Sample records for multiscale simulation approach

  1. A multiscale approach to accelerate pore-scale simulation of porous electrodes

    NASA Astrophysics Data System (ADS)

    Zheng, Weibo; Kim, Seung Hyun

    2017-04-01

    A new method to accelerate pore-scale simulation of porous electrodes is presented. The method combines the macroscopic approach with pore-scale simulation by decomposing a physical quantity into macroscopic and local variations. The multiscale method is applied to the potential equation in pore-scale simulation of a Proton Exchange Membrane Fuel Cell (PEMFC) catalyst layer, and validated with the conventional approach for pore-scale simulation. Results show that the multiscale scheme substantially reduces the computational cost without sacrificing accuracy.

  2. A Generalized Hybrid Multiscale Modeling Approach for Flow and Reactive Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Yang, X.; Meng, X.; Tang, Y. H.; Guo, Z.; Karniadakis, G. E.

    2017-12-01

    Using emerging understanding of biological and environmental processes at fundamental scales to advance predictions of the larger system behavior requires the development of multiscale approaches, and there is strong interest in coupling models at different scales together in a hybrid multiscale simulation framework. A limited number of hybrid multiscale simulation methods have been developed for subsurface applications, mostly using application-specific approaches for model coupling. The proposed generalized hybrid multiscale approach is designed with minimal intrusiveness to the at-scale simulators (pre-selected) and provides a set of lightweight C++ scripts to manage a complex multiscale workflow utilizing a concurrent coupling approach. The workflow includes at-scale simulators (using the lattice-Boltzmann method, LBM, at the pore and Darcy scale, respectively), scripts for boundary treatment (coupling and kriging), and a multiscale universal interface (MUI) for data exchange. The current study aims to apply the generalized hybrid multiscale modeling approach to couple pore- and Darcy-scale models for flow and mixing-controlled reaction with precipitation/dissolution in heterogeneous porous media. The model domain is packed heterogeneously that the mixing front geometry is more complex and not known a priori. To address those challenges, the generalized hybrid multiscale modeling approach is further developed to 1) adaptively define the locations of pore-scale subdomains, 2) provide a suite of physical boundary coupling schemes and 3) consider the dynamic change of the pore structures due to mineral precipitation/dissolution. The results are validated and evaluated by comparing with single-scale simulations in terms of velocities, reactive concentrations and computing cost.

  3. Spatial adaptive sampling in multiscale simulation

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, Bertrand; Barros, Kipton; Cieren, Emmanuel; Elango, Venmugil; Junghans, Christoph; Lookman, Turab; Mohd-Yusof, Jamaludin; Pavel, Robert S.; Rivera, Axel Y.; Roehm, Dominic; McPherson, Allen L.; Germann, Timothy C.

    2014-07-01

    In a common approach to multiscale simulation, an incomplete set of macroscale equations must be supplemented with constitutive data provided by fine-scale simulation. Collecting statistics from these fine-scale simulations is typically the overwhelming computational cost. We reduce this cost by interpolating the results of fine-scale simulation over the spatial domain of the macro-solver. Unlike previous adaptive sampling strategies, we do not interpolate on the potentially very high dimensional space of inputs to the fine-scale simulation. Our approach is local in space and time, avoids the need for a central database, and is designed to parallelize well on large computer clusters. To demonstrate our method, we simulate one-dimensional elastodynamic shock propagation using the Heterogeneous Multiscale Method (HMM); we find that spatial adaptive sampling requires only ≈ 50 ×N0.14 fine-scale simulations to reconstruct the stress field at all N grid points. Related multiscale approaches, such as Equation Free methods, may also benefit from spatial adaptive sampling.

  4. Intercomparison of Multiscale Modeling Approaches in Simulating Subsurface Flow and Transport

    NASA Astrophysics Data System (ADS)

    Yang, X.; Mehmani, Y.; Barajas-Solano, D. A.; Song, H. S.; Balhoff, M.; Tartakovsky, A. M.; Scheibe, T. D.

    2016-12-01

    Hybrid multiscale simulations that couple models across scales are critical to advance predictions of the larger system behavior using understanding of fundamental processes. In the current study, three hybrid multiscale methods are intercompared: multiscale loose-coupling method, multiscale finite volume (MsFV) method and multiscale mortar method. The loose-coupling method enables a parallel workflow structure based on the Swift scripting environment that manages the complex process of executing coupled micro- and macro-scale models without being intrusive to the at-scale simulators. The MsFV method applies microscale and macroscale models over overlapping subdomains of the modeling domain and enforces continuity of concentration and transport fluxes between models via restriction and prolongation operators. The mortar method is a non-overlapping domain decomposition approach capable of coupling all permutations of pore- and continuum-scale models with each other. In doing so, Lagrange multipliers are used at interfaces shared between the subdomains so as to establish continuity of species/fluid mass flux. Subdomain computations can be performed either concurrently or non-concurrently depending on the algorithm used. All the above methods have been proven to be accurate and efficient in studying flow and transport in porous media. However, there has not been any field-scale applications and benchmarking among various hybrid multiscale approaches. To address this challenge, we apply all three hybrid multiscale methods to simulate water flow and transport in a conceptualized 2D modeling domain of the hyporheic zone, where strong interactions between groundwater and surface water exist across multiple scales. In all three multiscale methods, fine-scale simulations are applied to a thin layer of riverbed alluvial sediments while the macroscopic simulations are used for the larger subsurface aquifer domain. Different numerical coupling methods are then applied between scales and inter-compared. Comparisons are drawn in terms of velocity distributions, solute transport behavior, algorithm-induced numerical error and computing cost. The intercomparison work provides support for confidence in a variety of hybrid multiscale methods and motivates further development and applications.

  5. Filters for Improvement of Multiscale Data from Atomistic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, David J.; Reynolds, Daniel R.

    Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less

  6. Filters for Improvement of Multiscale Data from Atomistic Simulations

    DOE PAGES

    Gardner, David J.; Reynolds, Daniel R.

    2017-01-05

    Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less

  7. Towards practical multiscale approach for analysis of reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Moyeda, Arturo; Fish, Jacob

    2017-12-01

    We present a novel multiscale approach for analysis of reinforced concrete structural elements that overcomes two major hurdles in utilization of multiscale technologies in practice: (1) coupling between material and structural scales due to consideration of large representative volume elements (RVE), and (2) computational complexity of solving complex nonlinear multiscale problems. The former is accomplished using a variant of computational continua framework that accounts for sizeable reinforced concrete RVEs by adjusting the location of quadrature points. The latter is accomplished by means of reduced order homogenization customized for structural elements. The proposed multiscale approach has been verified against direct numerical simulations and validated against experimental results.

  8. Developing a novel hierarchical approach for multiscale structural reliability predictions for ultra-high consequence applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, John M.; Coffin, Peter; Robbins, Brian A.

    Microstructural variabilities are among the predominant sources of uncertainty in structural performance and reliability. We seek to develop efficient algorithms for multiscale calcu- lations for polycrystalline alloys such as aluminum alloy 6061-T6 in environments where ductile fracture is the dominant failure mode. Our approach employs concurrent multiscale methods, but does not focus on their development. They are a necessary but not sufficient ingredient to multiscale reliability predictions. We have focused on how to efficiently use concurrent models for forward propagation because practical applications cannot include fine-scale details throughout the problem domain due to exorbitant computational demand. Our approach begins withmore » a low-fidelity prediction at the engineering scale that is sub- sequently refined with multiscale simulation. The results presented in this report focus on plasticity and damage at the meso-scale, efforts to expedite Monte Carlo simulation with mi- crostructural considerations, modeling aspects regarding geometric representation of grains and second-phase particles, and contrasting algorithms for scale coupling.« less

  9. An Analysis Platform for Multiscale Hydrogeologic Modeling with Emphasis on Hybrid Multiscale Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheibe, Timothy D.; Murphy, Ellyn M.; Chen, Xingyuan

    2015-01-01

    One of the most significant challenges facing hydrogeologic modelers is the disparity between those spatial and temporal scales at which fundamental flow, transport and reaction processes can best be understood and quantified (e.g., microscopic to pore scales, seconds to days) and those at which practical model predictions are needed (e.g., plume to aquifer scales, years to centuries). While the multiscale nature of hydrogeologic problems is widely recognized, technological limitations in computational and characterization restrict most practical modeling efforts to fairly coarse representations of heterogeneous properties and processes. For some modern problems, the necessary level of simplification is such that modelmore » parameters may lose physical meaning and model predictive ability is questionable for any conditions other than those to which the model was calibrated. Recently, there has been broad interest across a wide range of scientific and engineering disciplines in simulation approaches that more rigorously account for the multiscale nature of systems of interest. In this paper, we review a number of such approaches and propose a classification scheme for defining different types of multiscale simulation methods and those classes of problems to which they are most applicable. Our classification scheme is presented in terms of a flow chart (Multiscale Analysis Platform or MAP), and defines several different motifs of multiscale simulation. Within each motif, the member methods are reviewed and example applications are discussed. We focus attention on hybrid multiscale methods, in which two or more models with different physics described at fundamentally different scales are directly coupled within a single simulation. Very recently these methods have begun to be applied to groundwater flow and transport simulations, and we discuss these applications in the context of our classification scheme. As computational and characterization capabilities continue to improve, we envision that hybrid multiscale modeling will become more common and may become a viable alternative to conventional single-scale models in the near future.« less

  10. An analysis platform for multiscale hydrogeologic modeling with emphasis on hybrid multiscale methods.

    PubMed

    Scheibe, Timothy D; Murphy, Ellyn M; Chen, Xingyuan; Rice, Amy K; Carroll, Kenneth C; Palmer, Bruce J; Tartakovsky, Alexandre M; Battiato, Ilenia; Wood, Brian D

    2015-01-01

    One of the most significant challenges faced by hydrogeologic modelers is the disparity between the spatial and temporal scales at which fundamental flow, transport, and reaction processes can best be understood and quantified (e.g., microscopic to pore scales and seconds to days) and at which practical model predictions are needed (e.g., plume to aquifer scales and years to centuries). While the multiscale nature of hydrogeologic problems is widely recognized, technological limitations in computation and characterization restrict most practical modeling efforts to fairly coarse representations of heterogeneous properties and processes. For some modern problems, the necessary level of simplification is such that model parameters may lose physical meaning and model predictive ability is questionable for any conditions other than those to which the model was calibrated. Recently, there has been broad interest across a wide range of scientific and engineering disciplines in simulation approaches that more rigorously account for the multiscale nature of systems of interest. In this article, we review a number of such approaches and propose a classification scheme for defining different types of multiscale simulation methods and those classes of problems to which they are most applicable. Our classification scheme is presented in terms of a flowchart (Multiscale Analysis Platform), and defines several different motifs of multiscale simulation. Within each motif, the member methods are reviewed and example applications are discussed. We focus attention on hybrid multiscale methods, in which two or more models with different physics described at fundamentally different scales are directly coupled within a single simulation. Very recently these methods have begun to be applied to groundwater flow and transport simulations, and we discuss these applications in the context of our classification scheme. As computational and characterization capabilities continue to improve, we envision that hybrid multiscale modeling will become more common and also a viable alternative to conventional single-scale models in the near future. © 2014, National Ground Water Association.

  11. Computational design and multiscale modeling of a nanoactuator using DNA actuation.

    PubMed

    Hamdi, Mustapha

    2009-12-02

    Developments in the field of nanobiodevices coupling nanostructures and biological components are of great interest in medical nanorobotics. As the fundamentals of bio/non-bio interaction processes are still poorly understood in the design of these devices, design tools and multiscale dynamics modeling approaches are necessary at the fabrication pre-project stage. This paper proposes a new concept of optimized carbon nanotube based servomotor design for drug delivery and biomolecular transport applications. The design of an encapsulated DNA-multi-walled carbon nanotube actuator is prototyped using multiscale modeling. The system is parametrized by using a quantum level approach and characterized by using a molecular dynamics simulation. Based on the analysis of the simulation results, a servo nanoactuator using ionic current feedback is simulated and analyzed for application as a drug delivery carrier.

  12. A Hybrid Multiscale Framework for Subsurface Flow and Transport Simulations

    DOE PAGES

    Scheibe, Timothy D.; Yang, Xiaofan; Chen, Xingyuan; ...

    2015-06-01

    Extensive research efforts have been invested in reducing model errors to improve the predictive ability of biogeochemical earth and environmental system simulators, with applications ranging from contaminant transport and remediation to impacts of biogeochemical elemental cycling (e.g., carbon and nitrogen) on local ecosystems and regional to global climate. While the bulk of this research has focused on improving model parameterizations in the face of observational limitations, the more challenging type of model error/uncertainty to identify and quantify is model structural error which arises from incorrect mathematical representations of (or failure to consider) important physical, chemical, or biological processes, properties, ormore » system states in model formulations. While improved process understanding can be achieved through scientific study, such understanding is usually developed at small scales. Process-based numerical models are typically designed for a particular characteristic length and time scale. For application-relevant scales, it is generally necessary to introduce approximations and empirical parameterizations to describe complex systems or processes. This single-scale approach has been the best available to date because of limited understanding of process coupling combined with practical limitations on system characterization and computation. While computational power is increasing significantly and our understanding of biological and environmental processes at fundamental scales is accelerating, using this information to advance our knowledge of the larger system behavior requires the development of multiscale simulators. Accordingly there has been much recent interest in novel multiscale methods in which microscale and macroscale models are explicitly coupled in a single hybrid multiscale simulation. A limited number of hybrid multiscale simulations have been developed for biogeochemical earth systems, but they mostly utilize application-specific and sometimes ad-hoc approaches for model coupling. We are developing a generalized approach to hierarchical model coupling designed for high-performance computational systems, based on the Swift computing workflow framework. In this presentation we will describe the generalized approach and provide two use cases: 1) simulation of a mixing-controlled biogeochemical reaction coupling pore- and continuum-scale models, and 2) simulation of biogeochemical impacts of groundwater – river water interactions coupling fine- and coarse-grid model representations. This generalized framework can be customized for use with any pair of linked models (microscale and macroscale) with minimal intrusiveness to the at-scale simulators. It combines a set of python scripts with the Swift workflow environment to execute a complex multiscale simulation utilizing an approach similar to the well-known Heterogeneous Multiscale Method. User customization is facilitated through user-provided input and output file templates and processing function scripts, and execution within a high-performance computing environment is handled by Swift, such that minimal to no user modification of at-scale codes is required.« less

  13. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Thomas; Efendiev, Yalchin; Tchelepi, Hamdi

    2016-05-24

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scalemore » basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics.« less

  14. An approach to multiscale modelling with graph grammars.

    PubMed

    Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried

    2014-09-01

    Functional-structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models.

  15. An approach to multiscale modelling with graph grammars

    PubMed Central

    Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried

    2014-01-01

    Background and Aims Functional–structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. Methods A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Key Results Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. Conclusions The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models. PMID:25134929

  16. Multiscale Simulation of Microbe Structure and Dynamics

    PubMed Central

    Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V.; Cheluvaraja, Srinath C.; Ortoleva, Peter J.

    2012-01-01

    A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin. PMID:21802438

  17. Coupled numerical approach combining finite volume and lattice Boltzmann methods for multi-scale multi-physicochemical processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li; He, Ya-Ling; Kang, Qinjun

    2013-12-15

    A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM) and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and a region filled with porous materials. The FVM and LBM are used for these two regions, respectively, with information exchanged at the interface between the two sub-domains. A general reconstruction operator (RO) is proposed to derive the distribution functions in the LBM from the corresponding macro scalar, the governing equation of whichmore » obeys the convection–diffusion equation. The CFVLBM and the RO are validated in several typical physicochemical problems and then are applied to simulate complex multi-scale coupled fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored and discussed. -- Highlights: •A coupled simulation strategy for simulating multi-scale phenomena is developed. •Finite volume method and lattice Boltzmann method are coupled. •A reconstruction operator is derived to transfer information at the sub-domains interface. •Coupled multi-scale multiple physicochemical processes in micro reactor are simulated. •Techniques to save computational resources and improve the efficiency are discussed.« less

  18. Modeling Framework for Fracture in Multiscale Cement-Based Material Structures

    PubMed Central

    Qian, Zhiwei; Schlangen, Erik; Ye, Guang; van Breugel, Klaas

    2017-01-01

    Multiscale modeling for cement-based materials, such as concrete, is a relatively young subject, but there are already a number of different approaches to study different aspects of these classical materials. In this paper, the parameter-passing multiscale modeling scheme is established and applied to address the multiscale modeling problem for the integrated system of cement paste, mortar, and concrete. The block-by-block technique is employed to solve the length scale overlap challenge between the mortar level (0.1–10 mm) and the concrete level (1–40 mm). The microstructures of cement paste are simulated by the HYMOSTRUC3D model, and the material structures of mortar and concrete are simulated by the Anm material model. Afterwards the 3D lattice fracture model is used to evaluate their mechanical performance by simulating a uniaxial tensile test. The simulated output properties at a lower scale are passed to the next higher scale to serve as input local properties. A three-level multiscale lattice fracture analysis is demonstrated, including cement paste at the micrometer scale, mortar at the millimeter scale, and concrete at centimeter scale. PMID:28772948

  19. Modeling and Simulations in Photoelectrochemical Water Oxidation: From Single Level to Multiscale Modeling.

    PubMed

    Zhang, Xueqing; Bieberle-Hütter, Anja

    2016-06-08

    This review summarizes recent developments, challenges, and strategies in the field of modeling and simulations of photoelectrochemical (PEC) water oxidation. We focus on water splitting by metal-oxide semiconductors and discuss topics such as theoretical calculations of light absorption, band gap/band edge, charge transport, and electrochemical reactions at the electrode-electrolyte interface. In particular, we review the mechanisms of the oxygen evolution reaction, strategies to lower overpotential, and computational methods applied to PEC systems with particular focus on multiscale modeling. The current challenges in modeling PEC interfaces and their processes are summarized. At the end, we propose a new multiscale modeling approach to simulate the PEC interface under conditions most similar to those of experiments. This approach will contribute to identifying the limitations at PEC interfaces. Its generic nature allows its application to a number of electrochemical systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Collaborative Simulation Grid: Multiscale Quantum-Mechanical/Classical Atomistic Simulations on Distributed PC Clusters in the US and Japan

    NASA Technical Reports Server (NTRS)

    Kikuchi, Hideaki; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; Iyetomi, Hiroshi; Ogata, Shuji; Kouno, Takahisa; Shimojo, Fuyuki; Tsuruta, Kanji; Saini, Subhash; hide

    2002-01-01

    A multidisciplinary, collaborative simulation has been performed on a Grid of geographically distributed PC clusters. The multiscale simulation approach seamlessly combines i) atomistic simulation backed on the molecular dynamics (MD) method and ii) quantum mechanical (QM) calculation based on the density functional theory (DFT), so that accurate but less scalable computations are performed only where they are needed. The multiscale MD/QM simulation code has been Grid-enabled using i) a modular, additive hybridization scheme, ii) multiple QM clustering, and iii) computation/communication overlapping. The Gridified MD/QM simulation code has been used to study environmental effects of water molecules on fracture in silicon. A preliminary run of the code has achieved a parallel efficiency of 94% on 25 PCs distributed over 3 PC clusters in the US and Japan, and a larger test involving 154 processors on 5 distributed PC clusters is in progress.

  1. Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estep, Donald; El-Azab, Anter; Pernice, Michael

    2017-03-23

    In this project, we will address the challenges associated with constructing high fidelity multiscale models of nuclear fuel performance. We (*) propose a novel approach for coupling mesoscale and macroscale models, (*) devise efficient numerical methods for simulating the coupled system, and (*) devise and analyze effective numerical approaches for error and uncertainty quantification for the coupled multiscale system. As an integral part of the project, we will carry out analysis of the effects of upscaling and downscaling, investigate efficient methods for stochastic sensitivity analysis of the individual macroscale and mesoscale models, and carry out a posteriori error analysis formore » computed results. We will pursue development and implementation of solutions in software used at Idaho National Laboratories on models of interest to the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.« less

  2. Data fusion of multi-scale representations for structural damage detection

    NASA Astrophysics Data System (ADS)

    Guo, Tian; Xu, Zili

    2018-01-01

    Despite extensive researches into structural health monitoring (SHM) in the past decades, there are few methods that can detect multiple slight damage in noisy environments. Here, we introduce a new hybrid method that utilizes multi-scale space theory and data fusion approach for multiple damage detection in beams and plates. A cascade filtering approach provides multi-scale space for noisy mode shapes and filters the fluctuations caused by measurement noise. In multi-scale space, a series of amplification and data fusion algorithms are utilized to search the damage features across all possible scales. We verify the effectiveness of the method by numerical simulation using damaged beams and plates with various types of boundary conditions. Monte Carlo simulations are conducted to illustrate the effectiveness and noise immunity of the proposed method. The applicability is further validated via laboratory cases studies focusing on different damage scenarios. Both results demonstrate that the proposed method has a superior noise tolerant ability, as well as damage sensitivity, without knowing material properties or boundary conditions.

  3. Design of a framework for modeling, integration and simulation of physiological models.

    PubMed

    Erson, E Zeynep; Cavuşoğlu, M Cenk

    2012-09-01

    Multiscale modeling and integration of physiological models carry challenges due to the complex nature of physiological processes. High coupling within and among scales present a significant challenge in constructing and integrating multiscale physiological models. In order to deal with such challenges in a systematic way, there is a significant need for an information technology framework together with related analytical and computational tools that will facilitate integration of models and simulations of complex biological systems. Physiological Model Simulation, Integration and Modeling Framework (Phy-SIM) is an information technology framework providing the tools to facilitate development, integration and simulation of integrated models of human physiology. Phy-SIM brings software level solutions to the challenges raised by the complex nature of physiological systems. The aim of Phy-SIM, and this paper is to lay some foundation with the new approaches such as information flow and modular representation of the physiological models. The ultimate goal is to enhance the development of both the models and the integration approaches of multiscale physiological processes and thus this paper focuses on the design approaches that would achieve such a goal. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Multiscale Modeling of Damage Processes in fcc Aluminum: From Atoms to Grains

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Saether, E.; Yamakov, V.

    2008-01-01

    Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, current analysis is limited to small domains and increasing the size of the MD domain quickly presents intractable computational demands. A preferred approach to surmount this computational limitation has been to combine continuum mechanics-based modeling procedures, such as the finite element method (FEM), with MD analyses thereby reducing the region of atomic scale refinement. Such multiscale modeling strategies can be divided into two broad classifications: concurrent multiscale methods that directly incorporate an atomistic domain within a continuum domain and sequential multiscale methods that extract an averaged response from the atomistic simulation for later use as a constitutive model in a continuum analysis.

  5. Multiscale analysis and computation for flows in heterogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efendiev, Yalchin; Hou, T. Y.; Durlofsky, L. J.

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scalemore » basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics. Below, we present a brief overview of each of these contributions.« less

  6. Multiscale Molecular Dynamics Simulations of Beta-Amyloid Interactions with Neurons

    NASA Astrophysics Data System (ADS)

    Qiu, Liming; Vaughn, Mark; Cheng, Kelvin

    2012-10-01

    Early events of human beta-amyloid protein interactions with cholesterol-containing membranes are critical to understanding the pathogenesis of Alzheimer's disease (AD) and to exploring new therapeutic interventions of AD. Atomistic molecular dynamics (AMD) simulations have been extensively used to study the protein-lipid interaction at high atomic resolutions. However, traditional MD simulations are not efficient in sampling the phase space of complex lipid/protein systems with rugged free energy landscapes. Meanwhile, coarse-grained MD (CGD) simulations are efficient in the phase space sampling but suffered from low spatial resolutions and from the fact that the energy landscapes are not identical to those of the AMD. Here, a multiscale approach was employed to simulate the protein-lipid interactions of beta-amyloid upon its release from proteolysis residing in the neuronal membranes. We utilized a forward (AMD to CGD) and reverse (CGD-AMD) strategy to explore new transmembrane and surface protein configuration and evaluate the stabilization mechanisms by measuring the residue-specific protein-lipid or protein conformations. The detailed molecular interactions revealed in this multiscale MD approach will provide new insights into understanding the early molecular events leading to the pathogenesis of AD.

  7. Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2002-01-01

    This document contains the proceedings of the Training Workshop on Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems held at NASA Langley Research Center, Hampton, Virginia, March 5 - 6, 2002. The workshop was jointly sponsored by Old Dominion University's Center for Advanced Engineering Environments and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objectives of the workshop were to give overviews of the diverse activities in hierarchical approach to material modeling from continuum to atomistics; applications of multiscale modeling to advanced and improved material synthesis; defects, dislocations, and material deformation; fracture and friction; thin-film growth; characterization at nano and micro scales; and, verification and validation of numerical simulations, and to identify their potential for future aerospace systems.

  8. Nonlinear intrinsic variables and state reconstruction in multiscale simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dsilva, Carmeline J., E-mail: cdsilva@princeton.edu; Talmon, Ronen, E-mail: ronen.talmon@yale.edu; Coifman, Ronald R., E-mail: coifman@math.yale.edu

    2013-11-14

    Finding informative low-dimensional descriptions of high-dimensional simulation data (like the ones arising in molecular dynamics or kinetic Monte Carlo simulations of physical and chemical processes) is crucial to understanding physical phenomena, and can also dramatically assist in accelerating the simulations themselves. In this paper, we discuss and illustrate the use of nonlinear intrinsic variables (NIV) in the mining of high-dimensional multiscale simulation data. In particular, we focus on the way NIV allows us to functionally merge different simulation ensembles, and different partial observations of these ensembles, as well as to infer variables not explicitly measured. The approach relies on certainmore » simple features of the underlying process variability to filter out measurement noise and systematically recover a unique reference coordinate frame. We illustrate the approach through two distinct sets of atomistic simulations: a stochastic simulation of an enzyme reaction network exhibiting both fast and slow time scales, and a molecular dynamics simulation of alanine dipeptide in explicit water.« less

  9. Nonlinear intrinsic variables and state reconstruction in multiscale simulations

    NASA Astrophysics Data System (ADS)

    Dsilva, Carmeline J.; Talmon, Ronen; Rabin, Neta; Coifman, Ronald R.; Kevrekidis, Ioannis G.

    2013-11-01

    Finding informative low-dimensional descriptions of high-dimensional simulation data (like the ones arising in molecular dynamics or kinetic Monte Carlo simulations of physical and chemical processes) is crucial to understanding physical phenomena, and can also dramatically assist in accelerating the simulations themselves. In this paper, we discuss and illustrate the use of nonlinear intrinsic variables (NIV) in the mining of high-dimensional multiscale simulation data. In particular, we focus on the way NIV allows us to functionally merge different simulation ensembles, and different partial observations of these ensembles, as well as to infer variables not explicitly measured. The approach relies on certain simple features of the underlying process variability to filter out measurement noise and systematically recover a unique reference coordinate frame. We illustrate the approach through two distinct sets of atomistic simulations: a stochastic simulation of an enzyme reaction network exhibiting both fast and slow time scales, and a molecular dynamics simulation of alanine dipeptide in explicit water.

  10. Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes

    NASA Astrophysics Data System (ADS)

    Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt; Stuehn, Torsten

    2017-11-01

    Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach, the theoretical modeling and scaling laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. These two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.

  11. Bridging scales through multiscale modeling: a case study on protein kinase A.

    PubMed

    Boras, Britton W; Hirakis, Sophia P; Votapka, Lane W; Malmstrom, Robert D; Amaro, Rommie E; McCulloch, Andrew D

    2015-01-01

    The goal of multiscale modeling in biology is to use structurally based physico-chemical models to integrate across temporal and spatial scales of biology and thereby improve mechanistic understanding of, for example, how a single mutation can alter organism-scale phenotypes. This approach may also inform therapeutic strategies or identify candidate drug targets that might otherwise have been overlooked. However, in many cases, it remains unclear how best to synthesize information obtained from various scales and analysis approaches, such as atomistic molecular models, Markov state models (MSM), subcellular network models, and whole cell models. In this paper, we use protein kinase A (PKA) activation as a case study to explore how computational methods that model different physical scales can complement each other and integrate into an improved multiscale representation of the biological mechanisms. Using measured crystal structures, we show how molecular dynamics (MD) simulations coupled with atomic-scale MSMs can provide conformations for Brownian dynamics (BD) simulations to feed transitional states and kinetic parameters into protein-scale MSMs. We discuss how milestoning can give reaction probabilities and forward-rate constants of cAMP association events by seamlessly integrating MD and BD simulation scales. These rate constants coupled with MSMs provide a robust representation of the free energy landscape, enabling access to kinetic, and thermodynamic parameters unavailable from current experimental data. These approaches have helped to illuminate the cooperative nature of PKA activation in response to distinct cAMP binding events. Collectively, this approach exemplifies a general strategy for multiscale model development that is applicable to a wide range of biological problems.

  12. Hybrid Multiscale Simulation of Hydrologic and Biogeochemical Processes in the River-Groundwater Interaction Zone

    NASA Astrophysics Data System (ADS)

    Yang, X.; Scheibe, T. D.; Chen, X.; Hammond, G. E.; Song, X.

    2015-12-01

    The zone in which river water and groundwater mix plays an important role in natural ecosystems as it regulates the mixing of nutrients that control biogeochemical transformations. Subsurface heterogeneity leads to local hotspots of microbial activity that are important to system function yet difficult to resolve computationally. To address this challenge, we are testing a hybrid multiscale approach that couples models at two distinct scales, based on field research at the U. S. Department of Energy's Hanford Site. The region of interest is a 400 x 400 x 20 m macroscale domain that intersects the aquifer and the river and contains a contaminant plume. However, biogeochemical activity is high in a thin zone (mud layer, <1 m thick) immediately adjacent to the river. This microscale domain is highly heterogeneous and requires fine spatial resolution to adequately represent the effects of local mixing on reactions. It is not computationally feasible to resolve the full macroscale domain at the fine resolution needed in the mud layer, and the reaction network needed in the mud layer is much more complex than that needed in the rest of the macroscale domain. Hence, a hybrid multiscale approach is used to efficiently and accurately predict flow and reactive transport at both scales. In our simulations, models at both scales are simulated using the PFLOTRAN code. Multiple microscale simulations in dynamically defined sub-domains (fine resolution, complex reaction network) are executed and coupled with a macroscale simulation over the entire domain (coarse resolution, simpler reaction network). The objectives of the research include: 1) comparing accuracy and computing cost of the hybrid multiscale simulation with a single-scale simulation; 2) identifying hot spots of microbial activity; and 3) defining macroscopic quantities such as fluxes, residence times and effective reaction rates.

  13. Multiscale Aspects of Modeling Gas-Phase Nanoparticle Synthesis

    PubMed Central

    Buesser, B.; Gröhn, A.J.

    2013-01-01

    Aerosol reactors are utilized to manufacture nanoparticles in industrially relevant quantities. The development, understanding and scale-up of aerosol reactors can be facilitated with models and computer simulations. This review aims to provide an overview of recent developments of models and simulations and discuss their interconnection in a multiscale approach. A short introduction of the various aerosol reactor types and gas-phase particle dynamics is presented as a background for the later discussion of the models and simulations. Models are presented with decreasing time and length scales in sections on continuum, mesoscale, molecular dynamics and quantum mechanics models. PMID:23729992

  14. An Expanded Multi-scale Monte Carlo Simulation Method for Personalized Radiobiological Effect Estimation in Radiotherapy: a feasibility study

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Feng, Yuanming; Wang, Wei; Yang, Chengwen; Wang, Ping

    2017-03-01

    A novel and versatile “bottom-up” approach is developed to estimate the radiobiological effect of clinic radiotherapy. The model consists of multi-scale Monte Carlo simulations from organ to cell levels. At cellular level, accumulated damages are computed using a spectrum-based accumulation algorithm and predefined cellular damage database. The damage repair mechanism is modeled by an expanded reaction-rate two-lesion kinetic model, which were calibrated through replicating a radiobiological experiment. Multi-scale modeling is then performed on a lung cancer patient under conventional fractionated irradiation. The cell killing effects of two representative voxels (isocenter and peripheral voxel of the tumor) are computed and compared. At microscopic level, the nucleus dose and damage yields vary among all nucleuses within the voxels. Slightly larger percentage of cDSB yield is observed for the peripheral voxel (55.0%) compared to the isocenter one (52.5%). For isocenter voxel, survival fraction increase monotonically at reduced oxygen environment. Under an extreme anoxic condition (0.001%), survival fraction is calculated to be 80% and the hypoxia reduction factor reaches a maximum value of 2.24. In conclusion, with biological-related variations, the proposed multi-scale approach is more versatile than the existing approaches for evaluating personalized radiobiological effects in radiotherapy.

  15. Integrating Intracellular Dynamics Using CompuCell3D and Bionetsolver: Applications to Multiscale Modelling of Cancer Cell Growth and Invasion

    PubMed Central

    Andasari, Vivi; Roper, Ryan T.; Swat, Maciej H.; Chaplain, Mark A. J.

    2012-01-01

    In this paper we present a multiscale, individual-based simulation environment that integrates CompuCell3D for lattice-based modelling on the cellular level and Bionetsolver for intracellular modelling. CompuCell3D or CC3D provides an implementation of the lattice-based Cellular Potts Model or CPM (also known as the Glazier-Graner-Hogeweg or GGH model) and a Monte Carlo method based on the metropolis algorithm for system evolution. The integration of CC3D for cellular systems with Bionetsolver for subcellular systems enables us to develop a multiscale mathematical model and to study the evolution of cell behaviour due to the dynamics inside of the cells, capturing aspects of cell behaviour and interaction that is not possible using continuum approaches. We then apply this multiscale modelling technique to a model of cancer growth and invasion, based on a previously published model of Ramis-Conde et al. (2008) where individual cell behaviour is driven by a molecular network describing the dynamics of E-cadherin and -catenin. In this model, which we refer to as the centre-based model, an alternative individual-based modelling technique was used, namely, a lattice-free approach. In many respects, the GGH or CPM methodology and the approach of the centre-based model have the same overall goal, that is to mimic behaviours and interactions of biological cells. Although the mathematical foundations and computational implementations of the two approaches are very different, the results of the presented simulations are compatible with each other, suggesting that by using individual-based approaches we can formulate a natural way of describing complex multi-cell, multiscale models. The ability to easily reproduce results of one modelling approach using an alternative approach is also essential from a model cross-validation standpoint and also helps to identify any modelling artefacts specific to a given computational approach. PMID:22461894

  16. Multiscale simulations of anisotropic particles combining molecular dynamics and Green's function reaction dynamics

    NASA Astrophysics Data System (ADS)

    Vijaykumar, Adithya; Ouldridge, Thomas E.; ten Wolde, Pieter Rein; Bolhuis, Peter G.

    2017-03-01

    The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.

  17. Multiscale Approach For Simulating Nonlinear Wave Propagation In Materials with Localized Microdamage

    NASA Astrophysics Data System (ADS)

    Vanaverbeke, Sigfried; Van Den Abeele, Koen

    2006-05-01

    A multiscale model for the simulation of two-dimensional nonlinear wave propagation in microcracked materials exhibiting hysteretic nonlinearity is presented. We use trigger-like elements with a two state nonlinear stress-strain relation to simulate microcracks at the microlevel. A generalized Preisach space approach, based on the eigenstress-eigenstrain formulation, upscales the microscopic state relation to the mesoscopic level. The macroscopic response of the sample to an arbitrary excitation signal is then predicted using a staggered grid Elastodynamic Finite Integration Technique (EFIT) formalism. We apply the model to investigate spectral changes of a pulsed signal traversing a localized microdamaged region with hysteretic nonlinearity in a plate, and to study the influence of a superficial region with hysteretic nonlinearity on the nonlinear Rayleigh wave propagation.

  18. A Computational Systems Biology Software Platform for Multiscale Modeling and Simulation: Integrating Whole-Body Physiology, Disease Biology, and Molecular Reaction Networks

    PubMed Central

    Eissing, Thomas; Kuepfer, Lars; Becker, Corina; Block, Michael; Coboeken, Katrin; Gaub, Thomas; Goerlitz, Linus; Jaeger, Juergen; Loosen, Roland; Ludewig, Bernd; Meyer, Michaela; Niederalt, Christoph; Sevestre, Michael; Siegmund, Hans-Ulrich; Solodenko, Juri; Thelen, Kirstin; Telle, Ulrich; Weiss, Wolfgang; Wendl, Thomas; Willmann, Stefan; Lippert, Joerg

    2011-01-01

    Today, in silico studies and trial simulations already complement experimental approaches in pharmaceutical R&D and have become indispensable tools for decision making and communication with regulatory agencies. While biology is multiscale by nature, project work, and software tools usually focus on isolated aspects of drug action, such as pharmacokinetics at the organism scale or pharmacodynamic interaction on the molecular level. We present a modeling and simulation software platform consisting of PK-Sim® and MoBi® capable of building and simulating models that integrate across biological scales. A prototypical multiscale model for the progression of a pancreatic tumor and its response to pharmacotherapy is constructed and virtual patients are treated with a prodrug activated by hepatic metabolization. Tumor growth is driven by signal transduction leading to cell cycle transition and proliferation. Free tumor concentrations of the active metabolite inhibit Raf kinase in the signaling cascade and thereby cell cycle progression. In a virtual clinical study, the individual therapeutic outcome of the chemotherapeutic intervention is simulated for a large population with heterogeneous genomic background. Thereby, the platform allows efficient model building and integration of biological knowledge and prior data from all biological scales. Experimental in vitro model systems can be linked with observations in animal experiments and clinical trials. The interplay between patients, diseases, and drugs and topics with high clinical relevance such as the role of pharmacogenomics, drug–drug, or drug–metabolite interactions can be addressed using this mechanistic, insight driven multiscale modeling approach. PMID:21483730

  19. Multiscale modeling and simulation of brain blood flow

    NASA Astrophysics Data System (ADS)

    Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em

    2016-02-01

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.

  20. Active learning of constitutive relation from mesoscopic dynamics for macroscopic modeling of non-Newtonian flows

    NASA Astrophysics Data System (ADS)

    Zhao, Lifei; Li, Zhen; Caswell, Bruce; Ouyang, Jie; Karniadakis, George Em

    2018-06-01

    We simulate complex fluids by means of an on-the-fly coupling of the bulk rheology to the underlying microstructure dynamics. In particular, a continuum model of polymeric fluids is constructed without a pre-specified constitutive relation, but instead it is actively learned from mesoscopic simulations where the dynamics of polymer chains is explicitly computed. To couple the bulk rheology of polymeric fluids and the microscale dynamics of polymer chains, the continuum approach (based on the finite volume method) provides the transient flow field as inputs for the (mesoscopic) dissipative particle dynamics (DPD), and in turn DPD returns an effective constitutive relation to close the continuum equations. In this multiscale modeling procedure, we employ an active learning strategy based on Gaussian process regression (GPR) to minimize the number of expensive DPD simulations, where adaptively selected DPD simulations are performed only as necessary. Numerical experiments are carried out for flow past a circular cylinder of a non-Newtonian fluid, modeled at the mesoscopic level by bead-spring chains. The results show that only five DPD simulations are required to achieve an effective closure of the continuum equations at Reynolds number Re = 10. Furthermore, when Re is increased to 100, only one additional DPD simulation is required for constructing an extended GPR-informed model closure. Compared to traditional message-passing multiscale approaches, applying an active learning scheme to multiscale modeling of non-Newtonian fluids can significantly increase the computational efficiency. Although the method demonstrated here obtains only a local viscosity from the polymer dynamics, it can be extended to other multiscale models of complex fluids whose macro-rheology is unknown.

  1. A multi-scale residual-based anti-hourglass control for compatible staggered Lagrangian hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucharik, M.; Scovazzi, Guglielmo; Shashkov, Mikhail Jurievich

    Hourglassing is a well-known pathological numerical artifact affecting the robustness and accuracy of Lagrangian methods. There exist a large number of hourglass control/suppression strategies. In the community of the staggered compatible Lagrangian methods, the approach of sub-zonal pressure forces is among the most widely used. However, this approach is known to add numerical strength to the solution, which can cause potential problems in certain types of simulations, for instance in simulations of various instabilities. To avoid this complication, we have adapted the multi-scale residual-based stabilization typically used in the finite element approach for staggered compatible framework. In this study, wemore » describe two discretizations of the new approach and demonstrate their properties and compare with the method of sub-zonal pressure forces on selected numerical problems.« less

  2. A multi-scale residual-based anti-hourglass control for compatible staggered Lagrangian hydrodynamics

    DOE PAGES

    Kucharik, M.; Scovazzi, Guglielmo; Shashkov, Mikhail Jurievich; ...

    2017-10-28

    Hourglassing is a well-known pathological numerical artifact affecting the robustness and accuracy of Lagrangian methods. There exist a large number of hourglass control/suppression strategies. In the community of the staggered compatible Lagrangian methods, the approach of sub-zonal pressure forces is among the most widely used. However, this approach is known to add numerical strength to the solution, which can cause potential problems in certain types of simulations, for instance in simulations of various instabilities. To avoid this complication, we have adapted the multi-scale residual-based stabilization typically used in the finite element approach for staggered compatible framework. In this study, wemore » describe two discretizations of the new approach and demonstrate their properties and compare with the method of sub-zonal pressure forces on selected numerical problems.« less

  3. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE PAGES

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    2015-12-07

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less

  4. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less

  5. Modeling Impact-induced Failure of Polysilicon MEMS: A Multi-scale Approach.

    PubMed

    Mariani, Stefano; Ghisi, Aldo; Corigliano, Alberto; Zerbini, Sarah

    2009-01-01

    Failure of packaged polysilicon micro-electro-mechanical systems (MEMS) subjected to impacts involves phenomena occurring at several length-scales. In this paper we present a multi-scale finite element approach to properly allow for: (i) the propagation of stress waves inside the package; (ii) the dynamics of the whole MEMS; (iii) the spreading of micro-cracking in the failing part(s) of the sensor. Through Monte Carlo simulations, some effects of polysilicon micro-structure on the failure mode are elucidated.

  6. Hierarchical Multiscale Modeling of Macromolecules and their Assemblies

    PubMed Central

    Ortoleva, P.; Singharoy, A.; Pankavich, S.

    2013-01-01

    Soft materials (e.g., enveloped viruses, liposomes, membranes and supercooled liquids) simultaneously deform or display collective behaviors, while undergoing atomic scale vibrations and collisions. While the multiple space-time character of such systems often makes traditional molecular dynamics simulation impractical, a multiscale approach has been presented that allows for long-time simulation with atomic detail based on the co-evolution of slowly-varying order parameters (OPs) with the quasi-equilibrium probability density of atomic configurations. However, this approach breaks down when the structural change is extreme, or when nearest-neighbor connectivity of atoms is not maintained. In the current study, a self-consistent approach is presented wherein OPs and a reference structure co-evolve slowly to yield long-time simulation for dynamical soft-matter phenomena such as structural transitions and self-assembly. The development begins with the Liouville equation for N classical atoms and an ansatz on the form of the associated N-atom probability density. Multiscale techniques are used to derive Langevin equations for the coupled OP-configurational dynamics. The net result is a set of equations for the coupled stochastic dynamics of the OPs and centers of mass of the subsystems that constitute a soft material body. The theory is based on an all-atom methodology and an interatomic force field, and therefore enables calibration-free simulations of soft matter, such as macromolecular assemblies. PMID:23671457

  7. Structure-based multiscale approach for identification of interaction partners of PDZ domains.

    PubMed

    Tiwari, Garima; Mohanty, Debasisa

    2014-04-28

    PDZ domains are peptide recognition modules which mediate specific protein-protein interactions and are known to have a complex specificity landscape. We have developed a novel structure-based multiscale approach which identifies crucial specificity determining residues (SDRs) of PDZ domains from explicit solvent molecular dynamics (MD) simulations on PDZ-peptide complexes and uses these SDRs in combination with knowledge-based scoring functions for proteomewide identification of their interaction partners. Multiple explicit solvent simulations ranging from 5 to 50 ns duration have been carried out on 28 PDZ-peptide complexes with known binding affinities. MM/PBSA binding energy values calculated from these simulations show a correlation coefficient of 0.755 with the experimental binding affinities. On the basis of the SDRs of PDZ domains identified by MD simulations, we have developed a simple scoring scheme for evaluating binding energies for PDZ-peptide complexes using residue based statistical pair potentials. This multiscale approach has been benchmarked on a mouse PDZ proteome array data set by calculating the binding energies for 217 different substrate peptides in binding pockets of 64 different mouse PDZ domains. Receiver operating characteristic (ROC) curve analysis indicates that, the area under curve (AUC) values for binder vs nonbinder classification by our structure based method is 0.780. Our structure based method does not require experimental PDZ-peptide binding data for training.

  8. An extended algebraic variational multiscale-multigrid-multifractal method (XAVM4) for large-eddy simulation of turbulent two-phase flow

    NASA Astrophysics Data System (ADS)

    Rasthofer, U.; Wall, W. A.; Gravemeier, V.

    2018-04-01

    A novel and comprehensive computational method, referred to as the eXtended Algebraic Variational Multiscale-Multigrid-Multifractal Method (XAVM4), is proposed for large-eddy simulation of the particularly challenging problem of turbulent two-phase flow. The XAVM4 involves multifractal subgrid-scale modeling as well as a Nitsche-type extended finite element method as an approach for two-phase flow. The application of an advanced structural subgrid-scale modeling approach in conjunction with a sharp representation of the discontinuities at the interface between two bulk fluids promise high-fidelity large-eddy simulation of turbulent two-phase flow. The high potential of the XAVM4 is demonstrated for large-eddy simulation of turbulent two-phase bubbly channel flow, that is, turbulent channel flow carrying a single large bubble of the size of the channel half-width in this particular application.

  9. Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study.

    PubMed

    Twycross, Jamie; Band, Leah R; Bennett, Malcolm J; King, John R; Krasnogor, Natalio

    2010-03-26

    Stochastic and asymptotic methods are powerful tools in developing multiscale systems biology models; however, little has been done in this context to compare the efficacy of these methods. The majority of current systems biology modelling research, including that of auxin transport, uses numerical simulations to study the behaviour of large systems of deterministic ordinary differential equations, with little consideration of alternative modelling frameworks. In this case study, we solve an auxin-transport model using analytical methods, deterministic numerical simulations and stochastic numerical simulations. Although the three approaches in general predict the same behaviour, the approaches provide different information that we use to gain distinct insights into the modelled biological system. We show in particular that the analytical approach readily provides straightforward mathematical expressions for the concentrations and transport speeds, while the stochastic simulations naturally provide information on the variability of the system. Our study provides a constructive comparison which highlights the advantages and disadvantages of each of the considered modelling approaches. This will prove helpful to researchers when weighing up which modelling approach to select. In addition, the paper goes some way to bridging the gap between these approaches, which in the future we hope will lead to integrative hybrid models.

  10. Petascale computation performance of lightweight multiscale cardiac models using hybrid programming models.

    PubMed

    Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias

    2011-01-01

    Future multiscale and multiphysics models must use the power of high performance computing (HPC) systems to enable research into human disease, translational medical science, and treatment. Previously we showed that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message passing processes (e.g. the message passing interface (MPI)) with multithreading (e.g. OpenMP, POSIX pthreads). The objective of this work is to compare the performance of such hybrid programming models when applied to the simulation of a lightweight multiscale cardiac model. Our results show that the hybrid models do not perform favourably when compared to an implementation using only MPI which is in contrast to our results using complex physiological models. Thus, with regards to lightweight multiscale cardiac models, the user may not need to increase programming complexity by using a hybrid programming approach. However, considering that model complexity will increase as well as the HPC system size in both node count and number of cores per node, it is still foreseeable that we will achieve faster than real time multiscale cardiac simulations on these systems using hybrid programming models.

  11. Nonlocal and Mixed-Locality Multiscale Finite Element Methods

    DOE PAGES

    Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.

    2018-03-27

    In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. Here, inmore » this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. Finally, we conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.« less

  12. Nonlocal and Mixed-Locality Multiscale Finite Element Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.

    In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. Here, inmore » this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. Finally, we conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.« less

  13. Multiscale molecular dynamics simulations of rotary motor proteins.

    PubMed

    Ekimoto, Toru; Ikeguchi, Mitsunori

    2018-04-01

    Protein functions require specific structures frequently coupled with conformational changes. The scale of the structural dynamics of proteins spans from the atomic to the molecular level. Theoretically, all-atom molecular dynamics (MD) simulation is a powerful tool to investigate protein dynamics because the MD simulation is capable of capturing conformational changes obeying the intrinsically structural features. However, to study long-timescale dynamics, efficient sampling techniques and coarse-grained (CG) approaches coupled with all-atom MD simulations, termed multiscale MD simulations, are required to overcome the timescale limitation in all-atom MD simulations. Here, we review two examples of rotary motor proteins examined using free energy landscape (FEL) analysis and CG-MD simulations. In the FEL analysis, FEL is calculated as a function of reaction coordinates, and the long-timescale dynamics corresponding to conformational changes is described as transitions on the FEL surface. Another approach is the utilization of the CG model, in which the CG parameters are tuned using the fluctuation matching methodology with all-atom MD simulations. The long-timespan dynamics is then elucidated straightforwardly by using CG-MD simulations.

  14. Developing Higher-Order Materials Knowledge Systems

    NASA Astrophysics Data System (ADS)

    Fast, Anthony Nathan

    2011-12-01

    Advances in computational materials science and novel characterization techniques have allowed scientists to probe deeply into a diverse range of materials phenomena. These activities are producing enormous amounts of information regarding the roles of various hierarchical material features in the overall performance characteristics displayed by the material. Connecting the hierarchical information over disparate domains is at the crux of multiscale modeling. The inherent challenge of performing multiscale simulations is developing scale bridging relationships to couple material information between well separated length scales. Much progress has been made in the development of homogenization relationships which replace heterogeneous material features with effective homogenous descriptions. These relationships facilitate the flow of information from lower length scales to higher length scales. Meanwhile, most localization relationships that link the information from a from a higher length scale to a lower length scale are plagued by computationally intensive techniques which are not readily integrated into multiscale simulations. The challenge of executing fully coupled multiscale simulations is augmented by the need to incorporate the evolution of the material structure that may occur under conditions such as material processing. To address these challenges with multiscale simulation, a novel framework called the Materials Knowledge System (MKS) has been developed. This methodology efficiently extracts, stores, and recalls microstructure-property-processing localization relationships. This approach is built on the statistical continuum theories developed by Kroner that express the localization of the response field at the microscale using a series of highly complex convolution integrals, which have historically been evaluated analytically. The MKS approach dramatically improves the accuracy of these expressions by calibrating the convolution kernels in these expressions to results from previously validated physics-based models. These novel tools have been validated for the elastic strain localization in moderate contrast dual-phase composites by direct comparisons with predictions from finite element model. The versatility of the approach is further demonstrated by its successful application to capturing the structure evolution during spinodal decomposition of a binary alloy. Lastly, some key features in the future application of the MKS approach are developed using the Portevin-le Chaterlier effect. It has been shown with these case studies that the MKS approach is capable of accurately reproducing the results from physics based models with a drastic reduction in computational requirements.

  15. A new class of finite element variational multiscale turbulence models for incompressible magnetohydrodynamics

    DOE PAGES

    Sondak, D.; Shadid, J. N.; Oberai, A. A.; ...

    2015-04-29

    New large eddy simulation (LES) turbulence models for incompressible magnetohydrodynamics (MHD) derived from the variational multiscale (VMS) formulation for finite element simulations are introduced. The new models include the variational multiscale formulation, a residual-based eddy viscosity model, and a mixed model that combines both of these component models. Each model contains terms that are proportional to the residual of the incompressible MHD equations and is therefore numerically consistent. Moreover, each model is also dynamic, in that its effect vanishes when this residual is small. The new models are tested on the decaying MHD Taylor Green vortex at low and highmore » Reynolds numbers. The evaluation of the models is based on comparisons with available data from direct numerical simulations (DNS) of the time evolution of energies as well as energy spectra at various discrete times. Thus a numerical study, on a sequence of meshes, is presented that demonstrates that the large eddy simulation approaches the DNS solution for these quantities with spatial mesh refinement.« less

  16. Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt

    Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach and paper, the theoretical modeling and scalingmore » laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. Finally, these two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.« less

  17. Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes

    DOE PAGES

    Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt; ...

    2017-11-27

    Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach and paper, the theoretical modeling and scalingmore » laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. Finally, these two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.« less

  18. Integrative computational models of cardiac arrhythmias -- simulating the structurally realistic heart

    PubMed Central

    Trayanova, Natalia A; Tice, Brock M

    2009-01-01

    Simulation of cardiac electrical function, and specifically, simulation aimed at understanding the mechanisms of cardiac rhythm disorders, represents an example of a successful integrative multiscale modeling approach, uncovering emergent behavior at the successive scales in the hierarchy of structural complexity. The goal of this article is to present a review of the integrative multiscale models of realistic ventricular structure used in the quest to understand and treat ventricular arrhythmias. It concludes with the new advances in image-based modeling of the heart and the promise it holds for the development of individualized models of ventricular function in health and disease. PMID:20628585

  19. Coupling discrete and continuum concentration particle models for multiscale and hybrid molecular-continuum simulations

    NASA Astrophysics Data System (ADS)

    Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott

    2017-12-01

    Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely resolved (e.g., molecular dynamics) and coarse-grained (e.g., continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 084115 (2016)], simulated using a particle-based continuum method known as smoothed dissipative particle dynamics. An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.

  20. Interface-Resolving Simulation of Collision Efficiency of Cloud Droplets

    NASA Astrophysics Data System (ADS)

    Wang, Lian-Ping; Peng, Cheng; Rosa, Bodgan; Onishi, Ryo

    2017-11-01

    Small-scale air turbulence could enhance the geometric collision rate of cloud droplets while large-scale air turbulence could augment the diffusional growth of cloud droplets. Air turbulence could also enhance the collision efficiency of cloud droplets. Accurate simulation of collision efficiency, however, requires capture of the multi-scale droplet-turbulence and droplet-droplet interactions, which has only been partially achieved in the recent past using the hybrid direct numerical simulation (HDNS) approach. % where Stokes disturbance flow is assumed. The HDNS approach has two major drawbacks: (1) the short-range droplet-droplet interaction is not treated rigorously; (2) the finite-Reynolds number correction to the collision efficiency is not included. In this talk, using two independent numerical methods, we will develop an interface-resolved simulation approach in which the disturbance flows are directly resolved numerically, combined with a rigorous lubrication correction model for near-field droplet-droplet interaction. This multi-scale approach is first used to study the effect of finite flow Reynolds numbers on the droplet collision efficiency in still air. Our simulation results show a significant finite-Re effect on collision efficiency when the droplets are of similar sizes. Preliminary results on integrating this approach in a turbulent flow laden with droplets will also be presented. This work is partially supported by the National Science Foundation.

  1. Multiscale Molecular Dynamics Model for Heterogeneous Charged Systems

    NASA Astrophysics Data System (ADS)

    Stanton, L. G.; Glosli, J. N.; Murillo, M. S.

    2018-04-01

    Modeling matter across large length scales and timescales using molecular dynamics simulations poses significant challenges. These challenges are typically addressed through the use of precomputed pair potentials that depend on thermodynamic properties like temperature and density; however, many scenarios of interest involve spatiotemporal variations in these properties, and such variations can violate assumptions made in constructing these potentials, thus precluding their use. In particular, when a system is strongly heterogeneous, most of the usual simplifying assumptions (e.g., spherical potentials) do not apply. Here, we present a multiscale approach to orbital-free density functional theory molecular dynamics (OFDFT-MD) simulations that bridges atomic, interionic, and continuum length scales to allow for variations in hydrodynamic quantities in a consistent way. Our multiscale approach enables simulations on the order of micron length scales and 10's of picosecond timescales, which exceeds current OFDFT-MD simulations by many orders of magnitude. This new capability is then used to study the heterogeneous, nonequilibrium dynamics of a heated interface characteristic of an inertial-confinement-fusion capsule containing a plastic ablator near a fuel layer composed of deuterium-tritium ice. At these scales, fundamental assumptions of continuum models are explored; features such as the separation of the momentum fields among the species and strong hydrogen jetting from the plastic into the fuel region are observed, which had previously not been seen in hydrodynamic simulations.

  2. Multi-Scale Impact and Compression-After-Impact Modeling of Reinforced Benzoxazine/Epoxy Composites using Micromechanics Approach

    NASA Astrophysics Data System (ADS)

    Montero, Marc Villa; Barjasteh, Ehsan; Baid, Harsh K.; Godines, Cody; Abdi, Frank; Nikbin, Kamran

    A multi-scale micromechanics approach along with finite element (FE) model predictive tool is developed to analyze low-energy-impact damage footprint and compression-after-impact (CAI) of composite laminates which is also tested and verified with experimental data. Effective fiber and matrix properties were reverse-engineered from lamina properties using an optimization algorithm and used to assess damage at the micro-level during impact and post-impact FE simulations. Progressive failure dynamic analysis (PFDA) was performed for a two step-process simulation. Damage mechanisms at the micro-level were continuously evaluated during the analyses. Contribution of each failure mode was tracked during the simulations and damage and delamination footprint size and shape were predicted to understand when, where and why failure occurred during both impact and CAI events. The composite laminate was manufactured by the vacuum infusion of the aero-grade toughened Benzoxazine system into the fabric preform. Delamination footprint was measured using C-scan data from the impacted panels and compared with the predicated values obtained from proposed multi-scale micromechanics coupled with FE analysis. Furthermore, the residual strength was predicted from the load-displacement curve and compared with the experimental values as well.

  3. Multiscale Analysis of Time Irreversibility Based on Phase-Space Reconstruction and Horizontal Visibility Graph Approach

    NASA Astrophysics Data System (ADS)

    Zhang, Yongping; Shang, Pengjian; Xiong, Hui; Xia, Jianan

    Time irreversibility is an important property of nonequilibrium dynamic systems. A visibility graph approach was recently proposed, and this approach is generally effective to measure time irreversibility of time series. However, its result may be unreliable when dealing with high-dimensional systems. In this work, we consider the joint concept of time irreversibility and adopt the phase-space reconstruction technique to improve this visibility graph approach. Compared with the previous approach, the improved approach gives a more accurate estimate for the irreversibility of time series, and is more effective to distinguish irreversible and reversible stochastic processes. We also use this approach to extract the multiscale irreversibility to account for the multiple inherent dynamics of time series. Finally, we apply the approach to detect the multiscale irreversibility of financial time series, and succeed to distinguish the time of financial crisis and the plateau. In addition, Asian stock indexes away from other indexes are clearly visible in higher time scales. Simulations and real data support the effectiveness of the improved approach when detecting time irreversibility.

  4. Seafloor identification in sonar imagery via simulations of Helmholtz equations and discrete optimization

    NASA Astrophysics Data System (ADS)

    Engquist, Björn; Frederick, Christina; Huynh, Quyen; Zhou, Haomin

    2017-06-01

    We present a multiscale approach for identifying features in ocean beds by solving inverse problems in high frequency seafloor acoustics. The setting is based on Sound Navigation And Ranging (SONAR) imaging used in scientific, commercial, and military applications. The forward model incorporates multiscale simulations, by coupling Helmholtz equations and geometrical optics for a wide range of spatial scales in the seafloor geometry. This allows for detailed recovery of seafloor parameters including material type. Simulated backscattered data is generated using numerical microlocal analysis techniques. In order to lower the computational cost of the large-scale simulations in the inversion process, we take advantage of a pre-computed library of representative acoustic responses from various seafloor parameterizations.

  5. Real-Time Nonlocal Means-Based Despeckling.

    PubMed

    Breivik, Lars Hofsoy; Snare, Sten Roar; Steen, Erik Normann; Solberg, Anne H Schistad

    2017-06-01

    In this paper, we propose a multiscale nonlocal means-based despeckling method for medical ultrasound. The multiscale approach leads to large computational savings and improves despeckling results over single-scale iterative approaches. We present two variants of the method. The first, denoted multiscale nonlocal means (MNLM), yields uniform robust filtering of speckle both in structured and homogeneous regions. The second, denoted unnormalized MNLM (UMNLM), is more conservative in regions of structure assuring minimal disruption of salient image details. Due to the popularity of anisotropic diffusion-based methods in the despeckling literature, we review the connection between anisotropic diffusion and iterative variants of NLM. These iterative variants in turn relate to our multiscale variant. As part of our evaluation, we conduct a simulation study making use of ground truth phantoms generated from clinical B-mode ultrasound images. We evaluate our method against a set of popular methods from the despeckling literature on both fine and coarse speckle noise. In terms of computational efficiency, our method outperforms the other considered methods. Quantitatively on simulations and on a tissue-mimicking phantom, our method is found to be competitive with the state-of-the-art. On clinical B-mode images, our method is found to effectively smooth speckle while preserving low-contrast and highly localized salient image detail.

  6. A physics based multiscale modeling of cavitating flows.

    PubMed

    Ma, Jingsen; Hsiao, Chao-Tsung; Chahine, Georges L

    2017-03-02

    Numerical modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Singularities Model (DSM) for dispersed microbubbles and a two-phase Navier Stokes solver for the bubbly medium, which includes a level set approach to describe large cavities or gaseous pockets. Inter-scale schemes are used to smoothly bridge the two transitioning subgrid DSM bubbles into larger discretized cavities. This approach is demonstrated on several problems including cavitation inception and vapor core formation in a vortex flow, sheet-to-cloud cavitation over a hydrofoil, cavitation behind a blunt body, and cavitation on a propeller. These examples highlight the capabilities of the developed multiscale model in simulating various form of cavitation.

  7. A physics based multiscale modeling of cavitating flows

    PubMed Central

    Ma, Jingsen; Hsiao, Chao-Tsung; Chahine, Georges L.

    2018-01-01

    Numerical modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Singularities Model (DSM) for dispersed microbubbles and a two-phase Navier Stokes solver for the bubbly medium, which includes a level set approach to describe large cavities or gaseous pockets. Inter-scale schemes are used to smoothly bridge the two transitioning subgrid DSM bubbles into larger discretized cavities. This approach is demonstrated on several problems including cavitation inception and vapor core formation in a vortex flow, sheet-to-cloud cavitation over a hydrofoil, cavitation behind a blunt body, and cavitation on a propeller. These examples highlight the capabilities of the developed multiscale model in simulating various form of cavitation. PMID:29720773

  8. Intergranular Strain Evolution During Biaxial Loading: A Multiscale FE-FFT Approach

    NASA Astrophysics Data System (ADS)

    Upadhyay, M. V.; Capek, J.; Van Petegem, S.; Lebensohn, R. A.; Van Swygenhoven, H.

    2017-05-01

    Predicting the macroscopic and microscopic mechanical response of metals and alloys subjected to complex loading conditions necessarily requires a synergistic combination of multiscale material models and characterization techniques. This article focuses on the use of a multiscale approach to study the difference between intergranular lattice strain evolution for various grain families measured during in situ neutron diffraction on dog bone and cruciform 316L samples. At the macroscale, finite element simulations capture the complex coupling between applied forces and gauge stresses in cruciform geometries. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale full-field elasto-viscoplastic fast Fourier transform crystal plasticity model. The results highlight the role of grain neighborhood on the intergranular strain evolution under uniaxial and equibiaxial loading.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogarty, Aoife C., E-mail: fogarty@mpip-mainz.mpg.de; Potestio, Raffaello, E-mail: potestio@mpip-mainz.mpg.de; Kremer, Kurt, E-mail: kremer@mpip-mainz.mpg.de

    A fully atomistic modelling of many biophysical and biochemical processes at biologically relevant length- and time scales is beyond our reach with current computational resources, and one approach to overcome this difficulty is the use of multiscale simulation techniques. In such simulations, when system properties necessitate a boundary between resolutions that falls within the solvent region, one can use an approach such as the Adaptive Resolution Scheme (AdResS), in which solvent particles change their resolution on the fly during the simulation. Here, we apply the existing AdResS methodology to biomolecular systems, simulating a fully atomistic protein with an atomistic hydrationmore » shell, solvated in a coarse-grained particle reservoir and heat bath. Using as a test case an aqueous solution of the regulatory protein ubiquitin, we first confirm the validity of the AdResS approach for such systems, via an examination of protein and solvent structural and dynamical properties. We then demonstrate how, in addition to providing a computational speedup, such a multiscale AdResS approach can yield otherwise inaccessible physical insights into biomolecular function. We use our methodology to show that protein structure and dynamics can still be correctly modelled using only a few shells of atomistic water molecules. We also discuss aspects of the AdResS methodology peculiar to biomolecular simulations.« less

  10. Multiscale simulations of the early stages of the growth of graphene on copper

    NASA Astrophysics Data System (ADS)

    Gaillard, P.; Chanier, T.; Henrard, L.; Moskovkin, P.; Lucas, S.

    2015-07-01

    We have performed multiscale simulations of the growth of graphene on defect-free copper (111) in order to model the nucleation and growth of graphene flakes during chemical vapour deposition and potentially guide future experimental work. Basic activation energies for atomic surface diffusion were determined by ab initio calculations. Larger scale growth was obtained within a kinetic Monte Carlo approach (KMC) with parameters based on the ab initio results. The KMC approach counts the first and second neighbours to determine the probability of surface diffusion. We report qualitative results on the size and shape of the graphene islands as a function of deposition flux. The dominance of graphene zigzag edges for low deposition flux, also observed experimentally, is explained by its larger dynamical stability that the present model fully reproduced.

  11. NEAMS FPL M2 Milestone Report: Development of a UO₂ Grain Size Model using Multicale Modeling and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonks, Michael R; Zhang, Yongfeng; Bai, Xianming

    2014-06-01

    This report summarizes development work funded by the Nuclear Energy Advanced Modeling Simulation program's Fuels Product Line (FPL) to develop a mechanistic model for the average grain size in UO₂ fuel. The model is developed using a multiscale modeling and simulation approach involving atomistic simulations, as well as mesoscale simulations using INL's MARMOT code.

  12. Diagnostic Analysis of Ozone Concentrations Simulated by Two Regional-Scale Air Quality Models

    EPA Science Inventory

    Since the Community Multiscale Air Quality modeling system (CMAQ) and the Weather Research and Forecasting with Chemistry model (WRF/Chem) use different approaches to simulate the interaction of meteorology and chemistry, this study compares the CMAQ and WRF/Chem air quality simu...

  13. Multiscale optical simulation settings: challenging applications handled with an iterative ray-tracing FDTD interface method.

    PubMed

    Leiner, Claude; Nemitz, Wolfgang; Schweitzer, Susanne; Kuna, Ladislav; Wenzl, Franz P; Hartmann, Paul; Satzinger, Valentin; Sommer, Christian

    2016-03-20

    We show that with an appropriate combination of two optical simulation techniques-classical ray-tracing and the finite difference time domain method-an optical device containing multiple diffractive and refractive optical elements can be accurately simulated in an iterative simulation approach. We compare the simulation results with experimental measurements of the device to discuss the applicability and accuracy of our iterative simulation procedure.

  14. Coupling biomechanics to a cellular level model: an approach to patient-specific image driven multi-scale and multi-physics tumor simulation.

    PubMed

    May, Christian P; Kolokotroni, Eleni; Stamatakos, Georgios S; Büchler, Philippe

    2011-10-01

    Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Multiscale Cancer Modeling

    PubMed Central

    Macklin, Paul; Cristini, Vittorio

    2013-01-01

    Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insight on the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community. PMID:21529163

  16. Multiscale Modeling in the Clinic: Drug Design and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancy, Colleen E.; An, Gary; Cannon, William R.

    A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multi-scale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multi-scale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions tomore » guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multi-scale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical techniques employed for multi-scale modeling approaches used in pharmacology and present several examples illustrating the current state-of-the-art regarding drug development for: Excitable Systems (Heart); Cancer (Metastasis and Differentiation); Cancer (Angiogenesis and Drug Targeting); Metabolic Disorders; and Inflammation and Sepsis. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multi-scale models.« less

  17. Adaptive resolution simulation of a biomolecule and its hydration shell: Structural and dynamical properties

    NASA Astrophysics Data System (ADS)

    Fogarty, Aoife C.; Potestio, Raffaello; Kremer, Kurt

    2015-05-01

    A fully atomistic modelling of many biophysical and biochemical processes at biologically relevant length- and time scales is beyond our reach with current computational resources, and one approach to overcome this difficulty is the use of multiscale simulation techniques. In such simulations, when system properties necessitate a boundary between resolutions that falls within the solvent region, one can use an approach such as the Adaptive Resolution Scheme (AdResS), in which solvent particles change their resolution on the fly during the simulation. Here, we apply the existing AdResS methodology to biomolecular systems, simulating a fully atomistic protein with an atomistic hydration shell, solvated in a coarse-grained particle reservoir and heat bath. Using as a test case an aqueous solution of the regulatory protein ubiquitin, we first confirm the validity of the AdResS approach for such systems, via an examination of protein and solvent structural and dynamical properties. We then demonstrate how, in addition to providing a computational speedup, such a multiscale AdResS approach can yield otherwise inaccessible physical insights into biomolecular function. We use our methodology to show that protein structure and dynamics can still be correctly modelled using only a few shells of atomistic water molecules. We also discuss aspects of the AdResS methodology peculiar to biomolecular simulations.

  18. A combined molecular dynamics/micromechanics/finite element approach for multiscale constitutive modeling of nanocomposites with interface effects

    NASA Astrophysics Data System (ADS)

    Yang, B. J.; Shin, H.; Lee, H. K.; Kim, H.

    2013-12-01

    We introduce a multiscale framework based on molecular dynamic (MD) simulation, micromechanics, and finite element method (FEM). A micromechanical model, which considers influences of the interface properties, nanoparticle (NP) size, and microcracks, is developed. Then, we perform MD simulations to characterize the mechanical properties of the nanocomposite system (silica/nylon 6) with varying volume fraction and size of NPs. By comparing the MD with micromechanics results, intrinsic physical properties at interfacial region are derived. Finally, we implement the developed model in the FEM code with the derived interfacial parameters, and predict the mechanical behavior of the nanocomposite at the macroscopic scale.

  19. Multiscale measurement error models for aggregated small area health data.

    PubMed

    Aregay, Mehreteab; Lawson, Andrew B; Faes, Christel; Kirby, Russell S; Carroll, Rachel; Watjou, Kevin

    2016-08-01

    Spatial data are often aggregated from a finer (smaller) to a coarser (larger) geographical level. The process of data aggregation induces a scaling effect which smoothes the variation in the data. To address the scaling problem, multiscale models that link the convolution models at different scale levels via the shared random effect have been proposed. One of the main goals in aggregated health data is to investigate the relationship between predictors and an outcome at different geographical levels. In this paper, we extend multiscale models to examine whether a predictor effect at a finer level hold true at a coarser level. To adjust for predictor uncertainty due to aggregation, we applied measurement error models in the framework of multiscale approach. To assess the benefit of using multiscale measurement error models, we compare the performance of multiscale models with and without measurement error in both real and simulated data. We found that ignoring the measurement error in multiscale models underestimates the regression coefficient, while it overestimates the variance of the spatially structured random effect. On the other hand, accounting for the measurement error in multiscale models provides a better model fit and unbiased parameter estimates. © The Author(s) 2016.

  20. Multiscale power analysis for heart rate variability

    NASA Astrophysics Data System (ADS)

    Zeng, Peng; Liu, Hongxing; Ni, Huangjing; Zhou, Jing; Xia, Lan; Ning, Xinbao

    2015-06-01

    We first introduce multiscale power (MSP) method to assess the power distribution of physiological signals on multiple time scales. Simulation on synthetic data and experiments on heart rate variability (HRV) are tested to support the approach. Results show that both physical and psychological changes influence power distribution significantly. A quantitative parameter, termed power difference (PD), is introduced to evaluate the degree of power distribution alteration. We find that dynamical correlation of HRV will be destroyed completely when PD>0.7.

  1. Recent applications of boxed molecular dynamics: a simple multiscale technique for atomistic simulations.

    PubMed

    Booth, Jonathan; Vazquez, Saulo; Martinez-Nunez, Emilio; Marks, Alison; Rodgers, Jeff; Glowacki, David R; Shalashilin, Dmitrii V

    2014-08-06

    In this paper, we briefly review the boxed molecular dynamics (BXD) method which allows analysis of thermodynamics and kinetics in complicated molecular systems. BXD is a multiscale technique, in which thermodynamics and long-time dynamics are recovered from a set of short-time simulations. In this paper, we review previous applications of BXD to peptide cyclization, solution phase organic reaction dynamics and desorption of ions from self-assembled monolayers (SAMs). We also report preliminary results of simulations of diamond etching mechanisms and protein unfolding in atomic force microscopy experiments. The latter demonstrate a correlation between the protein's structural motifs and its potential of mean force. Simulations of these processes by standard molecular dynamics (MD) is typically not possible, because the experimental time scales are very long. However, BXD yields well-converged and physically meaningful results. Compared with other methods of accelerated MD, our BXD approach is very simple; it is easy to implement, and it provides an integrated approach for simultaneously obtaining both thermodynamics and kinetics. It also provides a strategy for obtaining statistically meaningful dynamical results in regions of configuration space that standard MD approaches would visit only very rarely.

  2. Key Factors Influencing the Energy Absorption of Dual-Phase Steels: Multiscale Material Model Approach and Microstructural Optimization

    NASA Astrophysics Data System (ADS)

    Belgasam, Tarek M.; Zbib, Hussein M.

    2018-06-01

    The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro-macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.

  3. Key Factors Influencing the Energy Absorption of Dual-Phase Steels: Multiscale Material Model Approach and Microstructural Optimization

    NASA Astrophysics Data System (ADS)

    Belgasam, Tarek M.; Zbib, Hussein M.

    2018-03-01

    The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro-macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.

  4. Coupling discrete and continuum concentration particle models for multiscale and hybrid molecular-continuum simulations

    DOE PAGES

    Petsev, Nikolai Dimitrov; Leal, L. Gary; Shell, M. Scott

    2017-12-21

    Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely-resolved (e.g. molecular dynamics) and coarse-grained (e.g. continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 84115 (2016)], simulatedmore » using a particle-based continuum method known as smoothed dissipative particle dynamics (SDPD). An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.« less

  5. Coupling discrete and continuum concentration particle models for multiscale and hybrid molecular-continuum simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petsev, Nikolai Dimitrov; Leal, L. Gary; Shell, M. Scott

    Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely-resolved (e.g. molecular dynamics) and coarse-grained (e.g. continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 84115 (2016)], simulatedmore » using a particle-based continuum method known as smoothed dissipative particle dynamics (SDPD). An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.« less

  6. Hybrid stochastic simplifications for multiscale gene networks.

    PubMed

    Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu

    2009-09-07

    Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach.

  7. Fast online generalized multiscale finite element method using constraint energy minimization

    NASA Astrophysics Data System (ADS)

    Chung, Eric T.; Efendiev, Yalchin; Leung, Wing Tat

    2018-02-01

    Local multiscale methods often construct multiscale basis functions in the offline stage without taking into account input parameters, such as source terms, boundary conditions, and so on. These basis functions are then used in the online stage with a specific input parameter to solve the global problem at a reduced computational cost. Recently, online approaches have been introduced, where multiscale basis functions are adaptively constructed in some regions to reduce the error significantly. In multiscale methods, it is desired to have only 1-2 iterations to reduce the error to a desired threshold. Using Generalized Multiscale Finite Element Framework [10], it was shown that by choosing sufficient number of offline basis functions, the error reduction can be made independent of physical parameters, such as scales and contrast. In this paper, our goal is to improve this. Using our recently proposed approach [4] and special online basis construction in oversampled regions, we show that the error reduction can be made sufficiently large by appropriately selecting oversampling regions. Our numerical results show that one can achieve a three order of magnitude error reduction, which is better than our previous methods. We also develop an adaptive algorithm and enrich in selected regions with large residuals. In our adaptive method, we show that the convergence rate can be determined by a user-defined parameter and we confirm this by numerical simulations. The analysis of the method is presented.

  8. Fractal analysis of multiscale spatial autocorrelation among point data

    USGS Publications Warehouse

    De Cola, L.

    1991-01-01

    The analysis of spatial autocorrelation among point-data quadrats is a well-developed technique that has made limited but intriguing use of the multiscale aspects of pattern. In this paper are presented theoretical and algorithmic approaches to the analysis of aggregations of quadrats at or above a given density, in which these sets are treated as multifractal regions whose fractal dimension, D, may vary with phenomenon intensity, scale, and location. The technique is illustrated with Matui's quadrat house-count data, which yield measurements consistent with a nonautocorrelated simulated Poisson process but not with an orthogonal unit-step random walk. The paper concludes with a discussion of the implications of such analysis for multiscale geographic analysis systems. -Author

  9. American Society of Composites, 32nd Technical Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aitharaju, Venkat; Wollschlager, Jeffrey; Plakomytis2, Dimitrios

    This paper will present a general methodology by which weave draping manufacturing simulation results can be utilized to include the effects of weave draping and scissor angle in a structural multiscale simulation. While the methodology developed is general in nature, this paper will specifically demonstrate the methodology applied to a truncated pyramid, utilizing manufacturing simulation weave draping results from ESI PAM-FORM, and multiscale simulation using Altair Multiscale Designer (MDS) and OptiStruct. From a multiscale simulation perspective, the weave draping manufacturing simulation results will be used to develop a series of woven unit cells which cover the range of weave scissormore » angles existing within the part. For each unit cell, a multiscale material model will be developed, and applied to the corresponding spatial locations within the structural simulation mesh. In addition, the principal material orientation will be mapped from the wave draping manufacturing simulation mesh to the structural simulation mesh using Altair HyperMesh mapping technology. Results of the coupled simulation will be compared and verified against experimental data of the same available via General Motors (GM) Department of Energy (DOE) project.« less

  10. Multiscale Modeling in Computational Biomechanics: Determining Computational Priorities and Addressing Current Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tawhai, Merryn; Bischoff, Jeff; Einstein, Daniel R.

    2009-05-01

    Abstract In this article, we describe some current multiscale modeling issues in computational biomechanics from the perspective of the musculoskeletal and respiratory systems and mechanotransduction. First, we outline the necessity of multiscale simulations in these biological systems. Then we summarize challenges inherent to multiscale biomechanics modeling, regardless of the subdiscipline, followed by computational challenges that are system-specific. We discuss some of the current tools that have been utilized to aid research in multiscale mechanics simulations, and the priorities to further the field of multiscale biomechanics computation.

  11. Multiscale Simulations of Dynamics of Ferroelectric Domains

    NASA Astrophysics Data System (ADS)

    Liu, Shi

    Ferroelectrics with switchable polarization have many important technological applications, which heavily rely on the interactions between the polarization and external perturbations. Understanding the dynamical response of ferroelectric materials is crucial for the discovery and development of new design principles and engineering strategies for optimized and breakthrough applications of ferroelectrics. We developed a multiscale computational approach that combines methods at different length and time scales to elucidate the connection between local structures, domain dynamics, and macroscopic finite-temperature properties of ferroelectrics. We started from first-principles calculations of ferroelectrics to build a model interatomic potential, enabling large-scale molecular dynamics (MD) simulations. The atomistic insights of nucleation and growth at the domain wall obtained from MD were then incorporated into a continuum model within the framework of Landau-Ginzburg-Devonshire theory. This progressive theoretical framework allows for the first time an efficient and accurate estimation of macroscopic properties such as the coercive field for a broad range of ferroelectrics from first-principles. This multiscale approach has also been applied to explore the effect of dipolar defects on ferroelectric switching and to understand the origin of giant electro-strain coupling. ONR, NSF, Carnegie Institution for Science.

  12. Performance of distributed multiscale simulations

    PubMed Central

    Borgdorff, J.; Ben Belgacem, M.; Bona-Casas, C.; Fazendeiro, L.; Groen, D.; Hoenen, O.; Mizeranschi, A.; Suter, J. L.; Coster, D.; Coveney, P. V.; Dubitzky, W.; Hoekstra, A. G.; Strand, P.; Chopard, B.

    2014-01-01

    Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption. PMID:24982258

  13. A multiscale-based approach for composite materials with embedded PZT filaments for energy harvesting

    NASA Astrophysics Data System (ADS)

    El-Etriby, Ahmed E.; Abdel-Meguid, Mohamed E.; Hatem, Tarek M.; Bahei-El-Din, Yehia A.

    2014-03-01

    Ambient vibrations are major source of wasted energy, exploiting properly such vibration can be converted to valuable energy and harvested to power up devices, i.e. electronic devices. Accordingly, energy harvesting using smart structures with active piezoelectric ceramics has gained wide interest over the past few years as a method for converting such wasted energy. This paper provides numerical and experimental analysis of piezoelectric fiber based composites for energy harvesting applications proposing a multi-scale modeling approach coupled with experimental verification. The multi-scale approach suggested to predict the behavior of piezoelectric fiber-based composites use micromechanical model based on Transformation Field Analysis (TFA) to calculate the overall material properties of electrically active composite structure. Capitalizing on the calculated properties, single-phase analysis of a homogeneous structure is conducted using finite element method. The experimental work approach involves running dynamic tests on piezoelectric fiber-based composites to simulate mechanical vibrations experienced by a subway train floor tiles. Experimental results agree well with the numerical results both for static and dynamic tests.

  14. Components for Atomistic-to-Continuum Multiscale Modeling of Flow in Micro- and Nanofluidic Systems

    DOE PAGES

    Adalsteinsson, Helgi; Debusschere, Bert J.; Long, Kevin R.; ...

    2008-01-01

    Micro- and nanofluidics pose a series of significant challenges for science-based modeling. Key among those are the wide separation of length- and timescales between interface phenomena and bulk flow and the spatially heterogeneous solution properties near solid-liquid interfaces. It is not uncommon for characteristic scales in these systems to span nine orders of magnitude from the atomic motions in particle dynamics up to evolution of mass transport at the macroscale level, making explicit particle models intractable for all but the simplest systems. Recently, atomistic-to-continuum (A2C) multiscale simulations have gained a lot of interest as an approach to rigorously handle particle-levelmore » dynamics while also tracking evolution of large-scale macroscale behavior. While these methods are clearly not applicable to all classes of simulations, they are finding traction in systems in which tight-binding, and physically important, dynamics at system interfaces have complex effects on the slower-evolving large-scale evolution of the surrounding medium. These conditions allow decomposition of the simulation into discrete domains, either spatially or temporally. In this paper, we describe how features of domain decomposed simulation systems can be harnessed to yield flexible and efficient software for multiscale simulations of electric field-driven micro- and nanofluidics.« less

  15. Thermo-Oxidative Induced Damage in Polymer Composites: Microstructure Image-Based Multi-Scale Modeling and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Hussein, Rafid M.; Chandrashekhara, K.

    2017-11-01

    A multi-scale modeling approach is presented to simulate and validate thermo-oxidation shrinkage and cracking damage of a high temperature polymer composite. The multi-scale approach investigates coupled transient diffusion-reaction and static structural at macro- to micro-scale. The micro-scale shrinkage deformation and cracking damage are simulated and validated using 2D and 3D simulations. Localized shrinkage displacement boundary conditions for the micro-scale simulations are determined from the respective meso- and macro-scale simulations, conducted for a cross-ply laminate. The meso-scale geometrical domain and the micro-scale geometry and mesh are developed using the object oriented finite element (OOF). The macro-scale shrinkage and weight loss are measured using unidirectional coupons and used to build the macro-shrinkage model. The cross-ply coupons are used to validate the macro-shrinkage model by the shrinkage profiles acquired using scanning electron images at the cracked surface. The macro-shrinkage model deformation shows a discrepancy when the micro-scale image-based cracking is computed. The local maximum shrinkage strain is assumed to be 13 times the maximum macro-shrinkage strain of 2.5 × 10-5, upon which the discrepancy is minimized. The microcrack damage of the composite is modeled using a static elastic analysis with extended finite element and cohesive surfaces by considering the modulus spatial evolution. The 3D shrinkage displacements are fed to the model using node-wise boundary/domain conditions of the respective oxidized region. Microcrack simulation results: length, meander, and opening are closely matched to the crack in the area of interest for the scanning electron images.

  16. Multi-scale image segmentation and numerical modeling in carbonate rocks

    NASA Astrophysics Data System (ADS)

    Alves, G. C.; Vanorio, T.

    2016-12-01

    Numerical methods based on computational simulations can be an important tool in estimating physical properties of rocks. These can complement experimental results, especially when time constraints and sample availability are a problem. However, computational models created at different scales can yield conflicting results with respect to the physical laboratory. This problem is exacerbated in carbonate rocks due to their heterogeneity at all scales. We developed a multi-scale approach performing segmentation of the rock images and numerical modeling across several scales, accounting for those heterogeneities. As a first step, we measured the porosity and the elastic properties of a group of carbonate samples with varying micrite content. Then, samples were imaged by Scanning Electron Microscope (SEM) as well as optical microscope at different magnifications. We applied three different image segmentation techniques to create numerical models from the SEM images and performed numerical simulations of the elastic wave-equation. Our results show that a multi-scale approach can efficiently account for micro-porosities in tight micrite-supported samples, yielding acoustic velocities comparable to those obtained experimentally. Nevertheless, in high-porosity samples characterized by larger grain/micrite ratio, results show that SEM scale images tend to overestimate velocities, mostly due to their inability to capture macro- and/or intragranular- porosity. This suggests that, for high-porosity carbonate samples, optical microscope images would be more suited for numerical simulations.

  17. Simulation model of a gear synchronisation unit for application in a real-time HiL environment

    NASA Astrophysics Data System (ADS)

    Kirchner, Markus; Eberhard, Peter

    2017-05-01

    Gear shifting simulations using the multibody system approach and the finite-element method are standard in the development of transmissions. However, the corresponding models are typically large due to the complex geometries and numerous contacts, which causes long calculation times. The present work sets itself apart from these detailed shifting simulations by proposing a much simpler but powerful synchronisation model which can be computed in real-time while it is still more realistic than a pure rigid multibody model. Therefore, the model is even used as part of a Hardware-in-the-Loop (HiL) test rig. The proposed real-time capable synchronization model combines the rigid multibody system approach with a multiscale simulation approach. The multibody system approach is suitable for the description of the large motions. The multiscale simulation approach is using also the finite-element method suitable for the analysis of the contact processes. An efficient contact search for the claws of a car transmission synchronisation unit is described in detail which shortens the required calculation time of the model considerably. To further shorten the calculation time, the use of a complex pre-synchronisation model with a nonlinear contour is presented. The model has to provide realistic results with the time-step size of the HiL test rig. To reach this specification, a particularly adapted multirate method for the synchronisation model is shown. Measured results of test rigs of the real-time capable synchronisation model are verified on plausibility. The simulation model is then also used in the HiL test rig for a transmission control unit.

  18. Simulation of dilute polymeric fluids in a three-dimensional contraction using a multiscale FENE model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griebel, M., E-mail: griebel@ins.uni-bonn.de, E-mail: ruettgers@ins.uni-bonn.de; Rüttgers, A., E-mail: griebel@ins.uni-bonn.de, E-mail: ruettgers@ins.uni-bonn.de

    The multiscale FENE model is applied to a 3D square-square contraction flow problem. For this purpose, the stochastic Brownian configuration field method (BCF) has been coupled with our fully parallelized three-dimensional Navier-Stokes solver NaSt3DGPF. The robustness of the BCF method enables the numerical simulation of high Deborah number flows for which most macroscopic methods suffer from stability issues. The results of our simulations are compared with that of experimental measurements from literature and show a very good agreement. In particular, flow phenomena such as a strong vortex enhancement, streamline divergence and a flow inversion for highly elastic flows are reproduced.more » Due to their computational complexity, our simulations require massively parallel computations. Using a domain decomposition approach with MPI, the implementation achieves excellent scale-up results for up to 128 processors.« less

  19. Collaborative Multi-Scale 3d City and Infrastructure Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Breunig, M.; Borrmann, A.; Rank, E.; Hinz, S.; Kolbe, T.; Schilcher, M.; Mundani, R.-P.; Jubierre, J. R.; Flurl, M.; Thomsen, A.; Donaubauer, A.; Ji, Y.; Urban, S.; Laun, S.; Vilgertshofer, S.; Willenborg, B.; Menninghaus, M.; Steuer, H.; Wursthorn, S.; Leitloff, J.; Al-Doori, M.; Mazroobsemnani, N.

    2017-09-01

    Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future.

  20. A general CFD framework for fault-resilient simulations based on multi-resolution information fusion

    NASA Astrophysics Data System (ADS)

    Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em

    2017-10-01

    We develop a general CFD framework for multi-resolution simulations to target multiscale problems but also resilience in exascale simulations, where faulty processors may lead to gappy, in space-time, simulated fields. We combine approximation theory and domain decomposition together with statistical learning techniques, e.g. coKriging, to estimate boundary conditions and minimize communications by performing independent parallel runs. To demonstrate this new simulation approach, we consider two benchmark problems. First, we solve the heat equation (a) on a small number of spatial "patches" distributed across the domain, simulated by finite differences at fine resolution and (b) on the entire domain simulated at very low resolution, thus fusing multi-resolution models to obtain the final answer. Second, we simulate the flow in a lid-driven cavity in an analogous fashion, by fusing finite difference solutions obtained with fine and low resolution assuming gappy data sets. We investigate the influence of various parameters for this framework, including the correlation kernel, the size of a buffer employed in estimating boundary conditions, the coarseness of the resolution of auxiliary data, and the communication frequency across different patches in fusing the information at different resolution levels. In addition to its robustness and resilience, the new framework can be employed to generalize previous multiscale approaches involving heterogeneous discretizations or even fundamentally different flow descriptions, e.g. in continuum-atomistic simulations.

  1. Multiscale Modeling and Simulation of Material Processing

    DTIC Science & Technology

    2006-07-01

    As a re- GIMP simulations . Fig. 2 illustrates the contact algo- suit, MPM using a single mesh tends to induce early con- rithm for the contact pair ...21-07-2006 Final Performance Report 05-01-2003 - 04-30-2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Multiscale Modeling and Simulation of Material...development of scaling laws for multiscale simulations from atomistic to continuum using material testing techniques, such as tension and indentation

  2. Multiscale modeling of a rectifying bipolar nanopore: Comparing Poisson-Nernst-Planck to Monte Carlo

    NASA Astrophysics Data System (ADS)

    Matejczyk, Bartłomiej; Valiskó, Mónika; Wolfram, Marie-Therese; Pietschmann, Jan-Frederik; Boda, Dezső

    2017-03-01

    In the framework of a multiscale modeling approach, we present a systematic study of a bipolar rectifying nanopore using a continuum and a particle simulation method. The common ground in the two methods is the application of the Nernst-Planck (NP) equation to compute ion transport in the framework of the implicit-water electrolyte model. The difference is that the Poisson-Boltzmann theory is used in the Poisson-Nernst-Planck (PNP) approach, while the Local Equilibrium Monte Carlo (LEMC) method is used in the particle simulation approach (NP+LEMC) to relate the concentration profile to the electrochemical potential profile. Since we consider a bipolar pore which is short and narrow, we perform simulations using two-dimensional PNP. In addition, results of a non-linear version of PNP that takes crowding of ions into account are shown. We observe that the mean field approximation applied in PNP is appropriate to reproduce the basic behavior of the bipolar nanopore (e.g., rectification) for varying parameters of the system (voltage, surface charge, electrolyte concentration, and pore radius). We present current data that characterize the nanopore's behavior as a device, as well as concentration, electrical potential, and electrochemical potential profiles.

  3. Multiscale modeling of a rectifying bipolar nanopore: Comparing Poisson-Nernst-Planck to Monte Carlo.

    PubMed

    Matejczyk, Bartłomiej; Valiskó, Mónika; Wolfram, Marie-Therese; Pietschmann, Jan-Frederik; Boda, Dezső

    2017-03-28

    In the framework of a multiscale modeling approach, we present a systematic study of a bipolar rectifying nanopore using a continuum and a particle simulation method. The common ground in the two methods is the application of the Nernst-Planck (NP) equation to compute ion transport in the framework of the implicit-water electrolytemodel. The difference is that the Poisson-Boltzmann theory is used in the Poisson-Nernst-Planck (PNP) approach, while the Local Equilibrium Monte Carlo (LEMC) method is used in the particle simulation approach (NP+LEMC) to relate the concentration profile to the electrochemical potential profile. Since we consider a bipolar pore which is short and narrow, we perform simulations using two-dimensional PNP. In addition, results of a non-linear version of PNP that takes crowding of ions into account are shown. We observe that the mean field approximation applied in PNP is appropriate to reproduce the basic behavior of the bipolar nanopore (e.g., rectification) for varying parameters of the system (voltage, surface charge,electrolyte concentration, and pore radius). We present current data that characterize the nanopore's behavior as a device, as well as concentration, electrical potential, and electrochemical potential profiles.

  4. Hybrid stochastic simplifications for multiscale gene networks

    PubMed Central

    Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu

    2009-01-01

    Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach. PMID:19735554

  5. Gyrokinetic predictions of multiscale transport in a DIII-D ITER baseline discharge

    NASA Astrophysics Data System (ADS)

    Holland, C.; Howard, N. T.; Grierson, B. A.

    2017-06-01

    New multiscale gyrokinetic simulations predict that electron energy transport in a DIII-D ITER baseline discharge with dominant electron heating and low input torque is multiscale in nature, with roughly equal amounts of the electron energy flux Q e coming from long wavelength ion-scale (k y ρ s  <  1) and short wavelength electron-scale (k y ρ s  >  1) fluctuations when the gyrokinetic results match independent power balance calculations. Corresponding conventional ion-scale simulations are able to match the power balance ion energy flux Q i, but systematically underpredict Q e when doing so. Significant nonlinear cross-scale couplings are observed in the multiscale simulations, but the exact simulation predictions are found to be extremely sensitive to variations of model input parameters within experimental uncertainties. Most notably, depending upon the exact value of the equilibrium E  ×  B shearing rate γ E×B used, either enhancement or suppression of the long-wavelength turbulence and transport levels in the multiscale simulations is observed relative to what is predicted by ion-scale simulations. While the enhancement of the long wavelength fluctuations by inclusion of the short wavelength turbulence was previously observed in similar multiscale simulations of an Alcator C-Mod L-mode discharge, these new results show for the first time a complete suppression of long-wavelength turbulence in a multiscale simulation, for parameters at which conventional ion-scale simulation predicts small but finite levels of low-k turbulence and transport consistent with the power balance Q i. Although computational resource limitations prevent a fully rigorous validation assessment of these new results, they provide significant new evidence that electron energy transport in burning plasmas is likely to have a strong multiscale character, with significant nonlinear cross-scale couplings that must be fully understood to predict the performance of those plasmas with confidence.

  6. Stochastic simulation of multiscale complex systems with PISKaS: A rule-based approach.

    PubMed

    Perez-Acle, Tomas; Fuenzalida, Ignacio; Martin, Alberto J M; Santibañez, Rodrigo; Avaria, Rodrigo; Bernardin, Alejandro; Bustos, Alvaro M; Garrido, Daniel; Dushoff, Jonathan; Liu, James H

    2018-03-29

    Computational simulation is a widely employed methodology to study the dynamic behavior of complex systems. Although common approaches are based either on ordinary differential equations or stochastic differential equations, these techniques make several assumptions which, when it comes to biological processes, could often lead to unrealistic models. Among others, model approaches based on differential equations entangle kinetics and causality, failing when complexity increases, separating knowledge from models, and assuming that the average behavior of the population encompasses any individual deviation. To overcome these limitations, simulations based on the Stochastic Simulation Algorithm (SSA) appear as a suitable approach to model complex biological systems. In this work, we review three different models executed in PISKaS: a rule-based framework to produce multiscale stochastic simulations of complex systems. These models span multiple time and spatial scales ranging from gene regulation up to Game Theory. In the first example, we describe a model of the core regulatory network of gene expression in Escherichia coli highlighting the continuous model improvement capacities of PISKaS. The second example describes a hypothetical outbreak of the Ebola virus occurring in a compartmentalized environment resembling cities and highways. Finally, in the last example, we illustrate a stochastic model for the prisoner's dilemma; a common approach from social sciences describing complex interactions involving trust within human populations. As whole, these models demonstrate the capabilities of PISKaS providing fertile scenarios where to explore the dynamics of complex systems. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Three-Dimensional Multiscale Modeling of Dendritic Spacing Selection During Al-Si Directional Solidification

    NASA Astrophysics Data System (ADS)

    Tourret, Damien; Clarke, Amy J.; Imhoff, Seth D.; Gibbs, Paul J.; Gibbs, John W.; Karma, Alain

    2015-08-01

    We present a three-dimensional extension of the multiscale dendritic needle network (DNN) model. This approach enables quantitative simulations of the unsteady dynamics of complex hierarchical networks in spatially extended dendritic arrays. We apply the model to directional solidification of Al-9.8 wt.%Si alloy and directly compare the model predictions with measurements from experiments with in situ x-ray imaging. We focus on the dynamical selection of primary spacings over a range of growth velocities, and the influence of sample geometry on the selection of spacings. Simulation results show good agreement with experiments. The computationally efficient DNN model opens new avenues for investigating the dynamics of large dendritic arrays at scales relevant to solidification experiments and processes.

  8. Computational aspects in mechanical modeling of the articular cartilage tissue.

    PubMed

    Mohammadi, Hadi; Mequanint, Kibret; Herzog, Walter

    2013-04-01

    This review focuses on the modeling of articular cartilage (at the tissue level), chondrocyte mechanobiology (at the cell level) and a combination of both in a multiscale computation scheme. The primary objective is to evaluate the advantages and disadvantages of conventional models implemented to study the mechanics of the articular cartilage tissue and chondrocytes. From monophasic material models as the simplest form to more complicated multiscale theories, these approaches have been frequently used to model articular cartilage and have contributed significantly to modeling joint mechanics, addressing and resolving numerous issues regarding cartilage mechanics and function. It should be noted that attentiveness is important when using different modeling approaches, as the choice of the model limits the applications available. In this review, we discuss the conventional models applicable to some of the mechanical aspects of articular cartilage such as lubrication, swelling pressure and chondrocyte mechanics and address some of the issues associated with the current modeling approaches. We then suggest future pathways for a more realistic modeling strategy as applied for the simulation of the mechanics of the cartilage tissue using multiscale and parallelized finite element method.

  9. Integrating Multiscale Modeling with Drug Effects for Cancer Treatment.

    PubMed

    Li, Xiangfang L; Oduola, Wasiu O; Qian, Lijun; Dougherty, Edward R

    2015-01-01

    In this paper, we review multiscale modeling for cancer treatment with the incorporation of drug effects from an applied system's pharmacology perspective. Both the classical pharmacology and systems biology are inherently quantitative; however, systems biology focuses more on networks and multi factorial controls over biological processes rather than on drugs and targets in isolation, whereas systems pharmacology has a strong focus on studying drugs with regard to the pharmacokinetic (PK) and pharmacodynamic (PD) relations accompanying drug interactions with multiscale physiology as well as the prediction of dosage-exposure responses and economic potentials of drugs. Thus, it requires multiscale methods to address the need for integrating models from the molecular levels to the cellular, tissue, and organism levels. It is a common belief that tumorigenesis and tumor growth can be best understood and tackled by employing and integrating a multifaceted approach that includes in vivo and in vitro experiments, in silico models, multiscale tumor modeling, continuous/discrete modeling, agent-based modeling, and multiscale modeling with PK/PD drug effect inputs. We provide an example application of multiscale modeling employing stochastic hybrid system for a colon cancer cell line HCT-116 with the application of Lapatinib drug. It is observed that the simulation results are similar to those observed from the setup of the wet-lab experiments at the Translational Genomics Research Institute.

  10. Toward multiscale modelings of grain-fluid systems

    NASA Astrophysics Data System (ADS)

    Chareyre, Bruno; Yuan, Chao; Montella, Eduard P.; Salager, Simon

    2017-06-01

    Computationally efficient methods have been developed for simulating partially saturated granular materials in the pendular regime. In contrast, one hardly avoid expensive direct resolutions of 2-phase fluid dynamics problem for mixed pendular-funicular situations or even saturated regimes. Following previous developments for single-phase flow, a pore-network approach of the coupling problems is described. The geometry and movements of phases and interfaces are described on the basis of a tetrahedrization of the pore space, introducing elementary objects such as bridge, meniscus, pore body and pore throat, together with local rules of evolution. As firmly established local rules are still missing on some aspects (entry capillary pressure and pore-scale pressure-saturation relations, forces on the grains, or kinetics of transfers in mixed situations) a multi-scale numerical framework is introduced, enhancing the pore-network approach with the help of direct simulations. Small subsets of a granular system are extracted, in which multiphase scenario are solved using the Lattice-Boltzman method (LBM). In turns, a global problem is assembled and solved at the network scale, as illustrated by a simulated primary drainage.

  11. Multiscale modeling of mucosal immune responses

    PubMed Central

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation. PMID:26329787

  12. Multiscale modeling of mucosal immune responses.

    PubMed

    Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep

    2015-01-01

    Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM.

  13. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plechac, Petr; Vlachos, Dionisios; Katsoulakis, Markos

    2013-09-05

    The overall objective of this project is to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals. Specific goals include: (i) Development of rigorous spatio-temporal coarse-grained kinetic Monte Carlo (KMC) mathematics and simulation for microscopic processes encountered in biomassmore » transformation. (ii) Development of hybrid multiscale simulation that links stochastic simulation to a deterministic partial differential equation (PDE) model for an entire reactor. (iii) Development of hybrid multiscale simulation that links KMC simulation with quantum density functional theory (DFT) calculations. (iv) Development of parallelization of models of (i)-(iii) to take advantage of Petaflop computing and enable real world applications of complex, multiscale models. In this NCE period, we continued addressing these objectives and completed the proposed work. Main initiatives, key results, and activities are outlined.« less

  14. Multi-scale calculation based on dual domain material point method combined with molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhakal, Tilak Raj

    This dissertation combines the dual domain material point method (DDMP) with molecular dynamics (MD) in an attempt to create a multi-scale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically non-equilibrium state, and conventional constitutive relations are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a MD simulation of a group of atoms surrounding the material point. Rather than restricting the multi-scale simulation in a small spatial region, such as phase interfaces, or crackmore » tips, this multi-scale method can be used to consider non-equilibrium thermodynamic e ects in a macroscopic domain. This method takes advantage that the material points only communicate with mesh nodes, not among themselves; therefore MD simulations for material points can be performed independently in parallel. First, using a one-dimensional shock problem as an example, the numerical properties of the original material point method (MPM), the generalized interpolation material point (GIMP) method, the convected particle domain interpolation (CPDI) method, and the DDMP method are investigated. Among these methods, only the DDMP method converges as the number of particles increases, but the large number of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the computation. The numerical properties of the multiscale method are investigated as well as the results from this multi-scale calculation are compared of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the computation. The numerical properties of the multiscale method are investigated as well as the results from this multi-scale calculation are compared with direct MD simulation results to demonstrate the feasibility of the method. Also, the multi-scale method is applied for a two dimensional problem of jet formation around copper notch under a strong impact.« less

  15. Strategies for efficient numerical implementation of hybrid multi-scale agent-based models to describe biological systems

    PubMed Central

    Cilfone, Nicholas A.; Kirschner, Denise E.; Linderman, Jennifer J.

    2015-01-01

    Biologically related processes operate across multiple spatiotemporal scales. For computational modeling methodologies to mimic this biological complexity, individual scale models must be linked in ways that allow for dynamic exchange of information across scales. A powerful methodology is to combine a discrete modeling approach, agent-based models (ABMs), with continuum models to form hybrid models. Hybrid multi-scale ABMs have been used to simulate emergent responses of biological systems. Here, we review two aspects of hybrid multi-scale ABMs: linking individual scale models and efficiently solving the resulting model. We discuss the computational choices associated with aspects of linking individual scale models while simultaneously maintaining model tractability. We demonstrate implementations of existing numerical methods in the context of hybrid multi-scale ABMs. Using an example model describing Mycobacterium tuberculosis infection, we show relative computational speeds of various combinations of numerical methods. Efficient linking and solution of hybrid multi-scale ABMs is key to model portability, modularity, and their use in understanding biological phenomena at a systems level. PMID:26366228

  16. Simulations of ecosystem hydrological processes using a unified multi-scale model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin

    2015-01-01

    This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling ofmore » hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.« less

  17. All-Particle Multiscale Computation of Hypersonic Rarefied Flow

    NASA Astrophysics Data System (ADS)

    Jun, E.; Burt, J. M.; Boyd, I. D.

    2011-05-01

    This study examines a new hybrid particle scheme used as an alternative means of multiscale flow simulation. The hybrid particle scheme employs the direct simulation Monte Carlo (DSMC) method in rarefied flow regions and the low diffusion (LD) particle method in continuum flow regions. The numerical procedures of the low diffusion particle method are implemented within an existing DSMC algorithm. The performance of the LD-DSMC approach is assessed by studying Mach 10 nitrogen flow over a sphere with a global Knudsen number of 0.002. The hybrid scheme results show good overall agreement with results from standard DSMC and CFD computation. Subcell procedures are utilized to improve computational efficiency and reduce sensitivity to DSMC cell size in the hybrid scheme. This makes it possible to perform the LD-DSMC simulation on a much coarser mesh that leads to a significant reduction in computation time.

  18. Multiscale Pressure-Balanced Structures in Three-dimensional Magnetohydrodynamic Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Liping; Zhang, Lei; Feng, Xueshang

    2017-02-10

    Observations of solar wind turbulence indicate the existence of multiscale pressure-balanced structures (PBSs) in the solar wind. In this work, we conduct a numerical simulation to investigate multiscale PBSs and in particular their formation in compressive magnetohydrodynamic turbulence. By the use of the higher-order Godunov code Athena, a driven compressible turbulence with an imposed uniform guide field is simulated. The simulation results show that both the magnetic pressure and the thermal pressure exhibit a turbulent spectrum with a Kolmogorov-like power law, and that in many regions of the simulation domain they are anticorrelated. The computed wavelet cross-coherence spectra of themore » magnetic pressure and the thermal pressure, as well as their space series, indicate the existence of multiscale PBSs, with the small PBSs being embedded in the large ones. These multiscale PBSs are likely to be related to the highly oblique-propagating slow-mode waves, as the traced multiscale PBS is found to be traveling in a certain direction at a speed consistent with that predicted theoretically for a slow-mode wave propagating in the same direction.« less

  19. Generalization of mixed multiscale finite element methods with applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C S

    Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixedmore » multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii« less

  20. Optimization of a hydrodynamic separator using a multiscale computational fluid dynamics approach.

    PubMed

    Schmitt, Vivien; Dufresne, Matthieu; Vazquez, Jose; Fischer, Martin; Morin, Antoine

    2013-01-01

    This article deals with the optimization of a hydrodynamic separator working on the tangential separation mechanism along a screen. The aim of this study is to optimize the shape of the device to avoid clogging. A multiscale approach is used. This methodology combines measurements and computational fluid dynamics (CFD). A local model enables us to observe the different phenomena occurring at the orifice scale, which shows the potential of expanded metal screens. A global model is used to simulate the flow within the device using a conceptual model of the screen (porous wall). After validation against the experimental measurements, the global model was used to investigate the influence of deflectors and disk plates in the structure.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roehm, Dominic; Pavel, Robert S.; Barros, Kipton

    We present an adaptive sampling method supplemented by a distributed database and a prediction method for multiscale simulations using the Heterogeneous Multiscale Method. A finite-volume scheme integrates the macro-scale conservation laws for elastodynamics, which are closed by momentum and energy fluxes evaluated at the micro-scale. In the original approach, molecular dynamics (MD) simulations are launched for every macro-scale volume element. Our adaptive sampling scheme replaces a large fraction of costly micro-scale MD simulations with fast table lookup and prediction. The cloud database Redis provides the plain table lookup, and with locality aware hashing we gather input data for our predictionmore » scheme. For the latter we use kriging, which estimates an unknown value and its uncertainty (error) at a specific location in parameter space by using weighted averages of the neighboring points. We find that our adaptive scheme significantly improves simulation performance by a factor of 2.5 to 25, while retaining high accuracy for various choices of the algorithm parameters.« less

  2. Molecular origin of differences in hole and electron mobility in amorphous Alq3--a multiscale simulation study.

    PubMed

    Fuchs, Andreas; Steinbrecher, Thomas; Mommer, Mario S; Nagata, Yuki; Elstner, Marcus; Lennartz, Christian

    2012-03-28

    In order to determine the molecular origin of the difference in electron and hole mobilities of amorphous thin films of Alq(3) (meridional Alq(3) (tris(8-hydroxyquinoline) aluminium)) we performed multiscale simulations covering quantum mechanics, molecular mechanics and lattice models. The study includes realistic disordered morphologies, polarized site energies to describe diagonal disorder, quantum chemically calculated transfer integrals for the off-diagonal disorder, inner sphere reorganization energies and an approximative scheme for outer sphere reorganization energies. Intermolecular transfer rates were calculated via Marcus-theory and mobilities were simulated via kinetic Monte Carlo simulations and by a Master Equation approach. The difference in electron and hole mobility originates from the different localization of charge density in the radical anion (more delocalized) compared to the radical cation (more confined). This results in higher diagonal disorder for holes and less favourable overlap properties for the hole transfer integrals leading to an overall higher electron mobility.

  3. Distributed database kriging for adaptive sampling (D²KAS)

    DOE PAGES

    Roehm, Dominic; Pavel, Robert S.; Barros, Kipton; ...

    2015-03-18

    We present an adaptive sampling method supplemented by a distributed database and a prediction method for multiscale simulations using the Heterogeneous Multiscale Method. A finite-volume scheme integrates the macro-scale conservation laws for elastodynamics, which are closed by momentum and energy fluxes evaluated at the micro-scale. In the original approach, molecular dynamics (MD) simulations are launched for every macro-scale volume element. Our adaptive sampling scheme replaces a large fraction of costly micro-scale MD simulations with fast table lookup and prediction. The cloud database Redis provides the plain table lookup, and with locality aware hashing we gather input data for our predictionmore » scheme. For the latter we use kriging, which estimates an unknown value and its uncertainty (error) at a specific location in parameter space by using weighted averages of the neighboring points. We find that our adaptive scheme significantly improves simulation performance by a factor of 2.5 to 25, while retaining high accuracy for various choices of the algorithm parameters.« less

  4. Multi-scale gyrokinetic simulations of an Alcator C-Mod, ELM-y H-mode plasma

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Rodriguez-Fernandez, P.; Candy, J.; Creely, A. J.

    2018-01-01

    High fidelity, multi-scale gyrokinetic simulations capable of capturing both ion ({k}θ {ρ }s∼ { O }(1.0)) and electron-scale ({k}θ {ρ }e∼ { O }(1.0)) turbulence were performed in the core of an Alcator C-Mod ELM-y H-mode discharge which exhibits reactor-relevant characteristics. These simulations, performed with all experimental inputs and realistic ion to electron mass ratio ({({m}i/{m}e)}1/2=60.0) provide insight into the physics fidelity that may be needed for accurate simulation of the core of fusion reactor discharges. Three multi-scale simulations and series of separate ion and electron-scale simulations performed using the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) are presented. As with earlier multi-scale results in L-mode conditions (Howard et al 2016 Nucl. Fusion 56 014004), both ion and multi-scale simulations results are compared with experimentally inferred ion and electron heat fluxes, as well as the measured values of electron incremental thermal diffusivities—indicative of the experimental electron temperature profile stiffness. Consistent with the L-mode results, cross-scale coupling is found to play an important role in the simulation of these H-mode conditions. Extremely stiff ion-scale transport is observed in these high-performance conditions which is shown to likely play and important role in the reproduction of measurements of perturbative transport. These results provide important insight into the role of multi-scale plasma turbulence in the core of reactor-relevant plasmas and establish important constraints on the the fidelity of models needed for predictive simulations.

  5. Coupling of Peridynamics and Finite Element Formulation for Multiscale Simulations

    DTIC Science & Technology

    2012-10-16

    unidirectional fiber - reinforced composites, Computer Methods in Applied Mechanics and Engineering 217 (2012) 247-261. [44] S. A. Silling, M. Epton...numerical testing for different grid widths to horizon ratios , (4) development of an approach to add another material variable in the given approach...partition of unity principle, (3) numerical testing for different grid widths to horizon ratios , (4) development of an approach to add another

  6. Predicting the breakdown strength and lifetime of nanocomposites using a multi-scale modeling approach

    NASA Astrophysics Data System (ADS)

    Huang, Yanhui; Zhao, He; Wang, Yixing; Ratcliff, Tyree; Breneman, Curt; Brinson, L. Catherine; Chen, Wei; Schadler, Linda S.

    2017-08-01

    It has been found that doping dielectric polymers with a small amount of nanofiller or molecular additive can stabilize the material under a high field and lead to increased breakdown strength and lifetime. Choosing appropriate fillers is critical to optimizing the material performance, but current research largely relies on experimental trial and error. The employment of computer simulations for nanodielectric design is rarely reported. In this work, we propose a multi-scale modeling approach that employs ab initio, Monte Carlo, and continuum scales to predict the breakdown strength and lifetime of polymer nanocomposites based on the charge trapping effect of the nanofillers. The charge transfer, charge energy relaxation, and space charge effects are modeled in respective hierarchical scales by distinctive simulation techniques, and these models are connected together for high fidelity and robustness. The preliminary results show good agreement with the experimental data, suggesting its promise for use in the computer aided material design of high performance dielectrics.

  7. Scale-dependent intrinsic entropies of complex time series.

    PubMed

    Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E

    2016-04-13

    Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease. © 2016 The Author(s).

  8. Three-dimensional multiscale modeling of dendritic spacing selection during Al-Si directional solidification

    DOE PAGES

    Tourret, Damien; Clarke, Amy J.; Imhoff, Seth D.; ...

    2015-05-27

    We present a three-dimensional extension of the multiscale dendritic needle network (DNN) model. This approach enables quantitative simulations of the unsteady dynamics of complex hierarchical networks in spatially extended dendritic arrays. We apply the model to directional solidification of Al-9.8 wt.%Si alloy and directly compare the model predictions with measurements from experiments with in situ x-ray imaging. The focus is on the dynamical selection of primary spacings over a range of growth velocities, and the influence of sample geometry on the selection of spacings. Simulation results show good agreement with experiments. The computationally efficient DNN model opens new avenues formore » investigating the dynamics of large dendritic arrays at scales relevant to solidification experiments and processes.« less

  9. Simulation of the optical coating deposition

    NASA Astrophysics Data System (ADS)

    Grigoriev, Fedor; Sulimov, Vladimir; Tikhonravov, Alexander

    2018-04-01

    A brief review of the mathematical methods of thin-film growth simulation and results of their applications is presented. Both full-atomistic and multi-scale approaches that were used in the studies of thin-film deposition are considered. The results of the structural parameter simulation including density profiles, roughness, porosity, point defect concentration, and others are discussed. The application of the quantum level methods to the simulation of the thin-film electronic and optical properties is considered. Special attention is paid to the simulation of the silicon dioxide thin films.

  10. Multi-fluid Dynamics for Supersonic Jet-and-Crossflows and Liquid Plug Rupture

    NASA Astrophysics Data System (ADS)

    Hassan, Ezeldin A.

    Multi-fluid dynamics simulations require appropriate numerical treatments based on the main flow characteristics, such as flow speed, turbulence, thermodynamic state, and time and length scales. In this thesis, two distinct problems are investigated: supersonic jet and crossflow interactions; and liquid plug propagation and rupture in an airway. Gaseous non-reactive ethylene jet and air crossflow simulation represents essential physics for fuel injection in SCRAMJET engines. The regime is highly unsteady, involving shocks, turbulent mixing, and large-scale vortical structures. An eddy-viscosity-based multi-scale turbulence model is proposed to resolve turbulent structures consistent with grid resolution and turbulence length scales. Predictions of the time-averaged fuel concentration from the multi-scale model is improved over Reynolds-averaged Navier-Stokes models originally derived from stationary flow. The response to the multi-scale model alone is, however, limited, in cases where the vortical structures are small and scattered thus requiring prohibitively expensive grids in order to resolve the flow field accurately. Statistical information related to turbulent fluctuations is utilized to estimate an effective turbulent Schmidt number, which is shown to be highly varying in space. Accordingly, an adaptive turbulent Schmidt number approach is proposed, by allowing the resolved field to adaptively influence the value of turbulent Schmidt number in the multi-scale turbulence model. The proposed model estimates a time-averaged turbulent Schmidt number adapted to the computed flowfield, instead of the constant value common to the eddy-viscosity-based Navier-Stokes models. This approach is assessed using a grid-refinement study for the normal injection case, and tested with 30 degree injection, showing improved results over the constant turbulent Schmidt model both in mean and variance of fuel concentration predictions. For the incompressible liquid plug propagation and rupture study, numerical simulations are conducted using an Eulerian-Lagrangian approach with a continuous-interface method. A reconstruction scheme is developed to allow topological changes during plug rupture by altering the connectivity information of the interface mesh. Rupture time is shown to be delayed as the initial precursor film thickness increases. During the plug rupture process, a sudden increase of mechanical stresses on the tube wall is recorded, which can cause tissue damage.

  11. High-resolution time-frequency representation of EEG data using multi-scale wavelets

    NASA Astrophysics Data System (ADS)

    Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina

    2017-09-01

    An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.

  12. Gyrokinetic predictions of multiscale transport in a DIII-D ITER baseline discharge

    DOE PAGES

    Holland, C.; Howard, N. T.; Grierson, B. A.

    2017-05-08

    New multiscale gyrokinetic simulations predict that electron energy transport in a DIII-D ITER baseline discharge with dominant electron heating and low input torque is multiscale in nature, with roughly equal amounts of the electron energy flux Q e coming from long wavelength ion-scale (k yρ s < 1) and short wavelength electron-scale (k yρ s > 1) fluctuations when the gyrokinetic results match independent power balance calculations. Corresponding conventional ion-scale simulations are able to match the power balance ion energy flux Q i, but systematically underpredict Q e when doing so. We observe significant nonlinear cross-scale couplings in the multiscalemore » simulations, but the exact simulation predictions are found to be extremely sensitive to variations of model input parameters within experimental uncertainties. Most notably, depending upon the exact value of the equilibrium E x B shearing rate γ E x B used, either enhancement or suppression of the long-wavelength turbulence and transport levels in the multiscale simulations is observed relative to what is predicted by ion-scale simulations. And while the enhancement of the long wavelength fluctuations by inclusion of the short wavelength turbulence was previously observed in similar multiscale simulations of an Alcator C-Mod L-mode discharge, these new results show for the first time a complete suppression of long-wavelength turbulence in a multiscale simulation, for parameters at which conventional ion-scale simulation predicts small but finite levels of low-k turbulence and transport consistent with the power balance Q i. Though computational resource limitations prevent a fully rigorous validation assessment of these new results, they provide significant new evidence that electron energy transport in burning plasmas is likely to have a strong multiscale character, with significant nonlinear cross-scale couplings that must be fully understood to predict the performance of those plasmas with confidence.« less

  13. A BAYESIAN STATISTICAL APPROACH FOR THE EVALUATION OF CMAQ

    EPA Science Inventory

    Bayesian statistical methods are used to evaluate Community Multiscale Air Quality (CMAQ) model simulations of sulfate aerosol over a section of the eastern US for 4-week periods in summer and winter 2001. The observed data come from two U.S. Environmental Protection Agency data ...

  14. EPA RESEARCH HIGHLIGHTS -- MODELS-3/CMAQ OFFERS COMPREHENSIVE APPROACH TO AIR QUALITY MODELING

    EPA Science Inventory

    Regional and global coordinated efforts are needed to address air quality problems that are growing in complexity and scope. Models-3 CMAQ contains a community multi-scale air quality modeling system for simulating urban to regional scale pollution problems relating to troposphe...

  15. Design of Energetic Ionic Liquids (Preprint)

    DTIC Science & Technology

    2008-05-07

    mesoscale-level simulations of bulk ionic liquids based upon multiscale coarse graining techniques. 15. SUBJECT TERMS 16. SECURITY...simulations utilizing polarizable force fields, and mesoscale-level simulations of bulk ionic liquids based upon multiscale coarse graining...Simulations of the Energetic Ionic Liquid 1-hydroxyethyl-4-amino-1, 2, 4- triazolium Nitrate (HEATN): Molecular dynamics (MD) simulations have been

  16. MULTISCALE AIR QUALITY SIMULATION PLATFORM (MAQSIP): INITIAL APPLICATIONS AND PERFORMANCE FOR TROPOSPHERIC OZONE AND PARTICULATE MATTER

    EPA Science Inventory

    This manuscript provides an overview of the formulation, process considerations, and performance for simulating tropospheric ozone and particulate matter distributions of the Multiscale Air Quality Simulation Platform (MAQSIP). MAQSIP is a comprehensive atmospheric chemistry/tran...

  17. Multiscale simulation of molecular processes in cellular environments.

    PubMed

    Chiricotto, Mara; Sterpone, Fabio; Derreumaux, Philippe; Melchionna, Simone

    2016-11-13

    We describe the recent advances in studying biological systems via multiscale simulations. Our scheme is based on a coarse-grained representation of the macromolecules and a mesoscopic description of the solvent. The dual technique handles particles, the aqueous solvent and their mutual exchange of forces resulting in a stable and accurate methodology allowing biosystems of unprecedented size to be simulated.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  18. Physics-based multiscale coupling for full core nuclear reactor simulation

    DOE PAGES

    Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; ...

    2015-10-01

    Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different datamore » exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license« less

  19. Wavelet-based multiscale performance analysis: An approach to assess and improve hydrological models

    NASA Astrophysics Data System (ADS)

    Rathinasamy, Maheswaran; Khosa, Rakesh; Adamowski, Jan; ch, Sudheer; Partheepan, G.; Anand, Jatin; Narsimlu, Boini

    2014-12-01

    The temporal dynamics of hydrological processes are spread across different time scales and, as such, the performance of hydrological models cannot be estimated reliably from global performance measures that assign a single number to the fit of a simulated time series to an observed reference series. Accordingly, it is important to analyze model performance at different time scales. Wavelets have been used extensively in the area of hydrological modeling for multiscale analysis, and have been shown to be very reliable and useful in understanding dynamics across time scales and as these evolve in time. In this paper, a wavelet-based multiscale performance measure for hydrological models is proposed and tested (i.e., Multiscale Nash-Sutcliffe Criteria and Multiscale Normalized Root Mean Square Error). The main advantage of this method is that it provides a quantitative measure of model performance across different time scales. In the proposed approach, model and observed time series are decomposed using the Discrete Wavelet Transform (known as the à trous wavelet transform), and performance measures of the model are obtained at each time scale. The applicability of the proposed method was explored using various case studies-both real as well as synthetic. The synthetic case studies included various kinds of errors (e.g., timing error, under and over prediction of high and low flows) in outputs from a hydrologic model. The real time case studies investigated in this study included simulation results of both the process-based Soil Water Assessment Tool (SWAT) model, as well as statistical models, namely the Coupled Wavelet-Volterra (WVC), Artificial Neural Network (ANN), and Auto Regressive Moving Average (ARMA) methods. For the SWAT model, data from Wainganga and Sind Basin (India) were used, while for the Wavelet Volterra, ANN and ARMA models, data from the Cauvery River Basin (India) and Fraser River (Canada) were used. The study also explored the effect of the choice of the wavelets in multiscale model evaluation. It was found that the proposed wavelet-based performance measures, namely the MNSC (Multiscale Nash-Sutcliffe Criteria) and MNRMSE (Multiscale Normalized Root Mean Square Error), are a more reliable measure than traditional performance measures such as the Nash-Sutcliffe Criteria (NSC), Root Mean Square Error (RMSE), and Normalized Root Mean Square Error (NRMSE). Further, the proposed methodology can be used to: i) compare different hydrological models (both physical and statistical models), and ii) help in model calibration.

  20. Structural and Practical Identifiability Issues of Immuno-Epidemiological Vector-Host Models with Application to Rift Valley Fever.

    PubMed

    Tuncer, Necibe; Gulbudak, Hayriye; Cannataro, Vincent L; Martcheva, Maia

    2016-09-01

    In this article, we discuss the structural and practical identifiability of a nested immuno-epidemiological model of arbovirus diseases, where host-vector transmission rate, host recovery, and disease-induced death rates are governed by the within-host immune system. We incorporate the newest ideas and the most up-to-date features of numerical methods to fit multi-scale models to multi-scale data. For an immunological model, we use Rift Valley Fever Virus (RVFV) time-series data obtained from livestock under laboratory experiments, and for an epidemiological model we incorporate a human compartment to the nested model and use the number of human RVFV cases reported by the CDC during the 2006-2007 Kenya outbreak. We show that the immunological model is not structurally identifiable for the measurements of time-series viremia concentrations in the host. Thus, we study the non-dimensionalized and scaled versions of the immunological model and prove that both are structurally globally identifiable. After fixing estimated parameter values for the immunological model derived from the scaled model, we develop a numerical method to fit observable RVFV epidemiological data to the nested model for the remaining parameter values of the multi-scale system. For the given (CDC) data set, Monte Carlo simulations indicate that only three parameters of the epidemiological model are practically identifiable when the immune model parameters are fixed. Alternatively, we fit the multi-scale data to the multi-scale model simultaneously. Monte Carlo simulations for the simultaneous fitting suggest that the parameters of the immunological model and the parameters of the immuno-epidemiological model are practically identifiable. We suggest that analytic approaches for studying the structural identifiability of nested models are a necessity, so that identifiable parameter combinations can be derived to reparameterize the nested model to obtain an identifiable one. This is a crucial step in developing multi-scale models which explain multi-scale data.

  1. Multiscale high-order/low-order (HOLO) algorithms and applications

    NASA Astrophysics Data System (ADS)

    Chacón, L.; Chen, G.; Knoll, D. A.; Newman, C.; Park, H.; Taitano, W.; Willert, J. A.; Womeldorff, G.

    2017-02-01

    We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.

  2. Computational approach on PEB process in EUV resist: multi-scale simulation

    NASA Astrophysics Data System (ADS)

    Kim, Muyoung; Moon, Junghwan; Choi, Joonmyung; Lee, Byunghoon; Jeong, Changyoung; Kim, Heebom; Cho, Maenghyo

    2017-03-01

    For decades, downsizing has been a key issue for high performance and low cost of semiconductor, and extreme ultraviolet lithography is one of the promising candidates to achieve the goal. As a predominant process in extreme ultraviolet lithography on determining resolution and sensitivity, post exposure bake has been mainly studied by experimental groups, but development of its photoresist is at the breaking point because of the lack of unveiled mechanism during the process. Herein, we provide theoretical approach to investigate underlying mechanism on the post exposure bake process in chemically amplified resist, and it covers three important reactions during the process: acid generation by photo-acid generator dissociation, acid diffusion, and deprotection. Density functional theory calculation (quantum mechanical simulation) was conducted to quantitatively predict activation energy and probability of the chemical reactions, and they were applied to molecular dynamics simulation for constructing reliable computational model. Then, overall chemical reactions were simulated in the molecular dynamics unit cell, and final configuration of the photoresist was used to predict the line edge roughness. The presented multiscale model unifies the phenomena of both quantum and atomic scales during the post exposure bake process, and it will be helpful to understand critical factors affecting the performance of the resulting photoresist and design the next-generation material.

  3. Numerical Simulations of a Multiscale Model of Stratified Langmuir Circulation

    NASA Astrophysics Data System (ADS)

    Malecha, Ziemowit; Chini, Gregory; Julien, Keith

    2012-11-01

    Langmuir circulation (LC), a prominent form of wind and surface-wave driven shear turbulence in the ocean surface boundary layer (BL), is commonly modeled using the Craik-Leibovich (CL) equations, a phase-averaged variant of the Navier-Stokes (NS) equations. Although surface-wave filtering renders the CL equations more amenable to simulation than are the instantaneous NS equations, simulations in wide domains, hundreds of times the BL depth, currently earn the ``grand challenge'' designation. To facilitate simulations of LC in such spatially-extended domains, we have derived multiscale CL equations by exploiting the scale separation between submesoscale and BL flows in the upper ocean. The numerical algorithm for simulating this multiscale model resembles super-parameterization schemes used in meteorology, but retains a firm mathematical basis. We have validated our algorithm and here use it to perform multiscale simulations of the interaction between LC and upper ocean density stratification. ZMM, GPC, KJ gratefully acknowledge funding from NSF CMG Award 0934827.

  4. EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis

    NASA Astrophysics Data System (ADS)

    Žvokelj, Matej; Zupan, Samo; Prebil, Ivan

    2016-05-01

    A novel multivariate and multiscale statistical process monitoring method is proposed with the aim of detecting incipient failures in large slewing bearings, where subjective influence plays a minor role. The proposed method integrates the strengths of the Independent Component Analysis (ICA) multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD), which adaptively decomposes signals into different time scales and can thus cope with multiscale system dynamics. The method, which was named EEMD-based multiscale ICA (EEMD-MSICA), not only enables bearing fault detection but also offers a mechanism of multivariate signal denoising and, in combination with the Envelope Analysis (EA), a diagnostic tool. The multiscale nature of the proposed approach makes the method convenient to cope with data which emanate from bearings in complex real-world rotating machinery and frequently represent the cumulative effect of many underlying phenomena occupying different regions in the time-frequency plane. The efficiency of the proposed method was tested on simulated as well as real vibration and Acoustic Emission (AE) signals obtained through conducting an accelerated run-to-failure lifetime experiment on a purpose-built laboratory slewing bearing test stand. The ability to detect and locate the early-stage rolling-sliding contact fatigue failure of the bearing indicates that AE and vibration signals carry sufficient information on the bearing condition and that the developed EEMD-MSICA method is able to effectively extract it, thereby representing a reliable bearing fault detection and diagnosis strategy.

  5. Nonholonomic Hamiltonian Method for Meso-macroscale Simulations of Reacting Shocks

    NASA Astrophysics Data System (ADS)

    Fahrenthold, Eric; Lee, Sangyup

    2015-06-01

    The seamless integration of macroscale, mesoscale, and molecular scale models of reacting shock physics has been hindered by dramatic differences in the model formulation techniques normally used at different scales. In recent research the authors have developed the first unified discrete Hamiltonian approach to multiscale simulation of reacting shock physics. Unlike previous work, the formulation employs reacting themomechanical Hamiltonian formulations at all scales, including the continuum. Unlike previous work, the formulation employs a nonholonomic modeling approach to systematically couple the models developed at all scales. Example applications of the method show meso-macroscale shock to detonation simulations in nitromethane and RDX. Research supported by the Defense Threat Reduction Agency.

  6. Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model.

    PubMed

    Aregawi, Wondwosen A; Abera, Metadel K; Fanta, Solomon W; Verboven, Pieter; Nicolai, Bart

    2014-11-19

    A two-dimensional multiscale water transport and mechanical model was developed to predict the water loss and deformation of apple tissue (Malus × domestica Borkh. cv. 'Jonagold') during dehydration. At the macroscopic level, a continuum approach was used to construct a coupled water transport and mechanical model. Water transport in the tissue was simulated using a phenomenological approach using Fick's second law of diffusion. Mechanical deformation due to shrinkage was based on a structural mechanics model consisting of two parts: Yeoh strain energy functions to account for non-linearity and Maxwell's rheological model of visco-elasticity. Apparent parameters of the macroscale model were computed from a microscale model. The latter accounted for water exchange between different microscopic structures of the tissue (intercellular space, the cell wall network and cytoplasm) using transport laws with the water potential as the driving force for water exchange between different compartments of tissue. The microscale deformation mechanics were computed using a model where the cells were represented as a closed thin walled structure. The predicted apparent water transport properties of apple cortex tissue from the microscale model showed good agreement with the experimentally measured values. Deviations between calculated and measured mechanical properties of apple tissue were observed at strains larger than 3%, and were attributed to differences in water transport behavior between the experimental compression tests and the simulated dehydration-deformation behavior. Tissue dehydration and deformation in the high relative humidity range ( > 97% RH) could, however, be accurately predicted by the multiscale model. The multiscale model helped to understand the dynamics of the dehydration process and the importance of the different microstructural compartments (intercellular space, cell wall, membrane and cytoplasm) for water transport and mechanical deformation.

  7. Bringing global gyrokinetic turbulence simulations to the transport timescale using a multiscale approach

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey B.; LoDestro, Lynda L.; Told, Daniel; Merlo, Gabriele; Ricketson, Lee F.; Campos, Alejandro; Jenko, Frank; Hittinger, Jeffrey A. F.

    2018-05-01

    The vast separation dividing the characteristic times of energy confinement and turbulence in the core of toroidal plasmas makes first-principles prediction on long timescales extremely challenging. Here we report the demonstration of a multiple-timescale method that enables coupling global gyrokinetic simulations with a transport solver to calculate the evolution of the self-consistent temperature profile. This method, which exhibits resiliency to the intrinsic fluctuations arising in turbulence simulations, holds potential for integrating nonlocal gyrokinetic turbulence simulations into predictive, whole-device models.

  8. Asymptotic Expansion Homogenization for Multiscale Nuclear Fuel Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hales, J. D.; Tonks, M. R.; Chockalingam, K.

    2015-03-01

    Engineering scale nuclear fuel performance simulations can benefit by utilizing high-fidelity models running at a lower length scale. Lower length-scale models provide a detailed view of the material behavior that is used to determine the average material response at the macroscale. These lower length-scale calculations may provide insight into material behavior where experimental data is sparse or nonexistent. This multiscale approach is especially useful in the nuclear field, since irradiation experiments are difficult and expensive to conduct. The lower length-scale models complement the experiments by influencing the types of experiments required and by reducing the total number of experiments needed.more » This multiscale modeling approach is a central motivation in the development of the BISON-MARMOT fuel performance codes at Idaho National Laboratory. These codes seek to provide more accurate and predictive solutions for nuclear fuel behavior. One critical aspect of multiscale modeling is the ability to extract the relevant information from the lower length-scale sim- ulations. One approach, the asymptotic expansion homogenization (AEH) technique, has proven to be an effective method for determining homogenized material parameters. The AEH technique prescribes a system of equations to solve at the microscale that are used to compute homogenized material constants for use at the engineering scale. In this work, we employ AEH to explore the effect of evolving microstructural thermal conductivity and elastic constants on nuclear fuel performance. We show that the AEH approach fits cleanly into the BISON and MARMOT codes and provides a natural, multidimensional homogenization capability.« less

  9. On a sparse pressure-flow rate condensation of rigid circulation models

    PubMed Central

    Schiavazzi, D. E.; Hsia, T. Y.; Marsden, A. L.

    2015-01-01

    Cardiovascular simulation has shown potential value in clinical decision-making, providing a framework to assess changes in hemodynamics produced by physiological and surgical alterations. State-of-the-art predictions are provided by deterministic multiscale numerical approaches coupling 3D finite element Navier Stokes simulations to lumped parameter circulation models governed by ODEs. Development of next-generation stochastic multiscale models whose parameters can be learned from available clinical data under uncertainty constitutes a research challenge made more difficult by the high computational cost typically associated with the solution of these models. We present a methodology for constructing reduced representations that condense the behavior of 3D anatomical models using outlet pressure-flow polynomial surrogates, based on multiscale model solutions spanning several heart cycles. Relevance vector machine regression is compared with maximum likelihood estimation, showing that sparse pressure/flow rate approximations offer superior performance in producing working surrogate models to be included in lumped circulation networks. Sensitivities of outlets flow rates are also quantified through a Sobol’ decomposition of their total variance encoded in the orthogonal polynomial expansion. Finally, we show that augmented lumped parameter models including the proposed surrogates accurately reproduce the response of multiscale models they were derived from. In particular, results are presented for models of the coronary circulation with closed loop boundary conditions and the abdominal aorta with open loop boundary conditions. PMID:26671219

  10. Effect of Mesoscale and Multiscale Modeling on the Performance of Kevlar Woven Fabric Subjected to Ballistic Impact: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Jia, Xin; Huang, Zhengxiang; Zu, Xudong; Gu, Xiaohui; Xiao, Qiangqiang

    2013-12-01

    In this study, an optimal finite element model of Kevlar woven fabric that is more computational efficient compared with existing models was developed to simulate ballistic impact onto fabric. Kevlar woven fabric was modeled to yarn level architecture by using the hybrid elements analysis (HEA), which uses solid elements in modeling the yarns at the impact region and uses shell elements in modeling the yarns away from the impact region. Three HEA configurations were constructed, in which the solid element region was set as about one, two, and three times that of the projectile's diameter with impact velocities of 30 m/s (non-perforation case) and 200 m/s (perforation case) to determine the optimal ratio between the solid element region and the shell element region. To further reduce computational time and to maintain the necessary accuracy, three multiscale models were presented also. These multiscale models combine the local region with the yarn level architecture by using the HEA approach and the global region with homogenous level architecture. The effect of the varying ratios of the local and global area on the ballistic performance of fabric was discussed. The deformation and damage mechanisms of fabric were analyzed and compared among numerical models. Simulation results indicate that the multiscale model based on HEA accurately reproduces the baseline results and obviously decreases computational time.

  11. A Langevin approach to multi-scale modeling

    DOE PAGES

    Hirvijoki, Eero

    2018-04-13

    In plasmas, distribution functions often demonstrate long anisotropic tails or otherwise significant deviations from local Maxwellians. The tails, especially if they are pulled out from the bulk, pose a serious challenge for numerical simulations as resolving both the bulk and the tail on the same mesh is often challenging. A multi-scale approach, providing evolution equations for the bulk and the tail individually, could offer a resolution in the sense that both populations could be treated on separate meshes or different reduction techniques applied to the bulk and the tail population. In this paper, we propose a multi-scale method which allowsmore » us to split a distribution function into a bulk and a tail so that both populations remain genuine, non-negative distribution functions and may carry density, momentum, and energy. The proposed method is based on the observation that the motion of an individual test particle in a plasma obeys a stochastic differential equation, also referred to as a Langevin equation. Finally, this allows us to define transition probabilities between the bulk and the tail and to provide evolution equations for both populations separately.« less

  12. A Langevin approach to multi-scale modeling

    NASA Astrophysics Data System (ADS)

    Hirvijoki, Eero

    2018-04-01

    In plasmas, distribution functions often demonstrate long anisotropic tails or otherwise significant deviations from local Maxwellians. The tails, especially if they are pulled out from the bulk, pose a serious challenge for numerical simulations as resolving both the bulk and the tail on the same mesh is often challenging. A multi-scale approach, providing evolution equations for the bulk and the tail individually, could offer a resolution in the sense that both populations could be treated on separate meshes or different reduction techniques applied to the bulk and the tail population. In this letter, we propose a multi-scale method which allows us to split a distribution function into a bulk and a tail so that both populations remain genuine, non-negative distribution functions and may carry density, momentum, and energy. The proposed method is based on the observation that the motion of an individual test particle in a plasma obeys a stochastic differential equation, also referred to as a Langevin equation. This allows us to define transition probabilities between the bulk and the tail and to provide evolution equations for both populations separately.

  13. A Langevin approach to multi-scale modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirvijoki, Eero

    In plasmas, distribution functions often demonstrate long anisotropic tails or otherwise significant deviations from local Maxwellians. The tails, especially if they are pulled out from the bulk, pose a serious challenge for numerical simulations as resolving both the bulk and the tail on the same mesh is often challenging. A multi-scale approach, providing evolution equations for the bulk and the tail individually, could offer a resolution in the sense that both populations could be treated on separate meshes or different reduction techniques applied to the bulk and the tail population. In this paper, we propose a multi-scale method which allowsmore » us to split a distribution function into a bulk and a tail so that both populations remain genuine, non-negative distribution functions and may carry density, momentum, and energy. The proposed method is based on the observation that the motion of an individual test particle in a plasma obeys a stochastic differential equation, also referred to as a Langevin equation. Finally, this allows us to define transition probabilities between the bulk and the tail and to provide evolution equations for both populations separately.« less

  14. Constrained approximation of effective generators for multiscale stochastic reaction networks and application to conditioned path sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotter, Simon L., E-mail: simon.cotter@manchester.ac.uk

    2016-10-15

    Efficient analysis and simulation of multiscale stochastic systems of chemical kinetics is an ongoing area for research, and is the source of many theoretical and computational challenges. In this paper, we present a significant improvement to the constrained approach, which is a method for computing effective dynamics of slowly changing quantities in these systems, but which does not rely on the quasi-steady-state assumption (QSSA). The QSSA can cause errors in the estimation of effective dynamics for systems where the difference in timescales between the “fast” and “slow” variables is not so pronounced. This new application of the constrained approach allowsmore » us to compute the effective generator of the slow variables, without the need for expensive stochastic simulations. This is achieved by finding the null space of the generator of the constrained system. For complex systems where this is not possible, or where the constrained subsystem is itself multiscale, the constrained approach can then be applied iteratively. This results in breaking the problem down into finding the solutions to many small eigenvalue problems, which can be efficiently solved using standard methods. Since this methodology does not rely on the quasi steady-state assumption, the effective dynamics that are approximated are highly accurate, and in the case of systems with only monomolecular reactions, are exact. We will demonstrate this with some numerics, and also use the effective generators to sample paths of the slow variables which are conditioned on their endpoints, a task which would be computationally intractable for the generator of the full system.« less

  15. Using multi-scale entropy and principal component analysis to monitor gears degradation via the motor current signature analysis

    NASA Astrophysics Data System (ADS)

    Aouabdi, Salim; Taibi, Mahmoud; Bouras, Slimane; Boutasseta, Nadir

    2017-06-01

    This paper describes an approach for identifying localized gear tooth defects, such as pitting, using phase currents measured from an induction machine driving the gearbox. A new tool of anomaly detection based on multi-scale entropy (MSE) algorithm SampEn which allows correlations in signals to be identified over multiple time scales. The motor current signature analysis (MCSA) in conjunction with principal component analysis (PCA) and the comparison of observed values with those predicted from a model built using nominally healthy data. The Simulation results show that the proposed method is able to detect gear tooth pitting in current signals.

  16. Multi-scale modeling of spin transport in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Hemmatiyan, Shayan; Souza, Amaury; Kordt, Pascal; McNellis, Erik; Andrienko, Denis; Sinova, Jairo

    In this work, we present our theoretical framework to simulate simultaneously spin and charge transport in amorphous organic semiconductors. By combining several techniques e.g. molecular dynamics, density functional theory and kinetic Monte Carlo, we are be able to study spin transport in the presence of anisotropy, thermal effects, magnetic and electric field effects in a realistic morphologies of amorphous organic systems. We apply our multi-scale approach to investigate the spin transport in amorphous Alq3 (Tris(8-hydroxyquinolinato)aluminum) and address the underlying spin relaxation mechanism in this system as a function of temperature, bias voltage, magnetic field and sample thickness.

  17. MUSIC: MUlti-Scale Initial Conditions

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver; Abel, Tom

    2013-11-01

    MUSIC generates multi-scale initial conditions with multiple levels of refinements for cosmological ‘zoom-in’ simulations. The code uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). MUSIC achieves rms relative errors of the order of 10-4 for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier space-induced interference ringing.

  18. Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach

    NASA Astrophysics Data System (ADS)

    Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J.

    2014-02-01

    Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation.

  19. A systematic multiscale modeling and experimental approach to protect grain boundaries in magnesium alloys from corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horstemeyer, Mark R.; Chaudhuri, Santanu

    2015-09-30

    A multiscale modeling Internal State Variable (ISV) constitutive model was developed that captures the fundamental structure-property relationships. The macroscale ISV model used lower length scale simulations (Butler-Volmer and Electronics Structures results) in order to inform the ISVs at the macroscale. The chemomechanical ISV model was calibrated and validated from experiments with magnesium (Mg) alloys that were investigated under corrosive environments coupled with experimental electrochemical studies. Because the ISV chemomechanical model is physically based, it can be used for other material systems to predict corrosion behavior. As such, others can use the chemomechanical model for analyzing corrosion effects on their designs.

  20. Multiscale simulation of DC corona discharge and ozone generation from nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Pengxiang

    Atmospheric direct current (dc) corona discharge from micro-sized objects has been widely used as an ion source in many devices, such as photocopiers, laser printers, and electronic air cleaners. Shrinking the size of the discharge electrode to the nanometer range (e.g., through the use of carbon nanotubes or CNTs) is expected to lead to a significant reduction in power consumption and detrimental ozone production in these devices. The objectives of this study are to unveil the fundamental physics of the nanoscale corona discharge and to evaluate its performance and ozone production through numerical models. The extremely small size of CNTs presents considerable complexity and challenges in modeling CNT corona discharges. A hybrid multiscale model, which combines a kinetic particle-in-cell plus Monte Carlo collision (PIC-MCC) model and a continuum model, is developed to simulate the corona discharge from nanostructures. The multiscale model is developed in several steps. First, a pure PIC-MCC model is developed and PIC-MCC simulations of corona plasma from micro-sized electrode with same boundary conditions as prior model are performed to validate the PIC-MCC scheme. The agreement between the PIC-MCC model and the prior continuum model indicates the validity of the PIC-MCC scheme. The validated PIC-MCC scheme is then coupled with a continuum model to simulate the corona discharge from a micro-sized electrode. Unlike the prior continuum model which only predicts the corona plasma region, the hybrid model successfully predicts the self-consistent discharge process in the entire corona discharge gap that includes both corona plasma region and unipolar ion region. The voltage-current density curves obtained by the hybrid model agree well with analytical prediction and experimental results. The hybrid modeling approach, which combines the accuracy of a kinetic model and the efficiency of a continuum model, is thus validated for modeling dc corona discharges. For simulation of corona discharges from nanostructures, a one-dimensional (1-D) multiscale model is used due to the prohibitive computational expense associated with two-dimensional (2-D) modeling. Near the nanoscale discharge electrode surface, a kinetic model based on PIC-MCC is used due to a relatively large Knudsen number in this region. Far away from the nanoscale discharge electrode, a continuum model is used since the Knudsen number is very small there. The multiscale modeling results are compared with experimental data. The quantitative agreement in positive discharges and qualitative agreement in negative discharges validate the modeling approach. The mechanism of sustaining the discharge process from nanostructures is revealed and is found to be different from that of discharge from micro- or macro-sized electrodes. Finally, the corona plasma model is combined with a plasma chemistry model and a transport model to predict the ozone production from the nanoscale corona. The dependence of ozone production on the applied potential and air velocity is studied. The electric field distribution in a 2-D multiscale domain (from nanoscale to microscale) is predicted by solving the Poisson's equation using a finite difference scheme. The discretized linear equations are solved using a multigrid method under the framework of PETSc on a paralleled supercomputer. Although the Poisson solver is able to resolve the multiscale field, the prohibitively long computation time limits the use of a 2-D solver in the current PIC-MCC scheme.

  1. Progress in fast, accurate multi-scale climate simulations

    DOE PAGES

    Collins, W. D.; Johansen, H.; Evans, K. J.; ...

    2015-06-01

    We present a survey of physical and computational techniques that have the potential to contribute to the next generation of high-fidelity, multi-scale climate simulations. Examples of the climate science problems that can be investigated with more depth with these computational improvements include the capture of remote forcings of localized hydrological extreme events, an accurate representation of cloud features over a range of spatial and temporal scales, and parallel, large ensembles of simulations to more effectively explore model sensitivities and uncertainties. Numerical techniques, such as adaptive mesh refinement, implicit time integration, and separate treatment of fast physical time scales are enablingmore » improved accuracy and fidelity in simulation of dynamics and allowing more complete representations of climate features at the global scale. At the same time, partnerships with computer science teams have focused on taking advantage of evolving computer architectures such as many-core processors and GPUs. As a result, approaches which were previously considered prohibitively costly have become both more efficient and scalable. In combination, progress in these three critical areas is poised to transform climate modeling in the coming decades.« less

  2. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  3. A quantum wave based compact modeling approach for the current in ultra-short DG MOSFETs suitable for rapid multi-scale simulations

    NASA Astrophysics Data System (ADS)

    Hosenfeld, Fabian; Horst, Fabian; Iñíguez, Benjamín; Lime, François; Kloes, Alexander

    2017-11-01

    Source-to-drain (SD) tunneling decreases the device performance in MOSFETs falling below the 10 nm channel length. Modeling quantum mechanical effects including SD tunneling has gained more importance specially for compact model developers. The non-equilibrium Green's function (NEGF) has become a state-of-the-art method for nano-scaled device simulation in the past years. In the sense of a multi-scale simulation approach it is necessary to bridge the gap between compact models with their fast and efficient calculation of the device current, and numerical device models which consider quantum effects of nano-scaled devices. In this work, an NEGF based analytical model for nano-scaled double-gate (DG) MOSFETs is introduced. The model consists of a closed-form potential solution of a classical compact model and a 1D NEGF formalism for calculating the device current, taking into account quantum mechanical effects. The potential calculation omits the iterative coupling and allows the straightforward current calculation. The model is based on a ballistic NEGF approach whereby backscattering effects are considered as second order effect in a closed-form. The accuracy and scalability of the non-iterative DG MOSFET model is inspected in comparison with numerical NanoMOS TCAD data for various channel lengths. With the help of this model investigations on short-channel and temperature effects are performed.

  4. Evaluating the effects of climate change on summertime ozone using a relative reduction factor approach for policymakers

    EPA Science Inventory

    The impact of climate change on surface-level ozone is examined through a multiscale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the relative response factor (RRFE), which estimates the ...

  5. Data Assimilation and Propagation of Uncertainty in Multiscale Cardiovascular Simulation

    NASA Astrophysics Data System (ADS)

    Schiavazzi, Daniele; Marsden, Alison

    2015-11-01

    Cardiovascular modeling is the application of computational tools to predict hemodynamics. State-of-the-art techniques couple a 3D incompressible Navier-Stokes solver with a boundary circulation model and can predict local and peripheral hemodynamics, analyze the post-operative performance of surgical designs and complement clinical data collection minimizing invasive and risky measurement practices. The ability of these tools to make useful predictions is directly related to their accuracy in representing measured physiologies. Tuning of model parameters is therefore a topic of paramount importance and should include clinical data uncertainty, revealing how this uncertainty will affect the predictions. We propose a fully Bayesian, multi-level approach to data assimilation of uncertain clinical data in multiscale circulation models. To reduce the computational cost, we use a stable, condensed approximation of the 3D model build by linear sparse regression of the pressure/flow rate relationship at the outlets. Finally, we consider the problem of non-invasively propagating the uncertainty in model parameters to the resulting hemodynamics and compare Monte Carlo simulation with Stochastic Collocation approaches based on Polynomial or Multi-resolution Chaos expansions.

  6. On the intrinsic flexibility of the opioid receptor through multiscale modeling approaches

    NASA Astrophysics Data System (ADS)

    Vercauteren, Daniel; FosséPré, Mathieu; Leherte, Laurence; Laaksonen, Aatto

    Numerous releases of G protein-coupled receptors crystalline structures created the opportunity for computational methods to widely explore their dynamics. Here, we study the biological implication of the intrinsic flexibility properties of opioid receptor OR. First, one performed classical all-atom (AA) Molecular Dynamics (MD) simulations of OR in its apo-form. We highlighted that the various degrees of bendability of the α-helices present important consequences on the plasticity of the binding site. Hence, this latter adopts a wide diversity of shape and volume, explaining why OR interacts with very diverse ligands. Then, one introduces a new strategy for parameterizing purely mechanical but precise coarse-grained (CG) elastic network models (ENMs). The CG ENMs reproduced in a high accurate way the flexibility properties of OR versus the AA simulations. At last, one uses network modularization to design multi-grained (MG) models. They represent a novel type of low resolution models, different in nature versus CG models as being true multi-resolution models, i . e ., each MG grouping a different number of residues. The three parts constitute hierarchical and multiscale approach for tackling the flexibility of OR.

  7. Multiscale analysis of information dynamics for linear multivariate processes.

    PubMed

    Faes, Luca; Montalto, Alessandro; Stramaglia, Sebastiano; Nollo, Giandomenico; Marinazzo, Daniele

    2016-08-01

    In the study of complex physical and physiological systems represented by multivariate time series, an issue of great interest is the description of the system dynamics over a range of different temporal scales. While information-theoretic approaches to the multiscale analysis of complex dynamics are being increasingly used, the theoretical properties of the applied measures are poorly understood. This study introduces for the first time a framework for the analytical computation of information dynamics for linear multivariate stochastic processes explored at different time scales. After showing that the multiscale processing of a vector autoregressive (VAR) process introduces a moving average (MA) component, we describe how to represent the resulting VARMA process using statespace (SS) models and how to exploit the SS model parameters to compute analytical measures of information storage and information transfer for the original and rescaled processes. The framework is then used to quantify multiscale information dynamics for simulated unidirectionally and bidirectionally coupled VAR processes, showing that rescaling may lead to insightful patterns of information storage and transfer but also to potentially misleading behaviors.

  8. From Single-Cell Dynamics to Scaling Laws in Oncology

    NASA Astrophysics Data System (ADS)

    Chignola, Roberto; Sega, Michela; Stella, Sabrina; Vyshemirsky, Vladislav; Milotti, Edoardo

    We are developing a biophysical model of tumor biology. We follow a strictly quantitative approach where each step of model development is validated by comparing simulation outputs with experimental data. While this strategy may slow down our advancements, at the same time it provides an invaluable reward: we can trust simulation outputs and use the model to explore territories of cancer biology where current experimental techniques fail. Here, we review our multi-scale biophysical modeling approach and show how a description of cancer at the cellular level has led us to general laws obeyed by both in vitro and in vivo tumors.

  9. Computationally Efficient Multiscale Reactive Molecular Dynamics to Describe Amino Acid Deprotonation in Proteins

    PubMed Central

    2016-01-01

    An important challenge in the simulation of biomolecular systems is a quantitative description of the protonation and deprotonation process of amino acid residues. Despite the seeming simplicity of adding or removing a positively charged hydrogen nucleus, simulating the actual protonation/deprotonation process is inherently difficult. It requires both the explicit treatment of the excess proton, including its charge defect delocalization and Grotthuss shuttling through inhomogeneous moieties (water and amino residues), and extensive sampling of coupled condensed phase motions. In a recent paper (J. Chem. Theory Comput.2014, 10, 2729−273725061442), a multiscale approach was developed to map high-level quantum mechanics/molecular mechanics (QM/MM) data into a multiscale reactive molecular dynamics (MS-RMD) model in order to describe amino acid deprotonation in bulk water. In this article, we extend the fitting approach (called FitRMD) to create MS-RMD models for ionizable amino acids within proteins. The resulting models are shown to faithfully reproduce the free energy profiles of the reference QM/MM Hamiltonian for PT inside an example protein, the ClC-ec1 H+/Cl– antiporter. Moreover, we show that the resulting MS-RMD models are computationally efficient enough to then characterize more complex 2-dimensional free energy surfaces due to slow degrees of freedom such as water hydration of internal protein cavities that can be inherently coupled to the excess proton charge translocation. The FitRMD method is thus shown to be an effective way to map ab initio level accuracy into a much more computationally efficient reactive MD method in order to explicitly simulate and quantitatively describe amino acid protonation/deprotonation in proteins. PMID:26734942

  10. Computationally Efficient Multiscale Reactive Molecular Dynamics to Describe Amino Acid Deprotonation in Proteins.

    PubMed

    Lee, Sangyun; Liang, Ruibin; Voth, Gregory A; Swanson, Jessica M J

    2016-02-09

    An important challenge in the simulation of biomolecular systems is a quantitative description of the protonation and deprotonation process of amino acid residues. Despite the seeming simplicity of adding or removing a positively charged hydrogen nucleus, simulating the actual protonation/deprotonation process is inherently difficult. It requires both the explicit treatment of the excess proton, including its charge defect delocalization and Grotthuss shuttling through inhomogeneous moieties (water and amino residues), and extensive sampling of coupled condensed phase motions. In a recent paper (J. Chem. Theory Comput. 2014, 10, 2729-2737), a multiscale approach was developed to map high-level quantum mechanics/molecular mechanics (QM/MM) data into a multiscale reactive molecular dynamics (MS-RMD) model in order to describe amino acid deprotonation in bulk water. In this article, we extend the fitting approach (called FitRMD) to create MS-RMD models for ionizable amino acids within proteins. The resulting models are shown to faithfully reproduce the free energy profiles of the reference QM/MM Hamiltonian for PT inside an example protein, the ClC-ec1 H(+)/Cl(-) antiporter. Moreover, we show that the resulting MS-RMD models are computationally efficient enough to then characterize more complex 2-dimensional free energy surfaces due to slow degrees of freedom such as water hydration of internal protein cavities that can be inherently coupled to the excess proton charge translocation. The FitRMD method is thus shown to be an effective way to map ab initio level accuracy into a much more computationally efficient reactive MD method in order to explicitly simulate and quantitatively describe amino acid protonation/deprotonation in proteins.

  11. An Overview of the State of the Art in Atomistic and Multiscale Simulation of Fracture

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Yamakov, Vesselin; Phillips, Dawn R.; Glaessgen, Edward H.

    2009-01-01

    The emerging field of nanomechanics is providing a new focus in the study of the mechanics of materials, particularly in simulating fundamental atomic mechanisms involved in the initiation and evolution of damage. Simulating fundamental material processes using first principles in physics strongly motivates the formulation of computational multiscale methods to link macroscopic failure to the underlying atomic processes from which all material behavior originates. This report gives an overview of the state of the art in applying concurrent and sequential multiscale methods to analyze damage and failure mechanisms across length scales.

  12. Validation of nonlinear gyrokinetic simulations of L- and I-mode plasmas on Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creely, A. J.; Howard, N. T.; Rodriguez-Fernandez, P.

    New validation of global, nonlinear, ion-scale gyrokinetic simulations (GYRO) is carried out for L- and I-mode plasmas on Alcator C-Mod, utilizing heat fluxes, profile stiffness, and temperature fluctuations. Previous work at C-Mod found that ITG/TEM-scale GYRO simulations can match both electron and ion heat fluxes within error bars in I-mode [White PoP 2015], suggesting that multi-scale (cross-scale coupling) effects [Howard PoP 2016] may be less important in I-mode than in L-mode. New results presented here, however, show that global, nonlinear, ion-scale GYRO simulations are able to match the experimental ion heat flux, but underpredict electron heat flux (at most radii),more » electron temperature fluctuations, and perturbative thermal diffusivity in both L- and I-mode. Linear addition of electron heat flux from electron scale runs does not resolve this discrepancy. These results indicate that single-scale simulations do not sufficiently describe the I-mode core transport, and that multi-scale (coupled electron- and ion-scale) transport models are needed. In conclusion a preliminary investigation with multi-scale TGLF, however, was unable to resolve the discrepancy between ion-scale GYRO and experimental electron heat fluxes and perturbative diffusivity, motivating further work with multi-scale GYRO simulations and a more comprehensive study with multi-scale TGLF.« less

  13. Validation of nonlinear gyrokinetic simulations of L- and I-mode plasmas on Alcator C-Mod

    DOE PAGES

    Creely, A. J.; Howard, N. T.; Rodriguez-Fernandez, P.; ...

    2017-03-02

    New validation of global, nonlinear, ion-scale gyrokinetic simulations (GYRO) is carried out for L- and I-mode plasmas on Alcator C-Mod, utilizing heat fluxes, profile stiffness, and temperature fluctuations. Previous work at C-Mod found that ITG/TEM-scale GYRO simulations can match both electron and ion heat fluxes within error bars in I-mode [White PoP 2015], suggesting that multi-scale (cross-scale coupling) effects [Howard PoP 2016] may be less important in I-mode than in L-mode. New results presented here, however, show that global, nonlinear, ion-scale GYRO simulations are able to match the experimental ion heat flux, but underpredict electron heat flux (at most radii),more » electron temperature fluctuations, and perturbative thermal diffusivity in both L- and I-mode. Linear addition of electron heat flux from electron scale runs does not resolve this discrepancy. These results indicate that single-scale simulations do not sufficiently describe the I-mode core transport, and that multi-scale (coupled electron- and ion-scale) transport models are needed. In conclusion a preliminary investigation with multi-scale TGLF, however, was unable to resolve the discrepancy between ion-scale GYRO and experimental electron heat fluxes and perturbative diffusivity, motivating further work with multi-scale GYRO simulations and a more comprehensive study with multi-scale TGLF.« less

  14. Advances in multi-scale modeling of solidification and casting processes

    NASA Astrophysics Data System (ADS)

    Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang

    2011-04-01

    The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.

  15. New High-Altitude GPS Navigation Results from the Magnetospheric Multiscale Spacecraft and Simulations at Lunar Distances

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.

    2017-01-01

    As reported in a companion work, in its first phase, NASA's 2015 highly elliptic Magnetospheric Multiscale (MMS) mission set a record for the highest altitude operational use of on-board GPS-based navigation, returning state estimates at 12 Earth radii. In early 2017 MMS transitioned to its second phase which doubled the apogee distance to 25 Earth radii, approaching halfway to the Moon. This paper will present results for GPS observability and navigation performance achieved in MMS Phase 2. Additionally, it will provide simulation results predicting the performance of the MMS navigation system applied to a pair of concept missions at Lunar distances. These studies will demonstrate how high-sensitivity GPS (or GNSS) receivers paired with onboard navigation software, as in MMS-Navigation system, can extend the envelope of autonomous onboard GPS navigation far from the Earth.

  16. Equation-free multiscale computation: algorithms and applications.

    PubMed

    Kevrekidis, Ioannis G; Samaey, Giovanni

    2009-01-01

    In traditional physicochemical modeling, one derives evolution equations at the (macroscopic, coarse) scale of interest; these are used to perform a variety of tasks (simulation, bifurcation analysis, optimization) using an arsenal of analytical and numerical techniques. For many complex systems, however, although one observes evolution at a macroscopic scale of interest, accurate models are only given at a more detailed (fine-scale, microscopic) level of description (e.g., lattice Boltzmann, kinetic Monte Carlo, molecular dynamics). Here, we review a framework for computer-aided multiscale analysis, which enables macroscopic computational tasks (over extended spatiotemporal scales) using only appropriately initialized microscopic simulation on short time and length scales. The methodology bypasses the derivation of macroscopic evolution equations when these equations conceptually exist but are not available in closed form-hence the term equation-free. We selectively discuss basic algorithms and underlying principles and illustrate the approach through representative applications. We also discuss potential difficulties and outline areas for future research.

  17. Multiscale Study of Plasmonic Scattering and Light Trapping Effect in Silicon Nanowire Array Solar Cells.

    PubMed

    Meng, Lingyi; Zhang, Yu; Yam, ChiYung

    2017-02-02

    Nanometallic structures that support surface plasmons provide new ways to confine light at deep-subwavelength scales. The effect of light scattering in nanowire array solar cells is studied by a multiscale approach combining classical electromagnetic (EM) and quantum mechanical simulations. A photovoltaic device is constructed by integrating a silicon nanowire array with a plasmonic silver nanosphere. The light scatterings by plasmonic element and nanowire array are obtained via classical EM simulations, while current-voltage characteristics and optical properties of the nanowire cells are evaluated quantum mechanically. We found that the power conversion efficiency (PCE) of photovoltaic device is substantially improved due to the local field enhancement of the plasmonic effect and light trapping by the nanowire array. In addition, we showed that there exists an optimal nanowire number density in terms of optical confinement and solar cell PCE.

  18. Multi-Scale Modeling of the Gamma Radiolysis of Nitrate Solutions.

    PubMed

    Horne, Gregory P; Donoclift, Thomas A; Sims, Howard E; Orr, Robin M; Pimblott, Simon M

    2016-11-17

    A multiscale modeling approach has been developed for the extended time scale long-term radiolysis of aqueous systems. The approach uses a combination of stochastic track structure and track chemistry as well as deterministic homogeneous chemistry techniques and involves four key stages: radiation track structure simulation, the subsequent physicochemical processes, nonhomogeneous diffusion-reaction kinetic evolution, and homogeneous bulk chemistry modeling. The first three components model the physical and chemical evolution of an isolated radiation chemical track and provide radiolysis yields, within the extremely low dose isolated track paradigm, as the input parameters for a bulk deterministic chemistry model. This approach to radiation chemical modeling has been tested by comparison with the experimentally observed yield of nitrite from the gamma radiolysis of sodium nitrate solutions. This is a complex radiation chemical system which is strongly dependent on secondary reaction processes. The concentration of nitrite is not just dependent upon the evolution of radiation track chemistry and the scavenging of the hydrated electron and its precursors but also on the subsequent reactions of the products of these scavenging reactions with other water radiolysis products. Without the inclusion of intratrack chemistry, the deterministic component of the multiscale model is unable to correctly predict experimental data, highlighting the importance of intratrack radiation chemistry in the chemical evolution of the irradiated system.

  19. Multiscale high-order/low-order (HOLO) algorithms and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon, Luis; Chen, Guangye; Knoll, Dana Alan

    Here, we review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. Themore » HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.« less

  20. Multiscale high-order/low-order (HOLO) algorithms and applications

    DOE PAGES

    Chacon, Luis; Chen, Guangye; Knoll, Dana Alan; ...

    2016-11-11

    Here, we review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. Themore » HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.« less

  1. Particle-Based Methods for Multiscale Modeling of Blood Flow in the Circulation and in Devices: Challenges and Future Directions

    PubMed Central

    Yamaguchi, Takami; Ishikawa, Takuji; Imai, Y.; Matsuki, N.; Xenos, Mikhail; Deng, Yuefan; Bluestein, Danny

    2010-01-01

    A major computational challenge for a multiscale modeling is the coupling of disparate length and timescales between molecular mechanics and macroscopic transport, spanning the spatial and temporal scales characterizing the complex processes taking place in flow-induced blood clotting. Flow and pressure effects on a cell-like platelet can be well represented by a continuum mechanics model down to the order of the micrometer level. However, the molecular effects of adhesion/aggregation bonds are on the order of nanometer. A successful multiscale model of platelet response to flow stresses in devices and the ensuing clotting responses should be able to characterize the clotting reactions and their interactions with the flow. This paper attempts to describe a few of the computational methods that were developed in recent years and became available to researchers in the field. They differ from traditional approaches that dominate the field by expanding on prevailing continuum-based approaches, or by completely departing from them, yielding an expanding toolkit that may facilitate further elucidation of the underlying mechanisms of blood flow and the cellular response to it. We offer a paradigm shift by adopting a multidisciplinary approach with fluid dynamics simulations coupled to biophysical and biochemical transport. PMID:20336827

  2. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    DOE PAGES

    Gao, Kai; Chung, Eric T.; Gibson, Richard L.; ...

    2015-06-05

    The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elasticmore » wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.« less

  3. A self-consistent first-principle based approach to model carrier mobility in organic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meded, Velimir; Friederich, Pascal; Symalla, Franz

    2015-12-31

    Transport through thin organic amorphous films, utilized in OLEDs and OPVs, has been a challenge to model by using ab-initio methods. Charge carrier mobility depends strongly on the disorder strength and reorganization energy, both of which are significantly affected by the details in environment of each molecule. Here we present a multi-scale approach to describe carrier mobility in which the materials morphology is generated using DEPOSIT, a Monte Carlo based atomistic simulation approach, or, alternatively by molecular dynamics calculations performed with GROMACS. From this morphology we extract the material specific hopping rates, as well as the on-site energies using amore » fully self-consistent embedding approach to compute the electronic structure parameters, which are then used in an analytic expression for the carrier mobility. We apply this strategy to compute the carrier mobility for a set of widely studied molecules and obtain good agreement between experiment and theory varying over several orders of magnitude in the mobility without any freely adjustable parameters. The work focuses on the quantum mechanical step of the multi-scale workflow, explains the concept along with the recently published workflow optimization, which combines density functional with semi-empirical tight binding approaches. This is followed by discussion on the analytic formula and its agreement with established percolation fits as well as kinetic Monte Carlo numerical approaches. Finally, we skatch an unified multi-disciplinary approach that integrates materials science simulation and high performance computing, developed within EU project MMM@HPC.« less

  4. Analysis of Gas-Particle Flows through Multi-Scale Simulations

    NASA Astrophysics Data System (ADS)

    Gu, Yile

    Multi-scale structures are inherent in gas-solid flows, which render the modeling efforts challenging. On one hand, detailed simulations where the fine structures are resolved and particle properties can be directly specified can account for complex flow behaviors, but they are too computationally expensive to apply for larger systems. On the other hand, coarse-grained simulations demand much less computations but they necessitate constitutive models which are often not readily available for given particle properties. The present study focuses on addressing this issue, as it seeks to provide a general framework through which one can obtain the required constitutive models from detailed simulations. To demonstrate the viability of this general framework in which closures can be proposed for different particle properties, we focus on the van der Waals force of interaction between particles. We start with Computational Fluid Dynamics (CFD) - Discrete Element Method (DEM) simulations where the fine structures are resolved and van der Waals force between particles can be directly specified, and obtain closures for stress and drag that are required for coarse-grained simulations. Specifically, we develop a new cohesion model that appropriately accounts for van der Waals force between particles to be used for CFD-DEM simulations. We then validate this cohesion model and the CFD-DEM approach by showing that it can qualitatively capture experimental results where the addition of small particles to gas fluidization reduces bubble sizes. Based on the DEM and CFD-DEM simulation results, we propose stress models that account for the van der Waals force between particles. Finally, we apply machine learning, specifically neural networks, to obtain a drag model that captures the effects from fine structures and inter-particle cohesion. We show that this novel approach using neural networks, which can be readily applied for other closures other than drag here, can take advantage of the large amount of data generated from simulations, and therefore offer superior modeling performance over traditional approaches.

  5. Multiscale Granger causality

    NASA Astrophysics Data System (ADS)

    Faes, Luca; Nollo, Giandomenico; Stramaglia, Sebastiano; Marinazzo, Daniele

    2017-10-01

    In the study of complex physical and biological systems represented by multivariate stochastic processes, an issue of great relevance is the description of the system dynamics spanning multiple temporal scales. While methods to assess the dynamic complexity of individual processes at different time scales are well established, multiscale analysis of directed interactions has never been formalized theoretically, and empirical evaluations are complicated by practical issues such as filtering and downsampling. Here we extend the very popular measure of Granger causality (GC), a prominent tool for assessing directed lagged interactions between joint processes, to quantify information transfer across multiple time scales. We show that the multiscale processing of a vector autoregressive (AR) process introduces a moving average (MA) component, and describe how to represent the resulting ARMA process using state space (SS) models and to combine the SS model parameters for computing exact GC values at arbitrarily large time scales. We exploit the theoretical formulation to identify peculiar features of multiscale GC in basic AR processes, and demonstrate with numerical simulations the much larger estimation accuracy of the SS approach compared to pure AR modeling of filtered and downsampled data. The improved computational reliability is exploited to disclose meaningful multiscale patterns of information transfer between global temperature and carbon dioxide concentration time series, both in paleoclimate and in recent years.

  6. Materials integrity in microsystems: a framework for a petascale predictive-science-based multiscale modeling and simulation system

    NASA Astrophysics Data System (ADS)

    To, Albert C.; Liu, Wing Kam; Olson, Gregory B.; Belytschko, Ted; Chen, Wei; Shephard, Mark S.; Chung, Yip-Wah; Ghanem, Roger; Voorhees, Peter W.; Seidman, David N.; Wolverton, Chris; Chen, J. S.; Moran, Brian; Freeman, Arthur J.; Tian, Rong; Luo, Xiaojuan; Lautenschlager, Eric; Challoner, A. Dorian

    2008-09-01

    Microsystems have become an integral part of our lives and can be found in homeland security, medical science, aerospace applications and beyond. Many critical microsystem applications are in harsh environments, in which long-term reliability needs to be guaranteed and repair is not feasible. For example, gyroscope microsystems on satellites need to function for over 20 years under severe radiation, thermal cycling, and shock loading. Hence a predictive-science-based, verified and validated computational models and algorithms to predict the performance and materials integrity of microsystems in these situations is needed. Confidence in these predictions is improved by quantifying uncertainties and approximation errors. With no full system testing and limited sub-system testings, petascale computing is certainly necessary to span both time and space scales and to reduce the uncertainty in the prediction of long-term reliability. This paper presents the necessary steps to develop predictive-science-based multiscale modeling and simulation system. The development of this system will be focused on the prediction of the long-term performance of a gyroscope microsystem. The environmental effects to be considered include radiation, thermo-mechanical cycling and shock. Since there will be many material performance issues, attention is restricted to creep resulting from thermal aging and radiation-enhanced mass diffusion, material instability due to radiation and thermo-mechanical cycling and damage and fracture due to shock. To meet these challenges, we aim to develop an integrated multiscale software analysis system that spans the length scales from the atomistic scale to the scale of the device. The proposed software system will include molecular mechanics, phase field evolution, micromechanics and continuum mechanics software, and the state-of-the-art model identification strategies where atomistic properties are calibrated by quantum calculations. We aim to predict the long-term (in excess of 20 years) integrity of the resonator, electrode base, multilayer metallic bonding pads, and vacuum seals in a prescribed mission. Although multiscale simulations are efficient in the sense that they focus the most computationally intensive models and methods on only the portions of the space time domain needed, the execution of the multiscale simulations associated with evaluating materials and device integrity for aerospace microsystems will require the application of petascale computing. A component-based software strategy will be used in the development of our massively parallel multiscale simulation system. This approach will allow us to take full advantage of existing single scale modeling components. An extensive, pervasive thrust in the software system development is verification, validation, and uncertainty quantification (UQ). Each component and the integrated software system need to be carefully verified. An UQ methodology that determines the quality of predictive information available from experimental measurements and packages the information in a form suitable for UQ at various scales needs to be developed. Experiments to validate the model at the nanoscale, microscale, and macroscale are proposed. The development of a petascale predictive-science-based multiscale modeling and simulation system will advance the field of predictive multiscale science so that it can be used to reliably analyze problems of unprecedented complexity, where limited testing resources can be adequately replaced by petascale computational power, advanced verification, validation, and UQ methodologies.

  7. Based on a multi-agent system for multi-scale simulation and application of household's LUCC: a case study for Mengcha village, Mizhi county, Shaanxi province.

    PubMed

    Chen, Hai; Liang, Xiaoying; Li, Rui

    2013-01-01

    Multi-Agent Systems (MAS) offer a conceptual approach to include multi-actor decision making into models of land use change. Through the simulation based on the MAS, this paper tries to show the application of MAS in the micro scale LUCC, and reveal the transformation mechanism of difference scale. This paper starts with a description of the context of MAS research. Then, it adopts the Nested Spatial Choice (NSC) method to construct the multi-scale LUCC decision-making model. And a case study for Mengcha village, Mizhi County, Shaanxi Province is reported. Finally, the potentials and drawbacks of the following approach is discussed and concluded. From our design and implementation of the MAS in multi-scale model, a number of observations and conclusions can be drawn on the implementation and future research directions. (1) The use of the LUCC decision-making and multi-scale transformation framework provides, according to us, a more realistic modeling of multi-scale decision making process. (2) By using continuous function, rather than discrete function, to construct the decision-making of the households is more realistic to reflect the effect. (3) In this paper, attempts have been made to give a quantitative analysis to research the household interaction. And it provides the premise and foundation for researching the communication and learning among the households. (4) The scale transformation architecture constructed in this paper helps to accumulate theory and experience for the interaction research between the micro land use decision-making and the macro land use landscape pattern. Our future research work will focus on: (1) how to rational use risk aversion principle, and put the rule on rotation between household parcels into model. (2) Exploring the methods aiming at researching the household decision-making over a long period, it allows us to find the bridge between the long-term LUCC data and the short-term household decision-making. (3) Researching the quantitative method and model, especially the scenario analysis model which may reflect the interaction among different household types.

  8. Shingle 2.0: generalising self-consistent and automated domain discretisation for multi-scale geophysical models

    NASA Astrophysics Data System (ADS)

    Candy, Adam S.; Pietrzak, Julie D.

    2018-01-01

    The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model- or application-specific, and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale, anisotropic, fully unstructured meshes where a relatively large number of heterogeneous parameters are required to constrain their full description. As a consequence, it can be difficult to reproduce simulations, to ensure a provenance in model data handling and initialisation, and a challenge to conduct model intercomparisons rigorously. This paper takes a novel approach to spatial discretisation, considering it much like a numerical simulation model problem of its own. It introduces a generalised, extensible, self-documenting approach to carefully describe, and necessarily fully, the constraints over the heterogeneous parameter space that determine how a domain is spatially discretised. This additionally provides a method to accurately record these constraints, using high-level natural language based abstractions that enable full accounts of provenance, sharing, and distribution. Together with this description, a generalised consistent approach to unstructured mesh generation for geophysical models is developed that is automated, robust and repeatable, quick-to-draft, rigorously verified, and consistent with the source data throughout. This interprets the description above to execute a self-consistent spatial discretisation process, which is automatically validated to expected discrete characteristics and metrics. Library code, verification tests, and examples available in the repository at https://github.com/shingleproject/Shingle. Further details of the project presented at http://shingleproject.org.

  9. Evaluating the Effects of Climate Change on Summertime Ozone using a Relative Response Factor approach for Policy Makers

    EPA Science Inventory

    The impact of climate change on surface level ozone is examined through a multi-scale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the Relative Response Factor (RRFE), which es...

  10. Computer Laboratory for Multi-scale Simulations of Novel Nanomaterials

    DTIC Science & Technology

    2014-09-15

    schemes for multiscale modeling of polymers. Permselective ion-exchange membranes for protective clothing, fuel cells , and batteries are of special...polyelectrolyte membranes ( PEM ) with chemical warfare agents (CWA) and their simulants and (2) development of new simulation methods and computational...chemical potential using gauge cell method and calculation of density profiles. However, the code does not run in parallel environments. For mesoscale

  11. Microphysics in Multi-scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2012-01-01

    Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.

  12. Multiscale Cloud System Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell W.

    2009-01-01

    The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing approximately 1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects.

  13. Shock waves simulated using the dual domain material point method combined with molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Duan Z.; Dhakal, Tilak Raj

    Here in this work we combine the dual domain material point method with molecular dynamics in an attempt to create a multiscale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically nonequilibrium state, and conventional constitutive relations or equations of state are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a molecular dynamics simulation of a group of atoms surrounding the material point. Rather than restricting the multiscale simulation in a small spatial region,more » such as phase interfaces, or crack tips, this multiscale method can be used to consider nonequilibrium thermodynamic effects in a macroscopic domain. This method takes the advantage that the material points only communicate with mesh nodes, not among themselves; therefore molecular dynamics simulations for material points can be performed independently in parallel. The dual domain material point method is chosen for this multiscale method because it can be used in history dependent problems with large deformation without generating numerical noise as material points move across cells, and also because of its convergence and conservation properties. In conclusion, to demonstrate the feasibility and accuracy of this method, we compare the results of a shock wave propagation in a cerium crystal calculated using the direct molecular dynamics simulation with the results from this combined multiscale calculation.« less

  14. Shock waves simulated using the dual domain material point method combined with molecular dynamics

    DOE PAGES

    Zhang, Duan Z.; Dhakal, Tilak Raj

    2017-01-17

    Here in this work we combine the dual domain material point method with molecular dynamics in an attempt to create a multiscale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically nonequilibrium state, and conventional constitutive relations or equations of state are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a molecular dynamics simulation of a group of atoms surrounding the material point. Rather than restricting the multiscale simulation in a small spatial region,more » such as phase interfaces, or crack tips, this multiscale method can be used to consider nonequilibrium thermodynamic effects in a macroscopic domain. This method takes the advantage that the material points only communicate with mesh nodes, not among themselves; therefore molecular dynamics simulations for material points can be performed independently in parallel. The dual domain material point method is chosen for this multiscale method because it can be used in history dependent problems with large deformation without generating numerical noise as material points move across cells, and also because of its convergence and conservation properties. In conclusion, to demonstrate the feasibility and accuracy of this method, we compare the results of a shock wave propagation in a cerium crystal calculated using the direct molecular dynamics simulation with the results from this combined multiscale calculation.« less

  15. Development of an Image-based Multi-Scale Finite Element Approach to Predict Fatigue Damage in Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Arshadi, Amir

    Image-based simulation of complex materials is a very important tool for understanding their mechanical behavior and an effective tool for successful design of composite materials. In this thesis an image-based multi-scale finite element approach is developed to predict the mechanical properties of asphalt mixtures. In this approach the "up-scaling" and homogenization of each scale to the next is critically designed to improve accuracy. In addition to this multi-scale efficiency, this study introduces an approach for consideration of particle contacts at each of the scales in which mineral particles exist. One of the most important pavement distresses which seriously affects the pavement performance is fatigue cracking. As this cracking generally takes place in the binder phase of the asphalt mixture, the binder fatigue behavior is assumed to be one of the main factors influencing the overall pavement fatigue performance. It is also known that aggregate gradation, mixture volumetric properties, and filler type and concentration can affect damage initiation and progression in the asphalt mixtures. This study was conducted to develop a tool to characterize the damage properties of the asphalt mixtures at all scales. In the present study the Viscoelastic continuum damage model is implemented into the well-known finite element software ABAQUS via the user material subroutine (UMAT) in order to simulate the state of damage in the binder phase under the repeated uniaxial sinusoidal loading. The inputs are based on the experimentally derived measurements for the binder properties. For the scales of mastic and mortar, the artificially 2-Dimensional images of mastic and mortar scales were generated and used to characterize the properties of those scales. Finally, the 2D scanned images of asphalt mixtures are used to study the asphalt mixture fatigue behavior under loading. In order to validate the proposed model, the experimental test results and the simulation results were compared. Indirect tensile fatigue tests were conducted on asphalt mixture samples. A comparison between experimental results and the results from simulation shows that the model developed in this study is capable of predicting the effect of asphalt binder properties and aggregate micro-structure on mechanical behavior of asphalt concrete under loading.

  16. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    DTIC Science & Technology

    2015-09-30

    Meneveau, C., and L. Shen (2014), Large-eddy simulation of offshore wind farm , Physics of Fluids, 26, 025101. Zhang, Z., Fringer, O.B., and S.R...being centimeter scale, surface mixed layer processes arising from the combined actions of tides, winds and mesoscale currents. Issues related to...the internal wave field and how it impacts the surface waves. APPROACH We are focusing on the problem of modification of the wind -wave field

  17. Computational Materials: Modeling and Simulation of Nanostructured Materials and Systems

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Hinkley, Jeffrey A.

    2003-01-01

    The paper provides details on the structure and implementation of the Computational Materials program at the NASA Langley Research Center. Examples are given that illustrate the suggested approaches to predicting the behavior and influencing the design of nanostructured materials such as high-performance polymers, composites, and nanotube-reinforced polymers. Primary simulation and measurement methods applicable to multi-scale modeling are outlined. Key challenges including verification and validation of models are highlighted and discussed within the context of NASA's broad mission objectives.

  18. A novel method of multi-scale simulation of macro-scale deformation and microstructure evolution on metal forming

    NASA Astrophysics Data System (ADS)

    Huang, Shiquan; Yi, Youping; Li, Pengchuan

    2011-05-01

    In recent years, multi-scale simulation technique of metal forming is gaining significant attention for prediction of the whole deformation process and microstructure evolution of product. The advances of numerical simulation at macro-scale level on metal forming are remarkable and the commercial FEM software, such as Deform2D/3D, has found a wide application in the fields of metal forming. However, the simulation method of multi-scale has little application due to the non-linearity of microstructure evolution during forming and the difficulty of modeling at the micro-scale level. This work deals with the modeling of microstructure evolution and a new method of multi-scale simulation in forging process. The aviation material 7050 aluminum alloy has been used as example for modeling of microstructure evolution. The corresponding thermal simulated experiment has been performed on Gleeble 1500 machine. The tested specimens have been analyzed for modeling of dislocation density, nucleation and growth of recrystallization(DRX). The source program using cellular automaton (CA) method has been developed to simulate the grain nucleation and growth, in which the change of grain topology structure caused by the metal deformation was considered. The physical fields at macro-scale level such as temperature field, stress and strain fields, which can be obtained by commercial software Deform 3D, are coupled with the deformed storage energy at micro-scale level by dislocation model to realize the multi-scale simulation. This method was explained by forging process simulation of the aircraft wheel hub forging. Coupled the results of Deform 3D with CA results, the forging deformation progress and the microstructure evolution at any point of forging could be simulated. For verifying the efficiency of simulation, experiments of aircraft wheel hub forging have been done in the laboratory and the comparison of simulation and experiment result has been discussed in details.

  19. Multiscale Multifunctional Progressive Fracture of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Minnetyan, L.

    2012-01-01

    A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells. Global fracture is enhanced when internal pressure is combined with shear loads. The old reference denotes that nothing has been added to this comprehensive report since then.

  20. Modeling Complex Biological Flows in Multi-Scale Systems using the APDEC Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trebotich, D

    We have developed advanced numerical algorithms to model biological fluids in multiscale flow environments using the software framework developed under the SciDAC APDEC ISIC. The foundation of our computational effort is an approach for modeling DNA-laden fluids as ''bead-rod'' polymers whose dynamics are fully coupled to an incompressible viscous solvent. The method is capable of modeling short range forces and interactions between particles using soft potentials and rigid constraints. Our methods are based on higher-order finite difference methods in complex geometry with adaptivity, leveraging algorithms and solvers in the APDEC Framework. Our Cartesian grid embedded boundary approach to incompressible viscousmore » flow in irregular geometries has also been interfaced to a fast and accurate level-sets method within the APDEC Framework for extracting surfaces from volume renderings of medical image data and used to simulate cardio-vascular and pulmonary flows in critical anatomies.« less

  1. Modeling and Simulation of High Dimensional Stochastic Multiscale PDE Systems at the Exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevrekidis, Ioannis

    2017-03-22

    The thrust of the proposal was to exploit modern data-mining tools in a way that will create a systematic, computer-assisted approach to the representation of random media -- and also to the representation of the solutions of an array of important physicochemical processes that take place in/on such media. A parsimonious representation/parametrization of the random media links directly (via uncertainty quantification tools) to good sampling of the distribution of random media realizations. It also links directly to modern multiscale computational algorithms (like the equation-free approach that has been developed in our group) and plays a crucial role in accelerating themore » scientific computation of solutions of nonlinear PDE models (deterministic or stochastic) in such media – both solutions in particular realizations of the random media, and estimation of the statistics of the solutions over multiple realizations (e.g. expectations).« less

  2. Modeling complex biological flows in multi-scale systems using the APDEC framework

    NASA Astrophysics Data System (ADS)

    Trebotich, David

    2006-09-01

    We have developed advanced numerical algorithms to model biological fluids in multiscale flow environments using the software framework developed under the SciDAC APDEC ISIC. The foundation of our computational effort is an approach for modeling DNA laden fluids as ''bead-rod'' polymers whose dynamics are fully coupled to an incompressible viscous solvent. The method is capable of modeling short range forces and interactions between particles using soft potentials and rigid constraints. Our methods are based on higher-order finite difference methods in complex geometry with adaptivity, leveraging algorithms and solvers in the APDEC Framework. Our Cartesian grid embedded boundary approach to incompressible viscous flow in irregular geometries has also been interfaced to a fast and accurate level-sets method within the APDEC Framework for extracting surfaces from volume renderings of medical image data and used to simulate cardio-vascular and pulmonary flows in critical anatomies.

  3. Theoretical Methods of Domain Structures in Ultrathin Ferroelectric Films: A Review

    PubMed Central

    Liu, Jianyi; Chen, Weijin; Wang, Biao; Zheng, Yue

    2014-01-01

    This review covers methods and recent developments of the theoretical study of domain structures in ultrathin ferroelectric films. The review begins with an introduction to some basic concepts and theories (e.g., polarization and its modern theory, ferroelectric phase transition, domain formation, and finite size effects, etc.) that are relevant to the study of domain structures in ultrathin ferroelectric films. Basic techniques and recent progress of a variety of important approaches for domain structure simulation, including first-principles calculation, molecular dynamics, Monte Carlo simulation, effective Hamiltonian approach and phase field modeling, as well as multiscale simulation are then elaborated. For each approach, its important features and relative merits over other approaches for modeling domain structures in ultrathin ferroelectric films are discussed. Finally, we review recent theoretical studies on some important issues of domain structures in ultrathin ferroelectric films, with an emphasis on the effects of interfacial electrostatics, boundary conditions and external loads. PMID:28788198

  4. Anatomy and Physiology of Multiscale Modeling and Simulation in Systems Medicine.

    PubMed

    Mizeranschi, Alexandru; Groen, Derek; Borgdorff, Joris; Hoekstra, Alfons G; Chopard, Bastien; Dubitzky, Werner

    2016-01-01

    Systems medicine is the application of systems biology concepts, methods, and tools to medical research and practice. It aims to integrate data and knowledge from different disciplines into biomedical models and simulations for the understanding, prevention, cure, and management of complex diseases. Complex diseases arise from the interactions among disease-influencing factors across multiple levels of biological organization from the environment to molecules. To tackle the enormous challenges posed by complex diseases, we need a modeling and simulation framework capable of capturing and integrating information originating from multiple spatiotemporal and organizational scales. Multiscale modeling and simulation in systems medicine is an emerging methodology and discipline that has already demonstrated its potential in becoming this framework. The aim of this chapter is to present some of the main concepts, requirements, and challenges of multiscale modeling and simulation in systems medicine.

  5. Extending the Applicability of the Community Multiscale Air Quality Model to Hemispheric Scales: Motivation, Challenges, and Progress

    EPA Science Inventory

    The adaptation of the Community Multiscale Air Quality (CMAQ) modeling system to simulate O3, particulate matter, and related precursor distributions over the northern hemisphere is presented. Hemispheric simulations with CMAQ and the Weather Research and Forecasting (...

  6. Towards a Multiscale Approach to Cybersecurity Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Emilie A.; Hui, Peter SY; Choudhury, Sutanay

    2013-11-12

    We propose a multiscale approach to modeling cyber networks, with the goal of capturing a view of the network and overall situational awareness with respect to a few key properties--- connectivity, distance, and centrality--- for a system under an active attack. We focus on theoretical and algorithmic foundations of multiscale graphs, coming from an algorithmic perspective, with the goal of modeling cyber system defense as a specific use case scenario. We first define a notion of \\emph{multiscale} graphs, in contrast with their well-studied single-scale counterparts. We develop multiscale analogs of paths and distance metrics. As a simple, motivating example ofmore » a common metric, we present a multiscale analog of the all-pairs shortest-path problem, along with a multiscale analog of a well-known algorithm which solves it. From a cyber defense perspective, this metric might be used to model the distance from an attacker's position in the network to a sensitive machine. In addition, we investigate probabilistic models of connectivity. These models exploit the hierarchy to quantify the likelihood that sensitive targets might be reachable from compromised nodes. We believe that our novel multiscale approach to modeling cyber-physical systems will advance several aspects of cyber defense, specifically allowing for a more efficient and agile approach to defending these systems.« less

  7. All-Atom Multiscale Molecular Dynamics Theory and Simulation of Self-Assembly, Energy Transfer and Structural Transition in Nanosystems

    NASA Astrophysics Data System (ADS)

    Espinosa Duran, John Michael

    The study of nanosystems and their emergent properties requires the development of multiscale computational models, theories and methods that preserve atomic and femtosecond resolution, to reveal details that cannot be resolved experimentally today. Considering this, three long time scale phenomena were studied using molecular dynamics and multiscale methods: self-assembly of organic molecules on graphite, energy transfer in nanosystems, and structural transition in vault nanoparticles. Molecular dynamics simulations of the self-assembly of alkoxybenzonitriles with different tail lengths on graphite were performed to learn about intermolecular interactions and phases exhibited by self-organized materials. This is important for the design of ordered self-assembled organic photovoltaic materials with greater efficiency than the disordered blends. Simulations revealed surface dynamical behaviors that cannot be resolved experimentally today due to the lack of spatiotemporal resolution. Atom-resolved structures predicted by simulations agreed with scanning tunneling microscopy images and unit cell measurements. Then, a multiscale theory based on the energy density as a field variable is developed to study energy transfer in nanoscale systems. For applications like photothermal microscopy or cancer phototherapy is required to understand how the energy is transferred to/from nanosystems. This multiscale theory could be applied in this context and here is tested for cubic nanoparticles immersed in water for energy being transferred to/from the nanoparticle. The theory predicts the energy transfer dynamics and reveals phenomena that cannot be described by current phenomenological theories. Finally, temperature-triggered structural transitions were revealed for vault nanoparticles using molecular dynamics and multiscale simulations. Vault is a football-shaped supramolecular assembly very distinct from the commonly observed icosahedral viruses. It has very promising applications in drug delivery and has been extensively studied experimentally. Sub-microsecond multiscale simulations at 310 K on the vault revealed the opening and closing of fractures near the shoulder while preserving the overall structure. This fracture mechanism could explain the uptake and release of small drugs while maintaining the overall structure. Higher temperature simulations show the generation of large fractures near the waist, which enables interaction of the external medium with the inner vault residues. Simulation results agreed with microscopy and spectroscopy measurements, and revealed new structures and mechanisms.

  8. Free energy profiles for two ubiquitous damaging agents: methylation and hydroxylation of guanine in B-DNA.

    PubMed

    Grüber, R; Aranda, J; Bellili, A; Tuñón, I; Dumont, E

    2017-06-07

    DNA methylation and hydroxylation are two ubiquitous reactions in DNA damage induction, yet insights are scarce concerning the free energy of activation within B-DNA. We resort to multiscale simulations to investigate the attack of a hydroxyl radical and of the primary diazonium onto a guanine embedded in a solvated dodecamer. Reaction free energy profiles characterize two strongly exergonic processes, yet allow unprecedented quantification of the barrier towards this damage reaction, not higher than 6 kcal mol -1 and sometimes inexistent, and of the exergonicities. In the case of the [G(C8)-OH]˙ intermediate, we challenge the functional dependence of such simulations: recently-proposed functionals, such as M06-2X and LC-BLYP, agree on a ∼4 kcal mol -1 barrier, whereas the hybrid GGA B3LYP functional predicts a barrier-less pathway. In the long term, multiscale approaches can help build up a unified panorama of DNA lesion induction. These results stress the importance of DFT/MM-MD simulations involving new functionals towards the sound modelling of biomolecule damage even in the ground state.

  9. Efficient Integration of Coupled Electrical-Chemical Systems in Multiscale Neuronal Simulations

    PubMed Central

    Brocke, Ekaterina; Bhalla, Upinder S.; Djurfeldt, Mikael; Hellgren Kotaleski, Jeanette; Hanke, Michael

    2016-01-01

    Multiscale modeling and simulations in neuroscience is gaining scientific attention due to its growing importance and unexplored capabilities. For instance, it can help to acquire better understanding of biological phenomena that have important features at multiple scales of time and space. This includes synaptic plasticity, memory formation and modulation, homeostasis. There are several ways to organize multiscale simulations depending on the scientific problem and the system to be modeled. One of the possibilities is to simulate different components of a multiscale system simultaneously and exchange data when required. The latter may become a challenging task for several reasons. First, the components of a multiscale system usually span different spatial and temporal scales, such that rigorous analysis of possible coupling solutions is required. Then, the components can be defined by different mathematical formalisms. For certain classes of problems a number of coupling mechanisms have been proposed and successfully used. However, a strict mathematical theory is missing in many cases. Recent work in the field has not so far investigated artifacts that may arise during coupled integration of different approximation methods. Moreover, in neuroscience, the coupling of widely used numerical fixed step size solvers may lead to unexpected inefficiency. In this paper we address the question of possible numerical artifacts that can arise during the integration of a coupled system. We develop an efficient strategy to couple the components comprising a multiscale test problem in neuroscience. We introduce an efficient coupling method based on the second-order backward differentiation formula (BDF2) numerical approximation. The method uses an adaptive step size integration with an error estimation proposed by Skelboe (2000). The method shows a significant advantage over conventional fixed step size solvers used in neuroscience for similar problems. We explore different coupling strategies that define the organization of computations between system components. We study the importance of an appropriate approximation of exchanged variables during the simulation. The analysis shows a substantial impact of these aspects on the solution accuracy in the application to our multiscale neuroscientific test problem. We believe that the ideas presented in the paper may essentially contribute to the development of a robust and efficient framework for multiscale brain modeling and simulations in neuroscience. PMID:27672364

  10. Efficient Integration of Coupled Electrical-Chemical Systems in Multiscale Neuronal Simulations.

    PubMed

    Brocke, Ekaterina; Bhalla, Upinder S; Djurfeldt, Mikael; Hellgren Kotaleski, Jeanette; Hanke, Michael

    2016-01-01

    Multiscale modeling and simulations in neuroscience is gaining scientific attention due to its growing importance and unexplored capabilities. For instance, it can help to acquire better understanding of biological phenomena that have important features at multiple scales of time and space. This includes synaptic plasticity, memory formation and modulation, homeostasis. There are several ways to organize multiscale simulations depending on the scientific problem and the system to be modeled. One of the possibilities is to simulate different components of a multiscale system simultaneously and exchange data when required. The latter may become a challenging task for several reasons. First, the components of a multiscale system usually span different spatial and temporal scales, such that rigorous analysis of possible coupling solutions is required. Then, the components can be defined by different mathematical formalisms. For certain classes of problems a number of coupling mechanisms have been proposed and successfully used. However, a strict mathematical theory is missing in many cases. Recent work in the field has not so far investigated artifacts that may arise during coupled integration of different approximation methods. Moreover, in neuroscience, the coupling of widely used numerical fixed step size solvers may lead to unexpected inefficiency. In this paper we address the question of possible numerical artifacts that can arise during the integration of a coupled system. We develop an efficient strategy to couple the components comprising a multiscale test problem in neuroscience. We introduce an efficient coupling method based on the second-order backward differentiation formula (BDF2) numerical approximation. The method uses an adaptive step size integration with an error estimation proposed by Skelboe (2000). The method shows a significant advantage over conventional fixed step size solvers used in neuroscience for similar problems. We explore different coupling strategies that define the organization of computations between system components. We study the importance of an appropriate approximation of exchanged variables during the simulation. The analysis shows a substantial impact of these aspects on the solution accuracy in the application to our multiscale neuroscientific test problem. We believe that the ideas presented in the paper may essentially contribute to the development of a robust and efficient framework for multiscale brain modeling and simulations in neuroscience.

  11. Adaptive resolution simulation of an atomistic protein in MARTINI water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavadlav, Julija; Melo, Manuel Nuno; Marrink, Siewert J., E-mail: s.j.marrink@rug.nl

    2014-02-07

    We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coarse-grained model via a 4-to-1 molecule coarse-grain mapping by using bundled water models, i.e., we restrict the relative movement of water molecules that are mapped to the same coarse-grained bead employing harmonic springs. The water molecules change their resolution from four molecules to one coarse-grained particle and vice versa adaptively on-the-fly. Having performed 15 ns long molecularmore » dynamics simulations, we observe within our error bars no differences between structural (e.g., root-mean-squared deviation and fluctuations of backbone atoms, radius of gyration, the stability of native contacts and secondary structure, and the solvent accessible surface area) and dynamical properties of the protein in the adaptive resolution approach compared to the fully atomistically solvated model. Our multiscale model is compatible with the widely used MARTINI force field and will therefore significantly enhance the scope of biomolecular simulations.« less

  12. Adaptive resolution simulation of an atomistic protein in MARTINI water.

    PubMed

    Zavadlav, Julija; Melo, Manuel Nuno; Marrink, Siewert J; Praprotnik, Matej

    2014-02-07

    We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coarse-grained model via a 4-to-1 molecule coarse-grain mapping by using bundled water models, i.e., we restrict the relative movement of water molecules that are mapped to the same coarse-grained bead employing harmonic springs. The water molecules change their resolution from four molecules to one coarse-grained particle and vice versa adaptively on-the-fly. Having performed 15 ns long molecular dynamics simulations, we observe within our error bars no differences between structural (e.g., root-mean-squared deviation and fluctuations of backbone atoms, radius of gyration, the stability of native contacts and secondary structure, and the solvent accessible surface area) and dynamical properties of the protein in the adaptive resolution approach compared to the fully atomistically solvated model. Our multiscale model is compatible with the widely used MARTINI force field and will therefore significantly enhance the scope of biomolecular simulations.

  13. Multiscale Simulation of Blood Flow in Brain Arteries with an Aneurysm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leopold Grinberg; Vitali Morozov; Dmitry A. Fedosov

    2013-04-24

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations.This animation presents results of studies used in the development of a multi-scale visualization methodology. First we use streamlines to show the path the flow is taking as it moves through the system, including the aneurysm. Next we investigate themore » process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of the aneurysm.« less

  14. Multiscale simulations of patchy particle systems combining Molecular Dynamics, Path Sampling and Green's Function Reaction Dynamics

    NASA Astrophysics Data System (ADS)

    Bolhuis, Peter

    Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.

  15. Computational Modeling Approaches to Multiscale Design of Icephobic Surfaces

    NASA Technical Reports Server (NTRS)

    Tallman, Aaron; Wang, Yan; Vargas, Mario

    2017-01-01

    To aid in the design of surfaces that prevent icing, a model and computational simulation of impact ice formation at the single droplet scale was implemented. The nucleation of a single supercooled droplet impacting on a substrate, in rime ice conditions, was simulated. Open source computational fluid dynamics (CFD) software was used for the simulation. To aid in the design of surfaces that prevent icing, a model of impact ice formation at the single droplet scale was proposed•No existing model simulates simultaneous impact and freezing of a single super-cooled water droplet•For the 10-week project, a low-fidelity feasibility study was the goal.

  16. A multiscale computational model of spatially resolved calcium cycling in cardiac myocytes: from detailed cleft dynamics to the whole cell concentration profiles

    PubMed Central

    Vierheller, Janine; Neubert, Wilhelm; Falcke, Martin; Gilbert, Stephen H.; Chamakuri, Nagaiah

    2015-01-01

    Mathematical modeling of excitation-contraction coupling (ECC) in ventricular cardiac myocytes is a multiscale problem, and it is therefore difficult to develop spatially detailed simulation tools. ECC involves gradients on the length scale of 100 nm in dyadic spaces and concentration profiles along the 100 μm of the whole cell, as well as the sub-millisecond time scale of local concentration changes and the change of lumenal Ca2+ content within tens of seconds. Our concept for a multiscale mathematical model of Ca2+ -induced Ca2+ release (CICR) and whole cardiomyocyte electrophysiology incorporates stochastic simulation of individual LC- and RyR-channels, spatially detailed concentration dynamics in dyadic clefts, rabbit membrane potential dynamics, and a system of partial differential equations for myoplasmic and lumenal free Ca2+ and Ca2+-binding molecules in the bulk of the cell. We developed a novel computational approach to resolve the concentration gradients from dyadic space to cell level by using a quasistatic approximation within the dyad and finite element methods for integrating the partial differential equations. We show whole cell Ca2+-concentration profiles using three previously published RyR-channel Markov schemes. PMID:26441674

  17. Multiscale modeling of current-induced switching in magnetic tunnel junctions using ab initio spin-transfer torques

    NASA Astrophysics Data System (ADS)

    Ellis, Matthew O. A.; Stamenova, Maria; Sanvito, Stefano

    2017-12-01

    There exists a significant challenge in developing efficient magnetic tunnel junctions with low write currents for nonvolatile memory devices. With the aim of analyzing potential materials for efficient current-operated magnetic junctions, we have developed a multi-scale methodology combining ab initio calculations of spin-transfer torque with large-scale time-dependent simulations using atomistic spin dynamics. In this work we introduce our multiscale approach, including a discussion on a number of possible schemes for mapping the ab initio spin torques into the spin dynamics. We demonstrate this methodology on a prototype Co/MgO/Co/Cu tunnel junction showing that the spin torques are primarily acting at the interface between the Co free layer and MgO. Using spin dynamics we then calculate the reversal switching times for the free layer and the critical voltages and currents required for such switching. Our work provides an efficient, accurate, and versatile framework for designing novel current-operated magnetic devices, where all the materials details are taken into account.

  18. MULTISCALE TENSOR ANISOTROPIC FILTERING OF FLUORESCENCE MICROSCOPY FOR DENOISING MICROVASCULATURE.

    PubMed

    Prasath, V B S; Pelapur, R; Glinskii, O V; Glinsky, V V; Huxley, V H; Palaniappan, K

    2015-04-01

    Fluorescence microscopy images are contaminated by noise and improving image quality without blurring vascular structures by filtering is an important step in automatic image analysis. The application of interest here is to automatically extract the structural components of the microvascular system with accuracy from images acquired by fluorescence microscopy. A robust denoising process is necessary in order to extract accurate vascular morphology information. For this purpose, we propose a multiscale tensor with anisotropic diffusion model which progressively and adaptively updates the amount of smoothing while preserving vessel boundaries accurately. Based on a coherency enhancing flow with planar confidence measure and fused 3D structure information, our method integrates multiple scales for microvasculature preservation and noise removal membrane structures. Experimental results on simulated synthetic images and epifluorescence images show the advantage of our improvement over other related diffusion filters. We further show that the proposed multiscale integration approach improves denoising accuracy of different tensor diffusion methods to obtain better microvasculature segmentation.

  19. Impact of model complexity and multi-scale data integration on the estimation of hydrogeological parameters in a dual-porosity aquifer

    NASA Astrophysics Data System (ADS)

    Tamayo-Mas, Elena; Bianchi, Marco; Mansour, Majdi

    2018-03-01

    This study investigates the impact of model complexity and multi-scale prior hydrogeological data on the interpretation of pumping test data in a dual-porosity aquifer (the Chalk aquifer in England, UK). In order to characterize the hydrogeological properties, different approaches ranging from a traditional analytical solution (Theis approach) to more sophisticated numerical models with automatically calibrated input parameters are applied. Comparisons of results from the different approaches show that neither traditional analytical solutions nor a numerical model assuming a homogenous and isotropic aquifer can adequately explain the observed drawdowns. A better reproduction of the observed drawdowns in all seven monitoring locations is instead achieved when medium and local-scale prior information about the vertical hydraulic conductivity (K) distribution is used to constrain the model calibration process. In particular, the integration of medium-scale vertical K variations based on flowmeter measurements lead to an improvement in the goodness-of-fit of the simulated drawdowns of about 30%. Further improvements (up to 70%) were observed when a simple upscaling approach was used to integrate small-scale K data to constrain the automatic calibration process of the numerical model. Although the analysis focuses on a specific case study, these results provide insights about the representativeness of the estimates of hydrogeological properties based on different interpretations of pumping test data, and promote the integration of multi-scale data for the characterization of heterogeneous aquifers in complex hydrogeological settings.

  20. Multi-Scale Modeling, Surrogate-Based Analysis, and Optimization of Lithium-Ion Batteries for Vehicle Applications

    NASA Astrophysics Data System (ADS)

    Du, Wenbo

    A common attribute of electric-powered aerospace vehicles and systems such as unmanned aerial vehicles, hybrid- and fully-electric aircraft, and satellites is that their performance is usually limited by the energy density of their batteries. Although lithium-ion batteries offer distinct advantages such as high voltage and low weight over other battery technologies, they are a relatively new development, and thus significant gaps in the understanding of the physical phenomena that govern battery performance remain. As a result of this limited understanding, batteries must often undergo a cumbersome design process involving many manual iterations based on rules of thumb and ad-hoc design principles. A systematic study of the relationship between operational, geometric, morphological, and material-dependent properties and performance metrics such as energy and power density is non-trivial due to the multiphysics, multiphase, and multiscale nature of the battery system. To address these challenges, two numerical frameworks are established in this dissertation: a process for analyzing and optimizing several key design variables using surrogate modeling tools and gradient-based optimizers, and a multi-scale model that incorporates more detailed microstructural information into the computationally efficient but limited macro-homogeneous model. In the surrogate modeling process, multi-dimensional maps for the cell energy density with respect to design variables such as the particle size, ion diffusivity, and electron conductivity of the porous cathode material are created. A combined surrogate- and gradient-based approach is employed to identify optimal values for cathode thickness and porosity under various operating conditions, and quantify the uncertainty in the surrogate model. The performance of multiple cathode materials is also compared by defining dimensionless transport parameters. The multi-scale model makes use of detailed 3-D FEM simulations conducted at the particle-level. A monodisperse system of ellipsoidal particles is used to simulate the effective transport coefficients and interfacial reaction current density within the porous microstructure. Microscopic simulation results are shown to match well with experimental measurements, while differing significantly from homogenization approximations used in the macroscopic model. Global sensitivity analysis and surrogate modeling tools are applied to couple the two length scales and complete the multi-scale model.

  1. Particle-based methods for multiscale modeling of blood flow in the circulation and in devices: challenges and future directions. Sixth International Bio-Fluid Mechanics Symposium and Workshop March 28-30, 2008 Pasadena, California.

    PubMed

    Yamaguchi, Takami; Ishikawa, Takuji; Imai, Y; Matsuki, N; Xenos, Mikhail; Deng, Yuefan; Bluestein, Danny

    2010-03-01

    A major computational challenge for a multiscale modeling is the coupling of disparate length and timescales between molecular mechanics and macroscopic transport, spanning the spatial and temporal scales characterizing the complex processes taking place in flow-induced blood clotting. Flow and pressure effects on a cell-like platelet can be well represented by a continuum mechanics model down to the order of the micrometer level. However, the molecular effects of adhesion/aggregation bonds are on the order of nanometer. A successful multiscale model of platelet response to flow stresses in devices and the ensuing clotting responses should be able to characterize the clotting reactions and their interactions with the flow. This paper attempts to describe a few of the computational methods that were developed in recent years and became available to researchers in the field. They differ from traditional approaches that dominate the field by expanding on prevailing continuum-based approaches, or by completely departing from them, yielding an expanding toolkit that may facilitate further elucidation of the underlying mechanisms of blood flow and the cellular response to it. We offer a paradigm shift by adopting a multidisciplinary approach with fluid dynamics simulations coupled to biophysical and biochemical transport.

  2. Observations and modeling of air quality trends over 1990-2010 across the northern hemisphere: China, the United States and Europe

    EPA Science Inventory

    Trends in air quality across the Northern Hemisphere over a 21-year period (1990–2010) were simulated using the Community Multiscale Air Quality (CMAQ) multiscale chemical transport model driven by meteorology from Weather Research and Forecasting WRF) simulations and internally ...

  3. Evaluation of the Community Multiscale Air Quality Model for Simulating Winter Ozone Formation in the Uinta Basin.

    EPA Science Inventory

    The Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models were used to simulate a 10 day high‐ozone episode observed during the 2013 Uinta Basin Winter Ozone Study (UBWOS). The baseline model had a large negative bias when compared to ozo...

  4. Multi-Scale Simulation of High Energy Density Ionic Liquids

    DTIC Science & Technology

    2007-06-19

    and simulation of ionic liquids (ILs). A polarizable model was developed to simulate ILs more accurately at the atomistic level. A multiscale coarse...propellant, 1- hydroxyethyl-4-amino-1, 2, 4-triazolium nitrate (HEATN), were studied with the all-atom polarizable model. The mechanism suggested for HEATN...with this AFOSR-supported project, a polarizable forcefield for the ionic liquids such as 1-ethyl-3-methylimidazolium nitrate (EMIM*/NO3-) was

  5. A Review of Computational Methods in Materials Science: Examples from Shock-Wave and Polymer Physics

    PubMed Central

    Steinhauser, Martin O.; Hiermaier, Stefan

    2009-01-01

    This review discusses several computational methods used on different length and time scales for the simulation of material behavior. First, the importance of physical modeling and its relation to computer simulation on multiscales is discussed. Then, computational methods used on different scales are shortly reviewed, before we focus on the molecular dynamics (MD) method. Here we survey in a tutorial-like fashion some key issues including several MD optimization techniques. Thereafter, computational examples for the capabilities of numerical simulations in materials research are discussed. We focus on recent results of shock wave simulations of a solid which are based on two different modeling approaches and we discuss their respective assets and drawbacks with a view to their application on multiscales. Then, the prospects of computer simulations on the molecular length scale using coarse-grained MD methods are covered by means of examples pertaining to complex topological polymer structures including star-polymers, biomacromolecules such as polyelectrolytes and polymers with intrinsic stiffness. This review ends by highlighting new emerging interdisciplinary applications of computational methods in the field of medical engineering where the application of concepts of polymer physics and of shock waves to biological systems holds a lot of promise for improving medical applications such as extracorporeal shock wave lithotripsy or tumor treatment. PMID:20054467

  6. Fast Particle Methods for Multiscale Phenomena Simulations

    NASA Technical Reports Server (NTRS)

    Koumoutsakos, P.; Wray, A.; Shariff, K.; Pohorille, Andrew

    2000-01-01

    We are developing particle methods oriented at improving computational modeling capabilities of multiscale physical phenomena in : (i) high Reynolds number unsteady vortical flows, (ii) particle laden and interfacial flows, (iii)molecular dynamics studies of nanoscale droplets and studies of the structure, functions, and evolution of the earliest living cell. The unifying computational approach involves particle methods implemented in parallel computer architectures. The inherent adaptivity, robustness and efficiency of particle methods makes them a multidisciplinary computational tool capable of bridging the gap of micro-scale and continuum flow simulations. Using efficient tree data structures, multipole expansion algorithms, and improved particle-grid interpolation, particle methods allow for simulations using millions of computational elements, making possible the resolution of a wide range of length and time scales of these important physical phenomena.The current challenges in these simulations are in : [i] the proper formulation of particle methods in the molecular and continuous level for the discretization of the governing equations [ii] the resolution of the wide range of time and length scales governing the phenomena under investigation. [iii] the minimization of numerical artifacts that may interfere with the physics of the systems under consideration. [iv] the parallelization of processes such as tree traversal and grid-particle interpolations We are conducting simulations using vortex methods, molecular dynamics and smooth particle hydrodynamics, exploiting their unifying concepts such as : the solution of the N-body problem in parallel computers, highly accurate particle-particle and grid-particle interpolations, parallel FFT's and the formulation of processes such as diffusion in the context of particle methods. This approach enables us to transcend among seemingly unrelated areas of research.

  7. Modelling and simulating reaction-diffusion systems using coloured Petri nets.

    PubMed

    Liu, Fei; Blätke, Mary-Ann; Heiner, Monika; Yang, Ming

    2014-10-01

    Reaction-diffusion systems often play an important role in systems biology when developmental processes are involved. Traditional methods of modelling and simulating such systems require substantial prior knowledge of mathematics and/or simulation algorithms. Such skills may impose a challenge for biologists, when they are not equally well-trained in mathematics and computer science. Coloured Petri nets as a high-level and graphical language offer an attractive alternative, which is easily approachable. In this paper, we investigate a coloured Petri net framework integrating deterministic, stochastic and hybrid modelling formalisms and corresponding simulation algorithms for the modelling and simulation of reaction-diffusion processes that may be closely coupled with signalling pathways, metabolic reactions and/or gene expression. Such systems often manifest multiscaleness in time, space and/or concentration. We introduce our approach by means of some basic diffusion scenarios, and test it against an established case study, the Brusselator model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. On the use of reverse Brownian motion to accelerate hybrid simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakarji, Joseph; Tartakovsky, Daniel M., E-mail: tartakovsky@stanford.edu

    Multiscale and multiphysics simulations are two rapidly developing fields of scientific computing. Efficient coupling of continuum (deterministic or stochastic) constitutive solvers with their discrete (stochastic, particle-based) counterparts is a common challenge in both kinds of simulations. We focus on interfacial, tightly coupled simulations of diffusion that combine continuum and particle-based solvers. The latter employs the reverse Brownian motion (rBm), a Monte Carlo approach that allows one to enforce inhomogeneous Dirichlet, Neumann, or Robin boundary conditions and is trivially parallelizable. We discuss numerical approaches for improving the accuracy of rBm in the presence of inhomogeneous Neumann boundary conditions and alternative strategiesmore » for coupling the rBm solver with its continuum counterpart. Numerical experiments are used to investigate the convergence, stability, and computational efficiency of the proposed hybrid algorithm.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortoleva, Peter J.

    Illustrative embodiments of systems and methods for the deductive multiscale simulation of macromolecules are disclosed. In one illustrative embodiment, a deductive multiscale simulation method may include (i) constructing a set of order parameters that model one or more structural characteristics of a macromolecule, (ii) simulating an ensemble of atomistic configurations for the macromolecule using instantaneous values of the set of order parameters, (iii) simulating thermal-average forces and diffusivities for the ensemble of atomistic configurations, and (iv) evolving the set of order parameters via Langevin dynamics using the thermal-average forces and diffusivities.

  10. Performance of hybrid programming models for multiscale cardiac simulations: preparing for petascale computation.

    PubMed

    Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias

    2011-10-01

    Future multiscale and multiphysics models that support research into human disease, translational medical science, and treatment can utilize the power of high-performance computing (HPC) systems. We anticipate that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message-passing processes [e.g., the message-passing interface (MPI)] with multithreading (e.g., OpenMP, Pthreads). The objective of this study is to compare the performance of such hybrid programming models when applied to the simulation of a realistic physiological multiscale model of the heart. Our results show that the hybrid models perform favorably when compared to an implementation using only the MPI and, furthermore, that OpenMP in combination with the MPI provides a satisfactory compromise between performance and code complexity. Having the ability to use threads within MPI processes enables the sophisticated use of all processor cores for both computation and communication phases. Considering that HPC systems in 2012 will have two orders of magnitude more cores than what was used in this study, we believe that faster than real-time multiscale cardiac simulations can be achieved on these systems.

  11. Community Multiscale Air Quality Model

    EPA Science Inventory

    The U.S. EPA developed the Community Multiscale Air Quality (CMAQ) system to apply a “one atmosphere” multiscale and multi-pollutant modeling approach based mainly on the “first principles” description of the atmosphere. The multiscale capability is supported by the governing di...

  12. A multiscale approach to simulating the conformational properties of unbound multi-C₂H₂ zinc finger proteins.

    PubMed

    Liu, Lei; Wade, Rebecca C; Heermann, Dieter W

    2015-09-01

    The conformational properties of unbound multi-Cys2 His2 (mC2H2) zinc finger proteins, in which zinc finger domains are connected by flexible linkers, are studied by a multiscale approach. Three methods on different length scales are utilized. First, atomic detail molecular dynamics simulations of one zinc finger and its adjacent flexible linker confirmed that the zinc finger is more rigid than the flexible linker. Second, the end-to-end distance distributions of mC2H2 zinc finger proteins are computed using an efficient atomistic pivoting algorithm, which only takes excluded volume interactions into consideration. The end-to-end distance distribution gradually changes its profile, from left-tailed to right-tailed, as the number of zinc fingers increases. This is explained by using a worm-like chain model. For proteins of a few zinc fingers, an effective bending constraint favors an extended conformation. Only for proteins containing more than nine zinc fingers, is a somewhat compacted conformation preferred. Third, a mesoscale model is modified to study both the local and the global conformational properties of multi-C2H2 zinc finger proteins. Simulations of the CCCTC-binding factor (CTCF), an important mC2H2 zinc finger protein for genome spatial organization, are presented. © 2015 Wiley Periodicals, Inc.

  13. Simulating Cancer Growth with Multiscale Agent-Based Modeling

    PubMed Central

    Wang, Zhihui; Butner, Joseph D.; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S.

    2014-01-01

    There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models. PMID:24793698

  14. A mixed parallel strategy for the solution of coupled multi-scale problems at finite strains

    NASA Astrophysics Data System (ADS)

    Lopes, I. A. Rodrigues; Pires, F. M. Andrade; Reis, F. J. P.

    2018-02-01

    A mixed parallel strategy for the solution of homogenization-based multi-scale constitutive problems undergoing finite strains is proposed. The approach aims to reduce the computational time and memory requirements of non-linear coupled simulations that use finite element discretization at both scales (FE^2). In the first level of the algorithm, a non-conforming domain decomposition technique, based on the FETI method combined with a mortar discretization at the interface of macroscopic subdomains, is employed. A master-slave scheme, which distributes tasks by macroscopic element and adopts dynamic scheduling, is then used for each macroscopic subdomain composing the second level of the algorithm. This strategy allows the parallelization of FE^2 simulations in computers with either shared memory or distributed memory architectures. The proposed strategy preserves the quadratic rates of asymptotic convergence that characterize the Newton-Raphson scheme. Several examples are presented to demonstrate the robustness and efficiency of the proposed parallel strategy.

  15. Formalizing Knowledge in Multi-Scale Agent-Based Simulations

    PubMed Central

    Somogyi, Endre; Sluka, James P.; Glazier, James A.

    2017-01-01

    Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused. PMID:29338063

  16. Formalizing Knowledge in Multi-Scale Agent-Based Simulations.

    PubMed

    Somogyi, Endre; Sluka, James P; Glazier, James A

    2016-10-01

    Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused.

  17. A point-by-point multi-scale surface temperature reconstruction method and tests by pseudo proxy experiments

    NASA Astrophysics Data System (ADS)

    Chen, X.

    2016-12-01

    This study present a multi-scale approach combining Mode Decomposition and Variance Matching (MDVM) method and basic process of Point-by-Point Regression (PPR) method. Different from the widely applied PPR method, the scanning radius for each grid box, were re-calculated considering the impact from topography (i.e. mean altitudes and fluctuations). Thus, appropriate proxy records were selected to be candidates for reconstruction. The results of this multi-scale methodology could not only provide the reconstructed gridded temperature, but also the corresponding uncertainties of the four typical timescales. In addition, this method can bring in another advantage that spatial distribution of the uncertainty for different scales could be quantified. To interpreting the necessity of scale separation in calibration, with proxy records location over Eastern Asia, we perform two sets of pseudo proxy experiments (PPEs) based on different ensembles of climate model simulation. One consist of 7 simulated results by 5 models (BCC-CSM1-1, CSIRO-MK3L-1-2, HadCM3, MPI-ESM-P, and Giss-E2-R) of the "past1000" simulation from Coupled Model Intercomparison Project Phase 5. The other is based on the simulations of Community Earth System Model Last Millennium Ensemble (CESM-LME). The pseudo-records network were obtained by adding the white noise with signal-to-noise ratio (SNR) increasing from 0.1 to 1.0 to the simulated true state and the locations mainly followed the PAGES-2k network in Asia. Totally, 400 years (1601-2000) simulation was used for calibration and 600 years (1001-1600) for verification. The reconstructed results were evaluated by three metrics 1) root mean squared error (RMSE), 2) correlation and 3) reduction of error (RE) score. The PPE verification results have shown that, in comparison with ordinary linear calibration method (variance matching), the RMSE and RE score of PPR-MDVM are improved, especially for the area with sparse proxy records. To be noted, in some periods with large volcanic activities, the RMSE of MDVM get larger than VM for higher SNR cases. It should be inferred that the volcanic eruptions might blur the intrinsic characteristics of multi-scales variabilities of the climate system and the MDVM method would show less advantage in that case.

  18. Multiscale equation-free algorithms for molecular dynamics

    NASA Astrophysics Data System (ADS)

    Abi Mansour, Andrew

    Molecular dynamics is a physics-based computational tool that has been widely employed to study the dynamics and structure of macromolecules and their assemblies at the atomic scale. However, the efficiency of molecular dynamics simulation is limited because of the broad spectrum of timescales involved. To overcome this limitation, an equation-free algorithm is presented for simulating these systems using a multiscale model cast in terms of atomistic and coarse-grained variables. Both variables are evolved in time in such a way that the cross-talk between short and long scales is preserved. In this way, the coarse-grained variables guide the evolution of the atom-resolved states, while the latter provide the Newtonian physics for the former. While the atomistic variables are evolved using short molecular dynamics runs, time advancement at the coarse-grained level is achieved with a scheme that uses information from past and future states of the system while accounting for both the stochastic and deterministic features of the coarse-grained dynamics. To complete the multiscale cycle, an atom-resolved state consistent with the updated coarse-grained variables is recovered using algorithms from mathematical optimization. This multiscale paradigm is extended to nanofluidics using concepts from hydrodynamics, and it is demonstrated for macromolecular and nanofluidic systems. A toolkit is developed for prototyping these algorithms, which are then implemented within the GROMACS simulation package and released as an open source multiscale simulator.

  19. Multiscale analysis of structure development in expanded starch snacks

    NASA Astrophysics Data System (ADS)

    van der Sman, R. G. M.; Broeze, J.

    2014-11-01

    In this paper we perform a multiscale analysis of the food structuring process of the expansion of starchy snack foods like keropok, which obtains a solid foam structure. In particular, we want to investigate the validity of the hypothesis of Kokini and coworkers, that expansion is optimal at the moisture content, where the glass transition and the boiling line intersect. In our analysis we make use of several tools, (1) time scale analysis from the field of physical transport phenomena, (2) the scale separation map (SSM) developed within a multiscale simulation framework of complex automata, (3) the supplemented state diagram (SSD), depicting phase transition and glass transition lines, and (4) a multiscale simulation model for the bubble expansion. Results of the time scale analysis are plotted in the SSD, and give insight into the dominant physical processes involved in expansion. Furthermore, the results of the time scale analysis are used to construct the SSM, which has aided us in the construction of the multiscale simulation model. Simulation results are plotted in the SSD. This clearly shows that the hypothesis of Kokini is qualitatively true, but has to be refined. Our results show that bubble expansion is optimal for moisture content, where the boiling line for gas pressure of 4 bars intersects the isoviscosity line of the critical viscosity 106 Pa.s, which runs parallel to the glass transition line.

  20. Multi-scale modeling in cell biology

    PubMed Central

    Meier-Schellersheim, Martin; Fraser, Iain D. C.; Klauschen, Frederick

    2009-01-01

    Biomedical research frequently involves performing experiments and developing hypotheses that link different scales of biological systems such as, for instance, the scales of intracellular molecular interactions to the scale of cellular behavior and beyond to the behavior of cell populations. Computational modeling efforts that aim at exploring such multi-scale systems quantitatively with the help of simulations have to incorporate several different simulation techniques due to the different time and space scales involved. Here, we provide a non-technical overview of how different scales of experimental research can be combined with the appropriate computational modeling techniques. We also show that current modeling software permits building and simulating multi-scale models without having to become involved with the underlying technical details of computational modeling. PMID:20448808

  1. Modeling and Simulation of Nanoindentation

    NASA Astrophysics Data System (ADS)

    Huang, Sixie; Zhou, Caizhi

    2017-11-01

    Nanoindentation is a hardness test method applied to small volumes of material which can provide some unique effects and spark many related research activities. To fully understand the phenomena observed during nanoindentation tests, modeling and simulation methods have been developed to predict the mechanical response of materials during nanoindentation. However, challenges remain with those computational approaches, because of their length scale, predictive capability, and accuracy. This article reviews recent progress and challenges for modeling and simulation of nanoindentation, including an overview of molecular dynamics, the quasicontinuum method, discrete dislocation dynamics, and the crystal plasticity finite element method, and discusses how to integrate multiscale modeling approaches seamlessly with experimental studies to understand the length-scale effects and microstructure evolution during nanoindentation tests, creating a unique opportunity to establish new calibration procedures for the nanoindentation technique.

  2. Modeling Progressive Damage Using Local Displacement Discontinuities Within the FEAMAC Multiscale Modeling Framework

    NASA Technical Reports Server (NTRS)

    Ranatunga, Vipul; Bednarcyk, Brett A.; Arnold, Steven M.

    2010-01-01

    A method for performing progressive damage modeling in composite materials and structures based on continuum level interfacial displacement discontinuities is presented. The proposed method enables the exponential evolution of the interfacial compliance, resulting in unloading of the tractions at the interface after delamination or failure occurs. In this paper, the proposed continuum displacement discontinuity model has been used to simulate failure within both isotropic and orthotropic materials efficiently and to explore the possibility of predicting the crack path, therein. Simulation results obtained from Mode-I and Mode-II fracture compare the proposed approach with the cohesive element approach and Virtual Crack Closure Techniques (VCCT) available within the ABAQUS (ABAQUS, Inc.) finite element software. Furthermore, an eccentrically loaded 3-point bend test has been simulated with the displacement discontinuity model, and the resulting crack path prediction has been compared with a prediction based on the extended finite element model (XFEM) approach.

  3. Multiscale investigation of chemical interference in proteins

    NASA Astrophysics Data System (ADS)

    Samiotakis, Antonios; Homouz, Dirar; Cheung, Margaret S.

    2010-05-01

    We developed a multiscale approach (MultiSCAAL) that integrates the potential of mean force obtained from all-atomistic molecular dynamics simulations with a knowledge-based energy function for coarse-grained molecular simulations in better exploring the energy landscape of a small protein under chemical interference such as chemical denaturation. An excessive amount of water molecules in all-atomistic molecular dynamics simulations often negatively impacts the sampling efficiency of some advanced sampling techniques such as the replica exchange method and it makes the investigation of chemical interferences on protein dynamics difficult. Thus, there is a need to develop an effective strategy that focuses on sampling structural changes in protein conformations rather than solvent molecule fluctuations. In this work, we address this issue by devising a multiscale simulation scheme (MultiSCAAL) that bridges the gap between all-atomistic molecular dynamics simulation and coarse-grained molecular simulation. The two key features of this scheme are the Boltzmann inversion and a protein atomistic reconstruction method we previously developed (SCAAL). Using MultiSCAAL, we were able to enhance the sampling efficiency of proteins solvated by explicit water molecules. Our method has been tested on the folding energy landscape of a small protein Trp-cage with explicit solvent under 8M urea using both the all-atomistic replica exchange molecular dynamics and MultiSCAAL. We compared computational analyses on ensemble conformations of Trp-cage with its available experimental NOE distances. The analysis demonstrated that conformations explored by MultiSCAAL better agree with the ones probed in the experiments because it can effectively capture the changes in side-chain orientations that can flip out of the hydrophobic pocket in the presence of urea and water molecules. In this regard, MultiSCAAL is a promising and effective sampling scheme for investigating chemical interference which presents a great challenge when modeling protein interactions in vivo.

  4. Multiscale mobility networks and the spatial spreading of infectious diseases.

    PubMed

    Balcan, Duygu; Colizza, Vittoria; Gonçalves, Bruno; Hu, Hao; Ramasco, José J; Vespignani, Alessandro

    2009-12-22

    Among the realistic ingredients to be considered in the computational modeling of infectious diseases, human mobility represents a crucial challenge both on the theoretical side and in view of the limited availability of empirical data. To study the interplay between short-scale commuting flows and long-range airline traffic in shaping the spatiotemporal pattern of a global epidemic we (i) analyze mobility data from 29 countries around the world and find a gravity model able to provide a global description of commuting patterns up to 300 kms and (ii) integrate in a worldwide-structured metapopulation epidemic model a timescale-separation technique for evaluating the force of infection due to multiscale mobility processes in the disease dynamics. Commuting flows are found, on average, to be one order of magnitude larger than airline flows. However, their introduction into the worldwide model shows that the large-scale pattern of the simulated epidemic exhibits only small variations with respect to the baseline case where only airline traffic is considered. The presence of short-range mobility increases, however, the synchronization of subpopulations in close proximity and affects the epidemic behavior at the periphery of the airline transportation infrastructure. The present approach outlines the possibility for the definition of layered computational approaches where different modeling assumptions and granularities can be used consistently in a unifying multiscale framework.

  5. Multiscale Shannon's Entropy Modeling of Orientation and Distance in Steel Fiber Micro-Tomography Data.

    PubMed

    Chiverton, John P; Ige, Olubisi; Barnett, Stephanie J; Parry, Tony

    2017-11-01

    This paper is concerned with the modeling and analysis of the orientation and distance between steel fibers in X-ray micro-tomography data. The advantage of combining both orientation and separation in a model is that it helps provide a detailed understanding of how the steel fibers are arranged, which is easy to compare. The developed models are designed to summarize the randomness of the orientation distribution of the steel fibers both locally and across an entire volume based on multiscale entropy. Theoretical modeling, simulation, and application to real imaging data are shown here. The theoretical modeling of multiscale entropy for orientation includes a proof showing the final form of the multiscale taken over a linear range of scales. A series of image processing operations are also included to overcome interslice connectivity issues to help derive the statistical descriptions of the orientation distributions of the steel fibers. The results demonstrate that multiscale entropy provides unique insights into both simulated and real imaging data of steel fiber reinforced concrete.

  6. Multiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.

    2012-01-01

    A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.

  7. Hierarchical coarse-graining strategy for protein-membrane systems to access mesoscopic scales

    PubMed Central

    Ayton, Gary S.; Lyman, Edward

    2014-01-01

    An overall multiscale simulation strategy for large scale coarse-grain simulations of membrane protein systems is presented. The protein is modeled as a heterogeneous elastic network, while the lipids are modeled using the hybrid analytic-systematic (HAS) methodology, where in both cases atomistic level information obtained from molecular dynamics simulation is used to parameterize the model. A feature of this approach is that from the outset liposome length scales are employed in the simulation (i.e., on the order of ½ a million lipids plus protein). A route to develop highly coarse-grained models from molecular-scale information is proposed and results for N-BAR domain protein remodeling of a liposome are presented. PMID:20158037

  8. Mechanical response of stainless steel subjected to biaxial load path changes: Cruciform experiments and multi-scale modeling

    DOE PAGES

    Upadhyay, Manas V.; Patra, Anirban; Wen, Wei; ...

    2018-05-08

    In this paper, we propose a multi-scale modeling approach that can simulate the microstructural and mechanical behavior of metal or alloy parts with complex geometries subjected to multi-axial load path changes. The model is used to understand the biaxial load path change behavior of 316L stainless steel cruciform samples. At the macroscale, a finite element approach is used to simulate the cruciform geometry and numerically predict the gauge stresses, which are difficult to obtain analytically. At each material point in the finite element mesh, the anisotropic viscoplastic self-consistent model is used to simulate the role of texture evolution on themore » mechanical response. At the single crystal level, a dislocation density based hardening law that appropriately captures the role of multi-axial load path changes on slip activity is used. The combined approach is experimentally validated using cruciform samples subjected to uniaxial load and unload followed by different biaxial reloads in the angular range [27º, 90º]. Polycrystalline yield surfaces before and after load path changes are generated using the full-field elasto-viscoplastic fast Fourier transform model to study the influence of the deformation history and reloading direction on the mechanical response, including the Bauschinger effect, of these cruciform samples. Results reveal that the Bauschinger effect is strongly dependent on the first loading direction and strain, intergranular and macroscopic residual stresses after first load, and the reloading angle. The microstructural origins of the mechanical response are discussed.« less

  9. Mechanical response of stainless steel subjected to biaxial load path changes: Cruciform experiments and multi-scale modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Manas V.; Patra, Anirban; Wen, Wei

    In this paper, we propose a multi-scale modeling approach that can simulate the microstructural and mechanical behavior of metal or alloy parts with complex geometries subjected to multi-axial load path changes. The model is used to understand the biaxial load path change behavior of 316L stainless steel cruciform samples. At the macroscale, a finite element approach is used to simulate the cruciform geometry and numerically predict the gauge stresses, which are difficult to obtain analytically. At each material point in the finite element mesh, the anisotropic viscoplastic self-consistent model is used to simulate the role of texture evolution on themore » mechanical response. At the single crystal level, a dislocation density based hardening law that appropriately captures the role of multi-axial load path changes on slip activity is used. The combined approach is experimentally validated using cruciform samples subjected to uniaxial load and unload followed by different biaxial reloads in the angular range [27º, 90º]. Polycrystalline yield surfaces before and after load path changes are generated using the full-field elasto-viscoplastic fast Fourier transform model to study the influence of the deformation history and reloading direction on the mechanical response, including the Bauschinger effect, of these cruciform samples. Results reveal that the Bauschinger effect is strongly dependent on the first loading direction and strain, intergranular and macroscopic residual stresses after first load, and the reloading angle. The microstructural origins of the mechanical response are discussed.« less

  10. Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers

    NASA Astrophysics Data System (ADS)

    Tang, Yu-Hang; Kudo, Shuhei; Bian, Xin; Li, Zhen; Karniadakis, George Em

    2015-09-01

    Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create an easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM).

  11. Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Yu-Hang, E-mail: yuhang_tang@brown.edu; Kudo, Shuhei, E-mail: shuhei-kudo@outlook.jp; Bian, Xin, E-mail: xin_bian@brown.edu

    2015-09-15

    Graphical abstract: - Abstract: Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create anmore » easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM)« less

  12. Multi-Scale Characterization of Orthotropic Microstructures

    DTIC Science & Technology

    2008-04-01

    D. Valiveti, S. J. Harris, J. Boileau, A domain partitioning based pre-processor for multi-scale modelling of cast aluminium alloys , Modelling and...SUPPLEMENTARY NOTES Journal article submitted to Modeling and Simulation in Materials Science and Engineering. PAO Case Number: WPAFB 08-3362...element for charac- terization or simulation to avoid misleading predictions of macroscopic defor- mation, fracture, or transport behavior. Likewise

  13. Multiscale stochastic simulations for tensile testing of nanotube-based macroscopic cables.

    PubMed

    Pugno, Nicola M; Bosia, Federico; Carpinteri, Alberto

    2008-08-01

    Thousands of multiscale stochastic simulations are carried out in order to perform the first in-silico tensile tests of carbon nanotube (CNT)-based macroscopic cables with varying length. The longest treated cable is the space-elevator megacable but more realistic shorter cables are also considered in this bottom-up investigation. Different sizes, shapes, and concentrations of defects are simulated, resulting in cable macrostrengths not larger than approximately 10 GPa, which is much smaller than the theoretical nanotube strength (approximately 100 GPa). No best-fit parameters are present in the multiscale simulations: the input at level 1 is directly estimated from nanotensile tests of CNTs, whereas its output is considered as the input for the level 2, and so on up to level 5, corresponding to the megacable. Thus, five hierarchical levels are used to span lengths from that of a single nanotube (approximately 100 nm) to that of the space-elevator megacable (approximately 100 Mm).

  14. Quantifying the deformation of the red blood cell skeleton in shear flow

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Zhu, Qiang

    2012-02-01

    To quantitatively predict the response of red blood cell (RBC) membrane in shear flow, we carried out multiphysics simulations by coupling a three-level multiscale approach of RBC membranes with a Boundary Element Method (BEM) for surrounding flows. Our multiscale approach includes a model of spectrins with the domain unfolding feature, a molecular-based model of the junctional complex with detailed protein connectivity and a whole cell Finite Element Method (FEM) model with the bilayer-skeleton friction derived from measured transmembrane protein diffusivity based on the Einstein-Stokes relation. Applying this approach, we investigated the bilayer-skeleton slip and skeleton deformation of healthy RBCs and RBCs with hereditary spherocytosis anemia during tank-treading motion. Compared with healthy cells, cells with hereditary spherocytosis anemia sustain much larger skeleton-bilayer slip and area deformation of the skeleton due to deficiency of transmembrane proteins. This leads to extremely low skeleton density and large bilayer-skeleton interaction force, both of which may cause bilayer loss. This finding suggests a possible mechanism of the development of hereditary spherocytosis anemia.

  15. Multiscale approach to the physics of radiation damage with ions

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Solov'yov, Andrey V.

    2013-04-01

    We review a multiscale approach to the physics of ion-beam cancer therapy, an approach suggested in order to understand the interplay of a large number of phenomena involved in radiation damage scenario occurring on a range of temporal, spatial, and energy scales. We briefly overview its history and present the current stage of its development. The differences of the multiscale approach from other methods of understanding and assessment of radiation damage are discussed as well as its relationship to other branches of physics, chemistry and biology.

  16. Multiscale Analysis of Delamination of Carbon Fiber-Epoxy Laminates with Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Riddick, Jaret C.; Frankland, SJV; Gates, TS

    2006-01-01

    A multi-scale analysis is presented to parametrically describe the Mode I delamination of a carbon fiber/epoxy laminate. In the midplane of the laminate, carbon nanotubes are included for the purposes of selectively enhancing the fracture toughness of the laminate. To analyze carbon fiber epoxy carbon nanotube laminate, the multi-scale methodology presented here links a series of parameterizations taken at various length scales ranging from the atomistic through the micromechanical to the structural level. At the atomistic scale molecular dynamics simulations are performed in conjunction with an equivalent continuum approach to develop constitutive properties for representative volume elements of the molecular structure of components of the laminate. The molecular-level constitutive results are then used in the Mori-Tanaka micromechanics to develop bulk properties for the epoxy-carbon nanotube matrix system. In order to demonstrate a possible application of this multi-scale methodology, a double cantilever beam specimen is modeled. An existing analysis is employed which uses discrete springs to model the fiber bridging affect during delamination propagation. In the absence of empirical data or a damage mechanics model describing the effect of CNTs on fracture toughness, several tractions laws are postulated, linking CNT volume fraction to fiber bridging in a DCB specimen. Results from this demonstration are presented in terms of DCB specimen load-displacement responses.

  17. Multiscale systems biology of trauma-induced coagulopathy.

    PubMed

    Tsiklidis, Evan; Sims, Carrie; Sinno, Talid; Diamond, Scott L

    2018-07-01

    Trauma with hypovolemic shock is an extreme pathological state that challenges the body to maintain blood pressure and oxygenation in the face of hemorrhagic blood loss. In conjunction with surgical actions and transfusion therapy, survival requires the patient's blood to maintain hemostasis to stop bleeding. The physics of the problem are multiscale: (a) the systemic circulation sets the global blood pressure in response to blood loss and resuscitation therapy, (b) local tissue perfusion is altered by localized vasoregulatory mechanisms and bleeding, and (c) altered blood and vessel biology resulting from the trauma as well as local hemodynamics control the assembly of clotting components at the site of injury. Building upon ongoing modeling efforts to simulate arterial or venous thrombosis in a diseased vasculature, computer simulation of trauma-induced coagulopathy is an emerging approach to understand patient risk and predict response. Despite uncertainties in quantifying the patient's dynamic injury burden, multiscale systems biology may help link blood biochemistry at the molecular level to multiorgan responses in the bleeding patient. As an important goal of systems modeling, establishing early metrics of a patient's high-dimensional trajectory may help guide transfusion therapy or warn of subsequent later stage bleeding or thrombotic risks. This article is categorized under: Analytical and Computational Methods > Computational Methods Biological Mechanisms > Regulatory Biology Models of Systems Properties and Processes > Mechanistic Models. © 2018 Wiley Periodicals, Inc.

  18. A multiphysics and multiscale software environment for modeling astrophysical systems

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, Simon; McMillan, Steve; Harfst, Stefan; Groen, Derek; Fujii, Michiko; Nualláin, Breanndán Ó.; Glebbeek, Evert; Heggie, Douglas; Lombardi, James; Hut, Piet; Angelou, Vangelis; Banerjee, Sambaran; Belkus, Houria; Fragos, Tassos; Fregeau, John; Gaburov, Evghenii; Izzard, Rob; Jurić, Mario; Justham, Stephen; Sottoriva, Andrea; Teuben, Peter; van Bever, Joris; Yaron, Ofer; Zemp, Marcel

    2009-05-01

    We present MUSE, a software framework for combining existing computational tools for different astrophysical domains into a single multiphysics, multiscale application. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for studying generalized stellar systems. We have now reached a "Noah's Ark" milestone, with (at least) two available numerical solvers for each domain. MUSE can treat multiscale and multiphysics systems in which the time- and size-scales are well separated, like simulating the evolution of planetary systems, small stellar associations, dense stellar clusters, galaxies and galactic nuclei. In this paper we describe three examples calculated using MUSE: the merger of two galaxies, the merger of two evolving stars, and a hybrid N-body simulation. In addition, we demonstrate an implementation of MUSE on a distributed computer which may also include special-purpose hardware, such as GRAPEs or GPUs, to accelerate computations. The current MUSE code base is publicly available as open source at http://muse.li.

  19. Modelling an industrial anaerobic granular reactor using a multi-scale approach.

    PubMed

    Feldman, H; Flores-Alsina, X; Ramin, P; Kjellberg, K; Jeppsson, U; Batstone, D J; Gernaey, K V

    2017-12-01

    The objective of this paper is to show the results of an industrial project dealing with modelling of anaerobic digesters. A multi-scale mathematical approach is developed to describe reactor hydrodynamics, granule growth/distribution and microbial competition/inhibition for substrate/space within the biofilm. The main biochemical and physico-chemical processes in the model are based on the Anaerobic Digestion Model No 1 (ADM1) extended with the fate of phosphorus (P), sulfur (S) and ethanol (Et-OH). Wastewater dynamic conditions are reproduced and data frequency increased using the Benchmark Simulation Model No 2 (BSM2) influent generator. All models are tested using two plant data sets corresponding to different operational periods (#D1, #D2). Simulation results reveal that the proposed approach can satisfactorily describe the transformation of organics, nutrients and minerals, the production of methane, carbon dioxide and sulfide and the potential formation of precipitates within the bulk (average deviation between computer simulations and measurements for both #D1, #D2 is around 10%). Model predictions suggest a stratified structure within the granule which is the result of: 1) applied loading rates, 2) mass transfer limitations and 3) specific (bacterial) affinity for substrate. Hence, inerts (X I ) and methanogens (X ac ) are situated in the inner zone, and this fraction lowers as the radius increases favouring the presence of acidogens (X su ,X aa , X fa ) and acetogens (X c4 ,X pro ). Additional simulations show the effects on the overall process performance when operational (pH) and loading (S:COD) conditions are modified. Lastly, the effect of intra-granular precipitation on the overall organic/inorganic distribution is assessed at: 1) different times; and, 2) reactor heights. Finally, the possibilities and opportunities offered by the proposed approach for conducting engineering optimization projects are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Multiscale modeling of a low magnetostrictive Fe-27wt%Co-0.5wt%Cr alloy

    NASA Astrophysics Data System (ADS)

    Savary, M.; Hubert, O.; Helbert, A. L.; Baudin, T.; Batonnet, R.; Waeckerlé, T.

    2018-05-01

    The present paper deals with the improvement of a multi-scale approach describing the magneto-mechanical coupling of Fe-27wt%Co-0.5wt%Cr alloy. The magnetostriction behavior is demonstrated as very different (low magnetostriction vs. high magnetostriction) when this material is submitted to two different final annealing conditions after cold rolling. The numerical data obtained from a multi-scale approach are in accordance with experimental data corresponding to the high magnetostriction level material. A bi-domain structure hypothesis is employed to explain the low magnetostriction behavior, in accordance with the effect of an applied tensile stress. A modification of the multiscale approach is proposed to match this result.

  1. A multi-scale study of the adsorption of lanthanum on the (110) surface of tungsten

    NASA Astrophysics Data System (ADS)

    Samin, Adib J.; Zhang, Jinsuo

    2016-07-01

    In this study, we utilize a multi-scale approach to studying lanthanum adsorption on the (110) plane of tungsten. The energy of the system is described from density functional theory calculations within the framework of the cluster expansion method. It is found that including two-body figures up to the sixth nearest neighbor yielded a reasonable agreement with density functional theory calculations as evidenced by the reported cross validation score. The results indicate that the interaction between the adsorbate atoms in the adlayer is important and cannot be ignored. The parameterized cluster expansion expression is used in a lattice gas Monte Carlo simulation in the grand canonical ensemble at 773 K and the adsorption isotherm is recorded. Implications of the obtained results for the pyroprocessing application are discussed.

  2. Multiscale Modeling of Intergranular Fracture in Aluminum: Constitutive Relation For Interface Debonding

    NASA Technical Reports Server (NTRS)

    Yamakov, V.; Saether, E.; Glaessgen, E. H.

    2008-01-01

    Intergranular fracture is a dominant mode of failure in ultrafine grained materials. In the present study, the atomistic mechanisms of grain-boundary debonding during intergranular fracture in aluminum are modeled using a coupled molecular dynamics finite element simulation. Using a statistical mechanics approach, a cohesive-zone law in the form of a traction-displacement constitutive relationship, characterizing the load transfer across the plane of a growing edge crack, is extracted from atomistic simulations and then recast in a form suitable for inclusion within a continuum finite element model. The cohesive-zone law derived by the presented technique is free of finite size effects and is statistically representative for describing the interfacial debonding of a grain boundary (GB) interface examined at atomic length scales. By incorporating the cohesive-zone law in cohesive-zone finite elements, the debonding of a GB interface can be simulated in a coupled continuum-atomistic model, in which a crack starts in the continuum environment, smoothly penetrates the continuum-atomistic interface, and continues its propagation in the atomistic environment. This study is a step towards relating atomistically derived decohesion laws to macroscopic predictions of fracture and constructing multiscale models for nanocrystalline and ultrafine grained materials.

  3. A systems-based approach for integrated design of materials, products and design process chains

    NASA Astrophysics Data System (ADS)

    Panchal, Jitesh H.; Choi, Hae-Jin; Allen, Janet K.; McDowell, David L.; Mistree, Farrokh

    2007-12-01

    The concurrent design of materials and products provides designers with flexibility to achieve design objectives that were not previously accessible. However, the improved flexibility comes at a cost of increased complexity of the design process chains and the materials simulation models used for executing the design chains. Efforts to reduce the complexity generally result in increased uncertainty. We contend that a systems based approach is essential for managing both the complexity and the uncertainty in design process chains and simulation models in concurrent material and product design. Our approach is based on simplifying the design process chains systematically such that the resulting uncertainty does not significantly affect the overall system performance. Similarly, instead of striving for accurate models for multiscale systems (that are inherently complex), we rely on making design decisions that are robust to uncertainties in the models. Accordingly, we pursue hierarchical modeling in the context of design of multiscale systems. In this paper our focus is on design process chains. We present a systems based approach, premised on the assumption that complex systems can be designed efficiently by managing the complexity of design process chains. The approach relies on (a) the use of reusable interaction patterns to model design process chains, and (b) consideration of design process decisions using value-of-information based metrics. The approach is illustrated using a Multifunctional Energetic Structural Material (MESM) design example. Energetic materials store considerable energy which can be released through shock-induced detonation; conventionally, they are not engineered for strength properties. The design objectives for the MESM in this paper include both sufficient strength and energy release characteristics. The design is carried out by using models at different length and time scales that simulate different aspects of the system. Finally, by applying the method to the MESM design problem, we show that the integrated design of materials and products can be carried out more efficiently by explicitly accounting for design process decisions with the hierarchy of models.

  4. New insights into the multi-scale climatic drivers of the "Karakoram anomaly"

    NASA Astrophysics Data System (ADS)

    Collier, S.; Moelg, T.; Nicholson, L. I.; Maussion, F.; Scherer, D.; Bush, A. B.

    2012-12-01

    Glacier behaviour in the Karakoram region of the northwestern Himalaya shows strong spatial and temporal heterogeneity and, in some basins, anomalous trends compared with glaciers elsewhere in High Asia. Our knowledge of the mass balance fluctuations of Karakoram glaciers as well as of the important driving factors and interactions between them is limited by a scarcity of in-situ measurements and other studies. Here we employ a novel approach to simulating atmosphere-cryosphere interactions - coupled high-resolution atmospheric and physically-based surface mass balance modelling - to examine the surface energy and mass fluxes of glaciers in this region. We discuss the mesoscale climatic drivers behind surface mass balance fluctuations as well as the influence of local forcing factors, such as debris cover and feedbacks from the glacier surface to the atmosphere. The coupled modelling approach therefore provides an innovative, multi-scale solution to the paucity of information we have to date on the much-debated "Karakoram anomaly."

  5. Multiscale Materials Science - A Mathematical Approach to the Role of Defects and Uncertainty

    DTIC Science & Technology

    2016-10-28

    AFRL-AFOSR-UK-TR-2016-0034 Multiscale materials science - a mathematical approach to the role of defects and uncertainty Claude Le Bris ECOLE...science - a mathematical approach to the role of defects and uncertainty 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA8655-13-1-3061 5c.  PROGRAM ELEMENT...1FORM SF 298 10/31/2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll Contract FA 8655-13-1-3061 Multiscale materials science: a mathematical

  6. Simulating secondary waterflooding in heterogeneous rocks with variable wettability using an image-based, multiscale pore network model

    NASA Astrophysics Data System (ADS)

    Bultreys, Tom; Van Hoorebeke, Luc; Cnudde, Veerle

    2016-09-01

    The two-phase flow properties of natural rocks depend strongly on their pore structure and wettability, both of which are often heterogeneous throughout the rock. To better understand and predict these properties, image-based models are being developed. Resulting simulations are however problematic in several important classes of rocks with broad pore-size distributions. We present a new multiscale pore network model to simulate secondary waterflooding in these rocks, which may undergo wettability alteration after primary drainage. This novel approach permits to include the effect of microporosity on the imbibition sequence without the need to describe each individual micropore. Instead, we show that fluid transport through unresolved pores can be taken into account in an upscaled fashion, by the inclusion of symbolic links between macropores, resulting in strongly decreased computational demands. Rules to describe the behavior of these links in the quasistatic invasion sequence are derived from percolation theory. The model is validated by comparison to a fully detailed network representation, which takes each separate micropore into account. Strongly and weakly water-and oil-wet simulations show good results, as do mixed-wettability scenarios with different pore-scale wettability distributions. We also show simulations on a network extracted from a micro-CT scan of Estaillades limestone, which yields good agreement with water-wet and mixed-wet experimental results.

  7. NMSim web server: integrated approach for normal mode-based geometric simulations of biologically relevant conformational transitions in proteins.

    PubMed

    Krüger, Dennis M; Ahmed, Aqeel; Gohlke, Holger

    2012-07-01

    The NMSim web server implements a three-step approach for multiscale modeling of protein conformational changes. First, the protein structure is coarse-grained using the FIRST software. Second, a rigid cluster normal-mode analysis provides low-frequency normal modes. Third, these modes are used to extend the recently introduced idea of constrained geometric simulations by biasing backbone motions of the protein, whereas side chain motions are biased toward favorable rotamer states (NMSim). The generated structures are iteratively corrected regarding steric clashes and stereochemical constraint violations. The approach allows performing three simulation types: unbiased exploration of conformational space; pathway generation by a targeted simulation; and radius of gyration-guided simulation. On a data set of proteins with experimentally observed conformational changes, the NMSim approach has been shown to be a computationally efficient alternative to molecular dynamics simulations for conformational sampling of proteins. The generated conformations and pathways of conformational transitions can serve as input to docking approaches or more sophisticated sampling techniques. The web server output is a trajectory of generated conformations, Jmol representations of the coarse-graining and a subset of the trajectory and data plots of structural analyses. The NMSim webserver, accessible at http://www.nmsim.de, is free and open to all users with no login requirement.

  8. Multi-scale modelling of the dynamics of cell colonies: insights into cell-adhesion forces and cancer invasion from in silico simulations.

    PubMed

    Schlüter, Daniela K; Ramis-Conde, Ignacio; Chaplain, Mark A J

    2015-02-06

    Studying the biophysical interactions between cells is crucial to understanding how normal tissue develops, how it is structured and also when malfunctions occur. Traditional experiments try to infer events at the tissue level after observing the behaviour of and interactions between individual cells. This approach assumes that cells behave in the same biophysical manner in isolated experiments as they do within colonies and tissues. In this paper, we develop a multi-scale multi-compartment mathematical model that accounts for the principal biophysical interactions and adhesion pathways not only at a cell-cell level but also at the level of cell colonies (in contrast to the traditional approach). Our results suggest that adhesion/separation forces between cells may be lower in cell colonies than traditional isolated single-cell experiments infer. As a consequence, isolated single-cell experiments may be insufficient to deduce important biological processes such as single-cell invasion after detachment from a solid tumour. The simulations further show that kinetic rates and cell biophysical characteristics such as pressure-related cell-cycle arrest have a major influence on cell colony patterns and can allow for the development of protrusive cellular structures as seen in invasive cancer cell lines independent of expression levels of pro-invasion molecules.

  9. Multiscale Simulation of Porous Ceramics Based on Movable Cellular Automaton Method

    NASA Astrophysics Data System (ADS)

    Smolin, A.; Smolin, I.; Eremina, G.; Smolina, I.

    2017-10-01

    The paper presents a model for simulating mechanical behaviour of multiscale porous ceramics based on movable cellular automaton method, which is a novel particle method in computational mechanics of solid. The initial scale of the proposed approach corresponds to the characteristic size of the smallest pores in the ceramics. At this scale, we model uniaxial compression of several representative samples with an explicit account of pores of the same size but with the random unique position in space. As a result, we get the average values of Young’s modulus and strength, as well as the parameters of the Weibull distribution of these properties at the current scale level. These data allow us to describe the material behaviour at the next scale level were only the larger pores are considered explicitly, while the influence of small pores is included via the effective properties determined at the previous scale level. If the pore size distribution function of the material has N maxima we need to perform computations for N - 1 levels in order to get the properties from the lowest scale up to the macroscale step by step. The proposed approach was applied to modelling zirconia ceramics with bimodal pore size distribution. The obtained results show correct behaviour of the model sample at the macroscale.

  10. Multi-scale modelling of the dynamics of cell colonies: insights into cell-adhesion forces and cancer invasion from in silico simulations

    PubMed Central

    Schlüter, Daniela K.; Ramis-Conde, Ignacio; Chaplain, Mark A. J.

    2015-01-01

    Studying the biophysical interactions between cells is crucial to understanding how normal tissue develops, how it is structured and also when malfunctions occur. Traditional experiments try to infer events at the tissue level after observing the behaviour of and interactions between individual cells. This approach assumes that cells behave in the same biophysical manner in isolated experiments as they do within colonies and tissues. In this paper, we develop a multi-scale multi-compartment mathematical model that accounts for the principal biophysical interactions and adhesion pathways not only at a cell–cell level but also at the level of cell colonies (in contrast to the traditional approach). Our results suggest that adhesion/separation forces between cells may be lower in cell colonies than traditional isolated single-cell experiments infer. As a consequence, isolated single-cell experiments may be insufficient to deduce important biological processes such as single-cell invasion after detachment from a solid tumour. The simulations further show that kinetic rates and cell biophysical characteristics such as pressure-related cell-cycle arrest have a major influence on cell colony patterns and can allow for the development of protrusive cellular structures as seen in invasive cancer cell lines independent of expression levels of pro-invasion molecules. PMID:25519994

  11. A theory for protein dynamics: Global anisotropy and a normal mode approach to local complexity

    NASA Astrophysics Data System (ADS)

    Copperman, Jeremy; Romano, Pablo; Guenza, Marina

    2014-03-01

    We propose a novel Langevin equation description for the dynamics of biological macromolecules by projecting the solvent and all atomic degrees of freedom onto a set of coarse-grained sites at the single residue level. We utilize a multi-scale approach where molecular dynamic simulations are performed to obtain equilibrium structural correlations input to a modified Rouse-Zimm description which can be solved analytically. The normal mode solution provides a minimal basis set to account for important properties of biological polymers such as the anisotropic global structure, and internal motion on a complex free-energy surface. This multi-scale modeling method predicts the dynamics of both global rotational diffusion and constrained internal motion from the picosecond to the nanosecond regime, and is quantitative when compared to both simulation trajectory and NMR relaxation times. Utilizing non-equilibrium sampling techniques and an explicit treatment of the free-energy barriers in the mode coordinates, the model is extended to include biologically important fluctuations in the microsecond regime, such as bubble and fork formation in nucleic acids, and protein domain motion. This work supported by the NSF under the Graduate STEM Fellows in K-12 Education (GK-12) program, grant DGE-0742540 and NSF grant DMR-0804145, computational support from XSEDE and ACISS.

  12. Three-Dimensional Visualization of Ozone Process Data.

    DTIC Science & Technology

    1997-06-18

    Scattered Multivariate Data. IEEE Computer Graphics & Applications. 11 (May), 47-55. Odman, M.T. and Ingram, C.L. (1996) Multiscale Air Quality Simulation...the Multiscale Air Quality Simulation Platform (MAQSIP) modeling system. MAQSIP is a modular comprehensive air quality modeling system which MCNC...photolyzed back again to nitric oxide. Finally, oxides of 6 nitrogen are terminated through loss or combination into nitric acid, organic nitrates

  13. Statistical Field Estimation for Complex Coastal Regions and Archipelagos (PREPRINT)

    DTIC Science & Technology

    2011-04-09

    and study the computational properties of these schemes. Specifically, we extend a multiscale Objective Analysis (OA) approach to complex coastal...computational properties of these schemes. Specifically, we extend a multiscale Objective Analysis (OA) approach to complex coastal regions and... multiscale free-surface code builds on the primitive-equation model of the Harvard Ocean Predic- tion System (HOPS, Haley et al. (2009)). Additionally

  14. A multiscale, model-based analysis of the multi-tissue interplay underlying blood glucose regulation in type I diabetes.

    PubMed

    Wadehn, Federico; Schaller, Stephan; Eissing, Thomas; Krauss, Markus; Kupfer, Lars

    2016-08-01

    A multiscale model for blood glucose regulation in diabetes type I patients is constructed by integrating detailed metabolic network models for fat, liver and muscle cells into a whole body physiologically-based pharmacokinetic/pharmacodynamic (pBPK/PD) model. The blood glucose regulation PBPK/PD model simulates the distribution and metabolization of glucose, insulin and glucagon on an organ and whole body level. The genome-scale metabolic networks in contrast describe intracellular reactions. The developed multiscale model is fitted to insulin, glucagon and glucose measurements of a 48h clinical trial featuring 6 subjects and is subsequently used to simulate (in silico) the influence of geneknockouts and drug-induced enzyme inhibitions on whole body blood glucose levels. Simulations of diabetes associated gene knockouts and impaired cellular glucose metabolism, resulted in elevated whole body blood-glucose levels, but also in a metabolic shift within the cell's reaction network. Such multiscale models have the potential to be employed in the exploration of novel drug-targets or to be integrated into control algorithms for artificial pancreas systems.

  15. Multiscale Support Vector Learning With Projection Operator Wavelet Kernel for Nonlinear Dynamical System Identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2016-02-03

    A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.

  16. Structural health monitoring using DOG multi-scale space: an approach for analyzing damage characteristics

    NASA Astrophysics Data System (ADS)

    Guo, Tian; Xu, Zili

    2018-03-01

    Measurement noise is inevitable in practice; thus, it is difficult to identify defects, cracks or damage in a structure while suppressing noise simultaneously. In this work, a novel method is introduced to detect multiple damage in noisy environments. Based on multi-scale space analysis for discrete signals, a method for extracting damage characteristics from the measured displacement mode shape is illustrated. Moreover, the proposed method incorporates a data fusion algorithm to further eliminate measurement noise-based interference. The effectiveness of the method is verified by numerical and experimental methods applied to different structural types. The results demonstrate that there are two advantages to the proposed method. First, damage features are extracted by the difference of the multi-scale representation; this step is taken such that the interference of noise amplification can be avoided. Second, a data fusion technique applied to the proposed method provides a global decision, which retains the damage features while maximally eliminating the uncertainty. Monte Carlo simulations are utilized to validate that the proposed method has a higher accuracy in damage detection.

  17. Exploring a multi-scale method for molecular simulation in continuum solvent model: Explicit simulation of continuum solvent as an incompressible fluid.

    PubMed

    Xiao, Li; Luo, Ray

    2017-12-07

    We explored a multi-scale algorithm for the Poisson-Boltzmann continuum solvent model for more robust simulations of biomolecules. In this method, the continuum solvent/solute interface is explicitly simulated with a numerical fluid dynamics procedure, which is tightly coupled to the solute molecular dynamics simulation. There are multiple benefits to adopt such a strategy as presented below. At this stage of the development, only nonelectrostatic interactions, i.e., van der Waals and hydrophobic interactions, are included in the algorithm to assess the quality of the solvent-solute interface generated by the new method. Nevertheless, numerical challenges exist in accurately interpolating the highly nonlinear van der Waals term when solving the finite-difference fluid dynamics equations. We were able to bypass the challenge rigorously by merging the van der Waals potential and pressure together when solving the fluid dynamics equations and by considering its contribution in the free-boundary condition analytically. The multi-scale simulation method was first validated by reproducing the solute-solvent interface of a single atom with analytical solution. Next, we performed the relaxation simulation of a restrained symmetrical monomer and observed a symmetrical solvent interface at equilibrium with detailed surface features resembling those found on the solvent excluded surface. Four typical small molecular complexes were then tested, both volume and force balancing analyses showing that these simple complexes can reach equilibrium within the simulation time window. Finally, we studied the quality of the multi-scale solute-solvent interfaces for the four tested dimer complexes and found that they agree well with the boundaries as sampled in the explicit water simulations.

  18. An open source platform for multi-scale spatially distributed simulations of microbial ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segre, Daniel

    2014-08-14

    The goal of this project was to develop a tool for facilitating simulation, validation and discovery of multiscale dynamical processes in microbial ecosystems. This led to the development of an open-source software platform for Computation Of Microbial Ecosystems in Time and Space (COMETS). COMETS performs spatially distributed time-dependent flux balance based simulations of microbial metabolism. Our plan involved building the software platform itself, calibrating and testing it through comparison with experimental data, and integrating simulations and experiments to address important open questions on the evolution and dynamics of cross-feeding interactions between microbial species.

  19. ProtoMD: A prototyping toolkit for multiscale molecular dynamics

    NASA Astrophysics Data System (ADS)

    Somogyi, Endre; Mansour, Andrew Abi; Ortoleva, Peter J.

    2016-05-01

    ProtoMD is a toolkit that facilitates the development of algorithms for multiscale molecular dynamics (MD) simulations. It is designed for multiscale methods which capture the dynamic transfer of information across multiple spatial scales, such as the atomic to the mesoscopic scale, via coevolving microscopic and coarse-grained (CG) variables. ProtoMD can be also be used to calibrate parameters needed in traditional CG-MD methods. The toolkit integrates 'GROMACS wrapper' to initiate MD simulations, and 'MDAnalysis' to analyze and manipulate trajectory files. It facilitates experimentation with a spectrum of coarse-grained variables, prototyping rare events (such as chemical reactions), or simulating nanocharacterization experiments such as terahertz spectroscopy, AFM, nanopore, and time-of-flight mass spectroscopy. ProtoMD is written in python and is freely available under the GNU General Public License from github.com/CTCNano/proto_md.

  20. Scalable High-order Methods for Multi-Scale Problems: Analysis, Algorithms and Application

    DTIC Science & Technology

    2016-02-26

    Karniadakis, “Resilient algorithms for reconstructing and simulating gappy flow fields in CFD ”, Fluid Dynamic Research, vol. 47, 051402, 2015. 2. Y. Yu, H...simulation, domain decomposition, CFD , gappy data, estimation theory, and gap-tooth algorithm. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...objective of this project was to develop a general CFD framework for multifidelity simula- tions to target multiscale problems but also resilience in

  1. Multiscale Macromolecular Simulation: Role of Evolving Ensembles

    PubMed Central

    Singharoy, A.; Joshi, H.; Ortoleva, P.J.

    2013-01-01

    Multiscale analysis provides an algorithm for the efficient simulation of macromolecular assemblies. This algorithm involves the coevolution of a quasiequilibrium probability density of atomic configurations and the Langevin dynamics of spatial coarse-grained variables denoted order parameters (OPs) characterizing nanoscale system features. In practice, implementation of the probability density involves the generation of constant OP ensembles of atomic configurations. Such ensembles are used to construct thermal forces and diffusion factors that mediate the stochastic OP dynamics. Generation of all-atom ensembles at every Langevin timestep is computationally expensive. Here, multiscale computation for macromolecular systems is made more efficient by a method that self-consistently folds in ensembles of all-atom configurations constructed in an earlier step, history, of the Langevin evolution. This procedure accounts for the temporal evolution of these ensembles, accurately providing thermal forces and diffusions. It is shown that efficiency and accuracy of the OP-based simulations is increased via the integration of this historical information. Accuracy improves with the square root of the number of historical timesteps included in the calculation. As a result, CPU usage can be decreased by a factor of 3-8 without loss of accuracy. The algorithm is implemented into our existing force-field based multiscale simulation platform and demonstrated via the structural dynamics of viral capsomers. PMID:22978601

  2. Multiscale Data Assimilation

    DTIC Science & Technology

    2014-09-30

    good test 3 case to study the multiscale data assimilation capabilities of our GMM-DO filter. We also performed stochastic simulations with our DO...Morakot and internal tides. The ignorance score and Kullback - Leibler divergence were employed to measure the skill of the multiscale pdf forecasts...read off from the posterior of the augmented state vector. We implemented this new smoother and tested it using a 2D-in-space stochastic flow exiting

  3. Ensuring congruency in multiscale modeling: towards linking agent based and continuum biomechanical models of arterial adaptation.

    PubMed

    Hayenga, Heather N; Thorne, Bryan C; Peirce, Shayn M; Humphrey, Jay D

    2011-11-01

    There is a need to develop multiscale models of vascular adaptations to understand tissue-level manifestations of cellular level mechanisms. Continuum-based biomechanical models are well suited for relating blood pressures and flows to stress-mediated changes in geometry and properties, but less so for describing underlying mechanobiological processes. Discrete stochastic agent-based models are well suited for representing biological processes at a cellular level, but not for describing tissue-level mechanical changes. We present here a conceptually new approach to facilitate the coupling of continuum and agent-based models. Because of ubiquitous limitations in both the tissue- and cell-level data from which one derives constitutive relations for continuum models and rule-sets for agent-based models, we suggest that model verification should enforce congruency across scales. That is, multiscale model parameters initially determined from data sets representing different scales should be refined, when possible, to ensure that common outputs are consistent. Potential advantages of this approach are illustrated by comparing simulated aortic responses to a sustained increase in blood pressure predicted by continuum and agent-based models both before and after instituting a genetic algorithm to refine 16 objectively bounded model parameters. We show that congruency-based parameter refinement not only yielded increased consistency across scales, it also yielded predictions that are closer to in vivo observations.

  4. Fourth-power law structure of the shock wave fronts in metals and ceramics

    NASA Astrophysics Data System (ADS)

    Bayandin, Yuriy; Naimark, Oleg; Saveleva, Natalia

    2017-06-01

    The plate impact experiments were performed for solids during last fifty years. It was established that the dependence between the strain rate and the shock wave amplitude for metals and ceramics expressed by a fourth-power law. Present study is focused on the theoretical investigation and numerical simulation of plane shock wave propagation in metals and ceramics. Statistically based constitutive model of solid with defects (microcracks and microshears) was developed to provide the relation between damage induced mechanisms of structural relaxation, thermally activated plastic flow and material reactions for extreme loading conditions. Original approach based on the wide range constitutive equations was proposed for the numerical simulation of multiscale damage-failure transition mechanisms and plane shock wave propagation in solids with defects in the range of strain rate 103 -108s-1 . It was shown that mechanisms of plastic relaxation and damage-failure transitions are linked to the multiscale kinetics of defects leading to the self-similar nature of shock wave fronts in metals and ceramics. The work was supported by the Russian Science Foundation (Project No. 14-19-01173).

  5. Simulating cancer growth with multiscale agent-based modeling.

    PubMed

    Wang, Zhihui; Butner, Joseph D; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S

    2015-02-01

    There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Na; Zhang, Peng; Kang, Wei

    Multiscale simulations of fluids such as blood represent a major computational challenge of coupling the disparate spatiotemporal scales between molecular and macroscopic transport phenomena characterizing such complex fluids. In this paper, a coarse-grained (CG) particle model is developed for simulating blood flow by modifying the Morse potential, traditionally used in Molecular Dynamics for modeling vibrating structures. The modified Morse potential is parameterized with effective mass scales for reproducing blood viscous flow properties, including density, pressure, viscosity, compressibility and characteristic flow dynamics of human blood plasma fluid. The parameterization follows a standard inverse-problem approach in which the optimal micro parameters aremore » systematically searched, by gradually decoupling loosely correlated parameter spaces, to match the macro physical quantities of viscous blood flow. The predictions of this particle based multiscale model compare favorably to classic viscous flow solutions such as Counter-Poiseuille and Couette flows. It demonstrates that such coarse grained particle model can be applied to replicate the dynamics of viscous blood flow, with the advantage of bridging the gap between macroscopic flow scales and the cellular scales characterizing blood flow that continuum based models fail to handle adequately.« less

  7. Multiscale Investigations of the Early Stage Oxidation on Cu Surfaces

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Xiao, Penghao; Lian, Xin; Yang, Shen-Che; Henkelman, Grame; Saidi, Wissam; Yang, Judith; University of Pittsburgh Team; University of Texas at Austin Team

    Previous in situ TEM experiments have shown that the oxidation of the three low index Cu surfaces (100), (110) and (111) exhibit different oxide nucleation rates, and the resulting oxides have 3-dimensional (3D) island shapes or 2D rafts under different conditions. In order to better understand these results, we have investigated the early stages of Cu oxidation using a multiscale computational approach that employs density functional theory (DFT), reactive force field (ReaxFF), and kinetic Mote Carlo (KMC). With DFT calculation, we have compared O2 dissociation barriers on Cu (100), (110) and (111) surfaces at high oxygen coverage to evaluate the kinetic barrier of sublayer oxidization. We found that O2 dissociation barriers on Cu(111) surface are all lower than those on (110) and (100) surfaces. This trend agrees with experimental observations that (111) surface is easier to oxidize. These DFT calculated energy barriers are then incorporated into KMC simulations. The large scale ReaxFF molecular dynamics and KMC simulations detail the oxidation dynamics of the different Cu surfaces, and show the formation of various oxide morphologies that are consistent with experimental observations.

  8. Structure-Preserving Variational Multiscale Modeling of Turbulent Incompressible Flow with Subgrid Vortices

    NASA Astrophysics Data System (ADS)

    Evans, John; Coley, Christopher; Aronson, Ryan; Nelson, Corey

    2017-11-01

    In this talk, a large eddy simulation methodology for turbulent incompressible flow will be presented which combines the best features of divergence-conforming discretizations and the residual-based variational multiscale approach to large eddy simulation. In this method, the resolved motion is represented using a divergence-conforming discretization, that is, a discretization that preserves the incompressibility constraint in a pointwise manner, and the unresolved fluid motion is explicitly modeled by subgrid vortices that lie within individual grid cells. The evolution of the subgrid vortices is governed by dynamical model equations driven by the residual of the resolved motion. Consequently, the subgrid vortices appropriately vanish for laminar flow and fully resolved turbulent flow. As the resolved velocity field and subgrid vortices are both divergence-free, the methodology conserves mass in a pointwise sense and admits discrete balance laws for energy, enstrophy, and helicity. Numerical results demonstrate the methodology yields improved results versus state-of-the-art eddy viscosity models in the context of transitional, wall-bounded, and rotational flow when a divergence-conforming B-spline discretization is utilized to represent the resolved motion.

  9. Modeling evolution of spatially distributed bacterial communities: a simulation with the haploid evolutionary constructor

    PubMed Central

    2015-01-01

    Background Multiscale approaches for integrating submodels of various levels of biological organization into a single model became the major tool of systems biology. In this paper, we have constructed and simulated a set of multiscale models of spatially distributed microbial communities and study an influence of unevenly distributed environmental factors on the genetic diversity and evolution of the community members. Results Haploid Evolutionary Constructor software http://evol-constructor.bionet.nsc.ru/ was expanded by adding the tool for the spatial modeling of a microbial community (1D, 2D and 3D versions). A set of the models of spatially distributed communities was built to demonstrate that the spatial distribution of cells affects both intensity of selection and evolution rate. Conclusion In spatially heterogeneous communities, the change in the direction of the environmental flow might be reflected in local irregular population dynamics, while the genetic structure of populations (frequencies of the alleles) remains stable. Furthermore, in spatially heterogeneous communities, the chemotaxis might dramatically affect the evolution of community members. PMID:25708911

  10. Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldhaber, Steve; Holland, Marika

    The major goal of this project was to contribute improvements to the infrastructure of an Earth System Model in order to support research in the Multiscale Methods for Accurate, Efficient, and Scale-Aware models of the Earth System project. In support of this, the NCAR team accomplished two main tasks: improving input/output performance of the model and improving atmospheric model simulation quality. Improvement of the performance and scalability of data input and diagnostic output within the model required a new infrastructure which can efficiently handle the unstructured grids common in multiscale simulations. This allows for a more computationally efficient model, enablingmore » more years of Earth System simulation. The quality of the model simulations was improved by reducing grid-point noise in the spectral element version of the Community Atmosphere Model (CAM-SE). This was achieved by running the physics of the model using grid-cell data on a finite-volume grid.« less

  11. Modelling strategies to predict the multi-scale effects of rural land management change

    NASA Astrophysics Data System (ADS)

    Bulygina, N.; Ballard, C. E.; Jackson, B. M.; McIntyre, N.; Marshall, M.; Reynolds, B.; Wheater, H. S.

    2011-12-01

    Changes to the rural landscape due to agricultural land management are ubiquitous, yet predicting the multi-scale effects of land management change on hydrological response remains an important scientific challenge. Much empirical research has been of little generic value due to inadequate design and funding of monitoring programmes, while the modelling issues challenge the capability of data-based, conceptual and physics-based modelling approaches. In this paper we report on a major UK research programme, motivated by a national need to quantify effects of agricultural intensification on flood risk. Working with a consortium of farmers in upland Wales, a multi-scale experimental programme (from experimental plots to 2nd order catchments) was developed to address issues of upland agricultural intensification. This provided data support for a multi-scale modelling programme, in which highly detailed physics-based models were conditioned on the experimental data and used to explore effects of potential field-scale interventions. A meta-modelling strategy was developed to represent detailed modelling in a computationally-efficient manner for catchment-scale simulation; this allowed catchment-scale quantification of potential management options. For more general application to data-sparse areas, alternative approaches were needed. Physics-based models were developed for a range of upland management problems, including the restoration of drained peatlands, afforestation, and changing grazing practices. Their performance was explored using literature and surrogate data; although subject to high levels of uncertainty, important insights were obtained, of practical relevance to management decisions. In parallel, regionalised conceptual modelling was used to explore the potential of indices of catchment response, conditioned on readily-available catchment characteristics, to represent ungauged catchments subject to land management change. Although based in part on speculative relationships, significant predictive power was derived from this approach. Finally, using a formal Bayesian procedure, these different sources of information were combined with local flow data in a catchment-scale conceptual model application , i.e. using small-scale physical properties, regionalised signatures of flow and available flow measurements.

  12. A Multi-scale Cognitive Approach to Intrusion Detection and Response

    DTIC Science & Technology

    2015-12-28

    the behavior of the traffic on the network, either by using mathematical formulas or by replaying packet streams. As a result, simulators depend...large scale. Summary of the most important results We obtained a powerful machine, which has 768 cores and 1.25 TB memory . RBG has been...time. Each client is configured with 1GB memory , 10 GB disk space, and one 100M Ethernet interface. The server nodes include web servers

  13. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.

    PubMed

    Barkaoui, Abdelwahed; Chamekh, Abdessalem; Merzouki, Tarek; Hambli, Ridha; Mkaddem, Ali

    2014-03-01

    The complexity and heterogeneity of bone tissue require a multiscale modeling to understand its mechanical behavior and its remodeling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network (NN) computation and homogenization equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained NN simulation. Finite element calculation is performed at nanoscopic levels to provide a database to train an in-house NN program; and (iii) in steps 2-10 from fibril to continuum cortical bone tissue, homogenization equations are used to perform the computation at the higher scales. The NN outputs (elastic properties of the microfibril) are used as inputs for the homogenization computation to determine the properties of mineralized collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen, and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modeling. Good agreement was obtained between our predicted results and literature data. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Multiscale Particle-Based Modeling of Flowing Platelets in Blood Plasma Using Dissipative Particle Dynamics and Coarse Grained Molecular Dynamics

    PubMed Central

    Zhang, Peng; Gao, Chao; Zhang, Na; Slepian, Marvin J.; Deng, Yuefan; Bluestein, Danny

    2014-01-01

    We developed a multiscale particle-based model of platelets, to study the transport dynamics of shear stresses between the surrounding fluid and the platelet membrane. This model facilitates a more accurate prediction of the activation potential of platelets by viscous shear stresses - one of the major mechanisms leading to thrombus formation in cardiovascular diseases and in prosthetic cardiovascular devices. The interface of the model couples coarse-grained molecular dynamics (CGMD) with dissipative particle dynamics (DPD). The CGMD handles individual platelets while the DPD models the macroscopic transport of blood plasma in vessels. A hybrid force field is formulated for establishing a functional interface between the platelet membrane and the surrounding fluid, in which the microstructural changes of platelets may respond to the extracellular viscous shear stresses transferred to them. The interaction between the two systems preserves dynamic properties of the flowing platelets, such as the flipping motion. Using this multiscale particle-based approach, we have further studied the effects of the platelet elastic modulus by comparing the action of the flow-induced shear stresses on rigid and deformable platelet models. The results indicate that neglecting the platelet deformability may overestimate the stress on the platelet membrane, which in turn may lead to erroneous predictions of the platelet activation under viscous shear flow conditions. This particle-based fluid-structure interaction multiscale model offers for the first time a computationally feasible approach for simulating deformable platelets interacting with viscous blood flow, aimed at predicting flow induced platelet activation by using a highly resolved mapping of the stress distribution on the platelet membrane under dynamic flow conditions. PMID:25530818

  15. Multiscale geometric modeling of macromolecules I: Cartesian representation

    NASA Astrophysics Data System (ADS)

    Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2014-01-01

    This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the polarized curvature, for the prediction of protein binding sites.

  16. A coupling method for a cardiovascular simulation model which includes the Kalman filter.

    PubMed

    Hasegawa, Yuki; Shimayoshi, Takao; Amano, Akira; Matsuda, Tetsuya

    2012-01-01

    Multi-scale models of the cardiovascular system provide new insight that was unavailable with in vivo and in vitro experiments. For the cardiovascular system, multi-scale simulations provide a valuable perspective in analyzing the interaction of three phenomenons occurring at different spatial scales: circulatory hemodynamics, ventricular structural dynamics, and myocardial excitation-contraction. In order to simulate these interactions, multiscale cardiovascular simulation systems couple models that simulate different phenomena. However, coupling methods require a significant amount of calculation, since a system of non-linear equations must be solved for each timestep. Therefore, we proposed a coupling method which decreases the amount of calculation by using the Kalman filter. In our method, the Kalman filter calculates approximations for the solution to the system of non-linear equations at each timestep. The approximations are then used as initial values for solving the system of non-linear equations. The proposed method decreases the number of iterations required by 94.0% compared to the conventional strong coupling method. When compared with a smoothing spline predictor, the proposed method required 49.4% fewer iterations.

  17. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Accident Tolerant Fuels High Impact Problem: Coordinate Multiscale U 3Si 2 Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, K. A.; Hales, J. D.; Miao, Y.

    Since the events at the Fukushima-Daiichi nuclear power plant in March 2011 significant research has unfolded at national laboratories, universities and other institutions into alternative materials that have potential enhanced accident tolerance when compared to traditional \\uo~fuel zircaloy clad fuel rods. One of the potential replacement fuels is uranium silicide (\\usi) for its higher thermal conductivity and uranium density. The lower melting temperature is of potential concern during postulated accident conditions. Another disadvantage for \\usi~ is the lack of experimental data under power reactor conditions. Due to the aggressive development schedule for inserting some of the potential materials into leadmore » test assemblies or rods by 2022~\\cite{bragg-sitton_2014} multiscale multiphysics modeling approaches have been used to provide insight into these materials. \\\\ \

  18. A multi-scale study of the adsorption of lanthanum on the (110) surface of tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samin, Adib J.; Zhang, Jinsuo

    In this study, we utilize a multi-scale approach to studying lanthanum adsorption on the (110) plane of tungsten. The energy of the system is described from density functional theory calculations within the framework of the cluster expansion method. It is found that including two-body figures up to the sixth nearest neighbor yielded a reasonable agreement with density functional theory calculations as evidenced by the reported cross validation score. The results indicate that the interaction between the adsorbate atoms in the adlayer is important and cannot be ignored. The parameterized cluster expansion expression is used in a lattice gas Monte Carlomore » simulation in the grand canonical ensemble at 773 K and the adsorption isotherm is recorded. Implications of the obtained results for the pyroprocessing application are discussed.« less

  19. Multi-scale heat and mass transfer modelling of cell and tissue cryopreservation

    PubMed Central

    Xu, Feng; Moon, Sangjun; Zhang, Xiaohui; Shao, Lei; Song, Young Seok; Demirci, Utkan

    2010-01-01

    Cells and tissues undergo complex physical processes during cryopreservation. Understanding the underlying physical phenomena is critical to improve current cryopreservation methods and to develop new techniques. Here, we describe multi-scale approaches for modelling cell and tissue cryopreservation including heat transfer at macroscale level, crystallization, cell volume change and mass transport across cell membranes at microscale level. These multi-scale approaches allow us to study cell and tissue cryopreservation. PMID:20047939

  20. Parallel multiscale simulations of a brain aneurysm

    PubMed Central

    Grinberg, Leopold; Fedosov, Dmitry A.; Karniadakis, George Em

    2012-01-01

    Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multi-scale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier-Stokes solver εκ αr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers ( εκ αr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in future work. PMID:23734066

  1. Parallel multiscale simulations of a brain aneurysm.

    PubMed

    Grinberg, Leopold; Fedosov, Dmitry A; Karniadakis, George Em

    2013-07-01

    Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multi-scale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier-Stokes solver εκ αr . The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers ( εκ αr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in future work.

  2. Parallel multiscale simulations of a brain aneurysm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinberg, Leopold; Fedosov, Dmitry A.; Karniadakis, George Em, E-mail: george_karniadakis@brown.edu

    2013-07-01

    Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multiscale simulations of platelet depositions on the wall of a brain aneurysm.more » The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier–Stokes solver NεκTαr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers (NεκTαr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300 K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in future work.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Qiang

    The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of whichmore » is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next generation atomistic-to-continuum multiscale simulations. In addition, a rigorous studyof nite element discretizations of peridynamics will be considered. Using the fact that peridynamics is spatially derivative free, we will also characterize the space of admissible peridynamic solutions and carry out systematic analyses of the models, in particular rigorously showing how peridynamics encompasses fracture and other failure phenomena. Additional aspects of the project include the mathematical and numerical analysis of peridynamics applied to stochastic peridynamics models. In summary, the project will make feasible mathematically consistent multiscale models for the analysis and design of advanced materials.« less

  4. Multiscale simulation of red blood cell aggregation

    NASA Astrophysics Data System (ADS)

    Bagchi, P.; Popel, A. S.

    2004-11-01

    In humans and other mammals, aggregation of red blood cells (RBC) is a major determinant to blood viscosity in microcirculation under physiological and pathological conditions. Elevated levels of aggregation are often related to cardiovascular diseases, bacterial infection, diabetes, and obesity. Aggregation is a multiscale phenomenon that is governed by the molecular bond formation between adjacent cells, morphological and rheological properties of the cells, and the motion of the extra-cellular fluid in which the cells circulate. We have developed a simulation technique using front tracking methods for multiple fluids that includes the multiscale characteristics of aggregation. We will report the first-ever direct computer simulation of aggregation of deformable cells in shear flows. We will present results on the effect of shear rate, strength of the cross-bridging bonds, and the cell rheological properties on the rolling motion, deformation and subsequent breakage of an aggregate.

  5. Multiscale stochastic simulations of chemical reactions with regulated scale separation

    NASA Astrophysics Data System (ADS)

    Koumoutsakos, Petros; Feigelman, Justin

    2013-07-01

    We present a coupling of multiscale frameworks with accelerated stochastic simulation algorithms for systems of chemical reactions with disparate propensities. The algorithms regulate the propensities of the fast and slow reactions of the system, using alternating micro and macro sub-steps simulated with accelerated algorithms such as τ and R-leaping. The proposed algorithms are shown to provide significant speedups in simulations of stiff systems of chemical reactions with a trade-off in accuracy as controlled by a regulating parameter. More importantly, the error of the methods exhibits a cutoff phenomenon that allows for optimal parameter choices. Numerical experiments demonstrate that hybrid algorithms involving accelerated stochastic simulations can be, in certain cases, more accurate while faster, than their corresponding stochastic simulation algorithm counterparts.

  6. deltaGseg: macrostate estimation via molecular dynamics simulations and multiscale time series analysis.

    PubMed

    Low, Diana H P; Motakis, Efthymios

    2013-10-01

    Binding free energy calculations obtained through molecular dynamics simulations reflect intermolecular interaction states through a series of independent snapshots. Typically, the free energies of multiple simulated series (each with slightly different starting conditions) need to be estimated. Previous approaches carry out this task by moving averages at certain decorrelation times, assuming that the system comes from a single conformation description of binding events. Here, we discuss a more general approach that uses statistical modeling, wavelets denoising and hierarchical clustering to estimate the significance of multiple statistically distinct subpopulations, reflecting potential macrostates of the system. We present the deltaGseg R package that performs macrostate estimation from multiple replicated series and allows molecular biologists/chemists to gain physical insight into the molecular details that are not easily accessible by experimental techniques. deltaGseg is a Bioconductor R package available at http://bioconductor.org/packages/release/bioc/html/deltaGseg.html.

  7. Advanced Composite Wind Turbine Blade Design Based on Durability and Damage Tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abumeri, Galib; Abdi, Frank

    2012-02-16

    The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints andmore » closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relationships obtained from testing of the blade with baseline neat material were compared to the ones from analytical simulation using neat resin and using silica nanoparticles in the resin. Multi-scale PFA results for the neat material construction matched closely those from test for both load displacement and location and type of damage and failure. AlphaSTAR demonstrated that wind blade structures made from advanced composite materials can be certified with multi-scale progressive failure analysis by following building block verification approach.« less

  8. Growth of nitrogen-doped graphene on copper: Multiscale simulations

    NASA Astrophysics Data System (ADS)

    Gaillard, P.; Schoenhalz, A. L.; Moskovkin, P.; Lucas, S.; Henrard, L.

    2016-02-01

    We used multiscale simulations to model the growth of nitrogen-doped graphene on a copper substrate by chemical vapour deposition (CVD). Our simulations are based on ab-initio calculations of energy barriers for surface diffusion, which are complemented by larger scale Kinetic Monte Carlo (KMC) simulations. Our results indicate that the shape of grown doped graphene flakes depends on the temperature and deposition flux they are submitted during the process, but we found no significant effect of nitrogen doping on this shape. However, we show that nitrogen atoms have a preference for pyridine-like sites compared to graphite-like sites, as observed experimentally.

  9. Simulations of Tornadoes, Tropical Cyclones, MJOs, and QBOs, using GFDL's multi-scale global climate modeling system

    NASA Astrophysics Data System (ADS)

    Lin, Shian-Jiann; Harris, Lucas; Chen, Jan-Huey; Zhao, Ming

    2014-05-01

    A multi-scale High-Resolution Atmosphere Model (HiRAM) is being developed at NOAA/Geophysical Fluid Dynamics Laboratory. The model's dynamical framework is the non-hydrostatic extension of the vertically Lagrangian finite-volume dynamical core (Lin 2004, Monthly Wea. Rev.) constructed on a stretchable (via Schmidt transformation) cubed-sphere grid. Physical parametrizations originally designed for IPCC-type climate predictions are in the process of being modified and made more "scale-aware", in an effort to make the model suitable for multi-scale weather-climate applications, with horizontal resolution ranging from 1 km (near the target high-resolution region) to as low as 400 km (near the antipodal point). One of the main goals of this development is to enable simulation of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously thought impossible. We will present preliminary results, covering a very wide spectrum of temporal-spatial scales, ranging from simulation of tornado genesis (hours), Madden-Julian Oscillations (intra-seasonal), topical cyclones (seasonal), to Quasi Biennial Oscillations (intra-decadal), using the same global multi-scale modeling system.

  10. Module-based multiscale simulation of angiogenesis in skeletal muscle

    PubMed Central

    2011-01-01

    Background Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at different biological scales, ranging from the molecular to the tissue levels. Integration of models at different scales is a challenging and currently unsolved problem. Results We present an object-oriented module-based computational integration strategy to build a multiscale model of angiogenesis that links currently available models. As an example case, we use this approach to integrate modules representing microvascular blood flow, oxygen transport, vascular endothelial growth factor transport and endothelial cell behavior (sensing, migration and proliferation). Modeling methodologies in these modules include algebraic equations, partial differential equations and agent-based models with complex logical rules. We apply this integrated model to simulate exercise-induced angiogenesis in skeletal muscle. The simulation results compare capillary growth patterns between different exercise conditions for a single bout of exercise. Results demonstrate how the computational infrastructure can effectively integrate multiple modules by coordinating their connectivity and data exchange. Model parameterization offers simulation flexibility and a platform for performing sensitivity analysis. Conclusions This systems biology strategy can be applied to larger scale integration of computational models of angiogenesis in skeletal muscle, or other complex processes in other tissues under physiological and pathological conditions. PMID:21463529

  11. Virtual tissues in toxicology.

    PubMed

    Shah, Imran; Wambaugh, John

    2010-02-01

    New approaches are vital for efficiently evaluating human health risk of thousands of chemicals in commerce. In vitro models offer a high-throughput approach for assaying chemical-induced molecular and cellular changes; however, bridging these perturbations to in vivo effects across chemicals, dose, time, and species remains challenging. Technological advances in multiresolution imaging and multiscale simulation are making it feasible to reconstruct tissues in silico. In toxicology, these "virtual" tissues (VT) aim to predict histopathological outcomes from alterations of cellular phenotypes that are controlled by chemical-induced perturbations in molecular pathways. The behaviors of thousands of heterogeneous cells in tissues are simulated discretely using agent-based modeling (ABM), in which computational "agents" mimic cell interactions and cellular responses to the microenvironment. The behavior of agents is constrained by physical laws and biological rules derived from experimental evidence. VT extend compartmental physiologic models to simulate both acute insults as well as the chronic effects of low-dose exposure. Furthermore, agent behavior can encode the logic of signaling and genetic regulatory networks to evaluate the role of different pathways in chemical-induced injury. To extrapolate toxicity across species, chemicals, and doses, VT require four main components: (a) organization of prior knowledge on physiologic events to define the mechanistic rules for agent behavior, (b) knowledge on key chemical-induced molecular effects, including activation of stress sensors and changes in molecular pathways that alter the cellular phenotype, (c) multiresolution quantitative and qualitative analysis of histologic data to characterize and measure chemical-, dose-, and time-dependent physiologic events, and (d) multiscale, spatiotemporal simulation frameworks to effectively calibrate and evaluate VT using experimental data. This investigation presents the motivation, implementation, and application of VT with examples from hepatotoxicity and carcinogenesis.

  12. A New Approach to Modeling Densities and Equilibria of Ice and Gas Hydrate Phases

    NASA Astrophysics Data System (ADS)

    Zyvoloski, G.; Lucia, A.; Lewis, K. C.

    2011-12-01

    The Gibbs-Helmholtz Constrained (GHC) equation is a new cubic equation of state that was recently derived by Lucia (2010) and Lucia et al. (2011) by constraining the energy parameter in the Soave form of the Redlich-Kwong equation to satisfy the Gibbs-Helmholtz equation. The key attributes of the GHC equation are: 1) It is a multi-scale equation because it uses the internal energy of departure, UD, as a natural bridge between the molecular and bulk phase length scales. 2) It does not require acentric factors, volume translation, regression of parameters to experimental data, binary (kij) interaction parameters, or other forms of empirical correlations. 3) It is a predictive equation of state because it uses a database of values of UD determined from NTP Monte Carlo simulations. 4) It can readily account for differences in molecular size and shape. 5) It has been successfully applied to non-electrolyte mixtures as well as weak and strong aqueous electrolyte mixtures over wide ranges of temperature, pressure and composition to predict liquid density and phase equilibrium with up to four phases. 6) It has been extensively validated with experimental data. 7) The AAD% error between predicted and experimental liquid density is 1% while the AAD% error in phase equilibrium predictions is 2.5%. 8) It has been used successfully within the subsurface flow simulation program FEHM. In this work we describe recent extensions of the multi-scale predictive GHC equation to modeling the phase densities and equilibrium behavior of hexagonal ice and gas hydrates. In particular, we show that radial distribution functions, which can be determined by NTP Monte Carlo simulations, can be used to establish correct standard state fugacities of 1h ice and gas hydrates. From this, it is straightforward to determine both the phase density of ice or gas hydrates as well as any equilibrium involving ice and/or hydrate phases. A number of numerical results for mixtures of N2, O2, CH4, CO2, water, and NaCl in permafrost conditions are presented to illustrate the predictive capabilities of the multi-scale GHC equation. In particular, we show that the GHC equation correctly predicts 1) The density of 1h ice and methane hydrate to within 1%. 2) The melting curve for hexagonal ice. 3) The hydrate-gas phase co-existence curve. 4) Various phase equilibrium involving ice and hydrate phases. We also show that the GHC equation approach can be readily incorporated into subsurface flow simulation programs like FEHM to predict the behavior of permafrost and other reservoirs where ice and/or hydrates are present. Many geometric illustrations are used to elucidate key concepts. References A. Lucia, A Multi-Scale Gibbs Helmholtz Constrained Cubic Equation of State. J. Thermodynamics: Special Issue on Advances in Gas Hydrate Thermodynamics and Transport Properties. Available on-line [doi:10.1155/2010/238365]. A. Lucia, B.M. Bonk, A. Roy and R.R. Waterman, A Multi-Scale Framework for Multi-Phase Equilibrium Flash. Comput. Chem. Engng. In press.

  13. Multiscale approach for the construction of equilibrated all-atom models of a poly(ethylene glycol)-based hydrogel

    PubMed Central

    Li, Xianfeng; Murthy, N. Sanjeeva; Becker, Matthew L.; Latour, Robert A.

    2016-01-01

    A multiscale modeling approach is presented for the efficient construction of an equilibrated all-atom model of a cross-linked poly(ethylene glycol) (PEG)-based hydrogel using the all-atom polymer consistent force field (PCFF). The final equilibrated all-atom model was built with a systematic simulation toolset consisting of three consecutive parts: (1) building a global cross-linked PEG-chain network at experimentally determined cross-link density using an on-lattice Monte Carlo method based on the bond fluctuation model, (2) recovering the local molecular structure of the network by transitioning from the lattice model to an off-lattice coarse-grained (CG) model parameterized from PCFF, followed by equilibration using high performance molecular dynamics methods, and (3) recovering the atomistic structure of the network by reverse mapping from the equilibrated CG structure, hydrating the structure with explicitly represented water, followed by final equilibration using PCFF parameterization. The developed three-stage modeling approach has application to a wide range of other complex macromolecular hydrogel systems, including the integration of peptide, protein, and/or drug molecules as side-chains within the hydrogel network for the incorporation of bioactivity for tissue engineering, regenerative medicine, and drug delivery applications. PMID:27013229

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacón, L., E-mail: chacon@lanl.gov; Chen, G.; Knoll, D.A.

    We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLOmore » approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.« less

  15. A multiscale computational approach to dissect early events in the Erb family receptor mediated activation, differential signaling, and relevance to oncogenic transformations.

    PubMed

    Liu, Yingting; Purvis, Jeremy; Shih, Andrew; Weinstein, Joshua; Agrawal, Neeraj; Radhakrishnan, Ravi

    2007-06-01

    We describe a hierarchical multiscale computational approach based on molecular dynamics simulations, free energy-based molecular docking simulations, deterministic network-based kinetic modeling, and hybrid discrete/continuum stochastic dynamics protocols to study the dimer-mediated receptor activation characteristics of the Erb family receptors, specifically the epidermal growth factor receptor (EGFR). Through these modeling approaches, we are able to extend the prior modeling of EGF-mediated signal transduction by considering specific EGFR tyrosine kinase (EGFRTK) docking interactions mediated by differential binding and phosphorylation of different C-terminal peptide tyrosines on the RTK tail. By modeling signal flows through branching pathways of the EGFRTK resolved on a molecular basis, we are able to transcribe the effects of molecular alterations in the receptor (e.g., mutant forms of the receptor) to differing kinetic behavior and downstream signaling response. Our molecular dynamics simulations show that the drug sensitizing mutation (L834R) of EGFR stabilizes the active conformation to make the system constitutively active. Docking simulations show preferential characteristics (for wildtype vs. mutant receptors) in inhibitor binding as well as preferential enhancement of phosphorylation of particular substrate tyrosines over others. We find that in comparison to the wildtype system, the L834R mutant RTK preferentially binds the inhibitor erlotinib, as well as preferentially phosphorylates the substrate tyrosine Y1068 but not Y1173. We predict that these molecular level changes result in preferential activation of the Akt signaling pathway in comparison to the Erk signaling pathway for cells with normal EGFR expression. For cells with EGFR over expression, the mutant over activates both Erk and Akt pathways, in comparison to wildtype. These results are consistent with qualitative experimental measurements reported in the literature. We discuss these consequences in light of how the network topology and signaling characteristics of altered (mutant) cell lines are shaped differently in relationship to native cell lines.

  16. Multi-scale gyrokinetic simulation of Alcator C-Mod tokamak discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, N. T., E-mail: nthoward@psfc.mit.edu; White, A. E.; Greenwald, M.

    2014-03-15

    Alcator C-Mod tokamak discharges have been studied with nonlinear gyrokinetic simulation simultaneously spanning both ion and electron spatiotemporal scales. These multi-scale simulations utilized the gyrokinetic model implemented by GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and the approximation of reduced electron mass (μ = (m{sub D}/m{sub e}){sup .5} = 20.0) to qualitatively study a pair of Alcator C-Mod discharges: a low-power discharge, previously demonstrated (using realistic mass, ion-scale simulation) to display an under-prediction of the electron heat flux and a high-power discharge displaying agreement with both ion and electron heat flux channels [N. T. Howard et al.,more » Nucl. Fusion 53, 123011 (2013)]. These multi-scale simulations demonstrate the importance of electron-scale turbulence in the core of conventional tokamak discharges and suggest it is a viable candidate for explaining the observed under-prediction of electron heat flux. In this paper, we investigate the coupling of turbulence at the ion (k{sub θ}ρ{sub s}∼O(1.0)) and electron (k{sub θ}ρ{sub e}∼O(1.0)) scales for experimental plasma conditions both exhibiting strong (high-power) and marginally stable (low-power) low-k (k{sub θ}ρ{sub s} < 1.0) turbulence. It is found that reduced mass simulation of the plasma exhibiting marginally stable low-k turbulence fails to provide even qualitative insight into the turbulence present in the realistic plasma conditions. In contrast, multi-scale simulation of the plasma condition exhibiting strong turbulence provides valuable insight into the coupling of the ion and electron scales.« less

  17. Three-dimensional multi-scale model of deformable platelets adhesion to vessel wall in blood flow

    PubMed Central

    Wu, Ziheng; Xu, Zhiliang; Kim, Oleg; Alber, Mark

    2014-01-01

    When a blood vessel ruptures or gets inflamed, the human body responds by rapidly forming a clot to restrict the loss of blood. Platelets aggregation at the injury site of the blood vessel occurring via platelet–platelet adhesion, tethering and rolling on the injured endothelium is a critical initial step in blood clot formation. A novel three-dimensional multi-scale model is introduced and used in this paper to simulate receptor-mediated adhesion of deformable platelets at the site of vascular injury under different shear rates of blood flow. The novelty of the model is based on a new approach of coupling submodels at three biological scales crucial for the early clot formation: novel hybrid cell membrane submodel to represent physiological elastic properties of a platelet, stochastic receptor–ligand binding submodel to describe cell adhesion kinetics and lattice Boltzmann submodel for simulating blood flow. The model implementation on the GPU cluster significantly improved simulation performance. Predictive model simulations revealed that platelet deformation, interactions between platelets in the vicinity of the vessel wall as well as the number of functional GPIbα platelet receptors played significant roles in platelet adhesion to the injury site. Variation of the number of functional GPIbα platelet receptors as well as changes of platelet stiffness can represent effects of specific drugs reducing or enhancing platelet activity. Therefore, predictive simulations can improve the search for new drug targets and help to make treatment of thrombosis patient-specific. PMID:24982253

  18. Multiscale Mechanics of Articular Cartilage: Potentials and Challenges of Coupling Musculoskeletal, Joint, and Microscale Computational Models

    PubMed Central

    Halloran, J. P.; Sibole, S.; van Donkelaar, C. C.; van Turnhout, M. C.; Oomens, C. W. J.; Weiss, J. A.; Guilak, F.; Erdemir, A.

    2012-01-01

    Articular cartilage experiences significant mechanical loads during daily activities. Healthy cartilage provides the capacity for load bearing and regulates the mechanobiological processes for tissue development, maintenance, and repair. Experimental studies at multiple scales have provided a fundamental understanding of macroscopic mechanical function, evaluation of the micromechanical environment of chondrocytes, and the foundations for mechanobiological response. In addition, computational models of cartilage have offered a concise description of experimental data at many spatial levels under healthy and diseased conditions, and have served to generate hypotheses for the mechanical and biological function. Further, modeling and simulation provides a platform for predictive risk assessment, management of dysfunction, as well as a means to relate multiple spatial scales. Simulation-based investigation of cartilage comes with many challenges including both the computational burden and often insufficient availability of data for model development and validation. This review outlines recent modeling and simulation approaches to understand cartilage function from a mechanical systems perspective, and illustrates pathways to associate mechanics with biological function. Computational representations at single scales are provided from the body down to the microstructure, along with attempts to explore multiscale mechanisms of load sharing that dictate the mechanical environment of the cartilage and chondrocytes. PMID:22648577

  19. A Unified Multi-scale Model for Cross-Scale Evaluation and Integration of Hydrological and Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Liu, C.; Yang, X.; Bailey, V. L.; Bond-Lamberty, B. P.; Hinkle, C.

    2013-12-01

    Mathematical representations of hydrological and biogeochemical processes in soil, plant, aquatic, and atmospheric systems vary with scale. Process-rich models are typically used to describe hydrological and biogeochemical processes at the pore and small scales, while empirical, correlation approaches are often used at the watershed and regional scales. A major challenge for multi-scale modeling is that water flow, biogeochemical processes, and reactive transport are described using different physical laws and/or expressions at the different scales. For example, the flow is governed by the Navier-Stokes equations at the pore-scale in soils, by the Darcy law in soil columns and aquifer, and by the Navier-Stokes equations again in open water bodies (ponds, lake, river) and atmosphere surface layer. This research explores whether the physical laws at the different scales and in different physical domains can be unified to form a unified multi-scale model (UMSM) to systematically investigate the cross-scale, cross-domain behavior of fundamental processes at different scales. This presentation will discuss our research on the concept, mathematical equations, and numerical execution of the UMSM. Three-dimensional, multi-scale hydrological processes at the Disney Wilderness Preservation (DWP) site, Florida will be used as an example for demonstrating the application of the UMSM. In this research, the UMSM was used to simulate hydrological processes in rooting zones at the pore and small scales including water migration in soils under saturated and unsaturated conditions, root-induced hydrological redistribution, and role of rooting zone biogeochemical properties (e.g., root exudates and microbial mucilage) on water storage and wetting/draining. The small scale simulation results were used to estimate effective water retention properties in soil columns that were superimposed on the bulk soil water retention properties at the DWP site. The UMSM parameterized from smaller scale simulations were then used to simulate coupled flow and moisture migration in soils in saturated and unsaturated zones, surface and groundwater exchange, and surface water flow in streams and lakes at the DWP site under dynamic precipitation conditions. Laboratory measurements of soil hydrological and biogeochemical properties are used to parameterize the UMSM at the small scales, and field measurements are used to evaluate the UMSM.

  20. Parallelization of fine-scale computation in Agile Multiscale Modelling Methodology

    NASA Astrophysics Data System (ADS)

    Macioł, Piotr; Michalik, Kazimierz

    2016-10-01

    Nowadays, multiscale modelling of material behavior is an extensively developed area. An important obstacle against its wide application is high computational demands. Among others, the parallelization of multiscale computations is a promising solution. Heterogeneous multiscale models are good candidates for parallelization, since communication between sub-models is limited. In this paper, the possibility of parallelization of multiscale models based on Agile Multiscale Methodology framework is discussed. A sequential, FEM based macroscopic model has been combined with concurrently computed fine-scale models, employing a MatCalc thermodynamic simulator. The main issues, being investigated in this work are: (i) the speed-up of multiscale models with special focus on fine-scale computations and (ii) on decreasing the quality of computations enforced by parallel execution. Speed-up has been evaluated on the basis of Amdahl's law equations. The problem of `delay error', rising from the parallel execution of fine scale sub-models, controlled by the sequential macroscopic sub-model is discussed. Some technical aspects of combining third-party commercial modelling software with an in-house multiscale framework and a MPI library are also discussed.

  1. A Computational Cluster for Multiscale Simulations of Ionic Liquids

    DTIC Science & Technology

    2008-09-16

    AND SUBTITLE DURIP: A Computational Cluster for Multiscale Simulations of Ionic Liquids 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA955007-1-0512 5c...AVAILABILITY STATEMENT ZO\\5oc\\\\%1>^ 13. SUPPLEMENTARY NOTES 14. ABSTRACT The focus of this project was to acquire and use computer cluster nodes...by ANSI Std. Z39.18 Adobe Professional 7.0 Comprehensive Final Report: Gregory A. Voth, PI Contract/Grant Title: DURIP: A Computational Cluster for

  2. Hybrid Parallelization of Adaptive MHD-Kinetic Module in Multi-Scale Fluid-Kinetic Simulation Suite

    DOE PAGES

    Borovikov, Sergey; Heerikhuisen, Jacob; Pogorelov, Nikolai

    2013-04-01

    The Multi-Scale Fluid-Kinetic Simulation Suite has a computational tool set for solving partially ionized flows. In this paper we focus on recent developments of the kinetic module which solves the Boltzmann equation using the Monte-Carlo method. The module has been recently redesigned to utilize intra-node hybrid parallelization. We describe in detail the redesign process, implementation issues, and modifications made to the code. Finally, we conduct a performance analysis.

  3. Multiscale Analysis of Structurally-Graded Microstructures Using Molecular Dynamics, Discrete Dislocation Dynamics and Continuum Crystal Plasticity

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.; Mishin, Yuri

    2014-01-01

    A multiscale modeling methodology is developed for structurally-graded material microstructures. Molecular dynamic (MD) simulations are performed at the nanoscale to determine fundamental failure mechanisms and quantify material constitutive parameters. These parameters are used to calibrate material processes at the mesoscale using discrete dislocation dynamics (DD). Different grain boundary interactions with dislocations are analyzed using DD to predict grain-size dependent stress-strain behavior. These relationships are mapped into crystal plasticity (CP) parameters to develop a computationally efficient finite element-based DD/CP model for continuum-level simulations and complete the multiscale analysis by predicting the behavior of macroscopic physical specimens. The present analysis is focused on simulating the behavior of a graded microstructure in which grain sizes are on the order of nanometers in the exterior region and transition to larger, multi-micron size in the interior domain. This microstructural configuration has been shown to offer improved mechanical properties over homogeneous coarse-grained materials by increasing yield stress while maintaining ductility. Various mesoscopic polycrystal models of structurally-graded microstructures are generated, analyzed and used as a benchmark for comparison between multiscale DD/CP model and DD predictions. A final series of simulations utilize the DD/CP analysis method exclusively to study macroscopic models that cannot be analyzed by MD or DD methods alone due to the model size.

  4. Time irreversibility of financial time series based on higher moments and multiscale Kullback-Leibler divergence

    NASA Astrophysics Data System (ADS)

    Li, Jinyang; Shang, Pengjian

    2018-07-01

    Irreversibility is an important property of time series. In this paper, we propose the higher moments and multiscale Kullback-Leibler divergence to analyze time series irreversibility. The higher moments Kullback-Leibler divergence (HMKLD) can amplify irreversibility and make the irreversibility variation more obvious. Therefore, many time series whose irreversibility is hard to be found are also able to show the variations. We employ simulated data and financial stock data to test and verify this method, and find that HMKLD of stock data is growing in the form of fluctuations. As for multiscale Kullback-Leibler divergence (MKLD), it is very complex in the dynamic system, so that exploring the law of simulation and stock system is difficult. In conventional multiscale entropy method, the coarse-graining process is non-overlapping, however we apply a different coarse-graining process and obtain a surprising discovery. The result shows when the scales are 4 and 5, their entropy is nearly similar, which demonstrates MKLD is efficient to display characteristics of time series irreversibility.

  5. Length scale effects and multiscale modeling of thermally induced phase transformation kinetics in NiTi SMA

    NASA Astrophysics Data System (ADS)

    Frantziskonis, George N.; Gur, Sourav

    2017-06-01

    Thermally induced phase transformation in NiTi shape memory alloys (SMAs) shows strong size and shape, collectively termed length scale effects, at the nano to micrometer scales, and that has important implications for the design and use of devices and structures at such scales. This paper, based on a recently developed multiscale model that utilizes molecular dynamics (MDs) simulations at small scales and MD-verified phase field (PhF) simulations at larger scales, reports results on specific length scale effects, i.e. length scale effects in martensite phase fraction (MPF) evolution, transformation temperatures (martensite and austenite start and finish) and in the thermally cyclic transformation between austenitic and martensitic phase. The multiscale study identifies saturation points for length scale effects and studies, for the first time, the length scale effect on the kinetics (i.e. developed internal strains) in the B19‧ phase during phase transformation. The major part of the work addresses small scale single crystals in specific orientations. However, the multiscale method is used in a unique and novel way to indirectly study length scale and grain size effects on evolution kinetics in polycrystalline NiTi, and to compare the simulation results to experiments. The interplay of the grain size and the length scale effect on the thermally induced MPF evolution is also shown in this present study. Finally, the multiscale coupling results are employed to improve phenomenological material models for NiTi SMA.

  6. A Multi-Scale Method for Dynamics Simulation in Continuum Solvent Models I: Finite-Difference Algorithm for Navier-Stokes Equation.

    PubMed

    Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2014-11-25

    A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design.

  7. Bringing global gyrokinetic turbulence simulations to the transport timescale using a multiscale approach

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey; Lodestro, Lynda; Told, Daniel; Merlo, Gabriele; Ricketson, Lee; Campos, Alejandro; Jenko, Frank; Hittinger, Jeffrey

    2017-10-01

    Predictive whole-device simulation models will play an increasingly important role in ensuring the success of fusion experiments and accelerating the development of fusion energy. In the core of tokamak plasmas, a separation of timescales between turbulence and transport makes a single direct simulation of both processes computationally expensive. We present the first demonstration of a multiple-timescale method coupling global gyrokinetic simulations with a transport solver to calculate the self-consistent, steady-state temperature profile. Initial results are highly encouraging, with the coupling method appearing robust to the difficult problem of turbulent fluctuations. The method holds potential for integrating first-principles turbulence simulations into whole-device models and advancing the understanding of global plasma behavior. Work supported by US DOE under Contract DE-AC52-07NA27344 and the Exascale Computing Project (17-SC-20-SC).

  8. Multi-scale simulation of plant stem reinforcement by brachysclereids: A case study in apple fruit peduncles.

    PubMed

    Horbens, Melanie; Branke, Dominik; Gärtner, Roland; Voigt, Axel; Stenger, Florian; Neinhuis, Christoph

    2015-10-01

    Sclereid formation in addition to or in gaps of fragmented fibre rings is common in dicotyledonous plant stems. Whether this sclereid formation is force-triggered remains open so far. In fruit peduncles of several Malus species as modified plant stems, for example, the persistent fibre ring is displaced to the centre by formation of cortex parenchyma during growth. Parenchyma cells subsequently differentiate into an additional layer of brachysclereids, previously interpreted as an adaptation to continuously rising fruit loads. The present study pursues a multi-scale numerical modelling approach, to verify the important effect for different cellular architectures in both sclerenchyma categories on the stiffness of these tissues and the entire peduncle. First, different material properties are simulated analogue to plant tissues on the basis of three cell types. A regular three-dimensional and a random Voronoi microstructure combined with various mechanical cell wall parameters are applied. Using homogenisation simulations based on HILL's principle, numerical calculations predict a lower effective homogenised tissue stiffness of isodiametric brachysclereids compared to those of fibres, confirming experimentally obtained data from Malus fruit peduncles. Furthermore, a curved peduncle model with a complex arrangement of different material layers is generated. Diverse material sets are tested under three representative loadings, using an adaptive diffuse domain approach (AMDiS). The model explains the function of sclereids as considerable contributors to the stiffness against bending and tensile deformations, as well as torsion, especially in consequence of superimposed load conditions in the case of a curved plant stem. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models

    PubMed Central

    Goodpaster, Jason D.; Weber, Adam Z.

    2017-01-01

    Electrochemical reduction of CO2 using renewable sources of electrical energy holds promise for converting CO2 to fuels and chemicals. Since this process is complex and involves a large number of species and physical phenomena, a comprehensive understanding of the factors controlling product distribution is required. While the most plausible reaction pathway is usually identified from quantum-chemical calculation of the lowest free-energy pathway, this approach can be misleading when coverages of adsorbed species determined for alternative mechanism differ significantly, since elementary reaction rates depend on the product of the rate coefficient and the coverage of species involved in the reaction. Moreover, cathode polarization can influence the kinetics of CO2 reduction. Here, we present a multiscale framework for ab initio simulation of the electrochemical reduction of CO2 over an Ag(110) surface. A continuum model for species transport is combined with a microkinetic model for the cathode reaction dynamics. Free energies of activation for all elementary reactions are determined from density functional theory calculations. Using this approach, three alternative mechanisms for CO2 reduction were examined. The rate-limiting step in each mechanism is **COOH formation at higher negative potentials. However, only via the multiscale simulation was it possible to identify the mechanism that leads to a dependence of the rate of CO formation on the partial pressure of CO2 that is consistent with experiments. Simulations based on this mechanism also describe the dependence of the H2 and CO current densities on cathode voltage that are in strikingly good agreement with experimental observation. PMID:28973926

  10. Multiscale Electrodynamics/Time-Dependent Density Functional Theory Modeling of Coupled Plasmon/Molecule Excitations

    NASA Astrophysics Data System (ADS)

    Lopata, Kenneth; Smith, Holden

    The coupled dynamics of molecular chromophores and plasmons at surface of metal nanostructures are important for a range of processes such as molecular sensing, light harvesting, and near-field photochemistry. Modeling these dynamics from first principles, however, is challenging, as the large system sizes precludes a purely quantum mechanical treatment. In this talk I will present an approach based on propagating the plasmonic currents and fields using electrodynamics (finite-difference time-domain) with each chromophore described using an isolated quantum sub-region embedded in the overall classical background. This approach can be readily parallelized over these quantum regions, which enables large multiscale simulations of tens or hundreds of dyes, each of which is described individually by real-time time-dependent density functional theory. Application to gold nanoparticles coated with malachite green and rhodamine 6G monolayers shows good agreement with experimentally measured coupling spectra, including the polariton peaks, as well as the plasmon and molecular depletions. This research was supported by the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.

  11. Understanding Prairie Fen Hydrology - a Hierarchical Multi-Scale Groundwater Modeling Approach

    NASA Astrophysics Data System (ADS)

    Sampath, P.; Liao, H.; Abbas, H.; Ma, L.; Li, S.

    2012-12-01

    Prairie fens provide critical habitat to more than 50 rare species and significantly contribute to the biodiversity of the upper Great Lakes region. The sustainability of these globally unique ecosystems, however, requires that they be fed by a steady supply of pristine, calcareous groundwater. Understanding the hydrology that supports the existence of such fens is essential in preserving these valuable habitats. This research uses process-based multi-scale groundwater modeling for this purpose. Two fen-sites, MacCready Fen and Ives Road Fen, in Southern Michigan were systematically studied. A hierarchy of nested steady-state models was built for each fen-site to capture the system's dynamics at spatial scales ranging from the regional groundwater-shed to the local fens. The models utilize high-resolution Digital Elevation Models (DEM), National Hydrologic Datasets (NHD), a recently-assembled water-well database, and results from a state-wide groundwater mapping project to represent the complex hydro-geological and stress framework. The modeling system simulates both shallow glacial and deep bedrock aquifers as well as the interaction between surface water and groundwater. Aquifer heterogeneities were explicitly simulated with multi-scale transition probability geo-statistics. A two-way hydraulic head feedback mechanism was set up between the nested models, such that the parent models provided boundary conditions to the child models, and in turn the child models provided local information to the parent models. A hierarchical mass budget analysis was performed to estimate the seepage fluxes at the surface water/groundwater interfaces and to assess the relative importance of the processes at multiple scales that contribute water to the fens. The models were calibrated using observed base-flows at stream gauging stations and/or static water levels at wells. Three-dimensional particle tracking was used to predict the sources of water to the fens. We observed from the multi-scale simulations that the water system that supports the fens is a much larger, more connected, and more complex one than expected. The water in the fen can be traced back to a network of sources, including lakes and wetlands at different elevations, which are connected to a regional mound through a "cascade delivery mechanism". This "master recharge area" is the ultimate source of water not only to the fens in its vicinity, but also for many major rivers and aquifers. The implication of this finding is that prairie fens must be managed as part of a much larger, multi-scale groundwater system and we must consider protection of the shorter and long-term water sources. This will require a fundamental reassessment of our current approach to fen conservation, which is primarily based on protection of individual fens and their immediate surroundings. Clearly, in the future we must plan for conservation of the broad recharge areas and the multiple fen complexes they support.

  12. A Machine Learning Method for the Prediction of Receptor Activation in the Simulation of Synapses

    PubMed Central

    Montes, Jesus; Gomez, Elena; Merchán-Pérez, Angel; DeFelipe, Javier; Peña, Jose-Maria

    2013-01-01

    Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide fundamental tools for exploring various aspects of the synaptic transmission under different conditions. In particular, Monte Carlo methods can track the stochastic movements of neurotransmitter molecules and their interactions with other discrete molecules, the receptors. However, these methods are computationally expensive, even when used with simplified models, preventing their use in large-scale and multi-scale simulations of complex neuronal systems that may involve large numbers of synaptic connections. We have developed a machine-learning based method that can accurately predict relevant aspects of the behavior of synapses, such as the percentage of open synaptic receptors as a function of time since the release of the neurotransmitter, with considerably lower computational cost compared with the conventional Monte Carlo alternative. The method is designed to learn patterns and general principles from a corpus of previously generated Monte Carlo simulations of synapses covering a wide range of structural and functional characteristics. These patterns are later used as a predictive model of the behavior of synapses under different conditions without the need for additional computationally expensive Monte Carlo simulations. This is performed in five stages: data sampling, fold creation, machine learning, validation and curve fitting. The resulting procedure is accurate, automatic, and it is general enough to predict synapse behavior under experimental conditions that are different to the ones it has been trained on. Since our method efficiently reproduces the results that can be obtained with Monte Carlo simulations at a considerably lower computational cost, it is suitable for the simulation of high numbers of synapses and it is therefore an excellent tool for multi-scale simulations. PMID:23894367

  13. Multiscale Poincaré plots for visualizing the structure of heartbeat time series.

    PubMed

    Henriques, Teresa S; Mariani, Sara; Burykin, Anton; Rodrigues, Filipa; Silva, Tiago F; Goldberger, Ary L

    2016-02-09

    Poincaré delay maps are widely used in the analysis of cardiac interbeat interval (RR) dynamics. To facilitate visualization of the structure of these time series, we introduce multiscale Poincaré (MSP) plots. Starting with the original RR time series, the method employs a coarse-graining procedure to create a family of time series, each of which represents the system's dynamics in a different time scale. Next, the Poincaré plots are constructed for the original and the coarse-grained time series. Finally, as an optional adjunct, color can be added to each point to represent its normalized frequency. We illustrate the MSP method on simulated Gaussian white and 1/f noise time series. The MSP plots of 1/f noise time series reveal relative conservation of the phase space area over multiple time scales, while those of white noise show a marked reduction in area. We also show how MSP plots can be used to illustrate the loss of complexity when heartbeat time series from healthy subjects are compared with those from patients with chronic (congestive) heart failure syndrome or with atrial fibrillation. This generalized multiscale approach to Poincaré plots may be useful in visualizing other types of time series.

  14. Evaluation of the Community Multiscale Air Quality (CMAQ) Model Version 5.2

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Pr...

  15. Evaluation of the Community Multi-scale Air Quality Model Version 5.2

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Pr...

  16. Evaluation of the Community Multiscale Air Quality model version 5.1

    EPA Science Inventory

    The Community Multiscale Air Quality model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Atmospheric Modeling and Analysis Division (AMAD) of the U.S. Environment...

  17. Wavelet-based surrogate time series for multiscale simulation of heterogeneous catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savara, Aditya Ashi; Daw, C. Stuart; Xiong, Qingang

    We propose a wavelet-based scheme that encodes the essential dynamics of discrete microscale surface reactions in a form that can be coupled with continuum macroscale flow simulations with high computational efficiency. This makes it possible to simulate the dynamic behavior of reactor-scale heterogeneous catalysis without requiring detailed concurrent simulations at both the surface and continuum scales using different models. Our scheme is based on the application of wavelet-based surrogate time series that encodes the essential temporal and/or spatial fine-scale dynamics at the catalyst surface. The encoded dynamics are then used to generate statistically equivalent, randomized surrogate time series, which canmore » be linked to the continuum scale simulation. As a result, we illustrate an application of this approach using two different kinetic Monte Carlo simulations with different characteristic behaviors typical for heterogeneous chemical reactions.« less

  18. Wavelet-based surrogate time series for multiscale simulation of heterogeneous catalysis

    DOE PAGES

    Savara, Aditya Ashi; Daw, C. Stuart; Xiong, Qingang; ...

    2016-01-28

    We propose a wavelet-based scheme that encodes the essential dynamics of discrete microscale surface reactions in a form that can be coupled with continuum macroscale flow simulations with high computational efficiency. This makes it possible to simulate the dynamic behavior of reactor-scale heterogeneous catalysis without requiring detailed concurrent simulations at both the surface and continuum scales using different models. Our scheme is based on the application of wavelet-based surrogate time series that encodes the essential temporal and/or spatial fine-scale dynamics at the catalyst surface. The encoded dynamics are then used to generate statistically equivalent, randomized surrogate time series, which canmore » be linked to the continuum scale simulation. As a result, we illustrate an application of this approach using two different kinetic Monte Carlo simulations with different characteristic behaviors typical for heterogeneous chemical reactions.« less

  19. Using Multi-scale Dynamic Rupture Models to Improve Ground Motion Estimates: ALCF-2 Early Science Program Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ely, Geoffrey P.

    2013-10-31

    This project uses dynamic rupture simulations to investigate high-frequency seismic energy generation. The relevant phenomena (frictional breakdown, shear heating, effective normal-stress fluctuations, material damage, etc.) controlling rupture are strongly interacting and span many orders of magnitude in spatial scale, requiring highresolution simulations that couple disparate physical processes (e.g., elastodynamics, thermal weakening, pore-fluid transport, and heat conduction). Compounding the computational challenge, we know that natural faults are not planar, but instead have roughness that can be approximated by power laws potentially leading to large, multiscale fluctuations in normal stress. The capacity to perform 3D rupture simulations that couple these processes willmore » provide guidance for constructing appropriate source models for high-frequency ground motion simulations. The improved rupture models from our multi-scale dynamic rupture simulations will be used to conduct physicsbased (3D waveform modeling-based) probabilistic seismic hazard analysis (PSHA) for California. These calculation will provide numerous important seismic hazard results, including a state-wide extended earthquake rupture forecast with rupture variations for all significant events, a synthetic seismogram catalog for thousands of scenario events and more than 5000 physics-based seismic hazard curves for California.« less

  20. Prediction of Thermal Transport Properties of Materials with Microstructural Complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Youping

    This project aims at overcoming the major obstacle standing in the way of progress in dynamic multiscale simulation, which is the lack of a concurrent atomistic-continuum method that allows phonons, heat and defects to pass through the atomistic-continuum interface. The research has led to the development of a concurrent atomistic-continuum (CAC) methodology for multiscale simulations of materials microstructural, mechanical and thermal transport behavior. Its efficacy has been tested and demonstrated through simulations of dislocation dynamics and phonon transport coupled with microstructural evolution in a variety of materials and through providing visual evidences of the nature of phonon transport, such asmore » showing the propagation of heat pulses in single and polycrystalline solids is partially ballistic and partially diffusive. In addition to providing understanding on phonon scattering with phase interface and with grain boundaries, the research has contributed a multiscale simulation tool for understanding of the behavior of complex materials and has demonstrated the capability of the tool in simulating the dynamic, in situ experimental studies of nonequilibrium transient transport processes in material samples that are at length scales typically inaccessible by atomistically resolved methods.« less

  1. Asymptotic-Preserving methods and multiscale models for plasma physics

    NASA Astrophysics Data System (ADS)

    Degond, Pierre; Deluzet, Fabrice

    2017-05-01

    The purpose of the present paper is to provide an overview of Asymptotic-Preserving methods for multiscale plasma simulations by addressing three singular perturbation problems. First, the quasi-neutral limit of fluid and kinetic models is investigated in the framework of non-magnetized as well as magnetized plasmas. Second, the drift limit for fluid descriptions of thermal plasmas under large magnetic fields is addressed. Finally efficient numerical resolutions of anisotropic elliptic or diffusion equations arising in magnetized plasma simulation are reviewed.

  2. Tracking Virus Particles in Fluorescence Microscopy Images Using Multi-Scale Detection and Multi-Frame Association.

    PubMed

    Jaiswal, Astha; Godinez, William J; Eils, Roland; Lehmann, Maik Jorg; Rohr, Karl

    2015-11-01

    Automatic fluorescent particle tracking is an essential task to study the dynamics of a large number of biological structures at a sub-cellular level. We have developed a probabilistic particle tracking approach based on multi-scale detection and two-step multi-frame association. The multi-scale detection scheme allows coping with particles in close proximity. For finding associations, we have developed a two-step multi-frame algorithm, which is based on a temporally semiglobal formulation as well as spatially local and global optimization. In the first step, reliable associations are determined for each particle individually in local neighborhoods. In the second step, the global spatial information over multiple frames is exploited jointly to determine optimal associations. The multi-scale detection scheme and the multi-frame association finding algorithm have been combined with a probabilistic tracking approach based on the Kalman filter. We have successfully applied our probabilistic tracking approach to synthetic as well as real microscopy image sequences of virus particles and quantified the performance. We found that the proposed approach outperforms previous approaches.

  3. Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator.

    PubMed

    Hahne, Jan; Dahmen, David; Schuecker, Jannis; Frommer, Andreas; Bolten, Matthias; Helias, Moritz; Diesmann, Markus

    2017-01-01

    Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.

  4. Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator

    PubMed Central

    Hahne, Jan; Dahmen, David; Schuecker, Jannis; Frommer, Andreas; Bolten, Matthias; Helias, Moritz; Diesmann, Markus

    2017-01-01

    Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation. PMID:28596730

  5. Multiscale modelling and analysis of collective decision making in swarm robotics.

    PubMed

    Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey

    2014-01-01

    We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable.

  6. Evaluation of the Community Multi-scale Air Quality (CMAQ) Model Version 5.1

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Pr...

  7. Overview and Evaluation of the Community Multiscale Air Quality Model Version 5.2

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Pr...

  8. Evaluation of the Community Multi-scale Air Quality (CMAQ) Model Version 5.2

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Pr...

  9. Extending the Community Multiscale Air Quality (CMAQ) Modeling System to Hemispheric Scales: Overview of Process Considerations and Initial Applications

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modeled processes were examined and enhanced to suitably represent the extended space and timesca...

  10. Differential Geometry Based Multiscale Models

    PubMed Central

    Wei, Guo-Wei

    2010-01-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that are coupled to generalized Navier–Stokes equations for fluid dynamics, Newton's equation for molecular dynamics, and potential and surface driving geometric flows for the micro-macro interface. For excessively large aqueous macromolecular complexes in chemistry and biology, we further develop differential geometry based multiscale fluid-electro-elastic models to replace the expensive molecular dynamics description with an alternative elasticity formulation. PMID:20169418

  11. Toward economic flood loss characterization via hazard simulation

    NASA Astrophysics Data System (ADS)

    Czajkowski, Jeffrey; Cunha, Luciana K.; Michel-Kerjan, Erwann; Smith, James A.

    2016-08-01

    Among all natural disasters, floods have historically been the primary cause of human and economic losses around the world. Improving flood risk management requires a multi-scale characterization of the hazard and associated losses—the flood loss footprint. But this is typically not available in a precise and timely manner, yet. To overcome this challenge, we propose a novel and multidisciplinary approach which relies on a computationally efficient hydrological model that simulates streamflow for scales ranging from small creeks to large rivers. We adopt a normalized index, the flood peak ratio (FPR), to characterize flood magnitude across multiple spatial scales. The simulated FPR is then shown to be a key statistical driver for associated economic flood losses represented by the number of insurance claims. Importantly, because it is based on a simulation procedure that utilizes generally readily available physically-based data, our flood simulation approach has the potential to be broadly utilized, even for ungauged and poorly gauged basins, thus providing the necessary information for public and private sector actors to effectively reduce flood losses and save lives.

  12. A multiscale method for modeling high-aspect-ratio micro/nano flows

    NASA Astrophysics Data System (ADS)

    Lockerby, Duncan; Borg, Matthew; Reese, Jason

    2012-11-01

    In this paper we present a new multiscale scheme for simulating micro/nano flows of high aspect ratio in the flow direction, e.g. within long ducts, tubes, or channels, of varying section. The scheme consists of applying a simple hydrodynamic description over the entire domain, and allocating micro sub-domains in very small ``slices'' of the channel. Every micro element is a molecular dynamics simulation (or other appropriate model, e.g., a direct simulation Monte Carlo method for micro-channel gas flows) over the local height of the channel/tube. The number of micro elements as well as their streamwise position is chosen to resolve the geometrical features of the macro channel. While there is no direct communication between individual micro elements, coupling occurs via an iterative imposition of mass and momentum-flux conservation on the macro scale. The greater the streamwise scale of the geometry, the more significant is the computational speed-up when compared to a full MD simulation. We test our new multiscale method on the case of a converging/diverging nanochannel conveying a simple Lennard-Jones liquid. We validate the results from our simulations by comparing them to a full MD simulation of the same test case. Supported by EPSRC Programme Grant, EP/I011927/1.

  13. Adaptive Multiscale Modeling of Geochemical Impacts on Fracture Evolution

    NASA Astrophysics Data System (ADS)

    Molins, S.; Trebotich, D.; Steefel, C. I.; Deng, H.

    2016-12-01

    Understanding fracture evolution is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, and geothermal energy extraction. Geochemical processes in particular play a significant role in the evolution of fractures through dissolution-driven widening, fines migration, and/or fracture sealing due to precipitation. One obstacle to understanding and exploiting geochemical fracture evolution is that it is a multiscale process. However, current geochemical modeling of fractures cannot capture this multi-scale nature of geochemical and mechanical impacts on fracture evolution, and is limited to either a continuum or pore-scale representation. Conventional continuum-scale models treat fractures as preferential flow paths, with their permeability evolving as a function (often, a cubic law) of the fracture aperture. This approach has the limitation that it oversimplifies flow within the fracture in its omission of pore scale effects while also assuming well-mixed conditions. More recently, pore-scale models along with advanced characterization techniques have allowed for accurate simulations of flow and reactive transport within the pore space (Molins et al., 2014, 2015). However, these models, even with high performance computing, are currently limited in their ability to treat tractable domain sizes (Steefel et al., 2013). Thus, there is a critical need to develop an adaptive modeling capability that can account for separate properties and processes, emergent and otherwise, in the fracture and the rock matrix at different spatial scales. Here we present an adaptive modeling capability that treats geochemical impacts on fracture evolution within a single multiscale framework. Model development makes use of the high performance simulation capability, Chombo-Crunch, leveraged by high resolution characterization and experiments. The modeling framework is based on the adaptive capability in Chombo which not only enables mesh refinement, but also refinement of the model-pore scale or continuum Darcy scale-in a dynamic way such that the appropriate model is used only when and where it is needed. Explicit flux matching provides coupling betwen the scales.

  14. Adaptation of a Fast Optimal Interpolation Algorithm to the Mapping of Oceangraphic Data

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris; Fieguth, Paul; Wunsch, Carl; Willsky, Alan

    1997-01-01

    A fast, recently developed, multiscale optimal interpolation algorithm has been adapted to the mapping of hydrographic and other oceanographic data. This algorithm produces solution and error estimates which are consistent with those obtained from exact least squares methods, but at a small fraction of the computational cost. Problems whose solution would be completely impractical using exact least squares, that is, problems with tens or hundreds of thousands of measurements and estimation grid points, can easily be solved on a small workstation using the multiscale algorithm. In contrast to methods previously proposed for solving large least squares problems, our approach provides estimation error statistics while permitting long-range correlations, using all measurements, and permitting arbitrary measurement locations. The multiscale algorithm itself, published elsewhere, is not the focus of this paper. However, the algorithm requires statistical models having a very particular multiscale structure; it is the development of a class of multiscale statistical models, appropriate for oceanographic mapping problems, with which we concern ourselves in this paper. The approach is illustrated by mapping temperature in the northeastern Pacific. The number of hydrographic stations is kept deliberately small to show that multiscale and exact least squares results are comparable. A portion of the data were not used in the analysis; these data serve to test the multiscale estimates. A major advantage of the present approach is the ability to repeat the estimation procedure a large number of times for sensitivity studies, parameter estimation, and model testing. We have made available by anonymous Ftp a set of MATLAB-callable routines which implement the multiscale algorithm and the statistical models developed in this paper.

  15. Reaction-diffusion basis of retroviral infectivity

    NASA Astrophysics Data System (ADS)

    Sadiq, S. Kashif

    2016-11-01

    Retrovirus particle (virion) infectivity requires diffusion and clustering of multiple transmembrane envelope proteins (Env3) on the virion exterior, yet is triggered by protease-dependent degradation of a partially occluding, membrane-bound Gag polyprotein lattice on the virion interior. The physical mechanism underlying such coupling is unclear and only indirectly accessible via experiment. Modelling stands to provide insight but the required spatio-temporal range far exceeds current accessibility by all-atom or even coarse-grained molecular dynamics simulations. Nor do such approaches account for chemical reactions, while conversely, reaction kinetics approaches handle neither diffusion nor clustering. Here, a recently developed multiscale approach is considered that applies an ultra-coarse-graining scheme to treat entire proteins at near-single particle resolution, but which also couples chemical reactions with diffusion and interactions. A model is developed of Env3 molecules embedded in a truncated Gag lattice composed of membrane-bound matrix proteins linked to capsid subunits, with freely diffusing protease molecules. Simulations suggest that in the presence of Gag but in the absence of lateral lattice-forming interactions, Env3 diffuses comparably to Gag-absent Env3. Initial immobility of Env3 is conferred through lateral caging by matrix trimers vertically coupled to the underlying hexameric capsid layer. Gag cleavage by protease vertically decouples the matrix and capsid layers, induces both matrix and Env3 diffusion, and permits Env3 clustering. Spreading across the entire membrane surface reduces crowding, in turn, enhancing the effect and promoting infectivity. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  16. Software Integration in Multi-scale Simulations: the PUPIL System

    NASA Astrophysics Data System (ADS)

    Torras, J.; Deumens, E.; Trickey, S. B.

    2006-10-01

    The state of the art for computational tools in both computational chemistry and computational materials physics includes many algorithms and functionalities which are implemented again and again. Several projects aim to reduce, eliminate, or avoid this problem. Most such efforts seem to be focused within a particular specialty, either quantum chemistry or materials physics. Multi-scale simulations, by their very nature however, cannot respect that specialization. In simulation of fracture, for example, the energy gradients that drive the molecular dynamics (MD) come from a quantum mechanical treatment that most often derives from quantum chemistry. That “QM” region is linked to a surrounding “CM” region in which potentials yield the forces. The approach therefore requires the integration or at least inter-operation of quantum chemistry and materials physics algorithms. The same problem occurs in “QM/MM” simulations in computational biology. The challenge grows if pattern recognition or other analysis codes of some kind must be used as well. The most common mode of inter-operation is user intervention: codes are modified as needed and data files are managed “by hand” by the user (interactively and via shell scripts). User intervention is however inefficient by nature, difficult to transfer to the community, and prone to error. Some progress (e.g Sethna’s work at Cornell [C.R. Myers et al., Mat. Res. Soc. Symp. Proc., 538(1999) 509, C.-S. Chen et al., Poster presented at the Material Research Society Meeting (2000)]) has been made on using Python scripts to achieve a more efficient level of interoperation. In this communication we present an alternative approach to merging current working packages without the necessity of major recoding and with only a relatively light wrapper interface. The scheme supports communication among the different components required for a given multi-scale calculation and access to the functionalities of those components for the potential user. A general main program allows the management of every package with a special communication protocol between their interfaces following the directives introduced by the user which are stored in an XML structured file. The initial prototype of the PUPIL (Program for User Packages Interfacing and Linking) system has been done using Java as a fast, easy prototyping object oriented (OO) language. In order to test it, we have applied this prototype to a previously studied problem, the fracture of a silica nanorod. We did so joining two different packages to do a QM/MD calculation. The results show the potential for this software system to do different kind of simulations and its simplicity of maintenance.

  17. Multiscale modeling for SiO2 atomic layer deposition for high-aspect-ratio hole patterns

    NASA Astrophysics Data System (ADS)

    Miyano, Yumiko; Narasaki, Ryota; Ichikawa, Takashi; Fukumoto, Atsushi; Aiso, Fumiki; Tamaoki, Naoki

    2018-06-01

    A multiscale simulation model is developed for optimizing the parameters of SiO2 plasma-enhanced atomic layer deposition of high-aspect-ratio hole patterns in three-dimensional (3D) stacked memory. This model takes into account the diffusion of a precursor in a reactor, that in holes, and the adsorption onto the wafer. It is found that the change in the aperture ratio of the holes on the wafer affects the concentration of the precursor near the top of the wafer surface, hence the deposition profile in the hole. The simulation results reproduced well the experimental results of the deposition thickness for the various hole aperture ratios. By this multiscale simulation, we can predict the deposition profile in a high-aspect-ratio hole pattern in 3D stacked memory. The atomic layer deposition parameters for conformal deposition such as precursor feeding time and partial pressure of precursor for wafers with various hole aperture ratios can be estimated.

  18. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.

    PubMed

    Shen, Lin; Wu, Jingheng; Yang, Weitao

    2016-10-11

    Molecular dynamics simulation with multiscale quantum mechanics/molecular mechanics (QM/MM) methods is a very powerful tool for understanding the mechanism of chemical and biological processes in solution or enzymes. However, its computational cost can be too high for many biochemical systems because of the large number of ab initio QM calculations. Semiempirical QM/MM simulations have much higher efficiency. Its accuracy can be improved with a correction to reach the ab initio QM/MM level. The computational cost on the ab initio calculation for the correction determines the efficiency. In this paper we developed a neural network method for QM/MM calculation as an extension of the neural-network representation reported by Behler and Parrinello. With this approach, the potential energy of any configuration along the reaction path for a given QM/MM system can be predicted at the ab initio QM/MM level based on the semiempirical QM/MM simulations. We further applied this method to three reactions in water to calculate the free energy changes. The free-energy profile obtained from the semiempirical QM/MM simulation is corrected to the ab initio QM/MM level with the potential energies predicted with the constructed neural network. The results are in excellent accordance with the reference data that are obtained from the ab initio QM/MM molecular dynamics simulation or corrected with direct ab initio QM/MM potential energies. Compared with the correction using direct ab initio QM/MM potential energies, our method shows a speed-up of 1 or 2 orders of magnitude. It demonstrates that the neural network method combined with the semiempirical QM/MM calculation can be an efficient and reliable strategy for chemical reaction simulations.

  19. Passivation of Black Phosphorus via Self-Assembled Organic Monolayers by van der Waals Epitaxy.

    PubMed

    Zhao, Yinghe; Zhou, Qionghua; Li, Qiang; Yao, Xiaojing; Wang, Jinlan

    2017-02-01

    An effective passivation approach to protect black phosphorus (BP) from degradation based on multi-scale simulations is proposed. The self-assembly of perylene-3,4,9,10-tetracarboxylic dianhydride monolayers via van der Waals epitaxy on BP does not break the original electronic properties of BP. The passivation layer thickness is only 2 nm. This study opens up a new pathway toward fine passivation of BP. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Predictive Multiscale Modeling of Nanocellulose Based Materials and Systems

    NASA Astrophysics Data System (ADS)

    Kovalenko, Andriy

    2014-08-01

    Cellulose Nanocrysals (CNC) is a renewable biodegradable biopolymer with outstanding mechanical properties made from highly abundant natural source, and therefore is very attractive as reinforcing additive to replace petroleum-based plastics in biocomposite materials, foams, and gels. Large-scale applications of CNC are currently limited due to its low solubility in non-polar organic solvents used in existing polymerization technologies. The solvation properties of CNC can be improved by chemical modification of its surface. Development of effective surface modifications has been rather slow because extensive chemical modifications destabilize the hydrogen bonding network of cellulose and deteriorate the mechanical properties of CNC. We employ predictive multiscale theory, modeling, and simulation to gain a fundamental insight into the effect of CNC surface modifications on hydrogen bonding, CNC crystallinity, solvation thermodynamics, and CNC compatibilization with the existing polymerization technologies, so as to rationally design green nanomaterials with improved solubility in non-polar solvents, controlled liquid crystal ordering and optimized extrusion properties. An essential part of this multiscale modeling approach is the statistical- mechanical 3D-RISM-KH molecular theory of solvation, coupled with quantum mechanics, molecular mechanics, and multistep molecular dynamics simulation. The 3D-RISM-KH theory provides predictive modeling of both polar and non-polar solvents, solvent mixtures, and electrolyte solutions in a wide range of concentrations and thermodynamic states. It properly accounts for effective interactions in solution such as steric effects, hydrophobicity and hydrophilicity, hydrogen bonding, salt bridges, buffer, co-solvent, and successfully predicts solvation effects and processes in bulk liquids, solvation layers at solid surface, and in pockets and other inner spaces of macromolecules and supramolecular assemblies. This methodology enables rational design of CNC-based bionanocomposite materials and systems. Furthermore, the 3D-RISM-KH based multiscale modeling addresses the effect of hemicellulose and lignin composition on nanoscale forces that control cell wall strength towards overcoming plant biomass recalcitrance. It reveals molecular forces maintaining the cell wall structure and provides directions for genetic modulation of plants and pretreatment design to render biomass more amenable to processing. We envision integrated biomass valorization based on extracting and decomposing the non-cellulosic components to low molecular weight chemicals and utilizing the cellulose microfibrils to make CNC. This is an important alternative to approaches of full conversion of lignocellulose to biofuels that face challenges arising from the deleterious impact of cellulose crystallinity on enzymatic processing.

  1. Blood Flow: Multi-scale Modeling and Visualization (July 2011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-01-01

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations. This animation presents early results of two studies used in the development of a multi-scale visualization methodology. The fisrt illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each bloodmore » cell is represented by a mesh, small spheres show a sub-set of particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. In the second we investigate the process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of an aneruysm. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.« less

  2. Anisotropic constitutive model incorporating multiple damage mechanisms for multiscale simulation of dental enamel.

    PubMed

    Ma, Songyun; Scheider, Ingo; Bargmann, Swantje

    2016-09-01

    An anisotropic constitutive model is proposed in the framework of finite deformation to capture several damage mechanisms occurring in the microstructure of dental enamel, a hierarchical bio-composite. It provides the basis for a homogenization approach for an efficient multiscale (in this case: multiple hierarchy levels) investigation of the deformation and damage behavior. The influence of tension-compression asymmetry and fiber-matrix interaction on the nonlinear deformation behavior of dental enamel is studied by 3D micromechanical simulations under different loading conditions and fiber lengths. The complex deformation behavior and the characteristics and interaction of three damage mechanisms in the damage process of enamel are well captured. The proposed constitutive model incorporating anisotropic damage is applied to the first hierarchical level of dental enamel and validated by experimental results. The effect of the fiber orientation on the damage behavior and compressive strength is studied by comparing micro-pillar experiments of dental enamel at the first hierarchical level in multiple directions of fiber orientation. A very good agreement between computational and experimental results is found for the damage evolution process of dental enamel. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. A variational multiscale method for particle-cloud tracking in turbomachinery flows

    NASA Astrophysics Data System (ADS)

    Corsini, A.; Rispoli, F.; Sheard, A. G.; Takizawa, K.; Tezduyar, T. E.; Venturini, P.

    2014-11-01

    We present a computational method for simulation of particle-laden flows in turbomachinery. The method is based on a stabilized finite element fluid mechanics formulation and a finite element particle-cloud tracking method. We focus on induced-draft fans used in process industries to extract exhaust gases in the form of a two-phase fluid with a dispersed solid phase. The particle-laden flow causes material wear on the fan blades, degrading their aerodynamic performance, and therefore accurate simulation of the flow would be essential in reliable computational turbomachinery analysis and design. The turbulent-flow nature of the problem is dealt with a Reynolds-Averaged Navier-Stokes model and Streamline-Upwind/Petrov-Galerkin/Pressure-Stabilizing/Petrov-Galerkin stabilization, the particle-cloud trajectories are calculated based on the flow field and closure models for the turbulence-particle interaction, and one-way dependence is assumed between the flow field and particle dynamics. We propose a closure model utilizing the scale separation feature of the variational multiscale method, and compare that to the closure utilizing the eddy viscosity model. We present computations for axial- and centrifugal-fan configurations, and compare the computed data to those obtained from experiments, analytical approaches, and other computational methods.

  4. Parameterizing the Morse Potential for Coarse-Grained Modeling of Blood Plasma

    PubMed Central

    Zhang, Na; Zhang, Peng; Kang, Wei; Bluestein, Danny; Deng, Yuefan

    2014-01-01

    Multiscale simulations of fluids such as blood represent a major computational challenge of coupling the disparate spatiotemporal scales between molecular and macroscopic transport phenomena characterizing such complex fluids. In this paper, a coarse-grained (CG) particle model is developed for simulating blood flow by modifying the Morse potential, traditionally used in Molecular Dynamics for modeling vibrating structures. The modified Morse potential is parameterized with effective mass scales for reproducing blood viscous flow properties, including density, pressure, viscosity, compressibility and characteristic flow dynamics of human blood plasma fluid. The parameterization follows a standard inverse-problem approach in which the optimal micro parameters are systematically searched, by gradually decoupling loosely correlated parameter spaces, to match the macro physical quantities of viscous blood flow. The predictions of this particle based multiscale model compare favorably to classic viscous flow solutions such as Counter-Poiseuille and Couette flows. It demonstrates that such coarse grained particle model can be applied to replicate the dynamics of viscous blood flow, with the advantage of bridging the gap between macroscopic flow scales and the cellular scales characterizing blood flow that continuum based models fail to handle adequately. PMID:24910470

  5. Understanding the influence of solvent field and fluctuations on the stability of photo-induced charge-separated state in molecular triad

    NASA Astrophysics Data System (ADS)

    Balamurugan, D.; Aquino, Adelia; Lischka, Hans; Dios, Francis; Flores, Lionel; Cheung, Margaret

    2013-03-01

    Molecular triad composed of fullerene, porphyrin, and carotene is an artificial analogue of natural photosynthetic system and is considered for applications in solar energy conversion because of its ability to produce long-lived photo-induced charge separated state. The goal of the present multiscale simulation is to understand how the stability of photo-induced charge-separated state in molecular triad is influenced by a polar organic solvent, namely tetrahydrofuran (THF). The multiscale approach is based on combined quantum, classical molecular dynamics, and statistical physics calculations. The quantum chemical calculations were performed on the triad using the second order algebraic diagrammatic perturbation and time-dependent density functional theory. Molecular dynamics simulations were performed on triad in a box of THF solvent with the replica exchange method. The two methods on different length and time scales are bridged through an important sampling technique. We have analyzed the free energy landscape, structural fluctuations, and the long- range electrostatic interactions between triad and solvent molecules. The results suggest that the polarity and re-organization of the solvent is critical in stabilization of charge-separated state in triad. Supported by DOE (DE-FG02-10ER16175)

  6. Image-based multi-scale simulation and experimental validation of thermal conductivity of lanthanum zirconate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xingye; Hu, Bin; Wei, Changdong

    Lanthanum zirconate (La2Zr2O7) is a promising candidate material for thermal barrier coating (TBC) applications due to its low thermal conductivity and high-temperature phase stability. In this work, a novel image-based multi-scale simulation framework combining molecular dynamics (MD) and finite element (FE) calculations is proposed to study the thermal conductivity of La2Zr2O7 coatings. Since there is no experimental data of single crystal La2Zr2O7 thermal conductivity, a reverse non-equilibrium molecular dynamics (reverse NEMD) approach is first employed to compute the temperature-dependent thermal conductivity of single crystal La2Zr2O7. The single crystal data is then passed to a FE model which takes into accountmore » of realistic thermal barrier coating microstructures. The predicted thermal conductivities from the FE model are in good agreement with experimental validations using both flash laser technique and pulsed thermal imaging-multilayer analysis. The framework proposed in this work provides a powerful tool for future design of advanced coating systems. (C) 2016 Elsevier Ltd. All rights reserved.« less

  7. A multiscale SPH particle model of the near-wall dynamics of leukocytes in flow.

    PubMed

    Gholami, Babak; Comerford, Andrew; Ellero, Marco

    2014-01-01

    A novel multiscale Lagrangian particle solver based on SPH is developed with the intended application of leukocyte transport in large arteries. In such arteries, the transport of leukocytes and red blood cells can be divided into two distinct regions: the bulk flow and the near-wall region. In the bulk flow, the transport can be modeled on a continuum basis as the transport of passive scalar concentrations. Whereas in the near-wall region, specific particle tracking of the leukocytes is required and lubrication forces need to be separately taken into account. Because of large separation of spatio-temporal scales involved in the problem, simulations of red blood cells and leukocytes are handled separately. In order to take the exchange of leukocytes between the bulk fluid and the near-wall region into account, solutions are communicated through coupling of conserved quantities at the interface between these regions. Because the particle tracking is limited to those leukocytes lying in the near-wall region only, our approach brings considerable speedup to the simulation of leukocyte circulation in a test geometry of a backward-facing step, which encompasses many flow features observed in vivo. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Comparative analysis of ventricular assist devices (POLVAD and POLVAD_EXT) based on multiscale FEM model.

    PubMed

    Milenin, Andrzej; Kopernik, Magdalena

    2011-01-01

    The prosthesis - pulsatory ventricular assist device (VAD) - is made of polyurethane (PU) and biocompatible TiN deposited by pulsed laser deposition (PLD) method. The paper discusses the numerical modelling and computer-aided design of such an artificial organ. Two types of VADs: POLVAD and POLVAD_EXT are investigated. The main tasks and assumptions of the computer program developed are presented. The multiscale model of VAD based on finite element method (FEM) is introduced and the analysis of the stress-strain state in macroscale for the blood chamber in both versions of VAD is shown, as well as the verification of the results calculated by applying ABAQUS, a commercial FEM code. The FEM code developed is based on a new approach to the simulation of multilayer materials obtained by using PLD method. The model in microscale includes two components, i.e., model of initial stresses (residual stress) caused by the deposition process and simulation of active loadings observed in the blood chamber of POLVAD and POLVAD_EXT. The computed distributions of stresses and strains in macro- and microscales are helpful in defining precisely the regions of blood chamber, which can be defined as the failure-source areas.

  9. A Multi-Scale Method for Dynamics Simulation in Continuum Solvent Models I: Finite-Difference Algorithm for Navier-Stokes Equation

    PubMed Central

    Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2014-01-01

    A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design. PMID:25404761

  10. A Multiscale Approach to Modelling Drug Metabolism by Membrane-Bound Cytochrome P450 Enzymes

    PubMed Central

    Sansom, Mark S. P.; Mulholland, Adrian J.

    2014-01-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes. PMID:25033460

  11. A multiscale approach to modelling drug metabolism by membrane-bound cytochrome P450 enzymes.

    PubMed

    Lonsdale, Richard; Rouse, Sarah L; Sansom, Mark S P; Mulholland, Adrian J

    2014-07-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes.

  12. A normal mode-based geometric simulation approach for exploring biologically relevant conformational transitions in proteins.

    PubMed

    Ahmed, Aqeel; Rippmann, Friedrich; Barnickel, Gerhard; Gohlke, Holger

    2011-07-25

    A three-step approach for multiscale modeling of protein conformational changes is presented that incorporates information about preferred directions of protein motions into a geometric simulation algorithm. The first two steps are based on a rigid cluster normal-mode analysis (RCNMA). Low-frequency normal modes are used in the third step (NMSim) to extend the recently introduced idea of constrained geometric simulations of diffusive motions in proteins by biasing backbone motions of the protein, whereas side-chain motions are biased toward favorable rotamer states. The generated structures are iteratively corrected regarding steric clashes and stereochemical constraint violations. The approach allows performing three simulation types: unbiased exploration of conformational space; pathway generation by a targeted simulation; and radius of gyration-guided simulation. When applied to a data set of proteins with experimentally observed conformational changes, conformational variabilities are reproduced very well for 4 out of 5 proteins that show domain motions, with correlation coefficients r > 0.70 and as high as r = 0.92 in the case of adenylate kinase. In 7 out of 8 cases, NMSim simulations starting from unbound structures are able to sample conformations that are similar (root-mean-square deviation = 1.0-3.1 Å) to ligand bound conformations. An NMSim generated pathway of conformational change of adenylate kinase correctly describes the sequence of domain closing. The NMSim approach is a computationally efficient alternative to molecular dynamics simulations for conformational sampling of proteins. The generated conformations and pathways of conformational transitions can serve as input to docking approaches or as starting points for more sophisticated sampling techniques.

  13. Spectral solver for multi-scale plasma physics simulations with dynamically adaptive number of moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vencels, Juris; Delzanno, Gian Luca; Johnson, Alec

    2015-06-01

    A spectral method for kinetic plasma simulations based on the expansion of the velocity distribution function in a variable number of Hermite polynomials is presented. The method is based on a set of non-linear equations that is solved to determine the coefficients of the Hermite expansion satisfying the Vlasov and Poisson equations. In this paper, we first show that this technique combines the fluid and kinetic approaches into one framework. Second, we present an adaptive strategy to increase and decrease the number of Hermite functions dynamically during the simulation. The technique is applied to the Landau damping and two-stream instabilitymore » test problems. Performance results show 21% and 47% saving of total simulation time in the Landau and two-stream instability test cases, respectively.« less

  14. Multiscale decoding for reliable brain-machine interface performance over time.

    PubMed

    Han-Lin Hsieh; Wong, Yan T; Pesaran, Bijan; Shanechi, Maryam M

    2017-07-01

    Recordings from invasive implants can degrade over time, resulting in a loss of spiking activity for some electrodes. For brain-machine interfaces (BMI), such a signal degradation lowers control performance. Achieving reliable performance over time is critical for BMI clinical viability. One approach to improve BMI longevity is to simultaneously use spikes and other recording modalities such as local field potentials (LFP), which are more robust to signal degradation over time. We have developed a multiscale decoder that can simultaneously model the different statistical profiles of multi-scale spike/LFP activity (discrete spikes vs. continuous LFP). This decoder can also run at multiple time-scales (millisecond for spikes vs. tens of milliseconds for LFP). Here, we validate the multiscale decoder for estimating the movement of 7 major upper-arm joint angles in a non-human primate (NHP) during a 3D reach-to-grasp task. The multiscale decoder uses motor cortical spike/LFP recordings as its input. We show that the multiscale decoder can improve decoding accuracy by adding information from LFP to spikes, while running at the fast millisecond time-scale of the spiking activity. Moreover, this improvement is achieved using relatively few LFP channels, demonstrating the robustness of the approach. These results suggest that using multiscale decoders has the potential to improve the reliability and longevity of BMIs.

  15. Evaluation of the Community Multiscale Air Quality (CMAQ) modeling system against size-resolved measurements of inorganic particle composition across sites in North America

    EPA Science Inventory

    This work evaluates particle size-composition distributions simulated by the Community Multiscale Air Quality (CMAQ) model using Micro-Orifice Uniform Deposit Impactor (MOUDI) measurements at 18 sites across North America. Size-resolved measurements of particulate SO4<...

  16. Models, Databases, and Simulation Tools Needed for the Realization of Integrated Computational Materials Engineering. Proceedings of the Symposium Held at Materials Science and Technology 2010

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M. (Editor); Wong, Terry T. (Editor)

    2011-01-01

    Topics covered include: An Annotative Review of Multiscale Modeling and its Application to Scales Inherent in the Field of ICME; and A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures.

  17. Multiscale Reactive Molecular Dynamics

    DTIC Science & Technology

    2012-08-15

    biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system ...coupling to slower, cooperative motions of the system . These inherently multiscale problems require computationally efficient and accurate methods to...condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus

  18. Introduction and application of the multiscale coefficient of variation analysis.

    PubMed

    Abney, Drew H; Kello, Christopher T; Balasubramaniam, Ramesh

    2017-10-01

    Quantifying how patterns of behavior relate across multiple levels of measurement typically requires long time series for reliable parameter estimation. We describe a novel analysis that estimates patterns of variability across multiple scales of analysis suitable for time series of short duration. The multiscale coefficient of variation (MSCV) measures the distance between local coefficient of variation estimates within particular time windows and the overall coefficient of variation across all time samples. We first describe the MSCV analysis and provide an example analytical protocol with corresponding MATLAB implementation and code. Next, we present a simulation study testing the new analysis using time series generated by ARFIMA models that span white noise, short-term and long-term correlations. The MSCV analysis was observed to be sensitive to specific parameters of ARFIMA models varying in the type of temporal structure and time series length. We then apply the MSCV analysis to short time series of speech phrases and musical themes to show commonalities in multiscale structure. The simulation and application studies provide evidence that the MSCV analysis can discriminate between time series varying in multiscale structure and length.

  19. Art Advancing Science: Filmmaking Leads to Molecular Insights at the Nanoscale.

    PubMed

    Reilly, Charles; Ingber, Donald E

    2017-12-26

    Many have recognized the potential value of facilitating activities that span the art-science interface for the benefit of society; however, there are few examples that demonstrate how pursuit of an artistic agenda can lead to scientific insights. Here, we describe how we set out to produce an entertaining short film depicting the fertilization of the egg by sperm as a parody of a preview for another Star Wars movie to excite the public about science, but ended up developing a simulation tool for multiscale modeling. To produce an aesthetic that communicates mechanical continuity across spatial scales, we developed custom strategies that integrate physics-based animation software from the entertainment industry with molecular dynamics simulation tools, using experimental data from research publications. Using this approach, we were able to depict biological physicality across multiple spatial scales, from how sperm tails move to collective molecular behavior within the axoneme to how the molecular motor, dynein, produces force at the nanometer scale. The dynein simulations, which were validated by replicating results of past simulations and cryo-electron microscopic studies, also predicted a potential mechanism for how ATP hydrolysis drives dynein motion along the microtubule as well as how dynein changes its conformation when it goes through the power stroke. Thus, pursuit of an artistic work led to insights into biology at the nanoscale as well as the development of a highly generalizable modeling and simulation technology that has utility for nanoscience and any other area of scientific investigation that involves analysis of complex multiscale systems.

  20. DEVELOPMENT OF AN AGGREGATION AND EPISODE SELECTION SCHEME TO SUPPORT THE MODELS-3 COMMUNITY MULTISCALE AIR QUALITY MODEL

    EPA Science Inventory

    The development of an episode selection and aggregation approach, designed to support distributional estimation of use with the Models-3 Community Multiscale Air Quality (CMAQ) model, is described. The approach utilized cluster analysis of the 700-hPa east-west and north-south...

  1. Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabaras, Nicolas J.

    2016-11-08

    Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.

  2. Multiscale Modeling of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  3. A Multi-scale Modeling System with Unified Physics to Study Precipitation Processes

    NASA Astrophysics Data System (ADS)

    Tao, W. K.

    2017-12-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), and (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF). The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitation, processes and their sensitivity on model resolution and microphysics schemes will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.

  4. Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the recent developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitating systems and hurricanes/typhoons will be presented. The high-resolution spatial and temporal visualization will be utilized to show the evolution of precipitation processes. Also how to use of the multi-satellite simulator tqimproy precipitation processes will be discussed.

  5. Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei--Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2010-01-01

    In recent years, exponentially increasing computer power extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 sq km in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale models can be run in grid size similar to cloud resolving models through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model). (2) a regional scale model (a NASA unified weather research and forecast, W8F). (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling systems to study the interactions between clouds, precipitation, and aerosols will be presented. Also how to use the multi-satellite simulator to improve precipitation processes will be discussed.

  6. Using Multi-Scale Modeling Systems to Study the Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2010-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.

  7. Evaluation of the Community Multi-scale Air Quality (CMAQ) ...

    EPA Pesticide Factsheets

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Protection Agency develops the CMAQ model and periodically releases new versions of the model that include bug fixes and various other improvements to the modeling system. In the fall of 2015, CMAQ version 5.1 was released. This new version of CMAQ will contain important bug fixes to several issues that were identified in CMAQv5.0.2 and additionally include updates to other portions of the code. Several annual, and numerous episodic, CMAQv5.1 simulations were performed to assess the impact of these improvements on the model results. These results will be presented, along with a base evaluation of the performance of the CMAQv5.1 modeling system against available surface and upper-air measurements available during the time period simulated. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, proces

  8. A Multi-scale Modeling System: Developments, Applications and Critical Issues

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, Jiundar; Atlas, Robert; Randall, David; Lin, Xin; Khairoutdinov, Marat; Li, Jui-Lin; Waliser, Duane E.; Hou, Arthur; Peters-Lidard, Christa; hide

    2006-01-01

    A multi-scale modeling framework (MMF), which replaces the conventional cloud parameterizations with a cloud-resolving model (CRM) in each grid column of a GCM, constitutes a new and promising approach. The MMF can provide for global coverage and two-way interactions between the CRMs and their parent GCM. The GCM allows global coverage and the CRM allows explicit simulation of cloud processes and their interactions with radiation and surface processes. A new MMF has been developed that is based the Goddard finite volume GCM (fvGCM) and the Goddard Cumulus Ensemble (GCE) model. This Goddard MMF produces many features that are similar to another MMF that was developed at Colorado State University (CSU), such as an improved .surface precipitation pattern, better cloudiness, improved diurnal variability over both oceans and continents, and a stronger, propagating Madden-Julian oscillation (MJO) compared to their parent GCMs using conventional cloud parameterizations. Both MMFs also produce a precipitation bias in the western Pacific during Northern Hemisphere summer. However, there are also notable differences between two MMFs. For example, the CSU MMF simulates less rainfall over land than its parent GCM. This is why the CSU MMF simulated less overall global rainfall than its parent GCM. The Goddard MMF overestimates global rainfall because of its oceanic component. Some critical issues associated with the Goddard MMF are presented in this paper.

  9. Multiscale modeling for ferroelectric materials: identification of the phase-field model’s free energy for PZT from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Völker, Benjamin; Landis, Chad M.; Kamlah, Marc

    2012-03-01

    Within a knowledge-based multiscale simulation approach for ferroelectric materials, the atomic level can be linked to the mesoscale by transferring results from first-principles calculations into a phase-field model. A recently presented routine (Völker et al 2011 Contin. Mech. Thermodyn. 23 435-51) for adjusting the Helmholtz free energy coefficients to intrinsic and extrinsic ferroelectric material properties obtained by DFT calculations and atomistic simulations was subject to certain limitations: caused by too small available degrees of freedom, an independent adjustment of the spontaneous strains and piezoelectric coefficients was not possible, and the elastic properties could only be considered in cubic instead of tetragonal symmetry. In this work we overcome such restrictions by expanding the formulation of the free energy function, i.e. by motivating and introducing new higher-order terms that have not appeared in the literature before. Subsequently we present an improved version of the adjustment procedure for the free energy coefficients that is solely based on input parameters from first-principles calculations performed by Marton and Elsässer, as documented in Völker et al (2011 Contin. Mech. Thermodyn. 23 435-51). Full sets of adjusted free energy coefficients for PbTiO3 and tetragonal Pb(Zr,Ti)O3 are presented, and the benefits of the newly introduced higher-order free energy terms are discussed.

  10. Multiscale contact mechanics model for RF-MEMS switches with quantified uncertainties

    NASA Astrophysics Data System (ADS)

    Kim, Hojin; Huda Shaik, Nurul; Xu, Xin; Raman, Arvind; Strachan, Alejandro

    2013-12-01

    We introduce a multiscale model for contact mechanics between rough surfaces and apply it to characterize the force-displacement relationship for a metal-dielectric contact relevant for radio frequency micro-electromechanicl system (MEMS) switches. We propose a mesoscale model to describe the history-dependent force-displacement relationships in terms of the surface roughness, the long-range attractive interaction between the two surfaces, and the repulsive interaction between contacting asperities (including elastic and plastic deformation). The inputs to this model are the experimentally determined surface topography and the Hamaker constant as well as the mechanical response of individual asperities obtained from density functional theory calculations and large-scale molecular dynamics simulations. The model captures non-trivial processes including the hysteresis during loading and unloading due to plastic deformation, yet it is computationally efficient enough to enable extensive uncertainty quantification and sensitivity analysis. We quantify how uncertainties and variability in the input parameters, both experimental and theoretical, affect the force-displacement curves during approach and retraction. In addition, a sensitivity analysis quantifies the relative importance of the various input quantities for the prediction of force-displacement during contact closing and opening. The resulting force-displacement curves with quantified uncertainties can be directly used in device-level simulations of micro-switches and enable the incorporation of atomic and mesoscale phenomena in predictive device-scale simulations.

  11. Initial conditions and modeling for simulations of shock driven turbulent material mixing

    DOE PAGES

    Grinstein, Fernando F.

    2016-11-17

    Here, we focus on the simulation of shock-driven material mixing driven by flow instabilities and initial conditions (IC). Beyond complex multi-scale resolution issues of shocks and variable density turbulence, me must address the equally difficult problem of predicting flow transition promoted by energy deposited at the material interfacial layer during the shock interface interactions. Transition involves unsteady large-scale coherent-structure dynamics capturable by a large eddy simulation (LES) strategy, but not by an unsteady Reynolds-Averaged Navier–Stokes (URANS) approach based on developed equilibrium turbulence assumptions and single-point-closure modeling. On the engineering end of computations, such URANS with reduced 1D/2D dimensionality and coarsermore » grids, tend to be preferred for faster turnaround in full-scale configurations.« less

  12. Coarse-Grained MD Simulations and Protein-Protein Interactions: The Cohesin-Dockerin System.

    PubMed

    Hall, Benjamin A; Sansom, Mark S P

    2009-09-08

    Coarse-grained molecular dynamics (CG-MD) may be applied as part of a multiscale modeling approach to protein-protein interactions. The cohesin-dockerin interaction provides a valuable test system for evaluation of the use of CG-MD, as structural (X-ray) data indicate a dual binding mode for the cohesin-dockerin pair. CG-MD simulations (of 5 μs duration) of the association of cohesin and dockerin identify two distinct binding modes, which resemble those observed in X-ray structures. For each binding mode, ca. 80% of interfacial residues are predicted correctly. Furthermore, each of the binding modes identified by CG-MD is conformationally stable when converted to an atomistic model and used as the basis of a conventional atomistic MD simulation of duration 20 ns.

  13. A multiscale quantum mechanics/electromagnetics method for device simulations.

    PubMed

    Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua

    2015-04-07

    Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method.

  14. A realistic multimodal modeling approach for the evaluation of distributed source analysis: application to sLORETA

    NASA Astrophysics Data System (ADS)

    Cosandier-Rimélé, D.; Ramantani, G.; Zentner, J.; Schulze-Bonhage, A.; Dümpelmann, M.

    2017-10-01

    Objective. Electrical source localization (ESL) deriving from scalp EEG and, in recent years, from intracranial EEG (iEEG), is an established method in epilepsy surgery workup. We aimed to validate the distributed ESL derived from scalp EEG and iEEG, particularly regarding the spatial extent of the source, using a realistic epileptic spike activity simulator. Approach. ESL was applied to the averaged scalp EEG and iEEG spikes of two patients with drug-resistant structural epilepsy. The ESL results for both patients were used to outline the location and extent of epileptic cortical patches, which served as the basis for designing a spatiotemporal source model. EEG signals for both modalities were then generated for different anatomic locations and spatial extents. ESL was subsequently performed on simulated signals with sLORETA, a commonly used distributed algorithm. ESL accuracy was quantitatively assessed for iEEG and scalp EEG. Main results. The source volume was overestimated by sLORETA at both EEG scales, with the error increasing with source size, particularly for iEEG. For larger sources, ESL accuracy drastically decreased, and reconstruction volumes shifted to the center of the head for iEEG, while remaining stable for scalp EEG. Overall, the mislocalization of the reconstructed source was more pronounced for iEEG. Significance. We present a novel multiscale framework for the evaluation of distributed ESL, based on realistic multiscale EEG simulations. Our findings support that reconstruction results for scalp EEG are often more accurate than for iEEG, owing to the superior 3D coverage of the head. Particularly the iEEG-derived reconstruction results for larger, widespread generators should be treated with caution.

  15. Mechanistic insights into electrochemical reduction of CO 2 over Ag using density functional theory and transport models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Meenesh R.; Goodpaster, Jason D.; Weber, Adam Z.

    Electrochemical reduction of CO 2 using renewable sources of electrical energy holds promise for converting CO 2 to fuels and chemicals. Since this process is complex and involves a large number of species and physical phenomena, a comprehensive understanding of the factors controlling product distribution is required. While the most plausible reaction pathway is usually identified from quantum-chemical calculation of the lowest free-energy pathway, this approach can be misleading when coverages of adsorbed species determined for alternative mechanism differ significantly, since elementary reaction rates depend on the product of the rate coefficient and the coverage of species involved in themore » reaction. Moreover, cathode polarization can influence the kinetics of CO 2 reduction. Here in this work, we present a multiscale framework for ab initio simulation of the electrochemical reduction of CO 2 over an Ag(110) surface. A continuum model for species transport is combined with a microkinetic model for the cathode reaction dynamics. Free energies of activation for all elementary reactions are determined from density functional theory calculations. Using this approach, three alternative mechanisms for CO 2 reduction were examined. The rate-limiting step in each mechanism is **COOH formation at higher negative potentials. However, only via the multiscale simulation was it possible to identify the mechanism that leads to a dependence of the rate of CO formation on the partial pressure of CO 2 that is consistent with experiments. Additionally, simulations based on this mechanism also describe the dependence of the H 2 and CO current densities on cathode voltage that are in strikingly good agreement with experimental observation.« less

  16. Dynamical Approach Study of Spurious Numerics in Nonlinear Computations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi (Technical Monitor)

    2002-01-01

    The last two decades have been an era when computation is ahead of analysis and when very large scale practical computations are increasingly used in poorly understood multiscale complex nonlinear physical problems and non-traditional fields. Ensuring a higher level of confidence in the predictability and reliability (PAR) of these numerical simulations could play a major role in furthering the design, understanding, affordability and safety of our next generation air and space transportation systems, and systems for planetary and atmospheric sciences, and in understanding the evolution and origin of life. The need to guarantee PAR becomes acute when computations offer the ONLY way of solving these types of data limited problems. Employing theory from nonlinear dynamical systems, some building blocks to ensure a higher level of confidence in PAR of numerical simulations have been revealed by the author and world expert collaborators in relevant fields. Five building blocks with supporting numerical examples were discussed. The next step is to utilize knowledge gained by including nonlinear dynamics, bifurcation and chaos theories as an integral part of the numerical process. The third step is to design integrated criteria for reliable and accurate algorithms that cater to the different multiscale nonlinear physics. This includes but is not limited to the construction of appropriate adaptive spatial and temporal discretizations that are suitable for the underlying governing equations. In addition, a multiresolution wavelets approach for adaptive numerical dissipation/filter controls for high speed turbulence, acoustics and combustion simulations will be sought. These steps are corner stones for guarding against spurious numerical solutions that are solutions of the discretized counterparts but are not solutions of the underlying governing equations.

  17. Mechanistic insights into electrochemical reduction of CO 2 over Ag using density functional theory and transport models

    DOE PAGES

    Singh, Meenesh R.; Goodpaster, Jason D.; Weber, Adam Z.; ...

    2017-10-02

    Electrochemical reduction of CO 2 using renewable sources of electrical energy holds promise for converting CO 2 to fuels and chemicals. Since this process is complex and involves a large number of species and physical phenomena, a comprehensive understanding of the factors controlling product distribution is required. While the most plausible reaction pathway is usually identified from quantum-chemical calculation of the lowest free-energy pathway, this approach can be misleading when coverages of adsorbed species determined for alternative mechanism differ significantly, since elementary reaction rates depend on the product of the rate coefficient and the coverage of species involved in themore » reaction. Moreover, cathode polarization can influence the kinetics of CO 2 reduction. Here in this work, we present a multiscale framework for ab initio simulation of the electrochemical reduction of CO 2 over an Ag(110) surface. A continuum model for species transport is combined with a microkinetic model for the cathode reaction dynamics. Free energies of activation for all elementary reactions are determined from density functional theory calculations. Using this approach, three alternative mechanisms for CO 2 reduction were examined. The rate-limiting step in each mechanism is **COOH formation at higher negative potentials. However, only via the multiscale simulation was it possible to identify the mechanism that leads to a dependence of the rate of CO formation on the partial pressure of CO 2 that is consistent with experiments. Additionally, simulations based on this mechanism also describe the dependence of the H 2 and CO current densities on cathode voltage that are in strikingly good agreement with experimental observation.« less

  18. Extended Phase-Space Methods for Enhanced Sampling in Molecular Simulations: A Review.

    PubMed

    Fujisaki, Hiroshi; Moritsugu, Kei; Matsunaga, Yasuhiro; Morishita, Tetsuya; Maragliano, Luca

    2015-01-01

    Molecular Dynamics simulations are a powerful approach to study biomolecular conformational changes or protein-ligand, protein-protein, and protein-DNA/RNA interactions. Straightforward applications, however, are often hampered by incomplete sampling, since in a typical simulated trajectory the system will spend most of its time trapped by high energy barriers in restricted regions of the configuration space. Over the years, several techniques have been designed to overcome this problem and enhance space sampling. Here, we review a class of methods that rely on the idea of extending the set of dynamical variables of the system by adding extra ones associated to functions describing the process under study. In particular, we illustrate the Temperature Accelerated Molecular Dynamics (TAMD), Logarithmic Mean Force Dynamics (LogMFD), and Multiscale Enhanced Sampling (MSES) algorithms. We also discuss combinations with techniques for searching reaction paths. We show the advantages presented by this approach and how it allows to quickly sample important regions of the free-energy landscape via automatic exploration.

  19. The mechanical behavior of metal alloys with grain size distribution in a wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, V. A.; Skripnyak, V. V.; Skripnyak, E. G.

    2017-12-01

    The paper discusses a multiscale simulation approach for the construction of grain structure of metals and alloys, providing high tensile strength with ductility. This work compares the mechanical behavior of light alloys and the influence of the grain size distribution in a wide range of strain rates. The influence of the grain size distribution on the inelastic deformation and fracture of aluminium and magnesium alloys is investigated by computer simulations in a wide range of strain rates. It is shown that the yield stress depends on the logarithm of the normalized strain rate for light alloys with a bimodal grain distribution and coarse-grained structure.

  20. Goal-oriented robot navigation learning using a multi-scale space representation.

    PubMed

    Llofriu, M; Tejera, G; Contreras, M; Pelc, T; Fellous, J M; Weitzenfeld, A

    2015-12-01

    There has been extensive research in recent years on the multi-scale nature of hippocampal place cells and entorhinal grid cells encoding which led to many speculations on their role in spatial cognition. In this paper we focus on the multi-scale nature of place cells and how they contribute to faster learning during goal-oriented navigation when compared to a spatial cognition system composed of single scale place cells. The task consists of a circular arena with a fixed goal location, in which a robot is trained to find the shortest path to the goal after a number of learning trials. Synaptic connections are modified using a reinforcement learning paradigm adapted to the place cells multi-scale architecture. The model is evaluated in both simulation and physical robots. We find that larger scale and combined multi-scale representations favor goal-oriented navigation task learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Multiscale modelling in immunology: a review.

    PubMed

    Cappuccio, Antonio; Tieri, Paolo; Castiglione, Filippo

    2016-05-01

    One of the greatest challenges in biomedicine is to get a unified view of observations made from the molecular up to the organism scale. Towards this goal, multiscale models have been highly instrumental in contexts such as the cardiovascular field, angiogenesis, neurosciences and tumour biology. More recently, such models are becoming an increasingly important resource to address immunological questions as well. Systematic mining of the literature in multiscale modelling led us to identify three main fields of immunological applications: host-virus interactions, inflammatory diseases and their treatment and development of multiscale simulation platforms for immunological research and for educational purposes. Here, we review the current developments in these directions, which illustrate that multiscale models can consistently integrate immunological data generated at several scales, and can be used to describe and optimize therapeutic treatments of complex immune diseases. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.; hide

    2008-01-01

    Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.

  3. Assessing multiscale complexity of short heart rate variability series through a model-based linear approach

    NASA Astrophysics Data System (ADS)

    Porta, Alberto; Bari, Vlasta; Ranuzzi, Giovanni; De Maria, Beatrice; Baselli, Giuseppe

    2017-09-01

    We propose a multiscale complexity (MSC) method assessing irregularity in assigned frequency bands and being appropriate for analyzing the short time series. It is grounded on the identification of the coefficients of an autoregressive model, on the computation of the mean position of the poles generating the components of the power spectral density in an assigned frequency band, and on the assessment of its distance from the unit circle in the complex plane. The MSC method was tested on simulations and applied to the short heart period (HP) variability series recorded during graded head-up tilt in 17 subjects (age from 21 to 54 years, median = 28 years, 7 females) and during paced breathing protocols in 19 subjects (age from 27 to 35 years, median = 31 years, 11 females) to assess the contribution of time scales typical of the cardiac autonomic control, namely in low frequency (LF, from 0.04 to 0.15 Hz) and high frequency (HF, from 0.15 to 0.5 Hz) bands to the complexity of the cardiac regulation. The proposed MSC technique was compared to a traditional model-free multiscale method grounded on information theory, i.e., multiscale entropy (MSE). The approach suggests that the reduction of HP variability complexity observed during graded head-up tilt is due to a regularization of the HP fluctuations in LF band via a possible intervention of sympathetic control and the decrement of HP variability complexity observed during slow breathing is the result of the regularization of the HP variations in both LF and HF bands, thus implying the action of physiological mechanisms working at time scales even different from that of respiration. MSE did not distinguish experimental conditions at time scales larger than 1. Over a short time series MSC allows a more insightful association between cardiac control complexity and physiological mechanisms modulating cardiac rhythm compared to a more traditional tool such as MSE.

  4. Uncertainty Quantification in Multi-Scale Coronary Simulations Using Multi-resolution Expansion

    NASA Astrophysics Data System (ADS)

    Tran, Justin; Schiavazzi, Daniele; Ramachandra, Abhay; Kahn, Andrew; Marsden, Alison

    2016-11-01

    Computational simulations of coronary flow can provide non-invasive information on hemodynamics that can aid in surgical planning and research on disease propagation. In this study, patient-specific geometries of the aorta and coronary arteries are constructed from CT imaging data and finite element flow simulations are carried out using the open source software SimVascular. Lumped parameter networks (LPN), consisting of circuit representations of vascular hemodynamics and coronary physiology, are used as coupled boundary conditions for the solver. The outputs of these simulations depend on a set of clinically-derived input parameters that define the geometry and boundary conditions, however their values are subjected to uncertainty. We quantify the effects of uncertainty from two sources: uncertainty in the material properties of the vessel wall and uncertainty in the lumped parameter models whose values are estimated by assimilating patient-specific clinical and literature data. We use a generalized multi-resolution chaos approach to propagate the uncertainty. The advantages of this approach lies in its ability to support inputs sampled from arbitrary distributions and its built-in adaptivity that efficiently approximates stochastic responses characterized by steep gradients.

  5. Multiscale Modelling and Analysis of Collective Decision Making in Swarm Robotics

    PubMed Central

    Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey

    2014-01-01

    We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable. PMID:25369026

  6. A Multi-Resolution Assessment of the Community Multiscale Air Quality (CMAQ) Model v4.7 Wet Deposition Estimates for 2002 - 2006

    EPA Science Inventory

    This paper examines the operational performance of the Community Multiscale Air Quality (CMAQ) model simulations for 2002 - 2006 using both 36-km and 12-km horizontal grid spacing, with a primary focus on the performance of the CMAQ model in predicting wet deposition of sulfate (...

  7. Multiscale Modeling of Grain-Boundary Fracture: Cohesive Zone Models Parameterized From Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Phillips, Dawn R.; Yamakov, Vesselin

    2006-01-01

    A multiscale modeling strategy is developed to study grain boundary fracture in polycrystalline aluminum. Atomistic simulation is used to model fundamental nanoscale deformation and fracture mechanisms and to develop a constitutive relationship for separation along a grain boundary interface. The nanoscale constitutive relationship is then parameterized within a cohesive zone model to represent variations in grain boundary properties. These variations arise from the presence of vacancies, intersticies, and other defects in addition to deviations in grain boundary angle from the baseline configuration considered in the molecular dynamics simulation. The parameterized cohesive zone models are then used to model grain boundaries within finite element analyses of aluminum polycrystals.

  8. Dislocation dynamics: simulation of plastic flow of bcc metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lassila, D H

    This is the final report for the LDRD strategic initiative entitled ''Dislocation Dynamic: Simulation of Plastic Flow of bcc Metals'' (tracking code: 00-SI-011). This report is comprised of 6 individual sections. The first is an executive summary of the project and describes the overall project goal, which is to establish an experimentally validated 3D dislocation dynamics simulation. This first section also gives some information of LLNL's multi-scale modeling efforts associated with the plasticity of bcc metals, and the role of this LDRD project in the multiscale modeling program. The last five sections of this report are journal articles that weremore » produced during the course of the FY-2000 efforts.« less

  9. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    NASA Astrophysics Data System (ADS)

    Kou, Jisheng; Sun, Shuyu

    2016-08-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.

  10. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kou, Jisheng; Sun, Shuyu, E-mail: shuyu.sun@kaust.edu.sa; School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049

    2016-08-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng–Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from themore » microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young–Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young–Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young–Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.« less

  11. Hybrid multiscale modeling and prediction of cancer cell behavior

    PubMed Central

    Habibi, Jafar

    2017-01-01

    Background Understanding cancer development crossing several spatial-temporal scales is of great practical significance to better understand and treat cancers. It is difficult to tackle this challenge with pure biological means. Moreover, hybrid modeling techniques have been proposed that combine the advantages of the continuum and the discrete methods to model multiscale problems. Methods In light of these problems, we have proposed a new hybrid vascular model to facilitate the multiscale modeling and simulation of cancer development with respect to the agent-based, cellular automata and machine learning methods. The purpose of this simulation is to create a dataset that can be used for prediction of cell phenotypes. By using a proposed Q-learning based on SVR-NSGA-II method, the cells have the capability to predict their phenotypes autonomously that is, to act on its own without external direction in response to situations it encounters. Results Computational simulations of the model were performed in order to analyze its performance. The most striking feature of our results is that each cell can select its phenotype at each time step according to its condition. We provide evidence that the prediction of cell phenotypes is reliable. Conclusion Our proposed model, which we term a hybrid multiscale modeling of cancer cell behavior, has the potential to combine the best features of both continuum and discrete models. The in silico results indicate that the 3D model can represent key features of cancer growth, angiogenesis, and its related micro-environment and show that the findings are in good agreement with biological tumor behavior. To the best of our knowledge, this paper is the first hybrid vascular multiscale modeling of cancer cell behavior that has the capability to predict cell phenotypes individually by a self-generated dataset. PMID:28846712

  12. Hybrid multiscale modeling and prediction of cancer cell behavior.

    PubMed

    Zangooei, Mohammad Hossein; Habibi, Jafar

    2017-01-01

    Understanding cancer development crossing several spatial-temporal scales is of great practical significance to better understand and treat cancers. It is difficult to tackle this challenge with pure biological means. Moreover, hybrid modeling techniques have been proposed that combine the advantages of the continuum and the discrete methods to model multiscale problems. In light of these problems, we have proposed a new hybrid vascular model to facilitate the multiscale modeling and simulation of cancer development with respect to the agent-based, cellular automata and machine learning methods. The purpose of this simulation is to create a dataset that can be used for prediction of cell phenotypes. By using a proposed Q-learning based on SVR-NSGA-II method, the cells have the capability to predict their phenotypes autonomously that is, to act on its own without external direction in response to situations it encounters. Computational simulations of the model were performed in order to analyze its performance. The most striking feature of our results is that each cell can select its phenotype at each time step according to its condition. We provide evidence that the prediction of cell phenotypes is reliable. Our proposed model, which we term a hybrid multiscale modeling of cancer cell behavior, has the potential to combine the best features of both continuum and discrete models. The in silico results indicate that the 3D model can represent key features of cancer growth, angiogenesis, and its related micro-environment and show that the findings are in good agreement with biological tumor behavior. To the best of our knowledge, this paper is the first hybrid vascular multiscale modeling of cancer cell behavior that has the capability to predict cell phenotypes individually by a self-generated dataset.

  13. Multi-scale Material Parameter Identification Using LS-DYNA® and LS-OPT®

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stander, Nielen; Basudhar, Anirban; Basu, Ushnish

    2015-09-14

    Ever-tightening regulations on fuel economy, and the likely future regulation of carbon emissions, demand persistent innovation in vehicle design to reduce vehicle mass. Classical methods for computational mass reduction include sizing, shape and topology optimization. One of the few remaining options for weight reduction can be found in materials engineering and material design optimization. Apart from considering different types of materials, by adding material diversity and composite materials, an appealing option in automotive design is to engineer steel alloys for the purpose of reducing plate thickness while retaining sufficient strength and ductility required for durability and safety. A project tomore » develop computational material models for advanced high strength steel is currently being executed under the auspices of the United States Automotive Materials Partnership (USAMP) funded by the US Department of Energy. Under this program, new Third Generation Advanced High Strength Steel (i.e., 3GAHSS) are being designed, tested and integrated with the remaining design variables of a benchmark vehicle Finite Element model. The objectives of the project are to integrate atomistic, microstructural, forming and performance models to create an integrated computational materials engineering (ICME) toolkit for 3GAHSS. The mechanical properties of Advanced High Strength Steels (AHSS) are controlled by many factors, including phase composition and distribution in the overall microstructure, volume fraction, size and morphology of phase constituents as well as stability of the metastable retained austenite phase. The complex phase transformation and deformation mechanisms in these steels make the well-established traditional techniques obsolete, and a multi-scale microstructure-based modeling approach following the ICME [0]strategy was therefore chosen in this project. Multi-scale modeling as a major area of research and development is an outgrowth of the Comprehensive Test Ban Treaty of 1996 which banned surface testing of nuclear devices [1]. This had the effect that experimental work was reduced from large scale tests to multiscale experiments to provide material models with validation at different length scales. In the subsequent years industry realized that multi-scale modeling and simulation-based design were transferable to the design optimization of any structural system. Horstemeyer [1] lists a number of advantages of the use of multiscale modeling. Among these are: the reduction of product development time by alleviating costly trial-and-error iterations as well as the reduction of product costs through innovations in material, product and process designs. Multi-scale modeling can reduce the number of costly large scale experiments and can increase product quality by providing more accurate predictions. Research tends to be focussed on each particular length scale, which enhances accuracy in the long term. This paper serves as an introduction to the LS-OPT and LS-DYNA methodology for multi-scale modeling. It mainly focuses on an approach to integrate material identification using material models of different length scales. As an example, a multi-scale material identification strategy, consisting of a Crystal Plasticity (CP) material model and a homogenized State Variable (SV) model, is discussed and the parameter identification of the individual material models of different length scales is demonstrated. The paper concludes with thoughts on integrating the multi-scale methodology into the overall vehicle design.« less

  14. Multiscale Simulation of Gas Film Lubrication During Liquid Droplet Collision

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Khare, Prashant; Ma, Dongjun; Yang, Vigor

    2012-02-01

    Droplet collision plays an elementary role in dense spray combustion process. When two droplets approach each other, a gas film forms in between. The pressure generated within the film prevents motion of approaching droplets. This fluid mechanics is fluid film lubrication that occurs when opposing bearing surfaces are completely separated by fluid film. The lubrication flow in gas film decides the collision outcome, coalescence or bouncing. Present study focuses on gas film drainage process over a wide range of Weber numbers during equal- and unequal-sized droplet collision. The formulation is based on complete set of conservation equations for both liquid and surrounding gas phases. An improved volume-of-fluid technique, augmented by an adaptive mesh refinement algorithm, is used to track liquid/gas interfaces. A unique thickness-based refinement algorithm based on topology of interfacial flow is developed and implemented to efficiently resolve the multiscale problem. The grid size on interface is up O(10-4) of droplet size with a max resolution of 0.015 μm. An advanced visualization technique using the Ray-tracing methodology is used to gain direct insights to detailed physics. Theories are established by analyzing the characteristics of shape changing and flow evolution.

  15. Multiscale Modeling of Plasmon-Exciton Dynamics of Malachite Green Monolayers on Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Smith, Holden; Karam, Tony; Haber, Louis; Lopata, Kenneth

    A multi-scale hybrid quantum/classical approach using classical electrodynamics and a collection of discrete two level quantum system is used to investigate the coupling dynamics of malachite green monolayers adsorbed to the surface of a spherical gold nanoparticle (NP). This method utilizes finite difference time domain (FDTD) to describe the plasmonic response of the NP and a two-level quantum description for the molecule via the Maxwell/Liouville equation. The molecular parameters are parameterized using CASPT2 for the energies and transition dipole moments, with the dephasing lifetime fit to experiment. This approach is suited to simulating thousands of molecules on the surface of a plasmonic NP. There is good agreement with experimental extinction measurements, predicting the plasmon and molecule depletions. Additionally, this model captures the polariton peaks overlapped with a Fano-type resonance profile observed in the experimental extinction measurements. This technique shows promise for modeling plasmon/molecule interactions in chemical sensing and light harvesting in multi-chromophore systems. This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 and the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.

  16. Multiscale Modeling of Plasmon-Exciton Dynamics of Malachite Green Monolayers on Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Smith, Holden; Karam, Tony; Haber, Louis; Lopata, Kenneth

    A multi-scale hybrid quantum/classical approach using classical electrodynamics and a collection of discrete two-level quantum system is used to investigate the coupling dynamics of malachite green monolayers adsorbed to the surface of a spherical gold nanoparticle (NP). This method utilizes finite difference time domain (FDTD) to describe the plasmonic response of the NP and a two-level quantum description for the molecule via the Maxwell/Liouville equation. The molecular parameters are parameterized using CASPT2 for the energies and transition dipole moments, with the dephasing lifetime fit to experiment. This approach is suited to simulating thousands of molecules on the surface of a plasmonic NP. There is good agreement with experimental extinction measurements, predicting the plasmon and molecule depletions. Additionally, this model captures the polariton peaks overlapped with a Fano-type resonance profile observed in the experimental extinction measurements. This technique shows promise for modeling plasmon/molecule interactions in chemical sensing and light harvesting in multi-chromophore systems. This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 and by the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.

  17. Multi-scale computational modeling of developmental biology.

    PubMed

    Setty, Yaki

    2012-08-01

    Normal development of multicellular organisms is regulated by a highly complex process in which a set of precursor cells proliferate, differentiate and move, forming over time a functioning tissue. To handle their complexity, developmental systems can be studied over distinct scales. The dynamics of each scale is determined by the collective activity of entities at the scale below it. I describe a multi-scale computational approach for modeling developmental systems and detail the methodology through a synthetic example of a developmental system that retains key features of real developmental systems. I discuss the simulation of the system as it emerges from cross-scale and intra-scale interactions and describe how an in silico study can be carried out by modifying these interactions in a way that mimics in vivo experiments. I highlight biological features of the results through a comparison with findings in Caenorhabditis elegans germline development and finally discuss about the applications of the approach in real developmental systems and propose future extensions. The source code of the model of the synthetic developmental system can be found in www.wisdom.weizmann.ac.il/~yaki/MultiScaleModel. yaki.setty@gmail.com Supplementary data are available at Bioinformatics online.

  18. Simulated shift work in rats perturbs multiscale regulation of locomotor activity

    PubMed Central

    Hsieh, Wan-Hsin; Escobar, Carolina; Yugay, Tatiana; Lo, Men-Tzung; Pittman-Polletta, Benjamin; Salgado-Delgado, Roberto; Scheer, Frank A. J. L.; Shea, Steven A.; Buijs, Ruud M.; Hu, Kun

    2014-01-01

    Motor activity possesses a multiscale regulation that is characterized by fractal activity fluctuations with similar structure across a wide range of timescales spanning minutes to hours. Fractal activity patterns are disturbed in animals after ablating the master circadian pacemaker (suprachiasmatic nucleus, SCN) and in humans with SCN dysfunction as occurs with aging and in dementia, suggesting the crucial role of the circadian system in the multiscale activity regulation. We hypothesized that the normal synchronization between behavioural cycles and the SCN-generated circadian rhythms is required for multiscale activity regulation. To test the hypothesis, we studied activity fluctuations of rats in a simulated shift work protocol that was designed to force animals to be active during the habitual resting phase of the circadian/daily cycle. We found that these animals had gradually decreased mean activity level and reduced 24-h activity rhythm amplitude, indicating disturbed circadian and behavioural cycles. Moreover, these animals had disrupted fractal activity patterns as characterized by more random activity fluctuations at multiple timescales from 4 to 12 h. Intriguingly, these activity disturbances exacerbated when the shift work schedule lasted longer and persisted even in the normal days (without forced activity) following the shift work. The disrupted circadian and fractal patterns resemble those of SCN-lesioned animals and of human patients with dementia, suggesting a detrimental impact of shift work on multiscale activity regulation. PMID:24829282

  19. Simulation of atmospheric oxidation capacity in Houston, Texas

    EPA Science Inventory

    Air quality model simulations are performed and evaluated for Houston using the Community Multiscale Air Quality (CMAQ) model. The simulations use two different emissions estimates: the EPA 2005 National Emissions Inventory (NEI) and the Texas Commission on Environmental Quality ...

  20. Multiscale modelling and nonlinear simulation of vascular tumour growth

    PubMed Central

    Macklin, Paul; Anderson, Alexander R. A.; Chaplain, Mark A. J.; Cristini, Vittorio

    2011-01-01

    In this article, we present a new multiscale mathematical model for solid tumour growth which couples an improved model of tumour invasion with a model of tumour-induced angiogenesis. We perform nonlinear simulations of the multi-scale model that demonstrate the importance of the coupling between the development and remodeling of the vascular network, the blood flow through the network and the tumour progression. Consistent with clinical observations, the hydrostatic stress generated by tumour cell proliferation shuts down large portions of the vascular network dramatically affecting the flow, the subsequent network remodeling, the delivery of nutrients to the tumour and the subsequent tumour progression. In addition, extracellular matrix degradation by tumour cells is seen to have a dramatic affect on both the development of the vascular network and the growth response of the tumour. In particular, the newly developing vessels tend to encapsulate, rather than penetrate, the tumour and are thus less effective in delivering nutrients. PMID:18781303

  1. Hybrid methods for simulating hydrodynamics and heat transfer in multiscale (1D-3D) models

    NASA Astrophysics Data System (ADS)

    Filimonov, S. A.; Mikhienkova, E. I.; Dekterev, A. A.; Boykov, D. V.

    2017-09-01

    The work is devoted to application of different-scale models in the simulation of hydrodynamics and heat transfer of large and/or complex systems, which can be considered as a combination of extended and “compact” elements. The model consisting of simultaneously existing three-dimensional and network (one-dimensional) elements is called multiscale. The paper examines the relevance of building such models and considers three main options for their implementation: the spatial and the network parts of the model are calculated separately; spatial and network parts are calculated simultaneously (hydraulically unified model); network elements “penetrate” the spatial part and are connected through the integral characteristics at the tube/channel walls (hydraulically disconnected model). Each proposed method is analyzed in terms of advantages and disadvantages. The paper presents a number of practical examples demonstrating the application of multiscale models.

  2. Scalable free energy calculation of proteins via multiscale essential sampling

    NASA Astrophysics Data System (ADS)

    Moritsugu, Kei; Terada, Tohru; Kidera, Akinori

    2010-12-01

    A multiscale simulation method, "multiscale essential sampling (MSES)," is proposed for calculating free energy surface of proteins in a sizable dimensional space with good scalability. In MSES, the configurational sampling of a full-dimensional model is enhanced by coupling with the accelerated dynamics of the essential degrees of freedom. Applying the Hamiltonian exchange method to MSES can remove the biasing potential from the coupling term, deriving the free energy surface of the essential degrees of freedom. The form of the coupling term ensures good scalability in the Hamiltonian exchange. As a test application, the free energy surface of the folding process of a miniprotein, chignolin, was calculated in the continuum solvent model. Results agreed with the free energy surface derived from the multicanonical simulation. Significantly improved scalability with the MSES method was clearly shown in the free energy calculation of chignolin in explicit solvent, which was achieved without increasing the number of replicas in the Hamiltonian exchange.

  3. A Multiscale Model for the Quasi-Static Thermo-Plastic Behavior of Highly Cross-Linked Glassy Polymers

    DOE PAGES

    Vu-Bac, N.; Bessa, M. A.; Rabczuk, Timon; ...

    2015-09-10

    In this paper, we present experimentally validated molecular dynamics predictions of the quasi- static yield and post-yield behavior for a highly cross-linked epoxy polymer under gen- eral stress states and for different temperatures. In addition, a hierarchical multiscale model is presented where the nano-scale simulations obtained from molecular dynamics were homogenized to a continuum thermoplastic constitutive model for the epoxy that can be used to describe the macroscopic behavior of the material. Three major conclusions were achieved: (1) the yield surfaces generated from the nano-scale model for different temperatures agree well with the paraboloid yield crite- rion, supporting previous macroscopicmore » experimental observations; (2) rescaling of the entire yield surfaces to the quasi-static case is possible by considering Argon’s theoretical predictions for pure compression of the polymer at absolute zero temperature; (3) nano- scale simulations can be used for an experimentally-free calibration of macroscopic con- tinuum models, opening new avenues for the design of materials and structures through multi-scale simulations that provide structure-property-performance relationships.« less

  4. A Perspective on Coupled Multiscale Simulation and Validation in Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. P. Short; D. Gaston; C. R. Stanek

    2014-01-01

    The field of nuclear materials encompasses numerous opportunities to address and ultimately solve longstanding industrial problems by improving the fundamental understanding of materials through the integration of experiments with multiscale modeling and high-performance simulation. A particularly noteworthy example is an ongoing study of axial power distortions in a nuclear reactor induced by corrosion deposits, known as CRUD (Chalk River unidentified deposits). We describe how progress is being made toward achieving scientific advances and technological solutions on two fronts. Specifically, the study of thermal conductivity of CRUD phases has augmented missing data as well as revealed new mechanisms. Additionally, the developmentmore » of a multiscale simulation framework shows potential for the validation of a new capability to predict the power distribution of a reactor, in effect direct evidence of technological impact. The material- and system-level challenges identified in the study of CRUD are similar to other well-known vexing problems in nuclear materials, such as irradiation accelerated corrosion, stress corrosion cracking, and void swelling; they all involve connecting materials science fundamentals at the atomistic- and mesoscales to technology challenges at the macroscale.« less

  5. Computational models of aortic coarctation in hypoplastic left heart syndrome: considerations on validation of a detailed 3D model.

    PubMed

    Biglino, Giovanni; Corsini, Chiara; Schievano, Silvia; Dubini, Gabriele; Giardini, Alessandro; Hsia, Tain-Yen; Pennati, Giancarlo; Taylor, Andrew M

    2014-05-01

    Reliability of computational models for cardiovascular investigations strongly depends on their validation against physical data. This study aims to experimentally validate a computational model of complex congenital heart disease (i.e., surgically palliated hypoplastic left heart syndrome with aortic coarctation) thus demonstrating that hemodynamic information can be reliably extrapolated from the model for clinically meaningful investigations. A patient-specific aortic arch model was tested in a mock circulatory system and the same flow conditions were re-created in silico, by setting an appropriate lumped parameter network (LPN) attached to the same three-dimensional (3D) aortic model (i.e., multi-scale approach). The model included a modified Blalock-Taussig shunt and coarctation of the aorta. Different flow regimes were tested as well as the impact of uncertainty in viscosity. Computational flow and pressure results were in good agreement with the experimental signals, both qualitatively, in terms of the shape of the waveforms, and quantitatively (mean aortic pressure 62.3 vs. 65.1 mmHg, 4.8% difference; mean aortic flow 28.0 vs. 28.4% inlet flow, 1.4% difference; coarctation pressure drop 30.0 vs. 33.5 mmHg, 10.4% difference), proving the reliability of the numerical approach. It was observed that substantial changes in fluid viscosity or using a turbulent model in the numerical simulations did not significantly affect flows and pressures of the investigated physiology. Results highlighted how the non-linear fluid dynamic phenomena occurring in vitro must be properly described to ensure satisfactory agreement. This study presents methodological considerations for using experimental data to preliminarily set up a computational model, and then simulate a complex congenital physiology using a multi-scale approach.

  6. Towards an orientation-distribution-based multi-scale approach for remodelling biological tissues.

    PubMed

    Menzel, A; Harrysson, M; Ristinmaa, M

    2008-10-01

    The mechanical behaviour of soft biological tissues is governed by phenomena occurring on different scales of observation. From the computational modelling point of view, a vital aspect consists of the appropriate incorporation of micromechanical effects into macroscopic constitutive equations. In this work, particular emphasis is placed on the simulation of soft fibrous tissues with the orientation of the underlying fibres being determined by distribution functions. A straightforward but convenient Taylor-type homogenisation approach links the micro- or rather meso-level of fibres to the overall macro-level and allows to reflect macroscopically orthotropic response. As a key aspect of this work, evolution equations for the fibre orientations are accounted for so that physiological effects like turnover or rather remodelling are captured. Concerning numerical applications, the derived set of equations can be embedded into a nonlinear finite element context so that first elementary simulations are finally addressed.

  7. A Hybrid Coarse-graining Approach for Lipid Bilayers at Large Length and Time Scales

    PubMed Central

    Ayton, Gary S.; Voth, Gregory A.

    2009-01-01

    A hybrid analytic-systematic (HAS) coarse-grained (CG) lipid model is developed and employed in a large-scale simulation of a liposome. The methodology is termed hybrid analyticsystematic as one component of the interaction between CG sites is variationally determined from the multiscale coarse-graining (MS-CG) methodology, while the remaining component utilizes an analytic potential. The systematic component models the in-plane center of mass interaction of the lipids as determined from an atomistic-level MD simulation of a bilayer. The analytic component is based on the well known Gay-Berne ellipsoid of revolution liquid crystal model, and is designed to model the highly anisotropic interactions at a highly coarse-grained level. The HAS CG approach is the first step in an “aggressive” CG methodology designed to model multi-component biological membranes at very large length and timescales. PMID:19281167

  8. MOlecular MAterials Property Prediction Package (MOMAP) 1.0: a software package for predicting the luminescent properties and mobility of organic functional materials

    NASA Astrophysics Data System (ADS)

    Niu, Yingli; Li, Wenqiang; Peng, Qian; Geng, Hua; Yi, Yuanping; Wang, Linjun; Nan, Guangjun; Wang, Dong; Shuai, Zhigang

    2018-04-01

    MOlecular MAterials Property Prediction Package (MOMAP) is a software toolkit for molecular materials property prediction. It focuses on luminescent properties and charge mobility properties. This article contains a brief descriptive introduction of key features, theoretical models and algorithms of the software, together with examples that illustrate the performance. First, we present the theoretical models and algorithms for molecular luminescent properties calculation, which includes the excited-state radiative/non-radiative decay rate constant and the optical spectra. Then, a multi-scale simulation approach and its algorithm for the molecular charge mobility are described. This approach is based on hopping model and combines with Kinetic Monte Carlo and molecular dynamics simulations, and it is especially applicable for describing a large category of organic semiconductors, whose inter-molecular electronic coupling is much smaller than intra-molecular charge reorganisation energy.

  9. Three-dimensional Dendritic Needle Network model with application to Al-Cu directional solidification experiments

    NASA Astrophysics Data System (ADS)

    Tourret, D.; Karma, A.; Clarke, A. J.; Gibbs, P. J.; Imhoff, S. D.

    2015-06-01

    We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulations and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.

  10. Multi-scale Mexican spotted owl (Strix occidentalis lucida) nest/roost habitat selection in Arizona and a comparison with single-scale modeling results

    Treesearch

    Brad C. Timm; Kevin McGarigal; Samuel A. Cushman; Joseph L. Ganey

    2016-01-01

    Efficacy of future habitat selection studies will benefit by taking a multi-scale approach. In addition to potentially providing increased explanatory power and predictive capacity, multi-scale habitat models enhance our understanding of the scales at which species respond to their environment, which is critical knowledge required to implement effective...

  11. Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review

    PubMed Central

    Montzka, Carsten; Pauwels, Valentijn R. N.; Franssen, Harrie-Jan Hendricks; Han, Xujun; Vereecken, Harry

    2012-01-01

    More and more terrestrial observational networks are being established to monitor climatic, hydrological and land-use changes in different regions of the World. In these networks, time series of states and fluxes are recorded in an automated manner, often with a high temporal resolution. These data are important for the understanding of water, energy, and/or matter fluxes, as well as their biological and physical drivers and interactions with and within the terrestrial system. Similarly, the number and accuracy of variables, which can be observed by spaceborne sensors, are increasing. Data assimilation (DA) methods utilize these observations in terrestrial models in order to increase process knowledge as well as to improve forecasts for the system being studied. The widely implemented automation in observing environmental states and fluxes makes an operational computation more and more feasible, and it opens the perspective of short-time forecasts of the state of terrestrial systems. In this paper, we review the state of the art with respect to DA focusing on the joint assimilation of observational data precedents from different spatial scales and different data types. An introduction is given to different DA methods, such as the Ensemble Kalman Filter (EnKF), Particle Filter (PF) and variational methods (3/4D-VAR). In this review, we distinguish between four major DA approaches: (1) univariate single-scale DA (UVSS), which is the approach used in the majority of published DA applications, (2) univariate multiscale DA (UVMS) referring to a methodology which acknowledges that at least some of the assimilated data are measured at a different scale than the computational grid scale, (3) multivariate single-scale DA (MVSS) dealing with the assimilation of at least two different data types, and (4) combined multivariate multiscale DA (MVMS). Finally, we conclude with a discussion on the advantages and disadvantages of the assimilation of multiple data types in a simulation model. Existing approaches can be used to simultaneously update several model states and model parameters if applicable. In other words, the basic principles for multivariate data assimilation are already available. We argue that a better understanding of the measurement errors for different observation types, improved estimates of observation bias and improved multiscale assimilation methods for data which scale nonlinearly is important to properly weight them in multiscale multivariate data assimilation. In this context, improved cross-validation of different data types, and increased ground truth verification of remote sensing products are required. PMID:23443380

  12. Multivariate and multiscale data assimilation in terrestrial systems: a review.

    PubMed

    Montzka, Carsten; Pauwels, Valentijn R N; Franssen, Harrie-Jan Hendricks; Han, Xujun; Vereecken, Harry

    2012-11-26

    More and more terrestrial observational networks are being established to monitor climatic, hydrological and land-use changes in different regions of the World. In these networks, time series of states and fluxes are recorded in an automated manner, often with a high temporal resolution. These data are important for the understanding of water, energy, and/or matter fluxes, as well as their biological and physical drivers and interactions with and within the terrestrial system. Similarly, the number and accuracy of variables, which can be observed by spaceborne sensors, are increasing. Data assimilation (DA) methods utilize these observations in terrestrial models in order to increase process knowledge as well as to improve forecasts for the system being studied. The widely implemented automation in observing environmental states and fluxes makes an operational computation more and more feasible, and it opens the perspective of short-time forecasts of the state of terrestrial systems. In this paper, we review the state of the art with respect to DA focusing on the joint assimilation of observational data precedents from different spatial scales and different data types. An introduction is given to different DA methods, such as the Ensemble Kalman Filter (EnKF), Particle Filter (PF) and variational methods (3/4D-VAR). In this review, we distinguish between four major DA approaches: (1) univariate single-scale DA (UVSS), which is the approach used in the majority of published DA applications, (2) univariate multiscale DA (UVMS) referring to a methodology which acknowledges that at least some of the assimilated data are measured at a different scale than the computational grid scale, (3) multivariate single-scale DA (MVSS) dealing with the assimilation of at least two different data types, and (4) combined multivariate multiscale DA (MVMS). Finally, we conclude with a discussion on the advantages and disadvantages of the assimilation of multiple data types in a simulation model. Existing approaches can be used to simultaneously update several model states and model parameters if applicable. In other words, the basic principles for multivariate data assimilation are already available. We argue that a better understanding of the measurement errors for different observation types, improved estimates of observation bias and improved multiscale assimilation methods for data which scale nonlinearly is important to properly weight them in multiscale multivariate data assimilation. In this context, improved cross-validation of different data types, and increased ground truth verification of remote sensing products are required.

  13. Application of a short term air quality action plan in Madrid (Spain) under a high-pollution episode - Part II: Assessment from multi-scale modelling.

    PubMed

    Borge, Rafael; Santiago, Jose Luis; de la Paz, David; Martín, Fernando; Domingo, Jessica; Valdés, Cristina; Sánchez, Beatriz; Rivas, Esther; Rozas, Mª Teresa; Lázaro, Sonia; Pérez, Javier; Fernández, Álvaro

    2018-05-05

    Air pollution continues to be one of the main issues in urban areas. In addition to air quality plans and emission abatement policies, additional measures for high pollution episodes are needed to avoid exceedances of hourly limit values under unfavourable meteorological conditions such as the Madrid's short-term action NO 2 protocol. In December 2016 there was a strong atmospheric stability episode that turned out in generalized high NO 2 levels, causing the stage 3 of the NO 2 protocol to be triggered for the first time in Madrid (29th December). In addition to other traffic-related measures, this involves access restrictions to the city centre (50% to private cars). We simulated the episode with and without measures under a multi-scale modelling approach. A 1 km 2 resolution modelling system based on WRF-SMOKE-CMAQ was applied to assess city-wide effects while the Star-CCM+ (RANS CFD model) was used to investigate the effect at street level in a microscale domain in the city centre, focusing on Gran Vía Avenue. Changes in road traffic were simulated with the mesoscale VISUM model, incorporating real flux measurements during those days. The corresponding simulations suggest that the application of the protocol during this particular episode may have prevented concentrations to increase by 24 μg·m -3 (14% respect to the hypothetical no action scenario) downtown although it may have cause NO 2 to slightly increase in the city outskirts due to traffic redistribution. Speed limitation and parking restrictions alone (stages 1 and 2 respectively) have a very limited effect. The microscale simulation provides consistent results but shows an important variability at street level, with reduction above 100 μg·m -3 in some spots inside Gran Vía. Although further research is needed, these results point out the need to implement short-term action plans and to apply a consistent multi-scale modelling assessment to optimize urban air quality abatement strategies. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Source Attribution of Near-surface Ozone in the Western US: Improved Estimates by TF HTAP2 Multi-model Experiment and Multi-scale Chemical Data Assimilation

    NASA Astrophysics Data System (ADS)

    Huang, M.; Bowman, K. W.; Carmichael, G. R.; Lee, M.; Park, R.; Henze, D. K.; Chai, T.; Flemming, J.; Lin, M.; Weinheimer, A. J.; Wisthaler, A.; Jaffe, D. A.

    2014-12-01

    Near-surface ozone in the western US can be sensitive to transported background pollutants from the free troposphere over the eastern Pacific, as well as various local emissions sources. Accurately estimating ozone source contributions in this region has strong policy-relevant significance as the air quality standards tend to go down. Here we improve modeled contributions from local and non-local sources to western US ozone base on the HTAP2 (Task Force on Hemispheric Transport of Air Pollution) multi-model experiment, along with multi-scale chemical data assimilation. We simulate western US air quality using the STEM regional model on a 12 km horizontal resolution grid, during the NASA ARCTAS field campaign period in June 2008. STEM simulations use time-varying boundary conditions downscaled from global GEOS-Chem model simulations. Standard GEOS-Chem simulation overall underpredicted ozone at 1-5 km in the eastern Pacific, resulting in underestimated contributions from the transported background pollutants to surface ozone inland. These negative biases can be reduced by using the output from several global models that support the HTAP2 experiment, which all ran with the HTAP2 harmonized emission inventory and also calculated the contributions from east Asian anthropogenic emissions. We demonstrate that the biases in GEOS-Chem boundary conditions can be more efficiently reduced via assimilating satellite ozone profiles from the Tropospheric Emission Spectrometer (TES) instrument using the three dimensional variational (3D-Var) approach. Base upon these TES-constrained GEOS-Chem boundary conditions, we then update regional nitrogen dioxide and isoprene emissions in STEM through the four dimensional variational (4D-Var) assimilation of the Ozone Monitoring Instrument (OMI) nitrogen dioxide columns and the NASA DC-8 aircraft isoprene measurements. The 4D-Var assimilation spatially redistributed the emissions of nitrogen oxides and isoprene from various US sources, and in the meantime updated the modeled ozone and its US source contributions. Compared with available independent measurements (e.g., ozone observed on the DC-8 aircraft, and at EPA and Mt. Bachelor monitoring stations) during this period, modeled ozone fields after the multi-scale assimilation show overall improvement.

  15. Multiscale Embedded Gene Co-expression Network Analysis

    PubMed Central

    Song, Won-Min; Zhang, Bin

    2015-01-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma. PMID:26618778

  16. Multiscale Embedded Gene Co-expression Network Analysis.

    PubMed

    Song, Won-Min; Zhang, Bin

    2015-11-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  17. Modeling Primary Atomization of Liquid Fuels using a Multiphase DNS/LES Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arienti, Marco; Oefelein, Joe; Doisneau, Francois

    2016-08-01

    As part of a Laboratory Directed Research and Development project, we are developing a modeling-and-simulation capability to study fuel direct injection in automotive engines. Predicting mixing and combustion at realistic conditions remains a challenging objective of energy science. And it is a research priority in Sandia’s mission-critical area of energy security, being also relevant to many flows in defense and climate. High-performance computing applied to this non-linear multi-scale problem is key to engine calculations with increased scientific reliability.

  18. A fast random walk algorithm for computing the pulsed-gradient spin-echo signal in multiscale porous media.

    PubMed

    Grebenkov, Denis S

    2011-02-01

    A new method for computing the signal attenuation due to restricted diffusion in a linear magnetic field gradient is proposed. A fast random walk (FRW) algorithm for simulating random trajectories of diffusing spin-bearing particles is combined with gradient encoding. As random moves of a FRW are continuously adapted to local geometrical length scales, the method is efficient for simulating pulsed-gradient spin-echo experiments in hierarchical or multiscale porous media such as concrete, sandstones, sedimentary rocks and, potentially, brain or lungs. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Sensitivity of the Community Multiscale Air Quality (CMAQ) Model v4.7 Results for the Eastern United States to MM5 and WRF Meteorological Drivers

    EPA Science Inventory

    This paper presents a comparison of the operational performance of two Community Multiscale Air Quality (CMAQ) model v4.7 simulations that utilize input data from the 5th generation Mesoscale Model MM5 and the Weather Research and Forecasting (WRF) meteorological models.

  20. Multiscale Modeling of Multiphase Fluid Flow

    DTIC Science & Technology

    2016-08-01

    the disparate time and length scales involved in modeling fluid flow and heat transfer. Molecular dynamics simulations were carried out to provide a...fluid dynamics methods were used to investigate the heat transfer process in open-cell micro-foam with phase change material; enhancement of natural...Computational fluid dynamics, Heat transfer, Phase change material in Micro-foam, Molecular Dynamics, Multiphase flow, Multiscale modeling, Natural

  1. Capturing remote mixing due to internal tides using multi-scale modeling tool: SOMAR-LES

    NASA Astrophysics Data System (ADS)

    Santilli, Edward; Chalamalla, Vamsi; Scotti, Alberto; Sarkar, Sutanu

    2016-11-01

    Internal tides that are generated during the interaction of an oscillating barotropic tide with the bottom bathymetry dissipate only a fraction of their energy near the generation region. The rest is radiated away in the form of low- high-mode internal tides. These internal tides dissipate energy at remote locations when they interact with the upper ocean pycnocline, continental slope, and large scale eddies. Capturing the wide range of length and time scales involved during the life-cycle of internal tides is computationally very expensive. A recently developed multi-scale modeling tool called SOMAR-LES combines the adaptive grid refinement features of SOMAR with the turbulence modeling features of a Large Eddy Simulation (LES) to capture multi-scale processes at a reduced computational cost. Numerical simulations of internal tide generation at idealized bottom bathymetries are performed to demonstrate this multi-scale modeling technique. Although each of the remote mixing phenomena have been considered independently in previous studies, this work aims to capture remote mixing processes during the life cycle of an internal tide in more realistic settings, by allowing multi-level (coarse and fine) grids to co-exist and exchange information during the time stepping process.

  2. Multi-scale modelling of rubber-like materials and soft tissues: an appraisal

    PubMed Central

    Puglisi, G.

    2016-01-01

    We survey, in a partial way, multi-scale approaches for the modelling of rubber-like and soft tissues and compare them with classical macroscopic phenomenological models. Our aim is to show how it is possible to obtain practical mathematical models for the mechanical behaviour of these materials incorporating mesoscopic (network scale) information. Multi-scale approaches are crucial for the theoretical comprehension and prediction of the complex mechanical response of these materials. Moreover, such models are fundamental in the perspective of the design, through manipulation at the micro- and nano-scales, of new polymeric and bioinspired materials with exceptional macroscopic properties. PMID:27118927

  3. Combining Coarse-Grained Protein Models with Replica-Exchange All-Atom Molecular Dynamics

    PubMed Central

    Wabik, Jacek; Kmiecik, Sebastian; Gront, Dominik; Kouza, Maksim; Koliński, Andrzej

    2013-01-01

    We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems. PMID:23665897

  4. De novo design of recombinant spider silk proteins for material applications.

    PubMed

    Zheng, Ke; Ling, Shengjie

    2018-05-21

    Spider silks are well known for their superior mechanical properties that are stronger and tougher than steel despite being assembled at close to ambient conditions and using water as the solvent. However, it is a significant challenge to utilize spider silks for practical applications due to their limited sources. Fortunately, genetic engineering techniques offer a promising approach to produce useable amounts of spider silk variants. Starting from these recombinant spider silk proteins, a series of experiments and simulations strategies were developed to improve the recombinant spider silk proteins (RSSP) material design and fabrication with the aim of biomimicking the structure-property-function relationships of spider silks. Accordingly, in this review, we first introduce the structure-property-function relationship of spider silks. Then, we discuss the recent progress in the genetic synthesis of RSSPs and summarize their related multiscale self-assembly behaviors. Finally, we outline works utilizing multiscale modeling to assist RSSP material design. This article is protected by copyright. All rights reserved.

  5. Integrated multiscale biomaterials experiment and modelling: a perspective

    PubMed Central

    Buehler, Markus J.; Genin, Guy M.

    2016-01-01

    Advances in multiscale models and computational power have enabled a broad toolset to predict how molecules, cells, tissues and organs behave and develop. A key theme in biological systems is the emergence of macroscale behaviour from collective behaviours across a range of length and timescales, and a key element of these models is therefore hierarchical simulation. However, this predictive capacity has far outstripped our ability to validate predictions experimentally, particularly when multiple hierarchical levels are involved. The state of the art represents careful integration of multiscale experiment and modelling, and yields not only validation, but also insights into deformation and relaxation mechanisms across scales. We present here a sampling of key results that highlight both challenges and opportunities for integrated multiscale experiment and modelling in biological systems. PMID:28981126

  6. Reaction-Infiltration Instabilities in Fractured and Porous Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladd, Anthony

    In this project we are developing a multiscale analysis of the evolution of fracture permeability, using numerical simulations and linear stability analysis. Our simulations include fully three-dimensional simulations of the fracture topography, fluid flow, and reactant transport, two-dimensional simulations based on aperture models, and linear stability analysis.

  7. Multiscale Modeling of PEEK Using Reactive Molecular Dynamics Modeling and Micromechanics

    NASA Technical Reports Server (NTRS)

    Pisani, William A.; Radue, Matthew; Chinkanjanarot, Sorayot; Bednarcyk, Brett A.; Pineda, Evan J.; King, Julia A.; Odegard, Gregory M.

    2018-01-01

    Polyether ether ketone (PEEK) is a high-performance, semi-crystalline thermoplastic that is used in a wide range of engineering applications, including some structural components of aircraft. The design of new PEEK-based materials requires a precise understanding of the multiscale structure and behavior of semi-crystalline PEEK. Molecular Dynamics (MD) modeling can efficiently predict bulk-level properties of single phase polymers, and micromechanics can be used to homogenize those phases based on the overall polymer microstructure. In this study, MD modeling was used to predict the mechanical properties of the amorphous and crystalline phases of PEEK. The hierarchical microstructure of PEEK, which combines the aforementioned phases, was modeled using a multiscale modeling approach facilitated by NASA's MSGMC. The bulk mechanical properties of semi-crystalline PEEK predicted using MD modeling and MSGMC agree well with vendor data, thus validating the multiscale modeling approach.

  8. Bio-inspired configurable multiscale extracellular matrix-like structures for functional alignment and guided orientation of cells.

    PubMed

    Bae, Won-Gyu; Kim, Jangho; Choung, Yun-Hoon; Chung, Yesol; Suh, Kahp Y; Pang, Changhyun; Chung, Jong Hoon; Jeong, Hoon Eui

    2015-11-01

    Inspired by the hierarchically organized protein fibers in extracellular matrix (ECM) as well as the physiological importance of multiscale topography, we developed a simple but robust method for the design and manipulation of precisely controllable multiscale hierarchical structures using capillary force lithography in combination with an original wrinkling technique. In this study, based on our proposed fabrication technology, we approached a conceptual platform that can mimic the hierarchically multiscale topographical and orientation cues of the ECM for controlling cell structure and function. We patterned the polyurethane acrylate-based nanotopography with various orientations on the microgrooves, which could provide multiscale topography signals of ECM to control single and multicellular morphology and orientation with precision. Using our platforms, we found that the structures and orientations of fibroblast cells were greatly influenced by the nanotopography, rather than the microtopography. We also proposed a new approach that enables the generation of native ECM having nanofibers in specific three-dimensional (3D) configurations by culturing fibroblast cells on the multiscale substrata. We suggest that our methodology could be used as efficient strategies for the design and manipulation of various functional platforms, including well-defined 3D tissue structures for advanced regenerative medicine applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Monte-Carlo simulation of defect-cluster nucleation in metals during irradiation

    NASA Astrophysics Data System (ADS)

    Nakasuji, Toshiki; Morishita, Kazunori; Ruan, Xiaoyong

    2017-02-01

    A multiscale modeling approach was applied to investigate the nucleation process of CRPs (copper rich precipitates, i.e., copper-vacancy clusters) in α-Fe containing 1 at.% Cu during irradiation. Monte-Carlo simulations were performed to investigate the nucleation process, with the rate theory equation analysis to evaluate the concentration of displacement defects, along with the molecular dynamics technique to know CRP thermal stabilities in advance. Our MC simulations showed that there is long incubation period at first, followed by a rapid growth of CRPs. The incubation period depends on irradiation conditions such as the damage rate and temperature. CRP's composition during nucleation varies with time. The copper content of CRPs shows relatively rich at first, and then becomes poorer as the precipitate size increases. A widely-accepted model of CRP nucleation process is finally proposed.

  10. Multiscale Modeling of Damage Processes in Aluminum Alloys: Grain-Scale Mechanisms

    NASA Technical Reports Server (NTRS)

    Hochhalter, J. D.; Veilleux, M. G.; Bozek, J. E.; Glaessgen, E. H.; Ingraffea, A. R.

    2008-01-01

    This paper has two goals related to the development of a physically-grounded methodology for modeling the initial stages of fatigue crack growth in an aluminum alloy. The aluminum alloy, AA 7075-T651, is susceptible to fatigue cracking that nucleates from cracked second phase iron-bearing particles. Thus, the first goal of the paper is to validate an existing framework for the prediction of the conditions under which the particles crack. The observed statistics of particle cracking (defined as incubation for this alloy) must be accurately predicted to simulate the stochastic nature of microstructurally small fatigue crack (MSFC) formation. Also, only by simulating incubation of damage in a statistically accurate manner can subsequent stages of crack growth be accurately predicted. To maintain fidelity and computational efficiency, a filtering procedure was developed to eliminate particles that were unlikely to crack. The particle filter considers the distributions of particle sizes and shapes, grain texture, and the configuration of the surrounding grains. This filter helps substantially reduce the number of particles that need to be included in the microstructural models and forms the basis of the future work on the subsequent stages of MSFC, crack nucleation and microstructurally small crack propagation. A physics-based approach to simulating fracture should ultimately begin at nanometer length scale, in which atomistic simulation is used to predict the fundamental damage mechanisms of MSFC. These mechanisms include dislocation formation and interaction, interstitial void formation, and atomic diffusion. However, atomistic simulations quickly become computationally intractable as the system size increases, especially when directly linking to the already large microstructural models. Therefore, the second goal of this paper is to propose a method that will incorporate atomistic simulation and small-scale experimental characterization into the existing multiscale framework. At the microscale, the nanoscale mechanics are represented within cohesive zones where appropriate, i.e. where the mechanics observed at the nanoscale can be represented as occurring on a plane such as at grain boundaries or slip planes at a crack front. Important advancements that are yet to be made include: 1. an increased fidelity in cohesive zone modeling; 2. a means to understand how atomistic simulation scales with time; 3. a new experimental methodology for generating empirical models for CZMs and emerging materials; and 4. a validation of simulations of the damage processes at the nano-micro scale. With ever-increasing computer power, the long-term ability to employ atomistic simulation for the prognosis of structural components will not be limited by computation power, but by our lack of knowledge in incorporating atomistic models into simulations of MSFC into a multiscale framework.

  11. Sustainable design and manufacturing of multifunctional polymer nanocomposite coatings: A multiscale systems approach

    NASA Astrophysics Data System (ADS)

    Xiao, Jie

    Polymer nanocomposites have a great potential to be a dominant coating material in a wide range of applications in the automotive, aerospace, ship-making, construction, and pharmaceutical industries. However, how to realize design sustainability of this type of nanostructured materials and how to ensure the true optimality of the product quality and process performance in coating manufacturing remain as a mountaintop area. The major challenges arise from the intrinsic multiscale nature of the material-process-product system and the need to manipulate the high levels of complexity and uncertainty in design and manufacturing processes. This research centers on the development of a comprehensive multiscale computational methodology and a computer-aided tool set that can facilitate multifunctional nanocoating design and application from novel function envisioning and idea refinement, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications and life cycle analysis. The principal idea is to achieve exceptional system performance through concurrent characterization and optimization of materials, product and associated manufacturing processes covering a wide range of length and time scales. Multiscale modeling and simulation techniques ranging from microscopic molecular modeling to classical continuum modeling are seamlessly coupled. The tight integration of different methods and theories at individual scales allows the prediction of macroscopic coating performance from the fundamental molecular behavior. Goal-oriented design is also pursued by integrating additional methods for bio-inspired dynamic optimization and computational task management that can be implemented in a hierarchical computing architecture. Furthermore, multiscale systems methodologies are developed to achieve the best possible material application towards sustainable manufacturing. Automotive coating manufacturing, that involves paint spay and curing, is specifically discussed in this dissertation. Nevertheless, the multiscale considerations for sustainable manufacturing, the novel concept of IPP control, and the new PPDE-based optimization method are applicable to other types of manufacturing, e.g., metal coating development through electroplating. It is demonstrated that the methodological development in this dissertation can greatly facilitate experimentalists in novel material invention and new knowledge discovery. At the same time, they can provide scientific guidance and reveal various new opportunities and effective strategies for sustainable manufacturing.

  12. Invasion emerges from cancer cell adaptation to competitive microenvironments: Quantitative predictions from multiscale mathematical models

    PubMed Central

    Rejniak, Katarzyna A.; Gerlee, Philip

    2013-01-01

    Summary In this review we summarize our recent efforts using mathematical modeling and computation to simulate cancer invasion, with a special emphasis on the tumor microenvironment. We consider cancer progression as a complex multiscale process and approach it with three single-cell based mathematical models that examine the interactions between tumor microenvironment and cancer cells at several scales. The models exploit distinct mathematical and computational techniques, yet they share core elements and can be compared and/or related to each other. The overall aim of using mathematical models is to uncover the fundamental mechanisms that lend cancer progression its direction towards invasion and metastasis. The models effectively simulate various modes of cancer cell adaptation to the microenvironment in a growing tumor. All three point to a general mechanism underlying cancer invasion: competition for adaptation between distinct cancer cell phenotypes, driven by a tumor microenvironment with scarce resources. These theoretical predictions pose an intriguing experimental challenge: test the hypothesis that invasion is an emergent property of cancer cell populations adapting to selective microenvironment pressure, rather than culmination of cancer progression producing cells with the “invasive phenotype”. In broader terms, we propose that fundamental insights into cancer can be achieved by experimentation interacting with theoretical frameworks provided by computational and mathematical modeling. PMID:18524624

  13. Mechanical integrity of a carbon nanotube/copper-based through-silicon via for 3D integrated circuits: a multi-scale modeling approach.

    PubMed

    Awad, Ibrahim; Ladani, Leila

    2015-12-04

    Carbon nanotube (CNT)/copper (Cu) composite material is proposed to replace Cu-based through-silicon vias (TSVs) in micro-electronic packages. The proposed material is believed to offer extraordinary mechanical and electrical properties and the presence of CNTs in Cu is believed to overcome issues associated with miniaturization of Cu interconnects, such as electromigration. This study introduces a multi-scale modeling of the proposed TSV in order to evaluate its mechanical integrity under mechanical and thermo-mechanical loading conditions. Molecular dynamics (MD) simulation was used to determine CNT/Cu interface adhesion properties. A cohesive zone model (CZM) was found to be most appropriate to model the interface adhesion, and CZM parameters at the nanoscale were determined using MD simulation. CZM parameters were then used in the finite element analysis in order to understand the mechanical and thermo-mechanical behavior of composite TSV at micro-scale. From the results, CNT/Cu separation does not take place prior to plastic deformation of Cu in bending, and separation does not take place when standard thermal cycling is applied. Further investigation is recommended in order to alleviate the increased plastic deformation in Cu at the CNT/Cu interface in both loading conditions.

  14. Control of Thermo-Acoustics Instabilities: The Multi-Scale Extended Kalman Approach

    NASA Technical Reports Server (NTRS)

    Le, Dzu K.; DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    "Multi-Scale Extended Kalman" (MSEK) is a novel model-based control approach recently found to be effective for suppressing combustion instabilities in gas turbines. A control law formulated in this approach for fuel modulation demonstrated steady suppression of a high-frequency combustion instability (less than 500Hz) in a liquid-fuel combustion test rig under engine-realistic conditions. To make-up for severe transport-delays on control effect, the MSEK controller combines a wavelet -like Multi-Scale analysis and an Extended Kalman Observer to predict the thermo-acoustic states of combustion pressure perturbations. The commanded fuel modulation is composed of a damper action based on the predicted states, and a tones suppression action based on the Multi-Scale estimation of thermal excitations and other transient disturbances. The controller performs automatic adjustments of the gain and phase of these actions to minimize the Time-Scale Averaged Variances of the pressures inside the combustion zone and upstream of the injector. The successful demonstration of Active Combustion Control with this MSEK controller completed an important NASA milestone for the current research in advanced combustion technologies.

  15. Microphysics in the Multi-Scale Modeling Systems with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.

  16. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Accident Tolerant Fuels High Impact Problem: Coordinate Multiscale FeCrAl Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, K. A.; Hales, J. D.; Zhang, Y.

    Since the events at the Fukushima-Daiichi nuclear power plant in March 2011 significant research has unfolded at national laboratories, universities and other institutions into alternative materials that have potential enhanced ac- cident tolerance when compared to traditional UO2 fuel zircaloy clad fuel rods. One of the potential replacement claddings are iron-chromium-alunimum (FeCrAl) alloys due to their increased oxidation resistance [1–4] and higher strength [1, 2]. While the oxidation characteristics of FeCrAl are a benefit for accident tolerance, the thermal neu- tron absorption cross section of FeCrAl is about ten times that of Zircaloy. This neutronic penalty necessitates thinner cladding. Thismore » allows for slightly larger pellets to give the same cold gap width in the rod. However, the slight increase in pellet diameter is not sufficient to compensate for the neutronic penalty and enriching the fuel beyond the current 5% limit appears to be necessary [5]. Current estimates indicate that this neutronic penalty will impose an increase in fuel cost of 15-35% [1, 2]. In addition to the neutronic disadvantage, it is anticipated that tritium release to the coolant will be larger because the permeability of hydrogen in FeCrAl is about 100 times higher than in Zircaloy [6]. Also, radiation-induced hardening and embrittlement of FeCrAl need to be fully characterized experimentally [7]. Due to the aggressive development schedule for inserting some of the potential materials into lead test assemblies or rods by 2022 [8] multiscale multiphysics modeling approaches have been used to provide insight into these the use of FeCrAl as a cladding material. The purpose of this letter report is to highlight the multiscale modeling effort for iron-chromium-alunimum (FeCrAl) cladding alloys as part of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program through its Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The approach taken throughout the HIP is to utilize lower length scale approaches (e.g., density functional theory, cluster dynamics, rate theory, phase field, and Visco-Plastic- Self-Consistent (VPSC)) to develop more physically informed models at the engineering scale for use in the BISON [9] fuel performance code.« less

  17. Mesoscale Effective Property Simulations Incorporating Conductive Binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trembacki, Bradley L.; Noble, David R.; Brunini, Victor E.

    Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure,more » a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Lastly, our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.« less

  18. Mesoscale Effective Property Simulations Incorporating Conductive Binder

    DOE PAGES

    Trembacki, Bradley L.; Noble, David R.; Brunini, Victor E.; ...

    2017-07-26

    Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure,more » a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Lastly, our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.« less

  19. Towards Characterization, Modeling, and Uncertainty Quantification in Multi-scale Mechanics of Oragnic-rich Shales

    NASA Astrophysics Data System (ADS)

    Abedi, S.; Mashhadian, M.; Noshadravan, A.

    2015-12-01

    Increasing the efficiency and sustainability in operation of hydrocarbon recovery from organic-rich shales requires a fundamental understanding of chemomechanical properties of organic-rich shales. This understanding is manifested in form of physics-bases predictive models capable of capturing highly heterogeneous and multi-scale structure of organic-rich shale materials. In this work we present a framework of experimental characterization, micromechanical modeling, and uncertainty quantification that spans from nanoscale to macroscale. Application of experiments such as coupled grid nano-indentation and energy dispersive x-ray spectroscopy and micromechanical modeling attributing the role of organic maturity to the texture of the material, allow us to identify unique clay mechanical properties among different samples that are independent of maturity of shale formations and total organic content. The results can then be used to inform the physically-based multiscale model for organic rich shales consisting of three levels that spans from the scale of elementary building blocks (e.g. clay minerals in clay-dominated formations) of organic rich shales to the scale of the macroscopic inorganic/organic hard/soft inclusion composite. Although this approach is powerful in capturing the effective properties of organic-rich shale in an average sense, it does not account for the uncertainty in compositional and mechanical model parameters. Thus, we take this model one step forward by systematically incorporating the main sources of uncertainty in modeling multiscale behavior of organic-rich shales. In particular we account for the uncertainty in main model parameters at different scales such as porosity, elastic properties and mineralogy mass percent. To that end, we use Maximum Entropy Principle and random matrix theory to construct probabilistic descriptions of model inputs based on available information. The Monte Carlo simulation is then carried out to propagate the uncertainty and consequently construct probabilistic descriptions of properties at multiple length-scales. The combination of experimental characterization and stochastic multi-scale modeling presented in this work improves the robustness in the prediction of essential subsurface parameters in engineering scale.

  20. Multiscale mechanics of graphene oxide and graphene based composite films

    NASA Astrophysics Data System (ADS)

    Cao, Changhong

    The mechanical behavior of graphene oxide is length scale dependent: orders of magnitude different between the bulk forms and monolayer counterparts. Understanding the underlying mechanisms plays a significant role in their versatile application. A systematic multiscale mechanical study from monolayer to multilayer, including the interactions between layers of GO, can provide fundamental support for material engineering. In this thesis, an experimental coupled with simulation approach was used to study the multiscale mechanics of graphene oxide (GO) and the methods developed for GO study are proved to be applicable also to mechanical study of graphene based composites. GO is a layered nanomaterial comprised of hierarchical units whose characteristic dimension lies between monolayer GO (0.7 nm - 1.2 nm) and bulk GO papers (≥ 1 mum). Mechanical behaviors of monolayer GO and GO nanosheets (10 nm- 100 nm) were comprehensively studied this work. Monolayer GO was measured to have an average strength of 24.7 GPa,, orders of magnitude higher than previously reported values for GO paper and approximately 50% of the 2D intrinsic strength of pristine graphene. The huge discrepancy between the strength of monolayer GO and that of bulk GO paper motivated the study of GO at the intermediate length scale (GO nanosheets). Experimental results showed that GO nanosheets possess high strength in the gigapascal range. Molecular Dynamic simulations showed that the transition in the failure behavior from interplanar fracture to intraplanar fracture was responsible for the huge strength discrepancy between nanometer scale GO and bulk GO papers. Additionally, the interfacial shear strength between GO layers was found to be a key contributing factor to the distinct mechanical behavior among hierarchical units of GO. The understanding of the multiscale mechanics of GO is transferrable in heterogeneous layered nanomaterials, such as graphene-metal oxide based anode materials in Li-ion batteries. The novel methods developed in this work to study GO multilayered structures were also applied to study the mechanics of graphene-TiO 2 composites. It was found that a critical thickness range of TiO2 deposition on graphene is required for the observed stiffness enhancement effect of graphene to influence the mechanical behavior of the composite.

  1. Adaptive two-regime method: Application to front propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Martin, E-mail: martin.robinson@maths.ox.ac.uk; Erban, Radek, E-mail: erban@maths.ox.ac.uk; Flegg, Mark, E-mail: mark.flegg@monash.edu

    2014-03-28

    The Adaptive Two-Regime Method (ATRM) is developed for hybrid (multiscale) stochastic simulation of reaction-diffusion problems. It efficiently couples detailed Brownian dynamics simulations with coarser lattice-based models. The ATRM is a generalization of the previously developed Two-Regime Method [Flegg et al., J. R. Soc., Interface 9, 859 (2012)] to multiscale problems which require a dynamic selection of regions where detailed Brownian dynamics simulation is used. Typical applications include a front propagation or spatio-temporal oscillations. In this paper, the ATRM is used for an in-depth study of front propagation in a stochastic reaction-diffusion system which has its mean-field model given in termsmore » of the Fisher equation [R. Fisher, Ann. Eugen. 7, 355 (1937)]. It exhibits a travelling reaction front which is sensitive to stochastic fluctuations at the leading edge of the wavefront. Previous studies into stochastic effects on the Fisher wave propagation speed have focused on lattice-based models, but there has been limited progress using off-lattice (Brownian dynamics) models, which suffer due to their high computational cost, particularly at the high molecular numbers that are necessary to approach the Fisher mean-field model. By modelling only the wavefront itself with the off-lattice model, it is shown that the ATRM leads to the same Fisher wave results as purely off-lattice models, but at a fraction of the computational cost. The error analysis of the ATRM is also presented for a morphogen gradient model.« less

  2. The diurnal cycle of clouds and precipitation at the ARM SGP site: Cloud radar observations and simulations from the multiscale modeling framework

    DOE PAGES

    Zhao, Wei; Marchand, Roger; Fu, Qiang

    2017-07-08

    Millimeter Wavelength Cloud Radar (MMCR) data from December 1996 to December 2010, collected at the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site, are used to examine the diurnal cycle of hydrometeor occurrence. These data are categorized into clouds (-40 dBZ e ≤ reflectivity < -10 dBZ e), drizzle and light precipitation (-10 dBZ e ≤ reflectivity < 10 dBZ e), and heavy precipitation (reflectivity ≥ 10 dBZ e). The same criteria are implemented for the observation-equivalent reflectivity calculated by feeding outputs from a Multiscale Modeling Framework (MMF) climate model into a radar simulator.more » The MMF model consists of the National Center for Atmospheric Research Community Atmosphere Model with conventional cloud parameterizations replaced by a cloud-resolving model. We find that a radar simulator combined with the simple reflectivity categories can be an effective approach for evaluating diurnal variations in model hydrometeor occurrence. It is shown that the MMF only marginally captures observed increases in the occurrence of boundary layer clouds after sunrise in spring and autumn and does not capture diurnal changes in boundary layer clouds during the summer. Above the boundary layer, the MMF captures reasonably well diurnal variations in the vertical structure of clouds and light and heavy precipitation in the summer but not in the spring.« less

  3. Literature review report on atomistic modeling tools for FeCrAl alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng; Schwen, Daniel; Martinez, Enrique

    2015-12-01

    This reports summarizes the literature review results on atomistic tools, particularly interatomic potentials used in molecular dynamics simulations, for FeCrAl ternary alloys. FeCrAl has recently been identified as a possible cladding concept for accident tolerant fuels for its superior corrosion resistance. Along with several other concepts, an initial evaluation and recommendation are desired for FeCrAl before it’s used in realistic fuels. For this purpose, sufficient understanding on the in-reactor behavior of FeCrAl needs to be grained in a relatively short timeframe, and multiscale modeling and simulations have been selected as an efficient measure to supplement experiments and in-reactor testing formore » better understanding on FeCrAl. For the limited knowledge on FeCrAl alloys, the multiscale modeling approach relies on atomistic simulations to obtain the missing material parameters and properties. As a first step, atomistic tools have to be identified and this is the purpose of the present report. It was noticed during the literature survey that no interatomic potentials currently available for FeCrAl. Here, we summarize the interatomic potentials available for FeCr alloys for possible molecular dynamics studies using FeCr as surrogate materials. Other atomistic methods such as lattice kinetic Monte Carlo are also included in this report. A couple of research topics at the atomic scale are suggested based on the literature survey.« less

  4. Computational Chemistry Toolkit for Energetic Materials Design

    DTIC Science & Technology

    2006-11-01

    industry are aggressively engaged in efforts to develop multiscale modeling and simulation methodologies to model and analyze complex phenomena across...energetic materials design. It is hoped that this toolkit will evolve into a collection of well-integrated multiscale modeling methodologies...Experimenta Theoreticala This Work 1-5-Diamino-4- methyl- tetrazolium nitrate 8.4 41.7 47.5 1-5-Diamino-4- methyl- tetrazolium azide 138.1 161.6

  5. Simulated shift work in rats perturbs multiscale regulation of locomotor activity.

    PubMed

    Hsieh, Wan-Hsin; Escobar, Carolina; Yugay, Tatiana; Lo, Men-Tzung; Pittman-Polletta, Benjamin; Salgado-Delgado, Roberto; Scheer, Frank A J L; Shea, Steven A; Buijs, Ruud M; Hu, Kun

    2014-07-06

    Motor activity possesses a multiscale regulation that is characterized by fractal activity fluctuations with similar structure across a wide range of timescales spanning minutes to hours. Fractal activity patterns are disturbed in animals after ablating the master circadian pacemaker (suprachiasmatic nucleus, SCN) and in humans with SCN dysfunction as occurs with aging and in dementia, suggesting the crucial role of the circadian system in the multiscale activity regulation. We hypothesized that the normal synchronization between behavioural cycles and the SCN-generated circadian rhythms is required for multiscale activity regulation. To test the hypothesis, we studied activity fluctuations of rats in a simulated shift work protocol that was designed to force animals to be active during the habitual resting phase of the circadian/daily cycle. We found that these animals had gradually decreased mean activity level and reduced 24-h activity rhythm amplitude, indicating disturbed circadian and behavioural cycles. Moreover, these animals had disrupted fractal activity patterns as characterized by more random activity fluctuations at multiple timescales from 4 to 12 h. Intriguingly, these activity disturbances exacerbated when the shift work schedule lasted longer and persisted even in the normal days (without forced activity) following the shift work. The disrupted circadian and fractal patterns resemble those of SCN-lesioned animals and of human patients with dementia, suggesting a detrimental impact of shift work on multiscale activity regulation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. The topology of the cosmic web in terms of persistent Betti numbers

    NASA Astrophysics Data System (ADS)

    Pranav, Pratyush; Edelsbrunner, Herbert; van de Weygaert, Rien; Vegter, Gert; Kerber, Michael; Jones, Bernard J. T.; Wintraecken, Mathijs

    2017-03-01

    We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys.

  7. An integrated approach to patient-specific predictive modeling for single ventricle heart palliation.

    PubMed

    Corsini, Chiara; Baker, Catriona; Kung, Ethan; Schievano, Silvia; Arbia, Gregory; Baretta, Alessia; Biglino, Giovanni; Migliavacca, Francesco; Dubini, Gabriele; Pennati, Giancarlo; Marsden, Alison; Vignon-Clementel, Irene; Taylor, Andrew; Hsia, Tain-Yen; Dorfman, Adam

    2014-01-01

    In patients with congenital heart disease and a single ventricle (SV), ventricular support of the circulation is inadequate, and staged palliative surgery (usually 3 stages) is needed for treatment. In the various palliative surgical stages individual differences in the circulation are important and patient-specific surgical planning is ideal. In this study, an integrated approach between clinicians and engineers has been developed, based on patient-specific multi-scale models, and is here applied to predict stage 2 surgical outcomes. This approach involves four distinct steps: (1) collection of pre-operative clinical data from a patient presenting for SV palliation, (2) construction of the pre-operative model, (3) creation of feasible virtual surgical options which couple a three-dimensional model of the surgical anatomy with a lumped parameter model (LPM) of the remainder of the circulation and (4) performance of post-operative simulations to aid clinical decision making. The pre-operative model is described, agreeing well with clinical flow tracings and mean pressures. Two surgical options (bi-directional Glenn and hemi-Fontan operations) are virtually performed and coupled to the pre-operative LPM, with the hemodynamics of both options reported. Results are validated against postoperative clinical data. Ultimately, this work represents the first patient-specific predictive modeling of stage 2 palliation using virtual surgery and closed-loop multi-scale modeling.

  8. A Computational Framework for Efficient Low Temperature Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Verma, Abhishek Kumar; Venkattraman, Ayyaswamy

    2016-10-01

    Over the past years, scientific computing has emerged as an essential tool for the investigation and prediction of low temperature plasmas (LTP) applications which includes electronics, nanomaterial synthesis, metamaterials etc. To further explore the LTP behavior with greater fidelity, we present a computational toolbox developed to perform LTP simulations. This framework will allow us to enhance our understanding of multiscale plasma phenomenon using high performance computing tools mainly based on OpenFOAM FVM distribution. Although aimed at microplasma simulations, the modular framework is able to perform multiscale, multiphysics simulations of physical systems comprises of LTP. Some salient introductory features are capability to perform parallel, 3D simulations of LTP applications on unstructured meshes. Performance of the solver is tested based on numerical results assessing accuracy and efficiency of benchmarks for problems in microdischarge devices. Numerical simulation of microplasma reactor at atmospheric pressure with hemispherical dielectric coated electrodes will be discussed and hence, provide an overview of applicability and future scope of this framework.

  9. Subgrid-scale stresses and scalar fluxes constructed by the multi-scale turnover Lagrangian map

    NASA Astrophysics Data System (ADS)

    AL-Bairmani, Sukaina; Li, Yi; Rosales, Carlos; Xie, Zheng-tong

    2017-04-01

    The multi-scale turnover Lagrangian map (MTLM) [C. Rosales and C. Meneveau, "Anomalous scaling and intermittency in three-dimensional synthetic turbulence," Phys. Rev. E 78, 016313 (2008)] uses nested multi-scale Lagrangian advection of fluid particles to distort a Gaussian velocity field and, as a result, generate non-Gaussian synthetic velocity fields. Passive scalar fields can be generated with the procedure when the fluid particles carry a scalar property [C. Rosales, "Synthetic three-dimensional turbulent passive scalar fields via the minimal Lagrangian map," Phys. Fluids 23, 075106 (2011)]. The synthetic fields have been shown to possess highly realistic statistics characterizing small scale intermittency, geometrical structures, and vortex dynamics. In this paper, we present a study of the synthetic fields using the filtering approach. This approach, which has not been pursued so far, provides insights on the potential applications of the synthetic fields in large eddy simulations and subgrid-scale (SGS) modelling. The MTLM method is first generalized to model scalar fields produced by an imposed linear mean profile. We then calculate the subgrid-scale stress, SGS scalar flux, SGS scalar variance, as well as related quantities from the synthetic fields. Comparison with direct numerical simulations (DNSs) shows that the synthetic fields reproduce the probability distributions of the SGS energy and scalar dissipation rather well. Related geometrical statistics also display close agreement with DNS results. The synthetic fields slightly under-estimate the mean SGS energy dissipation and slightly over-predict the mean SGS scalar variance dissipation. In general, the synthetic fields tend to slightly under-estimate the probability of large fluctuations for most quantities we have examined. Small scale anisotropy in the scalar field originated from the imposed mean gradient is captured. The sensitivity of the synthetic fields on the input spectra is assessed by using truncated spectra or model spectra as the input. Analyses show that most of the SGS statistics agree well with those from MTLM fields with DNS spectra as the input. For the mean SGS energy dissipation, some significant deviation is observed. However, it is shown that the deviation can be parametrized by the input energy spectrum, which demonstrates the robustness of the MTLM procedure.

  10. Report of the proceedings of the Colloquium and Workshop on Multiscale Coupled Modeling

    NASA Technical Reports Server (NTRS)

    Koch, Steven E. (Editor)

    1993-01-01

    The Colloquium and Workshop on Multiscale Coupled Modeling was held for the purpose of addressing modeling issues of importance to planning for the Cooperative Multiscale Experiment (CME). The colloquium presentations attempted to assess the current ability of numerical models to accurately simulate the development and evolution of mesoscale cloud and precipitation systems and their cycling of water substance, energy, and trace species. The primary purpose of the workshop was to make specific recommendations for the improvement of mesoscale models prior to the CME, their coupling with cloud, cumulus ensemble, hydrology, air chemistry models, and the observational requirements to initialize and verify these models.

  11. Multi-scale simulations of space problems with iPIC3D

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Bettarini, Lapo; Markidis, Stefano

    The implicit Particle-in-Cell method for the computer simulation of space plasma, and its im-plementation in a three-dimensional parallel code, called iPIC3D, are presented. The implicit integration in time of the Vlasov-Maxwell system removes the numerical stability constraints and enables kinetic plasma simulations at magnetohydrodynamics scales. Simulations of mag-netic reconnection in plasma are presented to show the effectiveness of the algorithm. In particular we will show a number of simulations done for large scale 3D systems using the physical mass ratio for Hydrogen. Most notably one simulation treats kinetically a box of tens of Earth radii in each direction and was conducted using about 16000 processors of the Pleiades NASA computer. The work is conducted in collaboration with the MMS-IDS theory team from University of Colorado (M. Goldman, D. Newman and L. Andersson). Reference: Stefano Markidis, Giovanni Lapenta, Rizwan-uddin Multi-scale simulations of plasma with iPIC3D Mathematics and Computers in Simulation, Available online 17 October 2009, http://dx.doi.org/10.1016/j.matcom.2009.08.038

  12. A Multiscale Closed-Loop Cardiovascular Model, with Applications to Heart Pacing and Hemorrhage

    NASA Astrophysics Data System (ADS)

    Canuto, Daniel; Eldredge, Jeff; Chong, Kwitae; Benharash, Peyman; Dutson, Erik

    2017-11-01

    A computational tool is developed for simulating the dynamic response of the human cardiovascular system to various stressors and injuries. The tool couples zero-dimensional models of the heart, pulmonary vasculature, and peripheral vasculature to one-dimensional models of the major systemic arteries. To simulate autonomic response, this multiscale circulatory model is integrated with a feedback model of the baroreflex, allowing control of heart rate, cardiac contractility, and peripheral impedance. The performance of the tool is demonstrated in two scenarios: increasing heart rate by stimulating the sympathetic nervous system, and an acute 10 percent hemorrhage from the left femoral artery.

  13. A multi-scale network method for two-phase flow in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khayrat, Karim, E-mail: khayratk@ifd.mavt.ethz.ch; Jenny, Patrick

    Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces withinmore » each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.« less

  14. Capturing Multiscale Phenomena via Adaptive Mesh Refinement (AMR) in 2D and 3D Atmospheric Flows

    NASA Astrophysics Data System (ADS)

    Ferguson, J. O.; Jablonowski, C.; Johansen, H.; McCorquodale, P.; Ullrich, P. A.; Langhans, W.; Collins, W. D.

    2017-12-01

    Extreme atmospheric events such as tropical cyclones are inherently complex multiscale phenomena. Such phenomena are a challenge to simulate in conventional atmosphere models, which typically use rather coarse uniform-grid resolutions. To enable study of these systems, Adaptive Mesh Refinement (AMR) can provide sufficient local resolution by dynamically placing high-resolution grid patches selectively over user-defined features of interest, such as a developing cyclone, while limiting the total computational burden of requiring such high-resolution globally. This work explores the use of AMR with a high-order, non-hydrostatic, finite-volume dynamical core, which uses the Chombo AMR library to implement refinement in both space and time on a cubed-sphere grid. The characteristics of the AMR approach are demonstrated via a series of idealized 2D and 3D test cases designed to mimic atmospheric dynamics and multiscale flows. In particular, new shallow-water test cases with forcing mechanisms are introduced to mimic the strengthening of tropical cyclone-like vortices and to include simplified moisture and convection processes. The forced shallow-water experiments quantify the improvements gained from AMR grids, assess how well transient features are preserved across grid boundaries, and determine effective refinement criteria. In addition, results from idealized 3D test cases are shown to characterize the accuracy and stability of the non-hydrostatic 3D AMR dynamical core.

  15. Multi-element least square HDMR methods and their applications for stochastic multiscale model reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Xinping, E-mail: exping@126.com

    Stochastic multiscale modeling has become a necessary approach to quantify uncertainty and characterize multiscale phenomena for many practical problems such as flows in stochastic porous media. The numerical treatment of the stochastic multiscale models can be very challengeable as the existence of complex uncertainty and multiple physical scales in the models. To efficiently take care of the difficulty, we construct a computational reduced model. To this end, we propose a multi-element least square high-dimensional model representation (HDMR) method, through which the random domain is adaptively decomposed into a few subdomains, and a local least square HDMR is constructed in eachmore » subdomain. These local HDMRs are represented by a finite number of orthogonal basis functions defined in low-dimensional random spaces. The coefficients in the local HDMRs are determined using least square methods. We paste all the local HDMR approximations together to form a global HDMR approximation. To further reduce computational cost, we present a multi-element reduced least-square HDMR, which improves both efficiency and approximation accuracy in certain conditions. To effectively treat heterogeneity properties and multiscale features in the models, we integrate multiscale finite element methods with multi-element least-square HDMR for stochastic multiscale model reduction. This approach significantly reduces the original model's complexity in both the resolution of the physical space and the high-dimensional stochastic space. We analyze the proposed approach, and provide a set of numerical experiments to demonstrate the performance of the presented model reduction techniques. - Highlights: • Multi-element least square HDMR is proposed to treat stochastic models. • Random domain is adaptively decomposed into some subdomains to obtain adaptive multi-element HDMR. • Least-square reduced HDMR is proposed to enhance computation efficiency and approximation accuracy in certain conditions. • Integrating MsFEM and multi-element least square HDMR can significantly reduce computation complexity.« less

  16. From Solidification Processing to Microstructure to Mechanical Properties: A Multi-scale X-ray Study of an Al-Cu Alloy Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tourret, D.; Mertens, J. C. E.; Lieberman, E.

    We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure,more » supported by quantitative simulations of microstructure formation and its mechanical behavior.« less

  17. From Solidification Processing to Microstructure to Mechanical Properties: A Multi-scale X-ray Study of an Al-Cu Alloy Sample

    DOE PAGES

    Tourret, D.; Mertens, J. C. E.; Lieberman, E.; ...

    2017-09-13

    We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure,more » supported by quantitative simulations of microstructure formation and its mechanical behavior.« less

  18. From Solidification Processing to Microstructure to Mechanical Properties: A Multi-scale X-ray Study of an Al-Cu Alloy Sample

    NASA Astrophysics Data System (ADS)

    Tourret, D.; Mertens, J. C. E.; Lieberman, E.; Imhoff, S. D.; Gibbs, J. W.; Henderson, K.; Fezzaa, K.; Deriy, A. L.; Sun, T.; Lebensohn, R. A.; Patterson, B. M.; Clarke, A. J.

    2017-11-01

    We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure, supported by quantitative simulations of microstructure formation and its mechanical behavior.

  19. Micro-Macro Simulation of Viscoelastic Fluids in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Rüttgers, Alexander; Griebel, Michael

    2012-11-01

    The development of the chemical industry resulted in various complex fluids that cannot be correctly described by classical fluid mechanics. For instance, this includes paint, engine oils with polymeric additives and toothpaste. We currently perform multiscale viscoelastic flow simulations for which we have coupled our three-dimensional Navier-Stokes solver NaSt3dGPF with the stochastic Brownian configuration field method on the micro-scale. In this method, we represent a viscoelastic fluid as a dumbbell system immersed in a three-dimensional Newtonian liquid which leads to a six-dimensional problem in space. The approach requires large computational resources and therefore depends on an efficient parallelisation strategy. Our flow solver is parallelised with a domain decomposition approach using MPI. It shows excellent scale-up results for up to 128 processors. In this talk, we present simulation results for viscoelastic fluids in square-square contractions due to their relevance for many engineering applications such as extrusion. Another aspect of the talk is the parallel implementation in NaSt3dGPF and the parallel scale-up and speed-up behaviour.

  20. Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation.

    PubMed

    Erban, Radek; Kevrekidis, Ioannis G; Adalsteinsson, David; Elston, Timothy C

    2006-02-28

    We present computer-assisted methods for analyzing stochastic models of gene regulatory networks. The main idea that underlies this equation-free analysis is the design and execution of appropriately initialized short bursts of stochastic simulations; the results of these are processed to estimate coarse-grained quantities of interest, such as mesoscopic transport coefficients. In particular, using a simple model of a genetic toggle switch, we illustrate the computation of an effective free energy Phi and of a state-dependent effective diffusion coefficient D that characterize an unavailable effective Fokker-Planck equation. Additionally we illustrate the linking of equation-free techniques with continuation methods for performing a form of stochastic "bifurcation analysis"; estimation of mean switching times in the case of a bistable switch is also implemented in this equation-free context. The accuracy of our methods is tested by direct comparison with long-time stochastic simulations. This type of equation-free analysis appears to be a promising approach to computing features of the long-time, coarse-grained behavior of certain classes of complex stochastic models of gene regulatory networks, circumventing the need for long Monte Carlo simulations.

  1. A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming

    2018-03-01

    This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.

  2. Adaptive resolution simulation of oligonucleotides

    NASA Astrophysics Data System (ADS)

    Netz, Paulo A.; Potestio, Raffaello; Kremer, Kurt

    2016-12-01

    Nucleic acids are characterized by a complex hierarchical structure and a variety of interaction mechanisms with other molecules. These features suggest the need of multiscale simulation methods in order to grasp the relevant physical properties of deoxyribonucleic acid (DNA) and RNA using in silico experiments. Here we report an implementation of a dual-resolution modeling of a DNA oligonucleotide in physiological conditions; in the presented setup only the nucleotide molecule and the solvent and ions in its proximity are described at the atomistic level; in contrast, the water molecules and ions far from the DNA are represented as computationally less expensive coarse-grained particles. Through the analysis of several structural and dynamical parameters, we show that this setup reliably reproduces the physical properties of the DNA molecule as observed in reference atomistic simulations. These results represent a first step towards a realistic multiscale modeling of nucleic acids and provide a quantitatively solid ground for their simulation using dual-resolution methods.

  3. Multi-Scale Modeling of Liquid Phase Sintering Affected by Gravity: Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Olevsky, Eugene; German, Randall M.

    2012-01-01

    A multi-scale simulation concept taking into account impact of gravity on liquid phase sintering is described. The gravity influence can be included at both the micro- and macro-scales. At the micro-scale, the diffusion mass-transport is directionally modified in the framework of kinetic Monte-Carlo simulations to include the impact of gravity. The micro-scale simulations can provide the values of the constitutive parameters for macroscopic sintering simulations. At the macro-scale, we are attempting to embed a continuum model of sintering into a finite-element framework that includes the gravity forces and substrate friction. If successful, the finite elements analysis will enable predictions relevant to space-based processing, including size and shape and property predictions. Model experiments are underway to support the models via extraction of viscosity moduli versus composition, particle size, heating rate, temperature and time.

  4. Multi-scale structures of turbulent magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T. K. M., E-mail: takuma.nakamura@oeaw.ac.at; Nakamura, R.; Narita, Y.

    2016-05-15

    We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in whichmore » modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission.« less

  5. Multi-scale structures of turbulent magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Nakamura, T. K. M.; Nakamura, R.; Narita, Y.; Baumjohann, W.; Daughton, W.

    2016-05-01

    We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in which modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission.

  6. Multi-scale sensitivity analysis of pile installation using DEM

    NASA Astrophysics Data System (ADS)

    Esposito, Ricardo Gurevitz; Velloso, Raquel Quadros; , Eurípedes do Amaral Vargas, Jr.; Danziger, Bernadete Ragoni

    2017-12-01

    The disturbances experienced by the soil due to the pile installation and dynamic soil-structure interaction still present major challenges to foundation engineers. These phenomena exhibit complex behaviors, difficult to measure in physical tests and to reproduce in numerical models. Due to the simplified approach used by the discrete element method (DEM) to simulate large deformations and nonlinear stress-dilatancy behavior of granular soils, the DEM consists of an excellent tool to investigate these processes. This study presents a sensitivity analysis of the effects of introducing a single pile using the PFC2D software developed by Itasca Co. The different scales investigated in these simulations include point and shaft resistance, alterations in porosity and stress fields and particles displacement. Several simulations were conducted in order to investigate the effects of different numerical approaches showing indications that the method of installation and particle rotation could influence greatly in the conditions around the numerical pile. Minor effects were also noted due to change in penetration velocity and pile-soil friction. The difference in behavior of a moving and a stationary pile shows good qualitative agreement with previous experimental results indicating the necessity of realizing a force equilibrium process prior to any load-test to be simulated.

  7. Multi-scale sensitivity analysis of pile installation using DEM

    NASA Astrophysics Data System (ADS)

    Esposito, Ricardo Gurevitz; Velloso, Raquel Quadros; , Eurípedes do Amaral Vargas, Jr.; Danziger, Bernadete Ragoni

    2018-07-01

    The disturbances experienced by the soil due to the pile installation and dynamic soil-structure interaction still present major challenges to foundation engineers. These phenomena exhibit complex behaviors, difficult to measure in physical tests and to reproduce in numerical models. Due to the simplified approach used by the discrete element method (DEM) to simulate large deformations and nonlinear stress-dilatancy behavior of granular soils, the DEM consists of an excellent tool to investigate these processes. This study presents a sensitivity analysis of the effects of introducing a single pile using the PFC2D software developed by Itasca Co. The different scales investigated in these simulations include point and shaft resistance, alterations in porosity and stress fields and particles displacement. Several simulations were conducted in order to investigate the effects of different numerical approaches showing indications that the method of installation and particle rotation could influence greatly in the conditions around the numerical pile. Minor effects were also noted due to change in penetration velocity and pile-soil friction. The difference in behavior of a moving and a stationary pile shows good qualitative agreement with previous experimental results indicating the necessity of realizing a force equilibrium process prior to any load-test to be simulated.

  8. Systems oncology: towards patient-specific treatment regimes informed by multiscale mathematical modelling.

    PubMed

    Powathil, Gibin G; Swat, Maciej; Chaplain, Mark A J

    2015-02-01

    The multiscale complexity of cancer as a disease necessitates a corresponding multiscale modelling approach to produce truly predictive mathematical models capable of improving existing treatment protocols. To capture all the dynamics of solid tumour growth and its progression, mathematical modellers need to couple biological processes occurring at various spatial and temporal scales (from genes to tissues). Because effectiveness of cancer therapy is considerably affected by intracellular and extracellular heterogeneities as well as by the dynamical changes in the tissue microenvironment, any model attempt to optimise existing protocols must consider these factors ultimately leading to improved multimodal treatment regimes. By improving existing and building new mathematical models of cancer, modellers can play important role in preventing the use of potentially sub-optimal treatment combinations. In this paper, we analyse a multiscale computational mathematical model for cancer growth and spread, incorporating the multiple effects of radiation therapy and chemotherapy in the patient survival probability and implement the model using two different cell based modelling techniques. We show that the insights provided by such multiscale modelling approaches can ultimately help in designing optimal patient-specific multi-modality treatment protocols that may increase patients quality of life. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics

    PubMed Central

    Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott

    2015-01-01

    We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling. PMID:25637963

  10. Scalability Test of Multiscale Fluid-Platelet Model for Three Top Supercomputers

    PubMed Central

    Zhang, Peng; Zhang, Na; Gao, Chao; Zhang, Li; Gao, Yuxiang; Deng, Yuefan; Bluestein, Danny

    2016-01-01

    We have tested the scalability of three supercomputers: the Tianhe-2, Stampede and CS-Storm with multiscale fluid-platelet simulations, in which a highly-resolved and efficient numerical model for nanoscale biophysics of platelets in microscale viscous biofluids is considered. Three experiments involving varying problem sizes were performed: Exp-S: 680,718-particle single-platelet; Exp-M: 2,722,872-particle 4-platelet; and Exp-L: 10,891,488-particle 16-platelet. Our implementations of multiple time-stepping (MTS) algorithm improved the performance of single time-stepping (STS) in all experiments. Using MTS, our model achieved the following simulation rates: 12.5, 25.0, 35.5 μs/day for Exp-S and 9.09, 6.25, 14.29 μs/day for Exp-M on Tianhe-2, CS-Storm 16-K80 and Stampede K20. The best rate for Exp-L was 6.25 μs/day for Stampede. Utilizing current advanced HPC resources, the simulation rates achieved by our algorithms bring within reach performing complex multiscale simulations for solving vexing problems at the interface of biology and engineering, such as thrombosis in blood flow which combines millisecond-scale hematology with microscale blood flow at resolutions of micro-to-nanoscale cellular components of platelets. This study of testing the performance characteristics of supercomputers with advanced computational algorithms that offer optimal trade-off to achieve enhanced computational performance serves to demonstrate that such simulations are feasible with currently available HPC resources. PMID:27570250

  11. The Effect of Lateral Boundary Values on Atmospheric Mercury Simulations with the CMAQ Model

    EPA Science Inventory

    Simulation results from three global-scale models of atmospheric mercury have been used to define three sets of initial condition and boundary condition (IC/BC) data for regional-scale model simulations over North America using the Community Multi-scale Air Quality (CMAQ) model. ...

  12. Dynamic evaluation of two decades of WRF-CMAQ ozone simulations over the contiguous United States

    EPA Science Inventory

    Dynamic evaluation of the fully coupled Weather Research and Forecasting (WRF)– Community Multi-scale Air Quality (CMAQ) model ozone simulations over the contiguous United States (CONUS) using two decades of simulations covering the period from 1990 to 2010 is conducted to ...

  13. Dynamic evaluation of two decades of WRF-CMAQ ozone simulations over the contiguous United States

    EPA Science Inventory

    Dynamic evaluation of the fully coupled Weather Research and Forecasting (WRF)– Community Multi-scale Air Quality (CMAQ) model ozone simulations over the contiguous United States (CONUS) using two decades of simulations covering the period from 1990 to 2010 is conducted to assess...

  14. Variance stabilization and normalization for one-color microarray data using a data-driven multiscale approach.

    PubMed

    Motakis, E S; Nason, G P; Fryzlewicz, P; Rutter, G A

    2006-10-15

    Many standard statistical techniques are effective on data that are normally distributed with constant variance. Microarray data typically violate these assumptions since they come from non-Gaussian distributions with a non-trivial mean-variance relationship. Several methods have been proposed that transform microarray data to stabilize variance and draw its distribution towards the Gaussian. Some methods, such as log or generalized log, rely on an underlying model for the data. Others, such as the spread-versus-level plot, do not. We propose an alternative data-driven multiscale approach, called the Data-Driven Haar-Fisz for microarrays (DDHFm) with replicates. DDHFm has the advantage of being 'distribution-free' in the sense that no parametric model for the underlying microarray data is required to be specified or estimated; hence, DDHFm can be applied very generally, not just to microarray data. DDHFm achieves very good variance stabilization of microarray data with replicates and produces transformed intensities that are approximately normally distributed. Simulation studies show that it performs better than other existing methods. Application of DDHFm to real one-color cDNA data validates these results. The R package of the Data-Driven Haar-Fisz transform (DDHFm) for microarrays is available in Bioconductor and CRAN.

  15. A sonification algorithm for developing the off-roads models for driving simulators

    NASA Astrophysics Data System (ADS)

    Chiroiu, Veturia; Brişan, Cornel; Dumitriu, Dan; Munteanu, Ligia

    2018-01-01

    In this paper, a sonification algorithm for developing the off-road models for driving simulators, is proposed. The aim of this algorithm is to overcome difficulties of heuristics identification which are best suited to a particular off-road profile built by measurements. The sonification algorithm is based on the stochastic polynomial chaos analysis suitable in solving equations with random input data. The fluctuations are generated by incomplete measurements leading to inhomogeneities of the cross-sectional curves of off-roads before and after deformation, the unstable contact between the tire and the road and the unreal distribution of contact and friction forces in the unknown contact domains. The approach is exercised on two particular problems and results compare favorably to existing analytical and numerical solutions. The sonification technique represents a useful multiscale analysis able to build a low-cost virtual reality environment with increased degrees of realism for driving simulators and higher user flexibility.

  16. Postcoalescence evolution of growth stress in polycrystalline films.

    PubMed

    González-González, A; Polop, C; Vasco, E

    2013-02-01

    The growth stress generated once grains coalesce in Volmer-Weber-type thin films is investigated by time-multiscale simulations comprising complementary modules of (i) finite-element modeling to address the interactions between grains happening at atomic vibration time scales (~0.1 ps), (ii) dynamic scaling to account for the surface stress relaxation via morphology changes at surface diffusion time scales (~μs-ms), and (iii) the mesoscopic rate equation approach to simulate the bulk stress relaxation at deposition time scales (~sec-h). On the basis of addressing the main experimental evidence reported so far on the topic dealt with, the simulation results provide key findings concerning the interplay between anisotropic grain interactions at complementary space scales, deposition conditions (such as flux and mobility), and mechanisms of stress accommodation-relaxation, which underlies the origin, nature and spatial distribution, and the flux dependence of the postcoalescence growth stress.

  17. Coarse-grained mechanics of viral shells

    NASA Astrophysics Data System (ADS)

    Klug, William S.; Gibbons, Melissa M.

    2008-03-01

    We present an approach for creating three-dimensional finite element models of viral capsids from atomic-level structural data (X-ray or cryo-EM). The models capture heterogeneous geometric features and are used in conjunction with three-dimensional nonlinear continuum elasticity to simulate nanoindentation experiments as performed using atomic force microscopy. The method is extremely flexible; able to capture varying levels of detail in the three-dimensional structure. Nanoindentation simulations are presented for several viruses: Hepatitis B, CCMV, HK97, and φ29. In addition to purely continuum elastic models a multiscale technique is developed that combines finite-element kinematics with MD energetics such that large-scale deformations are facilitated by a reduction in degrees of freedom. Simulations of these capsid deformation experiments provide a testing ground for the techniques, as well as insight into the strength-determining mechanisms of capsid deformation. These methods can be extended as a framework for modeling other proteins and macromolecular structures in cell biology.

  18. Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization.

    PubMed

    Martinov, Martin P; Thomson, Rowan M

    2017-02-01

    To introduce the heterogeneous multiscale (HetMS) model for Monte Carlo simulations of gold nanoparticle dose-enhanced radiation therapy (GNPT), a model characterized by its varying levels of detail on different length scales within a single phantom; to apply the HetMS model in two different scenarios relevant for GNPT and to compare computed results with others published. The HetMS model is implemented using an extended version of the EGSnrc user-code egs_chamber; the extended code is tested and verified via comparisons with recently published data from independent GNP simulations. Two distinct scenarios for the HetMS model are then considered: (a) monoenergetic photon beams (20 keV to 1 MeV) incident on a cylinder (1 cm radius, 3 cm length); (b) isotropic point source (brachytherapy source spectra) at the center of a 2.5 cm radius sphere with gold nanoparticles (GNPs) diffusing outwards from the center. Dose enhancement factors (DEFs) are compared for different source energies, depths in phantom, gold concentrations, GNP sizes, and modeling assumptions, as well as with independently published values. Simulation efficiencies are investigated. The HetMS MC simulations account for the competing effects of photon fluence perturbation (due to gold in the scatter media) coupled with enhanced local energy deposition (due to modeling discrete GNPs within subvolumes). DEFs are most sensitive to these effects for the lower source energies, varying with distance from the source; DEFs below unity (i.e., dose decreases, not enhancements) can occur at energies relevant for brachytherapy. For example, in the cylinder scenario, the 20 keV photon source has a DEF of 3.1 near the phantom's surface, decreasing to less than unity by 0.7 cm depth (for 20 mg/g). Compared to discrete modeling of GNPs throughout the gold-containing (treatment) volume, efficiencies are enhanced by up to a factor of 122 with the HetMS approach. For the spherical phantom, DEFs vary with time for diffusion, radionuclide, and radius; DEFs differ considerably from those computed using a widely applied analytic approach. By combining geometric models of varying complexity on different length scales within a single simulation, the HetMS model can effectively account for both macroscopic and microscopic effects which must both be considered for accurate computation of energy deposition and DEFs for GNPT. Efficiency gains with the HetMS approach enable diverse calculations which would otherwise be prohibitively long. The HetMS model may be extended to diverse scenarios relevant for GNPT, providing further avenues for research and development. © 2016 American Association of Physicists in Medicine.

  19. Acoustic solitons in waveguides with Helmholtz resonators: transmission line approach.

    PubMed

    Achilleos, V; Richoux, O; Theocharis, G; Frantzeskakis, D J

    2015-02-01

    We report experimental results and study theoretically soliton formation and propagation in an air-filled acoustic waveguide side loaded with Helmholtz resonators. We propose a theoretical modeling of the system, which relies on a transmission-line approach, leading to a nonlinear dynamical lattice model. The latter allows for an analytical description of the various soliton solutions for the pressure, which are found by means of dynamical systems and multiscale expansion techniques. These solutions include Boussinesq-like and Korteweg-de Vries pulse-shaped solitons that are observed in the experiment, as well as nonlinear Schrödinger envelope solitons, that are predicted theoretically. The analytical predictions are in excellent agreement with direct numerical simulations and in qualitative agreement with the experimental observations.

  20. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite while the effect on the axial properties is shown to be insignificant.

Top