimen-specific cell scale information, e.g., cellular distribution. This study is the first of its kind to establish a comprehensive multiscale data set for a musculoskeletal joint and the presented data collection approach can be used as a general template to guide acquisition of specimen-specific comprehensive multiscale data for musculoskeletal joints. PMID:26381404

  12. Automatic event detection in low SNR microseismic signals based on multi-scale permutation entropy and a support vector machine

    NASA Astrophysics Data System (ADS)

    Jia, Rui-Sheng; Sun, Hong-Mei; Peng, Yan-Jun; Liang, Yong-Quan; Lu, Xin-Ming

    2017-07-01

    Microseismic monitoring is an effective means for providing early warning of rock or coal dynamical disasters, and its first step is microseismic event detection, although low SNR microseismic signals often cannot effectively be detected by routine methods. To solve this problem, this paper presents permutation entropy and a support vector machine to detect low SNR microseismic events. First, an extraction method of signal features based on multi-scale permutation entropy is proposed by studying the influence of the scale factor on the signal permutation entropy. Second, the detection model of low SNR microseismic events based on the least squares support vector machine is built by performing a multi-scale permutation entropy calculation for the collected vibration signals, constructing a feature vector set of signals. Finally, a comparative analysis of the microseismic events and noise signals in the experiment proves that the different characteristics of the two can be fully expressed by using multi-scale permutation entropy. The detection model of microseismic events combined with the support vector machine, which has the features of high classification accuracy and fast real-time algorithms, can meet the requirements of online, real-time extractions of microseismic events.

  13. Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estep, Donald; El-Azab, Anter; Pernice, Michael

    2017-03-23

    In this project, we will address the challenges associated with constructing high fidelity multiscale models of nuclear fuel performance. We (*) propose a novel approach for coupling mesoscale and macroscale models, (*) devise efficient numerical methods for simulating the coupled system, and (*) devise and analyze effective numerical approaches for error and uncertainty quantification for the coupled multiscale system. As an integral part of the project, we will carry out analysis of the effects of upscaling and downscaling, investigate efficient methods for stochastic sensitivity analysis of the individual macroscale and mesoscale models, and carry out a posteriori error analysis formore » computed results. We will pursue development and implementation of solutions in software used at Idaho National Laboratories on models of interest to the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.« less

  14. Multiscale virtual particle based elastic network model (MVP-ENM) for normal mode analysis of large-sized biomolecules.

    PubMed

    Xia, Kelin

    2017-12-20

    In this paper, a multiscale virtual particle based elastic network model (MVP-ENM) is proposed for the normal mode analysis of large-sized biomolecules. The multiscale virtual particle (MVP) model is proposed for the discretization of biomolecular density data. With this model, large-sized biomolecular structures can be coarse-grained into virtual particles such that a balance between model accuracy and computational cost can be achieved. An elastic network is constructed by assuming "connections" between virtual particles. The connection is described by a special harmonic potential function, which considers the influence from both the mass distributions and distance relations of the virtual particles. Two independent models, i.e., the multiscale virtual particle based Gaussian network model (MVP-GNM) and the multiscale virtual particle based anisotropic network model (MVP-ANM), are proposed. It has been found that in the Debye-Waller factor (B-factor) prediction, the results from our MVP-GNM with a high resolution are as good as the ones from GNM. Even with low resolutions, our MVP-GNM can still capture the global behavior of the B-factor very well with mismatches predominantly from the regions with large B-factor values. Further, it has been demonstrated that the low-frequency eigenmodes from our MVP-ANM are highly consistent with the ones from ANM even with very low resolutions and a coarse grid. Finally, the great advantage of MVP-ANM model for large-sized biomolecules has been demonstrated by using two poliovirus virus structures. The paper ends with a conclusion.

  15. Multiscale Modeling of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  16. Industrial process system assessment: bridging process engineering and life cycle assessment through multiscale modeling.

    EPA Science Inventory

    The Industrial Process System Assessment (IPSA) methodology is a multiple step allocation approach for connecting information from the production line level up to the facility level and vice versa using a multiscale model of process systems. The allocation procedure assigns inpu...

  17. Cloud processing of gases and aerosols in the Community Multiscale Air Quality (CMAQ) model: Impacts of extended chemistry

    EPA Science Inventory

    Clouds and fogs can significantly impact the concentration and distribution of atmospheric gases and aerosols through chemistry, scavenging, and transport. This presentation summarizes the representation of cloud processes in the Community Multiscale Air Quality (CMAQ) modeling ...

  18. A Multi-Resolution Assessment of the Community Multiscale Air Quality (CMAQ) Model v4.7 Wet Deposition Estimates for 2002 - 2006

    EPA Science Inventory

    This paper examines the operational performance of the Community Multiscale Air Quality (CMAQ) model simulations for 2002 - 2006 using both 36-km and 12-km horizontal grid spacing, with a primary focus on the performance of the CMAQ model in predicting wet deposition of sulfate (...

  19. Developing a novel hierarchical approach for multiscale structural reliability predictions for ultra-high consequence applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, John M.; Coffin, Peter; Robbins, Brian A.

    Microstructural variabilities are among the predominant sources of uncertainty in structural performance and reliability. We seek to develop efficient algorithms for multiscale calcu- lations for polycrystalline alloys such as aluminum alloy 6061-T6 in environments where ductile fracture is the dominant failure mode. Our approach employs concurrent multiscale methods, but does not focus on their development. They are a necessary but not sufficient ingredient to multiscale reliability predictions. We have focused on how to efficiently use concurrent models for forward propagation because practical applications cannot include fine-scale details throughout the problem domain due to exorbitant computational demand. Our approach begins withmore » a low-fidelity prediction at the engineering scale that is sub- sequently refined with multiscale simulation. The results presented in this report focus on plasticity and damage at the meso-scale, efforts to expedite Monte Carlo simulation with mi- crostructural considerations, modeling aspects regarding geometric representation of grains and second-phase particles, and contrasting algorithms for scale coupling.« less

  20. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Matouš, Karel; Geers, Marc G. D.; Kouznetsova, Varvara G.; Gillman, Andrew

    2017-02-01

    Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platform in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.

  1. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matouš, Karel, E-mail: kmatous@nd.edu; Geers, Marc G.D.; Kouznetsova, Varvara G.

    2017-02-01

    Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platformmore » in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.« less

  2. Multiscale Modeling of Carbon Nanotube-Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas A.

    Epoxy-composites are widely used in the aerospace industry. In order to improve upon stiffness and thermal conductivity; carbon nanotube additives to epoxies are being explored. This dissertation presents multiscale modeling techniques to study the engineering properties of single walled carbon nanotube (SWNT)-epoxy nanocomposites, consisting of pristine and covalently functionalized systems. Using Molecular Dynamics (MD), thermomechanical properties were calculated for a representative polymer unit cell. Finite Element (FE) and orientation distribution function (ODF) based methods were used in a multiscale framework to obtain macroscale properties. An epoxy network was built using the dendrimer growth approach. The epoxy model was verified by matching the experimental glass transition temperature, density, and dilatation. MD, via the constant valence force field (CVFF), was used to explore the mechanical and dilatometric effects of adding pristine and functionalized SWNTs to epoxy. Full stiffness matrices and linear coefficient of thermal expansion vectors were obtained. The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for the various nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. To obtain continuum-scale elastic properties from the MD data, multiscale modeling was considered to give better control over the volume fraction of nanotubes, and investigate the effects of nanotube alignment. Two methods were considered; an FE based method, and an ODF based method. The FE method probabilistically assigned elastic properties of elements from the MD lattice results based on the desired volume fraction and alignment of the nanotubes. For the ODF method, a distribution function was generated based on the desired amount of nanotube alignment; and the stiffness matrix was calculated. A rule of mixture approach was implemented in the ODF model to vary the SWNT volume fraction. Both the ODF and FE models are compared and contrasted. ODF analysis is significantly faster for nanocomposites and is a novel contribution in this thesis. Multiscale modeling allows for the effects of nanofillers in epoxy systems to be characterized without having to run costly experiments.

  3. Beyond Low Rank + Sparse: Multi-scale Low Rank Matrix Decomposition

    PubMed Central

    Ong, Frank; Lustig, Michael

    2016-01-01

    We present a natural generalization of the recent low rank + sparse matrix decomposition and consider the decomposition of matrices into components of multiple scales. Such decomposition is well motivated in practice as data matrices often exhibit local correlations in multiple scales. Concretely, we propose a multi-scale low rank modeling that represents a data matrix as a sum of block-wise low rank matrices with increasing scales of block sizes. We then consider the inverse problem of decomposing the data matrix into its multi-scale low rank components and approach the problem via a convex formulation. Theoretically, we show that under various incoherence conditions, the convex program recovers the multi-scale low rank components either exactly or approximately. Practically, we provide guidance on selecting the regularization parameters and incorporate cycle spinning to reduce blocking artifacts. Experimentally, we show that the multi-scale low rank decomposition provides a more intuitive decomposition than conventional low rank methods and demonstrate its effectiveness in four applications, including illumination normalization for face images, motion separation for surveillance videos, multi-scale modeling of the dynamic contrast enhanced magnetic resonance imaging and collaborative filtering exploiting age information. PMID:28450978

  4. Investigating the relative permeability behavior of microporosity-rich carbonates and tight sandstones with multiscale pore network models

    NASA Astrophysics Data System (ADS)

    Bultreys, Tom; Stappen, Jeroen Van; Kock, Tim De; Boever, Wesley De; Boone, Marijn A.; Hoorebeke, Luc Van; Cnudde, Veerle

    2016-11-01

    The relative permeability behavior of rocks with wide ranges of pore sizes is in many cases still poorly understood and is difficult to model at the pore scale. In this work, we investigate the capillary pressure and relative permeability behavior of three outcrop carbonates and two tight reservoir sandstones with wide, multimodal pore size distributions. To examine how the drainage and imbibition properties of these complex rock types are influenced by the connectivity of macropores to each other and to zones with unresolved small-scale porosity, we apply a previously presented microcomputed-tomography-based multiscale pore network model to these samples. The sensitivity to the properties of the small-scale porosity is studied by performing simulations with different artificial sphere-packing-based networks as a proxy for these pores. Finally, the mixed-wet water-flooding behavior of the samples is investigated, assuming different wettability distributions for the microporosity and macroporosity. While this work is not an attempt to perform predictive modeling, it seeks to qualitatively explain the behavior of the investigated samples and illustrates some of the most recent developments in multiscale pore network modeling.

  5. A Multiscale Vision Model applied to analyze EIT images of the solar corona

    NASA Astrophysics Data System (ADS)

    Portier-Fozzani, F.; Vandame, B.; Bijaoui, A.; Maucherat, A. J.; EIT Team

    2001-07-01

    The large dynamic range provided by the SOHO/EIT CCD (1 : 5000) is needed to observe the large EUV zoom of coronal structures from coronal homes up to flares. Histograms show that often a wide dynamic range is present in each image. Extracting hidden structures in the background level requires specific techniques such as the use of the Multiscale Vision Model (MVM, Bijaoui et al., 1998). This method, based on wavelet transformations optimizes detection of various size objects, however complex they may be. Bijaoui et al. built the Multiscale Vision Model to extract small dynamical structures from noise, mainly for studying galaxies. In this paper, we describe requirements for the use of this method with SOHO/EIT images (calibration, size of the image, dynamics of the subimage, etc.). Two different areas were studied revealing hidden structures: (1) classical coronal mass ejection (CME) formation and (2) a complex group of active regions with its evolution. The aim of this paper is to define carefully the constraints for this new method of imaging the solar corona with SOHO/EIT. Physical analysis derived from multi-wavelength observations will later complete these first results.

  6. Transition between inverse and direct energy cascades in multiscale optical turbulence.

    PubMed

    Malkin, V M; Fisch, N J

    2018-03-01

    Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a single scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.

  7. Transition between inverse and direct energy cascades in multiscale optical turbulence

    NASA Astrophysics Data System (ADS)

    Malkin, V. M.; Fisch, N. J.

    2018-03-01

    Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a single scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.

  8. Hybrid multiscale modeling and prediction of cancer cell behavior

    PubMed Central

    Habibi, Jafar

    2017-01-01

    Background Understanding cancer development crossing several spatial-temporal scales is of great practical significance to better understand and treat cancers. It is difficult to tackle this challenge with pure biological means. Moreover, hybrid modeling techniques have been proposed that combine the advantages of the continuum and the discrete methods to model multiscale problems. Methods In light of these problems, we have proposed a new hybrid vascular model to facilitate the multiscale modeling and simulation of cancer development with respect to the agent-based, cellular automata and machine learning methods. The purpose of this simulation is to create a dataset that can be used for prediction of cell phenotypes. By using a proposed Q-learning based on SVR-NSGA-II method, the cells have the capability to predict their phenotypes autonomously that is, to act on its own without external direction in response to situations it encounters. Results Computational simulations of the model were performed in order to analyze its performance. The most striking feature of our results is that each cell can select its phenotype at each time step according to its condition. We provide evidence that the prediction of cell phenotypes is reliable. Conclusion Our proposed model, which we term a hybrid multiscale modeling of cancer cell behavior, has the potential to combine the best features of both continuum and discrete models. The in silico results indicate that the 3D model can represent key features of cancer growth, angiogenesis, and its related micro-environment and show that the findings are in good agreement with biological tumor behavior. To the best of our knowledge, this paper is the first hybrid vascular multiscale modeling of cancer cell behavior that has the capability to predict cell phenotypes individually by a self-generated dataset. PMID:28846712

  9. Hybrid multiscale modeling and prediction of cancer cell behavior.

    PubMed

    Zangooei, Mohammad Hossein; Habibi, Jafar

    2017-01-01

    Understanding cancer development crossing several spatial-temporal scales is of great practical significance to better understand and treat cancers. It is difficult to tackle this challenge with pure biological means. Moreover, hybrid modeling techniques have been proposed that combine the advantages of the continuum and the discrete methods to model multiscale problems. In light of these problems, we have proposed a new hybrid vascular model to facilitate the multiscale modeling and simulation of cancer development with respect to the agent-based, cellular automata and machine learning methods. The purpose of this simulation is to create a dataset that can be used for prediction of cell phenotypes. By using a proposed Q-learning based on SVR-NSGA-II method, the cells have the capability to predict their phenotypes autonomously that is, to act on its own without external direction in response to situations it encounters. Computational simulations of the model were performed in order to analyze its performance. The most striking feature of our results is that each cell can select its phenotype at each time step according to its condition. We provide evidence that the prediction of cell phenotypes is reliable. Our proposed model, which we term a hybrid multiscale modeling of cancer cell behavior, has the potential to combine the best features of both continuum and discrete models. The in silico results indicate that the 3D model can represent key features of cancer growth, angiogenesis, and its related micro-environment and show that the findings are in good agreement with biological tumor behavior. To the best of our knowledge, this paper is the first hybrid vascular multiscale modeling of cancer cell behavior that has the capability to predict cell phenotypes individually by a self-generated dataset.

  10. Top down and bottom up engineering of bone.

    PubMed

    Knothe Tate, Melissa L

    2011-01-11

    The goal of this retrospective article is to place the body of my lab's multiscale mechanobiology work in context of top-down and bottom-up engineering of bone. We have used biosystems engineering, computational modeling and novel experimental approaches to understand bone physiology, in health and disease, and across time (in utero, postnatal growth, maturity, aging and death, as well as evolution) and length scales (a single bone like a femur, m; a sample of bone tissue, mm-cm; a cell and its local environment, μm; down to the length scale of the cell's own skeleton, the cytoskeleton, nm). First we introduce the concept of flow in bone and the three calibers of porosity through which fluid flows. Then we describe, in the context of organ-tissue, tissue-cell and cell-molecule length scales, both multiscale computational models and experimental methods to predict flow in bone and to understand the flow of fluid as a means to deliver chemical and mechanical cues in bone. Addressing a number of studies in the context of multiple length and time scales, the importance of appropriate boundary conditions, site specific material parameters, permeability measures and even micro-nanoanatomically correct geometries are discussed in context of model predictions and their value for understanding multiscale mechanobiology of bone. Insights from these multiscale computational modeling and experimental methods are providing us with a means to predict, engineer and manufacture bone tissue in the laboratory and in the human body. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. SHORT RANGE ENSEMBLE Products

    Science.gov Websites

    - CONUS Double Resolution (Lambert Conformal - 40km) NEMS Non-hydrostatic Multiscale Model on the B grid AWIPS grid 212 Regional - CONUS Double Resolution (Lambert Conformal - 40km) NEMS Non-hydrostatic 132 - Double Resolution (Lambert Conformal - 16km) NEMS Non-hydrostatic Multiscale Model on the B grid

  12. Extending the Applicability of the Community Multiscale Air Quality Model to Hemispheric Scales: Motivation, Challenges, and Progress

    EPA Science Inventory

    The adaptation of the Community Multiscale Air Quality (CMAQ) modeling system to simulate O3, particulate matter, and related precursor distributions over the northern hemisphere is presented. Hemispheric simulations with CMAQ and the Weather Research and Forecasting (...

  13. Optimization of a hydrodynamic separator using a multiscale computational fluid dynamics approach.

    PubMed

    Schmitt, Vivien; Dufresne, Matthieu; Vazquez, Jose; Fischer, Martin; Morin, Antoine

    2013-01-01

    This article deals with the optimization of a hydrodynamic separator working on the tangential separation mechanism along a screen. The aim of this study is to optimize the shape of the device to avoid clogging. A multiscale approach is used. This methodology combines measurements and computational fluid dynamics (CFD). A local model enables us to observe the different phenomena occurring at the orifice scale, which shows the potential of expanded metal screens. A global model is used to simulate the flow within the device using a conceptual model of the screen (porous wall). After validation against the experimental measurements, the global model was used to investigate the influence of deflectors and disk plates in the structure.

  14. High-Efficiency Multiscale Modeling of Cell Deformations in Confined Microenvironments in Microcirculation and Microfluidics

    NASA Astrophysics Data System (ADS)

    Lu, Huijie; Peng, Zhangli

    2017-11-01

    We developed a high-efficiency multiscale modeling method to predict the stress and deformation of cells during the interactions with their microenvironments in microcirculation and microfluidics, including red blood cells (RBCs) and circulating tumor cells (CTCs). There are more than 1 billion people in the world suffering from RBC diseases. The mechanical properties of RBCs are changed in these diseases due to molecular structure alternations, which is not only important for understanding the disease pathology but also provides an opportunity for diagnostics. On the other hand, the mechanical properties of cancer cells are also altered compared to healthy cells. This can lead to acquired ability to cross the narrow capillary networks and endothelial gaps, which is crucial for metastasis, the leading cause of cancer mortality. Therefore, it is important to predict the deformation and stress of RBCs and CTCs in microcirculations. We develop a high-efficiency multiscale model of cell-fluid interaction. We pass the information from our molecular scale models to the cell scale to study the effect of molecular mutations. Using our high-efficiency boundary element methods of fluids, we will be able to run 3D simulations using a single CPU within several hours, which will enable us to run extensive parametric studies and optimization.

  15. Advances in multi-scale modeling of solidification and casting processes

    NASA Astrophysics Data System (ADS)

    Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang

    2011-04-01

    The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.

  16. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE PAGES

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    2015-12-07

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less

  17. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less

  18. Towards multiscale modeling of influenza infection

    PubMed Central

    Murillo, Lisa N.; Murillo, Michael S.; Perelson, Alan S.

    2013-01-01

    Aided by recent advances in computational power, algorithms, and higher fidelity data, increasingly detailed theoretical models of infection with influenza A virus are being developed. We review single scale models as they describe influenza infection from intracellular to global scales, and, in particular, we consider those models that capture details specific to influenza and can be used to link different scales. We discuss the few multiscale models of influenza infection that have been developed in this emerging field. In addition to discussing modeling approaches, we also survey biological data on influenza infection and transmission that is relevant for constructing influenza infection models. We envision that, in the future, multiscale models that capitalize on technical advances in experimental biology and high performance computing could be used to describe the large spatial scale epidemiology of influenza infection, evolution of the virus, and transmission between hosts more accurately. PMID:23608630

  19. Hybrid methods for simulating hydrodynamics and heat transfer in multiscale (1D-3D) models

    NASA Astrophysics Data System (ADS)

    Filimonov, S. A.; Mikhienkova, E. I.; Dekterev, A. A.; Boykov, D. V.

    2017-09-01

    The work is devoted to application of different-scale models in the simulation of hydrodynamics and heat transfer of large and/or complex systems, which can be considered as a combination of extended and “compact” elements. The model consisting of simultaneously existing three-dimensional and network (one-dimensional) elements is called multiscale. The paper examines the relevance of building such models and considers three main options for their implementation: the spatial and the network parts of the model are calculated separately; spatial and network parts are calculated simultaneously (hydraulically unified model); network elements “penetrate” the spatial part and are connected through the integral characteristics at the tube/channel walls (hydraulically disconnected model). Each proposed method is analyzed in terms of advantages and disadvantages. The paper presents a number of practical examples demonstrating the application of multiscale models.

  20. RESULTS OF PHOTOCHEMICAL SIMULATIONS OF SUBGRID SCALE POINT SOURCE EMISSIONS WITH THE MODELS-3 CMAQ MODELING SYSTEM

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) / Plume-in-Grid (PinG) model was applied on a domain encompassing the greater Nashville, Tennessee region. Model simulations were performed for selected days in July 1995 during the Southern Oxidant Study (SOS) field study program wh...

  1. Multiscale Modeling of Multiphase Fluid Flow

    DTIC Science & Technology

    2016-08-01

    the disparate time and length scales involved in modeling fluid flow and heat transfer. Molecular dynamics simulations were carried out to provide a...fluid dynamics methods were used to investigate the heat transfer process in open-cell micro-foam with phase change material; enhancement of natural...Computational fluid dynamics, Heat transfer, Phase change material in Micro-foam, Molecular Dynamics, Multiphase flow, Multiscale modeling, Natural

  2. Multi-Scale Characterization of Orthotropic Microstructures

    DTIC Science & Technology

    2008-04-01

    D. Valiveti, S. J. Harris, J. Boileau, A domain partitioning based pre-processor for multi-scale modelling of cast aluminium alloys , Modelling and...SUPPLEMENTARY NOTES Journal article submitted to Modeling and Simulation in Materials Science and Engineering. PAO Case Number: WPAFB 08-3362...element for charac- terization or simulation to avoid misleading predictions of macroscopic defor- mation, fracture, or transport behavior. Likewise

  3. Simulations of Tornadoes, Tropical Cyclones, MJOs, and QBOs, using GFDL's multi-scale global climate modeling system

    NASA Astrophysics Data System (ADS)

    Lin, Shian-Jiann; Harris, Lucas; Chen, Jan-Huey; Zhao, Ming

    2014-05-01

    A multi-scale High-Resolution Atmosphere Model (HiRAM) is being developed at NOAA/Geophysical Fluid Dynamics Laboratory. The model's dynamical framework is the non-hydrostatic extension of the vertically Lagrangian finite-volume dynamical core (Lin 2004, Monthly Wea. Rev.) constructed on a stretchable (via Schmidt transformation) cubed-sphere grid. Physical parametrizations originally designed for IPCC-type climate predictions are in the process of being modified and made more "scale-aware", in an effort to make the model suitable for multi-scale weather-climate applications, with horizontal resolution ranging from 1 km (near the target high-resolution region) to as low as 400 km (near the antipodal point). One of the main goals of this development is to enable simulation of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously thought impossible. We will present preliminary results, covering a very wide spectrum of temporal-spatial scales, ranging from simulation of tornado genesis (hours), Madden-Julian Oscillations (intra-seasonal), topical cyclones (seasonal), to Quasi Biennial Oscillations (intra-decadal), using the same global multi-scale modeling system.

  4. Bayesian inference on multiscale models for poisson intensity estimation: applications to photon-limited image denoising.

    PubMed

    Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George

    2009-08-01

    We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.

  5. Voluntary EMG-to-force estimation with a multi-scale physiological muscle model

    PubMed Central

    2013-01-01

    Background EMG-to-force estimation based on muscle models, for voluntary contraction has many applications in human motion analysis. The so-called Hill model is recognized as a standard model for this practical use. However, it is a phenomenological model whereby muscle activation, force-length and force-velocity properties are considered independently. Perreault reported Hill modeling errors were large for different firing frequencies, level of activation and speed of contraction. It may be due to the lack of coupling between activation and force-velocity properties. In this paper, we discuss EMG-force estimation with a multi-scale physiology based model, which has a link to underlying crossbridge dynamics. Differently from the Hill model, the proposed method provides dual dynamics of recruitment and calcium activation. Methods The ankle torque was measured for the plantar flexion along with EMG measurements of the medial gastrocnemius (GAS) and soleus (SOL). In addition to Hill representation of the passive elements, three models of the contractile parts have been compared. Using common EMG signals during isometric contraction in four able-bodied subjects, torque was estimated by the linear Hill model, the nonlinear Hill model and the multi-scale physiological model that refers to Huxley theory. The comparison was made in normalized scale versus the case in maximum voluntary contraction. Results The estimation results obtained with the multi-scale model showed the best performances both in fast-short and slow-long term contraction in randomized tests for all the four subjects. The RMS errors were improved with the nonlinear Hill model compared to linear Hill, however it showed limitations to account for the different speed of contractions. Average error was 16.9% with the linear Hill model, 9.3% with the modified Hill model. In contrast, the error in the multi-scale model was 6.1% while maintaining a uniform estimation performance in both fast and slow contractions schemes. Conclusions We introduced a novel approach that allows EMG-force estimation based on a multi-scale physiology model integrating Hill approach for the passive elements and microscopic cross-bridge representations for the contractile element. The experimental evaluation highlights estimation improvements especially a larger range of contraction conditions with integration of the neural activation frequency property and force-velocity relationship through cross-bridge dynamics consideration. PMID:24007560

  6. Peridynamic Multiscale Finite Element Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Timothy; Bond, Stephen D.; Littlewood, David John

    The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic andmore » local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the art of local models with the flexibility and accuracy of the nonlocal peridynamic model. In the mixed locality method this coupling occurs across scales, so that the nonlocal model can be used to communicate material heterogeneity at scales inappropriate to local partial differential equation models. Additionally, the computational burden of the weak form of the peridynamic model is reduced dramatically by only requiring that the model be solved on local patches of the simulation domain which may be computed in parallel, taking advantage of the heterogeneous nature of next generation computing platforms. Addition- ally, we present a novel Galerkin framework, the 'Ambulant Galerkin Method', which represents a first step towards a unified mathematical analysis of local and nonlocal multiscale finite element methods, and whose future extension will allow the analysis of multiscale finite element methods that mix models across scales under certain assumptions of the consistency of those models.« less

  7. Using CellML with OpenCMISS to Simulate Multi-Scale Physiology

    PubMed Central

    Nickerson, David P.; Ladd, David; Hussan, Jagir R.; Safaei, Soroush; Suresh, Vinod; Hunter, Peter J.; Bradley, Christopher P.

    2014-01-01

    OpenCMISS is an open-source modeling environment aimed, in particular, at the solution of bioengineering problems. OpenCMISS consists of two main parts: a computational library (OpenCMISS-Iron) and a field manipulation and visualization library (OpenCMISS-Zinc). OpenCMISS is designed for the solution of coupled multi-scale, multi-physics problems in a general-purpose parallel environment. CellML is an XML format designed to encode biophysically based systems of ordinary differential equations and both linear and non-linear algebraic equations. A primary design goal of CellML is to allow mathematical models to be encoded in a modular and reusable format to aid reproducibility and interoperability of modeling studies. In OpenCMISS, we make use of CellML models to enable users to configure various aspects of their multi-scale physiological models. This avoids the need for users to be familiar with the OpenCMISS internal code in order to perform customized computational experiments. Examples of this are: cellular electrophysiology models embedded in tissue electrical propagation models; material constitutive relationships for mechanical growth and deformation simulations; time-varying boundary conditions for various problem domains; and fluid constitutive relationships and lumped-parameter models. In this paper, we provide implementation details describing how CellML models are integrated into multi-scale physiological models in OpenCMISS. The external interface OpenCMISS presents to users is also described, including specific examples exemplifying the extensibility and usability these tools provide the physiological modeling and simulation community. We conclude with some thoughts on future extension of OpenCMISS to make use of other community developed information standards, such as FieldML, SED-ML, and BioSignalML. Plans for the integration of accelerator code (graphical processing unit and field programmable gate array) generated from CellML models is also discussed. PMID:25601911

  8. High-Efficiency Multiscale Modeling of Cell Deformations in Confined Microenvironments in Microcirculation and Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Lu, Huijie; Peng, Zhangli

    2017-11-01

    Our goal is to develop a high-efficiency multiscale modeling method to predict the stress and deformation of cells during the interactions with their microenvironments in microcirculation and microfluidic devices, including red blood cells (RBCs) and circulating tumor cells (CTCs). There are more than 1 billion people in the world suffering from RBC diseases, e.g. anemia, sickle cell diseases, and malaria. The mechanical properties of RBCs are changed in these diseases due to molecular structure alternations, which is not only important for understanding the disease pathology but also provides an opportunity for diagnostics. On the other hand, the mechanical properties of cancer cells are also altered compared to healthy cells. This can lead to acquired ability to cross the narrow capillary networks and endothelial gaps, which is crucial for metastasis, the leading cause of cancer mortality. Therefore, it is important to predict the deformation and stress of RBCs and CTCs in microcirculations. We are developing a high-efficiency multiscale model of cell-fluid interaction to study these two topics.

  9. Multiscale multifractal time irreversibility analysis of stock markets

    NASA Astrophysics Data System (ADS)

    Jiang, Chenguang; Shang, Pengjian; Shi, Wenbin

    2016-11-01

    Time irreversibility is one of the most important properties of nonstationary time series. Complex time series often demonstrate even multiscale time irreversibility, such that not only the original but also coarse-grained time series are asymmetric over a wide range of scales. We study the multiscale time irreversibility of time series. In this paper, we develop a method called multiscale multifractal time irreversibility analysis (MMRA), which allows us to extend the description of time irreversibility to include the dependence on the segment size and statistical moments. We test the effectiveness of MMRA in detecting multifractality and time irreversibility of time series generated from delayed Henon map and binomial multifractal model. Then we employ our method to the time irreversibility analysis of stock markets in different regions. We find that the emerging market has higher multifractality degree and time irreversibility compared with developed markets. In this sense, the MMRA method may provide new angles in assessing the evolution stage of stock markets.

  10. Modeling crack propagation in polycrystalline microstructure using variational multiscale method

    DOE PAGES

    Sun, Shang; Sundararaghavan, Veera

    2016-01-01

    Crack propagation in a polycrystalline microstructure is analyzed using a novel multiscale model. The model includes an explicit microstructural representation at critical regions (stress concentrators such as notches and cracks) and a reduced order model that statistically captures the microstructure at regions far away from stress concentrations. Crack propagation is modeled in these critical regions using the variational multiscale method. In this approach, a discontinuous displacement field is added to elements that exceed the critical values of normal or tangential tractions during loading. Compared to traditional cohesive zone modeling approaches, the method does not require the use of any specialmore » interface elements in the microstructure and thus can model arbitrary crack paths. As a result, the capability of the method in predicting both intergranular and transgranular failure modes in an elastoplastic polycrystal is demonstrated under tensile and three-point bending loads.« less

  11. Wavelet-based multiscale adjoint waveform-difference tomography using body and surface waves

    NASA Astrophysics Data System (ADS)

    Yuan, Y. O.; Simons, F. J.; Bozdag, E.

    2014-12-01

    We present a multi-scale scheme for full elastic waveform-difference inversion. Using a wavelet transform proves to be a key factor to mitigate cycle-skipping effects. We start with coarse representations of the seismogram to correct a large-scale background model, and subsequently explain the residuals in the fine scales of the seismogram to map the heterogeneities with great complexity. We have previously applied the multi-scale approach successfully to body waves generated in a standard model from the exploration industry: a modified two-dimensional elastic Marmousi model. With this model we explored the optimal choice of wavelet family, number of vanishing moments and decomposition depth. For this presentation we explore the sensitivity of surface waves in waveform-difference tomography. The incorporation of surface waves is rife with cycle-skipping problems compared to the inversions considering body waves only. We implemented an envelope-based objective function probed via a multi-scale wavelet analysis to measure the distance between predicted and target surface-wave waveforms in a synthetic model of heterogeneous near-surface structure. Our proposed method successfully purges the local minima present in the waveform-difference misfit surface. An elastic shallow model with 100~m in depth is used to test the surface-wave inversion scheme. We also analyzed the sensitivities of surface waves and body waves in full waveform inversions, as well as the effects of incorrect density information on elastic parameter inversions. Based on those numerical experiments, we ultimately formalized a flexible scheme to consider both body and surface waves in adjoint tomography. While our early examples are constructed from exploration-style settings, our procedure will be very valuable for the study of global network data.

  12. Chondrocyte Deformations as a Function of Tibiofemoral Joint Loading Predicted by a Generalized High-Throughput Pipeline of Multi-Scale Simulations

    PubMed Central

    Sibole, Scott C.; Erdemir, Ahmet

    2012-01-01

    Cells of the musculoskeletal system are known to respond to mechanical loading and chondrocytes within the cartilage are not an exception. However, understanding how joint level loads relate to cell level deformations, e.g. in the cartilage, is not a straightforward task. In this study, a multi-scale analysis pipeline was implemented to post-process the results of a macro-scale finite element (FE) tibiofemoral joint model to provide joint mechanics based displacement boundary conditions to micro-scale cellular FE models of the cartilage, for the purpose of characterizing chondrocyte deformations in relation to tibiofemoral joint loading. It was possible to identify the load distribution within the knee among its tissue structures and ultimately within the cartilage among its extracellular matrix, pericellular environment and resident chondrocytes. Various cellular deformation metrics (aspect ratio change, volumetric strain, cellular effective strain and maximum shear strain) were calculated. To illustrate further utility of this multi-scale modeling pipeline, two micro-scale cartilage constructs were considered: an idealized single cell at the centroid of a 100×100×100 μm block commonly used in past research studies, and an anatomically based (11 cell model of the same volume) representation of the middle zone of tibiofemoral cartilage. In both cases, chondrocytes experienced amplified deformations compared to those at the macro-scale, predicted by simulating one body weight compressive loading on the tibiofemoral joint. In the 11 cell case, all cells experienced less deformation than the single cell case, and also exhibited a larger variance in deformation compared to other cells residing in the same block. The coupling method proved to be highly scalable due to micro-scale model independence that allowed for exploitation of distributed memory computing architecture. The method’s generalized nature also allows for substitution of any macro-scale and/or micro-scale model providing application for other multi-scale continuum mechanics problems. PMID:22649535

  13. A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1

    EPA Science Inventory

    This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM − KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.2.3, is used t...

  14. Observations and modeling of air quality trends over 1990-2010 across the northern hemisphere: China, the United States and Europe

    EPA Science Inventory

    Trends in air quality across the Northern Hemisphere over a 21-year period (1990–2010) were simulated using the Community Multiscale Air Quality (CMAQ) multiscale chemical transport model driven by meteorology from Weather Research and Forecasting WRF) simulations and internally ...

  15. Comparing AMSR-E soil moisture estimates to the extended record of the U.S. Climate Reference Network (USCRN)

    USDA-ARS?s Scientific Manuscript database

    Soil moisture plays an integral role in various aspects ranging from multi-scale hydrologic modeling to agricultural decision analysis to multi-scale hydrologic modeling, from climate change assessments to drought prediction and prevention. The broad availability of soil moisture estimates has only...

  16. Evaluation of the Community Multiscale Air Quality (CMAQ) modeling system against size-resolved measurements of inorganic particle composition across sites in North America

    EPA Science Inventory

    This work evaluates particle size-composition distributions simulated by the Community Multiscale Air Quality (CMAQ) model using Micro-Orifice Uniform Deposit Impactor (MOUDI) measurements at 18 sites across North America. Size-resolved measurements of particulate SO4<...

  17. Numerical Simulations of a Multiscale Model of Stratified Langmuir Circulation

    NASA Astrophysics Data System (ADS)

    Malecha, Ziemowit; Chini, Gregory; Julien, Keith

    2012-11-01

    Langmuir circulation (LC), a prominent form of wind and surface-wave driven shear turbulence in the ocean surface boundary layer (BL), is commonly modeled using the Craik-Leibovich (CL) equations, a phase-averaged variant of the Navier-Stokes (NS) equations. Although surface-wave filtering renders the CL equations more amenable to simulation than are the instantaneous NS equations, simulations in wide domains, hundreds of times the BL depth, currently earn the ``grand challenge'' designation. To facilitate simulations of LC in such spatially-extended domains, we have derived multiscale CL equations by exploiting the scale separation between submesoscale and BL flows in the upper ocean. The numerical algorithm for simulating this multiscale model resembles super-parameterization schemes used in meteorology, but retains a firm mathematical basis. We have validated our algorithm and here use it to perform multiscale simulations of the interaction between LC and upper ocean density stratification. ZMM, GPC, KJ gratefully acknowledge funding from NSF CMG Award 0934827.

  18. A multi-scale model for correlation in B cell VDJ usage of zebrafish

    NASA Astrophysics Data System (ADS)

    Pan, Keyao; Deem, Michael W.

    2011-10-01

    The zebrafish (Danio rerio) is one of the model animals used for the study of immunology because the dynamics in the adaptive immune system of zebrafish are similar to that in higher animals. In this work, we built a multi-scale model to simulate the dynamics of B cells in the primary and secondary immune responses of zebrafish. We use this model to explain the reported correlation between VDJ usage of B cell repertoires in individual zebrafish. We use a delay ordinary differential equation (ODE) system to model the immune responses in the 6-month lifespan of a zebrafish. This mean field theory gives the number of high-affinity B cells as a function of time during an infection. The sequences of those B cells are then taken from a distribution calculated by a 'microscopic' random energy model. This generalized NK model shows that mature B cells specific to one antigen largely possess a single VDJ recombination. The model allows first-principle calculation of the probability, p, that two zebrafish responding to the same antigen will select the same VDJ recombination. This probability p increases with the B cell population size and the B cell selection intensity. The probability p decreases with the B cell hypermutation rate. The multi-scale model predicts correlations in the immune system of the zebrafish that are highly similar to that from experiment.

  19. A multiscale modeling approach to inflammation: A case study in human endotoxemia

    NASA Astrophysics Data System (ADS)

    Scheff, Jeremy D.; Mavroudis, Panteleimon D.; Foteinou, Panagiota T.; An, Gary; Calvano, Steve E.; Doyle, John; Dick, Thomas E.; Lowry, Stephen F.; Vodovotz, Yoram; Androulakis, Ioannis P.

    2013-07-01

    Inflammation is a critical component in the body's response to injury. A dysregulated inflammatory response, in which either the injury is not repaired or the inflammatory response does not appropriately self-regulate and end, is associated with a wide range of inflammatory diseases such as sepsis. Clinical management of sepsis is a significant problem, but progress in this area has been slow. This may be due to the inherent nonlinearities and complexities in the interacting multiscale pathways that are activated in response to systemic inflammation, motivating the application of systems biology techniques to better understand the inflammatory response. Here, we review our past work on a multiscale modeling approach applied to human endotoxemia, a model of systemic inflammation, consisting of a system of compartmentalized differential equations operating at different time scales and through a discrete model linking inflammatory mediators with changing patterns in the beating of the heart, which has been correlated with outcome and severity of inflammatory disease despite unclear mechanistic underpinnings. Working towards unraveling the relationship between inflammation and heart rate variability (HRV) may enable greater understanding of clinical observations as well as novel therapeutic targets.

  20. Computational Chemistry Toolkit for Energetic Materials Design

    DTIC Science & Technology

    2006-11-01

    industry are aggressively engaged in efforts to develop multiscale modeling and simulation methodologies to model and analyze complex phenomena across...energetic materials design. It is hoped that this toolkit will evolve into a collection of well-integrated multiscale modeling methodologies...Experimenta Theoreticala This Work 1-5-Diamino-4- methyl- tetrazolium nitrate 8.4 41.7 47.5 1-5-Diamino-4- methyl- tetrazolium azide 138.1 161.6

  1. A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control

    PubMed Central

    Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2014-01-01

    Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569

  2. Multiscale turbulence models based on convected fluid microstructure

    NASA Astrophysics Data System (ADS)

    Holm, Darryl D.; Tronci, Cesare

    2012-11-01

    The Euler-Poincaré approach to complex fluids is used to derive multiscale equations for computationally modeling Euler flows as a basis for modeling turbulence. The model is based on a kinematic sweeping ansatz (KSA) which assumes that the mean fluid flow serves as a Lagrangian frame of motion for the fluctuation dynamics. Thus, we regard the motion of a fluid parcel on the computationally resolvable length scales as a moving Lagrange coordinate for the fluctuating (zero-mean) motion of fluid parcels at the unresolved scales. Even in the simplest two-scale version on which we concentrate here, the contributions of the fluctuating motion under the KSA to the mean motion yields a system of equations that extends known results and appears to be suitable for modeling nonlinear backscatter (energy transfer from smaller to larger scales) in turbulence using multiscale methods.

  3. Anatomy and Physiology of Multiscale Modeling and Simulation in Systems Medicine.

    PubMed

    Mizeranschi, Alexandru; Groen, Derek; Borgdorff, Joris; Hoekstra, Alfons G; Chopard, Bastien; Dubitzky, Werner

    2016-01-01

    Systems medicine is the application of systems biology concepts, methods, and tools to medical research and practice. It aims to integrate data and knowledge from different disciplines into biomedical models and simulations for the understanding, prevention, cure, and management of complex diseases. Complex diseases arise from the interactions among disease-influencing factors across multiple levels of biological organization from the environment to molecules. To tackle the enormous challenges posed by complex diseases, we need a modeling and simulation framework capable of capturing and integrating information originating from multiple spatiotemporal and organizational scales. Multiscale modeling and simulation in systems medicine is an emerging methodology and discipline that has already demonstrated its potential in becoming this framework. The aim of this chapter is to present some of the main concepts, requirements, and challenges of multiscale modeling and simulation in systems medicine.

  4. Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2002-01-01

    This document contains the proceedings of the Training Workshop on Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems held at NASA Langley Research Center, Hampton, Virginia, March 5 - 6, 2002. The workshop was jointly sponsored by Old Dominion University's Center for Advanced Engineering Environments and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objectives of the workshop were to give overviews of the diverse activities in hierarchical approach to material modeling from continuum to atomistics; applications of multiscale modeling to advanced and improved material synthesis; defects, dislocations, and material deformation; fracture and friction; thin-film growth; characterization at nano and micro scales; and, verification and validation of numerical simulations, and to identify their potential for future aerospace systems.

  5. A Single Mode Study of a Quasi-Geostrophic Convection-Driven Dynamo Model

    NASA Astrophysics Data System (ADS)

    Plumley, M.; Calkins, M. A.; Julien, K. A.; Tobias, S.

    2017-12-01

    Planetary magnetic fields are thought to be the product of hydromagnetic dynamo action. For Earth, this process occurs within the convecting, turbulent and rapidly rotating outer core, where the dynamics are characterized by low Rossby, low magnetic Prandtl and high Rayleigh numbers. Progress in studying dynamos has been limited by current computing capabilities and the difficulties in replicating the extreme values that define this setting. Asymptotic models that embrace these extreme parameter values and enforce the dominant balance of geostrophy provide an option for the study of convective flows with actual relevance to geophysics. The quasi-geostrophic dynamo model (QGDM) is a multiscale, fully-nonlinear Cartesian dynamo model that is valid in the asymptotic limit of low Rossby number. We investigate the QGDM using a simplified class of solutions that consist of a single horizontal wavenumber which enforces a horizontal structure on the solutions. This single mode study is used to explore multiscale time stepping techniques and analyze the influence of the magnetic field on convection.

  6. Multiscale Modelling of Cancer Progression and Treatment Control: The Role of Intracellular Heterogeneities in Chemotherapy Treatment

    NASA Astrophysics Data System (ADS)

    Chaplain, Mark A. J.; Powathil, Gibin G.

    Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.

  7. Multiscale Modelling of Cancer Progression and Treatment Control: The Role of Intracellular Heterogeneities in Chemotherapy Treatment

    NASA Astrophysics Data System (ADS)

    Chaplain, Mark A. J.; Powathil, Gibin G.

    2015-04-01

    Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.

  8. On a sparse pressure-flow rate condensation of rigid circulation models

    PubMed Central

    Schiavazzi, D. E.; Hsia, T. Y.; Marsden, A. L.

    2015-01-01

    Cardiovascular simulation has shown potential value in clinical decision-making, providing a framework to assess changes in hemodynamics produced by physiological and surgical alterations. State-of-the-art predictions are provided by deterministic multiscale numerical approaches coupling 3D finite element Navier Stokes simulations to lumped parameter circulation models governed by ODEs. Development of next-generation stochastic multiscale models whose parameters can be learned from available clinical data under uncertainty constitutes a research challenge made more difficult by the high computational cost typically associated with the solution of these models. We present a methodology for constructing reduced representations that condense the behavior of 3D anatomical models using outlet pressure-flow polynomial surrogates, based on multiscale model solutions spanning several heart cycles. Relevance vector machine regression is compared with maximum likelihood estimation, showing that sparse pressure/flow rate approximations offer superior performance in producing working surrogate models to be included in lumped circulation networks. Sensitivities of outlets flow rates are also quantified through a Sobol’ decomposition of their total variance encoded in the orthogonal polynomial expansion. Finally, we show that augmented lumped parameter models including the proposed surrogates accurately reproduce the response of multiscale models they were derived from. In particular, results are presented for models of the coronary circulation with closed loop boundary conditions and the abdominal aorta with open loop boundary conditions. PMID:26671219

  9. Upscaling the Coupled Water and Heat Transport in the Shallow Subsurface

    NASA Astrophysics Data System (ADS)

    Sviercoski, R. F.; Efendiev, Y.; Mohanty, B. P.

    2018-02-01

    Predicting simultaneous movement of liquid water, water vapor, and heat in the shallow subsurface has many practical interests. The demand for multidimensional multiscale models for this region is important given: (a) the critical role that these processes play in the global water and energy balances, (b) that more data from air-borne and space-borne sensors are becoming available for parameterizations of modeling efforts. On the other hand, numerical models that consider spatial variations of the soil properties, termed here as multiscale, are prohibitively expensive. Thus, there is a need for upscaled models that take into consideration these features, and be computationally affordable. In this paper, a multidimensional multiscale model coupling the water flow and heat transfer and its respective upscaled version are proposed. The formulation is novel as it describes the multidimensional and multiscale tensorial versions of the hydraulic conductivity and the vapor diffusivity, taking into account the tortuosity and porosity properties of the medium. It also includes the coupling with the energy balance equation as a boundary describing atmospheric influences at the shallow subsurface. To demonstrate the accuracy of both models, comparisons were made between simulation and field experiments for soil moisture and temperature at 2, 7, and 12 cm deep, during 11 days. The root-mean-square errors showed that the upscaled version of the system captured the multiscale features with similar accuracy. Given the good matching between simulated and field data for near-surface soil temperature, the results suggest that it can be regarded as a 1-D variable.

  10. Modeling and Simulations in Photoelectrochemical Water Oxidation: From Single Level to Multiscale Modeling.

    PubMed

    Zhang, Xueqing; Bieberle-Hütter, Anja

    2016-06-08

    This review summarizes recent developments, challenges, and strategies in the field of modeling and simulations of photoelectrochemical (PEC) water oxidation. We focus on water splitting by metal-oxide semiconductors and discuss topics such as theoretical calculations of light absorption, band gap/band edge, charge transport, and electrochemical reactions at the electrode-electrolyte interface. In particular, we review the mechanisms of the oxygen evolution reaction, strategies to lower overpotential, and computational methods applied to PEC systems with particular focus on multiscale modeling. The current challenges in modeling PEC interfaces and their processes are summarized. At the end, we propose a new multiscale modeling approach to simulate the PEC interface under conditions most similar to those of experiments. This approach will contribute to identifying the limitations at PEC interfaces. Its generic nature allows its application to a number of electrochemical systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Multiscale Systems Analysis of Root Growth and Development: Modeling Beyond the Network and Cellular Scales

    PubMed Central

    Band, Leah R.; Fozard, John A.; Godin, Christophe; Jensen, Oliver E.; Pridmore, Tony; Bennett, Malcolm J.; King, John R.

    2012-01-01

    Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move beyond the network and cellular scales, to use multiscale modeling to predict emergent dynamics at the tissue and organ levels. In this review, we highlight recent developments in multiscale modeling, illustrating how these are generating new mechanistic insights into the regulation of root growth and development. We consider how these models are motivating new biological data analysis and explore directions for future research. This modeling progress will be crucial as we move from a qualitative to an increasingly quantitative understanding of root biology, generating predictive tools that accelerate the development of improved crop varieties. PMID:23110897

  12. Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldhaber, Steve; Holland, Marika

    The major goal of this project was to contribute improvements to the infrastructure of an Earth System Model in order to support research in the Multiscale Methods for Accurate, Efficient, and Scale-Aware models of the Earth System project. In support of this, the NCAR team accomplished two main tasks: improving input/output performance of the model and improving atmospheric model simulation quality. Improvement of the performance and scalability of data input and diagnostic output within the model required a new infrastructure which can efficiently handle the unstructured grids common in multiscale simulations. This allows for a more computationally efficient model, enablingmore » more years of Earth System simulation. The quality of the model simulations was improved by reducing grid-point noise in the spectral element version of the Community Atmosphere Model (CAM-SE). This was achieved by running the physics of the model using grid-cell data on a finite-volume grid.« less

  13. Multiscale model reduction for shale gas transport in poroelastic fractured media

    NASA Astrophysics Data System (ADS)

    Akkutlu, I. Yucel; Efendiev, Yalchin; Vasilyeva, Maria; Wang, Yuhe

    2018-01-01

    Inherently coupled flow and geomechanics processes in fractured shale media have implications for shale gas production. The system involves highly complex geo-textures comprised of a heterogeneous anisotropic fracture network spatially embedded in an ultra-tight matrix. In addition, nonlinearities due to viscous flow, diffusion, and desorption in the matrix and high velocity gas flow in the fractures complicates the transport. In this paper, we develop a multiscale model reduction approach to couple gas flow and geomechanics in fractured shale media. A Discrete Fracture Model (DFM) is used to treat the complex network of fractures on a fine grid. The coupled flow and geomechanics equations are solved using a fixed stress-splitting scheme by solving the pressure equation using a continuous Galerkin method and the displacement equation using an interior penalty discontinuous Galerkin method. We develop a coarse grid approximation and coupling using the Generalized Multiscale Finite Element Method (GMsFEM). GMsFEM constructs the multiscale basis functions in a systematic way to capture the fracture networks and their interactions with the shale matrix. Numerical results and an error analysis is provided showing that the proposed approach accurately captures the coupled process using a few multiscale basis functions, i.e. a small fraction of the degrees of freedom of the fine-scale problem.

  14. The trend of the multi-scale temporal variability of precipitation in Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Yu, Z.

    2011-12-01

    Hydrological problems like estimation of flood and drought frequencies under future climate change are not well addressed as a result of the disability of current climate models to provide reliable prediction (especially for precipitation) shorter than 1 month. In order to assess the possible impacts that multi-scale temporal distribution of precipitation may have on the hydrological processes in Colorado River Basin (CRB), a comparative analysis of multi-scale temporal variability of precipitation as well as the trend of extreme precipitation is conducted in four regions controlled by different climate systems. Multi-scale precipitation variability including within-storm patterns and intra-annual, inter-annual and decadal variabilities will be analyzed to explore the possible trends of storm durations, inter-storm periods, average storm precipitation intensities and extremes under both long-term natural climate variability and human-induced warming. Further more, we will examine the ability of current climate models to simulate the multi-scale temporal variability and extremes of precipitation. On the basis of these analyses, a statistical downscaling method will be developed to disaggregate the future precipitation scenarios which will provide a more reliable and finer temporal scale precipitation time series for hydrological modeling. Analysis results and downscaling results will be presented.

  15. Multiscale information modelling for heart morphogenesis

    NASA Astrophysics Data System (ADS)

    Abdulla, T.; Imms, R.; Schleich, J. M.; Summers, R.

    2010-07-01

    Science is made feasible by the adoption of common systems of units. As research has become more data intensive, especially in the biomedical domain, it requires the adoption of a common system of information models, to make explicit the relationship between one set of data and another, regardless of format. This is being realised through the OBO Foundry to develop a suite of reference ontologies, and NCBO Bioportal to provide services to integrate biomedical resources and functionality to visualise and create mappings between ontology terms. Biomedical experts tend to be focused at one level of spatial scale, be it biochemistry, cell biology, or anatomy. Likewise, the ontologies they use tend to be focused at a particular level of scale. There is increasing interest in a multiscale systems approach, which attempts to integrate between different levels of scale to gain understanding of emergent effects. This is a return to physiological medicine with a computational emphasis, exemplified by the worldwide Physiome initiative, and the European Union funded Network of Excellence in the Virtual Physiological Human. However, little work has been done on how information modelling itself may be tailored to a multiscale systems approach. We demonstrate how this can be done for the complex process of heart morphogenesis, which requires multiscale understanding in both time and spatial domains. Such an effort enables the integration of multiscale metrology.

  16. Impact of model complexity and multi-scale data integration on the estimation of hydrogeological parameters in a dual-porosity aquifer

    NASA Astrophysics Data System (ADS)

    Tamayo-Mas, Elena; Bianchi, Marco; Mansour, Majdi

    2018-03-01

    This study investigates the impact of model complexity and multi-scale prior hydrogeological data on the interpretation of pumping test data in a dual-porosity aquifer (the Chalk aquifer in England, UK). In order to characterize the hydrogeological properties, different approaches ranging from a traditional analytical solution (Theis approach) to more sophisticated numerical models with automatically calibrated input parameters are applied. Comparisons of results from the different approaches show that neither traditional analytical solutions nor a numerical model assuming a homogenous and isotropic aquifer can adequately explain the observed drawdowns. A better reproduction of the observed drawdowns in all seven monitoring locations is instead achieved when medium and local-scale prior information about the vertical hydraulic conductivity (K) distribution is used to constrain the model calibration process. In particular, the integration of medium-scale vertical K variations based on flowmeter measurements lead to an improvement in the goodness-of-fit of the simulated drawdowns of about 30%. Further improvements (up to 70%) were observed when a simple upscaling approach was used to integrate small-scale K data to constrain the automatic calibration process of the numerical model. Although the analysis focuses on a specific case study, these results provide insights about the representativeness of the estimates of hydrogeological properties based on different interpretations of pumping test data, and promote the integration of multi-scale data for the characterization of heterogeneous aquifers in complex hydrogeological settings.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Qiang

    The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of whichmore » is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next generation atomistic-to-continuum multiscale simulations. In addition, a rigorous studyof nite element discretizations of peridynamics will be considered. Using the fact that peridynamics is spatially derivative free, we will also characterize the space of admissible peridynamic solutions and carry out systematic analyses of the models, in particular rigorously showing how peridynamics encompasses fracture and other failure phenomena. Additional aspects of the project include the mathematical and numerical analysis of peridynamics applied to stochastic peridynamics models. In summary, the project will make feasible mathematically consistent multiscale models for the analysis and design of advanced materials.« less

  18. Multiscale modeling of sickle anemia blood blow by Dissipative Partice Dynamics

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Caswell, Bruce; Karniadakis, George

    2011-11-01

    A multi-scale model for sickle red blood cell is developed based on Dissipative Particle Dynamics (DPD). Different cell morphologies (sickle, granular, elongated shapes) typically observed in in vitro and in vivo are constructed and the deviations from the biconcave shape is quantified by the Asphericity and Elliptical shape factors. The rheology of sickle blood is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. However, the vaso-occulusion phenomenon, reported in a recent microfluid experiment, is not observed in the pipe flow system unless the adhesive interactions between sickle blood cells and endothelium properly introduced into the model.

  19. Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform.

    PubMed

    Marshall-Colon, Amy; Long, Stephen P; Allen, Douglas K; Allen, Gabrielle; Beard, Daniel A; Benes, Bedrich; von Caemmerer, Susanne; Christensen, A J; Cox, Donna J; Hart, John C; Hirst, Peter M; Kannan, Kavya; Katz, Daniel S; Lynch, Jonathan P; Millar, Andrew J; Panneerselvam, Balaji; Price, Nathan D; Prusinkiewicz, Przemyslaw; Raila, David; Shekar, Rachel G; Shrivastava, Stuti; Shukla, Diwakar; Srinivasan, Venkatraman; Stitt, Mark; Turk, Matthew J; Voit, Eberhard O; Wang, Yu; Yin, Xinyou; Zhu, Xin-Guang

    2017-01-01

    Multi-scale models can facilitate whole plant simulations by linking gene networks, protein synthesis, metabolic pathways, physiology, and growth. Whole plant models can be further integrated with ecosystem, weather, and climate models to predict how various interactions respond to environmental perturbations. These models have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts. Outcomes will potentially accelerate improvement of crop yield, sustainability, and increase future food security. It is time for a paradigm shift in plant modeling, from largely isolated efforts to a connected community that takes advantage of advances in high performance computing and mechanistic understanding of plant processes. Tools for guiding future crop breeding and engineering, understanding the implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment are urgently needed. The purpose of this perspective is to introduce Crops in silico (cropsinsilico.org), an integrative and multi-scale modeling platform, as one solution that combines isolated modeling efforts toward the generation of virtual crops, which is open and accessible to the entire plant biology community. The major challenges involved both in the development and deployment of a shared, multi-scale modeling platform, which are summarized in this prospectus, were recently identified during the first Crops in silico Symposium and Workshop.

  20. Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform

    PubMed Central

    Marshall-Colon, Amy; Long, Stephen P.; Allen, Douglas K.; Allen, Gabrielle; Beard, Daniel A.; Benes, Bedrich; von Caemmerer, Susanne; Christensen, A. J.; Cox, Donna J.; Hart, John C.; Hirst, Peter M.; Kannan, Kavya; Katz, Daniel S.; Lynch, Jonathan P.; Millar, Andrew J.; Panneerselvam, Balaji; Price, Nathan D.; Prusinkiewicz, Przemyslaw; Raila, David; Shekar, Rachel G.; Shrivastava, Stuti; Shukla, Diwakar; Srinivasan, Venkatraman; Stitt, Mark; Turk, Matthew J.; Voit, Eberhard O.; Wang, Yu; Yin, Xinyou; Zhu, Xin-Guang

    2017-01-01

    Multi-scale models can facilitate whole plant simulations by linking gene networks, protein synthesis, metabolic pathways, physiology, and growth. Whole plant models can be further integrated with ecosystem, weather, and climate models to predict how various interactions respond to environmental perturbations. These models have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts. Outcomes will potentially accelerate improvement of crop yield, sustainability, and increase future food security. It is time for a paradigm shift in plant modeling, from largely isolated efforts to a connected community that takes advantage of advances in high performance computing and mechanistic understanding of plant processes. Tools for guiding future crop breeding and engineering, understanding the implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment are urgently needed. The purpose of this perspective is to introduce Crops in silico (cropsinsilico.org), an integrative and multi-scale modeling platform, as one solution that combines isolated modeling efforts toward the generation of virtual crops, which is open and accessible to the entire plant biology community. The major challenges involved both in the development and deployment of a shared, multi-scale modeling platform, which are summarized in this prospectus, were recently identified during the first Crops in silico Symposium and Workshop. PMID:28555150

  1. Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites

    DTIC Science & Technology

    2016-03-09

    A - Approved for Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Incorporation of carbon nanotubes (CNTs) into epoxy-based composites for...materials with higher moduli and strength characteristics. 15. SUBJECT TERMS Molecular Dynamics, Carbon Nanotubes , Multi-scale Modeling, Micromechanics...Gregory M. Odegard Michigan Technological University Introduction This project was inspired from the AFOSR-sponsored workshop “ Nanotube

  2. A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1

    EPA Science Inventory

    This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM − KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.2.3, is used to generate a Rosen...

  3. SIMULATION OF SULFATE AEROSOL IN EAST ASIA USING MODELS-3/CMAQ WITH RAMS METEOROLOGICAL DATA

    EPA Science Inventory

    The present study attempts to address a few challenges in utilizing the flexibility of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. We apply the CMAQ system with the meteorological data provided by the Regional Atmospheric Modeling System (RAMS) and to a...

  4. Multiscale mobility networks and the spatial spreading of infectious diseases.

    PubMed

    Balcan, Duygu; Colizza, Vittoria; Gonçalves, Bruno; Hu, Hao; Ramasco, José J; Vespignani, Alessandro

    2009-12-22

    Among the realistic ingredients to be considered in the computational modeling of infectious diseases, human mobility represents a crucial challenge both on the theoretical side and in view of the limited availability of empirical data. To study the interplay between short-scale commuting flows and long-range airline traffic in shaping the spatiotemporal pattern of a global epidemic we (i) analyze mobility data from 29 countries around the world and find a gravity model able to provide a global description of commuting patterns up to 300 kms and (ii) integrate in a worldwide-structured metapopulation epidemic model a timescale-separation technique for evaluating the force of infection due to multiscale mobility processes in the disease dynamics. Commuting flows are found, on average, to be one order of magnitude larger than airline flows. However, their introduction into the worldwide model shows that the large-scale pattern of the simulated epidemic exhibits only small variations with respect to the baseline case where only airline traffic is considered. The presence of short-range mobility increases, however, the synchronization of subpopulations in close proximity and affects the epidemic behavior at the periphery of the airline transportation infrastructure. The present approach outlines the possibility for the definition of layered computational approaches where different modeling assumptions and granularities can be used consistently in a unifying multiscale framework.

  5. Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure.

    PubMed

    Ghanbari, J; Naghdabadi, R

    2009-07-22

    We have used a hierarchical multiscale modeling scheme for the analysis of cortical bone considering it as a nanocomposite. This scheme consists of definition of two boundary value problems, one for macroscale, and another for microscale. The coupling between these scales is done by using the homogenization technique. At every material point in which the constitutive model is needed, a microscale boundary value problem is defined using a macroscopic kinematical quantity and solved. Using the described scheme, we have studied elastic properties of cortical bone considering its nanoscale microstructural constituents with various mineral volume fractions. Since the microstructure of bone consists of mineral platelet with nanometer size embedded in a protein matrix, it is similar to the microstructure of soft matrix nanocomposites reinforced with hard nanostructures. Considering a representative volume element (RVE) of the microstructure of bone as the microscale problem in our hierarchical multiscale modeling scheme, the global behavior of bone is obtained under various macroscopic loading conditions. This scheme may be suitable for modeling arbitrary bone geometries subjected to a variety of loading conditions. Using the presented method, mechanical properties of cortical bone including elastic moduli and Poisson's ratios in two major directions and shear modulus is obtained for different mineral volume fractions.

  6. Multiscale simulations of anisotropic particles combining molecular dynamics and Green's function reaction dynamics

    NASA Astrophysics Data System (ADS)

    Vijaykumar, Adithya; Ouldridge, Thomas E.; ten Wolde, Pieter Rein; Bolhuis, Peter G.

    2017-03-01

    The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.

  7. Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers

    NASA Astrophysics Data System (ADS)

    Tang, Yu-Hang; Kudo, Shuhei; Bian, Xin; Li, Zhen; Karniadakis, George Em

    2015-09-01

    Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create an easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM).

  8. Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Yu-Hang, E-mail: yuhang_tang@brown.edu; Kudo, Shuhei, E-mail: shuhei-kudo@outlook.jp; Bian, Xin, E-mail: xin_bian@brown.edu

    2015-09-15

    Graphical abstract: - Abstract: Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create anmore » easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM)« less

  9. Jet Fuel Exacerbated Noise-Induced Hearing Loss: Focus on Prediction of Central Auditory Processing Dysfunction

    DTIC Science & Technology

    2017-09-01

    to develop a multi-scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated noise induced hearing loss. In...scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated noise-induced hearing loss. Such hearing loss...project was to develop a multi-scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated NIHL. Herein we

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majda, Andrew J.; Xing, Yulong; Mohammadian, Majid

    Determining the finite-amplitude preconditioned states in the hurricane embryo, which lead to tropical cyclogenesis, is a central issue in contemporary meteorology. In the embryo there is competition between different preconditioning mechanisms involving hydrodynamics and moist thermodynamics, which can lead to cyclogenesis. Here systematic asymptotic methods from applied mathematics are utilized to develop new simplified moist multi-scale models starting from the moist anelastic equations. Three interesting multi-scale models emerge in the analysis. The balanced mesoscale vortex (BMV) dynamics and the microscale balanced hot tower (BHT) dynamics involve simplified balanced equations without gravity waves for vertical vorticity amplification due to moist heatmore » sources and incorporate nonlinear advective fluxes across scales. The BMV model is the central one for tropical cyclogenesis in the embryo. The moist mesoscale wave (MMW) dynamics involves simplified equations for mesoscale moisture fluctuations, as well as linear hydrostatic waves driven by heat sources from moisture and eddy flux divergences. A simplified cloud physics model for deep convection is introduced here and used to study moist axisymmetric plumes in the BHT model. A simple application in periodic geometry involving the effects of mesoscale vertical shear and moist microscale hot towers on vortex amplification is developed here to illustrate features of the coupled multi-scale models. These results illustrate the use of these models in isolating key mechanisms in the embryo in a simplified content.« less

  11. Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study.

    PubMed

    Twycross, Jamie; Band, Leah R; Bennett, Malcolm J; King, John R; Krasnogor, Natalio

    2010-03-26

    Stochastic and asymptotic methods are powerful tools in developing multiscale systems biology models; however, little has been done in this context to compare the efficacy of these methods. The majority of current systems biology modelling research, including that of auxin transport, uses numerical simulations to study the behaviour of large systems of deterministic ordinary differential equations, with little consideration of alternative modelling frameworks. In this case study, we solve an auxin-transport model using analytical methods, deterministic numerical simulations and stochastic numerical simulations. Although the three approaches in general predict the same behaviour, the approaches provide different information that we use to gain distinct insights into the modelled biological system. We show in particular that the analytical approach readily provides straightforward mathematical expressions for the concentrations and transport speeds, while the stochastic simulations naturally provide information on the variability of the system. Our study provides a constructive comparison which highlights the advantages and disadvantages of each of the considered modelling approaches. This will prove helpful to researchers when weighing up which modelling approach to select. In addition, the paper goes some way to bridging the gap between these approaches, which in the future we hope will lead to integrative hybrid models.

  12. Multiscale Phenomena in the Solid-Liquid Transition State of a Granular Material: Analysis and Modelling of Dense Granular Materials

    DTIC Science & Technology

    2011-09-26

    most challenging to characterize and model of the gamut of granular behaviour encountered in practice. In particular, it exhibits self-organized...is intrinsically multiscale and is arguably one of, if not, the most challenging to characterize and model of the gamut of granular behaviour...the most challenging to characterize and model of the gamut of granular behaviour encountered in practice. In particular, it exhibits self-organized

  13. Multi-fluid Dynamics for Supersonic Jet-and-Crossflows and Liquid Plug Rupture

    NASA Astrophysics Data System (ADS)

    Hassan, Ezeldin A.

    Multi-fluid dynamics simulations require appropriate numerical treatments based on the main flow characteristics, such as flow speed, turbulence, thermodynamic state, and time and length scales. In this thesis, two distinct problems are investigated: supersonic jet and crossflow interactions; and liquid plug propagation and rupture in an airway. Gaseous non-reactive ethylene jet and air crossflow simulation represents essential physics for fuel injection in SCRAMJET engines. The regime is highly unsteady, involving shocks, turbulent mixing, and large-scale vortical structures. An eddy-viscosity-based multi-scale turbulence model is proposed to resolve turbulent structures consistent with grid resolution and turbulence length scales. Predictions of the time-averaged fuel concentration from the multi-scale model is improved over Reynolds-averaged Navier-Stokes models originally derived from stationary flow. The response to the multi-scale model alone is, however, limited, in cases where the vortical structures are small and scattered thus requiring prohibitively expensive grids in order to resolve the flow field accurately. Statistical information related to turbulent fluctuations is utilized to estimate an effective turbulent Schmidt number, which is shown to be highly varying in space. Accordingly, an adaptive turbulent Schmidt number approach is proposed, by allowing the resolved field to adaptively influence the value of turbulent Schmidt number in the multi-scale turbulence model. The proposed model estimates a time-averaged turbulent Schmidt number adapted to the computed flowfield, instead of the constant value common to the eddy-viscosity-based Navier-Stokes models. This approach is assessed using a grid-refinement study for the normal injection case, and tested with 30 degree injection, showing improved results over the constant turbulent Schmidt model both in mean and variance of fuel concentration predictions. For the incompressible liquid plug propagation and rupture study, numerical simulations are conducted using an Eulerian-Lagrangian approach with a continuous-interface method. A reconstruction scheme is developed to allow topological changes during plug rupture by altering the connectivity information of the interface mesh. Rupture time is shown to be delayed as the initial precursor film thickness increases. During the plug rupture process, a sudden increase of mechanical stresses on the tube wall is recorded, which can cause tissue damage.

  14. Towards Characterization, Modeling, and Uncertainty Quantification in Multi-scale Mechanics of Oragnic-rich Shales

    NASA Astrophysics Data System (ADS)

    Abedi, S.; Mashhadian, M.; Noshadravan, A.

    2015-12-01

    Increasing the efficiency and sustainability in operation of hydrocarbon recovery from organic-rich shales requires a fundamental understanding of chemomechanical properties of organic-rich shales. This understanding is manifested in form of physics-bases predictive models capable of capturing highly heterogeneous and multi-scale structure of organic-rich shale materials. In this work we present a framework of experimental characterization, micromechanical modeling, and uncertainty quantification that spans from nanoscale to macroscale. Application of experiments such as coupled grid nano-indentation and energy dispersive x-ray spectroscopy and micromechanical modeling attributing the role of organic maturity to the texture of the material, allow us to identify unique clay mechanical properties among different samples that are independent of maturity of shale formations and total organic content. The results can then be used to inform the physically-based multiscale model for organic rich shales consisting of three levels that spans from the scale of elementary building blocks (e.g. clay minerals in clay-dominated formations) of organic rich shales to the scale of the macroscopic inorganic/organic hard/soft inclusion composite. Although this approach is powerful in capturing the effective properties of organic-rich shale in an average sense, it does not account for the uncertainty in compositional and mechanical model parameters. Thus, we take this model one step forward by systematically incorporating the main sources of uncertainty in modeling multiscale behavior of organic-rich shales. In particular we account for the uncertainty in main model parameters at different scales such as porosity, elastic properties and mineralogy mass percent. To that end, we use Maximum Entropy Principle and random matrix theory to construct probabilistic descriptions of model inputs based on available information. The Monte Carlo simulation is then carried out to propagate the uncertainty and consequently construct probabilistic descriptions of properties at multiple length-scales. The combination of experimental characterization and stochastic multi-scale modeling presented in this work improves the robustness in the prediction of essential subsurface parameters in engineering scale.

  15. Multiscale modelling and nonlinear simulation of vascular tumour growth

    PubMed Central

    Macklin, Paul; Anderson, Alexander R. A.; Chaplain, Mark A. J.; Cristini, Vittorio

    2011-01-01

    In this article, we present a new multiscale mathematical model for solid tumour growth which couples an improved model of tumour invasion with a model of tumour-induced angiogenesis. We perform nonlinear simulations of the multi-scale model that demonstrate the importance of the coupling between the development and remodeling of the vascular network, the blood flow through the network and the tumour progression. Consistent with clinical observations, the hydrostatic stress generated by tumour cell proliferation shuts down large portions of the vascular network dramatically affecting the flow, the subsequent network remodeling, the delivery of nutrients to the tumour and the subsequent tumour progression. In addition, extracellular matrix degradation by tumour cells is seen to have a dramatic affect on both the development of the vascular network and the growth response of the tumour. In particular, the newly developing vessels tend to encapsulate, rather than penetrate, the tumour and are thus less effective in delivering nutrients. PMID:18781303

  16. An optimized algorithm for multiscale wideband deconvolution of radio astronomical images

    NASA Astrophysics Data System (ADS)

    Offringa, A. R.; Smirnov, O.

    2017-10-01

    We describe a new multiscale deconvolution algorithm that can also be used in a multifrequency mode. The algorithm only affects the minor clean loop. In single-frequency mode, the minor loop of our improved multiscale algorithm is over an order of magnitude faster than the casa multiscale algorithm, and produces results of similar quality. For multifrequency deconvolution, a technique named joined-channel cleaning is used. In this mode, the minor loop of our algorithm is two to three orders of magnitude faster than casa msmfs. We extend the multiscale mode with automated scale-dependent masking, which allows structures to be cleaned below the noise. We describe a new scale-bias function for use in multiscale cleaning. We test a second deconvolution method that is a variant of the moresane deconvolution technique, and uses a convex optimization technique with isotropic undecimated wavelets as dictionary. On simple well-calibrated data, the convex optimization algorithm produces visually more representative models. On complex or imperfect data, the convex optimization algorithm has stability issues.

  17. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth.

    PubMed

    de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-12-01

    The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth.

  18. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth

    NASA Astrophysics Data System (ADS)

    de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-12-01

    The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth.

  19. Turbulent Flow Structure Inside a Canopy with Complex Multi-Scale Elements

    NASA Astrophysics Data System (ADS)

    Bai, Kunlun; Katz, Joseph; Meneveau, Charles

    2015-06-01

    Particle image velocimetry laboratory measurements are carried out to study mean flow distributions and turbulent statistics inside a canopy with complex geometry and multiple scales consisting of fractal, tree-like objects. Matching the optical refractive indices of the tree elements with those of the working fluid provides unobstructed optical paths for both illuminations and image acquisition. As a result, the flow fields between tree branches can be resolved in great detail, without optical interference. Statistical distributions of mean velocity, turbulence stresses, and components of dispersive fluxes are documented and discussed. The results show that the trees leave their signatures in the flow by imprinting wake structures with shapes similar to the trees. The velocities in both wake and non-wake regions significantly deviate from the spatially-averaged values. These local deviations result in strong dispersive fluxes, which are important to account for in canopy-flow modelling. In fact, we find that the streamwise normal dispersive flux inside the canopy has a larger magnitude (by up to four times) than the corresponding Reynolds normal stress. Turbulent transport in horizontal planes is studied in the framework of the eddy viscosity model. Scatter plots comparing the Reynolds shear stress and mean velocity gradient are indicative of a linear trend, from which one can calculate the eddy viscosity and mixing length. Similar to earlier results from the wake of a single tree, here we find that inside the canopy the mean mixing length decreases with increasing elevation. This trend cannot be scaled based on a single length scale, but can be described well by a model, which considers the coexistence of multi-scale branches. This agreement indicates that the multi-scale information and the clustering properties of the fractal objects should be taken into consideration in flows inside multi-scale canopies.

  20. How well do the GCMs/RCMs capture the multi-scale temporal variability of precipitation in the Southwestern United States?

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Gautam, Mahesh R.; Zhu, Jianting; Yu, Zhongbo

    2013-02-01

    SummaryMulti-scale temporal variability of precipitation has an established relationship with floods and droughts. In this paper, we present the diagnostics on the ability of 16 General Circulation Models (GCMs) from Bias Corrected and Downscaled (BCSD) World Climate Research Program's (WCRP's) Coupled Model Inter-comparison Project Phase 3 (CMIP3) projections and 10 Regional Climate Models (RCMs) that participated in the North American Regional Climate Change Assessment Program (NARCCAP) to represent multi-scale temporal variability determined from the observed station data. Four regions (Los Angeles, Las Vegas, Tucson, and Cimarron) in the Southwest United States are selected as they represent four different precipitation regions classified by clustering method. We investigate how storm properties and seasonal, inter-annual, and decadal precipitation variabilities differed between GCMs/RCMs and observed records in these regions. We find that current GCMs/RCMs tend to simulate longer storm duration and lower storm intensity compared to those from observed records. Most GCMs/RCMs fail to produce the high-intensity summer storms caused by local convective heat transport associated with the summer monsoon. Both inter-annual and decadal bands are present in the GCM/RCM-simulated precipitation time series; however, these do not line up to the patterns of large-scale ocean oscillations such as El Nino/La Nina Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Our results show that the studied GCMs/RCMs can capture long-term monthly mean as the examined data is bias-corrected and downscaled, but fail to simulate the multi-scale precipitation variability including flood generating extreme events, which suggests their inadequacy for studies on floods and droughts that are strongly associated with multi-scale temporal precipitation variability.

  1. Diagnostic Analysis of Ozone Concentrations Simulated by Two Regional-Scale Air Quality Models

    EPA Science Inventory

    Since the Community Multiscale Air Quality modeling system (CMAQ) and the Weather Research and Forecasting with Chemistry model (WRF/Chem) use different approaches to simulate the interaction of meteorology and chemistry, this study compares the CMAQ and WRF/Chem air quality simu...

  2. Session on coupled atmospheric/chemistry coupled models

    NASA Technical Reports Server (NTRS)

    Thompson, Anne

    1993-01-01

    The session on coupled atmospheric/chemistry coupled models is reviewed. Current model limitations, current issues and critical unknowns, and modeling activity are addressed. Specific recommendations and experimental strategies on the following are given: multiscale surface layer - planetary boundary layer - chemical flux measurements; Eulerian budget study; and Langrangian experiment. Nonprecipitating cloud studies, organized convective systems, and aerosols - heterogenous chemistry are also discussed.

  3. Quantifying restoration effectiveness using multi-scale habitat models: Implications for sage-grouse in the Great Basin

    Treesearch

    Robert S. Arkle; David S. Pilliod; Steven E. Hanser; Matthew L. Brooks; Jeanne C. Chambers; James B. Grace; Kevin C. Knutson; David A. Pyke; Justin L. Welty; Troy A. Wirth

    2014-01-01

    A recurrent challenge in the conservation of wide-ranging, imperiled species is understanding which habitats to protect and whether we are capable of restoring degraded landscapes. For Greater Sage-grouse (Centrocercus urophasianus), a species of conservation concern in the western United States, we approached this problem by developing multi-scale empirical models of...

  4. A multi-scale approach to designing therapeutics for tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linderman, Jennifer J.; Cilfone, Nicholas A.; Pienaar, Elsje

    Approximately one third of the world’s population is infected with Mycobacterium tuberculosis. Limited information about how the immune system fights M. tuberculosis and what constitutes protection from the bacteria impact our ability to develop effective therapies for tuberculosis. We present an in vivo systems biology approach that integrates data from multiple model systems and over multiple length and time scales into a comprehensive multi-scale and multi-compartment view of the in vivo immune response to M. tuberculosis. Lastly, we describe computational models that can be used to study (a) immunomodulation with the cytokines tumor necrosis factor and interleukin 10, (b) oralmore » and inhaled antibiotics, and (c) the effect of vaccination.« less

  5. A multi-scale approach to designing therapeutics for tuberculosis

    DOE PAGES

    Linderman, Jennifer J.; Cilfone, Nicholas A.; Pienaar, Elsje; ...

    2015-04-20

    Approximately one third of the world’s population is infected with Mycobacterium tuberculosis. Limited information about how the immune system fights M. tuberculosis and what constitutes protection from the bacteria impact our ability to develop effective therapies for tuberculosis. We present an in vivo systems biology approach that integrates data from multiple model systems and over multiple length and time scales into a comprehensive multi-scale and multi-compartment view of the in vivo immune response to M. tuberculosis. Lastly, we describe computational models that can be used to study (a) immunomodulation with the cytokines tumor necrosis factor and interleukin 10, (b) oralmore » and inhaled antibiotics, and (c) the effect of vaccination.« less

  6. From Solidification Processing to Microstructure to Mechanical Properties: A Multi-scale X-ray Study of an Al-Cu Alloy Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tourret, D.; Mertens, J. C. E.; Lieberman, E.

    We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure,more » supported by quantitative simulations of microstructure formation and its mechanical behavior.« less

  7. From Solidification Processing to Microstructure to Mechanical Properties: A Multi-scale X-ray Study of an Al-Cu Alloy Sample

    DOE PAGES

    Tourret, D.; Mertens, J. C. E.; Lieberman, E.; ...

    2017-09-13

    We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure,more » supported by quantitative simulations of microstructure formation and its mechanical behavior.« less

  8. From Solidification Processing to Microstructure to Mechanical Properties: A Multi-scale X-ray Study of an Al-Cu Alloy Sample

    NASA Astrophysics Data System (ADS)

    Tourret, D.; Mertens, J. C. E.; Lieberman, E.; Imhoff, S. D.; Gibbs, J. W.; Henderson, K.; Fezzaa, K.; Deriy, A. L.; Sun, T.; Lebensohn, R. A.; Patterson, B. M.; Clarke, A. J.

    2017-11-01

    We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure, supported by quantitative simulations of microstructure formation and its mechanical behavior.

  9. Effects of polymer graft properties on protein adsorption and transport in ion exchange chromatography: a multiscale modeling study.

    PubMed

    Basconi, Joseph E; Carta, Giorgio; Shirts, Michael R

    2015-04-14

    Multiscale simulation is used to study the adsorption of lysozyme onto ion exchangers obtained by grafting charged polymers into a porous matrix, in systems with various polymer properties and strengths of electrostatic interaction. Molecular dynamics simulations show that protein partitioning into the polymer-filled pore space increases with the overall charge content of the polymers, while the diffusivity in the pore space decreases. However, the combination of greatly increased partitioning and modestly decreased diffusion results in macroscopic transport rates that increase as a function of charge content, as the large concentration driving force due to enhanced pore space partitioning outweighs the reduction in the pore space diffusivity. Matrices having greater charge associated with the grafted polymers also exhibit more diffuse intraparticle concentration profiles during transient adsorption. In systems with a high charge content per polymer and a low protein loading, the polymers preferentially partition toward the surface due to favorable interactions with the surface-bound protein. These results demonstrate the potential of multiscale modeling to illuminate qualitative trends between molecular properties and the adsorption equilibria and kinetic properties observable on macroscopic scales.

  10. Computational design and multiscale modeling of a nanoactuator using DNA actuation.

    PubMed

    Hamdi, Mustapha

    2009-12-02

    Developments in the field of nanobiodevices coupling nanostructures and biological components are of great interest in medical nanorobotics. As the fundamentals of bio/non-bio interaction processes are still poorly understood in the design of these devices, design tools and multiscale dynamics modeling approaches are necessary at the fabrication pre-project stage. This paper proposes a new concept of optimized carbon nanotube based servomotor design for drug delivery and biomolecular transport applications. The design of an encapsulated DNA-multi-walled carbon nanotube actuator is prototyped using multiscale modeling. The system is parametrized by using a quantum level approach and characterized by using a molecular dynamics simulation. Based on the analysis of the simulation results, a servo nanoactuator using ionic current feedback is simulated and analyzed for application as a drug delivery carrier.

  11. On Multiscale Modeling: Preserving Energy Dissipation Across the Scales with Consistent Handshaking Methods

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.; Waas, Anthony M.

    2013-01-01

    A mesh objective crack band model was implemented within the generalized method of cells micromechanics theory. This model was linked to a macroscale finite element model to predict post-peak strain softening in composite materials. Although a mesh objective theory was implemented at the microscale, it does not preclude pathological mesh dependence at the macroscale. To ensure mesh objectivity at both scales, the energy density and the energy release rate must be preserved identically across the two scales. This requires a consistent characteristic length or localization limiter. The effects of scaling (or not scaling) the dimensions of the microscale repeating unit cell (RUC), according to the macroscale element size, in a multiscale analysis was investigated using two examples. Additionally, the ramifications of the macroscale element shape, compared to the RUC, was studied.

  12. An Integrative, Multi-Scale Computational Model of a Swimming Lamprey Fully Coupled to Its Fluid Environment and Incorporating Proprioceptive Feedback

    NASA Astrophysics Data System (ADS)

    Hamlet, C. L.; Hoffman, K.; Fauci, L.; Tytell, E.

    2016-02-01

    The lamprey is a model organism for both neurophysiology and locomotion studies. To study the role of sensory feedback as an organism moves through its environment, a 2D, integrative, multi-scale model of an anguilliform swimmer driven by neural activation from a central pattern generator (CPG) is constructed. The CPG in turn drives muscle kinematics and is fully coupled to the surrounding fluid. The system is numerically evolved in time using an immersed boundary framework producing an emergent swimming mode. Proprioceptive feedback to the CPG based on experimental observations adjust the activation signal as the organism interacts with its environment. Effects on the speed, stability and cost (metabolic work) of swimming due to nonlinear dependencies associated with muscle force development combined with proprioceptive feedback to neural activation are estimated and examined.

  13. A multiscale physical model for the transient analysis of PEM water electrolyzer anodes.

    PubMed

    Oliveira, Luiz Fernando L; Laref, Slimane; Mayousse, Eric; Jallut, Christian; Franco, Alejandro A

    2012-08-07

    Polymer electrolyte membrane water electrolyzers (PEMWEs) are electrochemical devices that can be used for the production of hydrogen. In a PEMWE the anode is the most complex electrode to study due to the high overpotential of the oxygen evolution reaction (OER), not widely understood. A physical bottom-up multi-scale transient model describing the operation of a PEMWE anode is proposed here. This model includes a detailed description of the elementary OER kinetics in the anode, a description of the non-equilibrium behavior of the nanoscale catalyst-electrolyte interface, and a microstructural-resolved description of the transport of charges and O(2) at the micro and mesoscales along the whole anode. The impact of different catalyst materials on the performance of the PEMWE anode, and a study of sensitivity to the operation conditions are evaluated from numerical simulations and the results are discussed in comparison with experimental data.

  14. Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction

    DOE PAGES

    Chen, Zhangxing; Huang, Tianyu; Shao, Yimin; ...

    2018-03-15

    Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less

  15. Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhangxing; Huang, Tianyu; Shao, Yimin

    Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less

  16. Personalized medicine: from genotypes, molecular phenotypes and the quantified self, towards improved medicine.

    PubMed

    Dudley, Joel T; Listgarten, Jennifer; Stegle, Oliver; Brenner, Steven E; Parts, Leopold

    2015-01-01

    Advances in molecular profiling and sensor technologies are expanding the scope of personalized medicine beyond genotypes, providing new opportunities for developing richer and more dynamic multi-scale models of individual health. Recent studies demonstrate the value of scoring high-dimensional microbiome, immune, and metabolic traits from individuals to inform personalized medicine. Efforts to integrate multiple dimensions of clinical and molecular data towards predictive multi-scale models of individual health and wellness are already underway. Improved methods for mining and discovery of clinical phenotypes from electronic medical records and technological developments in wearable sensor technologies present new opportunities for mapping and exploring the critical yet poorly characterized "phenome" and "envirome" dimensions of personalized medicine. There are ambitious new projects underway to collect multi-scale molecular, sensor, clinical, behavioral, and environmental data streams from large population cohorts longitudinally to enable more comprehensive and dynamic models of individual biology and personalized health. Personalized medicine stands to benefit from inclusion of rich new sources and dimensions of data. However, realizing these improvements in care relies upon novel informatics methodologies, tools, and systems to make full use of these data to advance both the science and translational applications of personalized medicine.

  17. Characterizing CO and NOy Sources and Relative Ambient Ratios in the Baltimore Area Using Ambient Measurements and Source Attribution Modeling

    EPA Science Inventory

    Modeled source attribution information from the Community Multiscale Air Quality model was coupled with ambient data from the 2011 Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality Baltimore field study. We assess ...

  18. PDF-based heterogeneous multiscale filtration model.

    PubMed

    Gong, Jian; Rutland, Christopher J

    2015-04-21

    Motivated by modeling of gasoline particulate filters (GPFs), a probability density function (PDF) based heterogeneous multiscale filtration (HMF) model is developed to calculate filtration efficiency of clean particulate filters. A new methodology based on statistical theory and classic filtration theory is developed in the HMF model. Based on the analysis of experimental porosimetry data, a pore size probability density function is introduced to represent heterogeneity and multiscale characteristics of the porous wall. The filtration efficiency of a filter can be calculated as the sum of the contributions of individual collectors. The resulting HMF model overcomes the limitations of classic mean filtration models which rely on tuning of the mean collector size. Sensitivity analysis shows that the HMF model recovers the classical mean model when the pore size variance is very small. The HMF model is validated by fundamental filtration experimental data from different scales of filter samples. The model shows a good agreement with experimental data at various operating conditions. The effects of the microstructure of filters on filtration efficiency as well as the most penetrating particle size are correctly predicted by the model.

  19. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Michael P.; Goldsmith, C. Franklin; Klippenstein, Stephen J.

    2015-07-16

    We have developed a multi-scale approach (Burke, M. P.; Klippenstein, S. J.; Harding, L. B. Proc. Combust. Inst. 2013, 34, 547–555.) to kinetic model formulation that directly incorporates elementary kinetic theories as a means to provide reliable, physics-based extrapolation to unexplored conditions. Here, we extend and generalize the multi-scale modeling strategy to treat systems of considerable complexity – involving multi-well reactions, potentially missing reactions, non-statistical product branching ratios, and non-Boltzmann (i.e. non-thermal) reactant distributions. The methodology is demonstrated here for a subsystem of low-temperature propane oxidation, as a representative system for low-temperature fuel oxidation. A multi-scale model is assembled andmore » informed by a wide variety of targets that include ab initio calculations of molecular properties, rate constant measurements of isolated reactions, and complex systems measurements. Active model parameters are chosen to accommodate both “parametric” and “structural” uncertainties. Theoretical parameters (e.g. barrier heights) are included as active model parameters to account for parametric uncertainties in the theoretical treatment; experimental parameters (e.g. initial temperatures) are included to account for parametric uncertainties in the physical models of the experiments. RMG software is used to assess potential structural uncertainties due to missing reactions. Additionally, branching ratios among product channels are included as active model parameters to account for structural uncertainties related to difficulties in modeling sequences of multiple chemically activated steps. The approach is demonstrated here for interpreting time-resolved measurements of OH, HO2, n-propyl, i-propyl, propene, oxetane, and methyloxirane from photolysis-initiated low-temperature oxidation of propane at pressures from 4 to 60 Torr and temperatures from 300 to 700 K. In particular, the multi-scale informed model provides a consistent quantitative explanation of both ab initio calculations and time-resolved species measurements. The present results show that interpretations of OH measurements are significantly more complicated than previously thought – in addition to barrier heights for key transition states considered previously, OH profiles also depend on additional theoretical parameters for R + O2 reactions, secondary reactions, QOOH + O2 reactions, and treatment of non-Boltzmann reaction sequences. Extraction of physically rigorous information from those measurements may require more sophisticated treatment of all of those model aspects, as well as additional experimental data under more conditions, to discriminate among possible interpretations and ensure model reliability. Keywords: Optimization, Uncertainty quantification, Chemical mechanism, Low-Temperature Oxidation, Non-Boltzmann« less

  20. Shape-driven 3D segmentation using spherical wavelets.

    PubMed

    Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen

    2006-01-01

    This paper presents a novel active surface segmentation algorithm using a multiscale shape representation and prior. We define a parametric model of a surface using spherical wavelet functions and learn a prior probability distribution over the wavelet coefficients to model shape variations at different scales and spatial locations in a training set. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior in the segmentation framework. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to the segmentation of brain caudate nucleus, of interest in the study of schizophrenia. Our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm by capturing finer shape details.

  1. A time for multi-scale modeling of anti-fibrotic therapies. Comment on "Towards a unified approach in the modeling of fibrosis: A review with research perspectives" by Martine Ben Amar and Carlo Bianca

    NASA Astrophysics Data System (ADS)

    Wu, Min

    2016-07-01

    The development of anti-fibrotic therapies in diversities of diseases becomes more and more urgent recently, such as in pulmonary, renal and liver fibrosis [1,2], as well as in malignant tumor growths [3]. As reviewed by Ben Amar and Bianca [4], various theoretical, experimental and in-silico models have been developed to understand the fibrosis process, where the implication on therapeutic strategies has also been frequently demonstrated (e.g., [5-7]). In [4], these models are analyzed and sorted according to their approaches, and in the end of [4], a unified multi-scale approach was proposed to understand fibrosis. While one of the major purposes of extensive modeling of fibrosis is to shed light on therapeutic strategies, the theoretical, experimental and in-silico studies of anti-fibrosis therapies should be conducted more intensively.

  2. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system

    EPA Science Inventory

    This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirect...

  3. CMAQ MODELING FOR AIR TOXICS AT FINE SCALES: A PROTOTYPE STUDY

    EPA Science Inventory

    Toxic air pollutants (TAPs) or hazardous air pollutants (HAPs) exhibit considerable spatial and temporal variability across urban areas. Therefore, the ability of chemical transport models (CTMs), e.g. Community Multi-scale Air Quality (CMAQ), to reproduce the spatial and tempor...

  4. A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2012-01-01

    A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.

  5. Multiscale modeling of a low magnetostrictive Fe-27wt%Co-0.5wt%Cr alloy

    NASA Astrophysics Data System (ADS)

    Savary, M.; Hubert, O.; Helbert, A. L.; Baudin, T.; Batonnet, R.; Waeckerlé, T.

    2018-05-01

    The present paper deals with the improvement of a multi-scale approach describing the magneto-mechanical coupling of Fe-27wt%Co-0.5wt%Cr alloy. The magnetostriction behavior is demonstrated as very different (low magnetostriction vs. high magnetostriction) when this material is submitted to two different final annealing conditions after cold rolling. The numerical data obtained from a multi-scale approach are in accordance with experimental data corresponding to the high magnetostriction level material. A bi-domain structure hypothesis is employed to explain the low magnetostriction behavior, in accordance with the effect of an applied tensile stress. A modification of the multiscale approach is proposed to match this result.

  6. A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2011-01-01

    A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.

  7. A physics based multiscale modeling of cavitating flows.

    PubMed

    Ma, Jingsen; Hsiao, Chao-Tsung; Chahine, Georges L

    2017-03-02

    Numerical modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Singularities Model (DSM) for dispersed microbubbles and a two-phase Navier Stokes solver for the bubbly medium, which includes a level set approach to describe large cavities or gaseous pockets. Inter-scale schemes are used to smoothly bridge the two transitioning subgrid DSM bubbles into larger discretized cavities. This approach is demonstrated on several problems including cavitation inception and vapor core formation in a vortex flow, sheet-to-cloud cavitation over a hydrofoil, cavitation behind a blunt body, and cavitation on a propeller. These examples highlight the capabilities of the developed multiscale model in simulating various form of cavitation.

  8. A grain boundary damage model for delamination

    NASA Astrophysics Data System (ADS)

    Messner, M. C.; Beaudoin, A. J.; Dodds, R. H.

    2015-07-01

    Intergranular failure in metallic materials represents a multiscale damage mechanism: some feature of the material microstructure triggers the separation of grain boundaries on the microscale, but the intergranular fractures develop into long cracks on the macroscale. This work develops a multiscale model of grain boundary damage for modeling intergranular delamination—a failure of one particular family of grain boundaries sharing a common normal direction. The key feature of the model is a physically-consistent and mesh independent, multiscale scheme that homogenizes damage at many grain boundaries on the microscale into a single damage parameter on the macroscale to characterize material failure across a plane. The specific application of the damage framework developed here considers delamination failure in modern Al-Li alloys. However, the framework may be readily applied to other metals or composites and to other non-delamination interface geometries—for example, multiple populations of material interfaces with different geometric characteristics.

  9. A physics based multiscale modeling of cavitating flows

    PubMed Central

    Ma, Jingsen; Hsiao, Chao-Tsung; Chahine, Georges L.

    2018-01-01

    Numerical modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Singularities Model (DSM) for dispersed microbubbles and a two-phase Navier Stokes solver for the bubbly medium, which includes a level set approach to describe large cavities or gaseous pockets. Inter-scale schemes are used to smoothly bridge the two transitioning subgrid DSM bubbles into larger discretized cavities. This approach is demonstrated on several problems including cavitation inception and vapor core formation in a vortex flow, sheet-to-cloud cavitation over a hydrofoil, cavitation behind a blunt body, and cavitation on a propeller. These examples highlight the capabilities of the developed multiscale model in simulating various form of cavitation. PMID:29720773

  10. Multi-scale Rule-of-Mixtures Model of Carbon Nanotube/Carbon Fiber/Epoxy Lamina

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Roddick, Jaret C.; Gates, Thomas S.

    2005-01-01

    A unidirectional carbon fiber/epoxy lamina in which the carbon fibers are coated with single-walled carbon nanotubes is modeled with a multi-scale method, the atomistically informed rule-of-mixtures. This multi-scale model is designed to include the effect of the carbon nanotubes on the constitutive properties of the lamina. It included concepts from the molecular dynamics/equivalent continuum methods, micromechanics, and the strength of materials. Within the model both the nanotube volume fraction and nanotube distribution were varied. It was found that for a lamina with 60% carbon fiber volume fraction, the Young's modulus in the fiber direction varied with changes in the nanotube distribution, from 138.8 to 140 GPa with nanotube volume fractions ranging from 0.0001 to 0.0125. The presence of nanotube near the surface of the carbon fiber is therefore expected to have a small, but positive, effect on the constitutive properties of the lamina.

  11. Three-Dimensional Visualization of Ozone Process Data.

    DTIC Science & Technology

    1997-06-18

    Scattered Multivariate Data. IEEE Computer Graphics & Applications. 11 (May), 47-55. Odman, M.T. and Ingram, C.L. (1996) Multiscale Air Quality Simulation...the Multiscale Air Quality Simulation Platform (MAQSIP) modeling system. MAQSIP is a modular comprehensive air quality modeling system which MCNC...photolyzed back again to nitric oxide. Finally, oxides of 6 nitrogen are terminated through loss or combination into nitric acid, organic nitrates

  12. Goal-oriented robot navigation learning using a multi-scale space representation.

    PubMed

    Llofriu, M; Tejera, G; Contreras, M; Pelc, T; Fellous, J M; Weitzenfeld, A

    2015-12-01

    There has been extensive research in recent years on the multi-scale nature of hippocampal place cells and entorhinal grid cells encoding which led to many speculations on their role in spatial cognition. In this paper we focus on the multi-scale nature of place cells and how they contribute to faster learning during goal-oriented navigation when compared to a spatial cognition system composed of single scale place cells. The task consists of a circular arena with a fixed goal location, in which a robot is trained to find the shortest path to the goal after a number of learning trials. Synaptic connections are modified using a reinforcement learning paradigm adapted to the place cells multi-scale architecture. The model is evaluated in both simulation and physical robots. We find that larger scale and combined multi-scale representations favor goal-oriented navigation task learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Multiscale Modeling for the Analysis for Grain-Scale Fracture Within Aluminum Microstructures

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Phillips, Dawn R.; Yamakov, Vesselin; Saether, Erik

    2005-01-01

    Multiscale modeling methods for the analysis of metallic microstructures are discussed. Both molecular dynamics and the finite element method are used to analyze crack propagation and stress distribution in a nanoscale aluminum bicrystal model subjected to hydrostatic loading. Quantitative similarity is observed between the results from the two very different analysis methods. A bilinear traction-displacement relationship that may be embedded into cohesive zone finite elements is extracted from the nanoscale molecular dynamics results.

  14. Evaluation of the Community Multiscale Air Quality (CMAQ) ...

    EPA Pesticide Factsheets

    This work evaluates particle size-composition distributions simulated by the Community Multiscale Air Quality (CMAQ) model using Micro-Orifice Uniform Deposit Impactor (MOUDI) measurements at 18 sites across North America. Size-resolved measurements of particulate SO4+, with the model ranging from an underestimation to overestimation of both the peak diameter and peak particle concentration across the sites. Computing PM2.5 from the modeled size distribution parameters rather than by summing the masses in the Aitken and a

  15. Automatic analysis of diabetic peripheral neuropathy using multi-scale quantitative morphology of nerve fibres in corneal confocal microscopy imaging.

    PubMed

    Dabbah, M A; Graham, J; Petropoulos, I N; Tavakoli, M; Malik, R A

    2011-10-01

    Diabetic peripheral neuropathy (DPN) is one of the most common long term complications of diabetes. Corneal confocal microscopy (CCM) image analysis is a novel non-invasive technique which quantifies corneal nerve fibre damage and enables diagnosis of DPN. This paper presents an automatic analysis and classification system for detecting nerve fibres in CCM images based on a multi-scale adaptive dual-model detection algorithm. The algorithm exploits the curvilinear structure of the nerve fibres and adapts itself to the local image information. Detected nerve fibres are then quantified and used as feature vectors for classification using random forest (RF) and neural networks (NNT) classifiers. We show, in a comparative study with other well known curvilinear detectors, that the best performance is achieved by the multi-scale dual model in conjunction with the NNT classifier. An evaluation of clinical effectiveness shows that the performance of the automated system matches that of ground-truth defined by expert manual annotation. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Multiscale Support Vector Learning With Projection Operator Wavelet Kernel for Nonlinear Dynamical System Identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2016-02-03

    A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.

  17. [CLIMATE CHANGE AND ALLERGIC AIRWAY DISEASE] OBSERVATIONAL,LABORATORY, AND MODELING STUDIES OF THE IMPACTS OF CLIMATE CHANGE ONALLERGIC AIRWAY DISEASE

    EPA Science Inventory

    Based on these data and preliminary studies, this proposal will be composed of a multiscale source-to-dose analysis approach for assessing the exposure interactions of environmental and biological systems. Once the entire modeling system is validated, it will run f...

  18. Model reduction of multiscale chemical langevin equations: a numerical case study.

    PubMed

    Sotiropoulos, Vassilios; Contou-Carrere, Marie-Nathalie; Daoutidis, Prodromos; Kaznessis, Yiannis N

    2009-01-01

    Two very important characteristics of biological reaction networks need to be considered carefully when modeling these systems. First, models must account for the inherent probabilistic nature of systems far from the thermodynamic limit. Often, biological systems cannot be modeled with traditional continuous-deterministic models. Second, models must take into consideration the disparate spectrum of time scales observed in biological phenomena, such as slow transcription events and fast dimerization reactions. In the last decade, significant efforts have been expended on the development of stochastic chemical kinetics models to capture the dynamics of biomolecular systems, and on the development of robust multiscale algorithms, able to handle stiffness. In this paper, the focus is on the dynamics of reaction sets governed by stiff chemical Langevin equations, i.e., stiff stochastic differential equations. These are particularly challenging systems to model, requiring prohibitively small integration step sizes. We describe and illustrate the application of a semianalytical reduction framework for chemical Langevin equations that results in significant gains in computational cost.

  19. Impact of enhanced ozone deposition and halogen chemistry on model performance

    EPA Science Inventory

    In this study, an enhanced ozone deposition scheme due to the interaction of iodide in sea-water and atmospheric ozone and the detailed chemical reactions of organic and inorganic halogen species are incorporated into the hemispheric Community Multiscale Air Quality model. Prelim...

  20. Multiscale Modeling of Multi-decadal Trends in Ozone across the Northern Hemisphere & United States

    EPA Science Inventory

    Both observational and modeling studies have demonstrated that pollutants near the Earth’s surface can be convectively lofted to higher altitudes where strong winds can efficiently transport them from one continent to another, thereby impacting air quality on intercontinent...

  1. Multiscale Modeling of Deformation Twinning Based on Field Theory of Multiscale Plasticity (FTMP)

    DTIC Science & Technology

    2013-09-01

    of the deformation twinning: nucleation, growth (into, e.g., lenticular shapes), lattice rotation (satisfying the mirror symmetry), the attendant...Nucleation and subsequent growth into lenticular shapes is realistically captured. • Stress-strain responses accompanied by serration and overall softening

  2. Multiscale multimodal fusion of histological and MRI volumes for characterization of lung inflammation

    NASA Astrophysics Data System (ADS)

    Rusu, Mirabela; Wang, Haibo; Golden, Thea; Gow, Andrew; Madabhushi, Anant

    2013-03-01

    Mouse lung models facilitate the investigation of conditions such as chronic inflammation which are associated with common lung diseases. The multi-scale manifestation of lung inflammation prompted us to use multi-scale imaging - both in vivo, ex vivo MRI along with ex vivo histology, for its study in a new quantitative way. Some imaging modalities, such as MRI, are non-invasive and capture macroscopic features of the pathology, while others, e.g. ex vivo histology, depict detailed structures. Registering such multi-modal data to the same spatial coordinates will allow the construction of a comprehensive 3D model to enable the multi-scale study of diseases. Moreover, it may facilitate the identification and definition of quantitative of in vivo imaging signatures for diseases and pathologic processes. We introduce a quantitative, image analytic framework to integrate in vivo MR images of the entire mouse with ex vivo histology of the lung alone, using lung ex vivo MRI as conduit to facilitate their co-registration. In our framework, we first align the MR images by registering the in vivo and ex vivo MRI of the lung using an interactive rigid registration approach. Then we reconstruct the 3D volume of the ex vivo histological specimen by efficient group wise registration of the 2D slices. The resulting 3D histologic volume is subsequently registered to the MRI volumes by interactive rigid registration, directly to the ex vivo MRI, and implicitly to in vivo MRI. Qualitative evaluation of the registration framework was performed by comparing airway tree structures in ex vivo MRI and ex vivo histology where airways are visible and may be annotated. We present a use case for evaluation of our co-registration framework in the context of studying chronic inammation in a diseased mouse.

  3. Coupling of ab initio density functional theory and molecular dynamics for the multiscale modeling of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ng, T. Y.; Yeak, S. H.; Liew, K. M.

    2008-02-01

    A multiscale technique is developed that couples empirical molecular dynamics (MD) and ab initio density functional theory (DFT). An overlap handshaking region between the empirical MD and ab initio DFT regions is formulated and the interaction forces between the carbon atoms are calculated based on the second-generation reactive empirical bond order potential, the long-range Lennard-Jones potential as well as the quantum-mechanical DFT derived forces. A density of point algorithm is also developed to track all interatomic distances in the system, and to activate and establish the DFT and handshaking regions. Through parallel computing, this multiscale method is used here to study the dynamic behavior of single-walled carbon nanotubes (SWCNTs) under asymmetrical axial compression. The detection of sideways buckling due to the asymmetrical axial compression is reported and discussed. It is noted from this study on SWCNTs that the MD results may be stiffer compared to those with electron density considerations, i.e. first-principle ab initio methods.

  4. Self-consistent clustering analysis: an efficient multiscale scheme for inelastic heterogeneous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z.; Bessa, M. A.; Liu, W.K.

    A predictive computational theory is shown for modeling complex, hierarchical materials ranging from metal alloys to polymer nanocomposites. The theory can capture complex mechanisms such as plasticity and failure that span across multiple length scales. This general multiscale material modeling theory relies on sound principles of mathematics and mechanics, and a cutting-edge reduced order modeling method named self-consistent clustering analysis (SCA) [Zeliang Liu, M.A. Bessa, Wing Kam Liu, “Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials,” Comput. Methods Appl. Mech. Engrg. 306 (2016) 319–341]. SCA reduces by several orders of magnitude the computational cost of micromechanical andmore » concurrent multiscale simulations, while retaining the microstructure information. This remarkable increase in efficiency is achieved with a data-driven clustering method. Computationally expensive operations are performed in the so-called offline stage, where degrees of freedom (DOFs) are agglomerated into clusters. The interaction tensor of these clusters is computed. In the online or predictive stage, the Lippmann-Schwinger integral equation is solved cluster-wise using a self-consistent scheme to ensure solution accuracy and avoid path dependence. To construct a concurrent multiscale model, this scheme is applied at each material point in a macroscale structure, replacing a conventional constitutive model with the average response computed from the microscale model using just the SCA online stage. A regularized damage theory is incorporated in the microscale that avoids the mesh and RVE size dependence that commonly plagues microscale damage calculations. The SCA method is illustrated with two cases: a carbon fiber reinforced polymer (CFRP) structure with the concurrent multiscale model and an application to fatigue prediction for additively manufactured metals. For the CFRP problem, a speed up estimated to be about 43,000 is achieved by using the SCA method, as opposed to FE2, enabling the solution of an otherwise computationally intractable problem. The second example uses a crystal plasticity constitutive law and computes the fatigue potency of extrinsic microscale features such as voids. This shows that local stress and strain are capture sufficiently well by SCA. This model has been incorporated in a process-structure-properties prediction framework for process design in additive manufacturing.« less

  5. Explanatory Power of Multi-scale Physical Descriptors in Modeling Benthic Indices Across Nested Ecoregions of the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Holburn, E. R.; Bledsoe, B. P.; Poff, N. L.; Cuhaciyan, C. O.

    2005-05-01

    Using over 300 R/EMAP sites in OR and WA, we examine the relative explanatory power of watershed, valley, and reach scale descriptors in modeling variation in benthic macroinvertebrate indices. Innovative metrics describing flow regime, geomorphic processes, and hydrologic-distance weighted watershed and valley characteristics are used in multiple regression and regression tree modeling to predict EPT richness, % EPT, EPT/C, and % Plecoptera. A nested design using seven ecoregions is employed to evaluate the influence of geographic scale and environmental heterogeneity on the explanatory power of individual and combined scales. Regression tree models are constructed to explain variability while identifying threshold responses and interactions. Cross-validated models demonstrate differences in the explanatory power associated with single-scale and multi-scale models as environmental heterogeneity is varied. Models explaining the greatest variability in biological indices result from multi-scale combinations of physical descriptors. Results also indicate that substantial variation in benthic macroinvertebrate response can be explained with process-based watershed and valley scale metrics derived exclusively from common geospatial data. This study outlines a general framework for identifying key processes driving macroinvertebrate assemblages across a range of scales and establishing the geographic extent at which various levels of physical description best explain biological variability. Such information can guide process-based stratification to avoid spurious comparison of dissimilar stream types in bioassessments and ensure that key environmental gradients are adequately represented in sampling designs.

  6. Multi-scale Finite Element Modeling of Eustachian Tube Function: Influence of Mucosal Adhesion

    PubMed Central

    Malik, J.E.; Swarts, J.D.; Ghadiali, S. N.

    2017-01-01

    The inability to open the collapsible Eustachian tube (ET) leads to the development of chronic Otitis Media (OM). Although mucosal inflammation during OM leads to increased mucin gene expression and elevated adhesion forces within the ET lumen, it is not known how changes in mucosal adhesion alter the biomechanical mechanisms of ET function. In this study, we developed a novel multi-scale finite element model of ET function in adults that utilizes adhesion spring elements to simulate changes in mucosal adhesion. Models were created for six adult subjects and dynamic patterns in muscle contraction were used to simulate the wave-like opening of the ET that occurs during swallowing. Results indicate that ET opening is highly sensitive to the level of mucosal adhesion and that exceeding a critical value of adhesion leads to rapid ET dysfunction. Parameter variation studies and sensitivity analysis indicate that increased mucosal adhesion alters the relative importance of several tissue biomechanical properties. For example, increases in mucosal adhesion reduced the sensitivity of ET function to tensor veli palatini muscle forces but did not alter the insensitivity of ET function to levator veli palatini muscle forces. Interestingly, although changes in cartilage stiffness did not significantly influence ET opening under low adhesion conditions, ET opening was highly sensitive to changes in cartilage stiffness under high adhesion conditions. Therefore, our multi-scale computational models indicate that changes in mucosal adhesion as would occur during inflammatory OM alter the biomechanical mechanisms of ET function. PMID:26891171

  7. Multi-scale analysis of the effect of nano-filler particle diameter on the physical properties of CAD/CAM composite resin blocks.

    PubMed

    Yamaguchi, Satoshi; Inoue, Sayuri; Sakai, Takahiko; Abe, Tomohiro; Kitagawa, Haruaki; Imazato, Satoshi

    2017-05-01

    The objective of this study was to assess the effect of silica nano-filler particle diameters in a computer-aided design/manufacturing (CAD/CAM) composite resin (CR) block on physical properties at the multi-scale in silico. CAD/CAM CR blocks were modeled, consisting of silica nano-filler particles (20, 40, 60, 80, and 100 nm) and matrix (Bis-GMA/TEGDMA), with filler volume contents of 55.161%. Calculation of Young's moduli and Poisson's ratios for the block at macro-scale were analyzed by homogenization. Macro-scale CAD/CAM CR blocks (3 × 3 × 3 mm) were modeled and compressive strengths were defined when the fracture loads exceeded 6075 N. MPS values of the nano-scale models were compared by localization analysis. As the filler size decreased, Young's moduli and compressive strength increased, while Poisson's ratios and MPS decreased. All parameters were significantly correlated with the diameters of the filler particles (Pearson's correlation test, r = -0.949, 0.943, -0.951, 0.976, p < 0.05). The in silico multi-scale model established in this study demonstrates that the Young's moduli, Poisson's ratios, and compressive strengths of CAD/CAM CR blocks can be enhanced by loading silica nanofiller particles of smaller diameter. CAD/CAM CR blocks by using smaller silica nano-filler particles have a potential to increase fracture resistance.

  8. Electrical conductivity of nanocomposites based on carbon nanotubes: a 3D multiscale modeling approach

    NASA Astrophysics Data System (ADS)

    Grabowski, Krzysztof; Zbyrad, Paulina; Staszewski, Wieslaw J.; Uhl, Tadeusz; Wiatr, Kazimierz; Packo, Pawel

    2016-04-01

    Remarkable electrical properties of carbon nanotubes (CNT) have lead to increased interest in studying CNT- based devices. Many of current researches are devoted to using all kinds of carbon nanomaterials in the con- struction of sensory elements. One of the most common applications is the development of high performance, large scale sensors. Due to the remarkable conductivity of CNT's such devices represent very high sensitivity. However, there are no sufficient tools for studying and designing such sensors. The main objective of this paper is to develop and validate a multiscale numerical model for a carbon nanotubes based sensor. The device utilises the change of electrical conductivity of a nanocomposite material under applied deformation. The nanocomposite consists of a number of CNTs dispersed in polymer matrix. The paper is devoted to the analysis of the impact of spatial distribution of carbon nanotubes in polymer matrix on electrical conductivity of the sensor. One of key elements is also to examine the impact of strain on electric charge ow in such anisotropic composite structures. In the following work a multiscale electro-mechanical model for CNT - based nanocomposites is proposed. The model comprises of two length scales, namely the meso- and the macro-scale for mechanical and electrical domains. The approach allows for evaluation of macro-scale mechanical response of a strain sensor. Electrical properties of polymeric material with certain CNT fractions were derived considering electrical properties of CNTs, their contact and the tunnelling effect.

  9. A multi-scale model of the interplay between cell signalling and hormone transport in specifying the root meristem of Arabidopsis thaliana.

    PubMed

    Muraro, D; Larrieu, A; Lucas, M; Chopard, J; Byrne, H; Godin, C; King, J

    2016-09-07

    The growth of the root of Arabidopsis thaliana is sustained by the meristem, a region of cell proliferation and differentiation which is located in the root apex and generates cells which move shootwards, expanding rapidly to cause root growth. The balance between cell division and differentiation is maintained via a signalling network, primarily coordinated by the hormones auxin, cytokinin and gibberellin. Since these hormones interact at different levels of spatial organisation, we develop a multi-scale computational model which enables us to study the interplay between these signalling networks and cell-cell communication during the specification of the root meristem. We investigate the responses of our model to hormonal perturbations, validating the results of our simulations against experimental data. Our simulations suggest that one or more additional components are needed to explain the observed expression patterns of a regulator of cytokinin signalling, ARR1, in roots not producing gibberellin. By searching for novel network components, we identify two mutant lines that affect significantly both root length and meristem size, one of which also differentially expresses a central component of the interaction network (SHY2). More generally, our study demonstrates how a multi-scale investigation can provide valuable insight into the spatio-temporal dynamics of signalling networks in biological tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    EPA Pesticide Factsheets

    The uploaded data consists of the BRACE Na aerosol observations paired with CMAQ model output, the updated model's parameterization of sea salt aerosol emission size distribution, and the model's parameterization of the sea salt emission factor as a function of sea surface temperature. This dataset is associated with the following publication:Gantt , B., J. Kelly , and J. Bash. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2. Geoscientific Model Development. Copernicus Publications, Katlenburg-Lindau, GERMANY, 8: 3733-3746, (2015).

  11. Multiscale Aspects of Modeling Gas-Phase Nanoparticle Synthesis

    PubMed Central

    Buesser, B.; Gröhn, A.J.

    2013-01-01

    Aerosol reactors are utilized to manufacture nanoparticles in industrially relevant quantities. The development, understanding and scale-up of aerosol reactors can be facilitated with models and computer simulations. This review aims to provide an overview of recent developments of models and simulations and discuss their interconnection in a multiscale approach. A short introduction of the various aerosol reactor types and gas-phase particle dynamics is presented as a background for the later discussion of the models and simulations. Models are presented with decreasing time and length scales in sections on continuum, mesoscale, molecular dynamics and quantum mechanics models. PMID:23729992

  12. Evaluating multi-level models to test occupancy state responses of Plethodontid salamanders

    USGS Publications Warehouse

    Kroll, Andrew J.; Garcia, Tiffany S.; Jones, Jay E.; Dugger, Catherine; Murden, Blake; Johnson, Josh; Peerman, Summer; Brintz, Ben; Rochelle, Michael

    2015-01-01

    Plethodontid salamanders are diverse and widely distributed taxa and play critical roles in ecosystem processes. Due to salamander use of structurally complex habitats, and because only a portion of a population is available for sampling, evaluation of sampling designs and estimators is critical to provide strong inference about Plethodontid ecology and responses to conservation and management activities. We conducted a simulation study to evaluate the effectiveness of multi-scale and hierarchical single-scale occupancy models in the context of a Before-After Control-Impact (BACI) experimental design with multiple levels of sampling. Also, we fit the hierarchical single-scale model to empirical data collected for Oregon slender and Ensatina salamanders across two years on 66 forest stands in the Cascade Range, Oregon, USA. All models were fit within a Bayesian framework. Estimator precision in both models improved with increasing numbers of primary and secondary sampling units, underscoring the potential gains accrued when adding secondary sampling units. Both models showed evidence of estimator bias at low detection probabilities and low sample sizes; this problem was particularly acute for the multi-scale model. Our results suggested that sufficient sample sizes at both the primary and secondary sampling levels could ameliorate this issue. Empirical data indicated Oregon slender salamander occupancy was associated strongly with the amount of coarse woody debris (posterior mean = 0.74; SD = 0.24); Ensatina occupancy was not associated with amount of coarse woody debris (posterior mean = -0.01; SD = 0.29). Our simulation results indicate that either model is suitable for use in an experimental study of Plethodontid salamanders provided that sample sizes are sufficiently large. However, hierarchical single-scale and multi-scale models describe different processes and estimate different parameters. As a result, we recommend careful consideration of study questions and objectives prior to sampling data and fitting models.

  13. All-Atom Multiscale Molecular Dynamics Theory and Simulation of Self-Assembly, Energy Transfer and Structural Transition in Nanosystems

    NASA Astrophysics Data System (ADS)

    Espinosa Duran, John Michael

    The study of nanosystems and their emergent properties requires the development of multiscale computational models, theories and methods that preserve atomic and femtosecond resolution, to reveal details that cannot be resolved experimentally today. Considering this, three long time scale phenomena were studied using molecular dynamics and multiscale methods: self-assembly of organic molecules on graphite, energy transfer in nanosystems, and structural transition in vault nanoparticles. Molecular dynamics simulations of the self-assembly of alkoxybenzonitriles with different tail lengths on graphite were performed to learn about intermolecular interactions and phases exhibited by self-organized materials. This is important for the design of ordered self-assembled organic photovoltaic materials with greater efficiency than the disordered blends. Simulations revealed surface dynamical behaviors that cannot be resolved experimentally today due to the lack of spatiotemporal resolution. Atom-resolved structures predicted by simulations agreed with scanning tunneling microscopy images and unit cell measurements. Then, a multiscale theory based on the energy density as a field variable is developed to study energy transfer in nanoscale systems. For applications like photothermal microscopy or cancer phototherapy is required to understand how the energy is transferred to/from nanosystems. This multiscale theory could be applied in this context and here is tested for cubic nanoparticles immersed in water for energy being transferred to/from the nanoparticle. The theory predicts the energy transfer dynamics and reveals phenomena that cannot be described by current phenomenological theories. Finally, temperature-triggered structural transitions were revealed for vault nanoparticles using molecular dynamics and multiscale simulations. Vault is a football-shaped supramolecular assembly very distinct from the commonly observed icosahedral viruses. It has very promising applications in drug delivery and has been extensively studied experimentally. Sub-microsecond multiscale simulations at 310 K on the vault revealed the opening and closing of fractures near the shoulder while preserving the overall structure. This fracture mechanism could explain the uptake and release of small drugs while maintaining the overall structure. Higher temperature simulations show the generation of large fractures near the waist, which enables interaction of the external medium with the inner vault residues. Simulation results agreed with microscopy and spectroscopy measurements, and revealed new structures and mechanisms.

  14. Collaborative Multi-Scale 3d City and Infrastructure Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Breunig, M.; Borrmann, A.; Rank, E.; Hinz, S.; Kolbe, T.; Schilcher, M.; Mundani, R.-P.; Jubierre, J. R.; Flurl, M.; Thomsen, A.; Donaubauer, A.; Ji, Y.; Urban, S.; Laun, S.; Vilgertshofer, S.; Willenborg, B.; Menninghaus, M.; Steuer, H.; Wursthorn, S.; Leitloff, J.; Al-Doori, M.; Mazroobsemnani, N.

    2017-09-01

    Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future.

  15. Toward Realistic Simulation of low-Level Clouds Using a Multiscale Modeling Framework With a Third-Order Turbulence Closure in its Cloud-Resolving Model Component

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man; Cheng, Anning

    2010-01-01

    This study presents preliminary results from a multiscale modeling framework (MMF) with an advanced third-order turbulence closure in its cloud-resolving model (CRM) component. In the original MMF, the Community Atmosphere Model (CAM3.5) is used as the host general circulation model (GCM), and the System for Atmospheric Modeling with a first-order turbulence closure is used as the CRM for representing cloud processes in each grid box of the GCM. The results of annual and seasonal means and diurnal variability are compared between the modified and original MMFs and the CAM3.5. The global distributions of low-level cloud amounts and precipitation and the amounts of low-level clouds in the subtropics and middle-level clouds in mid-latitude storm track regions in the modified MMF show substantial improvement relative to the original MMF when both are compared to observations. Some improvements can also be seen in the diurnal variability of precipitation.

  16. On unified modeling, theory, and method for solving multi-scale global optimization problems

    NASA Astrophysics Data System (ADS)

    Gao, David Yang

    2016-10-01

    A unified model is proposed for general optimization problems in multi-scale complex systems. Based on this model and necessary assumptions in physics, the canonical duality theory is presented in a precise way to include traditional duality theories and popular methods as special applications. Two conjectures on NP-hardness are proposed, which should play important roles for correctly understanding and efficiently solving challenging real-world problems. Applications are illustrated for both nonconvex continuous optimization and mixed integer nonlinear programming.

  17. Multiscale modeling of the human arterial tree on the TeraGrid.

    NASA Astrophysics Data System (ADS)

    Karniadakis, Gerorge

    2009-03-01

    A multiscale model of the human arterial tree will be presented consisting of the macrovascular network (MaN, arteries above 1-2 mm), the mesovascular network (MeN, arterioles above 10 micro-m) and the microvascular network (MiN, capillaries). Coupling conditions between the MaN-MeN-MiN will be discussed and three different methods in modeling each network will be presented. Specific examples will be shown for the intracranial arterial tree for healthy subjects but also for patients with hydrocephalus.

  18. Validation of nonlinear gyrokinetic simulations of L- and I-mode plasmas on Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creely, A. J.; Howard, N. T.; Rodriguez-Fernandez, P.

    New validation of global, nonlinear, ion-scale gyrokinetic simulations (GYRO) is carried out for L- and I-mode plasmas on Alcator C-Mod, utilizing heat fluxes, profile stiffness, and temperature fluctuations. Previous work at C-Mod found that ITG/TEM-scale GYRO simulations can match both electron and ion heat fluxes within error bars in I-mode [White PoP 2015], suggesting that multi-scale (cross-scale coupling) effects [Howard PoP 2016] may be less important in I-mode than in L-mode. New results presented here, however, show that global, nonlinear, ion-scale GYRO simulations are able to match the experimental ion heat flux, but underpredict electron heat flux (at most radii),more » electron temperature fluctuations, and perturbative thermal diffusivity in both L- and I-mode. Linear addition of electron heat flux from electron scale runs does not resolve this discrepancy. These results indicate that single-scale simulations do not sufficiently describe the I-mode core transport, and that multi-scale (coupled electron- and ion-scale) transport models are needed. In conclusion a preliminary investigation with multi-scale TGLF, however, was unable to resolve the discrepancy between ion-scale GYRO and experimental electron heat fluxes and perturbative diffusivity, motivating further work with multi-scale GYRO simulations and a more comprehensive study with multi-scale TGLF.« less

  19. Multiscale equation-free algorithms for molecular dynamics

    NASA Astrophysics Data System (ADS)

    Abi Mansour, Andrew

    Molecular dynamics is a physics-based computational tool that has been widely employed to study the dynamics and structure of macromolecules and their assemblies at the atomic scale. However, the efficiency of molecular dynamics simulation is limited because of the broad spectrum of timescales involved. To overcome this limitation, an equation-free algorithm is presented for simulating these systems using a multiscale model cast in terms of atomistic and coarse-grained variables. Both variables are evolved in time in such a way that the cross-talk between short and long scales is preserved. In this way, the coarse-grained variables guide the evolution of the atom-resolved states, while the latter provide the Newtonian physics for the former. While the atomistic variables are evolved using short molecular dynamics runs, time advancement at the coarse-grained level is achieved with a scheme that uses information from past and future states of the system while accounting for both the stochastic and deterministic features of the coarse-grained dynamics. To complete the multiscale cycle, an atom-resolved state consistent with the updated coarse-grained variables is recovered using algorithms from mathematical optimization. This multiscale paradigm is extended to nanofluidics using concepts from hydrodynamics, and it is demonstrated for macromolecular and nanofluidic systems. A toolkit is developed for prototyping these algorithms, which are then implemented within the GROMACS simulation package and released as an open source multiscale simulator.

  20. Validation of nonlinear gyrokinetic simulations of L- and I-mode plasmas on Alcator C-Mod

    DOE PAGES

    Creely, A. J.; Howard, N. T.; Rodriguez-Fernandez, P.; ...

    2017-03-02

    New validation of global, nonlinear, ion-scale gyrokinetic simulations (GYRO) is carried out for L- and I-mode plasmas on Alcator C-Mod, utilizing heat fluxes, profile stiffness, and temperature fluctuations. Previous work at C-Mod found that ITG/TEM-scale GYRO simulations can match both electron and ion heat fluxes within error bars in I-mode [White PoP 2015], suggesting that multi-scale (cross-scale coupling) effects [Howard PoP 2016] may be less important in I-mode than in L-mode. New results presented here, however, show that global, nonlinear, ion-scale GYRO simulations are able to match the experimental ion heat flux, but underpredict electron heat flux (at most radii),more » electron temperature fluctuations, and perturbative thermal diffusivity in both L- and I-mode. Linear addition of electron heat flux from electron scale runs does not resolve this discrepancy. These results indicate that single-scale simulations do not sufficiently describe the I-mode core transport, and that multi-scale (coupled electron- and ion-scale) transport models are needed. In conclusion a preliminary investigation with multi-scale TGLF, however, was unable to resolve the discrepancy between ion-scale GYRO and experimental electron heat fluxes and perturbative diffusivity, motivating further work with multi-scale GYRO simulations and a more comprehensive study with multi-scale TGLF.« less

  1. A preliminary investigation of the growth of an aneurysm with a multiscale monolithic Fluid-Structure interaction solver

    NASA Astrophysics Data System (ADS)

    Cerroni, D.; Manservisi, S.; Pozzetti, G.

    2015-11-01

    In this work we investigate the potentialities of multi-scale engineering techniques to approach complex problems related to biomedical and biological fields. In particular we study the interaction between blood and blood vessel focusing on the presence of an aneurysm. The study of each component of the cardiovascular system is very difficult due to the fact that the movement of the fluid and solid is determined by the rest of system through dynamical boundary conditions. The use of multi-scale techniques allows us to investigate the effect of the whole loop on the aneurysm dynamic. A three-dimensional fluid-structure interaction model for the aneurysm is developed and coupled to a mono-dimensional one for the remaining part of the cardiovascular system, where a point zero-dimensional model for the heart is provided. In this manner it is possible to achieve rigorous and quantitative investigations of the cardiovascular disease without loosing the system dynamic. In order to study this biomedical problem we use a monolithic fluid-structure interaction (FSI) model where the fluid and solid equations are solved together. The use of a monolithic solver allows us to handle the convergence issues caused by large deformations. By using this monolithic approach different solid and fluid regions are treated as a single continuum and the interface conditions are automatically taken into account. In this way the iterative process characteristic of the commonly used segregated approach, it is not needed any more.

  2. Multiscale decoding for reliable brain-machine interface performance over time.

    PubMed

    Han-Lin Hsieh; Wong, Yan T; Pesaran, Bijan; Shanechi, Maryam M

    2017-07-01

    Recordings from invasive implants can degrade over time, resulting in a loss of spiking activity for some electrodes. For brain-machine interfaces (BMI), such a signal degradation lowers control performance. Achieving reliable performance over time is critical for BMI clinical viability. One approach to improve BMI longevity is to simultaneously use spikes and other recording modalities such as local field potentials (LFP), which are more robust to signal degradation over time. We have developed a multiscale decoder that can simultaneously model the different statistical profiles of multi-scale spike/LFP activity (discrete spikes vs. continuous LFP). This decoder can also run at multiple time-scales (millisecond for spikes vs. tens of milliseconds for LFP). Here, we validate the multiscale decoder for estimating the movement of 7 major upper-arm joint angles in a non-human primate (NHP) during a 3D reach-to-grasp task. The multiscale decoder uses motor cortical spike/LFP recordings as its input. We show that the multiscale decoder can improve decoding accuracy by adding information from LFP to spikes, while running at the fast millisecond time-scale of the spiking activity. Moreover, this improvement is achieved using relatively few LFP channels, demonstrating the robustness of the approach. These results suggest that using multiscale decoders has the potential to improve the reliability and longevity of BMIs.

  3. Multi-scale biomedical systems: measurement challenges

    NASA Astrophysics Data System (ADS)

    Summers, R.

    2016-11-01

    Multi-scale biomedical systems are those that represent interactions in materials, sensors, and systems from a holistic perspective. It is possible to view such multi-scale activity using measurement of spatial scale or time scale, though in this paper only the former is considered. The biomedical application paradigm comprises interactions that range from quantum biological phenomena at scales of 10-12 for one individual to epidemiological studies of disease spread in populations that in a pandemic lead to measurement at a scale of 10+7. It is clear that there are measurement challenges at either end of this spatial scale, but those challenges that relate to the use of new technologies that deal with big data and health service delivery at the point of care are also considered. The measurement challenges lead to the use, in many cases, of model-based measurement and the adoption of virtual engineering. It is these measurement challenges that will be uncovered in this paper.

  4. Multiscale multifractal DCCA and complexity behaviors of return intervals for Potts price model

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Jun; Stanley, H. Eugene

    2018-02-01

    To investigate the characteristics of extreme events in financial markets and the corresponding return intervals among these events, we use a Potts dynamic system to construct a random financial time series model of the attitudes of market traders. We use multiscale multifractal detrended cross-correlation analysis (MM-DCCA) and Lempel-Ziv complexity (LZC) perform numerical research of the return intervals for two significant China's stock market indices and for the proposed model. The new MM-DCCA method is based on the Hurst surface and provides more interpretable cross-correlations of the dynamic mechanism between different return interval series. We scale the LZC method with different exponents to illustrate the complexity of return intervals in different scales. Empirical studies indicate that the proposed return intervals from the Potts system and the real stock market indices hold similar statistical properties.

  5. Shape-Driven 3D Segmentation Using Spherical Wavelets

    PubMed Central

    Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen

    2013-01-01

    This paper presents a novel active surface segmentation algorithm using a multiscale shape representation and prior. We define a parametric model of a surface using spherical wavelet functions and learn a prior probability distribution over the wavelet coefficients to model shape variations at different scales and spatial locations in a training set. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior in the segmentation framework. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to the segmentation of brain caudate nucleus, of interest in the study of schizophrenia. Our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm by capturing finer shape details. PMID:17354875

  6. Multi-Scale Computational Modeling of Two-Phased Metal Using GMC Method

    NASA Technical Reports Server (NTRS)

    Moghaddam, Masoud Ghorbani; Achuthan, A.; Bednacyk, B. A.; Arnold, S. M.; Pineda, E. J.

    2014-01-01

    A multi-scale computational model for determining plastic behavior in two-phased CMSX-4 Ni-based superalloys is developed on a finite element analysis (FEA) framework employing crystal plasticity constitutive model that can capture the microstructural scale stress field. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, GMC as stand-alone is validated by analyzing a repeating unit cell (RUC) as a two-phased sample with 72.9% volume fraction of gamma'-precipitate in the gamma-matrix phase and comparing the results with those predicted by finite element analysis (FEA) models incorporating the same crystal plasticity constitutive model. The global stress-strain behavior and the local field quantity distributions predicted by GMC demonstrated good agreement with FEA. High computational saving, at the expense of some accuracy in the components of local tensor field quantities, was obtained with GMC. Finally, the capability of the developed multi-scale model linking FEA and GMC to solve real life sized structures is demonstrated by analyzing an engine disc component and determining the microstructural scale details of the field quantities.

  7. Towards a new multiscale air quality transport model using the fully unstructured anisotropic adaptive mesh technology of Fluidity (version 4.1.9)

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.

    2015-10-01

    An integrated method of advanced anisotropic hr-adaptive mesh and discretization numerical techniques has been, for first time, applied to modelling of multiscale advection-diffusion problems, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been set up for two-dimensional (2-D) advection phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes. Performance achieved in 3-D simulation of power plant plumes indicates that this new adaptive multiscale model has the potential to provide accurate air quality modelling solutions effectively.

  8. Multiscale modelling approaches for assessing cosmetic ingredients safety.

    PubMed

    Bois, Frédéric Y; Ochoa, Juan G Diaz; Gajewska, Monika; Kovarich, Simona; Mauch, Klaus; Paini, Alicia; Péry, Alexandre; Benito, Jose Vicente Sala; Teng, Sophie; Worth, Andrew

    2017-12-01

    The European Union's ban on animal testing for cosmetic ingredients and products has generated a strong momentum for the development of in silico and in vitro alternative methods. One of the focus of the COSMOS project was ab initio prediction of kinetics and toxic effects through multiscale pharmacokinetic modeling and in vitro data integration. In our experience, mathematical or computer modeling and in vitro experiments are complementary. We present here a summary of the main models and results obtained within the framework of the project on these topics. A first section presents our work at the organelle and cellular level. We then go toward modeling cell levels effects (monitored continuously), multiscale physiologically based pharmacokinetic and effect models, and route to route extrapolation. We follow with a short presentation of the automated KNIME workflows developed for dissemination and easy use of the models. We end with a discussion of two challenges to the field: our limited ability to deal with massive data and complex computations. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Møyner, Olav, E-mail: olav.moyner@sintef.no; Lie, Knut-Andreas, E-mail: knut-andreas.lie@sintef.no

    2016-01-01

    A wide variety of multiscale methods have been proposed in the literature to reduce runtime and provide better scaling for the solution of Poisson-type equations modeling flow in porous media. We present a new multiscale restricted-smoothed basis (MsRSB) method that is designed to be applicable to both rectilinear grids and unstructured grids. Like many other multiscale methods, MsRSB relies on a coarse partition of the underlying fine grid and a set of local prolongation operators (multiscale basis functions) that map unknowns associated with the fine grid cells to unknowns associated with blocks in the coarse partition. These mappings are constructedmore » by restricted smoothing: Starting from a constant, a localized iterative scheme is applied directly to the fine-scale discretization to compute prolongation operators that are consistent with the local properties of the differential operators. The resulting method has three main advantages: First of all, both the coarse and the fine grid can have general polyhedral geometry and unstructured topology. This means that partitions and good prolongation operators can easily be constructed for complex models involving high media contrasts and unstructured cell connections introduced by faults, pinch-outs, erosion, local grid refinement, etc. In particular, the coarse partition can be adapted to geological or flow-field properties represented on cells or faces to improve accuracy. Secondly, the method is accurate and robust when compared to existing multiscale methods and does not need expensive recomputation of local basis functions to account for transient behavior: Dynamic mobility changes are incorporated by continuing to iterate a few extra steps on existing basis functions. This way, the cost of updating the prolongation operators becomes proportional to the amount of change in fluid mobility and one reduces the need for expensive, tolerance-based updates. Finally, since the MsRSB method is formulated on top of a cell-centered, conservative, finite-volume method, it is applicable to any flow model in which one can isolate a pressure equation. Herein, we only discuss single and two-phase incompressible models. Compressible flow, e.g., as modeled by the black-oil equations, is discussed in a separate paper.« less

  10. A Perspective on Coupled Multiscale Simulation and Validation in Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. P. Short; D. Gaston; C. R. Stanek

    2014-01-01

    The field of nuclear materials encompasses numerous opportunities to address and ultimately solve longstanding industrial problems by improving the fundamental understanding of materials through the integration of experiments with multiscale modeling and high-performance simulation. A particularly noteworthy example is an ongoing study of axial power distortions in a nuclear reactor induced by corrosion deposits, known as CRUD (Chalk River unidentified deposits). We describe how progress is being made toward achieving scientific advances and technological solutions on two fronts. Specifically, the study of thermal conductivity of CRUD phases has augmented missing data as well as revealed new mechanisms. Additionally, the developmentmore » of a multiscale simulation framework shows potential for the validation of a new capability to predict the power distribution of a reactor, in effect direct evidence of technological impact. The material- and system-level challenges identified in the study of CRUD are similar to other well-known vexing problems in nuclear materials, such as irradiation accelerated corrosion, stress corrosion cracking, and void swelling; they all involve connecting materials science fundamentals at the atomistic- and mesoscales to technology challenges at the macroscale.« less

  11. Design of a framework for modeling, integration and simulation of physiological models.

    PubMed

    Erson, E Zeynep; Cavuşoğlu, M Cenk

    2012-09-01

    Multiscale modeling and integration of physiological models carry challenges due to the complex nature of physiological processes. High coupling within and among scales present a significant challenge in constructing and integrating multiscale physiological models. In order to deal with such challenges in a systematic way, there is a significant need for an information technology framework together with related analytical and computational tools that will facilitate integration of models and simulations of complex biological systems. Physiological Model Simulation, Integration and Modeling Framework (Phy-SIM) is an information technology framework providing the tools to facilitate development, integration and simulation of integrated models of human physiology. Phy-SIM brings software level solutions to the challenges raised by the complex nature of physiological systems. The aim of Phy-SIM, and this paper is to lay some foundation with the new approaches such as information flow and modular representation of the physiological models. The ultimate goal is to enhance the development of both the models and the integration approaches of multiscale physiological processes and thus this paper focuses on the design approaches that would achieve such a goal. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Classification of JERS-1 Image Mosaic of Central Africa Using A Supervised Multiscale Classifier of Texture Features

    NASA Technical Reports Server (NTRS)

    Saatchi, Sassan; DeGrandi, Franco; Simard, Marc; Podest, Erika

    1999-01-01

    In this paper, a multiscale approach is introduced to classify the Japanese Research Satellite-1 (JERS-1) mosaic image over the Central African rainforest. A series of texture maps are generated from the 100 m mosaic image at various scales. Using a quadtree model and relating classes at each scale by a Markovian relationship, the multiscale images are classified from course to finer scale. The results are verified at various scales and the evolution of classification is monitored by calculating the error at each stage.

  13. Multiscale characterization and mechanical modeling of an Al-Zn-Mg electron beam weld

    NASA Astrophysics Data System (ADS)

    Puydt, Quentin; Flouriot, Sylvain; Ringeval, Sylvain; Parry, Guillaume; De Geuser, Frédéric; Deschamps, Alexis

    Welding of precipitation hardening alloys results in multi-scale microstructural heterogeneities, from the hardening nano-scale precipitates to the micron-scale solidification structures and to the component geometry. This heterogeneity results in a complex mechanical response, with gradients in strength, stress triaxiality and damage initiation sites.

  14. Multiscale Modelling of the 2011 Tohoku Tsunami with Fluidity: Coastal Inundation and Run-up.

    NASA Astrophysics Data System (ADS)

    Hill, J.; Martin-Short, R.; Piggott, M. D.; Candy, A. S.

    2014-12-01

    Tsunami-induced flooding represents one of the most dangerous natural hazards to coastal communities around the world, as exemplified by Tohoku tsunami of March 2011. In order to further understand this hazard and to design appropriate mitigation it is necessary to develop versatile, accurate software capable of simulating large scale tsunami propagation and interaction with coastal geomorphology on a local scale. One such software package is Fluidity, an open source, finite element, multiscale, code that is capable of solving the fully three dimensional Navier-Stokes equations on unstructured meshes. Such meshes are significantly better at representing complex coastline shapes than structured meshes and have the advantage of allowing variation in element size across a domain. Furthermore, Fluidity incorporates a novel wetting and drying algorithm, which enables accurate, efficient simulation of tsunami run-up over complex, multiscale, topography. Fluidity has previously been demonstrated to accurately simulate the 2011 Tohoku tsunami (Oishi et al 2013) , but its wetting and drying facility has not yet been tested on a geographical scale. This study makes use of Fluidity to simulate the 2011 Tohoku tsunami and its interaction with Japan's eastern shoreline, including coastal flooding. The results are validated against observations made by survey teams, aerial photographs and previous modelling efforts in order to evaluate Fluidity's current capabilities and suggest methods of future improvement. The code is shown to perform well at simulating flooding along the topographically complex Tohoku coast of Japan, with major deviations between model and observation arising mainly due to limitations imposed by bathymetry resolution, which could be improved in future. In theory, Fluidity is capable of full multiscale tsunami modelling, thus enabling researchers to understand both wave propagation across ocean basins and flooding of coastal landscapes down to interaction with individual defence structures. This makes the code an exciting candidate for use in future studies aiming to investigate tsunami risk elsewhere in the world. Oishi, Y. et al. Three-dimensional tsunami propagation simulations using an unstructured mesh finite element model. J. Geophys. Res. [Solid Earth] 118, 2998-3018 (2013).

  15. Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model.

    PubMed

    Aregawi, Wondwosen A; Abera, Metadel K; Fanta, Solomon W; Verboven, Pieter; Nicolai, Bart

    2014-11-19

    A two-dimensional multiscale water transport and mechanical model was developed to predict the water loss and deformation of apple tissue (Malus × domestica Borkh. cv. 'Jonagold') during dehydration. At the macroscopic level, a continuum approach was used to construct a coupled water transport and mechanical model. Water transport in the tissue was simulated using a phenomenological approach using Fick's second law of diffusion. Mechanical deformation due to shrinkage was based on a structural mechanics model consisting of two parts: Yeoh strain energy functions to account for non-linearity and Maxwell's rheological model of visco-elasticity. Apparent parameters of the macroscale model were computed from a microscale model. The latter accounted for water exchange between different microscopic structures of the tissue (intercellular space, the cell wall network and cytoplasm) using transport laws with the water potential as the driving force for water exchange between different compartments of tissue. The microscale deformation mechanics were computed using a model where the cells were represented as a closed thin walled structure. The predicted apparent water transport properties of apple cortex tissue from the microscale model showed good agreement with the experimentally measured values. Deviations between calculated and measured mechanical properties of apple tissue were observed at strains larger than 3%, and were attributed to differences in water transport behavior between the experimental compression tests and the simulated dehydration-deformation behavior. Tissue dehydration and deformation in the high relative humidity range ( > 97% RH) could, however, be accurately predicted by the multiscale model. The multiscale model helped to understand the dynamics of the dehydration process and the importance of the different microstructural compartments (intercellular space, cell wall, membrane and cytoplasm) for water transport and mechanical deformation.

  16. Multiscale Space-Time Computational Methods for Fluid-Structure Interactions

    DTIC Science & Technology

    2015-09-13

    prescribed fully or partially, is from an actual locust, extracted from high-speed, multi-camera video recordings of the locust in a wind tunnel . We use...With creative methods for coupling the fluid and structure, we can increase the scope and efficiency of the FSI modeling . Multiscale methods, which now...play an important role in computational mathematics, can also increase the accuracy and efficiency of the computer modeling techniques. The main

  17. Augmenting Surgery via Multi-scale Modeling and Translational Systems Biology in the Era of Precision Medicine: A Multidisciplinary Perspective

    PubMed Central

    Kassab, Ghassan S.; An, Gary; Sander, Edward A.; Miga, Michael; Guccione, Julius M.; Ji, Songbai; Vodovotz, Yoram

    2016-01-01

    In this era of tremendous technological capabilities and increased focus on improving clinical outcomes, decreasing costs, and increasing precision, there is a need for a more quantitative approach to the field of surgery. Multiscale computational modeling has the potential to bridge the gap to the emerging paradigms of Precision Medicine and Translational Systems Biology, in which quantitative metrics and data guide patient care through improved stratification, diagnosis, and therapy. Achievements by multiple groups have demonstrated the potential for 1) multiscale computational modeling, at a biological level, of diseases treated with surgery and the surgical procedure process at the level of the individual and the population; along with 2) patient-specific, computationally-enabled surgical planning, delivery, and guidance and robotically-augmented manipulation. In this perspective article, we discuss these concepts, and cite emerging examples from the fields of trauma, wound healing, and cardiac surgery. PMID:27015816

  18. CONCENTRATIONS OF TOXIC AIR POLLUTANTS IN THE U.S. SIMULATED BY AN AIR QUALITY MODEL

    EPA Science Inventory

    As part of the US National Air Toxics Assessment, we have applied the Community Multiscale Air Quality Model, CMAQ, to study the concentrations of twenty gas-phase, toxic, hazardous air pollutants (HAPs) in the atmosphere over the continental United States. We modified the Carbo...

  19. DOTAGWA: A CASE STUDY IN WEB-BASED ARCHITECTURES FOR CONNECTING SURFACE WATER MODELS TO SPATIALLY ENABLED WEB APPLICATIONS

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment (AGWA) tool is a desktop application that uses widely available standardized spatial datasets to derive inputs for multi-scale hydrologic models (Miller et al., 2007). The required data sets include topography (DEM data), soils, clima...

  20. Enhanced representation of soil NO emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    EPA Science Inventory

    Modeling of soil nitric oxide (NO) emissions is highly uncertain and may misrepresent its spatial and temporal distribution. This study builds upon a recently introduced parameterization to improve the timing and spatial distribution of soil NO emission estimates in the Community...

  1. Predicting agricultural impacts of large-scale drought: 2012 and the case for better modeling

    USDA-ARS?s Scientific Manuscript database

    We present an example of a simulation-based forecast for the 2012 U.S. maize growing season produced as part of a high-resolution, multi-scale, predictive mechanistic modeling study designed for decision support, risk management, and counterfactual analysis. The simulations undertaken for this analy...

  2. A Multiscale Computational Model Combining a Single Crystal Plasticity Constitutive Model with the Generalized Method of Cells (GMC) for Metallic Polycrystals.

    PubMed

    Ghorbani Moghaddam, Masoud; Achuthan, Ajit; Bednarcyk, Brett A; Arnold, Steven M; Pineda, Evan J

    2016-05-04

    A multiscale computational model is developed for determining the elasto-plastic behavior of polycrystal metals by employing a single crystal plasticity constitutive model that can capture the microstructural scale stress field on a finite element analysis (FEA) framework. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, the stand-alone GMC is applied for studying simple material microstructures such as a repeating unit cell (RUC) containing single grain or two grains under uniaxial loading conditions. For verification, the results obtained by the stand-alone GMC are compared to those from an analogous FEA model incorporating the same single crystal plasticity constitutive model. This verification is then extended to samples containing tens to hundreds of grains. The results demonstrate that the GMC homogenization combined with the crystal plasticity constitutive framework is a promising approach for failure analysis of structures as it allows for properly predicting the von Mises stress in the entire RUC, in an average sense, as well as in the local microstructural level, i.e. , each individual grain. Two-three orders of saving in computational cost, at the expense of some accuracy in prediction, especially in the prediction of the components of local tensor field quantities and the quantities near the grain boundaries, was obtained with GMC. Finally, the capability of the developed multiscale model linking FEA and GMC to solve real-life-sized structures is demonstrated by successfully analyzing an engine disc component and determining the microstructural scale details of the field quantities.

  3. A Multiscale Computational Model Combining a Single Crystal Plasticity Constitutive Model with the Generalized Method of Cells (GMC) for Metallic Polycrystals

    PubMed Central

    Ghorbani Moghaddam, Masoud; Achuthan, Ajit; Bednarcyk, Brett A.; Arnold, Steven M.; Pineda, Evan J.

    2016-01-01

    A multiscale computational model is developed for determining the elasto-plastic behavior of polycrystal metals by employing a single crystal plasticity constitutive model that can capture the microstructural scale stress field on a finite element analysis (FEA) framework. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, the stand-alone GMC is applied for studying simple material microstructures such as a repeating unit cell (RUC) containing single grain or two grains under uniaxial loading conditions. For verification, the results obtained by the stand-alone GMC are compared to those from an analogous FEA model incorporating the same single crystal plasticity constitutive model. This verification is then extended to samples containing tens to hundreds of grains. The results demonstrate that the GMC homogenization combined with the crystal plasticity constitutive framework is a promising approach for failure analysis of structures as it allows for properly predicting the von Mises stress in the entire RUC, in an average sense, as well as in the local microstructural level, i.e., each individual grain. Two–three orders of saving in computational cost, at the expense of some accuracy in prediction, especially in the prediction of the components of local tensor field quantities and the quantities near the grain boundaries, was obtained with GMC. Finally, the capability of the developed multiscale model linking FEA and GMC to solve real-life-sized structures is demonstrated by successfully analyzing an engine disc component and determining the microstructural scale details of the field quantities. PMID:28773458

  4. A multiscale modeling study of particle size effects on the tissue penetration efficacy of drug-delivery nanoparticles.

    PubMed

    Islam, Mohammad Aminul; Barua, Sutapa; Barua, Dipak

    2017-11-25

    Particle size is a key parameter for drug-delivery nanoparticle design. It is believed that the size of a nanoparticle may have important effects on its ability to overcome the transport barriers in biological tissues. Nonetheless, such effects remain poorly understood. Using a multiscale model, this work investigates particle size effects on the tissue distribution and penetration efficacy of drug-delivery nanoparticles. We have developed a multiscale spatiotemporal model of nanoparticle transport in biological tissues. The model implements a time-adaptive Brownian Dynamics algorithm that links microscale particle-cell interactions and adhesion dynamics to tissue-scale particle dispersion and penetration. The model accounts for the advection, diffusion, and cellular uptakes of particles. Using the model, we have analyzed how particle size affects the intra-tissue dispersion and penetration of drug delivery nanoparticles. We focused on two published experimental works that investigated particle size effects in in vitro and in vivo tissue conditions. By analyzing experimental data reported in these two studies, we show that particle size effects may appear pronounced in an in vitro cell-free tissue system, such as collagen matrix. In an in vivo tissue system, the effects of particle size could be relatively modest. We provide a detailed analysis on how particle-cell interactions may determine distribution and penetration of nanoparticles in a biological tissue. Our work suggests that the size of a nanoparticle may play a less significant role in its ability to overcome the intra-tissue transport barriers. We show that experiments involving cell-free tissue systems may yield misleading observations of particle size effects due to the absence of advective transport and particle-cell interactions.

  5. A Multiscale Approach to Modelling Drug Metabolism by Membrane-Bound Cytochrome P450 Enzymes

    PubMed Central

    Sansom, Mark S. P.; Mulholland, Adrian J.

    2014-01-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes. PMID:25033460

  6. A multiscale approach to modelling drug metabolism by membrane-bound cytochrome P450 enzymes.

    PubMed

    Lonsdale, Richard; Rouse, Sarah L; Sansom, Mark S P; Mulholland, Adrian J

    2014-07-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes.

  7. Evaluating and Improving Cloud Processes in the Multi-Scale Modeling Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, Thomas P.

    2015-03-01

    The research performed under this grant was intended to improve the embedded cloud model in the Multi-scale Modeling Framework (MMF) for convective clouds by using a 2-moment microphysics scheme rather than the single moment scheme used in all the MMF runs to date. The technical report and associated documents describe the results of testing the cloud resolving model with fixed boundary conditions and evaluation of model results with data. The overarching conclusion is that such model evaluations are problematic because errors in the forcing fields control the results so strongly that variations in parameterization values cannot be usefully constrained

  8. A fast solver for the Helmholtz equation based on the generalized multiscale finite-element method

    NASA Astrophysics Data System (ADS)

    Fu, Shubin; Gao, Kai

    2017-11-01

    Conventional finite-element methods for solving the acoustic-wave Helmholtz equation in highly heterogeneous media usually require finely discretized mesh to represent the medium property variations with sufficient accuracy. Computational costs for solving the Helmholtz equation can therefore be considerably expensive for complicated and large geological models. Based on the generalized multiscale finite-element theory, we develop a novel continuous Galerkin method to solve the Helmholtz equation in acoustic media with spatially variable velocity and mass density. Instead of using conventional polynomial basis functions, we use multiscale basis functions to form the approximation space on the coarse mesh. The multiscale basis functions are obtained from multiplying the eigenfunctions of a carefully designed local spectral problem with an appropriate multiscale partition of unity. These multiscale basis functions can effectively incorporate the characteristics of heterogeneous media's fine-scale variations, thus enable us to obtain accurate solution to the Helmholtz equation without directly solving the large discrete system formed on the fine mesh. Numerical results show that our new solver can significantly reduce the dimension of the discrete Helmholtz equation system, and can also obviously reduce the computational time.

  9. Multiscale complex network analysis: An approach to study spatiotemporal rainfall pattern in south Germany

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankit; Marwan, Norbert; Rathinasamy, Maheswaran; Oeztuerk, Ugur; Merz, Bruno; Kurths, Jürgen

    2017-04-01

    Understanding of the climate sytems has been of tremendous importance to different branches such as agriculture, flood, drought and water resources management etc. In this regard, complex networks analysis and time series analysis attracted considerable attention, owing to their potential role in understanding the climate system through characteristic properties. One of the basic requirements in studying climate network dynamics is to identify connections in space or time or space-time, depending upon the purpose. Although a wide variety of approaches have been developed and applied to identify and analyse spatio-temporal relationships by climate networks, there is still further need for improvements in particular when considering precipitation time series or interactions on different scales. In this regard, recent developments in the area of network theory, especially complex networks, offer new avenues, both for their generality about systems and for their holistic perspective about spatio-temporal relationships. The present study has made an attempt to apply the ideas developed in the field of complex networks to examine connections in regional climate networks with particular focus on multiscale spatiotemporal connections. This paper proposes a novel multiscale understanding of regional climate networks using wavelets. The proposed approach is applied to daily precipitation records observed at 543 selected stations from south Germany for a period of 110 years (1901-2010). Further, multiscale community mining is performed on the same study region to shed more light on the underlying processes at different time scales. Various network measure and tools so far employed provide micro-level (individual station) and macro-level (community structure) information of the network. It is interesting to investigate how the result of this study can be useful for future climate predictions and for evaluating climate models on their implementation regarding heavy precipitation. Keywords: Complex network, event synchronization, wavelet, regional climate network, multiscale community mining

  10. Low-Frequency Oscillations and Transport Processes Induced by Multiscale Transverse Structures in the Polar Wind Outflow: A Three-Dimensional Simulation

    NASA Technical Reports Server (NTRS)

    Ganguli, Supriya B.; Gavrishchaka, Valeriy V.

    1999-01-01

    Multiscale transverse structures in the magnetic-field-aligned flows have been frequently observed in the auroral region by FAST and Freja satellites. A number of multiscale processes, such as broadband low-frequency oscillations and various cross-field transport effects are well correlated with these structures. To study these effects, we have used our three-dimensional multifluid model with multiscale transverse inhomogeneities in the initial velocity profile. Self-consistent-frequency mode driven by local transverse gradients in the generation of the low field-aligned ion flow and associated transport processes were simulated. Effects of particle interaction with the self-consistent time-dependent three-dimensional wave potential have been modeled using a distribution of test particles. For typical polar wind conditions it has been found that even large-scale (approximately 50 - 100 km) transverse inhomogeneities in the flow can generate low-frequency oscillations that lead to significant flow modifications, cross-field particle diffusion, and other transport effects. It has also been shown that even small-amplitude (approximately 10 - 20%) short-scale (approximately 10 km) modulations of the original large-scale flow profile significantly increases low-frequency mode generation and associated cross-field transport, not only at the local spatial scales imposed by the modulations but also on global scales. Note that this wave-induced cross-field transport is not included in any of the global numerical models of the ionosphere, ionosphere-thermosphere, or ionosphere-polar wind. The simulation results indicate that the wave-induced cross-field transport not only affects the ion outflow rates but also leads to a significant broadening of particle phase-space distribution and transverse particle diffusion.

  11. A bidirectional coupling procedure applied to multiscale respiratory modeling

    NASA Astrophysics Data System (ADS)

    Kuprat, A. P.; Kabilan, S.; Carson, J. P.; Corley, R. A.; Einstein, D. R.

    2013-07-01

    In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton's method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a "pressure-drop" residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural pressure applied to the multiple sets of ODEs. In both the simplified geometry and in the imaging-based geometry, the performance of the method was comparable to that of monolithic schemes, in most cases requiring only a single CFD evaluation per time step. Thus, this new accelerator allows us to begin combining pulmonary CFD models with lower-dimensional models of pulmonary mechanics with little computational overhead. Moreover, because the CFD and lower-dimensional models are totally separate, this framework affords great flexibility in terms of the type and breadth of the adopted lower-dimensional model, allowing the biomedical researcher to appropriately focus on model design. Research funded by the National Heart and Blood Institute Award 1RO1HL073598.

  12. Multiscale Modeling of Dewetting Damage in Highly Filled Particulate Composites

    NASA Astrophysics Data System (ADS)

    Geubelle, P. H.; Inglis, H. M.; Kramer, J. D.; Patel, J. J.; Kumar, N. C.; Tan, H.

    2008-02-01

    Particle debonding or dewetting constitutes one of the key damage processes in highly filled particulate composites such as solid propellant and other energetic materials. To analyze this failure process, we have developed a multiscale finite element framework that combines, at the microscale, a nonlinear description of the binder response with a cohesive model of the damage process taking place in a representative periodic unit cell (PUC). To relate micro-scale damage to the macroscopic constitutive response of the material, we employ the mathematical theory of homogenization (MTH). After a description of the numerical scheme, we present the results of the damage response of a highly filled particulate composite subjected to a uniaxial macroscopic strain, and show the direct correlation between the complex damage processes taking place in the PUC and the nonlinear macroscopic constitutive response. We also present a detailed study of the PUC size and a comparison between the finite element MTH-based study and a micromechanics model of the dewetting process.

  13. A weak Galerkin generalized multiscale finite element method

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2016-03-31

    In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.

  14. A weak Galerkin generalized multiscale finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.

  15. Multi-Scale Modeling of a Graphite-Epoxy-Nanotube System

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Riddick, J. C.; Gates, T. S.

    2005-01-01

    A multi-scale method is utilized to determine some of the constitutive properties of a three component graphite-epoxy-nanotube system. This system is of interest because carbon nanotubes have been proposed as stiffening and toughening agents in the interlaminar regions of carbon fiber/epoxy laminates. The multi-scale method uses molecular dynamics simulation and equivalent-continuum modeling to compute three of the elastic constants of the graphite-epoxy-nanotube system: C11, C22, and C33. The 1-direction is along the nanotube axis, and the graphene sheets lie in the 1-2 plane. It was found that the C11 is only 4% larger than the C22. The nanotube therefore does have a small, but positive effect on the constitutive properties in the interlaminar region.

  16. Modelling multiscale aspects of colorectal cancer

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Ingeborg M. M.; Byrne, Helen M.; Johnston, Matthew D.; Edwards, Carina M.; Chapman, S. Jonathan; Bodmer, Walter F.; Maini, Philip K.

    2008-01-01

    Colorectal cancer (CRC) is responsible for nearly half a million deaths annually world-wide [11]. We present a series of mathematical models describing the dynamics of the intestinal epithelium and the kinetics of the molecular pathway most commonly mutated in CRC, the Wnt signalling network. We also discuss how we are coupling such models to build a multiscale model of normal and aberrant guts. This will enable us to combine disparate experimental and clinical data, to investigate interactions between phenomena taking place at different levels of organisation and, eventually, to test the efficacy of new drugs on the system as a whole.

  17. A Novel Multiscale Physics Based Progressive Failure Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.; Bednarcyk, Brett A.; Collier, Craig S.; Yarrington, Phillip W.

    2008-01-01

    A variable fidelity, multiscale, physics based finite element procedure for predicting progressive damage and failure of laminated continuous fiber reinforced composites is introduced. At every integration point in a finite element model, progressive damage is accounted for at the lamina-level using thermodynamically based Schapery Theory. Separate failure criteria are applied at either the global-scale or the microscale in two different FEM models. A micromechanics model, the Generalized Method of Cells, is used to evaluate failure criteria at the micro-level. The stress-strain behavior and observed failure mechanisms are compared with experimental results for both models.

  18. Multiscale modeling of three-dimensional genome

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Wolynes, Peter

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  19. Genetic variants in Alzheimer disease – molecular and brain network approaches

    PubMed Central

    Gaiteri, Chris; Mostafavi, Sara; Honey, Christopher; De Jager, Philip L.; Bennett, David A.

    2016-01-01

    Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care for AD. However, due to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extracting actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effect of LOAD-associated genetic variants. We then discuss emerging combinations of omic data types in multiscale models, which provide a more comprehensive representation of the effect of LOAD-associated genetic variants at multiple biophysical scales. Further, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models. PMID:27282653

  20. Multiscale crystal defect dynamics: A coarse-grained lattice defect model based on crystal microstructure

    NASA Astrophysics Data System (ADS)

    Lyu, Dandan; Li, Shaofan

    2017-10-01

    Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.

  1. Evaluating 20th Century precipitation characteristics between multi-scale atmospheric models with different land-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Phillips, M.; Denning, A. S.; Randall, D. A.; Branson, M.

    2016-12-01

    Multi-scale models of the atmosphere provide an opportunity to investigate processes that are unresolved by traditional Global Climate Models while at the same time remaining viable in terms of computational resources for climate-length time scales. The MMF represents a shift away from large horizontal grid spacing in traditional GCMs that leads to overabundant light precipitation and lack of heavy events, toward a model where precipitation intensity is allowed to vary over a much wider range of values. Resolving atmospheric motions on the scale of 4 km makes it possible to recover features of precipitation, such as intense downpours, that were previously only obtained by computationally expensive regional simulations. These heavy precipitation events may have little impact on large-scale moisture and energy budgets, but are outstanding in terms of interaction with the land surface and potential impact on human life. Three versions of the Community Earth System Model were used in this study; the standard CESM, the multi-scale `Super-Parameterized' CESM where large-scale parameterizations have been replaced with a 2D cloud-permitting model, and a multi-instance land version of the SP-CESM where each column of the 2D CRM is allowed to interact with an individual land unit. These simulations were carried out using prescribed Sea Surface Temperatures for the period from 1979-2006 with daily precipitation saved for all 28 years. Comparisons of the statistical properties of precipitation between model architectures and against observations from rain gauges were made, with specific focus on detection and evaluation of extreme precipitation events.

  2. Concurrent multiscale modeling of microstructural effects on localization behavior in finite deformation solid mechanics

    NASA Astrophysics Data System (ADS)

    Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro; Lim, Hojun; Littlewood, David J.

    2018-02-01

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.

  3. Multiscale Cloud System Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell W.

    2009-01-01

    The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing approximately 1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects.

  4. Multiscale Approach For Simulating Nonlinear Wave Propagation In Materials with Localized Microdamage

    NASA Astrophysics Data System (ADS)

    Vanaverbeke, Sigfried; Van Den Abeele, Koen

    2006-05-01

    A multiscale model for the simulation of two-dimensional nonlinear wave propagation in microcracked materials exhibiting hysteretic nonlinearity is presented. We use trigger-like elements with a two state nonlinear stress-strain relation to simulate microcracks at the microlevel. A generalized Preisach space approach, based on the eigenstress-eigenstrain formulation, upscales the microscopic state relation to the mesoscopic level. The macroscopic response of the sample to an arbitrary excitation signal is then predicted using a staggered grid Elastodynamic Finite Integration Technique (EFIT) formalism. We apply the model to investigate spectral changes of a pulsed signal traversing a localized microdamaged region with hysteretic nonlinearity in a plate, and to study the influence of a superficial region with hysteretic nonlinearity on the nonlinear Rayleigh wave propagation.

  5. Ion exhaust distributions and reconnection location with Magnetospheric Multiscale and global MHD test particles

    NASA Astrophysics Data System (ADS)

    Broll, J. M.; Fuselier, S. A.; Trattner, K. J.; Steven, P. M.; Burch, J. L.; Giles, B. L.

    2017-12-01

    Magnetic reconnection at Earth's dayside magnetopause is an essential process in magnetospheric physics. Under southward IMF conditions, reconnection occurs along a thin ribbon across the dayside magnetopause. The location of this ribbon has been studied extensively in terms of global optimization of quantities like reconnecting field energy or magnetic shear, but with expected errors of 1-2 Earth radii these global models give limited context for cases where an observation is near the reconnection line. Building on previous results, which established the cutoff contour method for locating reconnection using in-situ velocity measurements, we examine the effects of MHD-scale waves on reconnection exhaust distributions. We use a test particle exhaust distribution propagated through a globamagnetohydrodynamics model fields and compare with Magnetospheric Multiscale observations of reconnection exhaust.

  6. Multi-scale finite element modeling of Eustachian tube function: influence of mucosal adhesion.

    PubMed

    Malik, J E; Swarts, J D; Ghadiali, S N

    2016-12-01

    The inability to open the collapsible Eustachian tube (ET) leads to the development of chronic Otitis Media (OM). Although mucosal inflammation during OM leads to increased mucin gene expression and elevated adhesion forces within the ET lumen, it is not known how changes in mucosal adhesion alter the biomechanical mechanisms of ET function. In this study, we developed a novel multi-scale finite element model of ET function in adults that utilizes adhesion spring elements to simulate changes in mucosal adhesion. Models were created for six adult subjects, and dynamic patterns in muscle contraction were used to simulate the wave-like opening of the ET that occurs during swallowing. Results indicate that ET opening is highly sensitive to the level of mucosal adhesion and that exceeding a critical value of adhesion leads to rapid ET dysfunction. Parameter variation studies and sensitivity analysis indicate that increased mucosal adhesion alters the relative importance of several tissue biomechanical properties. For example, increases in mucosal adhesion reduced the sensitivity of ET function to tensor veli palatini muscle forces but did not alter the insensitivity of ET function to levator veli palatini muscle forces. Interestingly, although changes in cartilage stiffness did not significantly influence ET opening under low adhesion conditions, ET opening was highly sensitive to changes in cartilage stiffness under high adhesion conditions. Therefore, our multi-scale computational models indicate that changes in mucosal adhesion as would occur during inflammatory OM alter the biomechanical mechanisms of ET function. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Influences of coupled fire-atmosphere interaction on wildfire behavior

    NASA Astrophysics Data System (ADS)

    Linn, R.; Winterkamp, J.; Jonko, A. K.; Runde, I.; Canfield, J.; Parsons, R.; Sieg, C.

    2017-12-01

    Two-way interactions between fire and the environment affect fire behavior at scales ranging from buoyancy-induced mixing and turbulence to fire-scale circulations that retard or increase fire spread. Advances in computing have created new opportunities for the exploration of coupled fire-atmosphere behavior using numerical models that represent interactions between the dominant processes driving wildfire behavior, including convective and radiative heat transfer, aerodynamic drag and buoyant response of the atmosphere to heat released by the fire. Such models are not practical for operational, faster-than-real-time fire prediction due to their computational and data requirements. However, they are valuable tools for exploring influences of fire-atmosphere feedbacks on fire behavior as they explicitly simulate atmospheric motions surrounding fires from meter to kilometer scales. We use the coupled fire-atmosphere model FIRETEC to gain new insights into aspects of fire behavior that have been observed in the field and laboratory, to carry out sensitivity analysis that is impractical through observations and to pose new hypotheses that can be tested experimentally. Specifically, we use FIRETEC to study the following multi-scale coupled fire-atmosphere interactions: 1) 3D fire-atmosphere interaction that dictates multi-scale fire line dynamics; 2) influence of vegetation heterogeneity and variability in wind fields on predictability of fire spread; 3) fundamental impacts of topography on fire spread. These numerical studies support new conceptual models for the dominant roles of multi-scale fluid dynamics in determining fire spread, including the roles of crosswind fire line-intensity variations on heat transfer to unburned fuels and the role of fire line depth expansion in upslope acceleration of fires.

  8. A Bidirectional Coupling Procedure Applied to Multiscale Respiratory Modeling☆

    PubMed Central

    Kuprat, A.P.; Kabilan, S.; Carson, J.P.; Corley, R.A.; Einstein, D.R.

    2012-01-01

    In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFD) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the Modified Newton’s Method with nonlinear Krylov accelerator developed by Carlson and Miller [1, 2, 3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a “pressure-drop” residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural pressure applied to the multiple sets of ODEs. In both the simplified geometry and in the imaging-based geometry, the performance of the method was comparable to that of monolithic schemes, in most cases requiring only a single CFD evaluation per time step. Thus, this new accelerator allows us to begin combining pulmonary CFD models with lower-dimensional models of pulmonary mechanics with little computational overhead. Moreover, because the CFD and lower-dimensional models are totally separate, this framework affords great flexibility in terms of the type and breadth of the adopted lower-dimensional model, allowing the biomedical researcher to appropriately focus on model design. Research funded by the National Heart and Blood Institute Award 1RO1HL073598. PMID:24347680

  9. Engineering Digestion: Multiscale Processes of Food Digestion.

    PubMed

    Bornhorst, Gail M; Gouseti, Ourania; Wickham, Martin S J; Bakalis, Serafim

    2016-03-01

    Food digestion is a complex, multiscale process that has recently become of interest to the food industry due to the developing links between food and health or disease. Food digestion can be studied by using either in vitro or in vivo models, each having certain advantages or disadvantages. The recent interest in food digestion has resulted in a large number of studies in this area, yet few have provided an in-depth, quantitative description of digestion processes. To provide a framework to develop these quantitative comparisons, a summary is given here between digestion processes and parallel unit operations in the food and chemical industry. Characterization parameters and phenomena are suggested for each step of digestion. In addition to the quantitative characterization of digestion processes, the multiscale aspect of digestion must also be considered. In both food systems and the gastrointestinal tract, multiple length scales are involved in food breakdown, mixing, absorption. These different length scales influence digestion processes independently as well as through interrelated mechanisms. To facilitate optimized development of functional food products, a multiscale, engineering approach may be taken to describe food digestion processes. A framework for this approach is described in this review, as well as examples that demonstrate the importance of process characterization as well as the multiple, interrelated length scales in the digestion process. © 2016 Institute of Food Technologists®

  10. Multiscale modelling of palisade formation in gliobastoma multiforme.

    PubMed

    Caiazzo, Alfonso; Ramis-Conde, Ignacio

    2015-10-21

    Palisades are characteristic tissue aberrations that arise in glioblastomas. Observation of palisades is considered as a clinical indicator of the transition from a noninvasive to an invasive tumour. In this paper we propose a computational model to study the influence of the hypoxic switch in palisade formation. For this we produced three-dimensional realistic simulations, based on a multiscale hybrid model, coupling the evolution of tumour cells and the oxygen diffusion in tissue, that depict the shape of palisades during its formation. Our results can be summarized as follows: (1) the presented simulations can provide clinicians and biologists with a better understanding of three-dimensional structure of palisades as well as of glioblastomas growth dynamics; (2) we show that heterogeneity in cell response to hypoxia is a relevant factor in palisade and pseudopalisade formation; (3) we show how selective processes based on the hypoxia switch influence the tumour proliferation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. At the Nexus of History, Ecology, and Hydrobiogeochemistry: Improved Predictions across Scales through Integration.

    PubMed

    Stegen, James C

    2018-01-01

    To improve predictions of ecosystem function in future environments, we need to integrate the ecological and environmental histories experienced by microbial communities with hydrobiogeochemistry across scales. A key issue is whether we can derive generalizable scaling relationships that describe this multiscale integration. There is a strong foundation for addressing these challenges. We have the ability to infer ecological history with null models and reveal impacts of environmental history through laboratory and field experimentation. Recent developments also provide opportunities to inform ecosystem models with targeted omics data. A major next step is coupling knowledge derived from such studies with multiscale modeling frameworks that are predictive under non-steady-state conditions. This is particularly true for systems spanning dynamic interfaces, which are often hot spots of hydrobiogeochemical function. We can advance predictive capabilities through a holistic perspective focused on the nexus of history, ecology, and hydrobiogeochemistry.

  12. Combining Coarse-Grained Protein Models with Replica-Exchange All-Atom Molecular Dynamics

    PubMed Central

    Wabik, Jacek; Kmiecik, Sebastian; Gront, Dominik; Kouza, Maksim; Koliński, Andrzej

    2013-01-01

    We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems. PMID:23665897

  13. A tree canopy height delineation method based on Morphological Reconstruction—Open Crown Decomposition

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Jing, L.; Li, Y.; Tang, Y.; Li, H.; Lin, Q.

    2016-04-01

    For the purpose of forest management, high resolution LIDAR and optical remote sensing imageries are used for treetop detection, tree crown delineation, and classification. The purpose of this study is to develop a self-adjusted dominant scales calculation method and a new crown horizontal cutting method of tree canopy height model (CHM) to detect and delineate tree crowns from LIDAR, under the hypothesis that a treetop is radiometric or altitudinal maximum and tree crowns consist of multi-scale branches. The major concept of the method is to develop an automatic selecting strategy of feature scale on CHM, and a multi-scale morphological reconstruction-open crown decomposition (MRCD) to get morphological multi-scale features of CHM by: cutting CHM from treetop to the ground; analysing and refining the dominant multiple scales with differential horizontal profiles to get treetops; segmenting LiDAR CHM using watershed a segmentation approach marked with MRCD treetops. This method has solved the problems of false detection of CHM side-surface extracted by the traditional morphological opening canopy segment (MOCS) method. The novel MRCD delineates more accurate and quantitative multi-scale features of CHM, and enables more accurate detection and segmentation of treetops and crown. Besides, the MRCD method can also be extended to high optical remote sensing tree crown extraction. In an experiment on aerial LiDAR CHM of a forest of multi-scale tree crowns, the proposed method yielded high-quality tree crown maps.

  14. Differential Geometry Based Multiscale Models

    PubMed Central

    Wei, Guo-Wei

    2010-01-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that are coupled to generalized Navier–Stokes equations for fluid dynamics, Newton's equation for molecular dynamics, and potential and surface driving geometric flows for the micro-macro interface. For excessively large aqueous macromolecular complexes in chemistry and biology, we further develop differential geometry based multiscale fluid-electro-elastic models to replace the expensive molecular dynamics description with an alternative elasticity formulation. PMID:20169418

  15. Use of a Process Analysis Tool for Diagnostic Study on Fine Particulate Matter Predictions in the U.S.-Part II: Analysis and Sensitivity Simulations

    EPA Science Inventory

    Following the Part I paper that described an application of the U.S. EPA Models-3/Community Multiscale Air Quality (CMAQ) modeling system to the 1999 Southern Oxidants Study episode, this paper presents results from process analysis (PA) using the PA tool embedded in CMAQ and s...

  16. Degradation of metallic materials studied by correlative tomography

    NASA Astrophysics Data System (ADS)

    Burnett, T. L.; Holroyd, N. J. H.; Lewandowski, J. J.; Ogurreck, M.; Rau, C.; Kelley, R.; Pickering, E. J.; Daly, M.; Sherry, A. H.; Pawar, S.; Slater, T. J. A.; Withers, P. J.

    2017-07-01

    There are a huge array of characterization techniques available today and increasingly powerful computing resources allowing for the effective analysis and modelling of large datasets. However, each experimental and modelling tool only spans limited time and length scales. Correlative tomography can be thought of as the extension of correlative microscopy into three dimensions connecting different techniques, each providing different types of information, or covering different time or length scales. Here the focus is on the linking of time lapse X-ray computed tomography (CT) and serial section electron tomography using the focussed ion beam (FIB)-scanning electron microscope to study the degradation of metals. Correlative tomography can provide new levels of detail by delivering a multiscale 3D picture of key regions of interest. Specifically, the Xe+ Plasma FIB is used as an enabling tool for large-volume high-resolution serial sectioning of materials, and also as a tool for preparation of microscale test samples and samples for nanoscale X-ray CT imaging. The exemplars presented illustrate general aspects relating to correlative workflows, as well as to the time-lapse characterisation of metal microstructures during various failure mechanisms, including ductile fracture of steel and the corrosion of aluminium and magnesium alloys. Correlative tomography is already providing significant insights into materials behaviour, linking together information from different instruments across different scales. Multiscale and multifaceted work flows will become increasingly routine, providing a feed into multiscale materials models as well as illuminating other areas, particularly where hierarchical structures are of interest.

  17. Modeling Materials: Design for Planetary Entry, Electric Aircraft, and Beyond

    NASA Technical Reports Server (NTRS)

    Thompson, Alexander; Lawson, John W.

    2014-01-01

    NASA missions push the limits of what is possible. The development of high-performance materials must keep pace with the agency's demanding, cutting-edge applications. Researchers at NASA's Ames Research Center are performing multiscale computational modeling to accelerate development times and further the design of next-generation aerospace materials. Multiscale modeling combines several computationally intensive techniques ranging from the atomic level to the macroscale, passing output from one level as input to the next level. These methods are applicable to a wide variety of materials systems. For example: (a) Ultra-high-temperature ceramics for hypersonic aircraft-we utilized the full range of multiscale modeling to characterize thermal protection materials for faster, safer air- and spacecraft, (b) Planetary entry heat shields for space vehicles-we computed thermal and mechanical properties of ablative composites by combining several methods, from atomistic simulations to macroscale computations, (c) Advanced batteries for electric aircraft-we performed large-scale molecular dynamics simulations of advanced electrolytes for ultra-high-energy capacity batteries to enable long-distance electric aircraft service; and (d) Shape-memory alloys for high-efficiency aircraft-we used high-fidelity electronic structure calculations to determine phase diagrams in shape-memory transformations. Advances in high-performance computing have been critical to the development of multiscale materials modeling. We used nearly one million processor hours on NASA's Pleiades supercomputer to characterize electrolytes with a fidelity that would be otherwise impossible. For this and other projects, Pleiades enables us to push the physics and accuracy of our calculations to new levels.

  18. Integrative computational models of cardiac arrhythmias -- simulating the structurally realistic heart

    PubMed Central

    Trayanova, Natalia A; Tice, Brock M

    2009-01-01

    Simulation of cardiac electrical function, and specifically, simulation aimed at understanding the mechanisms of cardiac rhythm disorders, represents an example of a successful integrative multiscale modeling approach, uncovering emergent behavior at the successive scales in the hierarchy of structural complexity. The goal of this article is to present a review of the integrative multiscale models of realistic ventricular structure used in the quest to understand and treat ventricular arrhythmias. It concludes with the new advances in image-based modeling of the heart and the promise it holds for the development of individualized models of ventricular function in health and disease. PMID:20628585

  19. A Multiscale Closed-Loop Cardiovascular Model, with Applications to Heart Pacing and Hemorrhage

    NASA Astrophysics Data System (ADS)

    Canuto, Daniel; Eldredge, Jeff; Chong, Kwitae; Benharash, Peyman; Dutson, Erik

    2017-11-01

    A computational tool is developed for simulating the dynamic response of the human cardiovascular system to various stressors and injuries. The tool couples zero-dimensional models of the heart, pulmonary vasculature, and peripheral vasculature to one-dimensional models of the major systemic arteries. To simulate autonomic response, this multiscale circulatory model is integrated with a feedback model of the baroreflex, allowing control of heart rate, cardiac contractility, and peripheral impedance. The performance of the tool is demonstrated in two scenarios: increasing heart rate by stimulating the sympathetic nervous system, and an acute 10 percent hemorrhage from the left femoral artery.

  20. A Multiscale Model for the Quasi-Static Thermo-Plastic Behavior of Highly Cross-Linked Glassy Polymers

    DOE PAGES

    Vu-Bac, N.; Bessa, M. A.; Rabczuk, Timon; ...

    2015-09-10

    In this paper, we present experimentally validated molecular dynamics predictions of the quasi- static yield and post-yield behavior for a highly cross-linked epoxy polymer under gen- eral stress states and for different temperatures. In addition, a hierarchical multiscale model is presented where the nano-scale simulations obtained from molecular dynamics were homogenized to a continuum thermoplastic constitutive model for the epoxy that can be used to describe the macroscopic behavior of the material. Three major conclusions were achieved: (1) the yield surfaces generated from the nano-scale model for different temperatures agree well with the paraboloid yield crite- rion, supporting previous macroscopicmore » experimental observations; (2) rescaling of the entire yield surfaces to the quasi-static case is possible by considering Argon’s theoretical predictions for pure compression of the polymer at absolute zero temperature; (3) nano- scale simulations can be used for an experimentally-free calibration of macroscopic con- tinuum models, opening new avenues for the design of materials and structures through multi-scale simulations that provide structure-property-performance relationships.« less

  1. Multiscale analysis of structure development in expanded starch snacks

    NASA Astrophysics Data System (ADS)

    van der Sman, R. G. M.; Broeze, J.

    2014-11-01

    In this paper we perform a multiscale analysis of the food structuring process of the expansion of starchy snack foods like keropok, which obtains a solid foam structure. In particular, we want to investigate the validity of the hypothesis of Kokini and coworkers, that expansion is optimal at the moisture content, where the glass transition and the boiling line intersect. In our analysis we make use of several tools, (1) time scale analysis from the field of physical transport phenomena, (2) the scale separation map (SSM) developed within a multiscale simulation framework of complex automata, (3) the supplemented state diagram (SSD), depicting phase transition and glass transition lines, and (4) a multiscale simulation model for the bubble expansion. Results of the time scale analysis are plotted in the SSD, and give insight into the dominant physical processes involved in expansion. Furthermore, the results of the time scale analysis are used to construct the SSM, which has aided us in the construction of the multiscale simulation model. Simulation results are plotted in the SSD. This clearly shows that the hypothesis of Kokini is qualitatively true, but has to be refined. Our results show that bubble expansion is optimal for moisture content, where the boiling line for gas pressure of 4 bars intersects the isoviscosity line of the critical viscosity 106 Pa.s, which runs parallel to the glass transition line.

  2. The role of continuity in residual-based variational multiscale modeling of turbulence

    NASA Astrophysics Data System (ADS)

    Akkerman, I.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J. R.; Hulshoff, S.

    2008-02-01

    This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135 4195, 2005). We make use of quadratic discretizations that are C 0-continuous across element boundaries in standard finite elements, and C 1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C 1-continuous discretizations outperform their C 0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows.

  3. Contour Tracking in Echocardiographic Sequences via Sparse Representation and Dictionary Learning

    PubMed Central

    Huang, Xiaojie; Dione, Donald P.; Compas, Colin B.; Papademetris, Xenophon; Lin, Ben A.; Bregasi, Alda; Sinusas, Albert J.; Staib, Lawrence H.; Duncan, James S.

    2013-01-01

    This paper presents a dynamical appearance model based on sparse representation and dictionary learning for tracking both endocardial and epicardial contours of the left ventricle in echocardiographic sequences. Instead of learning offline spatiotemporal priors from databases, we exploit the inherent spatiotemporal coherence of individual data to constraint cardiac contour estimation. The contour tracker is initialized with a manual tracing of the first frame. It employs multiscale sparse representation of local image appearance and learns online multiscale appearance dictionaries in a boosting framework as the image sequence is segmented frame-by-frame sequentially. The weights of multiscale appearance dictionaries are optimized automatically. Our region-based level set segmentation integrates a spectrum of complementary multilevel information including intensity, multiscale local appearance, and dynamical shape prediction. The approach is validated on twenty-six 4D canine echocardiographic images acquired from both healthy and post-infarct canines. The segmentation results agree well with expert manual tracings. The ejection fraction estimates also show good agreement with manual results. Advantages of our approach are demonstrated by comparisons with a conventional pure intensity model, a registration-based contour tracker, and a state-of-the-art database-dependent offline dynamical shape model. We also demonstrate the feasibility of clinical application by applying the method to four 4D human data sets. PMID:24292554

  4. Multiscale landscape genomic models to detect signatures of selection in the alpine plant Biscutella laevigata.

    PubMed

    Leempoel, Kevin; Parisod, Christian; Geiser, Céline; Joost, Stéphane

    2018-02-01

    Plant species are known to adapt locally to their environment, particularly in mountainous areas where conditions can vary drastically over short distances. The climate of such landscapes being largely influenced by topography, using fine-scale models to evaluate environmental heterogeneity may help detecting adaptation to micro-habitats. Here, we applied a multiscale landscape genomic approach to detect evidence of local adaptation in the alpine plant Biscutella laevigata . The two gene pools identified, experiencing limited gene flow along a 1-km ridge, were different in regard to several habitat features derived from a very high resolution (VHR) digital elevation model (DEM). A correlative approach detected signatures of selection along environmental gradients such as altitude, wind exposure, and solar radiation, indicating adaptive pressures likely driven by fine-scale topography. Using a large panel of DEM-derived variables as ecologically relevant proxies, our results highlighted the critical role of spatial resolution. These high-resolution multiscale variables indeed indicate that the robustness of associations between genetic loci and environmental features depends on spatial parameters that are poorly documented. We argue that the scale issue is critical in landscape genomics and that multiscale ecological variables are key to improve our understanding of local adaptation in highly heterogeneous landscapes.

  5. Multiscale Analysis of Delamination of Carbon Fiber-Epoxy Laminates with Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Riddick, Jaret C.; Frankland, SJV; Gates, TS

    2006-01-01

    A multi-scale analysis is presented to parametrically describe the Mode I delamination of a carbon fiber/epoxy laminate. In the midplane of the laminate, carbon nanotubes are included for the purposes of selectively enhancing the fracture toughness of the laminate. To analyze carbon fiber epoxy carbon nanotube laminate, the multi-scale methodology presented here links a series of parameterizations taken at various length scales ranging from the atomistic through the micromechanical to the structural level. At the atomistic scale molecular dynamics simulations are performed in conjunction with an equivalent continuum approach to develop constitutive properties for representative volume elements of the molecular structure of components of the laminate. The molecular-level constitutive results are then used in the Mori-Tanaka micromechanics to develop bulk properties for the epoxy-carbon nanotube matrix system. In order to demonstrate a possible application of this multi-scale methodology, a double cantilever beam specimen is modeled. An existing analysis is employed which uses discrete springs to model the fiber bridging affect during delamination propagation. In the absence of empirical data or a damage mechanics model describing the effect of CNTs on fracture toughness, several tractions laws are postulated, linking CNT volume fraction to fiber bridging in a DCB specimen. Results from this demonstration are presented in terms of DCB specimen load-displacement responses.

  6. Materials integrity in microsystems: a framework for a petascale predictive-science-based multiscale modeling and simulation system

    NASA Astrophysics Data System (ADS)

    To, Albert C.; Liu, Wing Kam; Olson, Gregory B.; Belytschko, Ted; Chen, Wei; Shephard, Mark S.; Chung, Yip-Wah; Ghanem, Roger; Voorhees, Peter W.; Seidman, David N.; Wolverton, Chris; Chen, J. S.; Moran, Brian; Freeman, Arthur J.; Tian, Rong; Luo, Xiaojuan; Lautenschlager, Eric; Challoner, A. Dorian

    2008-09-01

    Microsystems have become an integral part of our lives and can be found in homeland security, medical science, aerospace applications and beyond. Many critical microsystem applications are in harsh environments, in which long-term reliability needs to be guaranteed and repair is not feasible. For example, gyroscope microsystems on satellites need to function for over 20 years under severe radiation, thermal cycling, and shock loading. Hence a predictive-science-based, verified and validated computational models and algorithms to predict the performance and materials integrity of microsystems in these situations is needed. Confidence in these predictions is improved by quantifying uncertainties and approximation errors. With no full system testing and limited sub-system testings, petascale computing is certainly necessary to span both time and space scales and to reduce the uncertainty in the prediction of long-term reliability. This paper presents the necessary steps to develop predictive-science-based multiscale modeling and simulation system. The development of this system will be focused on the prediction of the long-term performance of a gyroscope microsystem. The environmental effects to be considered include radiation, thermo-mechanical cycling and shock. Since there will be many material performance issues, attention is restricted to creep resulting from thermal aging and radiation-enhanced mass diffusion, material instability due to radiation and thermo-mechanical cycling and damage and fracture due to shock. To meet these challenges, we aim to develop an integrated multiscale software analysis system that spans the length scales from the atomistic scale to the scale of the device. The proposed software system will include molecular mechanics, phase field evolution, micromechanics and continuum mechanics software, and the state-of-the-art model identification strategies where atomistic properties are calibrated by quantum calculations. We aim to predict the long-term (in excess of 20 years) integrity of the resonator, electrode base, multilayer metallic bonding pads, and vacuum seals in a prescribed mission. Although multiscale simulations are efficient in the sense that they focus the most computationally intensive models and methods on only the portions of the space time domain needed, the execution of the multiscale simulations associated with evaluating materials and device integrity for aerospace microsystems will require the application of petascale computing. A component-based software strategy will be used in the development of our massively parallel multiscale simulation system. This approach will allow us to take full advantage of existing single scale modeling components. An extensive, pervasive thrust in the software system development is verification, validation, and uncertainty quantification (UQ). Each component and the integrated software system need to be carefully verified. An UQ methodology that determines the quality of predictive information available from experimental measurements and packages the information in a form suitable for UQ at various scales needs to be developed. Experiments to validate the model at the nanoscale, microscale, and macroscale are proposed. The development of a petascale predictive-science-based multiscale modeling and simulation system will advance the field of predictive multiscale science so that it can be used to reliably analyze problems of unprecedented complexity, where limited testing resources can be adequately replaced by petascale computational power, advanced verification, validation, and UQ methodologies.

  7. Complexity of intracranial pressure correlates with outcome after traumatic brain injury

    PubMed Central

    Lu, Cheng-Wei; Czosnyka, Marek; Shieh, Jiann-Shing; Smielewska, Anna; Pickard, John D.

    2012-01-01

    This study applied multiscale entropy analysis to investigate the correlation between the complexity of intracranial pressure waveform and outcome after traumatic brain injury. Intracranial pressure and arterial blood pressure waveforms were low-pass filtered to remove the respiratory and pulse components and then processed using a multiscale entropy algorithm to produce a complexity index. We identified significant differences across groups classified by the Glasgow Outcome Scale in intracranial pressure, pressure-reactivity index and complexity index of intracranial pressure (P < 0.0001; P = 0.001; P < 0.0001, respectively). Outcome was dichotomized as survival/death and also as favourable/unfavourable. The complexity index of intracranial pressure achieved the strongest statistical significance (F = 28.7; P < 0.0001 and F = 17.21; P < 0.0001, respectively) and was identified as a significant independent predictor of mortality and favourable outcome in a multivariable logistic regression model (P < 0.0001). The results of this study suggest that complexity of intracranial pressure assessed by multiscale entropy was significantly associated with outcome in patients with brain injury. PMID:22734128

  8. Multiscale 3-D shape representation and segmentation using spherical wavelets.

    PubMed

    Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen

    2007-04-01

    This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of our multiscale prior and 2) a segmentation task. In the reconstruction task, our results show that for a given training set size, our algorithm significantly improves the approximation of shapes in a testing set over the Point Distribution Model, which tends to oversmooth data. In the segmentation task, our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm, by capturing finer shape details.

  9. Multiscale 3-D Shape Representation and Segmentation Using Spherical Wavelets

    PubMed Central

    Nain, Delphine; Haker, Steven; Bobick, Aaron

    2013-01-01

    This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of our multiscale prior and 2) a segmentation task. In the reconstruction task, our results show that for a given training set size, our algorithm significantly improves the approximation of shapes in a testing set over the Point Distribution Model, which tends to oversmooth data. In the segmentation task, our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm, by capturing finer shape details. PMID:17427745

  10. Air pollution and climate response to aerosol direct radiative effects: A modeling study of decadal trends across the northern hemisphere

    EPA Science Inventory

    Decadal hemispheric Weather Research and Forecast-Community Multiscale Air Quality simulations from 1990 to 2010 were conducted to examine the meteorology and air quality responses to the aerosol direct radiative effects. The model's performance for the simulation of hourly surfa...

  11. DEVELOPMENT OF A COMPREHENSIVE, MULTISCALE "ONE ATMOSPHERE" MODELING SYSTEM: APPLICATION TO THE SOUTHERN APPALACHIAN MOUNTAINS. (R826372)

    EPA Science Inventory

    A comprehensive three-dimensional Eulerian photochemical model (URM-1ATM) was developed that simulates urban and regional gas and size-resolved aerosol concentrations of pollutants in the atmosphere and both wet and dry deposition. In this study, RAMS and EMS-95 are used to ge...

  12. A novel method of multi-scale simulation of macro-scale deformation and microstructure evolution on metal forming

    NASA Astrophysics Data System (ADS)

    Huang, Shiquan; Yi, Youping; Li, Pengchuan

    2011-05-01

    In recent years, multi-scale simulation technique of metal forming is gaining significant attention for prediction of the whole deformation process and microstructure evolution of product. The advances of numerical simulation at macro-scale level on metal forming are remarkable and the commercial FEM software, such as Deform2D/3D, has found a wide application in the fields of metal forming. However, the simulation method of multi-scale has little application due to the non-linearity of microstructure evolution during forming and the difficulty of modeling at the micro-scale level. This work deals with the modeling of microstructure evolution and a new method of multi-scale simulation in forging process. The aviation material 7050 aluminum alloy has been used as example for modeling of microstructure evolution. The corresponding thermal simulated experiment has been performed on Gleeble 1500 machine. The tested specimens have been analyzed for modeling of dislocation density, nucleation and growth of recrystallization(DRX). The source program using cellular automaton (CA) method has been developed to simulate the grain nucleation and growth, in which the change of grain topology structure caused by the metal deformation was considered. The physical fields at macro-scale level such as temperature field, stress and strain fields, which can be obtained by commercial software Deform 3D, are coupled with the deformed storage energy at micro-scale level by dislocation model to realize the multi-scale simulation. This method was explained by forging process simulation of the aircraft wheel hub forging. Coupled the results of Deform 3D with CA results, the forging deformation progress and the microstructure evolution at any point of forging could be simulated. For verifying the efficiency of simulation, experiments of aircraft wheel hub forging have been done in the laboratory and the comparison of simulation and experiment result has been discussed in details.

  13. Heat Source Characterization In A TREAT Fuel Particle Using Coupled Neutronics Binary Collision Monte-Carlo Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunert, Sebastian; Schwen, Daniel; Ghassemi, Pedram

    This work presents a multi-physics, multi-scale approach to modeling the Transient Test Reactor (TREAT) currently prepared for restart at the Idaho National Laboratory. TREAT fuel is made up of microscopic fuel grains (r ˜ 20µm) dispersed in a graphite matrix. The novelty of this work is in coupling a binary collision Monte-Carlo (BCMC) model to the Finite Element based code Moose for solving a microsopic heat-conduction problem whose driving source is provided by the BCMC model tracking fission fragment energy deposition. This microscopic model is driven by a transient, engineering scale neutronics model coupled to an adiabatic heating model. Themore » macroscopic model provides local power densities and neutron energy spectra to the microscpic model. Currently, no feedback from the microscopic to the macroscopic model is considered. TREAT transient 15 is used to exemplify the capabilities of the multi-physics, multi-scale model, and it is found that the average fuel grain temperature differs from the average graphite temperature by 80 K despite the low-power transient. The large temperature difference has strong implications on the Doppler feedback a potential LEU TREAT core would see, and it underpins the need for multi-physics, multi-scale modeling of a TREAT LEU core.« less

  14. Metabolic dynamics in skeletal muscle during acute reduction in blood flow and oxygen supply to mitochondria: in-silico studies using a multi-scale, top-down integrated model.

    PubMed

    Dash, Ranjan K; Li, Yanjun; Kim, Jaeyeon; Beard, Daniel A; Saidel, Gerald M; Cabrera, Marco E

    2008-09-09

    Control mechanisms of cellular metabolism and energetics in skeletal muscle that may become evident in response to physiological stresses such as reduction in blood flow and oxygen supply to mitochondria can be quantitatively understood using a multi-scale computational model. The analysis of dynamic responses from such a model can provide insights into mechanisms of metabolic regulation that may not be evident from experimental studies. For the purpose, a physiologically-based, multi-scale computational model of skeletal muscle cellular metabolism and energetics was developed to describe dynamic responses of key chemical species and reaction fluxes to muscle ischemia. The model, which incorporates key transport and metabolic processes and subcellular compartmentalization, is based on dynamic mass balances of 30 chemical species in both capillary blood and tissue cells (cytosol and mitochondria) domains. The reaction fluxes in cytosol and mitochondria are expressed in terms of a general phenomenological Michaelis-Menten equation involving the compartmentalized energy controller ratios ATP/ADP and NADH/NAD(+). The unknown transport and reaction parameters in the model are estimated simultaneously by minimizing the differences between available in vivo experimental data on muscle ischemia and corresponding model outputs in coupled with the resting linear flux balance constraints using a robust, nonlinear, constrained-based, reduced gradient optimization algorithm. With the optimal parameter values, the model is able to simulate dynamic responses to reduced blood flow and oxygen supply to mitochondria associated with muscle ischemia of several key metabolite concentrations and metabolic fluxes in the subcellular cytosolic and mitochondrial compartments, some that can be measured and others that can not be measured with the current experimental techniques. The model can be applied to test complex hypotheses involving dynamic regulation of cellular metabolism and energetics in skeletal muscle during physiological stresses such as ischemia, hypoxia, and exercise.

  15. Multi-scale modeling of spin transport in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Hemmatiyan, Shayan; Souza, Amaury; Kordt, Pascal; McNellis, Erik; Andrienko, Denis; Sinova, Jairo

    In this work, we present our theoretical framework to simulate simultaneously spin and charge transport in amorphous organic semiconductors. By combining several techniques e.g. molecular dynamics, density functional theory and kinetic Monte Carlo, we are be able to study spin transport in the presence of anisotropy, thermal effects, magnetic and electric field effects in a realistic morphologies of amorphous organic systems. We apply our multi-scale approach to investigate the spin transport in amorphous Alq3 (Tris(8-hydroxyquinolinato)aluminum) and address the underlying spin relaxation mechanism in this system as a function of temperature, bias voltage, magnetic field and sample thickness.

  16. Expected Navigation Flight Performance for the Magnetospheric Multiscale (MMS) Mission

    NASA Technical Reports Server (NTRS)

    Olson, Corwin; Wright, Cinnamon; Long, Anne

    2012-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four formation-flying spacecraft placed in highly eccentric elliptical orbits about the Earth. The primary scientific mission objective is to study magnetic reconnection within the Earth s magnetosphere. The baseline navigation concept is the independent estimation of each spacecraft state using GPS pseudorange measurements (referenced to an onboard Ultra Stable Oscillator) and accelerometer measurements during maneuvers. State estimation for the MMS spacecraft is performed onboard each vehicle using the Goddard Enhanced Onboard Navigation System, which is embedded in the Navigator GPS receiver. This paper describes the latest efforts to characterize expected navigation flight performance using upgraded simulation models derived from recent analyses.

  17. Multiscale Study of Currents Affected by Topography

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Multiscale Study of Currents Affected by Topography ... topography on the ocean general circulation is challenging because of the multiscale nature of the flow interactions. Small-scale details of the... topography , and the waves, drag, and turbulence generated at the boundary, from meter scale to mesoscale, interact in the boundary layers to influence the

  18. Multiscale modeling of PVDF matrix carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Greminger, Michael; Haghiashtiani, Ghazaleh

    2017-06-01

    Self-sensing carbon fiber reinforced composites have the potential to enable structural health monitoring that is inherent to the composite material rather than requiring external or embedded sensors. It has been demonstrated that a self-sensing carbon fiber reinforced polymer composite can be created by using the piezoelectric polymer polyvinylidene difluoride (PVDF) as the matrix material and using a Kevlar layer to separate two carbon fiber layers. In this configuration, the electrically conductive carbon fiber layers act as electrodes and the Kevlar layer acts as a dielectric to prevent the electrical shorting of the carbon fiber layers. This composite material has been characterized experimentally for its effective d 33 and d 31 piezoelectric coefficients. However, for design purposes, it is desirable to obtain a predictive model of the effective piezoelectric coefficients for the final smart composite material. Also, the inverse problem can be solved to determine the degree of polarization obtained in the PVDF material during polarization by comparing the effective d 33 and d 31 values obtained in experiment to those predicted by the finite element model. In this study, a multiscale micromechanics and coupled piezoelectric-mechanical finite element modeling approach is introduced to predict the mechanical and piezoelectric performance of a plain weave carbon fiber reinforced PVDF composite. The modeling results show good agreement with the experimental results for the mechanical and electrical properties of the composite. In addition, the degree of polarization of the PVDF component of the composite is predicted using this multiscale modeling approach and shows that there is opportunity to drastically improve the smart composite’s performance by improving the polarization procedure.

  19. Multi-scale modelling of elastic moduli of trabecular bone

    PubMed Central

    Hamed, Elham; Jasiuk, Iwona; Yoo, Andrew; Lee, YikHan; Liszka, Tadeusz

    2012-01-01

    We model trabecular bone as a nanocomposite material with hierarchical structure and predict its elastic properties at different structural scales. The analysis involves a bottom-up multi-scale approach, starting with nanoscale (mineralized collagen fibril) and moving up the scales to sub-microscale (single lamella), microscale (single trabecula) and mesoscale (trabecular bone) levels. Continuum micromechanics methods, composite materials laminate theory and finite-element methods are used in the analysis. Good agreement is found between theoretical and experimental results. PMID:22279160

  20. Asymptotic-Preserving methods and multiscale models for plasma physics

    NASA Astrophysics Data System (ADS)

    Degond, Pierre; Deluzet, Fabrice

    2017-05-01

    The purpose of the present paper is to provide an overview of Asymptotic-Preserving methods for multiscale plasma simulations by addressing three singular perturbation problems. First, the quasi-neutral limit of fluid and kinetic models is investigated in the framework of non-magnetized as well as magnetized plasmas. Second, the drift limit for fluid descriptions of thermal plasmas under large magnetic fields is addressed. Finally efficient numerical resolutions of anisotropic elliptic or diffusion equations arising in magnetized plasma simulation are reviewed.

  1. The Discontinuous Galerkin Method for the Multiscale Modeling of Dynamics of Crystalline Solids

    DTIC Science & Technology

    2007-08-26

    number. 1. REPORT DATE 26 AUG 2007 2 . REPORT TYPE 3. DATES COVERED 00-00-2007 to 00-00-2007 4. TITLE AND SUBTITLE The Discontinuous Galerkin...Dynamics method (MAAD) [ 2 ], the bridging scale method [47], the bridging domain methods [48], the heterogeneous multiscale method (HMM) [23, 36, 24], and...method consists of three components, 1. a macro solver for the continuum model, 2 . a micro solver to equilibrate the atomistic system locally to the appro

  2. Composite annotations: requirements for mapping multiscale data and models to biomedical ontologies

    PubMed Central

    Cook, Daniel L.; Mejino, Jose L. V.; Neal, Maxwell L.; Gennari, John H.

    2009-01-01

    Current methods for annotating biomedical data resources rely on simple mappings between data elements and the contents of a variety of biomedical ontologies and controlled vocabularies. Here we point out that such simple mappings are inadequate for large-scale multiscale, multidomain integrative “virtual human” projects. For such integrative challenges, we describe a “composite annotation” schema that is simple yet sufficiently extensible for mapping the biomedical content of a variety of data sources and biosimulation models to available biomedical ontologies. PMID:19964601

  3. Hybrid codes with finite electron mass

    NASA Astrophysics Data System (ADS)

    Lipatov, A. S.

    This report is devoted to the current status of the hybrid multiscale simulation technique. The different aspects of modeling are discussed. In particular, we consider the different level for description of the plasma model, however, the main attention will be paid to conventional hybrid models. We discuss the main steps of time integration the Vlasov/Maxwell system of equations. The main attention will be paid to the models with finite electron mass. Such model may allow us to explore the plasma system with multiscale phenomena ranging from ion to electron scales. As an application of hybrid modeling technique we consider the simulation of the plasma processes at the collisionless shocks and very shortly ther magnetic field reconnection processes.

  4. Multiscale Persistent Functions for Biomolecular Structure Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Kelin; Li, Zhiming; Mu, Lin

    Here in this paper, we introduce multiscale persistent functions for biomolecular structure characterization. The essential idea is to combine our multiscale rigidity functions (MRFs) with persistent homology analysis, so as to construct a series of multiscale persistent functions, particularly multiscale persistent entropies, for structure characterization. To clarify the fundamental idea of our method, the multiscale persistent entropy (MPE) model is discussed in great detail. Mathematically, unlike the previous persistent entropy (Chintakunta et al. in Pattern Recognit 48(2):391–401, 2015; Merelli et al. in Entropy 17(10):6872–6892, 2015; Rucco et al. in: Proceedings of ECCS 2014, Springer, pp 117–128, 2016), a special resolutionmore » parameter is incorporated into our model. Various scales can be achieved by tuning its value. Physically, our MPE can be used in conformational entropy evaluation. More specifically, it is found that our method incorporates in it a natural classification scheme. This is achieved through a density filtration of an MRF built from angular distributions. To further validate our model, a systematical comparison with the traditional entropy evaluation model is done. Additionally, it is found that our model is able to preserve the intrinsic topological features of biomolecular data much better than traditional approaches, particularly for resolutions in the intermediate range. Moreover, by comparing with traditional entropies from various grid sizes, bond angle-based methods and a persistent homology-based support vector machine method (Cang et al. in Mol Based Math Biol 3:140–162, 2015), we find that our MPE method gives the best results in terms of average true positive rate in a classic protein structure classification test. More interestingly, all-alpha and all-beta protein classes can be clearly separated from each other with zero error only in our model. Finally, a special protein structure index (PSI) is proposed, for the first time, to describe the “regularity” of protein structures. Basically, a protein structure is deemed as regular if it has a consistent and orderly configuration. Our PSI model is tested on a database of 110 proteins; we find that structures with larger portions of loops and intrinsically disorder regions are always associated with larger PSI, meaning an irregular configuration, while proteins with larger portions of secondary structures, i.e., alpha-helix or beta-sheet, have smaller PSI. Essentially, PSI can be used to describe the “regularity” information in any systems.« less

  5. An Unified Multiscale Framework for Planar, Surface, and Curve Skeletonization.

    PubMed

    Jalba, Andrei C; Sobiecki, Andre; Telea, Alexandru C

    2016-01-01

    Computing skeletons of 2D shapes, and medial surface and curve skeletons of 3D shapes, is a challenging task. In particular, there is no unified framework that detects all types of skeletons using a single model, and also produces a multiscale representation which allows to progressively simplify, or regularize, all skeleton types. In this paper, we present such a framework. We model skeleton detection and regularization by a conservative mass transport process from a shape's boundary to its surface skeleton, next to its curve skeleton, and finally to the shape center. The resulting density field can be thresholded to obtain a multiscale representation of progressively simplified surface, or curve, skeletons. We detail a numerical implementation of our framework which is demonstrably stable and has high computational efficiency. We demonstrate our framework on several complex 2D and 3D shapes.

  6. Developing Higher-Order Materials Knowledge Systems

    NASA Astrophysics Data System (ADS)

    Fast, Anthony Nathan

    2011-12-01

    Advances in computational materials science and novel characterization techniques have allowed scientists to probe deeply into a diverse range of materials phenomena. These activities are producing enormous amounts of information regarding the roles of various hierarchical material features in the overall performance characteristics displayed by the material. Connecting the hierarchical information over disparate domains is at the crux of multiscale modeling. The inherent challenge of performing multiscale simulations is developing scale bridging relationships to couple material information between well separated length scales. Much progress has been made in the development of homogenization relationships which replace heterogeneous material features with effective homogenous descriptions. These relationships facilitate the flow of information from lower length scales to higher length scales. Meanwhile, most localization relationships that link the information from a from a higher length scale to a lower length scale are plagued by computationally intensive techniques which are not readily integrated into multiscale simulations. The challenge of executing fully coupled multiscale simulations is augmented by the need to incorporate the evolution of the material structure that may occur under conditions such as material processing. To address these challenges with multiscale simulation, a novel framework called the Materials Knowledge System (MKS) has been developed. This methodology efficiently extracts, stores, and recalls microstructure-property-processing localization relationships. This approach is built on the statistical continuum theories developed by Kroner that express the localization of the response field at the microscale using a series of highly complex convolution integrals, which have historically been evaluated analytically. The MKS approach dramatically improves the accuracy of these expressions by calibrating the convolution kernels in these expressions to results from previously validated physics-based models. These novel tools have been validated for the elastic strain localization in moderate contrast dual-phase composites by direct comparisons with predictions from finite element model. The versatility of the approach is further demonstrated by its successful application to capturing the structure evolution during spinodal decomposition of a binary alloy. Lastly, some key features in the future application of the MKS approach are developed using the Portevin-le Chaterlier effect. It has been shown with these case studies that the MKS approach is capable of accurately reproducing the results from physics based models with a drastic reduction in computational requirements.

  7. Hyperlipidemia affects multiscale structure and strength of murine femur.

    PubMed

    Ascenzi, Maria-Grazia; Lutz, Andre; Du, Xia; Klimecky, Laureen; Kawas, Neal; Hourany, Talia; Jahng, Joelle; Chin, Jesse; Tintut, Yin; Nackenhors, Udo; Keyak, Joyce

    2014-07-18

    To improve bone strength prediction beyond limitations of assessment founded solely on the bone mineral component, we investigated the effect of hyperlipidemia, present in more than 40% of osteoporotic patients, on multiscale structure of murine bone. Our overarching purpose is to estimate bone strength accurately, to facilitate mitigating fracture morbidity and mortality in patients. Because (i) orientation of collagen type I affects, independently of degree of mineralization, cortical bone׳s micro-structural strength; and, (ii) hyperlipidemia affects collagen orientation and μCT volumetric tissue mineral density (vTMD) in murine cortical bone, we have constructed the first multiscale finite element (mFE), mouse-specific femoral model to study the effect of collagen orientation and vTMD on strength in Ldlr(-/-), a mouse model of hyperlipidemia, and its control wild type, on either high fat diet or normal diet. Each µCT scan-based mFE model included either element-specific elastic orthotropic properties calculated from collagen orientation and vTMD (collagen-density model) by experimentally validated formulation, or usual element-specific elastic isotropic material properties dependent on vTMD-only (density-only model). We found that collagen orientation, assessed by circularly polarized light and confocal microscopies, and vTMD, differed among groups and that microindentation results strongly correlate with elastic modulus of collagen-density models (r(2)=0.85, p=10(-5)). Collagen-density models yielded (1) larger strains, and therefore lower strength, in simulations of 3-point bending and physiological loading; and (2) higher correlation between mFE-predicted strength and 3-point bending experimental strength, than density-only models. This novel method supports ongoing translational research to achieve the as yet elusive goal of accurate bone strength prediction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies

    DOE PAGES

    Wirth, Brian D.; Hu, Xunxiang; Kohnert, Aaron; ...

    2015-03-02

    Exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. Lastly,more » this article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.« less

  9. Multiscale analysis of the correlation of processing parameters on viscidity of composites fabricated by automated fiber placement

    NASA Astrophysics Data System (ADS)

    Han, Zhenyu; Sun, Shouzheng; Fu, Yunzhong; Fu, Hongya

    2017-10-01

    Viscidity is an important physical indicator for assessing fluidity of resin that is beneficial to contact resin with the fibers effectively and reduce manufacturing defects during automated fiber placement (AFP) process. However, the effect of processing parameters on viscidity evolution is rarely studied during AFP process. In this paper, viscidities under different scales are analyzed based on multi-scale analysis method. Firstly, viscous dissipation energy (VDE) within meso-unit under different processing parameters is assessed by using finite element method (FEM). According to multi-scale energy transfer model, meso-unit energy is used as the boundary condition for microscopic analysis. Furthermore, molecular structure of micro-system is built by molecular dynamics (MD) method. And viscosity curves are then obtained by integrating stress autocorrelation function (SACF) with time. Finally, the correlation characteristics of processing parameters to viscosity are revealed by using gray relational analysis method (GRAM). A group of processing parameters is found out to achieve the stability of viscosity and better fluidity of resin.

  10. Differential geometry based solvation model. III. Quantum formulation

    PubMed Central

    Chen, Zhan; Wei, Guo-Wei

    2011-01-01

    Solvation is of fundamental importance to biomolecular systems. Implicit solvent models, particularly those based on the Poisson-Boltzmann equation for electrostatic analysis, are established approaches for solvation analysis. However, ad hoc solvent-solute interfaces are commonly used in the implicit solvent theory. Recently, we have introduced differential geometry based solvation models which allow the solvent-solute interface to be determined by the variation of a total free energy functional. Atomic fixed partial charges (point charges) are used in our earlier models, which depends on existing molecular mechanical force field software packages for partial charge assignments. As most force field models are parameterized for a certain class of molecules or materials, the use of partial charges limits the accuracy and applicability of our earlier models. Moreover, fixed partial charges do not account for the charge rearrangement during the solvation process. The present work proposes a differential geometry based multiscale solvation model which makes use of the electron density computed directly from the quantum mechanical principle. To this end, we construct a new multiscale total energy functional which consists of not only polar and nonpolar solvation contributions, but also the electronic kinetic and potential energies. By using the Euler-Lagrange variation, we derive a system of three coupled governing equations, i.e., the generalized Poisson-Boltzmann equation for the electrostatic potential, the generalized Laplace-Beltrami equation for the solvent-solute boundary, and the Kohn-Sham equations for the electronic structure. We develop an iterative procedure to solve three coupled equations and to minimize the solvation free energy. The present multiscale model is numerically validated for its stability, consistency and accuracy, and is applied to a few sets of molecules, including a case which is difficult for existing solvation models. Comparison is made to many other classic and quantum models. By using experimental data, we show that the present quantum formulation of our differential geometry based multiscale solvation model improves the prediction of our earlier models, and outperforms some explicit solvation model. PMID:22112067

  11. Understanding Prairie Fen Hydrology - a Hierarchical Multi-Scale Groundwater Modeling Approach

    NASA Astrophysics Data System (ADS)

    Sampath, P.; Liao, H.; Abbas, H.; Ma, L.; Li, S.

    2012-12-01

    Prairie fens provide critical habitat to more than 50 rare species and significantly contribute to the biodiversity of the upper Great Lakes region. The sustainability of these globally unique ecosystems, however, requires that they be fed by a steady supply of pristine, calcareous groundwater. Understanding the hydrology that supports the existence of such fens is essential in preserving these valuable habitats. This research uses process-based multi-scale groundwater modeling for this purpose. Two fen-sites, MacCready Fen and Ives Road Fen, in Southern Michigan were systematically studied. A hierarchy of nested steady-state models was built for each fen-site to capture the system's dynamics at spatial scales ranging from the regional groundwater-shed to the local fens. The models utilize high-resolution Digital Elevation Models (DEM), National Hydrologic Datasets (NHD), a recently-assembled water-well database, and results from a state-wide groundwater mapping project to represent the complex hydro-geological and stress framework. The modeling system simulates both shallow glacial and deep bedrock aquifers as well as the interaction between surface water and groundwater. Aquifer heterogeneities were explicitly simulated with multi-scale transition probability geo-statistics. A two-way hydraulic head feedback mechanism was set up between the nested models, such that the parent models provided boundary conditions to the child models, and in turn the child models provided local information to the parent models. A hierarchical mass budget analysis was performed to estimate the seepage fluxes at the surface water/groundwater interfaces and to assess the relative importance of the processes at multiple scales that contribute water to the fens. The models were calibrated using observed base-flows at stream gauging stations and/or static water levels at wells. Three-dimensional particle tracking was used to predict the sources of water to the fens. We observed from the multi-scale simulations that the water system that supports the fens is a much larger, more connected, and more complex one than expected. The water in the fen can be traced back to a network of sources, including lakes and wetlands at different elevations, which are connected to a regional mound through a "cascade delivery mechanism". This "master recharge area" is the ultimate source of water not only to the fens in its vicinity, but also for many major rivers and aquifers. The implication of this finding is that prairie fens must be managed as part of a much larger, multi-scale groundwater system and we must consider protection of the shorter and long-term water sources. This will require a fundamental reassessment of our current approach to fen conservation, which is primarily based on protection of individual fens and their immediate surroundings. Clearly, in the future we must plan for conservation of the broad recharge areas and the multiple fen complexes they support.

  12. Multi-scale lung modeling.

    PubMed

    Tawhai, Merryn H; Bates, Jason H T

    2011-05-01

    Multi-scale modeling of biological systems has recently become fashionable due to the growing power of digital computers as well as to the growing realization that integrative systems behavior is as important to life as is the genome. While it is true that the behavior of a living organism must ultimately be traceable to all its components and their myriad interactions, attempting to codify this in its entirety in a model misses the insights gained from understanding how collections of system components at one level of scale conspire to produce qualitatively different behavior at higher levels. The essence of multi-scale modeling thus lies not in the inclusion of every conceivable biological detail, but rather in the judicious selection of emergent phenomena appropriate to the level of scale being modeled. These principles are exemplified in recent computational models of the lung. Airways responsiveness, for example, is an organ-level manifestation of events that begin at the molecular level within airway smooth muscle cells, yet it is not necessary to invoke all these molecular events to accurately describe the contraction dynamics of a cell, nor is it necessary to invoke all phenomena observable at the level of the cell to account for the changes in overall lung function that occur following methacholine challenge. Similarly, the regulation of pulmonary vascular tone has complex origins within the individual smooth muscle cells that line the blood vessels but, again, many of the fine details of cell behavior average out at the level of the organ to produce an effect on pulmonary vascular pressure that can be described in much simpler terms. The art of multi-scale lung modeling thus reduces not to being limitlessly inclusive, but rather to knowing what biological details to leave out.

  13. Active learning of constitutive relation from mesoscopic dynamics for macroscopic modeling of non-Newtonian flows

    NASA Astrophysics Data System (ADS)

    Zhao, Lifei; Li, Zhen; Caswell, Bruce; Ouyang, Jie; Karniadakis, George Em

    2018-06-01

    We simulate complex fluids by means of an on-the-fly coupling of the bulk rheology to the underlying microstructure dynamics. In particular, a continuum model of polymeric fluids is constructed without a pre-specified constitutive relation, but instead it is actively learned from mesoscopic simulations where the dynamics of polymer chains is explicitly computed. To couple the bulk rheology of polymeric fluids and the microscale dynamics of polymer chains, the continuum approach (based on the finite volume method) provides the transient flow field as inputs for the (mesoscopic) dissipative particle dynamics (DPD), and in turn DPD returns an effective constitutive relation to close the continuum equations. In this multiscale modeling procedure, we employ an active learning strategy based on Gaussian process regression (GPR) to minimize the number of expensive DPD simulations, where adaptively selected DPD simulations are performed only as necessary. Numerical experiments are carried out for flow past a circular cylinder of a non-Newtonian fluid, modeled at the mesoscopic level by bead-spring chains. The results show that only five DPD simulations are required to achieve an effective closure of the continuum equations at Reynolds number Re = 10. Furthermore, when Re is increased to 100, only one additional DPD simulation is required for constructing an extended GPR-informed model closure. Compared to traditional message-passing multiscale approaches, applying an active learning scheme to multiscale modeling of non-Newtonian fluids can significantly increase the computational efficiency. Although the method demonstrated here obtains only a local viscosity from the polymer dynamics, it can be extended to other multiscale models of complex fluids whose macro-rheology is unknown.

  14. American Society of Composites, 32nd Technical Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aitharaju, Venkat; Wollschlager, Jeffrey; Plakomytis2, Dimitrios

    This paper will present a general methodology by which weave draping manufacturing simulation results can be utilized to include the effects of weave draping and scissor angle in a structural multiscale simulation. While the methodology developed is general in nature, this paper will specifically demonstrate the methodology applied to a truncated pyramid, utilizing manufacturing simulation weave draping results from ESI PAM-FORM, and multiscale simulation using Altair Multiscale Designer (MDS) and OptiStruct. From a multiscale simulation perspective, the weave draping manufacturing simulation results will be used to develop a series of woven unit cells which cover the range of weave scissormore » angles existing within the part. For each unit cell, a multiscale material model will be developed, and applied to the corresponding spatial locations within the structural simulation mesh. In addition, the principal material orientation will be mapped from the wave draping manufacturing simulation mesh to the structural simulation mesh using Altair HyperMesh mapping technology. Results of the coupled simulation will be compared and verified against experimental data of the same available via General Motors (GM) Department of Energy (DOE) project.« less

  15. Research Advances on Radiation Transfer Modeling and Inversion for Multi-Scale Land Surface Remote Sensing

    NASA Astrophysics Data System (ADS)

    Liu, Q.

    2011-09-01

    At first, research advances on radiation transfer modeling on multi-scale remote sensing data are presented: after a general overview of remote sensing radiation transfer modeling, several recent research advances are presented, including leaf spectrum model (dPROS-PECT), vegetation canopy BRDF models, directional thermal infrared emission models(TRGM, SLEC), rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed. The land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation etc. are taken as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is designed and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China will be introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.

  16. Multiscale model within-host and between-host for viral infectious diseases.

    PubMed

    Almocera, Alexis Erich S; Nguyen, Van Kinh; Hernandez-Vargas, Esteban A

    2018-05-08

    Multiscale models possess the potential to uncover new insights into infectious diseases. Here, a rigorous stability analysis of a multiscale model within-host and between-host is presented. The within-host model describes viral replication and the respective immune response while disease transmission is represented by a susceptible-infected model. The bridging of scales from within- to between-host considered transmission as a function of the viral load. Consequently, stability and bifurcation analyses were developed coupling the two basic reproduction numbers [Formula: see text] and [Formula: see text] for the within- and the between-host subsystems, respectively. Local stability results for each subsystem, including a unique stable equilibrium point, recapitulate classical approaches to infection and epidemic control. Using a Lyapunov function, global stability of the between-host system was obtained. Our main result was the derivation of the [Formula: see text] as an increasing function of [Formula: see text]. Numerical analyses reveal that a Michaelis-Menten form based on the virus is more likely to recapitulate the behavior between the scales than a form directly proportional to the virus. Our work contributes basic understandings of the two models and casts light on the potential effects of the coupling function on linking the two scales.

  17. Multiscale modeling for SiO2 atomic layer deposition for high-aspect-ratio hole patterns

    NASA Astrophysics Data System (ADS)

    Miyano, Yumiko; Narasaki, Ryota; Ichikawa, Takashi; Fukumoto, Atsushi; Aiso, Fumiki; Tamaoki, Naoki

    2018-06-01

    A multiscale simulation model is developed for optimizing the parameters of SiO2 plasma-enhanced atomic layer deposition of high-aspect-ratio hole patterns in three-dimensional (3D) stacked memory. This model takes into account the diffusion of a precursor in a reactor, that in holes, and the adsorption onto the wafer. It is found that the change in the aperture ratio of the holes on the wafer affects the concentration of the precursor near the top of the wafer surface, hence the deposition profile in the hole. The simulation results reproduced well the experimental results of the deposition thickness for the various hole aperture ratios. By this multiscale simulation, we can predict the deposition profile in a high-aspect-ratio hole pattern in 3D stacked memory. The atomic layer deposition parameters for conformal deposition such as precursor feeding time and partial pressure of precursor for wafers with various hole aperture ratios can be estimated.

  18. Towards Next Generation Lithium-Sulfur Batteries: Non-Conventional Carbon Compartments/Sulfur Electrodes and Multi-Scale Analysis

    DOE PAGES

    Dysart, Arthur D.; Burgos, Juan C.; Mistry, Aashutosh; ...

    2016-02-09

    In this work, a novel heterofunctional, bimodal-porous carbon morphology, termed the carbon compartment (CC), is utilized as a sulfur host as a lithium-sulfur battery cathode. A multi-scale model explores the physics and chemistry of the lithium-sulfur battery cathode. The CCs are synthesized by a rapid, low cost process to improve electrode-electrolyte interfacial contact and accommodate volumetric expansion associated with sulfide formation. The CCs demonstrate high sulfur loading (47 %-wt. S) and ca. 700 mAh g -1 reversible capacity with high coulombic efficiency due to their unique structures. Density functional theory and ab initio Molecular Dynamics characterize the interface between themore » C/S composite and electrolyte during the sulfur reduction mechanism. Stochastic realizations of 3D electrode microstructures are reconstructed based on representative SEM images to study the influence of solid sulfur loading and lithium sulfide precipitation on microstructural and electrochemical properties. A macroscale electrochemical performance model is developed to analyze the performance of lithium-sulfur batteries. The combined multi-scale simulation studies explain key fundamentals of sulfur reduction and its relation to the polysulfide shuttle mechanism: how the process is affected due to the presence of carbon substrate, thermodynamics of lithium sulfide formation and deposition on carbon, and microstructural effects on the overall cell performance.« less

  19. Multiscale Molecular Dynamics Model for Heterogeneous Charged Systems

    NASA Astrophysics Data System (ADS)

    Stanton, L. G.; Glosli, J. N.; Murillo, M. S.

    2018-04-01

    Modeling matter across large length scales and timescales using molecular dynamics simulations poses significant challenges. These challenges are typically addressed through the use of precomputed pair potentials that depend on thermodynamic properties like temperature and density; however, many scenarios of interest involve spatiotemporal variations in these properties, and such variations can violate assumptions made in constructing these potentials, thus precluding their use. In particular, when a system is strongly heterogeneous, most of the usual simplifying assumptions (e.g., spherical potentials) do not apply. Here, we present a multiscale approach to orbital-free density functional theory molecular dynamics (OFDFT-MD) simulations that bridges atomic, interionic, and continuum length scales to allow for variations in hydrodynamic quantities in a consistent way. Our multiscale approach enables simulations on the order of micron length scales and 10's of picosecond timescales, which exceeds current OFDFT-MD simulations by many orders of magnitude. This new capability is then used to study the heterogeneous, nonequilibrium dynamics of a heated interface characteristic of an inertial-confinement-fusion capsule containing a plastic ablator near a fuel layer composed of deuterium-tritium ice. At these scales, fundamental assumptions of continuum models are explored; features such as the separation of the momentum fields among the species and strong hydrogen jetting from the plastic into the fuel region are observed, which had previously not been seen in hydrodynamic simulations.

  20. Long-term prediction of fish growth under varying ambient temperature using a multiscale dynamic model

    PubMed Central

    2009-01-01

    Background Feed composition has a large impact on the growth of animals, particularly marine fish. We have developed a quantitative dynamic model that can predict the growth and body composition of marine fish for a given feed composition over a timespan of several months. The model takes into consideration the effects of environmental factors, particularly temperature, on growth, and it incorporates detailed kinetics describing the main metabolic processes (protein, lipid, and central metabolism) known to play major roles in growth and body composition. Results For validation, we compared our model's predictions with the results of several experimental studies. We showed that the model gives reliable predictions of growth, nutrient utilization (including amino acid retention), and body composition over a timespan of several months, longer than most of the previously developed predictive models. Conclusion We demonstrate that, despite the difficulties involved, multiscale models in biology can yield reasonable and useful results. The model predictions are reliable over several timescales and in the presence of strong temperature fluctuations, which are crucial factors for modeling marine organism growth. The model provides important improvements over existing models. PMID:19903354

  1. EMD-regression for modelling multi-scale relationships, and application to weather-related cardiovascular mortality

    NASA Astrophysics Data System (ADS)

    Masselot, Pierre; Chebana, Fateh; Bélanger, Diane; St-Hilaire, André; Abdous, Belkacem; Gosselin, Pierre; Ouarda, Taha B. M. J.

    2018-01-01

    In a number of environmental studies, relationships between natural processes are often assessed through regression analyses, using time series data. Such data are often multi-scale and non-stationary, leading to a poor accuracy of the resulting regression models and therefore to results with moderate reliability. To deal with this issue, the present paper introduces the EMD-regression methodology consisting in applying the empirical mode decomposition (EMD) algorithm on data series and then using the resulting components in regression models. The proposed methodology presents a number of advantages. First, it accounts of the issues of non-stationarity associated to the data series. Second, this approach acts as a scan for the relationship between a response variable and the predictors at different time scales, providing new insights about this relationship. To illustrate the proposed methodology it is applied to study the relationship between weather and cardiovascular mortality in Montreal, Canada. The results shed new knowledge concerning the studied relationship. For instance, they show that the humidity can cause excess mortality at the monthly time scale, which is a scale not visible in classical models. A comparison is also conducted with state of the art methods which are the generalized additive models and distributed lag models, both widely used in weather-related health studies. The comparison shows that EMD-regression achieves better prediction performances and provides more details than classical models concerning the relationship.

  2. Enhanced Representation of Soil NO Emissions in the Community Multiscale Air Quality (CMAQ) Model Version 5.0.2

    NASA Technical Reports Server (NTRS)

    Rasool, Quazi Z.; Zhang, Rui; Lash, Benjamin; Cohan, Daniel S.; Cooter, Ellen J.; Bash, Jesse O.; Lamsal, Lok N.

    2016-01-01

    Modeling of soil nitric oxide (NO) emissions is highly uncertain and may misrepresent its spatial and temporal distribution. This study builds upon a recently introduced parameterization to improve the timing and spatial distribution of soil NO emission estimates in the Community Multiscale Air Quality (CMAQ) model. The parameterization considers soil parameters, meteorology, land use, and mineral nitrogen (N) availability to estimate NO emissions. We incorporate daily year-specific fertilizer data from the Environmental Policy Integrated Climate (EPIC) agricultural model to replace the annual generic data of the initial parameterization, and use a 12km resolution soil biome map over the continental USA. CMAQ modeling for July 2011 shows slight differences in model performance in simulating fine particulate matter and ozone from Interagency Monitoring of Protected Visual Environments (IMPROVE) and Clean Air Status and Trends Network (CASTNET) sites and NO2 columns from Ozone Monitoring Instrument (OMI) satellite retrievals. We also simulate how the change in soil NO emissions scheme affects the expected O3 response to projected emissions reductions.

  3. On the intrinsic flexibility of the opioid receptor through multiscale modeling approaches

    NASA Astrophysics Data System (ADS)

    Vercauteren, Daniel; FosséPré, Mathieu; Leherte, Laurence; Laaksonen, Aatto

    Numerous releases of G protein-coupled receptors crystalline structures created the opportunity for computational methods to widely explore their dynamics. Here, we study the biological implication of the intrinsic flexibility properties of opioid receptor OR. First, one performed classical all-atom (AA) Molecular Dynamics (MD) simulations of OR in its apo-form. We highlighted that the various degrees of bendability of the α-helices present important consequences on the plasticity of the binding site. Hence, this latter adopts a wide diversity of shape and volume, explaining why OR interacts with very diverse ligands. Then, one introduces a new strategy for parameterizing purely mechanical but precise coarse-grained (CG) elastic network models (ENMs). The CG ENMs reproduced in a high accurate way the flexibility properties of OR versus the AA simulations. At last, one uses network modularization to design multi-grained (MG) models. They represent a novel type of low resolution models, different in nature versus CG models as being true multi-resolution models, i . e ., each MG grouping a different number of residues. The three parts constitute hierarchical and multiscale approach for tackling the flexibility of OR.

  4. Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes

    NASA Astrophysics Data System (ADS)

    Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.

    2010-04-01

    Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a Critical Filtration Size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.

  5. Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes

    NASA Astrophysics Data System (ADS)

    Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.

    2010-10-01

    Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a critical filtration size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.

  6. Multi-scale Modeling of the Impact Response of a Strain Rate Sensitive High-Manganese Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Önal, Orkun; Ozmenci, Cemre; Canadinc, Demircan

    2014-09-01

    A multi-scale modeling approach was applied to predict the impact response of a strain rate sensitive high-manganese austenitic steel. The roles of texture, geometry and strain rate sensitivity were successfully taken into account all at once by coupling crystal plasticity and finite element (FE) analysis. Specifically, crystal plasticity was utilized to obtain the multi-axial flow rule at different strain rates based on the experimental deformation response under uniaxial tensile loading. The equivalent stress - equivalent strain response was then incorporated into the FE model for the sake of a more representative hardening rule under impact loading. The current results demonstrate that reliable predictions can be obtained by proper coupling of crystal plasticity and FE analysis even if the experimental flow rule of the material is acquired under uniaxial loading and at moderate strain rates that are significantly slower than those attained during impact loading. Furthermore, the current findings also demonstrate the need for an experiment-based multi-scale modeling approach for the sake of reliable predictions of the impact response.

  7. PERFORMANCE AND DIAGNOSTIC EVALUATION OF OZONE PREDICTIONS BY THE ETA-COMMUNITY MULTISCALE AIR QUALITY FORECAST SYSTEM DURING THE 2002 NEW ENGLAND AIR QUALITY STUDY

    EPA Science Inventory

    A real-time air quality forecasting system (Eta-CMAQ model suite) has been developed by linking the NCEP Eta model to the U.S. EPA CMAQ model. This work presents results from the application of the Eta-CMAQ modeling system for forecasting O3 over the northeastern U.S d...

  8. The pivotal role of angiogenesis in a multi-scale modeling of tumor growth exhibiting the avascular and vascular phases.

    PubMed

    Salavati, Hooman; Soltani, M; Amanpour, Saeid

    2018-05-06

    The mechanisms involved in tumor growth mainly occur at the microenvironment, where the interactions between the intracellular, intercellular and extracellular scales mediate the dynamics of tumor. In this work, we present a multi-scale model of solid tumor dynamics to simulate the avascular and vascular growth as well as tumor-induced angiogenesis. The extracellular and intercellular scales are modeled using partial differential equations and cellular Potts model, respectively. Also, few biochemical and biophysical rules control the dynamics of intracellular level. On the other hand, the growth of melanoma tumors is modeled in an animal in-vivo study to evaluate the simulation. The simulation shows that the model successfully reproduces a completed image of processes involved in tumor growth such as avascular and vascular growth as well as angiogenesis. The model incorporates the phenotypes of cancerous cells including proliferating, quiescent and necrotic cells, as well as endothelial cells during angiogenesis. The results clearly demonstrate the pivotal effect of angiogenesis on the progression of cancerous cells. Also, the model exhibits important events in tumor-induced angiogenesis like anastomosis. Moreover, the computational trend of tumor growth closely follows the observations in the experimental study. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Multiscale Modeling of Intergranular Fracture in Aluminum: Constitutive Relation For Interface Debonding

    NASA Technical Reports Server (NTRS)

    Yamakov, V.; Saether, E.; Glaessgen, E. H.

    2008-01-01

    Intergranular fracture is a dominant mode of failure in ultrafine grained materials. In the present study, the atomistic mechanisms of grain-boundary debonding during intergranular fracture in aluminum are modeled using a coupled molecular dynamics finite element simulation. Using a statistical mechanics approach, a cohesive-zone law in the form of a traction-displacement constitutive relationship, characterizing the load transfer across the plane of a growing edge crack, is extracted from atomistic simulations and then recast in a form suitable for inclusion within a continuum finite element model. The cohesive-zone law derived by the presented technique is free of finite size effects and is statistically representative for describing the interfacial debonding of a grain boundary (GB) interface examined at atomic length scales. By incorporating the cohesive-zone law in cohesive-zone finite elements, the debonding of a GB interface can be simulated in a coupled continuum-atomistic model, in which a crack starts in the continuum environment, smoothly penetrates the continuum-atomistic interface, and continues its propagation in the atomistic environment. This study is a step towards relating atomistically derived decohesion laws to macroscopic predictions of fracture and constructing multiscale models for nanocrystalline and ultrafine grained materials.

  10. Determining the multi-scale hedge ratios of stock index futures using the lower partial moments method

    NASA Astrophysics Data System (ADS)

    Dai, Jun; Zhou, Haigang; Zhao, Shaoquan

    2017-01-01

    This paper considers a multi-scale future hedge strategy that minimizes lower partial moments (LPM). To do this, wavelet analysis is adopted to decompose time series data into different components. Next, different parametric estimation methods with known distributions are applied to calculate the LPM of hedged portfolios, which is the key to determining multi-scale hedge ratios over different time scales. Then these parametric methods are compared with the prevailing nonparametric kernel metric method. Empirical results indicate that in the China Securities Index 300 (CSI 300) index futures and spot markets, hedge ratios and hedge efficiency estimated by the nonparametric kernel metric method are inferior to those estimated by parametric hedging model based on the features of sequence distributions. In addition, if minimum-LPM is selected as a hedge target, the hedging periods, degree of risk aversion, and target returns can affect the multi-scale hedge ratios and hedge efficiency, respectively.

  11. Computer Laboratory for Multi-scale Simulations of Novel Nanomaterials

    DTIC Science & Technology

    2014-09-15

    schemes for multiscale modeling of polymers. Permselective ion-exchange membranes for protective clothing, fuel cells , and batteries are of special...polyelectrolyte membranes ( PEM ) with chemical warfare agents (CWA) and their simulants and (2) development of new simulation methods and computational...chemical potential using gauge cell method and calculation of density profiles. However, the code does not run in parallel environments. For mesoscale

  12. “Impact of CB6 and CB05TU chemical mechanisms on air quality”

    EPA Science Inventory

    “Impacts of CB6 and CB05TU chemical mechanisms on air quality”In this study, we incorporate the newly developed Carbon Bond chemical mechanism (CB6) into the Community Multiscale Air Quality modeling system (CMAQv5.0.1) and perform air quality model simulations with the CB6 and t...

  13. Asymptotic Expansion Homogenization for Multiscale Nuclear Fuel Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hales, J. D.; Tonks, M. R.; Chockalingam, K.

    2015-03-01

    Engineering scale nuclear fuel performance simulations can benefit by utilizing high-fidelity models running at a lower length scale. Lower length-scale models provide a detailed view of the material behavior that is used to determine the average material response at the macroscale. These lower length-scale calculations may provide insight into material behavior where experimental data is sparse or nonexistent. This multiscale approach is especially useful in the nuclear field, since irradiation experiments are difficult and expensive to conduct. The lower length-scale models complement the experiments by influencing the types of experiments required and by reducing the total number of experiments needed.more » This multiscale modeling approach is a central motivation in the development of the BISON-MARMOT fuel performance codes at Idaho National Laboratory. These codes seek to provide more accurate and predictive solutions for nuclear fuel behavior. One critical aspect of multiscale modeling is the ability to extract the relevant information from the lower length-scale sim- ulations. One approach, the asymptotic expansion homogenization (AEH) technique, has proven to be an effective method for determining homogenized material parameters. The AEH technique prescribes a system of equations to solve at the microscale that are used to compute homogenized material constants for use at the engineering scale. In this work, we employ AEH to explore the effect of evolving microstructural thermal conductivity and elastic constants on nuclear fuel performance. We show that the AEH approach fits cleanly into the BISON and MARMOT codes and provides a natural, multidimensional homogenization capability.« less

  14. Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Kolesar, Ryan; Boswell, Cody; Kanai, Taro; Montel, Kenneth

    2014-12-01

    There are now some sophisticated and powerful methods for computer modeling of parachutes. These methods are capable of addressing some of the most formidable computational challenges encountered in parachute modeling, including fluid-structure interaction (FSI) between the parachute and air flow, design complexities such as those seen in spacecraft parachutes, and operational complexities such as use in clusters and disreefing. One should be able to extract from a reliable full-scale parachute modeling any data or analysis needed. In some cases, however, the parachute engineers may want to perform quickly an extended or repetitive analysis with methods based on simplified models. Some of the data needed by a simplified model can very effectively be extracted from a full-scale computer modeling that serves as a pilot. A good example of such data is the circumferential curvature of a parachute gore, where a gore is the slice of the parachute canopy between two radial reinforcement cables running from the parachute vent to the skirt. We present the multiscale methods we devised for gore curvature calculation from FSI modeling of spacecraft parachutes. The methods include those based on the multiscale sequentially-coupled FSI technique and using NURBS meshes. We show how the methods work for the fully-open and two reefed stages of the Orion spacecraft main and drogue parachutes.

  15. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anh Bui; Nam Dinh; Brian Williams

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Suchmore » sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable quantitative assessment of the CASL modeling of Crud-Induced Power Shift (CIPS) phenomenon, in particular, and the CASL advanced predictive capabilities, in general. This report is prepared for the Department of Energy’s Consortium for Advanced Simulation of LWRs program’s VUQ Focus Area.« less

  16. Adaptive Multiscale Modeling of Geochemical Impacts on Fracture Evolution

    NASA Astrophysics Data System (ADS)

    Molins, S.; Trebotich, D.; Steefel, C. I.; Deng, H.

    2016-12-01

    Understanding fracture evolution is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, and geothermal energy extraction. Geochemical processes in particular play a significant role in the evolution of fractures through dissolution-driven widening, fines migration, and/or fracture sealing due to precipitation. One obstacle to understanding and exploiting geochemical fracture evolution is that it is a multiscale process. However, current geochemical modeling of fractures cannot capture this multi-scale nature of geochemical and mechanical impacts on fracture evolution, and is limited to either a continuum or pore-scale representation. Conventional continuum-scale models treat fractures as preferential flow paths, with their permeability evolving as a function (often, a cubic law) of the fracture aperture. This approach has the limitation that it oversimplifies flow within the fracture in its omission of pore scale effects while also assuming well-mixed conditions. More recently, pore-scale models along with advanced characterization techniques have allowed for accurate simulations of flow and reactive transport within the pore space (Molins et al., 2014, 2015). However, these models, even with high performance computing, are currently limited in their ability to treat tractable domain sizes (Steefel et al., 2013). Thus, there is a critical need to develop an adaptive modeling capability that can account for separate properties and processes, emergent and otherwise, in the fracture and the rock matrix at different spatial scales. Here we present an adaptive modeling capability that treats geochemical impacts on fracture evolution within a single multiscale framework. Model development makes use of the high performance simulation capability, Chombo-Crunch, leveraged by high resolution characterization and experiments. The modeling framework is based on the adaptive capability in Chombo which not only enables mesh refinement, but also refinement of the model-pore scale or continuum Darcy scale-in a dynamic way such that the appropriate model is used only when and where it is needed. Explicit flux matching provides coupling betwen the scales.

  17. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States.

    PubMed

    Ajaz Ahmed, Mukhtar Ahmed; Abd-Elrahman, Amr; Escobedo, Francisco J; Cropper, Wendell P; Martin, Timothy A; Timilsina, Nilesh

    2017-09-01

    Understanding ecosystem processes and the influence of regional scale drivers can provide useful information for managing forest ecosystems. Examining more local scale drivers of forest biomass and water yield can also provide insights for identifying and better understanding the effects of climate change and management on forests. We used diverse multi-scale datasets, functional models and Geographically Weighted Regression (GWR) to model ecosystem processes at the watershed scale and to interpret the influence of ecological drivers across the Southeastern United States (SE US). Aboveground forest biomass (AGB) was determined from available geospatial datasets and water yield was estimated using the Water Supply and Stress Index (WaSSI) model at the watershed level. Our geostatistical model examined the spatial variation in these relationships between ecosystem processes, climate, biophysical, and forest management variables at the watershed level across the SE US. Ecological and management drivers at the watershed level were analyzed locally to identify whether drivers contribute positively or negatively to aboveground forest biomass and water yield ecosystem processes and thus identifying potential synergies and tradeoffs across the SE US region. Although AGB and water yield drivers varied geographically across the study area, they were generally significantly influenced by climate (rainfall and temperature), land-cover factor1 (Water and barren), land-cover factor2 (wetland and forest), organic matter content high, rock depth, available water content, stand age, elevation, and LAI drivers. These drivers were positively or negatively associated with biomass or water yield which significantly contributes to ecosystem interactions or tradeoff/synergies. Our study introduced a spatially-explicit modelling framework to analyze the effect of ecosystem drivers on forest ecosystem structure, function and provision of services. This integrated model approach facilitates multi-scale analyses of drivers and interactions at the local to regional scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Ensuring congruency in multiscale modeling: towards linking agent based and continuum biomechanical models of arterial adaptation.

    PubMed

    Hayenga, Heather N; Thorne, Bryan C; Peirce, Shayn M; Humphrey, Jay D

    2011-11-01

    There is a need to develop multiscale models of vascular adaptations to understand tissue-level manifestations of cellular level mechanisms. Continuum-based biomechanical models are well suited for relating blood pressures and flows to stress-mediated changes in geometry and properties, but less so for describing underlying mechanobiological processes. Discrete stochastic agent-based models are well suited for representing biological processes at a cellular level, but not for describing tissue-level mechanical changes. We present here a conceptually new approach to facilitate the coupling of continuum and agent-based models. Because of ubiquitous limitations in both the tissue- and cell-level data from which one derives constitutive relations for continuum models and rule-sets for agent-based models, we suggest that model verification should enforce congruency across scales. That is, multiscale model parameters initially determined from data sets representing different scales should be refined, when possible, to ensure that common outputs are consistent. Potential advantages of this approach are illustrated by comparing simulated aortic responses to a sustained increase in blood pressure predicted by continuum and agent-based models both before and after instituting a genetic algorithm to refine 16 objectively bounded model parameters. We show that congruency-based parameter refinement not only yielded increased consistency across scales, it also yielded predictions that are closer to in vivo observations.

  19. Persistence of initial conditions in continental scale air quality simulations

    EPA Science Inventory

    This study investigates the effect of initial conditions (IC) for pollutant concentrations in the atmosphere and soil on simulated air quality for two continental-scale Community Multiscale Air Quality (CMAQ) model applications. One of these applications was performed for springt...

  20. W14_greenhousegas Multi-scale Atmospheric Modeling of Green House Gas Dispersion in Complex Terrain: Controlled Release Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costigan, Keeley Rochelle; Sauer, Jeremy A.; Travis, Bryan J.

    2016-07-18

    This slide deals with the following: Affordable artificial neural network and mini-sensor system to locate and quantify methane leaks on a well pad; ARPA-e project schematic for monitoring methane leaks

  1. A Comparative Study of Nucleation Parameterizations: 2. Three-Dimensional Model Application and Evaluation

    EPA Science Inventory

    Following the examination and evaluation of 12 nucleation parameterizations presented in part 1, 11 of them representing binary, ternary, kinetic, and cluster‐activated nucleation theories are evaluated in the U.S. Environmental Protection Agency Community Multiscale Air Quality ...

  2. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  3. A multi-scale, multi-disciplinary approach for assessing the technological, economic and environmental performance of bio-based chemicals.

    PubMed

    Herrgård, Markus; Sukumara, Sumesh; Campodonico, Miguel; Zhuang, Kai

    2015-12-01

    In recent years, bio-based chemicals have gained interest as a renewable alternative to petrochemicals. However, there is a significant need to assess the technological, biological, economic and environmental feasibility of bio-based chemicals, particularly during the early research phase. Recently, the Multi-scale framework for Sustainable Industrial Chemicals (MuSIC) was introduced to address this issue by integrating modelling approaches at different scales ranging from cellular to ecological scales. This framework can be further extended by incorporating modelling of the petrochemical value chain and the de novo prediction of metabolic pathways connecting existing host metabolism to desirable chemical products. This multi-scale, multi-disciplinary framework for quantitative assessment of bio-based chemicals will play a vital role in supporting engineering, strategy and policy decisions as we progress towards a sustainable chemical industry. © 2015 Authors; published by Portland Press Limited.

  4. Land-use Scene Classification in High-Resolution Remote Sensing Images by Multiscale Deeply Described Correlatons

    NASA Astrophysics Data System (ADS)

    Qi, K.; Qingfeng, G.

    2017-12-01

    With the popular use of High-Resolution Satellite (HRS) images, more and more research efforts have been placed on land-use scene classification. However, it makes the task difficult with HRS images for the complex background and multiple land-cover classes or objects. This article presents a multiscale deeply described correlaton model for land-use scene classification. Specifically, the convolutional neural network is introduced to learn and characterize the local features at different scales. Then, learnt multiscale deep features are explored to generate visual words. The spatial arrangement of visual words is achieved through the introduction of adaptive vector quantized correlograms at different scales. Experiments on two publicly available land-use scene datasets demonstrate that the proposed model is compact and yet discriminative for efficient representation of land-use scene images, and achieves competitive classification results with the state-of-art methods.

  5. Scalable free energy calculation of proteins via multiscale essential sampling

    NASA Astrophysics Data System (ADS)

    Moritsugu, Kei; Terada, Tohru; Kidera, Akinori

    2010-12-01

    A multiscale simulation method, "multiscale essential sampling (MSES)," is proposed for calculating free energy surface of proteins in a sizable dimensional space with good scalability. In MSES, the configurational sampling of a full-dimensional model is enhanced by coupling with the accelerated dynamics of the essential degrees of freedom. Applying the Hamiltonian exchange method to MSES can remove the biasing potential from the coupling term, deriving the free energy surface of the essential degrees of freedom. The form of the coupling term ensures good scalability in the Hamiltonian exchange. As a test application, the free energy surface of the folding process of a miniprotein, chignolin, was calculated in the continuum solvent model. Results agreed with the free energy surface derived from the multicanonical simulation. Significantly improved scalability with the MSES method was clearly shown in the free energy calculation of chignolin in explicit solvent, which was achieved without increasing the number of replicas in the Hamiltonian exchange.

  6. Prediction of as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal conditions

    NASA Astrophysics Data System (ADS)

    Du, Qiang; Li, Yanjun

    2015-06-01

    In this paper, a multi-scale as-cast grain size prediction model is proposed to predict as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal condition, i.e., the existence of temperature gradient. Given melt composition, inoculation and heat extraction boundary conditions, the model is able to predict maximum nucleation undercooling, cooling curve, primary phase solidification path and final as-cast grain size of binary alloys. The proposed model has been applied to two Al-Mg alloys, and comparison with laboratory and industrial solidification experimental results have been carried out. The preliminary conclusion is that the proposed model is a promising suitable microscopic model used within the multi-scale casting simulation modelling framework.

  7. Coherent structures shed by multiscale cut-in trailing edge serrations on lifting wings

    NASA Astrophysics Data System (ADS)

    Prigent, S. L.; Buxton, O. R. H.; Bruce, P. J. K.

    2017-07-01

    This experimental study presents the effect of multiscale cut-in trailing edge serrations on the coherent structures shed into the wake of a lifting wing. Two-probe span-wise hot-wire traverses are performed to study spectra, coherence, and phase shift. In addition, planar particle image velocimetry is used to study the spatio-temporal structure of the vortices shed by the airfoils. Compared with a single tone sinusoidal serration, the multiscale ones reduce the vortex shedding energy as well as the span-wise coherence. Results indicate that the vortex shedding is locked into an arch-shaped cell structure. This structure is weakened by the multiscale patterns, which explains the reduction in both shedding energy and coherence.

  8. Multiscale modelling for tokamak pedestals

    NASA Astrophysics Data System (ADS)

    Abel, I. G.

    2018-04-01

    Pedestal modelling is crucial to predict the performance of future fusion devices. Current modelling efforts suffer either from a lack of kinetic physics, or an excess of computational complexity. To ameliorate these problems, we take a first-principles multiscale approach to the pedestal. We will present three separate sets of equations, covering the dynamics of edge localised modes (ELMs), the inter-ELM pedestal and pedestal turbulence, respectively. Precisely how these equations should be coupled to each other is covered in detail. This framework is completely self-consistent; it is derived from first principles by means of an asymptotic expansion of the fundamental Vlasov-Landau-Maxwell system in appropriate small parameters. The derivation exploits the narrowness of the pedestal region, the smallness of the thermal gyroradius and the low plasma (the ratio of thermal to magnetic pressures) typical of current pedestal operation to achieve its simplifications. The relationship between this framework and gyrokinetics is analysed, and possibilities to directly match our systems of equations onto multiscale gyrokinetics are explored. A detailed comparison between our model and other models in the literature is performed. Finally, the potential for matching this framework onto an open-field-line region is briefly discussed.

  9. Stress Distribution During Deformation of Polycrystalline Aluminum by Molecular-Dynamics and Finite-Element Modeling

    NASA Technical Reports Server (NTRS)

    Yamakov, V.; Saether, E.; Phillips, D.; Glaessgen, E. H.

    2004-01-01

    In this paper, a multiscale modelling strategy is used to study the effect of grain-boundary sliding on stress localization in a polycrystalline microstructure with an uneven distribution of grain size. The development of the molecular dynamics (MD) analysis used to interrogate idealized grain microstructures with various types of grain boundaries and the multiscale modelling strategies for modelling large systems of grains is discussed. Both molecular-dynamics and finite-element (FE) simulations for idealized polycrystalline models of identical geometry are presented with the purpose of demonstrating the effectiveness of the adapted finite-element method using cohesive zone models to reproduce grain-boundary sliding and its effect on the stress distribution in a polycrystalline metal. The yield properties of the grain-boundary interface, used in the FE simulations, are extracted from a MD simulation on a bicrystal. The models allow for the study of the load transfer between adjacent grains of very different size through grain-boundary sliding during deformation. A large-scale FE simulation of 100 grains of a typical microstructure is then presented to reveal that the stress distribution due to grain-boundary sliding during uniform tensile strain can lead to stress localization of two to three times the background stress, thus suggesting a significant effect on the failure properties of the metal.

  10. SiC Schottky Diode Detectors for Measurement of Actinide Concentrations from Alpha Activities in Molten Salt Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windl, Wolfgang; Blue, Thomas

    In this project, we have designed a 4H-SiC Schottky diode detector device in order to monitor actinide concentrations in extreme environments, such as present in pyroprocessing of spent fuel. For the first time, we have demonstrated high temperature operation of such a device up to 500 °C in successfully detecting alpha particles. We have used Am-241 as an alpha source for our laboratory experiments. Along with the experiments, we have developed a multiscale model to study the phenomena controlling the device behavior and to be able to predict the device performance. Our multiscale model consists of ab initio modeling tomore » understand defect energetics and their effect on electronic structure and carrier mobility in the material. Further, we have developed the basis for a damage evolution model incorporating the outputs from ab initio model in order to predict respective defect concentrations in the device material. Finally, a fully equipped TCAD-based device model has been developed to study the phenomena controlling the device behavior. Using this model, we have proven our concept that the detector is capable of performing alpha detection in a salt bath with the mixtures of actinides present in a pyroprocessing environment.« less

  11. Development of an integrated generic model for multi-scale assessment of the impacts of agro-ecosystems on major ecosystem services in West Africa.

    PubMed

    Belem, Mahamadou; Saqalli, Mehdi

    2017-11-01

    This paper presents an integrated model assessing the impacts of climate change, agro-ecosystem and demographic transition patterns on major ecosystem services in West-Africa along a partial overview of economic aspects (poverty reduction, food self-sufficiency and income generation). The model is based on an agent-based model associated with a soil model and multi-scale spatial model. The resulting Model for West-Africa Agro-Ecosystem Integrated Assessment (MOWASIA) is ecologically generic, meaning it is designed for all sudano-sahelian environments but may then be used as an experimentation facility for testing different scenarios combining ecological and socioeconomic dimensions. A case study in Burkina Faso is examined to assess the environmental and economic performances of semi-continuous and continuous farming systems. Results show that the semi-continuous system using organic fertilizer and fallowing practices contribute better to environment preservation and food security than the more economically performant continuous system. In addition, this study showed that farmers heterogeneity could play an important role in agricultural policies planning and assessment. In addition, the results showed that MOWASIA is an effective tool for designing, analysing the impacts of agro-ecosystems. Copyright © 2017. Published by Elsevier Ltd.

  12. Modelling strategies to predict the multi-scale effects of rural land management change

    NASA Astrophysics Data System (ADS)

    Bulygina, N.; Ballard, C. E.; Jackson, B. M.; McIntyre, N.; Marshall, M.; Reynolds, B.; Wheater, H. S.

    2011-12-01

    Changes to the rural landscape due to agricultural land management are ubiquitous, yet predicting the multi-scale effects of land management change on hydrological response remains an important scientific challenge. Much empirical research has been of little generic value due to inadequate design and funding of monitoring programmes, while the modelling issues challenge the capability of data-based, conceptual and physics-based modelling approaches. In this paper we report on a major UK research programme, motivated by a national need to quantify effects of agricultural intensification on flood risk. Working with a consortium of farmers in upland Wales, a multi-scale experimental programme (from experimental plots to 2nd order catchments) was developed to address issues of upland agricultural intensification. This provided data support for a multi-scale modelling programme, in which highly detailed physics-based models were conditioned on the experimental data and used to explore effects of potential field-scale interventions. A meta-modelling strategy was developed to represent detailed modelling in a computationally-efficient manner for catchment-scale simulation; this allowed catchment-scale quantification of potential management options. For more general application to data-sparse areas, alternative approaches were needed. Physics-based models were developed for a range of upland management problems, including the restoration of drained peatlands, afforestation, and changing grazing practices. Their performance was explored using literature and surrogate data; although subject to high levels of uncertainty, important insights were obtained, of practical relevance to management decisions. In parallel, regionalised conceptual modelling was used to explore the potential of indices of catchment response, conditioned on readily-available catchment characteristics, to represent ungauged catchments subject to land management change. Although based in part on speculative relationships, significant predictive power was derived from this approach. Finally, using a formal Bayesian procedure, these different sources of information were combined with local flow data in a catchment-scale conceptual model application , i.e. using small-scale physical properties, regionalised signatures of flow and available flow measurements.

  13. Multiscale study for stochastic characterization of shale samples

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Pejman; Javadpour, Farzam; Sahimi, Muhammad; Piri, Mohammad

    2016-03-01

    Characterization of shale reservoirs, which are typically of low permeability, is very difficult because of the presence of multiscale structures. While three-dimensional (3D) imaging can be an ultimate solution for revealing important complexities of such reservoirs, acquiring such images is costly and time consuming. On the other hand, high-quality 2D images, which are widely available, also reveal useful information about shales' pore connectivity and size. Most of the current modeling methods that are based on 2D images use limited and insufficient extracted information. One remedy to the shortcoming is direct use of qualitative images, a concept that we introduce in this paper. We demonstrate that higher-order statistics (as opposed to the traditional two-point statistics, such as variograms) are necessary for developing an accurate model of shales, and describe an efficient method for using 2D images that is capable of utilizing qualitative and physical information within an image and generating stochastic realizations of shales. We then further refine the model by describing and utilizing several techniques, including an iterative framework, for removing some possible artifacts and better pattern reproduction. Next, we introduce a new histogram-matching algorithm that accounts for concealed nanostructures in shale samples. We also present two new multiresolution and multiscale approaches for dealing with distinct pore structures that are common in shale reservoirs. In the multiresolution method, the original high-quality image is upscaled in a pyramid-like manner in order to achieve more accurate global and long-range structures. The multiscale approach integrates two images, each containing diverse pore networks - the nano- and microscale pores - using a high-resolution image representing small-scale pores and, at the same time, reconstructing large pores using a low-quality image. Eventually, the results are integrated to generate a 3D model. The methods are tested on two shale samples for which full 3D samples are available. The quantitative accuracy of the models is demonstrated by computing their morphological and flow properties and comparing them with those of the actual 3D images. The success of the method hinges upon the use of very different low- and high-resolution images.

  14. A multiscale microstructural approach to ductile-phase toughened tungsten for plasma-facing materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Jr., Charles H.; Overman, Nicole R.

    Increasing fracture toughness and modifying the ductile-brittle transition temperature of a tungsten-alloy relative to pure tungsten has been shown to be feasible by ductile-phase toughening (DPT) of tungsten for future plasma-facing materials for fusion energy. In DPT, a ductile phase is included in a brittle tungsten matrix to increase the overall work of fracture for the material. This research models the deformation behavior of DPT tungsten materials, such as tungsten-copper composites, using a multiscale modeling approach that involves a microstructural dual-phase (copper-tungsten) region of interest where the constituent phases are finely discretized and are described by a continuum damage mechanicsmore » model. Large deformation, damage, and fracture are allowed to occur and are modeled in a region that is connected to adjacent homogenized elastic regions to form a macroscopic structure, such as a test specimen. The present paper illustrates this multiscale modeling approach to analyze unnotched and single-edge notched (SENB) tungsten-copper composite specimens subjected to three-point bending. The predicted load-displacement responses and crack propagation patterns are compared to the corresponding experimental results to validate the model. Furthermore, such models may help design future DPT composite configurations for fusion materials, including volume fractions of ductile phase and microstructural optimization.« less

  15. A multiscale microstructural approach to ductile-phase toughened tungsten for plasma-facing materials

    DOE PAGES

    Nguyen, Ba Nghiep; Henager, Jr., Charles H.; Overman, Nicole R.; ...

    2018-05-23

    Increasing fracture toughness and modifying the ductile-brittle transition temperature of a tungsten-alloy relative to pure tungsten has been shown to be feasible by ductile-phase toughening (DPT) of tungsten for future plasma-facing materials for fusion energy. In DPT, a ductile phase is included in a brittle tungsten matrix to increase the overall work of fracture for the material. This research models the deformation behavior of DPT tungsten materials, such as tungsten-copper composites, using a multiscale modeling approach that involves a microstructural dual-phase (copper-tungsten) region of interest where the constituent phases are finely discretized and are described by a continuum damage mechanicsmore » model. Large deformation, damage, and fracture are allowed to occur and are modeled in a region that is connected to adjacent homogenized elastic regions to form a macroscopic structure, such as a test specimen. The present paper illustrates this multiscale modeling approach to analyze unnotched and single-edge notched (SENB) tungsten-copper composite specimens subjected to three-point bending. The predicted load-displacement responses and crack propagation patterns are compared to the corresponding experimental results to validate the model. Furthermore, such models may help design future DPT composite configurations for fusion materials, including volume fractions of ductile phase and microstructural optimization.« less

  16. Multi-Scale Modeling of the Gamma Radiolysis of Nitrate Solutions.

    PubMed

    Horne, Gregory P; Donoclift, Thomas A; Sims, Howard E; Orr, Robin M; Pimblott, Simon M

    2016-11-17

    A multiscale modeling approach has been developed for the extended time scale long-term radiolysis of aqueous systems. The approach uses a combination of stochastic track structure and track chemistry as well as deterministic homogeneous chemistry techniques and involves four key stages: radiation track structure simulation, the subsequent physicochemical processes, nonhomogeneous diffusion-reaction kinetic evolution, and homogeneous bulk chemistry modeling. The first three components model the physical and chemical evolution of an isolated radiation chemical track and provide radiolysis yields, within the extremely low dose isolated track paradigm, as the input parameters for a bulk deterministic chemistry model. This approach to radiation chemical modeling has been tested by comparison with the experimentally observed yield of nitrite from the gamma radiolysis of sodium nitrate solutions. This is a complex radiation chemical system which is strongly dependent on secondary reaction processes. The concentration of nitrite is not just dependent upon the evolution of radiation track chemistry and the scavenging of the hydrated electron and its precursors but also on the subsequent reactions of the products of these scavenging reactions with other water radiolysis products. Without the inclusion of intratrack chemistry, the deterministic component of the multiscale model is unable to correctly predict experimental data, highlighting the importance of intratrack radiation chemistry in the chemical evolution of the irradiated system.

  17. A Validated Multiscale In-Silico Model for Mechano-sensitive Tumour Angiogenesis and Growth

    PubMed Central

    Loizidou, Marilena; Stylianopoulos, Triantafyllos; Hawkes, David J.

    2017-01-01

    Vascularisation is a key feature of cancer growth, invasion and metastasis. To better understand the governing biophysical processes and their relative importance, it is instructive to develop physiologically representative mathematical models with which to compare to experimental data. Previous studies have successfully applied this approach to test the effect of various biochemical factors on tumour growth and angiogenesis. However, these models do not account for the experimentally observed dependency of angiogenic network evolution on growth-induced solid stresses. This work introduces two novel features: the effects of hapto- and mechanotaxis on vessel sprouting, and mechano-sensitive dynamic vascular remodelling. The proposed three-dimensional, multiscale, in-silico model of dynamically coupled angiogenic tumour growth is specified to in-vivo and in-vitro data, chosen, where possible, to provide a physiologically consistent description. The model is then validated against in-vivo data from murine mammary carcinomas, with particular focus placed on identifying the influence of mechanical factors. Crucially, we find that it is necessary to include hapto- and mechanotaxis to recapitulate observed time-varying spatial distributions of angiogenic vasculature. PMID:28125582

  18. Modeling evolution of spatially distributed bacterial communities: a simulation with the haploid evolutionary constructor

    PubMed Central

    2015-01-01

    Background Multiscale approaches for integrating submodels of various levels of biological organization into a single model became the major tool of systems biology. In this paper, we have constructed and simulated a set of multiscale models of spatially distributed microbial communities and study an influence of unevenly distributed environmental factors on the genetic diversity and evolution of the community members. Results Haploid Evolutionary Constructor software http://evol-constructor.bionet.nsc.ru/ was expanded by adding the tool for the spatial modeling of a microbial community (1D, 2D and 3D versions). A set of the models of spatially distributed communities was built to demonstrate that the spatial distribution of cells affects both intensity of selection and evolution rate. Conclusion In spatially heterogeneous communities, the change in the direction of the environmental flow might be reflected in local irregular population dynamics, while the genetic structure of populations (frequencies of the alleles) remains stable. Furthermore, in spatially heterogeneous communities, the chemotaxis might dramatically affect the evolution of community members. PMID:25708911

  19. Nonlinear Multiscale Modeling of 3D Woven Fiber Composites under Ballistic Loading

    DTIC Science & Technology

    2013-07-11

    contact parameters on the underlying damage processes is being studied and worked on. We further develop a material model suitable particularly for...of Material and Process Engineering. 2011/05/23 00:00:00, . : , TOTAL: 1 (d) Manuscripts Number of Peer-Reviewed Conference Proceeding publications...continuum damage mechanics suitable for polymer materials. The effect of contact parameters on the underlying damage processes is being studied and

  20. Modeling multi-scale aerosol dynamics and micro-environmental air quality near a large highway intersection using the CTAG model.

    PubMed

    Wang, Yan Jason; Nguyen, Monica T; Steffens, Jonathan T; Tong, Zheming; Wang, Yungang; Hopke, Philip K; Zhang, K Max

    2013-01-15

    A new methodology, referred to as the multi-scale structure, integrates "tailpipe-to-road" (i.e., on-road domain) and "road-to-ambient" (i.e., near-road domain) simulations to elucidate the environmental impacts of particulate emissions from traffic sources. The multi-scale structure is implemented in the CTAG model to 1) generate process-based on-road emission rates of ultrafine particles (UFPs) by explicitly simulating the effects of exhaust properties, traffic conditions, and meteorological conditions and 2) to characterize the impacts of traffic-related emissions on micro-environmental air quality near a highway intersection in Rochester, NY. The performance of CTAG, evaluated against with the field measurements, shows adequate agreement in capturing the dispersion of carbon monoxide (CO) and the number concentrations of UFPs in the near road micro-environment. As a proof-of-concept case study, we also apply CTAG to separate the relative impacts of the shutdown of a large coal-fired power plant (CFPP) and the adoption of the ultra-low-sulfur diesel (ULSD) on UFP concentrations in the intersection micro-environment. Although CTAG is still computationally expensive compared to the widely-used parameterized dispersion models, it has the potential to advance our capability to predict the impacts of UFP emissions and spatial/temporal variations of air pollutants in complex environments. Furthermore, for the on-road simulations, CTAG can serve as a process-based emission model; Combining the on-road and near-road simulations, CTAG becomes a "plume-in-grid" model for mobile emissions. The processed emission profiles can potentially improve regional air quality and climate predictions accordingly. Copyright © 2012 Elsevier B.V. All rights reserved.

Top