Wang, Xing-Lu; Huang, Ying; Li, Qu-Bei; Dai, Ji-Hong
2013-09-01
To investigate and compare the diagnostic values of bronchoscopy and multi-slice spiral computed tomography (CT) for congenital dysplasia of the respiratory system in infants. Analysis was performed on the clinical data, bronchoscopic findings and multi-slice spiral CT findings of 319 infants (≤1 years old) who underwent bronchoscopy and/or multi-slice spiral CT and were diagnosed with congenital dysplasia of the respiratory system. A total of 476 cases of congenital dysplasia of the respiratory system were found in the 319 infants, including primary dysplasia of the respiratory system (392 cases) and compressive dysplasia of the respiratory system (84 cases). Of the 392 cases of primary dysplasia of the respiratory system, 225 (57.4%) were diagnosed by bronchoscopy versus 167 (42.6%) by multi-slice spiral CT. There were significant differences in etiological diagnosis between bronchoscopy and multi-slice spiral CT in infants with congenital dysplasia of the respiratory system (P<0.05). All 76 cases of primary dysplasia of the respiratory system caused by tracheobronchomalacia were diagnosed by bronchoscopy and all 17 cases of primary dysplasia of the respiratory system caused by lung tissue dysplasia were diagnosed by multi-slice spiral CT. Of the 84 cases of compressive dysplasia of the respiratory system, 74 cases were diagnosed by multi-slice spiral CT and only 10 cases were diagnosed by bronchoscopy. Compared with multi-slice spiral CT, bronchoscopy can detect primary dysplasia of the respiratory system more directly. Bronchoscopy is valuable in the confirmed diagnosis of tracheobronchomalacia. Multi-slice spiral CT has a higher diagnostic value for lung tissue dysplasia than bronchoscopy.
Ma, X J; Tao, L; Chen, X; Li, W; Peng, Z Y; Chen, Y; Jin, J; Zhang, X L; Xiong, Q F; Zhong, Z L; Chen, X F
2015-02-13
Three-dimensional (3D) reconstruction and rapid prototyping technology (RPT) of multislice spiral computed tomography angiography (CTA) was applied to prepare physical models of the heart and ventricular septal defects of tetralogy of Fallot (ToF) patients in order to explore their applications in the diagnosis and treatment of this complex heart disease. CTA data of 35 ToF patients were collected to prepare l:l 3D solid models using digital 3D reconstruction and RPT, and the resultant models were used intraoperatively as reference. The operations of all 35 patients were completed under the guidance of the 3D solid model, without difficulty. Intraoperative findings of the patients were consistent with the morphological and size changes of the 3D solid model, and no significant differences were found between the patches obtained from the 3D solid model and the actual intraoperative measurements (t = 0.83, P = 0.412). 3D reconstruction and RPT of multislice spiral CTA can accurately and intuitively reflect the anatomy of ventricular septal defects in ToF patients, providing the foundation for a solid model of the complex congenital heart.
Bhatti, Aftab A; Chugtai, Aamir; Haslam, Philip; Talbot, David; Rix, David A; Soomro, Naeem A
2005-11-01
To prospectively compare the accuracy of multislice spiral computed tomographic angiography (CTA) and magnetic resonance angiography (MRA) in evaluating the renal vascular anatomy in potential living renal donors. Thirty-one donors underwent multislice spiral CTA and gadolinium-enhanced MRA. In addition to axial images, multiplanar reconstruction and maximum intensity projections were used to display the renal vascular anatomy. Twenty-four donors had a left laparoscopic donor nephrectomy (LDN), whereas seven had right open donor nephrectomy (ODN); LDN was only considered if the renal vascular anatomy was favourable on the left. CTA and MRA images were analysed by two radiologists independently. The radiological and surgical findings were correlated after the surgery. CTA showed 33 arteries and 32 veins (100% sensitivity) whereas MRA showed 32 arteries and 31 veins (97% sensitivity). CTA detected all five accessory renal arteries whereas MRA only detected one. CTA also identified all three accessory renal veins whereas MRA identified two. CTA had a sensitivity of 97% and 47% for left lumbar and left gonadal veins, whereas MRA had a sensitivity of 74% and 46%, respectively. Multislice spiral CTA with three-dimensional reconstruction was more accurate than MRA for both renal arterial and venous anatomy.
Bricault, Ivan; Ferretti, Gilbert
2005-01-01
While multislice spiral computed tomography (CT) scanners are provided by all major manufacturers, their specific interpolation algorithms have been rarely evaluated. Because the results published so far relate to distinct particular cases and differ significantly, there are contradictory recommendations about the choice of pitch in clinical practice. In this paper, we present a new tool for the evaluation of multislice spiral CT z-interpolation algorithms, and apply it to the four-slice case. Our software is based on the computation of a "Weighted Radiation Profile" (WRP), and compares WRP to an expected ideal profile in terms of widening and heterogeneity. It provides a unique scheme for analyzing a large variety of spiral CT acquisition procedures. Freely chosen parameters include: number of detector rows, detector collimation, nominal slice width, helical pitch, and interpolation algorithm with any filter shape and width. Moreover, it is possible to study any longitudinal and off-isocenter positions. Theoretical and experimental results show that WRP, more than Slice Sensitivity Profile (SSP), provides a comprehensive characterization of interpolation algorithms. WRP analysis demonstrates that commonly "preferred helical pitches" are actually nonoptimal regarding the formerly distinguished z-sampling gap reduction criterion. It is also shown that "narrow filter" interpolation algorithms do not enable a general preferred pitch discussion, since they present poor properties with large longitudinal and off-center variations. In the more stable case of "wide filter" interpolation algorithms, SSP width or WRP widening are shown to be almost constant. Therefore, optimal properties should no longer be sought in terms of these criteria. On the contrary, WRP heterogeneity is related to variable artifact phenomena and can pertinently characterize optimal pitches. In particular, the exemplary interpolation properties of pitch = 1 "wide filter" mode are demonstrated.
Muslimov, R Sh; Sharifullin, F A; Chernaia, N R; Novruzbekov, M S; Kokov, L S
2015-01-01
Acute traumatic aortic rupture is associated with extremely high mortality rates and requires emergency diagnosis and treatment. This clinical example shows the role of multislice spiral computed tomography in the emergency diagnosis of rupture of two large arterial vessels in severe concomitant injury. It presents the benefits of this rapid and noninvasive imaging technique, an algorithm of the study and the semiotics of injuries in patients with suspected traumatic aortic rupture. The paper also shows the importance of this method in defining treatment policy and then in the assessment of the results of the performed correction.
Multislice spiral CT simulator for dynamic cardiopulmonary studies
NASA Astrophysics Data System (ADS)
De Francesco, Silvia; Ferreira da Silva, Augusto M.
2002-04-01
We've developed a Multi-slice Spiral CT Simulator modeling the acquisition process of a real tomograph over a 4-dimensional phantom (4D MCAT) of the human thorax. The simulator allows us to visually characterize artifacts due to insufficient temporal sampling and a priori evaluate the quality of the images obtained in cardio-pulmonary studies (both with single-/multi-slice and ECG gated acquisition processes). The simulating environment allows both for conventional and spiral scanning modes and includes a model of noise in the acquisition process. In case of spiral scanning, reconstruction facilities include longitudinal interpolation methods (360LI and 180LI both for single and multi-slice). Then, the reconstruction of the section is performed through FBP. The reconstructed images/volumes are affected by distortion due to insufficient temporal sampling of the moving object. The developed simulating environment allows us to investigate the nature of the distortion characterizing it qualitatively and quantitatively (using, for example, Herman's measures). Much of our work is focused on the determination of adequate temporal sampling and sinogram regularization techniques. At the moment, the simulator model is limited to the case of multi-slice tomograph, being planned as a next step of development the extension to cone beam or area detectors.
Ma, Guolin; Bai, Rongjie; Jiang, Huijie; Hao, Xuejia; Ling, Zaisheng; Li, Kefeng
2013-01-01
To develop an optimal scanning protocol for multislice spiral CT perfusion (CTP) imaging to evaluate hemodynamic changes in liver cirrhosis with diethylnitrosamine- (DEN-) induced precancerous lesions. Male Wistar rats were randomly divided into the control group (n = 80) and the precancerous liver cirrhosis group (n = 40). The control group received saline injection and the liver cirrhosis group received 50 mg/kg DEN i.p. twice a week for 12 weeks. All animals underwent plain CT scanning, CTP, and contrast-enhanced CT scanning. Scanning parameters were optimized by adjusting the diatrizoate concentration, the flow rate, and the delivery time. The hemodynamics of both groups was further compared using optimized multislice spiral CTP imaging. High-quality CTP images were obtained with following parameters: 150 kV; 150 mAs; 5 mm thickness, 5 mm interval; pitch, 1; matrix, 512 × 512; and FOV, 9.6 cm. Compared to the control group, the liver cirrhosis group had a significantly increased value of the hepatic arterial fraction and the hepatic artery perfusion (P < 0.05) but significantly decreased hepatic portal perfusion and mean transit time (P < 0.05). Multislice spiral CTP imaging can be used to evaluate the hemodynamic changes in the rat model of liver cirrhosis with precancerous lesions.
Xiao, Z Y; Wang, H J; Yao, C L; Gu, G R; Xue, Y; Yin, J; Chen, J; Zhang, C; Tong, C Y; Song, Z J
2017-03-24
Objective: To explore the imaging manifestations of multi-slice spiral CT angiography (CTA) and relationship with in-hospital death in patients with aortic dissection (AD). Methods: The clinical data of 429 patients with AD who underwent CTA in Zhongshan Hospital of Fudan University between January 2009 and January 2016 were retrospectively analyzed. AD patients were divided into 2 groups, including operation group who underwent surgery or interventional therapy (370 cases) and non-operation group who underwent medical conservative treatment(59 cases). The multi-slice spiral CTA imaging features of AD were analyzed, and multivariate logistic regression analysis was used to investigate the relationship between imaging manifestations and in-hospital death in AD patients. Results: There were 12 cases (3.24%) of in-hospital death in operation group, and 28 cases (47.46%) of in-hospital death in non-operation group( P <0.001). AD involved different vascular branches. Multi-slice spiral CTA can clearly show the dissection of true and false lumen, and intimal tear was detected in 363 (84.62%) cases, outer wall calcification was revealed in 63 (14.69%) cases, and thrombus formation was present in 227 (52.91%) cases. The multivariate logistic regression analysis showed that the number of branch vessels involved ( OR =1.374, 95% CI 1.081-1.745, P =0.009) and tearing false lumen range( OR =2.059, 95% CI 1.252-3.385, P =0.004) were independent risk factors of in-hospital death in AD patients, and the number of branch vessels involved ( OR =1.600, 95% CI 1.062-2.411, P =0.025) was independent risk factor of in-hospital death in the operation group, while the tearing false lumen range ( OR =2.315, 95% CI 1.019-5.262, P =0.045) was independent risk factor of in-hospital death of non-operation group. Conclusions: Multi-slice spiral CTA can clearly show the entire AD, true and false lumen, intimal tear, wall calcification and thrombosis of AD patients. The number of branch vessels involved and tearing false lumen range are the independent risk factors of in-hospital death in AD patients.
Chae, Eun Jin; Goo, Hyun Woo; Kim, Seong-Chul; Yoon, Chong Hyun
2004-05-01
We report a symptomatic infant with very rare congenital arterioportal and portosystemic venous fistulae in the liver. Multislice CT after partial transcatheter embolisation revealed not only the complicated vascular architecture of the lesion, but also an incidental jejunal arteriovenous malformation which explained the patient's melena. The patient underwent ligation of the hepatic artery and resection of the jejunal arteriovenous malformation. Postoperative multislice CT clearly demonstrated the success of the treatment.
Nemsadze, G; Urushadze, O
2011-11-01
Using of mutislice spiral CT as first line examination for the diagnosis of Acute Facial trauma in the setting of Polytrauma reduces both: valuable time and cost of patient treatment. After a brief clinical examination, MDCT was performed depending on the area of injury, using a slice thickness of 0.65 mm. The obtained data were analyzed using 3D, MIP and Standard axial with Bone reconstruction protocols. 64 polytrauma patients were evaluated with both Anterior and Lateral craniography (plain skull X ray: AP and Lateral) and Multi Slice CT. Craniography detected only 18 cases of traumatic injuries of facial bones, but exact range of dislocation and accurate management plan could not be established. In the same 64 cases, Multislice CT revealed localization of all existed fractures, range of fragment dislocation, soft tissue damage and status of Paranasal sinus in 62 cases (96.8%). In two cases MS CT missed the facial fracture, in one case the examination was complicated because of bone thinness and numerous fracture fragments, in another multiple foreign body artifacts complicated the investigation. The study results show that, CT investigation based on our MDCT polytrauma protocol, detects all more or less serious facial bone injuries.
Hou, Dailun; Qu, Huifang; Zhang, Xu; Li, Ning; Liu, Cheng; Ma, Xiangxing
2014-09-02
The aim of this study was to determine whether the diagnosis of intracranial tuberculosis (TB) can be improved when multi-slice computed tomography (MSCT) scans are taken with a 5-min delay after contrast media application. Pre- and post-contrast CT scans of the head were obtained from 30 patients using a 16-slice spiral CT. Dual-phase acquisition was performed immediately and 5 min after contrast agent injection. Diagnostic values of different images were compared using a scoring system applied by 2 experienced radiologists. We found 526 lesions in 30 patients, including 22 meningeal thickenings, 235 meningeal tuberculomas/tubercles, and 269 parenchymal tuberculomas/tubercles. Images obtained with 5-min delayed scan time were superior in terms of lesion size and meningeal thickening outlining in all disease types (P<0.01). The ability to distinguish between vascular sections from the cerebral sulcus and tubercle was also improved (P<0.01). Image acquisition with 5-min delay after contrast agent injection should be performed as a standard scanning protocol to diagnose intracranial TB.
Mishra, Anuj; Ehtuish, Ehtuish F
2006-06-01
To assess the renal vessel anatomy, compare the findings with the perioperative findings, to determine the sensitivity of multislice computed tomography (CT) angiography in the work-up of live potential donors and to discuss and compare the results of the present study with the reported results using single slice CT, magnetic resonance (MRI) and conventional angiography (CA). Retrospective analysis of the angiographic data of 118 of prospective live related kidney donors was carried out from October 2004 to August 2005 at the National Organ Transplant Centre, Tripoli Central Hospital, Libya. All donors underwent renal angiography on multislice (16-slice) CT scan using 80 cc intravenous contrast with 1.25 mm slice thickness followed by maximum intensity projection (MIP) and volume rendering techniques (VRT) post-processing algorithms. The number of vessels, vessel bifurcation, vessel morphology and venous anatomy were analyzed and the findings were compared with the surgical findings. Multislice spiral CT angiography (MSCTA) showed clear delineation of the main renal arteries in all donors with detailed vessel morphology. The study revealed 100% sensitivity in detection of accessory renal vessels, with an overall incidence of 26.7%, which is the most common distribution in the parahilar region. The present study showed 100% sensitivity in the visualization and detection of main and accessory renal vessels. These results were comparable with conventional angiography which has so far been considered as the gold standard and were found superior in specificity and accuracy to the use of single slice CT (SSCT) and MR in the angiographic work-up of live renal donors. Due to improved detection of accessory vessels less than 2 mm in diameter, a higher incidence of aberrant vessels was seen on the right side as has been suggested so far.
Simultaneous Multi-Slice fMRI using Spiral Trajectories
Zahneisen, Benjamin; Poser, Benedikt A.; Ernst, Thomas; Stenger, V. Andrew
2014-01-01
Parallel imaging methods using multi-coil receiver arrays have been shown to be effective for increasing MRI acquisition speed. However parallel imaging methods for fMRI with 2D sequences show only limited improvements in temporal resolution because of the long echo times needed for BOLD contrast. Recently, Simultaneous Multi-Slice (SMS) imaging techniques have been shown to increase fMRI temporal resolution by factors of four and higher. In SMS fMRI multiple slices can be acquired simultaneously using Echo Planar Imaging (EPI) and the overlapping slices are un-aliased using a parallel imaging reconstruction with multiple receivers. The slice separation can be further improved using the “blipped-CAIPI” EPI sequence that provides a more efficient sampling of the SMS 3D k-space. In this paper a blipped-spiral SMS sequence for ultra-fast fMRI is presented. The blipped-spiral sequence combines the sampling efficiency of spiral trajectories with the SMS encoding concept used in blipped-CAIPI EPI. We show that blipped spiral acquisition can achieve almost whole brain coverage at 3 mm isotropic resolution in 168 ms. It is also demonstrated that the high temporal resolution allows for dynamic BOLD lag time measurement using visual/motor and retinotopic mapping paradigms. The local BOLD lag time within the visual cortex following the retinotopic mapping stimulation of expanding flickering rings is directly measured and easily translated into an eccentricity map of the cortex. PMID:24518259
Multislice Computed Tomography Accurately Detects Stenosis in Coronary Artery Bypass Conduits
Duran, Cihan; Sagbas, Ertan; Caynak, Baris; Sanisoglu, Ilhan; Akpinar, Belhhan; Gulbaran, Murat
2007-01-01
The aim of this study was to evaluate the accuracy of multislice computed tomography in detecting graft stenosis or occlusion after coronary artery bypass grafting, using coronary angiography as the standard. From January 2005 through May 2006, 25 patients (19 men and 6 women; mean age, 54 ± 11.3 years) underwent diagnostic investigation of their bypass grafts by multislice computed tomography within 1 month of coronary angiography. The mean time elapsed after coronary artery bypass grafting was 6.2 years. In these 25 patients, we examined 65 bypass conduits (24 arterial and 41 venous) and 171 graft segments (the shaft, proximal anastomosis, and distal anastomosis). Compared with coronary angiography, the segment-based sensitivity, specificity, and positive and negative predictive values of multislice computed tomography in the evaluation of stenosis were 89%, 100%, 100%, and 99%, respectively. The patency rate for multislice compu-ted tomography was 85% (55/65: 3 arterial and 7 venous grafts were occluded), with 100% sensitivity and specificity. From these data, we conclude that multislice computed tomography can accurately evaluate the patency and stenosis of bypass grafts during outpatient follow-up. PMID:17948078
Wang, Juan; Zhou, Yicheng; Hu, Ning; Wang, Renfa
2006-01-01
To investigate the value of the guidance of three dimensional (3-D) reconstruction of multi-slice spiral CT (MSCT) for the placement of pedicle screws, the 3-D anatomical data of the thoracic pedicles were measured by MSCT in two embalmed human cadaveric thoracic pedicles spines (T1-T10) to guide the insertion of pedicle screws. After pulling the screws out, the pathways were filled with contrast media. The PW, PH, TSA and SSA of developed pathways were measured on the CT images and they were also measured on the real objects by caliper and goniometer. Analysis of variance demonstrated that the difference between the CT scans and real objects had no statistical significance (P > 0.05). Moreover, the difference between pedicle axis and developed pathway also had no statistical significance (P > 0.05). The data obtained from 3-D reconstruction of MSCT demonstrated that individualized standards, are not only accurate but also helpful for the successful placement of pedicle screws.
Rare extraskeletal Ewing's sarcoma mimicking as adenocarcinoma of the sigmoid.
Mertens, Michelle; Haenen, Filip W N; Siozopoulou, Vasiliki; Van Cleemput, Marc
2017-06-01
Extraskeletal Ewing's sarcoma (EES) is a rare finding in comparison with Ewing's sarcoma of bone and usually manifests in young patients. However, even in older patients, one must consider the diagnosis. In this case, we describe a 52-year-old woman diagnosed with EES, mimicking as adenocarcinoma of the sigmoid. The tumor was not visualized by a multi-slice spiral computed tomography of the abdomen and pelvis with intravenous contrast, and eventually the diagnosis was made by positive immunohistochemical staining for CD99 and by molecular testing for EWSR1 translocation. This combination of the patient's age and the localization of the tumor mimicking an adenocarcinoma of the sigmoid has never been described before.
Exact consideration of data redundancies for spiral cone-beam CT
NASA Astrophysics Data System (ADS)
Lauritsch, Guenter; Katsevich, Alexander; Hirsch, Michael
2004-05-01
In multi-slice spiral computed tomography (CT) there is an obvious trend in adding more and more detector rows. The goals are numerous: volume coverage, isotropic spatial resolution, and speed. Consequently, there will be a variety of scan protocols optimizing clinical applications. Flexibility in table feed requires consideration of data redundancies to ensure efficient detector usage. Until recently this was achieved by approximate reconstruction algorithms only. However, due to the increasing cone angles there is a need of exact treatment of the cone beam geometry. A new, exact and efficient 3-PI algorithm for considering three-fold data redundancies was derived from a general, theoretical framework based on 3D Radon inversion using Grangeat's formula. The 3-PI algorithm possesses a simple and efficient structure as the 1-PI method for non-redundant data previously proposed. Filtering is one-dimensional, performed along lines with variable tilt on the detector. This talk deals with a thorough evaluation of the performance of the 3-PI algorithm in comparison to the 1-PI method. Image quality of the 3-PI algorithm is superior. The prominent spiral artifacts and other discretization artifacts are significantly reduced due to averaging effects when taking into account redundant data. Certainly signal-to-noise ratio is increased. The computational expense is comparable even to that of approximate algorithms. The 3-PI algorithm proves its practicability for applications in medical imaging. Other exact n-PI methods for n-fold data redundancies (n odd) can be deduced from the general, theoretical framework.
Computed gray levels in multislice and cone-beam computed tomography.
Azeredo, Fabiane; de Menezes, Luciane Macedo; Enciso, Reyes; Weissheimer, Andre; de Oliveira, Rogério Belle
2013-07-01
Gray level is the range of shades of gray in the pixels, representing the x-ray attenuation coefficient that allows for tissue density assessments in computed tomography (CT). An in-vitro study was performed to investigate the relationship between computed gray levels in 3 cone-beam CT (CBCT) scanners and 1 multislice spiral CT device using 5 software programs. Six materials (air, water, wax, acrylic, plaster, and gutta-percha) were scanned with the CBCT and CT scanners, and the computed gray levels for each material at predetermined points were measured with OsiriX Medical Imaging software (Geneva, Switzerland), OnDemand3D (CyberMed International, Seoul, Korea), E-Film (Merge Healthcare, Milwaukee, Wis), Dolphin Imaging (Dolphin Imaging & Management Solutions, Chatsworth, Calif), and InVivo Dental Software (Anatomage, San Jose, Calif). The repeatability of these measurements was calculated with intraclass correlation coefficients, and the gray levels were averaged to represent each material. Repeated analysis of variance tests were used to assess the differences in gray levels among scanners and materials. There were no differences in mean gray levels with the different software programs. There were significant differences in gray levels between scanners for each material evaluated (P <0.001). The software programs were reliable and had no influence on the CT and CBCT gray level measurements. However, the gray levels might have discrepancies when different CT and CBCT scanners are used. Therefore, caution is essential when interpreting or evaluating CBCT images because of the significant differences in gray levels between different CBCT scanners, and between CBCT and CT values. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Ye, Huihui; Cauley, Stephen F; Gagoski, Borjan; Bilgic, Berkin; Ma, Dan; Jiang, Yun; Du, Yiping P; Griswold, Mark A; Wald, Lawrence L; Setsompop, Kawin
2017-05-01
To develop a reconstruction method to improve SMS-MRF, in which slice acceleration is used in conjunction with highly undersampled in-plane acceleration to speed up MRF acquisition. In this work two methods are employed to efficiently perform the simultaneous multislice magnetic resonance fingerprinting (SMS-MRF) data acquisition and the direct-spiral slice-GRAPPA (ds-SG) reconstruction. First, the lengthy training data acquisition is shortened by employing the through-time/through-k-space approach, in which similar k-space locations within and across spiral interleaves are grouped and are associated with a single set of kernel. Second, inversion recovery preparation (IR prepped), variable flip angle (FA), and repetition time (TR) are used for the acquisition of the training data, to increase signal variation and to improve the conditioning of the kernel fitting. The grouping of k-space locations enables a large reduction in the number of kernels required, and the IR-prepped training data with variable FA and TR provide improved ds-SG kernels and reconstruction performance. With direct-spiral slice-GRAPPA, tissue parameter maps comparable to that of conventional MRF were obtained at multiband (MB) = 3 acceleration using t-blipped SMS-MRF acquisition with 32-channel head coil at 3 Tesla (T). The proposed reconstruction scheme allows MB = 3 accelerated SMS-MRF imaging with high-quality T 1 , T 2 , and off-resonance maps, and can be used to significantly shorten MRF acquisition and aid in its adoption in neuro-scientific and clinical settings. Magn Reson Med 77:1966-1974, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
[Virtual otoscopy--technique, indications and initial experiences with multislice spiral CT].
Klingebiel, R; Bauknecht, H C; Lehmann, R; Rogalla, P; Werbs, M; Behrbohm, H; Kaschke, O
2000-11-01
We report the standardized postprocessing of high-resolution CT data acquired by incremental CT and multi-slice CT in patients with suspected middle ear disorders to generate three-dimensional endoluminal views known as virtual otoscopy. Subsequent to the definition of a postprocessing protocol, standardized endoluminal views of the middle ear were generated according to their otological relevance. The HRCT data sets of 26 ENT patients were transferred to a workstation and postprocessed to 52 virtual otoscopies. Generation of predefined endoluminal views from the HRCT data sets was possible in all patients. Virtual endoscopic views added meaningful information to the primary cross-sectional data in patients suffering from ossicular pathology, having contraindications for invasive tympanic endoscopy or being assessed for surgery of the tympanic cavity. Multi slice CT improved the visualization of subtle anatomic details such as the stapes suprastructure and reduced the scanning time. Virtual endoscopy allows for the non invasive endoluminal visualization of various tympanic lesions. Use of the multi-slice CT technique reduces the scanning time and improves image quality in terms of detail resolution.
Virtopsy: postmortem imaging of laryngeal foreign bodies.
Oesterhelweg, Lars; Bolliger, Stephan A; Thali, Michael J; Ross, Steffen
2009-05-01
Death from corpora aliena in the larynx is a well-known entity in forensic pathology. The correct diagnosis of this cause of death is difficult without an autopsy, and misdiagnoses by external examination alone are common. To determine the postmortem usefulness of modern imaging techniques in the diagnosis of foreign bodies in the larynx, multislice computed tomography, magnetic resonance imaging, and postmortem full-body computed tomography-angiography were performed. Three decedents with a suspected foreign body in the larynx underwent the 3 different imaging techniques before medicolegal autopsy. Multislice computed tomography has a high diagnostic value in the noninvasive localization of a foreign body and abnormalities in the larynx. The differentiation between neoplasm or soft foreign bodies (eg, food) is possible, but difficult, by unenhanced multislice computed tomography. By magnetic resonance imaging, the discrimination of the soft tissue structures and soft foreign bodies is much easier. In addition to the postmortem multislice computed tomography, the combination with postmortem angiography will increase the diagnostic value. Postmortem, cross-sectional imaging methods are highly valuable procedures for the noninvasive detection of corpora aliena in the larynx.
FFT multislice method--the silver anniversary.
Ishizuka, Kazuo
2004-02-01
The first paper on the FFT multislice method was published in 1977, a quarter of a century ago. The formula was extended in 1982 to include a large tilt of an incident beam relative to the specimen surface. Since then, with advances of computing power, the FFT multislice method has been successfully applied to coherent CBED and HAADF-STEM simulations. However, because the multislice formula is built on some physical approximations and approximations in numerical procedure, there seem to be controversial conclusions in the literature on the multislice method. In this report, the physical implication of the multislice method is reviewed based on the formula for the tilted illumination. Then, some results on the coherent CBED and the HAADF-STEM simulations are presented.
Dysphagia lusorium in elderly: A case report
Kantarceken, Bulent; Bulbuloglu, Ertan; Yuksel, Murvet; Cetinkaya, Ali
2004-01-01
AIM: Late unset of dysphagia due to vascular abnormalities is a rare condition. We aimed to present a case of right subclavian artery abnormalities caused dysphagia in the elderly. METHODS: A 68-year-old female was admitted with dysphagia seven months ago. Upper endoscopic procedures and routine examinations could not demonstrate any etiology. Multislice computed thorax tomography was performed for probable extra- esophagial lesions. RESULTS: Multislice computed thorax tomography showed right subclavian artery abnormality and esophagial compression with this aberrant artery. CONCLUSION: Causes of dysphagia in the elderly are commonly malignancies, strictures and/or motility disorders. If routine examinations and endoscopic procedures fail to show any etiology, rare vascular abnormalities can be considered in such patients. Multislice computed tomography is a usefull choice in such conditions. PMID:15285045
Multislice spiral CT angiography for evaluation of acute aortic syndrome.
Zhao, De-Li; Liu, Xin-Ding; Zhao, Cheng-Lei; Zhou, Hai-Ting; Wang, Guo-Kun; Liang, Hong-Wei; Zhang, Jin-Ling
2017-10-01
To discuss the diagnostic value of multislice CT angiography (MSCTA) in acute aortic syndrome (AAS). The clinical and imaging data of 36 cases diagnosed as AAS by MSCTA were collected. The manifestations of the MSCTA images were reviewed retrospectively, and the average x-ray dose was calculated. Among 36 AAS cases, 16 cases had aortic dissection (AD), 8 cases had penetrating atherosclerotic ulcer (PAU), 7 cases had intramural hematoma (IMH), and 5 cases had unstable thoracic aneurysm (UTA). Of 16 cases with AD, type A and type B accounted for 43.7% (7/16) and 56.3% (9/16), respectively. Of 7 cases with IMH, type A and type B accounted for 42.9% (3/7) and 57.1% (4/7), respectively. In spite of the x-ray radiation, MSCTA proves to be a rapid and noninvasive imaging technique for the diagnosis of AAS. © 2017, Wiley Periodicals, Inc.
Castorina, Sergio; Luca, Tonia; Privitera, Giovanna; Riccioli, Vincenzo
2010-01-01
In this paper, we describe two cases of anomalous origin of the left coronary artery and two cases of aneurysm on the left coronary artery. Detailed three-dimensional images were acquired by the multislice computed tomography (MSCT) SOMATOM Sensation Cardiac 64 during clinical studies of cardiac diseases. Copyright 2010. Published by Elsevier Inc.
Eskandarloo, Amir; Abdinian, Mehrdad; Salemi, Fatemeh; Hashemzadeh, Zahra; Safaei, Mehran
2012-01-01
Background: Bone density measurement in a radiographic view is a valuable method for evaluating the density of bone quality before performing some dental procedures such as, dental implant placements. It seems that Cone-Beam Computed Tomography (CBCT) can be used as a diagnostic tool for evaluating the density of the bone, prior to any treatment, as the reported radiation dose in this method is minimal. The aim of this study is to investigate the effect of object location on the density measurement in CBCT versus Multislice computed tomography (CT). Materials and Methods: In an experimental study, three samples with similar dimensions, but different compositions, different densities (Polyethylene, Polyamide, Polyvinyl Chloride), and three bone pieces of different parts of the mandibular bone were imaged in three different positions by CBCT and Multislice CT sets. The average density value was computed for each sample in each position. Then the data obtained from each CBCT was converted to a Hounsfield unit and evaluated using a single variable T analysis. A P value <0.05 was considered to be significant. Results: The density in a Multislice CT is stable in the form of a Hounsfield Number, but this density is variable in the images acquired through CBCT, and the change in the position results in significant changes in the density. In this study, a statistically significant difference (P value = 0.000) has been observed for the position of the sample and its density in CBCT in comparison to Multislice CT. Conclusions: Density values in CBCT are not real because they are affected by the position of the object in the machine. PMID:23814567
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leter, Edward M.; Cademartiri, Filippo; Levendag, Peter C.
2005-07-01
Purpose: We used four-dimensional multislice spiral computed tomography (MSCT) to determine respiratory lung-tumor motion and compared this strategy to common clinical practice in conformal radiotherapy treatment-planning imaging. Methods and Materials: The entire lung volume of 10 consecutive patients with 14 lung metastases were scanned by a 16-slice MSCT. During the scans, patients were instructed to breathe through a spirometer that was connected to a laptop computer. For each patient, 10 stacks of 1.5-mm slices, equally distributed throughout the respiratory cycle, were reconstructed from the acquired MSCT data. The lung tumors were manually contoured in each data set. For each patient,more » the tumor-volume contours of all data sets were copied to 1 data set, which allowed determination of the volume that encompassed all 10 lung-tumor positions (i.e., the tumor-traversed volume [TTV]) during the respiratory cycle. The TTV was compared with the 10 tumor volumes contoured for each patient, to which an empiric respiratory-motion margin was added. The latter target volumes were designated internal-motion included tumor volume (IMITV). Results: The TTV measurements were significantly smaller than the reference IMITV measurements (5.2 {+-} 10.2 cm{sup 3} and 10.1 {+-} 13.7 cm{sup 3}, respectively). All 10 IMITVs for 2 of the 4 tumors in 1 subject completely encompassed the TTV. All 10 IMITVs for 3 tumors in 2 patients did not show overlap with up to 35% of the corresponding TTV. The 10 IMITVs for the remaining tumors either completely encompassed the corresponding TTV or did not show overlap with up to 26% of the corresponding TTV. Conclusions: We found that individualized determination of respiratory lung-tumor motion by four-dimensional respiratory-gated MSCT represents a better and simple strategy to incorporate periodic physiologic motion compared with a generalized approach. The former strategy can, therefore, improve common and state-of-the-art clinical practice in conformal radiotherapy.« less
Mahran, Abeer H; AboEl-Fotouh, Mona M
2008-10-01
The purpose of this study was to compare the effects of 3 different instruments used to prepare curved root canals on the remaining cervical dentin thickness and total amount of dentin removed from root canals during instrumentation by using multislice computed tomography. Mesiobuccal canals of 45 mandibular first molars with curvature between 30-40 degrees were divided into 3 equal groups: ProTaper, Hero Shaper, and Gates Glidden Bur with Flex-R hand file. Cervical dentin thickness and canal volume were measured before and after instrumentation by using multislice computed tomography and image analysis software. The results indicated that ProTaper removed significantly less cervical dentin from distal wall of the root (dangerous zone) than HeroShaper and Gates Glidden Bur (P < .05). The total dentin removed during canal instrumentation was significantly more with ProTaper system (P < .05).
Wurmb, Thomas Erik; Frühwald, Peter; Hopfner, Wittiko; Roewer, Norbert; Brederlau, Jörg
2007-11-01
In our hospital, whole-body multislice computed tomography is used as the primary diagnostic tool in patients with suspected multiple trauma. A triage rule is used for its indication. We have retrospectively analyzed data of sedated, intubated and ventilated patients consecutively admitted to our trauma center to assess whether the triage rule can help identify patients with severe trauma (injury severity score > or = 16). We have found that overtriage (injury severity score < 16) occurs in 30%, and undertriage occurs in 6% of patients. Although we have found the triage rule to be highly sensitive, this results in a high rate of overtriage. Until we know more about the most relevant and independent predictive factors, sole reliance upon multislice computed tomography in triaging suspected polytrauma victims will imply the risk to overscan many patients.
Hu, Ji-bo; Hu, Hong-jie; Hou, Tie-ning; Gao, Hang-xiang; He, Jian
2010-03-01
To evaluate the feasibility of multi-slice spiral CT scan to localize upper airway stricture in patients with obstructive sleep apnea syndrome (OSAS) during drug-induced sleeping. One hundred and fourteen patients diagnosed as OSAS by polysomnography were included in the study. Multi-slice spiral CT scan covering upper airway was performed at the end of inspiration and clear upper airway images were obtained in waking. After injecting 5 mg of midazolam intravenously slowly in 109 patients, CT scan was performed at apnea and clear upper airway images were obtained in sleeping. Cross-section area and minimal diameter of airway were measured and the parameters were compared under those two states. Upper airway was displayed intuitionisticly by using post-processing techniques. One hundred and nine patients with OSAS finished the examination with a success rate of 100 %. Airway obstruction at retropalatal level was observed in 62 patients, among whom 26 were associated with airway obstruction at retroglossal level, 27 with narrower airway at retroglossal level in sleeping compared with that in waking, and 9 with no significant change of the airway at retroglossal level after sleeping. Narrower airway at retropalatal level in sleeping compared with that in waking was observed in 40 patients, among whom 20 were associated with narrower airway at retroglossal level in sleeping compared with that in waking, 10 with complete airway obstruction at retroglossal level in sleeping, and 7 with no significant change of the airway at both retropalatal and retroglossal levels before and after sleeping. Minimal mean cross-section area of airway at retropalatal level was (72.60 +/-45.15)mm(2) in waking and (8.26 +/-18.16)mm(2) in sleeping; and minimal mean cross-section area of airway at retroglossal level was (133.21 +/-120.36)mm(2)in waking and (16.73 +/-30.21)mm(2) in sleeping (P <0.01). Minimal mean diameter of airway at retropalatal level was (6.91 +/-2.23) mm in waking and (1.18 +/-2.14) mm in sleeping; and minimal mean diameter of airway at retroglossal level was (8.68 +/-4.32) mm in waking and (1.68 +/-2.22) mm in sleeping (P <0.01). Multi-slice spiral CT with post-processing techniques can display the shape of the upper airway in patients with OSAS in sleeping, and can localize the upper airway stricture and assess its range accurately.
Restudy of malformations of the internal auditory meatus, cochlear nerve canal and cochlear nerve.
Li, Youjin; Yang, Jun; Liu, Jinfen; Wu, Hao
2015-07-01
The present study aims to restudy the correlation between the internal auditory meatus (IAM), the cochlear nerve canal (CNC), the cochlear nerve (CN) and inner ear malformations. In this retrospective study design, the abnormal diameter of the IAM, CNC and CN in patients with any kind of inner ear malformations was evaluated using multi-slice spiral computed tomography (MSCT) (37 patients) and magnetic resonance imaging (MRI) (18 patients). Of 37 MSCT-diagnosed patients, 2 had IAM atresia, 11 IAM stenosis, 22 enlarged IAM, and 2 normal IAM with an abnormal CN. MRI diagnoses of 18 patients revealed 8 cases of aplastic CN, 6 hypoplastic CN, and 4 normal CN. CNC stenosis was associated with CN hypoplasia (P < 0.001). Patients with absent or stenotic IAM had less CN development than those with normal or enlarged IAM (P = 0.001). We propose a modification of the existing classification systems with a view to distinguishing malformations of the IAM, CNC and CN.
An extraction algorithm of pulmonary fissures from multislice CT image
NASA Astrophysics Data System (ADS)
Tachibana, Hiroyuki; Saita, Shinsuke; Yasutomo, Motokatsu; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Sasagawa, Michizo; Eguchi, Kenji; Moriyama, Noriyuki
2005-04-01
Aging and smoking history increases number of pulmonary emphysema. Alveoli restoration destroyed by pulmonary emphysema is difficult and early direction is important. Multi-slice CT technology has been improving 3-D image analysis with higher body axis resolution and shorter scan time. And low-dose high accuracy scanning becomes available. Multi-slice CT image helps physicians with accurate measuring but huge volume of the image data takes time and cost. This paper is intended for computer added emphysema region analysis and proves effectiveness of proposed algorithm.
[Radiodiagnostic methods for dental anomalities].
Ternovoĭ, S K; Serova, N S; Ivanova, D V
2012-01-01
To determine the capacities of radiologic studies in the examination of patients with dental anomalies. One hundred and twenty patients with dental anomalies were examined. Conventional X-ray and high-technology radiology techniques (multislice spiral computed tomography (MSSCT) and cone-beam computed tomography (CBCT)) were used. Orthopantomography is the most common method for radiologic examination of patients with dental anomalies. However, X-ray procedures do not provide complete information on the position and status of an abnormal tooth, which is required to define further patient management tactics. While planning the management, MSSCT and CBCT were performed in 56 (46.7%) and 64 (53.3%) patients, respectively. In addition, 72 (60.0%) patients in whom orthodontic treatment had been recommended at the first stage underwent MSSCT or CBCT following 7 months. CBCT showed that 4 (3.3%) patients had dental ankylosis previously undiagnosed by MSSCT. The high-technology radiology techniques could assess the position of a tooth in relation to its important anatomic structures and identify the comorbidity that keeps from being treated. MSSCT and CBCT can make in full measure the topical diagnosis of abnormal teeth and hence choose an optimal algorithm for comprehensive treatment of patients.
Van Mieghem, Carlos A G; Cademartiri, Filippo; Mollet, Nico R; Malagutti, Patrizia; Valgimigli, Marco; Meijboom, Willem B; Pugliese, Francesca; McFadden, Eugene P; Ligthart, Jurgen; Runza, Giuseppe; Bruining, Nico; Smits, Pieter C; Regar, Evelyn; van der Giessen, Willem J; Sianos, Georgios; van Domburg, Ron; de Jaegere, Peter; Krestin, Gabriel P; Serruys, Patrick W; de Feyter, Pim J
2006-08-15
Surveillance conventional coronary angiography (CCA) is recommended 2 to 6 months after stent-supported left main coronary artery (LMCA) percutaneous coronary intervention due to the unpredictable occurrence of in-stent restenosis (ISR), with its attendant risks. Multislice computed tomography (MSCT) is a promising technique for noninvasive coronary evaluation. We evaluated the diagnostic performance of high-resolution MSCT to detect ISR after stenting of the LMCA. Seventy-four patients were prospectively identified from a consecutive patient population scheduled for follow-up CCA after LMCA stenting and underwent MSCT before CCA. Until August 2004, a 16-slice scanner was used (n = 27), but we switched to the 64-slice scanner after that period (n = 43). Patients with initial heart rates > 65 bpm received beta-blockers, which resulted in a mean periscan heart rate of 57 +/- 7 bpm. Among patients with technically adequate scans (n = 70), MSCT correctly identified all patients with ISR (10 of 70) but misclassified 5 patients without ISR (false-positives). Overall, the accuracy of MSCT for detection of angiographic ISR was 93%. The sensitivity, specificity, and positive and negative predictive values were 100%, 91%, 67%, and 100%, respectively. When analysis was restricted to patients with stenting of the LMCA with or without extension into a single major side branch, accuracy was 98%. When both branches of the LMCA bifurcation were stented, accuracy was 83%. For the assessment of stent diameter and area, MSCT showed good correlation with intravascular ultrasound (r = 0.78 and 0.73, respectively). An intravascular ultrasound threshold value > or = 1 mm was identified to reliably detect in-stent neointima hyperplasia with MSCT. Current MSCT technology, in combination with optimal heart rate control, allows reliable noninvasive evaluation of selected patients after LMCA stenting. MSCT is safe to exclude left main ISR and may therefore be an acceptable first-line alternative to CCA.
Zhao, Jin; Li, Yan; Yang, Zhi-Wei; Wang, Wei; Meng, Yan
2011-10-01
We present a case of a patient with rare anatomy of a maxillary second molar with three mesiobuccal root canals and a maxillary third molar with four separate roots, identified using multi-slice computed topography (CT) and three-dimensional reconstruction techniques. The described case enriched/might enrich our knowledge about possible anatomical aberrations of maxillary molars. In addition, we demonstrate the role of multi-slice CT as an objective tool for confirmatory diagnosis and successful endodontic management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, H; UT Southwestern Medical Center, Dallas, TX; Hilts, M
Purpose: To commission a multislice computed tomography (CT) scanner for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD). Methods: Commissioning was performed for a 16-slice CT scanner using images acquired through a 1L cylinder filled with water. Additional images were collected using a single slice machine for comparison purposes. The variability in CT number associated with the anode heel effect was evaluated and used to define a new slice-by-slice background image subtraction technique. Image quality was assessed for the multislice system by comparing image noise and uniformity to that of the singlemore » slice machine. The consistency in CT number across slices acquired simultaneously using the multislice detector array was also evaluated. Finally, the variability in CT number due to increasing x-ray tube load was measured for the multislice scanner and compared to the tube load effects observed on the single slice machine. Results: Slice-by-slice background subtraction effectively removes the variability in CT number across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image quality for the multislice machine was found to be comparable to that of the single slice scanner. Further study showed CT number was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thickness examined. In addition, the multislice system was found to eliminate variations in CT number due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to imaging a large volume using a single slice scanner. Conclusion: A multislice CT scanner has been commissioning for CT PGD, allowing images of an entire dose distribution to be acquired in a matter of minutes. Funding support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC)« less
Nie, Ping; Zhu, Min; Lu, Xiao-Feng; Fang, Bing
2013-05-01
Severe obstructive sleep apnea syndrome (OSAS) threatens patients' lives. To solve ventilation problem, snoring, and avoid another orthognathic surgery for mandibular advancement, bone-anchored rapid maxillary expansion and bilateral interoral mandibular distraction osteogenesis were tried on a 20-year-old Chinese male patient with severe skeletal class II malocclusion and OSAS.The patient had polysomnography (apnea-hypopnea index 54.2), body mass index measurement (19.7 kg/m), and cephalometry before the treatment. Bone-anchored rapid maxillary expansion was performed for the correction of maxillary transverse and minor sagittal deficiency and the improvement of nasal airflow by decreasing nasal resistance. Bilateral interoral mandibular distraction osteogenesis was operated to lengthen the small, retruded mandible by 15 mm. Orthodontic treatment after the maxillary expansion and mandibular distraction osteogenesis can help obtain stable occlusion.The Epworth Sleepiness Scale, a questionnaire for temporomandibular joint, cephalometric analysis, polysomnography, acoustic rhinometry, and multislice spiral computed tomography were performed to evaluate changes from the treatment. All the results showed that the patient had a significantly alleviated OSAS. In addition, an acceptable occlusion was also obtained.
Miller, Julie M; Dewey, Marc; Vavere, Andrea L; Rochitte, Carlos E; Niinuma, Hiroyuki; Arbab-Zadeh, Armin; Paul, Narinder; Hoe, John; de Roos, Albert; Yoshioka, Kunihiro; Lemos, Pedro A; Bush, David E; Lardo, Albert C; Texter, John; Brinker, Jeffery; Cox, Christopher; Clouse, Melvin E; Lima, João A C
2009-04-01
Multislice computed tomography (MSCT) for the noninvasive detection of coronary artery stenoses is a promising candidate for widespread clinical application because of its non-invasive nature and high sensitivity and negative predictive value as found in several previous studies using 16 to 64 simultaneous detector rows. A multi-centre study of CT coronary angiography using 16 simultaneous detector rows has shown that 16-slice CT is limited by a high number of nondiagnostic cases and a high false-positive rate. A recent meta-analysis indicated a significant interaction between the size of the study sample and the diagnostic odds ratios suggestive of small study bias, highlighting the importance of evaluating MSCT using 64 simultaneous detector rows in a multi-centre approach with a larger sample size. In this manuscript we detail the objectives and methods of the prospective "CORE-64" trial ("Coronary Evaluation Using Multidetector Spiral Computed Tomography Angiography using 64 Detectors"). This multi-centre trial was unique in that it assessed the diagnostic performance of 64-slice CT coronary angiography in nine centres worldwide in comparison to conventional coronary angiography. In conclusion, the multi-centre, multi-institutional and multi-continental trial CORE-64 has great potential to ultimately assess the per-patient diagnostic performance of coronary CT angiography using 64 simultaneous detector rows.
Pryor, Alan; Ophus, Colin; Miao, Jianwei
2017-10-25
Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. In this paper, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditionalmore » multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic, using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic.« less
Pryor, Alan; Ophus, Colin; Miao, Jianwei
2017-01-01
Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. Here, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditional multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic , using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pryor, Alan; Ophus, Colin; Miao, Jianwei
Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. In this paper, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditionalmore » multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic, using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic.« less
Darwish, Ragaa T; Abdel-Aziz, Manal H; El Nekiedy, Abdel-Aziz M; Sobh, Zahraa K
2017-11-01
In forensic sciences to determine one's sex is quite important during the identity defining stage. The reliability of sex determination depends on the completeness of the remains and the degree of sexual dimorphism inherent in the population. Computed Tomography is the imaging modality of choice for two- and three-dimensional documentation and analysis of many autopsy findings. The aim of the present work was to assess the reliability of Three-dimensional Multislice Computed Tomography (3D MSCT) to determine sexual dimorphism from certain chest measurements; sternum and fourth rib using the 3D MSCT and to develop equations for sex determination from these bones among adult Egyptians sample. The present study was performed on 60 adult Egyptians. Their age ranged from 21 up to 74 years and they were equally divided between both sexes. Sixty virtual chests (reconstructed Multislice Computed Tomography 3D images) were examined for detection of Sternal measurements; Manubrium length (ML), Sternal body length (BL), Manubrium width (MW), Sternal body widths(BWa&BWb), Sternal area (SA) [(ML + BL) × (MW + BWa + BWb)/3]and Fourth rib width (FRW). All the studied measurements were significantly higher in males than in females. Multiple regression analysis was used to and three significant regression equations were developed for predicting sex using the different studied chest measurements; the sternal measurements, the sternal area and the widths of the right and left fourth ribs with their accuracies 96.67%.95.0%.72.68% respectively. Sterunm and fourth rib width revealed significant metric sex differences with the use of Multislice Computed Tomography 3D images thus provide a great advantage in the analysis of skeletal remains and badly decomposed bodies. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
[Virtual bronchoscopy in the child using multi-slice CT: initial clinical experiences].
Kirchner, J; Laufer, U; Jendreck, M; Kickuth, R; Schilling, E M; Liermann, D
2000-01-01
Virtual bronchoscopy of the pediatric patient has been reported to be more difficult because of artifacts due to breathing or motion. We demonstrate the benefit of the accelerated examination based on multislice spiral CT (MSCT) in the pediatric patient which has not been reported so far. MSCT (tube voltage 120 kV, tube current 110 mA, 4 x 1 mm Slice thickness, 500 ms rotation time, Pitch 6) was performed on a CT scanner of the latest generation (Volume Zoom, Siemens Corp. Forchheim, Germany). In totally we examined 11 patients (median age 48 months, range 2-122 months) suspected of having tracheoesophageal fistula (n = 2), tracheobronchial narrowing (n = 8) due to intrinsic or extrinsic factors or injury of the bronchial system (n = 1). In all patients we obtained sufficient data for 3D reconstruction avoiding general anesthesia. 6/11 examinations were described to be without pathological finding. A definite diagnosis was obtained in 10 patients. Virtual bronchoscopy could avoid other invasive diagnostic examination in 8/11 patients (73%). Helical CT provides 3D-reconstruction and virtual bronchoscopy in the newborn as well as the infant. It avoids additional diagnostic bronchoscopy in a high percentage of all cases.
Multislice does it all—calculating the performance of nanofocusing X-ray optics
Li, Kenan; Wojcik, Michael; Jacobsen, Chris
2017-01-23
Here, we describe an approach to calculating the optical performance of a wide range of nanofocusing X-ray optics using multislice scalar wave propagation with a complex X-ray refractive index. This approach produces results indistinguishable from methods such as coupled wave theory, and it allows one to reproduce other X-ray optical phenomena such as grazing incidence reflectivity where the direction of energy flow is changed significantly. Just as finite element analysis methods allow engineers to compute the thermal and mechanical responses of arbitrary structures too complex to model by analytical approaches, multislice propagation can be used to understand the properties ofmore » the real-world optics of finite extent and with local imperfections, allowing one to better understand the limits to nanoscale X-ray imaging.« less
Kapanadze, L B; Ternovoy, S K; Rudenko, V I; Serova, N S
2018-03-01
Urolithiasis (urolithiasis) is one of the most common urologic diseases with an estimated prevalence of no less than 3% in the population, usually affecting active working-age patients of 30-50 years. Taking into account major public health and economic significance of this problem, there is the need for the development of effective modern diagnostic techniques. Rapid medical-technological advances of the past two decades have led to the wide spread use of minimally invasive surgery the management of urolithiasis. Nevertheless, surgical intervention only removes the result of a long pathological process and does not change its course. Thus, there is a need for a detailed understanding of the etiology, epidemiology, and pathogenesis of urolithiasis. Diagnostic imaging plays a key role in the diagnosis of urolithiasis. Multislice spiral computed tomography (MSCT) is the gold standard for the diagnosis of urolithiasis. It provides information about the size, location, and density of the calculus. Over the past decade, the use of dual-energy computed tomography (DECT) in urological practice has been widely discussed in the international and domestic literature. One of the main advantages of DECT is the ability to determine the chemical composition of urinary stones. Previous studies have reported a high diagnostic value of the method, including the ability to predict treatment outcomes. However, the shortcomings of the method and the absence of standardized examination protocols leave a wide field for further research. This article reviews major distinctive features of using DECT in the diagnosis of urolithiasis.
Tosaka, Masahiko; Nagaki, Tomohito; Honda, Fumiaki; Takahashi, Katsumasa; Yoshimoto, Yuhei
2015-11-01
Intraoperative computed tomography (iCT) is a reliable method for the detection of residual tumour, but previous single-slice low-resolution computed tomography (CT) without coronal or sagittal reconstructions was not of adequate quality for clinical use. The present study evaluated the results of multi-slice iCT-assisted endoscopic transsphenoidal surgery for pituitary macroadenoma. This retrospective study included 30 consecutive patients with newly diagnosed or recurrent pituitary macroadenoma with supradiaphragmatic extension who underwent endoscopic transsphenoidal surgery using iCT (eTSS+iCT group), and control 30 consecutive patients who underwent conventional endoscope-assisted transsphenoidal surgery (cTSS group). The tumour volume was calculated by multiplying the tumour area by the slice thickness. Visual acuity and visual field were estimated by the visual impairment score (VIS). The resection extent, (preoperative tumour volume - postoperative residual tumour volume)/preoperative tumour volume, was 98.9% (median) in the eTSS+iCT group and 91.7% in the cTSS group, and had significant difference between the groups (P = 0.04). Greater than 95 and >90% removal rates were significantly higher in the eTSS+iCT group than in the cTSS group (P = 0.02 and P = 0.001, respectively). However, improvement in VIS showed no significant difference between the groups. The rate of complications also showed no significant difference. Multi-slice iCT-assisted endoscopic transsphenoidal surgery may improve the resection extent of pituitary macroadenoma. Multi-slice iCT may have advantages over intraoperative magnetic resonance imaging in less expensive, short acquisition time, and that special protection against magnetic fields is not needed.
[Non-biological 3D printed simulator for training in percutaneous nephro- lithotripsy].
Alyaev, Yu G; Sirota, E S; Bezrukov, E A; Ali, S Kh; Bukatov, M D; Letunovskiy, A V; Byadretdinov, I Sh
2018-03-01
To develop a non-biological 3D printed simulator for training and preoperative planning in percutaneous nephrolithotripsy (PCNL), which allows doctors to master and perform all stages of the operation under ultrasound and fluoroscopy guidance. The 3D model was constructed using multislice spiral computed tomography (MSCT) images of a patient with staghorn urolithiasis. The MSCT data were processed and used to print the model. The simulator consisted of two parts: a non-biological 3D printed soft model of a kidney with reproduced intra-renal vascular and collecting systems and a printed 3D model of a human body. Using this 3D printed simulator, PCNL was performed in the interventional radiology operating room under ultrasound and fluoroscopy guidance. The designed 3D printed model of the kidney completely reproduces the individual features of the intra-renal structures of the particular patient. During the training, all the main stages of PCNL were performed successfully: the puncture, dilation of the nephrostomy tract, endoscopic examination, intra-renal lithotripsy. Our proprietary 3D-printed simulator is a promising development in the field of endourologic training and preoperative planning in the treatment of complicated forms of urolithiasis.
Into the decomposed body-forensic digital autopsy using multislice-computed tomography.
Thali, M J; Yen, K; Schweitzer, W; Vock, P; Ozdoba, C; Dirnhofer, R
2003-07-08
It is impossible to obtain a representative anatomical documentation of an entire body using classical X-ray methods, they subsume three-dimensional bodies into a two-dimensional level. We used the novel multislice-computed tomography (MSCT) technique in order to evaluate a case of homicide with putrefaction of the corpse before performing a classical forensic autopsy. This non-invasive method showed gaseous distension of the decomposing organs and tissues in detail as well as a complex fracture of the calvarium. MSCT also proved useful in screening for foreign matter in decomposing bodies, and full-body scanning took only a few minutes. In conclusion, we believe postmortem MSCT imaging is an excellent vizualisation tool with great potential for forensic documentation and evaluation of decomposed bodies.
Barkauskas, Kestutis J; Rajiah, Prabhakar; Ashwath, Ravi; Hamilton, Jesse I; Chen, Yong; Ma, Dan; Wright, Katherine L; Gulani, Vikas; Griswold, Mark A; Seiberlich, Nicole
2014-09-11
The standard clinical acquisition for left ventricular functional parameter analysis with cardiovascular magnetic resonance (CMR) uses a multi-breathhold multi-slice segmented balanced SSFP sequence. Performing multiple long breathholds in quick succession for ventricular coverage in the short-axis orientation can lead to fatigue and is challenging in patients with severe cardiac or respiratory disorders. This study combines the encoding efficiency of a six-fold undersampled 3D stack of spirals balanced SSFP sequence with 3D through-time spiral GRAPPA parallel imaging reconstruction. This 3D spiral method requires only one breathhold to collect the dynamic data. Ten healthy volunteers were recruited for imaging at 3 T. The 3D spiral technique was compared against 2D imaging in terms of systolic left ventricular functional parameter values (Bland-Altman plots), total scan time (Welch's t-test) and qualitative image rating scores (Wilcoxon signed-rank test). Systolic left ventricular functional values were not significantly different (i.e. 3D-2D) between the methods. The 95% confidence interval for ejection fraction was -0.1 ± 1.6% (mean ± 1.96*SD). The total scan time for the 3D spiral technique was 48 s, which included one breathhold with an average duration of 14 s for the dynamic scan, plus 34 s to collect the calibration data under free-breathing conditions. The 2D method required an average of 5 min 40s for the same coverage of the left ventricle. The difference between 3D and 2D image rating scores was significantly different from zero (Wilcoxon signed-rank test, p < 0.05); however, the scores were at least 3 (i.e. average) or higher for 3D spiral imaging. The 3D through-time spiral GRAPPA method demonstrated equivalent systolic left ventricular functional parameter values, required significantly less total scan time and yielded acceptable image quality with respect to the 2D segmented multi-breathhold standard in this study. Moreover, the 3D spiral technique used just one breathhold for dynamic imaging, which is anticipated to reduce patient fatigue as part of the complete cardiac examination in future studies that include patients.
Assessment of multislice CT to quantify pulmonary emphysema function and physiology in a rat model
NASA Astrophysics Data System (ADS)
Cao, Minsong; Stantz, Keith M.; Liang, Yun; Krishnamurthi, Ganapathy; Presson, Robert G., Jr.
2005-04-01
Purpose: The purpose of this study is to evaluate multi-slice computed tomography technology to quantify functional and physiologic changes in rats with pulmonary emphysema. Method: Seven rats were scanned using a 16-slice CT (Philips MX8000 IDT) before and after artificial inducement of emphysema. Functional parameters i.e. lung volumes were measured by non-contrast spiral scan during forced breath-hold at inspiration and expiration followed by image segmentation based on attenuation threshold. Dynamic CT imaging was performed immediately following the contrast injection to estimate physiology changes. Pulmonary perfusion, fractional blood volume, and mean transit times (MTTs) were estimated by fitting the time-density curves of contrast material using a compartmental model. Results: The preliminary results indicated that the lung volumes of emphysema rats increased by 3.52+/-1.70mL (p<0.002) at expiration and 4.77+/-3.34mL (p<0.03) at inspiration. The mean lung densities of emphysema rats decreased by 91.76+/-68.11HU (p<0.01) at expiration and low attenuation areas increased by 5.21+/-3.88% (p<0.04) at inspiration compared with normal rats. The perfusion for normal and emphysema rats were 0.25+/-0.04ml/s/ml and 0.32+/-0.09ml/s/ml respectively. The fractional blood volumes for normal and emphysema rats were 0.21+/-0.04 and 0.15+/-0.02. There was a trend toward faster MTTs for emphysema rats (0.42+/-0.08s) than normal rats (0.89+/-0.19s) with p<0.006, suggesting that blood flow crossing the capillaries increases as the capillary volume decreases and which may cause the red blood cells to leave the capillaries incompletely saturated with oxygen if the MTTs become too short. Conclusion: Quantitative measurement using CT of structural and functional changes in pulmonary emphysema appears promising for small animals.
Analysis of intensity variability in multislice and cone beam computed tomography.
Nackaerts, Olivia; Maes, Frederik; Yan, Hua; Couto Souza, Paulo; Pauwels, Ruben; Jacobs, Reinhilde
2011-08-01
The aim of this study was to evaluate the variability of intensity values in cone beam computed tomography (CBCT) imaging compared with multislice computed tomography Hounsfield units (MSCT HU) in order to assess the reliability of density assessments using CBCT images. A quality control phantom was scanned with an MSCT scanner and five CBCT scanners. In one CBCT scanner, the phantom was scanned repeatedly in the same and in different positions. Images were analyzed using registration to a mathematical model. MSCT images were used as a reference. Density profiles of MSCT showed stable HU values, whereas in CBCT imaging the intensity values were variable over the profile. Repositioning of the phantom resulted in large fluctuations in intensity values. The use of intensity values in CBCT images is not reliable, because the values are influenced by device, imaging parameters and positioning. © 2011 John Wiley & Sons A/S.
Thali, Michael J; Schweitzer, Wolf; Yen, Kathrin; Vock, Peter; Ozdoba, Christoph; Spielvogel, Elke; Dirnhofer, Richard
2003-03-01
The goal of this study was the full-body documentation of a gunshot wound victim with multislice helical computed tomography for subsequent comparison with the findings of the standard forensic autopsy. Complete volume data of the head, neck, and trunk were acquired by use of two acquisitions of less than 1 minute of total scanning time. Subsequent two-dimensional multiplanar reformations and three-dimensional shaded surface display reconstructions helped document the gunshot-created skull fractures and brain injuries, including the wound track, and the intracerebral bone fragments. Computed tomography also demonstrated intracardiac air embolism and pulmonary aspiration of blood resulting from bullet wound-related trauma. The "digital autopsy," even when postprocessing time was added, was more rapid than the classic forensic autopsy and, based on the nondestructive approach, offered certain advantages in comparison with the forensic autopsy.
Freire-Maia, B; Machado, V deC; Valerio, C S; Custódio, A L N; Manzi, F R; Junqueira, J L C
2017-03-01
The aim of this study was to compare the accuracy of linear measurements of the distance between the mandibular cortical bone and the mandibular canal using 64-detector multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT). It was sought to evaluate the reliability of these examinations in detecting the mandibular canal for use in bilateral sagittal split osteotomy (BSSO) planning. Eight dry human mandibles were studied. Three sites, corresponding to the lingula, the angle, and the body of the mandible, were selected. After the CT scans had been obtained, the mandibles were sectioned and the bone segments measured to obtain the actual measurements. On analysis, no statistically significant difference was found between the measurements obtained through MSCT and CBCT, or when comparing the measurements from these scans with the actual measurements. It is concluded that the images obtained by CT scan, both 64-detector multi-slice and cone beam, can be used to obtain accurate linear measurements to locate the mandibular canal for preoperative planning of BSSO. The ability to correctly locate the mandibular canal during BSSO will reduce the occurrence of neurosensory disturbances in the postoperative period. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Assessment of calcium scoring performance in cardiac computed tomography.
Ulzheimer, Stefan; Kalender, Willi A
2003-03-01
Electron beam tomography (EBT) has been used for cardiac diagnosis and the quantitative assessment of coronary calcium since the late 1980s. The introduction of mechanical multi-slice spiral CT (MSCT) scanners with shorter rotation times opened new possibilities of cardiac imaging with conventional CT scanners. The purpose of this work was to qualitatively and quantitatively evaluate the performance for EBT and MSCT for the task of coronary artery calcium imaging as a function of acquisition protocol, heart rate, spiral reconstruction algorithm (where applicable) and calcium scoring method. A cardiac CT semi-anthropomorphic phantom was designed and manufactured for the investigation of all relevant image quality parameters in cardiac CT. This phantom includes various test objects, some of which can be moved within the anthropomorphic phantom in a manner that mimics realistic heart motion. These tools were used to qualitatively and quantitatively demonstrate the accuracy of coronary calcium imaging using typical protocols for an electron beam (Evolution C-150XP, Imatron, South San Francisco, Calif.) and a 0.5-s four-slice spiral CT scanner (Sensation 4, Siemens, Erlangen, Germany). A special focus was put on the method of quantifying coronary calcium, and three scoring systems were evaluated (Agatston, volume, and mass scoring). Good reproducibility in coronary calcium scoring is always the result of a combination of high temporal and spatial resolution; consequently, thin-slice protocols in combination with retrospective gating on MSCT scanners yielded the best results. The Agatston score was found to be the least reproducible scoring method. The hydroxyapatite mass, being better reproducible and comparable on different scanners and being a physical quantitative measure, appears to be the method of choice for future clinical studies. The hydroxyapatite mass is highly correlated to the Agatston score. The introduced phantoms can be used to quantitatively assess the performance characteristics of, for example, different scanners, reconstruction algorithms, and quantification methods in cardiac CT. This is especially important for quantitative tasks, such as the determination of the amount of calcium in the coronary arteries, to achieve high and constant quality in this field.
Imaging diagnostics: congenital malformations and acquired lesions of the inner ear.
Pont, Elena; Mazón, Miguel; Montesinos, Pau; Sánchez, Miguel Ángel; Más-Estellés, Fernando
2015-01-01
Congenital malformations and acquired lesions of the inner ear are characterised by small structural changes in this region. In recent decades, treatment options have improved considerably. At the same time, there has been a great advancement in diagnostic methods, obtaining high-resolution labyrinth images. Currently, we use a 64-multislice computed tomography scanner in spiral mode (Brilliance 64 Phillips, Eindhoven, the Netherlands), with an overlap of 0.66 mm and an interval of 0.33 mm, 120 KV and 300 mA. The magnetic resonance images were taken with Signa HDxt 1.5 and 3.0 T units (GE Healthcare, Waukesha, WI, USA). We reviewed the radiological features of the lesions affecting the inner ear. They are classified as congenital (labyrinth malformation and statoacoustic nerve deficiencies) or acquired (otospongiosis, labyrinthitis, Ménière's disease, inner ear haemorrhage, intralabyrinthine schwannoma and endolymphatic sac tumour). Magnetic resonance imaging and computed tomography play an essential role in diagnosing patients with inner ear pathology. The technique selected should be chosen depending on the clinical setting. In a generic way, tomography is the method of choice for the study of traumatic pathology or otospongiosis. When tumour or inflammatory pathology is suspected, magnetic resonance is superior. In cases of congenital malformation, both techniques are complementary. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.
Iosca, Simona; Lumia, Domenico; Bracchi, Elena; Duka, Ejona; De Bon, Monica; Lekaj, Manjola; Uccella, Stefano; Ghezzi, Fabio; Fugazzola, Carlo
2013-01-01
This study evaluates retrospectively the accuracy and reproducibility of multislice computed tomography with colon water distension (MSCT-c) in diagnosing bowel (BE) and ureteral (UE) endometriosis. Sixty-four patients underwent MSCT-c and videolaparoscopic surgery. Two radiologists reviewed MSCT-c examinations: sensitivity and specificity were calculated, considering histological exam as reference standard. In the BE cases, the degree of bowel wall infiltration was also assessed. Sensitivity and specificity for both readers were 100% and 97.6% for BE and 72.2% and 100% for UE; the interobserver agreement was excellent. The degree of bowel wall involvement was correctly defined in 90.9% of cases. MSCT-c is an accurate and reproducible technique but-considering the age of the patients-delivers a nonnegligible radiation dose. © 2013 Elsevier Inc. All rights reserved.
Compartmentalized Low-Rank Recovery for High-Resolution Lipid Unsuppressed MRSI
Bhattacharya, Ipshita; Jacob, Mathews
2017-01-01
Purpose To introduce a novel algorithm for the recovery of high-resolution magnetic resonance spectroscopic imaging (MRSI) data with minimal lipid leakage artifacts, from dual-density spiral acquisition. Methods The reconstruction of MRSI data from dual-density spiral data is formulated as a compartmental low-rank recovery problem. The MRSI dataset is modeled as the sum of metabolite and lipid signals, each of which is support limited to the brain and extracranial regions, respectively, in addition to being orthogonal to each other. The reconstruction problem is formulated as an optimization problem, which is solved using iterative reweighted nuclear norm minimization. Results The comparisons of the scheme against dual-resolution reconstruction algorithm on numerical phantom and in vivo datasets demonstrate the ability of the scheme to provide higher spatial resolution and lower lipid leakage artifacts. The experiments demonstrate the ability of the scheme to recover the metabolite maps, from lipid unsuppressed datasets with echo time (TE)=55 ms. Conclusion The proposed reconstruction method and data acquisition strategy provide an efficient way to achieve high-resolution metabolite maps without lipid suppression. This algorithm would be beneficial for fast metabolic mapping and extension to multislice acquisitions. PMID:27851875
Computer numerical control grinding of spiral bevel gears
NASA Technical Reports Server (NTRS)
Scott, H. Wayne
1991-01-01
The development of Computer Numerical Control (CNC) spiral bevel gear grinding has paved the way for major improvement in the production of precision spiral bevel gears. The object of the program was to decrease the setup, maintenance of setup, and pattern development time by 50 percent of the time required on conventional spiral bevel gear grinders. Details of the process are explained.
Jiang-Jun, Zhou; Min, Zhao; Ya-Bo, Yan; Wei, Lei; Ren-Fa, Lv; Zhi-Yu, Zhu; Rong-Jian, Chen; Wei-Tao, Yu; Cheng-Fei, Du
2014-03-01
Finite element analysis was used to compare preoperative and postoperative stress distribution of a bone healing model of femur fracture, to identify whether broken ends of fractured bone would break or not after fixation dislodgement one year after intramedullary nailing. Method s: Using fast, personalized imaging, bone healing models of femur fracture were constructed based on data from multi-slice spiral computed tomography using Mimics, Geomagic Studio, and Abaqus software packages. The intramedullary pin was removed by Boolean operations before fixation was dislodged. Loads were applied on each model to simulate a person standing on one leg. The von Mises stress distribution, maximum stress, and its location was observed. Results : According to 10 kinds of display groups based on material assignment, the nodes of maximum and minimum von Mises stress were the same before and after dislodgement, and all nodes of maximum von Mises stress were outside the fracture line. The maximum von Mises stress node was situated at the bottom quarter of the femur. The von Mises stress distribution was identical before and after surgery. Conclusion : Fast, personalized model establishment can simulate fixation dislodgement before operation, and personalized finite element analysis was performed to successfully predict whether nail dislodgement would disrupt femur fracture or not.
NASA Astrophysics Data System (ADS)
Li, Tianfang; Wang, Jing; Wen, Junhai; Li, Xiang; Lu, Hongbing; Hsieh, Jiang; Liang, Zhengrong
2004-05-01
To treat the noise in low-dose x-ray CT projection data more accurately, analysis of the noise properties of the data and development of a corresponding efficient noise treatment method are two major problems to be addressed. In order to obtain an accurate and realistic model to describe the x-ray CT system, we acquired thousands of repeated measurements on different phantoms at several fixed scan angles by a GE high-speed multi-slice spiral CT scanner. The collected data were calibrated and log-transformed by the sophisticated system software, which converts the detected photon energy into sinogram data that satisfies the Radon transform. From the analysis of these experimental data, a nonlinear relation between mean and variance for each datum of the sinogram was obtained. In this paper, we integrated this nonlinear relation into a penalized likelihood statistical framework for a SNR (signal-to-noise ratio) adaptive smoothing of noise in the sinogram. After the proposed preprocessing, the sinograms were reconstructed with unapodized FBP (filtered backprojection) method. The resulted images were evaluated quantitatively, in terms of noise uniformity and noise-resolution tradeoff, with comparison to other noise smoothing methods such as Hanning filter and Butterworth filter at different cutoff frequencies. Significant improvement on noise and resolution tradeoff and noise property was demonstrated.
Parsa, Azin; Ibrahim, Norliza; Hassan, Bassam; Motroni, Alessandro; van der Stelt, Paul; Wismeijer, Daniel
2012-01-01
To assess the reliability of cone beam computed tomography (CBCT) voxel gray value measurements using Hounsfield units (HU) derived from multislice computed tomography (MSCT) as a clinical reference (gold standard). Ten partially edentulous human mandibular cadavers were scanned by two types of computed tomography (CT) modalities: multislice CT and cone beam CT. On MSCT scans, eight regions of interest (ROI) designating the site for preoperative implant placement were selected in each mandible. The datasets from both CT systems were matched using a three-dimensional (3D) registration algorithm. The mean voxel gray values of the region around the implant sites were compared between MSCT and CBCT. Significant differences between the mean gray values obtained by CBCT and HU by MSCT were found. In all the selected ROIs, CBCT showed higher mean values than MSCT. A strong correlation (R=0.968) between mean voxel gray values of CBCT and mean HU of MSCT was determined. Voxel gray values from CBCT deviate from actual HU units. However, a strong linear correlation exists, which may permit deriving actual HU units from CBCT using linear regression models.
Hahn, Wolfram; Fricke-Zech, Susanne; Fialka-Fricke, Julia; Dullin, Christian; Zapf, Antonia; Gruber, Rudolf; Sennhenn-kirchner, Sabine; Kubein-Meesenburg, Dietmar; Sadat-Khonsari, Reza
2009-09-01
An investigation was conducted to compare the image quality of prototype flat-panel volume computed tomography (fpVCT) and multislice computed tomography (MSCT) of suture structures. Bone samples were taken from the midpalatal suture of 5 young (16 weeks) and 5 old (200 weeks) Sus scrofa domestica and fixed in formalin solution. An fpVCT prototype and an MSCT were used to obtain images of the specimens. The facial reformations were assessed by 4 observers using a 1 (excellent) to 5 (poor) rating scale for the weighted criteria visualization of the suture structure. A linear mixed model was used for statistical analysis. Results with P < .05 were considered to be statistically significant. The visualization of the suture of young specimens was significantly better than that of older animals (P < .001). The visualization of the suture with fpVCT was significantly better than that with MSCT (P < .001). Compared with MSCT, fpVCT produces superior results in the visualization of the midpalatal suture in a Sus scrofa domestica model.
[Diagnosis of the scaphoid bone : Fractures, nonunion, circulation, perfusion].
Kahl, T; Razny, F K; Benter, J P; Mutig, K; Hegenscheid, K; Mutze, S; Eisenschenk, A
2016-11-01
The clinical relevance of scaphoid bone fractures is reflected by their high incidence, accounting for approximately 60 % among carpal fractures and for 2-3 % of all fractures. With adequate therapy most scaphoid bone fractures heal completely without complications. Insufficient immobilization or undiagnosed fractures increase the risk of nonunion and the development of pseudarthrosis.X-ray examination enables initial diagnosis of scaphoid fracture in 70-80 % of cases. Positive clinical symptoms by negative x‑ray results require further diagnostics by multi-slice spiral CT (MSCT) or MRI to exclude or confirm a fracture. In addition to the diagnosis and description of fractures MSCT is helpful for determining the stage of nonunion. Contrast enhanced MRI is the best method to assess the vitality of scaphoid fragments.
Computing Surface Coordinates Of Face-Milled Spiral-Bevel Gear Teeth
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Litvin, Faydor L.
1995-01-01
Surface coordinates of face-milled spiral-bevel gear teeth computed by method involving numerical solution of governing equations. Needed to generate mathematical models of tooth surfaces for use in finite-element analyses of stresses, strains, and vibrations in meshing spiral-bevel gears.
Conservative orthodontic treatment of mandibular bilateral condyle fracture.
Gašpar, Goran; Brakus, Ivan; Kovačić, Ivan
2014-09-01
Maxillofacial trauma is rare in children younger than the age of 5 years (range 0.6%-1.2%), and they can require different clinical treatment strategies compared with fractures in the adult population because of concerns regarding mandibular growth and development of dentition. A 5-year-old girl with a history of falling from a bicycle 7 hours earlier was referred to the department of oral and maxillofacial surgery. Multislice computed tomographic examination demonstrated a bilateral fracture of the mandibular condyle neck associated with minimal fracture of the alveolar ridge of the maxilla. The multislice computed tomographic scan also demonstrated dislocation on the right condyle neck and, on the left side, a medial inclination of approximately 45 degrees associated with greenstick fracture of the right parasymphysis region. In this particular case, orthodontic rubber elastics in combination with fixed orthodontic brackets provided good results in the treatment of bilateral condyle neck fractures associated with greenstick fracture of parasymphysis.
Pathomorphism of spiral tibial fractures in computed tomography imaging.
Guzik, Grzegorz
2011-01-01
Spiral fractures of the tibia are virtually homogeneous with regard to their pathomorphism. The differences that are seen concern the level of fracture of the fibula, and, to a lesser extent, the level of fracture of the tibia, the length of fracture cleft, and limb shortening following the trauma. While conventional radiographs provide sufficient information about the pathomorphism of fractures, computed tomography can be useful in demonstrating the spatial arrangement of bone fragments and topography of soft tissues surrounding the fracture site. Multiple cross-sectional computed tomography views of spiral fractures of the tibia show the details of the alignment of bone chips at the fracture site, axis of the tibial fracture cleft, and topography of soft tissues that are not visible on standard radiographs. A model of a spiral tibial fracture reveals periosteal stretching with increasing spiral and longitudinal displacement. The cleft in tibial fractures has a spiral shape and its line is invariable. Every spiral fracture of both crural bones results in extensive damage to the periosteum and may damage bellies of the long flexor muscle of toes, flexor hallucis longus as well as the posterior tibial muscle. Computed tomography images of spiral fractures of the tibia show details of damage that are otherwise invisible on standard radiographs. Moreover, CT images provide useful information about the spatial location of the bone chips as well as possible threats to soft tissues that surround the fracture site. Every spiral fracture of the tibia is associated with disruption of the periosteum. 1. Computed tomography images of spiral fractures of the tibia show details of damage otherwise invisible on standard radiographs, 2. The sharp end of the distal tibial chip can damage the tibialis posterior muscle, long flexor muscles of the toes and the flexor hallucis longus, 3. Every spiral fracture of the tibia is associated with disruption of the periosteum.
Erovic, Boban M; Chan, Harley H L; Daly, Michael J; Pothier, David D; Yu, Eugene; Coulson, Chris; Lai, Philip; Irish, Jonathan C
2014-01-01
Conventional computed tomography (CT) imaging is the standard imaging technique for temporal bone diseases, whereas cone-beam CT (CBCT) imaging is a very fast imaging tool with a significant less radiation dose compared with conventional CT. We hypothesize that a system for intraoperative cone-beam CT provides comparable image quality to diagnostic CT for identifying temporal bone anatomical landmarks in cadaveric specimens. Cross-sectional study. University tertiary care facility. Twenty cadaveric temporal bones were affixed into a head phantom and scanned with both a prototype cone-beam CT C-arm and multislice helical CT. Imaging performance was evaluated by 3 otologic surgeons and 1 head and neck radiologist. Participants were presented images in a randomized order and completed landmark identification questionnaires covering 21 structures. CBCT and multislice CT have comparable performance in identifying temporal structures. Three otologic surgeons indicated that CBCT provided statistically equivalent performance for 19 of 21 landmarks, with CBCT superior to CT for the chorda tympani and inferior for the crura of the stapes. Subgroup analysis showed that CBCT performed superiorly for temporal bone structures compared with CT. The radiologist rated CBCT and CT as statistically equivalent for 18 of 21 landmarks, with CT superior to CBCT for the crura of stapes, chorda tympani, and sigmoid sinus. CBCT provides comparable image quality to conventional CT for temporal bone anatomical sites in cadaveric specimens. Clinical applications of low-dose CBCT imaging in surgical planning, intraoperative guidance, and postoperative assessment are promising but require further investigation.
NASA Technical Reports Server (NTRS)
Chao, H. C.; Baxter, M.; Cheng, H. S.
1983-01-01
A computer method for determining the dynamic load between spiral bevel pinion and gear teeth contact along the path of contact is described. The dynamic load analysis governs both the surface temperature and film thickness. Computer methods for determining the surface temperature, and film thickness are presented along with results obtained for a pair of typical spiral bevel gears.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Mori, Kiyoshi; Eguchi, Kenji; Kaneko, Masahiro; Kakinuma, Ryutarou; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru
2007-03-01
Multislice CT scanner advanced remarkably at the speed at which the chest CT images were acquired for mass screening. Mass screening based on multislice CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images and a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification. Moreover, we have provided diagnostic assistance methods to medical screening specialists by using a lung cancer screening algorithm built into mobile helical CT scanner for the lung cancer mass screening done in the region without the hospital. We also have developed electronic medical recording system and prototype internet system for the community health in two or more regions by using the Virtual Private Network router and Biometric fingerprint authentication system and Biometric face authentication system for safety of medical information. Based on these diagnostic assistance methods, we have now developed a new computer-aided workstation and database that can display suspected lesions three-dimensionally in a short time. This paper describes basic studies that have been conducted to evaluate this new system.
Xue, Hua-dan; Liu, Wei; Sun, Hao; Wang, Xuan; Chen, Yu; Su, Bai-yan; Sun, Zhao-yong; Chen, Fang; Jin, Zheng-yu
2010-12-01
To analyze the clinical value of multiple sequences derived from dual-source computed tomography (DSCT) dual-energy scan mode in detecting pancreatic adenocarcinoma. Totally 23 patients with clinically or pathologically diagnosed pancreatic cancer were enrolled in this retrospective study. DSCT (Definition Flash) was used and dual-energy scan mode was used in their pancreatic parenchyma phase scan (100kVp/230mAs and Sn140kVp/178mAs) . Mono-energetic 60kev, mono-energetic 80kev, mono-energetic 100kev, mono-energetic 120kev, linear blend image, non-linear blend image, and iodine map were acquired. pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were calculated. One-way ANOVA was used for the comparison of diagnostic values of the above eight different dual-energy derived sequences for pancreatic cancer. The pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were significantly different among eight sequences (P<0.05) . Mono-energetic 60kev image showed the largest parenchyma-tumor CT value [ (77.53 ± 23.42) HU] , and iodine map showed the lowest tumor/parenchyma enhancement ratio (0.39?0.12) and the largest contrast to noise ratio (4.08 ± 1.46) . Multiple sequences can be derived from dual-energy scan mode with DSCT via multiple post-processing methods. Integration of these sequences may further improve the sensitivity of the multislice spiral CT in the diagnosis of pancreatic cancer.
Magnetic Resonance Fingerprinting with short relaxation intervals.
Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter
2017-09-01
The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T 1 and T 2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T 1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T 2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially resolved MRF. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio
2014-03-01
Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model.
Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio
2016-01-01
Hyperpolarized metabolic imaging is a growing field that has provided a tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model. PMID:24486720
Marcotte, Christopher D; Grigoriev, Roman O
2016-09-01
This paper introduces a numerical method for computing the spectrum of adjoint (left) eigenfunctions of spiral wave solutions to reaction-diffusion systems in arbitrary geometries. The method is illustrated by computing over a hundred eigenfunctions associated with an unstable time-periodic single-spiral solution of the Karma model on a square domain. We show that all leading adjoint eigenfunctions are exponentially localized in the vicinity of the spiral tip, although the marginal modes (response functions) demonstrate the strongest localization. We also discuss the implications of the localization for the dynamics and control of unstable spiral waves. In particular, the interaction with no-flux boundaries leads to a drift of spiral waves which can be understood with the help of the response functions.
NASA Astrophysics Data System (ADS)
Marcotte, Christopher D.; Grigoriev, Roman O.
2016-09-01
This paper introduces a numerical method for computing the spectrum of adjoint (left) eigenfunctions of spiral wave solutions to reaction-diffusion systems in arbitrary geometries. The method is illustrated by computing over a hundred eigenfunctions associated with an unstable time-periodic single-spiral solution of the Karma model on a square domain. We show that all leading adjoint eigenfunctions are exponentially localized in the vicinity of the spiral tip, although the marginal modes (response functions) demonstrate the strongest localization. We also discuss the implications of the localization for the dynamics and control of unstable spiral waves. In particular, the interaction with no-flux boundaries leads to a drift of spiral waves which can be understood with the help of the response functions.
Analysis of dental injuries with clinical implications: A forensic case report.
Tan, Si-Lei; Peng, Shu-Ya; Wan, Lei; Chen, Jie-Min; Xia, Wen-Tao
2018-01-01
Dental injuries, especially of the incisors, caused by punches in violent criminal attacks could be seen in daily forensic casework involving the identification of injuries to a living body. Sometimes, when there is neither circumstantial evidence nor information about the surrounding circumstances, it is difficult to discern the cause of these injuries and the manner in which they were inflicted. As an example of clinical forensic medicine, we present the case of a 58-year-old woman whose teeth were injured when fighting with her son-in-law over household affairs with no witnesses present. The two parties had conflicting stories about the cause of the woman's injury. The woman claimed that her teeth were lost while she was being beaten by her son-in-law, and the man argued that the damage to his mother-in-law's teeth was self-inflicted when she bit his fingers. The police attending the crime called for a forensic examination. Forensic practitioners analysed the mechanism of the tooth loss using multi-slice spiral computed tomography (MSCT) and imaging reconstruction technology. Local alveolar bone (medial alveolar) fracture and a small area of alveolar bone loss were found on MSCT. Thus, forensic medical experts speculated that the woman's lower central and lateral incisors were lost as a result of a violent attack and were not self-inflicted. Finally, forensic practitioners helped police in avoiding a miscarriage of justice and wrongful conviction.
Computer Aided Detection of Breast Masses in Digital Tomosynthesis
2008-06-01
the suspicious CAD location were extracted. For the second set, 256x256 ROIs representing the - 8 - summed slab of 5 slices (5 mm) were extracted...region hotelling observer, digital tomosynthesis, multi-slice CAD algorithms, biopsy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...developing computer-aided detection ( CAD ) tools for mammography. Although these tools have shown promise in identifying calcifications, detecting
A review of some exact solutions to the planar equations of motion of a thrusting spacecraft
NASA Technical Reports Server (NTRS)
Petropoulos, A. E.; Sims, J. A.
2002-01-01
With the complexities in computing optimal low thrust trajectories, easily-computed, good sub-optimal trajectories provide both a practical alternative for mission designers and a starting point for optimisation. The present paper collects in one place for easy reference and comparison several exact solutions that have been obtained in the literature over the last few decades: the logarithmic spiral, Pinkham's variant thereof, Forbes spiral, the exponential sinusoid, the case of constant radial thrust, Markopoulos's Keplerian thrust arcs, Lawden's spiral, and the analogous Bishop and Azimov spiral.
Kleber, C; Oswald, B; Bail, H J; Haas, N P; Kandziora, F
2008-12-01
We present for the first time the use of contrast-enhanced multislice computed tomography in trauma care to detect acute myocardial infarction and verify it as the cause of a traffic accident. In addition to the case report, cardiac contusion, coronary dissection, and facets of insurance law are discussed. The determination of acute myocardial infarction, cardiac contusion, and coronary dissection can be challenging, but answers can be found in the medical history and accident details. The trauma surgeon in the emergency department must always be interested in clarifying the cause of trauma and keeping a secondary diagnosis in mind to strive for the goal of optimal and complete polytrauma care.
A fast image simulation algorithm for scanning transmission electron microscopy.
Ophus, Colin
2017-01-01
Image simulation for scanning transmission electron microscopy at atomic resolution for samples with realistic dimensions can require very large computation times using existing simulation algorithms. We present a new algorithm named PRISM that combines features of the two most commonly used algorithms, namely the Bloch wave and multislice methods. PRISM uses a Fourier interpolation factor f that has typical values of 4-20 for atomic resolution simulations. We show that in many cases PRISM can provide a speedup that scales with f 4 compared to multislice simulations, with a negligible loss of accuracy. We demonstrate the usefulness of this method with large-scale scanning transmission electron microscopy image simulations of a crystalline nanoparticle on an amorphous carbon substrate.
A fast image simulation algorithm for scanning transmission electron microscopy
Ophus, Colin
2017-05-10
Image simulation for scanning transmission electron microscopy at atomic resolution for samples with realistic dimensions can require very large computation times using existing simulation algorithms. Here, we present a new algorithm named PRISM that combines features of the two most commonly used algorithms, namely the Bloch wave and multislice methods. PRISM uses a Fourier interpolation factor f that has typical values of 4-20 for atomic resolution simulations. We show that in many cases PRISM can provide a speedup that scales with f 4 compared to multislice simulations, with a negligible loss of accuracy. We demonstrate the usefulness of this methodmore » with large-scale scanning transmission electron microscopy image simulations of a crystalline nanoparticle on an amorphous carbon substrate.« less
Naitoh, Munetaka; Nakahara, Kino; Suenaga, Yutaka; Gotoh, Kenichi; Kondo, Shintaro; Ariji, Eiichiro
2010-01-01
The most common diagnostic imaging modalities for cross-sectional imaging in dental implant planning are currently cone-beam computed tomography (CBCT) and multislice CT (MSCT). However, clinical differences between CBCT and MSCT in this task have not been fully clarified. In this investigation, the detection of fine anatomical structures in the mandible was assessed and compared between CBCT and MSCT images. The sample consisted of 28 patients who had undergone CBCT and MSCT. The bifid mandibular canal in the mandibular ramus, accessory mental and buccal foramina, and median and lateral lingual bony canals were observed in 2-D images, and the findings were compared between CBCT and MSCT. Four of 19 canals observed in CBCT were not observed in MSCT images. Three accessory mental foramina in 2 patients and 28 lateral lingual bony canals in 18 patients were observed consistently using the two methods. Depiction of fine anatomic features in the mandible associated with neurovascular structures is consistent between CBCT and MSCT images. Copyright 2010 Mosby, Inc. All rights reserved.
Low contrast detection in abdominal CT: comparing single-slice and multi-slice tasks
NASA Astrophysics Data System (ADS)
Ba, Alexandre; Racine, Damien; Viry, Anaïs.; Verdun, Francis R.; Schmidt, Sabine; Bochud, François O.
2017-03-01
Image quality assessment is crucial for the optimization of computed tomography (CT) protocols. Human and mathematical model observers are increasingly used for the detection of low contrast signal in abdominal CT, but are frequently limited to the use of a single image slice. Another limitation is that most of them only consider the detection of a signal embedded in a uniform background phantom. The purpose of this paper was to test if human observer performance is significantly different in CT images read in single or multiple slice modes and if these differences are the same for anatomical and uniform clinical images. We investigated detection performance and scrolling trends of human observers of a simulated liver lesion embedded in anatomical and uniform CT backgrounds. Results show that observers don't take significantly benefit of additional information provided in multi-slice reading mode. Regarding the background, performances are moderately higher for uniform than for anatomical images. Our results suggest that for low contrast detection in abdominal CT, the use of multi-slice model observers would probably only add a marginal benefit. On the other hand, the quality of a CT image is more accurately estimated with clinical anatomical backgrounds.
Petersson, Sven; Dyverfeldt, Petter; Sigfridsson, Andreas; Lantz, Jonas; Carlhäll, Carl-Johan; Ebbers, Tino
2016-03-01
Evaluate spiral three-dimensional (3D) phase contrast MRI for the assessment of turbulence and velocity in stenotic flow. A-stack-of-spirals 3D phase contrast MRI sequence was evaluated in vitro against a conventional Cartesian sequence. Measurements were made in a flow phantom with a 75% stenosis. Both spiral and Cartesian imaging were performed using different scan orientations and flow rates. Volume flow rate, maximum velocity and turbulent kinetic energy (TKE) were computed for both methods. Moreover, the estimated TKE was compared with computational fluid dynamics (CFD) data. There was good agreement between the turbulent kinetic energy from the spiral, Cartesian and CFD data. Flow rate and maximum velocity from the spiral data agreed well with Cartesian data. As expected, the short echo time of the spiral sequence resulted in less prominent displacement artifacts compared with the Cartesian sequence. However, both spiral and Cartesian flow rate estimates were sensitive to displacement when the flow was oblique to the encoding directions. Spiral 3D phase contrast MRI appears favorable for the assessment of stenotic flow. The spiral sequence was more than three times faster and less sensitive to displacement artifacts when compared with a conventional Cartesian sequence. © 2015 Wiley Periodicals, Inc.
Nagaveni, N B; Yadav, Sneha; Poornima, P; Reddy, Vv Subba; Roshan, N M
Various obturation techniques have been evaluated for better filling of the root canals in primary teeth using different methods. Spiral Computed Tomography (SCT) is a new revolution in the pediatric endodontics for assessment of quality of the obturation from 3 dimensions. To evaluate the efficiency of 5 different obturation methods in delivering the filling material into the canals of primary teeth using Spiral Computed Tomography scan. A total of 50 canals of primary teeth were prepared, divided into 5 groups with 10 canals in each group and obturated with Zinc Oxide Eugenol cement using 5 different obturation techniques such as Local anesthetic syringe, Tuberculin syringe, Endodontic plugger, hand held Lentulo-spiral, and Lentulo-spiral mounted on slow speed hand piece. The pre and post obturation volume and finally the Percentage of Obturated Volume (POV) were calculated using SCT scan for each group. The data obtained was statistically analyzed using One-way Analysis of Variance (ANOVA) and Tukey's post-hoc test. Lentulo-spiral hand held showed highest POV value followed by Lentulospiral mounted to hand piece, Tuberculin syringe and Endodontic plugger; whereas Anesthetic syringe had least POV (P < 0.05). Lentulo-spiral hand held is the best obturating technique among the 5 groups evaluated as the canals of this group showed maximum percentage of filled material. However, a further study with large sample size is highly essential.
Fernandes, C L
2004-11-01
The volumes of the maxillary sinuses are of interest to surgeons operating endoscopically as variation in maxillary sinus volume may mean variation in anatomical landmarks. Other surgical disciplines, such as dentistry, maxillo-facial surgery and plastic surgery, may benefit from this information. To compare the maxillary sinus volumes of dried crania from cadavers of European and Zulu descent, with respect to ethnic group and gender. Helical, multislice computed tomography (CT) was performed using 1-mm coronal slices. The area for each slice was obtained by tracing the outline of each slice. The CT machine calculated a volume by totalling the slices for each sinus. Ethnic and gender variations were found in the different groups. It was found that European crania had significantly larger antral volumes than Zulu crania and men had larger volumes than women. Race and gender interaction was also assessed, as was maxillary sinus side. A variation in maxillary sinus volume between different ethnic groups and genders exists, and surgeons operating in this region should be aware of this.
Spiral: Automated Computing for Linear Transforms
NASA Astrophysics Data System (ADS)
Püschel, Markus
2010-09-01
Writing fast software has become extraordinarily difficult. For optimal performance, programs and their underlying algorithms have to be adapted to take full advantage of the platform's parallelism, memory hierarchy, and available instruction set. To make things worse, the best implementations are often platform-dependent and platforms are constantly evolving, which quickly renders libraries obsolete. We present Spiral, a domain-specific program generation system for important functionality used in signal processing and communication including linear transforms, filters, and other functions. Spiral completely replaces the human programmer. For a desired function, Spiral generates alternative algorithms, optimizes them, compiles them into programs, and intelligently searches for the best match to the computing platform. The main idea behind Spiral is a mathematical, declarative, domain-specific framework to represent algorithms and the use of rewriting systems to generate and optimize algorithms at a high level of abstraction. Experimental results show that the code generated by Spiral competes with, and sometimes outperforms, the best available human-written code.
Oelerich, Jan Oliver; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D; Volz, Kerstin
2017-06-01
We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, Minah; Jang, Hanjoo; Baek, Jongduk
2018-03-01
We investigate lesion detectability and its trends for different noise structures in single-slice and multislice CBCT images with anatomical background noise. Anatomical background noise is modeled using a power law spectrum of breast anatomy. Spherical signal with a 2 mm diameter is used for modeling a lesion. CT projection data are acquired by the forward projection and reconstructed by the Feldkamp-Davis-Kress algorithm. To generate different noise structures, two types of reconstruction filters (Hanning and Ram-Lak weighted ramp filters) are used in the reconstruction, and the transverse and longitudinal planes of reconstructed volume are used for detectability evaluation. To evaluate single-slice images, the central slice, which contains the maximum signal energy, is used. To evaluate multislice images, central nine slices are used. Detectability is evaluated using human and model observer studies. For model observer, channelized Hotelling observer (CHO) with dense difference-of-Gaussian (D-DOG) channels are used. For all noise structures, detectability by a human observer is higher for multislice images than single-slice images, and the degree of detectability increase in multislice images depends on the noise structure. Variation in detectability for different noise structures is reduced in multislice images, but detectability trends are not much different between single-slice and multislice images. The CHO with D-DOG channels predicts detectability by a human observer well for both single-slice and multislice images.
Development of Multi-slice Analytical Tool to Support BIM-based Design Process
NASA Astrophysics Data System (ADS)
Atmodiwirjo, P.; Johanes, M.; Yatmo, Y. A.
2017-03-01
This paper describes the on-going development of computational tool to analyse architecture and interior space based on multi-slice representation approach that is integrated with Building Information Modelling (BIM). Architecture and interior space is experienced as a dynamic entity, which have the spatial properties that might be variable from one part of space to another, therefore the representation of space through standard architectural drawings is sometimes not sufficient. The representation of space as a series of slices with certain properties in each slice becomes important, so that the different characteristics in each part of space could inform the design process. The analytical tool is developed for use as a stand-alone application that utilises the data exported from generic BIM modelling tool. The tool would be useful to assist design development process that applies BIM, particularly for the design of architecture and interior spaces that are experienced as continuous spaces. The tool allows the identification of how the spatial properties change dynamically throughout the space and allows the prediction of the potential design problems. Integrating the multi-slice analytical tool in BIM-based design process thereby could assist the architects to generate better design and to avoid unnecessary costs that are often caused by failure to identify problems during design development stages.
Imaging anatomy of the vestibular and visual systems.
Gunny, Roxana; Yousry, Tarek A
2007-02-01
This review will outline the imaging anatomy of the vestibular and visual pathways, using computed tomography and magnetic resonance imaging, with emphasis on the more recent developments in neuroimaging. Technical advances in computed tomography and magnetic resonance imaging, such as the advent of multislice computed tomography and newer magnetic resonance imaging techniques such as T2-weighted magnetic resonance cisternography, have improved the imaging of the vestibular and visual pathways, allowing better visualization of the end organs and peripheral nerves. Higher field strength magnetic resonance imaging is a promising tool, which has been used to evaluate and resolve fine anatomic detail in vitro, as in the labyrinth. Advanced magnetic resonance imaging techniques such as functional magnetic resonance imaging and diffusion tractography have been used to identify cortical areas of activation and associated white matter pathways, and show potential for the future identification of complex neuronal relays involved in integrating these pathways. The assessment of the various components of the vestibular and the visual systems has improved with more detailed research on the imaging anatomy of these systems, the advent of high field magnetic resonance scanners and multislice computerized tomography, and the wider use of specific techniques such as tractography which displays white matter tracts not directly accessible until now.
Shariat, M H; Gazor, S; Redfearn, D
2015-08-01
Atrial fibrillation (AF), the most common sustained cardiac arrhythmia, is an extremely costly public health problem. Catheter-based ablation is a common minimally invasive procedure to treat AF. Contemporary mapping methods are highly dependent on the accuracy of anatomic localization of rotor sources within the atria. In this paper, using simulated atrial intracardiac electrograms (IEGMs) during AF, we propose a computationally efficient method for localizing the tip of the electrical rotor with an Archimedean/arithmetic spiral wavefront. The proposed method deploys the locations of electrodes of a catheter and their IEGMs activation times to estimate the unknown parameters of the spiral wavefront including its tip location. The proposed method is able to localize the spiral as soon as the wave hits three electrodes of the catheter. Our simulation results show that the method can efficiently localize the spiral wavefront that rotates either clockwise or counterclockwise.
Yamashita, Hideomi; Okuma, Kae; Tada, Keiichiro; Shiraishi, Kenshiro; Takahashi, Wataru; Shibata-Mobayashi, Shino; Sakumi, Akira; Saotome, Naoya; Haga, Akihiro; Onoe, Tsuyoshi; Ino, Kenji; Akahane, Masaaki; Ohtomo, Kuni; Nakagawa, Keiichi
2012-10-01
To study the three-dimensional movement of internal tumor bed fiducial and breast skin markers, using 320-multislice computed tomography (CT); and to analyze intrafractional errors for breast cancer patients undergoing breast irradiation. This study examined 280 markers on the skin of the breast (200 markers) and on the primary tumor bed (80 markers) of 20 patients treated by external-beam photon radiotherapy. Motion assessment was analyzed in 41 respiratory phases during 20 s of cine CT in the radiotherapy position. To assess intrafractional errors resulting from respiratory motion, four-dimensional CT scans were acquired for 20 patients. Motion in the anterior-posterior (A/P) and superior-inferior (S/I) directions showed a strong correlation (|r| > 0.7) with the respiratory curve for most markers (79% and 70%, respectively). The average marker displacements between maximum and minimum value during 20 s for the 200 breast skin metal markers were 1.1 ± 0.3 mm, 2.1 ± 0.6 mm, and 1.6 ± 0.4 mm in the left-right, A/P, and S/I directions, respectively. For the 80 tumor bed clips, displacements were 0.9 ± 0.2 mm in left-right, 1.7 ± 0.5 mm in A/P, and 1.1 ± 0.3 mm in S/I. There was no significant difference in the motion between breast quadrant regions or between the primary site and the other regions. Motion in primary breast tumors was evaluated with 320-multislice CT. Very little change was detected during individual radiation treatment fractions. Copyright © 2012 Elsevier Inc. All rights reserved.
Wurmb, T E; Quaisser, C; Balling, H; Kredel, M; Muellenbach, R; Kenn, W; Roewer, N; Brederlau, J
2011-04-01
Whole-body multislice helical CT becomes increasingly important as a diagnostic tool in patients with multiple injuries. Time gain in multiple-trauma patients who require emergency surgery might improve outcome. The authors hypothesised that whole-body multislice computed tomography (MSCT) (MSCT trauma protocol) as the initial diagnostic tool reduces the interval to start emergency surgery (tOR) if compared to conventional radiography, combined with abdominal ultrasound and organ-focused CT (conventional trauma protocol). The second goal of the study was to investigate whether the diagnostic approach chosen has an impact on outcome. The authors' level 1 trauma centre uses whole-body MSCT for initial radiological diagnostic work-up for patients with suspected multiple trauma. Before the introduction of MSCT in 2004, a conventional approach was used. Group I: data of trauma patients treated with conventional trauma protocol from 2001 to 2003. Group II: data from trauma patients treated with whole-body MSCT trauma protocol from 2004 to 2006. tOR in group I (n=155) was 120 (90-150) min (median and IQR) and 105 (85-133) min (median and IQR) in group II (n=163), respectively (p<0.05). Patients of group II had significantly more serious injuries. No difference in outcome data was found. 14 patients died in both groups within the first 30 days; five of these died within the first 24 h. A whole-body MSCT-based diagnostic approach to multiple trauma shortens the time interval to start emergency surgery in patients with multiple injuries. Mortality remained unchanged in both groups. Patients of group II were more seriously injured; an improvement of outcome might be assumed.
Computer-aided diagnosis for osteoporosis using chest 3D CT images
NASA Astrophysics Data System (ADS)
Yoneda, K.; Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.
2016-03-01
The patients of osteoporosis comprised of about 13 million people in Japan and it is one of the problems the aging society has. In order to prevent the osteoporosis, it is necessary to do early detection and treatment. Multi-slice CT technology has been improving the three dimensional (3-D) image analysis with higher body axis resolution and shorter scan time. The 3-D image analysis using multi-slice CT images of thoracic vertebra can be used as a support to diagnose osteoporosis and at the same time can be used for lung cancer diagnosis which may lead to early detection. We develop automatic extraction and partitioning algorithm for spinal column by analyzing vertebral body structure, and the analysis algorithm of the vertebral body using shape analysis and a bone density measurement for the diagnosis of osteoporosis. Osteoporosis diagnosis support system obtained high extraction rate of the thoracic vertebral in both normal and low doses.
Scaling effects in spiral capsule robots.
Liang, Liang; Hu, Rong; Chen, Bai; Tang, Yong; Xu, Yan
2017-04-01
Spiral capsule robots can be applied to human gastrointestinal tracts and blood vessels. Because of significant variations in the sizes of the inner diameters of the intestines as well as blood vessels, this research has been unable to meet the requirements for medical applications. By applying the fluid dynamic equations, using the computational fluid dynamics method, to a robot axial length ranging from 10 -5 to 10 -2 m, the operational performance indicators (axial driving force, load torque, and maximum fluid pressure on the pipe wall) of the spiral capsule robot and the fluid turbulent intensity around the robot spiral surfaces was numerically calculated in a straight rigid pipe filled with fluid. The reasonableness and validity of the calculation method adopted in this study were verified by the consistency of the calculated values by the computational fluid dynamics method and the experimental values from a relevant literature. The results show that the greater the fluid turbulent intensity, the greater the impact of the fluid turbulence on the driving performance of the spiral capsule robot and the higher the energy consumption of the robot. For the same level of size of the robot, the axial driving force, the load torque, and the maximum fluid pressure on the pipe wall of the outer spiral robot were larger than those of the inner spiral robot. For different requirements of the operating environment, we can choose a certain kind of spiral capsule robot. This study provides a theoretical foundation for spiral capsule robots.
ERIC Educational Resources Information Center
Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol
2016-01-01
Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning,…
A method for determining spiral-bevel gear tooth geometry for finite element analysis
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Litvin, Faydor L.
1991-01-01
An analytical method was developed to determine gear tooth surface coordinates of face-milled spiral bevel gears. The method uses the basic gear design parameters in conjunction with the kinematical aspects of spiral bevel gear manufacturing machinery. A computer program, SURFACE, was developed. The computer program calculates the surface coordinates and outputs 3-D model data that can be used for finite element analysis. Development of the modeling method and an example case are presented. This analysis method could also find application for gear inspection and near-net-shape gear forging die design.
Yu, Lifeng; Chen, Baiyu; Kofler, James M.; Favazza, Christopher P.; Leng, Shuai; Kupinski, Matthew A.; McCollough, Cynthia H.
2017-01-01
Purpose Model observers have been successfully developed and used to assess the quality of static 2D CT images. However, radiologists typically read images by paging through multiple 2D slices (i.e. multi-slice reading). The purpose of this study was to correlate human and model observer performance in a low-contrast detection task performed using both 2D and multi-slice reading, and to determine if the 2D model observer still correlate well with human observer performance in multi-slice reading. Methods A phantom containing 18 low-contrast spheres (6 sizes × 3 contrast levels) was scanned on a 192-slice CT scanner at 5 dose levels (CTDIvol = 27, 13.5, 6.8, 3.4, and 1.7 mGy), each repeated 100 times. Images were reconstructed using both filtered-backprojection (FBP) and an iterative reconstruction (IR) method (ADMIRE, Siemens). A 3D volume of interest (VOI) around each sphere was extracted and placed side-by-side with a signal-absent VOI to create a 2-alternative forced choice (2AFC) trial. Sixteen 2AFC studies were generated, each with 100 trials, to evaluate the impact of radiation dose, lesion size and contrast, and reconstruction methods on object detection. In total, 1600 trials were presented to both model and human observers. Three medical physicists acted as human observers and were allowed to page through the 3D volumes to make a decision for each 2AFC trial. The human observer performance was compared with the performance of a multi-slice channelized Hotelling observer (CHO_MS), which integrates multi-slice image data, and with the performance of previously validated CHO, which operates on static 2D images (CHO_2D). For comparison, the same 16 2AFC studies were also performed in a 2D viewing mode by the human observers and compared with the multi-slice viewing performance and the two CHO models. Results Human observer performance was well correlated with the CHO_2D performance in the 2D viewing mode (Pearson product-moment correlation coefficient R=0.972, 95% confidence interval (CI): 0.919 to 0.990) and with the CHO_MS performance in the multi-slice viewing mode (R=0.952, 95% CI: 0.865 to 0.984). The CHO_2D performance, calculated from the 2D viewing mode, also had a strong correlation with human observer performance in the multi-slice viewing mode (R=0.957, 95% CI: 879 to 0.985). Human observer performance varied between the multi-slice and 2D modes. One reader performed better in the multi-slice mode (p=0.013); whereas the other two readers showed no significant difference between the two viewing modes (p=0.057 and p=0.38). Conclusions A 2D CHO model is highly correlated with human observer performance in detecting spherical low contrast objects in multi-slice viewing of CT images. This finding provides some evidence for the use of a simpler, 2D CHO to assess image quality in clinically relevant CT tasks where multi-slice viewing is used. PMID:28555878
Yu, Lifeng; Chen, Baiyu; Kofler, James M; Favazza, Christopher P; Leng, Shuai; Kupinski, Matthew A; McCollough, Cynthia H
2017-08-01
Model observers have been successfully developed and used to assess the quality of static 2D CT images. However, radiologists typically read images by paging through multiple 2D slices (i.e., multislice reading). The purpose of this study was to correlate human and model observer performance in a low-contrast detection task performed using both 2D and multislice reading, and to determine if the 2D model observer still correlate well with human observer performance in multislice reading. A phantom containing 18 low-contrast spheres (6 sizes × 3 contrast levels) was scanned on a 192-slice CT scanner at five dose levels (CTDI vol = 27, 13.5, 6.8, 3.4, and 1.7 mGy), each repeated 100 times. Images were reconstructed using both filtered-backprojection (FBP) and an iterative reconstruction (IR) method (ADMIRE, Siemens). A 3D volume of interest (VOI) around each sphere was extracted and placed side-by-side with a signal-absent VOI to create a 2-alternative forced choice (2AFC) trial. Sixteen 2AFC studies were generated, each with 100 trials, to evaluate the impact of radiation dose, lesion size and contrast, and reconstruction methods on object detection. In total, 1600 trials were presented to both model and human observers. Three medical physicists acted as human observers and were allowed to page through the 3D volumes to make a decision for each 2AFC trial. The human observer performance was compared with the performance of a multislice channelized Hotelling observer (CHO_MS), which integrates multislice image data, and with the performance of previously validated CHO, which operates on static 2D images (CHO_2D). For comparison, the same 16 2AFC studies were also performed in a 2D viewing mode by the human observers and compared with the multislice viewing performance and the two CHO models. Human observer performance was well correlated with the CHO_2D performance in the 2D viewing mode [Pearson product-moment correlation coefficient R = 0.972, 95% confidence interval (CI): 0.919 to 0.990] and with the CHO_MS performance in the multislice viewing mode (R = 0.952, 95% CI: 0.865 to 0.984). The CHO_2D performance, calculated from the 2D viewing mode, also had a strong correlation with human observer performance in the multislice viewing mode (R = 0.957, 95% CI: 879 to 0.985). Human observer performance varied between the multislice and 2D modes. One reader performed better in the multislice mode (P = 0.013); whereas the other two readers showed no significant difference between the two viewing modes (P = 0.057 and P = 0.38). A 2D CHO model is highly correlated with human observer performance in detecting spherical low contrast objects in multislice viewing of CT images. This finding provides some evidence for the use of a simpler, 2D CHO to assess image quality in clinically relevant CT tasks where multislice viewing is used. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Zagorchev, Lyubomir; Manzke, Robert; Cury, Ricardo; Reddy, Vivek Y.; Chan, Raymond C.
2007-03-01
Interventional cardiac electrophysiology (EP) procedures are typically performed under X-ray fluoroscopy for visualizing catheters and EP devices relative to other highly-attenuating structures such as the thoracic spine and ribs. These projections do not however contain information about soft-tissue anatomy and there is a recognized need for fusion of conventional fluoroscopy with pre-operatively acquired cardiac multislice computed tomography (MSCT) volumes. Rapid 2D-3D integration in this application would allow for real-time visualization of all catheters present within the thorax in relation to the cardiovascular anatomy visible in MSCT. We present a method for rapid fusion of 2D X-ray fluoroscopy with 3DMSCT that can facilitate EP mapping and interventional procedures by reducing the need for intra-operative contrast injections to visualize heart chambers and specialized systems to track catheters within the cardiovascular anatomy. We use hardware-accelerated ray-casting to compute digitally reconstructed radiographs (DRRs) from the MSCT volume and iteratively optimize the rigid-body pose of the volumetric data to maximize the similarity between the MSCT-derived DRR and the intra-operative X-ray projection data.
NASA Astrophysics Data System (ADS)
McClelland, Jamie R.; Modat, Marc; Arridge, Simon; Grimes, Helen; D'Souza, Derek; Thomas, David; O' Connell, Dylan; Low, Daniel A.; Kaza, Evangelia; Collins, David J.; Leach, Martin O.; Hawkes, David J.
2017-06-01
Surrogate-driven respiratory motion models relate the motion of the internal anatomy to easily acquired respiratory surrogate signals, such as the motion of the skin surface. They are usually built by first using image registration to determine the motion from a number of dynamic images, and then fitting a correspondence model relating the motion to the surrogate signals. In this paper we present a generalized framework that unifies the image registration and correspondence model fitting into a single optimization. This allows the use of ‘partial’ imaging data, such as individual slices, projections, or k-space data, where it would not be possible to determine the motion from an individual frame of data. Motion compensated image reconstruction can also be incorporated using an iterative approach, so that both the motion and a motion-free image can be estimated from the partial image data. The framework has been applied to real 4DCT, Cine CT, multi-slice CT, and multi-slice MR data, as well as simulated datasets from a computer phantom. This includes the use of a super-resolution reconstruction method for the multi-slice MR data. Good results were obtained for all datasets, including quantitative results for the 4DCT and phantom datasets where the ground truth motion was known or could be estimated.
McClelland, Jamie R; Modat, Marc; Arridge, Simon; Grimes, Helen; D'Souza, Derek; Thomas, David; Connell, Dylan O'; Low, Daniel A; Kaza, Evangelia; Collins, David J; Leach, Martin O; Hawkes, David J
2017-06-07
Surrogate-driven respiratory motion models relate the motion of the internal anatomy to easily acquired respiratory surrogate signals, such as the motion of the skin surface. They are usually built by first using image registration to determine the motion from a number of dynamic images, and then fitting a correspondence model relating the motion to the surrogate signals. In this paper we present a generalized framework that unifies the image registration and correspondence model fitting into a single optimization. This allows the use of 'partial' imaging data, such as individual slices, projections, or k-space data, where it would not be possible to determine the motion from an individual frame of data. Motion compensated image reconstruction can also be incorporated using an iterative approach, so that both the motion and a motion-free image can be estimated from the partial image data. The framework has been applied to real 4DCT, Cine CT, multi-slice CT, and multi-slice MR data, as well as simulated datasets from a computer phantom. This includes the use of a super-resolution reconstruction method for the multi-slice MR data. Good results were obtained for all datasets, including quantitative results for the 4DCT and phantom datasets where the ground truth motion was known or could be estimated.
McClelland, Jamie R; Modat, Marc; Arridge, Simon; Grimes, Helen; D’Souza, Derek; Thomas, David; Connell, Dylan O’; Low, Daniel A; Kaza, Evangelia; Collins, David J; Leach, Martin O; Hawkes, David J
2017-01-01
Abstract Surrogate-driven respiratory motion models relate the motion of the internal anatomy to easily acquired respiratory surrogate signals, such as the motion of the skin surface. They are usually built by first using image registration to determine the motion from a number of dynamic images, and then fitting a correspondence model relating the motion to the surrogate signals. In this paper we present a generalized framework that unifies the image registration and correspondence model fitting into a single optimization. This allows the use of ‘partial’ imaging data, such as individual slices, projections, or k-space data, where it would not be possible to determine the motion from an individual frame of data. Motion compensated image reconstruction can also be incorporated using an iterative approach, so that both the motion and a motion-free image can be estimated from the partial image data. The framework has been applied to real 4DCT, Cine CT, multi-slice CT, and multi-slice MR data, as well as simulated datasets from a computer phantom. This includes the use of a super-resolution reconstruction method for the multi-slice MR data. Good results were obtained for all datasets, including quantitative results for the 4DCT and phantom datasets where the ground truth motion was known or could be estimated. PMID:28195833
The possibility of application of spiral brain computed tomography to traumatic brain injury.
Lim, Daesung; Lee, Soo Hoon; Kim, Dong Hoon; Choi, Dae Seub; Hong, Hoon Pyo; Kang, Changwoo; Jeong, Jin Hee; Kim, Seong Chun; Kang, Tae-Sin
2014-09-01
The spiral computed tomography (CT) with the advantage of low radiation dose, shorter test time required, and its multidimensional reconstruction is accepted as an essential diagnostic method for evaluating the degree of injury in severe trauma patients and establishment of therapeutic plans. However, conventional sequential CT is preferred for the evaluation of traumatic brain injury (TBI) over spiral CT due to image noise and artifact. We aimed to compare the diagnostic power of spiral facial CT for TBI to that of conventional sequential brain CT. We evaluated retrospectively the images of 315 traumatized patients who underwent both brain CT and facial CT simultaneously. The hemorrhagic traumatic brain injuries such as epidural hemorrhage, subdural hemorrhage, subarachnoid hemorrhage, and contusional hemorrhage were evaluated in both images. Statistics were performed using Cohen's κ to compare the agreement between 2 imaging modalities and sensitivity, specificity, positive predictive value, and negative predictive value of spiral facial CT to conventional sequential brain CT. Almost perfect agreement was noted regarding hemorrhagic traumatic brain injuries between spiral facial CT and conventional sequential brain CT (Cohen's κ coefficient, 0.912). To conventional sequential brain CT, sensitivity, specificity, positive predictive value, and negative predictive value of spiral facial CT were 92.2%, 98.1%, 95.9%, and 96.3%, respectively. In TBI, the diagnostic power of spiral facial CT was equal to that of conventional sequential brain CT. Therefore, expanded spiral facial CT covering whole frontal lobe can be applied to evaluate TBI in the future. Copyright © 2014 Elsevier Inc. All rights reserved.
Amansakhedov, R B; Limarova, I V; Perfiliev, A V; Abdullaev, R Yu; Sigaev, A T; Ergeshov, A E
2016-01-01
to improve the differential diagnosis of disseminated pulmonary tuberculosis (DPT) and exogenous allergic alveolitis (EAA) via comparative investigation of their computed tomography (CT) semiotics and identification of the most informative diagnostic criteria. 70 patients, including 40 patients with DPT in a phase of infiltration and 30 patients with acute EAA, were studied using a Somatom Emotion 16 multi-slice spiral CT scanner (Siemens). All the patients underwent spiral scanning from the upper chest aperture to the costodiaphragmatic recesses with a high CT algorithm at 0.8-mm slice thickness and a 1.5-mm step. Analysis of the spread of dissemination foci established that pathological changes were peribronchovascularly located in both nosological entities and characterized by a preponderance of septal and intrabronchial locations in DPT and by a centrilobular distribution in EAA. Centrilobular foci were more commonly poorly defined in EAA and mixed foci were observed in DPT. In the latter, peribronchovascular, centrilobular foci were revealed at a distance from the visceral pleura (the boundary of the deep and superficial lymphatic network, respectively) in 38% and more than half of the cases (62%) with the involvement of the visceral and parietal pleura; in EAA, the centrilobular foci were more often combined with the involvement of the visceral pleura in more than 92% of cases. The tree-in-bud sign was significantly more common in DPT. The latter was mostly characterized by apicocaudal regression of dissemination. In EAA, the foci were more frequently located asymmetrically. Monomorphic foci with destruction, as well as their polymorphism were seen in DPT; those without destruction were predominantly observed in EAA. CT ground glass and mosaic perfusion syndromes were significantly more often in EAA. In DPT, the visceral and parietal pleuras were involved in the process in 62% of cases and changes were also more common in the extrapleural fat. In addition to the peribronchovascular location of foci, the characteristic CT signs for DPT are a preponderance of intrabronchial and septal locations of foci, their apicocaudal regression, the presence of the CT tree-in-bud sign, and thickened extrapleural fat. EAA showed a prevalence of asymmetrical foci with centrilobular location with the involvement of the visceral pleura into the process, with the presence of CT ground glass and mosaic perfusion syndromes, as well as the bronchial lumen visualized in the peripheral segments of the lung.
A comparison of sequential and spiral scanning techniques in brain CT.
Pace, Ivana; Zarb, Francis
2015-01-01
To evaluate and compare image quality and radiation dose of sequential computed tomography (CT) examinations of the brain and spiral CT examinations of the brain imaged on a GE HiSpeed NX/I Dual Slice 2CT scanner. A random sample of 40 patients referred for CT examination of the brain was selected and divided into 2 groups. Half of the patients were scanned using the sequential technique; the other half were scanned using the spiral technique. Radiation dose data—both the computed tomography dose index (CTDI) and the dose length product (DLP)—were recorded on a checklist at the end of each examination. Using the European Guidelines on Quality Criteria for Computed Tomography, 4 radiologists conducted a visual grading analysis and rated the level of visibility of 6 anatomical structures considered necessary to produce images of high quality. The mean CTDI(vol) and DLP values were statistically significantly higher (P <.05) with the sequential scans (CTDI(vol): 22.06 mGy; DLP: 304.60 mGy • cm) than with the spiral scans (CTDI(vol): 14.94 mGy; DLP: 229.10 mGy • cm). The mean image quality rating scores for all criteria of the sequential scanning technique were statistically significantly higher (P <.05) in the visual grading analysis than those of the spiral scanning technique. In this local study, the sequential technique was preferred over the spiral technique for both overall image quality and differentiation between gray and white matter in brain CT scans. Other similar studies counter this finding. The radiation dose seen with the sequential CT scanning technique was significantly higher than that seen with the spiral CT scanning technique. However, image quality with the sequential technique was statistically significantly superior (P <.05).
Center removal amount control of magnetorheological finishing process by spiral polishing way
NASA Astrophysics Data System (ADS)
Wang, Yajun; He, Jianguo; Ji, Fang; Huang, Wen; Xiao, Hong; Luo, Qing; Zheng, Yongcheng
2010-10-01
Spiral polishing is a traditional process of computer-controlled optical surfacing. However, the additional polishing amount is great and the center polishing amount is difficult to control. At first, a simplified mathematics model is presented for magnetorheological finishing, which indicates that the center polishing amount and additional polishing amount are proportional to the length and peak value of magnetorheological finishing influence function, and are inversely proportional to pitch and rotation rate of spiral track, and the center polishing amount is much bigger than average polishing amount. Secondly, the relationships of "tool feed way and center polishing amount", "spiral pitch and calculation accuracy of influence matrix for dwell time function solution", "spiral pitch and center polishing amount" and "peak removal rate, dimensions of removal function and center removal amount" are studied by numerical computation by Archimedes spiral path. It shows that the center polishing amount is much bigger in feed stage than that in backhaul stage when the head of influence function is towards workpiece edge in feeding; and the bigger pitch, the bigger calculation error of influence matrix elements; and the bigger pitch, the smaller center polishing amount, and the smaller peak removal rate and dimensions of removal function, the smaller center removal amount. At last, the polishing results are given, which indicates that the center polishing amount is acceptable with a suitable polishing amount rate of feed stage and backhaul stage, and with a suitable spiral pitch during magnetorheological finishing procedure by spiral motion way.
Recent manufacturing advances for spiral bevel gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Bill, Robert C.
1991-01-01
The U.S. Army Aviation Systems Command (AVSCOM), through the Propulsion Directorate at NASA Lewis Research Center, has recently sponsored projects to advance the manufacturing process for spiral bevel gears. This type of gear is a critical component in rotary-wing propulsion systems. Two successfully completed contracted projects are described. The first project addresses the automated inspection of spiral bevel gears through the use of coordinate measuring machines. The second project entails the computer-numerical-control (CNC) conversion of a spiral bevel gear grinding machine that is used for all aerospace spiral bevel gears. The results of these projects are described with regard to the savings effected in manufacturing time.
Recent manufacturing advances for spiral bevel gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Bill, Robert C.
1991-01-01
The U.S. Army Aviation Systems Command (AVSCOM), through the Propulsion Directorate at NASA LRC, has recently sponsored projects to advance the manufacturing process for spiral bevel gears. This type of gear is a critical component in rotary-wing propulsion systems. Two successfully completed contracted projects are described. The first project addresses the automated inspection of spiral bevel gears through the use of coordinate measuring machines. The second project entails the computer-numerical-control (CNC) conversion of a spiral bevel gear grinding machine that is used for all aerospace spiral bevel gears. The results of these projects are described with regard to the savings effected in manufacturing time.
Tight-frame based iterative image reconstruction for spectral breast CT
Zhao, Bo; Gao, Hao; Ding, Huanjun; Molloi, Sabee
2013-01-01
Purpose: To investigate tight-frame based iterative reconstruction (TFIR) technique for spectral breast computed tomography (CT) using fewer projections while achieving greater image quality. Methods: The experimental data were acquired with a fan-beam breast CT system based on a cadmium zinc telluride photon-counting detector. The images were reconstructed with a varying number of projections using the TFIR and filtered backprojection (FBP) techniques. The image quality between these two techniques was evaluated. The image's spatial resolution was evaluated using a high-resolution phantom, and the contrast to noise ratio (CNR) was evaluated using a postmortem breast sample. The postmortem breast samples were decomposed into water, lipid, and protein contents based on images reconstructed from TFIR with 204 projections and FBP with 614 projections. The volumetric fractions of water, lipid, and protein from the image-based measurements in both TFIR and FBP were compared to the chemical analysis. Results: The spatial resolution and CNR were comparable for the images reconstructed by TFIR with 204 projections and FBP with 614 projections. Both reconstruction techniques provided accurate quantification of water, lipid, and protein composition of the breast tissue when compared with data from the reference standard chemical analysis. Conclusions: Accurate breast tissue decomposition can be done with three fold fewer projection images by the TFIR technique without any reduction in image spatial resolution and CNR. This can result in a two-third reduction of the patient dose in a multislit and multislice spiral CT system in addition to the reduced scanning time in this system. PMID:23464320
A comparison of hepatic segmental anatomy as revealed by cross-sections and MPR CT imaging.
Liu, Xue-Jing; Zhang, Jian-Fei; Sui, Hong-Jin; Yu, Sheng-Bo; Gong, Jin; Liu, Jie; Wu, Le-Bin; Liu, Cheng; Bai, Jian; Shi, Bing-Yi
2013-05-01
To compare the areas of human liver horizontal sections with computed tomography (CT) images and to evaluate whether the subsegments determined by CT are consistent with the actual anatomy. Six human cadaver livers were made into horizontal slices with multislice spiral CT three-dimensional (3D) reconstruction was used during infusion process. Each liver segment was displayed using different color, and 3D images of the portal and hepatic vein were reconstructed. Each segmental area was measured on CT-reconstructed images, which were compared with the actual area on the sections of the same liver. The measurements were performed at four key levels namely: (1) the three hepatic veins, (2) the left, and (3) the right branch of portal vein (PV), and (4) caudal to the bifurcation of the PV. By dividing the sum of these areas by the total area of the liver, the authors got the percentage of the incorrectly determined subsegmental areas. In addition to these percentage values, the maximum distances of the radiologically determined intersegmental boundaries from the true anatomic boundaries were measured. On the four key levels, an average of 28.64 ± 10.26% of the hepatic area of CT images was attributed to an incorrect segment. The mean-maximum error between artificial segments on images and actual anatomical segments was 3.81 ± 1.37 cm. The correlation between radiological segmenting method and actual anatomy was poor. The hepatic segments being divided strictly according to the branching point of the PV could be more informative during liver segmental resection. Copyright © 2012 Wiley Periodicals, Inc.
Flach, Patricia M; Ross, Steffen G; Bolliger, Stephan A; Preiss, Ulrich S; Thali, Michael J; Spendlove, Danny
2010-01-01
In addition to the increasingly significant role of multislice computed tomography in forensic pathology, the performance of whole-body computed tomography angiography provides outstanding results. In this case, we were able to detect multiple injuries of the parenchymal organs in the upper abdomen as well as lesions of the brain parenchyma and vasculature of the neck. The radiologic findings showed complete concordance with the autopsy and even supplemented the autopsy findings in areas that are difficult to access via a manual dissection (such as the vasculature of the neck). This case shows how minimally invasive computed tomography angiography can serve as an invaluable adjunct to the classic autopsy procedure.
NASA Technical Reports Server (NTRS)
Walowit, Jed A.; Shapiro, Wilbur
2005-01-01
The SPIRALI code predicts the performance characteristics of incompressible cylindrical and face seals with or without the inclusion of spiral grooves. Performance characteristics include load capacity (for face seals), leakage flow, power requirements and dynamic characteristics in the form of stiffness, damping and apparent mass coefficients in 4 degrees of freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance characteristics are computed as functions of seal and groove geometry, load or film thickness, running and disturbance speeds, fluid viscosity, and boundary pressures. A derivation of the equations governing the performance of turbulent, incompressible, spiral groove cylindrical and face seals along with a description of their solution is given. The computer codes are described, including an input description, sample cases, and comparisons with results of other codes.
Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue.
Marcotte, Christopher D; Grigoriev, Roman O
2015-06-01
This paper investigates the properties of unstable single-spiral wave solutions arising in the Karma model of two-dimensional cardiac tissue. In particular, we discuss how such solutions can be computed numerically on domains of arbitrary shape and study how their stability, rotational frequency, and spatial drift depend on the size of the domain as well as the position of the spiral core with respect to the boundaries. We also discuss how the breaking of local Euclidean symmetry due to finite size effects as well as the spatial discretization of the model is reflected in the structure and dynamics of spiral waves. This analysis allows identification of a self-sustaining process responsible for maintaining the state of spiral chaos featuring multiple interacting spirals.
NASA Astrophysics Data System (ADS)
Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois
2006-03-01
Pulmonary diseases such as bronchiectasis, asthma, and emphysema are characterized by abnormalities in airway dimensions. Multi-slice computed tomography (MSCT) has become one of the primary means to depict these abnormalities, as the availability of high-resolution near-isotropic data makes it possible to evaluate airways at oblique angles to the scanner plane. However, currently, clinical evaluation of airways is typically limited to subjective visual inspection only: systematic evaluation of the airways to take advantage of high-resolution data has not proved practical without automation. We present an automated method to quantitatively evaluate airway lumen diameter, wall thickness and broncho-arterial ratios. In addition, our method provides 3D visualization of these values, graphically illustrating the location and extent of disease. Our algorithm begins by automatic airway segmentation to extract paths to the distal airways, and to create a map of airway diameters. Normally, airway diameters decrease as paths progress distally; failure to taper indicates abnormal dilatation. Our approach monitors airway lumen diameters along each airway path in order to detect abnormal profiles, allowing even subtle degrees of pathologic dilatation to be identified. Our method also systematically computes the broncho-arterial ratio at every terminal branch of the tree model, as a ratio above 1 indicates potentially abnormal bronchial dilatation. Finally, the airway wall thickness is computed at corresponding locations. These measurements are used to highlight abnormal branches for closer inspection, and can be summed to compute a quantitative global score for the entire airway tree, allowing reproducible longitudinal assessment of disease severity. Preliminary tests on patients diagnosed with bronchiectasis demonstrated rapid identification of lack of tapering, which also was confirmed by corresponding demonstration of elevated broncho-arterial ratios.
Fluid Mechanics and Heat Transfer Spirally Fluted Tubing.
1984-12-01
of the tube and the convective transport, due to the secondary flow produced by the spiral flutes. It is well known that the Nusselt number of fully...data for the convective heat transfer behaviour. The computed Nusselt numbers for air show a 120% increase over the smooth tube values while the...The Prediction of Convective Heat Transfer in Spirally Fluted Tubes FIGURES 1. Shell side NU-REY correlation . . . . . . . . . . . . . . . 5 2. Tube
Prazeres, Carlos Eduardo Elias Dos; Magalhães, Tiago Augusto; de Castro Carneiro, Adriano Camargo; Cury, Roberto Caldeira; de Melo Moreira, Valéria; Bello, Juliana Hiromi Silva Matsumoto; Rochitte, Carlos Eduardo
The aim of this study was to compare image quality and radiation dose of coronary computed tomography (CT) angiography performed with dual-source CT scanner using 2 different protocols in patients with atrial fibrillation. Forty-seven patients with AF underwent 2 different acquisition protocols: double high-pitch (DHP) spiral acquisition and retrospective spiral acquisition. The image quality was ranked according to a qualitative score by 2 experts: 1, no evident motion; 2, minimal motion not influencing coronary artery luminal evaluation; and 3, motion with impaired luminal evaluation. A third expert solved any disagreement. A total of 732 segments were evaluated. The DHP group (24 patients, 374 segments) showed more segments classified as score 1 than the retrospective spiral acquisition group (71.3% vs 37.4%). Image quality evaluation agreement was high between observers (κ = 0.8). There was significantly lower radiation exposure for the DHP group (3.65 [1.29] vs 23.57 [10.32] mSv). In this original direct comparison, a DHP spiral protocol for coronary CT angiography acquisition in patients with atrial fibrillation resulted in lower radiation exposure and superior image quality compared with conventional spiral retrospective acquisition.
Sahani, Dushyant; Saini, Sanjay; D'Souza, Roy V; O'Neill, Mary Jane; Prasad, Srinivasa R; Kalra, Mannudeep K; Halpern, Elkan F; Mueller, Peter
2003-01-01
The purpose of this study was to compare the performance of low helical pitch acquisition (3:1) and high helical pitch acquisition (6:1) for routine abdominal/pelvic imaging with multislice computed tomography (CT). Three hundred eighty-four patients referred for abdominal/pelvic CT were examined in a breath-hold on a multislice CT scanner (LightSpeed QX/I; General Electric Medical Systems, Milwaukee, WI). Patients were randomized and scanned with pitch of 3:1 or 6:1 using a constant 140 peak kV and 280-300 mA. Images were reconstructed at a 3.75-mm slice thickness. Direct comparison between the two pitches was possible in a subset of 40 patients who had a follow-up scan performed with the second pitch used in each patient. A comparison was also performed between standard dose CT using a pitch of 6:1 and 20% reduced radiation dose CT using a pitch of 3:1. Two readers performed a blind evaluation using a three-point scale for image quality, anatomic details, and motion artifacts. Statistical analysis was performed using a rank sum test and the Wilcoxon signed rank test. Overall image quality mean scores were 2.5 and 2.3 for a pitch of 3:1 and a pitch of 6:1, respectively (P = 0.134). Likewise, mean anatomic detail and motion artifact scores were 2.5 and 2.6 for a 3:1 pitch and 2.3 and 2.5 for a 6:1 pitch, respectively (P > 0.05). In patients with a direct comparison of the two pitches (with the standard radiation dose as well as with a 20% reduction in milliamperes), no statistically significant difference in the performance of the two pitches was observed (P > 0.05). Image quality with a high pitch (6:1) is acceptable for routine abdominal/pelvic CT.
Liver metastases: imaging considerations for protocol development with Multislice CT (MSCT)
Silverman, Paul M
2006-01-01
Conventional, single-slice helical computed tomography (SSCT) allowed for scanning the majority of the liver during the critical portal venous phase. This was often referred to as the ‘optimal temporal window’. The introduction of current day multislice CT (MSCT) now allows us to acquire images in a much shorter time and more precisely than ever before. This yields increased conspicuity between low attenuation lesions and the enhanced normal liver parenchyma and optimal imaging for the vast majority of hepatic hypovascular metastases. Most importantly, these scanners, when compared to conventional non-helical scanners, avoid impinging upon the ‘equilibrium’ phase when tumors can become isodense/invisible. MSCT also allows for true multiphase scanning during the arterial and late arterial phases for detection of hypervascular metastases. The MSCT imaging speed has increased significantly over the past years with the introduction of 32- and 64-detector systems and will continue to increase in the future volumetric CT. This provides a number of important gains that are discussed in detail. PMID:17098650
Right cervical aortic arch with aberrant left subclavian artery.
Tjang, Yanto S; Aramendi, José I; Crespo, Alejandro; Hamzeh, Gadah; Voces, Roberto; Rodríguez, Miguel A
2008-08-01
The combination of right cervical aortic arch, aberrant retroesophageal left subclavian artery originating from a Kommerell's diverticulum, and a ligamentum arteriosum, constitutes a rare form of vascular ring. Two patients aged 21 days and 54 years, who were diagnosed by multislice 3-dimensional computed tomography and magnetic resonance imaging, underwent surgical division of a vascular ring. The adult required resection of a Kommerell's aneurysm and subclavian artery reimplantation.
Zeng, Rongping; Petrick, Nicholas; Gavrielides, Marios A; Myers, Kyle J
2011-10-07
Multi-slice computed tomography (MSCT) scanners have become popular volumetric imaging tools. Deterministic and random properties of the resulting CT scans have been studied in the literature. Due to the large number of voxels in the three-dimensional (3D) volumetric dataset, full characterization of the noise covariance in MSCT scans is difficult to tackle. However, as usage of such datasets for quantitative disease diagnosis grows, so does the importance of understanding the noise properties because of their effect on the accuracy of the clinical outcome. The goal of this work is to study noise covariance in the helical MSCT volumetric dataset. We explore possible approximations to the noise covariance matrix with reduced degrees of freedom, including voxel-based variance, one-dimensional (1D) correlation, two-dimensional (2D) in-plane correlation and the noise power spectrum (NPS). We further examine the effect of various noise covariance models on the accuracy of a prewhitening matched filter nodule size estimation strategy. Our simulation results suggest that the 1D longitudinal, 2D in-plane and NPS prewhitening approaches can improve the performance of nodule size estimation algorithms. When taking into account computational costs in determining noise characterizations, the NPS model may be the most efficient approximation to the MSCT noise covariance matrix.
Naghibi, Saeed; Seifirad, Sirous; Adami Dehkordi, Mahboobeh; Einolghozati, Sasan; Ghaffarian Eidgahi Moghadam, Nafiseh; Akhavan Rezayat, Amir; Seifirad, Soroush
2016-01-01
Chronic otitis media (COM) can be treated with tympanoplasty with or without mastoidectomy. In patients who have undergone middle ear surgery, three-dimensional spiral computed tomography (CT) scan plays an important role in optimizing surgical planning. This study was performed to compare the findings of three-dimensional reconstructed spiral and conventional CT scan of ossicular chain study in patients with COM. Fifty patients enrolled in the study underwent plane and three dimensional CT scan (PHILIPS-MX 8000). Ossicles changes, mastoid cavity, tympanic cavity, and presence of cholesteatoma were evaluated. Results of the two methods were then compared and interpreted by a radiologist, recorded in questionnaires, and analyzed. Logistic regression test and Kappa coefficient of agreement were used for statistical analyses. Sixty two ears with COM were found in physical examination. A significant difference was observed between the findings of the two methods in ossicle erosion (11.3% in conventional CT vs. 37.1% in spiral CT, P = 0.0001), decrease of mastoid air cells (82.3% in conventional CT vs. 93.5% in spiral CT, P = 0.001), and tympanic cavity opacity (12.9% in conventional CT vs. 40.3% in spiral CT, P=0.0001). No significant difference was observed between the findings of the two methods in ossicle destruction (6.5% conventional CT vs. 56.4% in spiral CT, P = 0.125), and presence of cholesteatoma (3.2% in conventional CT vs. 42% in spiral CT, P = 0.172). In this study, spiral CT scan demonstrated ossicle dislocation in 9.6%, decrease of mastoid air cells in 4.8%, and decrease of volume in the tympanic cavity in 1.6%; whereas, none of these findings were reported in the patients' conventional CT scans. Spiral-CT scan is superior to conventional CT in the diagnosis of lesions in COM before operation. It can be used for detailed evaluation of ossicular chain in such patients.
Analysis and Design of a Double-Divert Spiral Groove Seal
NASA Technical Reports Server (NTRS)
Zheng, Xiaoqing; Berard, Gerald
2007-01-01
This viewgraph presentation describes the design and analysis of a double spiral groove seal. The contents include: 1) Double Spiral Design Features; 2) Double Spiral Operational Features; 3) Mating Ring/Rotor Assembly; 4) Seal Ring Assembly; 5) Insert Segment Joints; 6) Rotor Assembly Completed Prototype Parts; 7) Seal Assembly Completed Prototype Parts; 8) Finite Element Analysis; 9) Computational Fluid Dynamics (CFD) Analysis; 10) Restrictive Orifice Design; 11) Orifice CFD Model; 12) Orifice Results; 13) Restrictive Orifice; 14) Seal Face Coning; 15) Permanent Magnet Analysis; 16) Magnetic Repulsive Force; 17) Magnetic Repulsive Test Results; 18) Spin Testing; and 19) Testing and Validation.
Arisan, Volkan; Karabuda, Zihni Cüneyt; Pişkin, Bülent; Özdemir, Tayfun
2013-12-01
Deviations of implants that were placed by conventional computed tomography (CT)- or cone beam CT (CBCT)-derived mucosa-supported stereolithographic (SLA) surgical guides were analyzed in this study. Eleven patients were randomly scanned by a multi-slice CT (CT group) or a CBCT scanner (CBCT group). A total of 108 implants were planned on the software and placed using SLA guides. A new CT or CBCT scan was obtained and merged with the planning data to identify the deviations between the planned and placed implants. Results were analyzed by Mann-Whitney U test and multiple regressions (p < .05). Mean angular and linear deviations in the CT group were 3.30° (SD 0.36), and 0.75 (SD 0.32) and 0.80 mm (SD 0.35) at the implant shoulder and tip, respectively. In the CBCT group, mean angular and linear deviations were 3.47° (SD 0.37), and 0.81 (SD 0.32) and 0.87 mm (SD 0.32) at the implant shoulder and tip, respectively. No statistically significant differences were detected between the CT and CBCT groups (p = .169 and p = .551, p = .113 for angular and linear deviations, respectively). Implant placement via CT- or CBCT-derived mucosa-supported SLA guides yielded similar deviation values. Results should be confirmed on alternative CBCT scanners. © 2012 Wiley Periodicals, Inc.
Investigation of spiral blood flow in a model of arterial stenosis.
Paul, Manosh C; Larman, Arkaitz
2009-11-01
The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system [Stonebridge PA, Brophy CM. Spiral laminar flow in arteries? Lancet 1991; 338: 1360-1]. We investigate the effects of the spiral blood flow in a model of three-dimensional arterial stenosis with a 75% cross-sectional area reduction at the centre by means of computational fluid dynamics (CFD) techniques. The standard k-omega model is employed for simulation of the blood flow for the Reynolds number of 500 and 1000. We find that for Re=500 the spiral component of the blood flow increases both the total pressure and velocity of the blood, and some significant differences are found between the wall shear stresses of the spiral and non-spiral induced flow downstream of the stenosis. The turbulent kinetic energy is reduced by the spiral flow as it induces the rotational stabilities in the forward flow. For Re=1000 the tangential component of the blood velocity is most influenced by the spiral speed, but the effect of the spiral flow on the centreline turbulent kinetic energy and shear stress is mild. The results of the effects of the spiral flow are discussed in the paper along with the relevant pathological issues.
How to determine spiral bevel gear tooth geometry for finite element analysis
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Litvin, Faydor L.
1991-01-01
An analytical method was developed to determine gear tooth surface coordinates of face milled spiral bevel gears. The method combines the basic gear design parameters with the kinematical aspects for spiral bevel gear manufacturing. A computer program was developed to calculate the surface coordinates. From this data a 3-D model for finite element analysis can be determined. Development of the modeling method and an example case are presented.
Loeffler, Ralf B; McCarville, M Beth; Wagstaff, Anne W; Smeltzer, Matthew P; Krafft, Axel J; Song, Ruitian; Hankins, Jane S; Hillenbrand, Claudia M
2017-01-01
Liver R2* values calculated from multi-gradient echo (mGRE) magnetic resonance images (MRI) are strongly correlated with hepatic iron concentration (HIC) as shown in several independently derived biopsy calibration studies. These calibrations were established for axial single-slice breath-hold imaging at the location of the portal vein. Scanning in multi-slice mode makes the exam more efficient, since whole-liver coverage can be achieved with two breath-holds and the optimal slice can be selected afterward. Navigator echoes remove the need for breath-holds and allow use in sedated patients. To evaluate if the existing biopsy calibrations can be applied to multi-slice and navigator-controlled mGRE imaging in children with hepatic iron overload, by testing if there is a bias-free correlation between single-slice R2* and multi-slice or multi-slice navigator controlled R2*. This study included MRI data from 71 patients with transfusional iron overload, who received an MRI exam to estimate HIC using gradient echo sequences. Patient scans contained 2 or 3 of the following imaging methods used for analysis: single-slice images (n = 71), multi-slice images (n = 69) and navigator-controlled images (n = 17). Small and large blood corrected region of interests were selected on axial images of the liver to obtain R2* values for all data sets. Bland-Altman and linear regression analysis were used to compare R2* values from single-slice images to those of multi-slice images and navigator-controlled images. Bland-Altman analysis showed that all imaging method comparisons were strongly associated with each other and had high correlation coefficients (0.98 ≤ r ≤ 1.00) with P-values ≤0.0001. Linear regression yielded slopes that were close to 1. We found that navigator-gated or breath-held multi-slice R2* MRI for HIC determination measures R2* values comparable to the biopsy-validated single-slice, single breath-hold scan. We conclude that these three R2* methods can be interchangeably used in existing R2*-HIC calibrations.
Classification algorithm of lung lobe for lung disease cases based on multislice CT images
NASA Astrophysics Data System (ADS)
Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Mishima, M.; Ohmatsu, H.; Tsuchida, T.; Eguchi, K.; Kaneko, M.; Moriyama, N.
2011-03-01
With the development of multi-slice CT technology, to obtain an accurate 3D image of lung field in a short time is possible. To support that, a lot of image processing methods need to be developed. In clinical setting for diagnosis of lung cancer, it is important to study and analyse lung structure. Therefore, classification of lung lobe provides useful information for lung cancer analysis. In this report, we describe algorithm which classify lungs into lung lobes for lung disease cases from multi-slice CT images. The classification algorithm of lung lobes is efficiently carried out using information of lung blood vessel, bronchus, and interlobar fissure. Applying the classification algorithms to multi-slice CT images of 20 normal cases and 5 lung disease cases, we demonstrate the usefulness of the proposed algorithms.
Efficacy of guided spiral drawing in the classification of Parkinson's Disease.
Zham, Poonam; Arjunan, Sridhar; Raghav, Sanjay; Kumar, Dinesh Kant
2017-10-11
Change of handwriting can be an early marker for severity of Parkinson's disease but suffers from poor sensitivity and specificity due to inter-subject variations. This study has investigated the group-difference in the dynamic features during sketching of spiral between PD and control subjects with the aim of developing an accurate method for diagnosing PD patients. Dynamic handwriting features were computed for 206 specimens collected from 62 Subjects (31 Parkinson's and 31 Controls). These were analyzed based on the severity of the disease to determine group-difference. Spearman rank correlation coefficient was computed to evaluate the strength of association for the different features. Maximum area under ROC curve (AUC) using the dynamic features during different writing and spiral sketching tasks were in the range of 67 to 79 %. However, when angular features ( and ) and count of direction inversion during sketching of the spiral were used, AUC improved to 93.3%. Spearman correlation coefficient was highest for and . The angular features and count of direction inversion which can be obtained in real-time while sketching the Archimedean guided spiral on a digital tablet can be used for differentiating between Parkinson's and healthy cohort.
Hermite-Gaussian beams with self-forming spiral phase distribution
NASA Astrophysics Data System (ADS)
Zinchik, Alexander A.; Muzychenko, Yana B.
2014-05-01
Spiral laser beams is a family of laser beams that preserve the structural stability up to scale and rotate with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Spiral beams have a complicated phase distribution in cross section. This paper describes the results of analytical and computer simulation of Hermite-Gaussian beams with self-forming spiral phase distribution. In the simulation used a laser beam consisting of the sum of the two modes HG TEMnm and TEMn1m1. The coefficients n1, n, m1, m were varied. Additional phase depending from the coefficients n, m, m1, n1 imposed on the resulting beam. As a result, formed the Hermite Gaussian beam phase distribution which takes the form of a spiral in the process of distribution. For modeling was used VirtualLab 5.0 (manufacturer LightTrans GmbH).
New generation methods for spur, helical, and spiral-bevel gears
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Tsung, W.-J.; Coy, J. J.; Handschuh, R. F.; Tsay, C.-B. P.
1986-01-01
New methods for generating spur, helical, and spiral-bevel gears are proposed. These methods provide the gears with conjugate gear tooth surfaces, localized bearing contact, and reduced sensitivity to gear misalignment. Computer programs have been developed for simulating gear meshing and bearing contact.
New generation methods for spur, helical, and spiral-bevel gears
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Tsung, W.-J.; Coy, J. J.; Handschuh, R. F.; Tsay, C.-B. P.
1987-01-01
New methods for generating spur, helical, and spiral-bevel gears are proposed. These methods provide the gears with conjugate gear tooth surfaces, localized bearing contact, and reduced sensitivity to gear misalignment. Computer programs have been developed for simulating gear meshing and bearing contact.
NASA Technical Reports Server (NTRS)
Walowit, Jed A.
1994-01-01
A viewgraph presentation is made showing the capabilities of the computer code SPIRALI. Overall capabilities of SPIRALI include: computes rotor dynamic coefficients, flow, and power loss for cylindrical and face seals; treats turbulent, laminar, Couette, and Poiseuille dominated flows; fluid inertia effects are included; rotor dynamic coefficients in three (face) or four (cylindrical) degrees of freedom; includes effects of spiral grooves; user definable transverse film geometry including circular steps and grooves; independent user definable friction factor models for rotor and stator; and user definable loss coefficients for sudden expansions and contractions.
NASA Technical Reports Server (NTRS)
Walowit, Jed A.; Shapiro, Wibur
2005-01-01
This is the source listing of the computer code SPIRALI which predicts the performance characteristics of incompressible cylindrical and face seals with or without the inclusion of spiral grooves. Performance characteristics include load capacity (for face seals), leakage flow, power requirements and dynamic characteristics in the form of stiffness, damping and apparent mass coefficients in 4 degrees of freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance characteristics are computed as functions of seal and groove geometry, load or film thickness, running and disturbance speeds, fluid viscosity, and boundary pressures.
Investigation on filter method for smoothing spiral phase plate
NASA Astrophysics Data System (ADS)
Zhang, Yuanhang; Wen, Shenglin; Luo, Zijian; Tang, Caixue; Yan, Hao; Yang, Chunlin; Liu, Mincai; Zhang, Qinghua; Wang, Jian
2018-03-01
Spiral phase plate (SPP) for generating vortex hollow beams has high efficiency in various applications. However, it is difficult to obtain an ideal spiral phase plate because of its continuous-varying helical phase and discontinued phase step. This paper describes the demonstration of continuous spiral phase plate using filter methods. The numerical simulations indicate that different filter method including spatial domain filter, frequency domain filter has unique impact on surface topography of SPP and optical vortex characteristics. The experimental results reveal that the spatial Gaussian filter method for smoothing SPP is suitable for Computer Controlled Optical Surfacing (CCOS) technique and obtains good optical properties.
De Cock, Jens; Zanca, Federica; Canning, John; Pauwels, Ruben; Hermans, Robert
2015-07-01
To evaluate image quality and radiation dose of a state of the art cone beam computed tomography (CBCT) system and a multislice computed tomography (MSCT) system in patients with sinonasal poliposis. In this retrospective study two radiologists evaluated 57 patients with sinonasal poliposis who underwent a CBCT or MSCT sinus examination, along with a control group of 90 patients with normal radiological findings. Tissue doses were measured using a phantom model with thermoluminescent dosimeters (TLD). Overall image quality in CBCT was scored significantly higher than in MSCT in patients with normal radiologic findings (p-value: 0.00001). In patients with sinonasal poliposis, MSCT scored significantly higher than CBCT (p-value: 0.00001). The average effective dose for MSCT was 42% higher compared to CBCT (108 μSv vs 63 μSv). CBCT and MSCT are both suited for the evaluation of sinonasal poliposis. In patients with sinonasal poliposis, clinically important structures of the paranasal sinuses can be better delineated with MSCT, whereas in patients without sinonasal poliposis, CBCT turns out to define the important structures of the sinonasal region better. However, given the lower radiation dose, CBCT can be considered for the evaluation of the sinonasal structures in patients with sinonasal poliposis. • CBCT and MSCT are both suited for evaluation of sinonasal poliposis. • Effective dose for MSCT was 42% higher compared to CBCT. • In patients with sinonasal poliposis, clinically important anatomical structures are better delineated with MSCT. • In patients with normal radiological findings, clinically important anatomical structures are better delineated with CBCT.
Matta, Ragai-Edward; von Wilmowsky, Cornelius; Neuhuber, Winfried; Lell, Michael; Neukam, Friedrich W; Adler, Werner; Wichmann, Manfred; Bergauer, Bastian
2016-05-01
Multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT) are indispensable imaging techniques in advanced medicine. The possibility of creating virtual and corporal three-dimensional (3D) models enables detailed planning in craniofacial and oral surgery. The objective of this study was to evaluate the impact of different scan protocols for CBCT and MSCT on virtual 3D model accuracy using a software-based evaluation method that excludes human measurement errors. MSCT and CBCT scans with different manufacturers' predefined scan protocols were obtained from a human lower jaw and were superimposed with a master model generated by an optical scan of an industrial noncontact scanner. To determine the accuracy, the mean and standard deviations were calculated, and t-tests were used for comparisons between the different settings. Averaged over 10 repeated X-ray scans per method and 19 measurement points per scan (n = 190), it was found that the MSCT scan protocol 140 kV delivered the most accurate virtual 3D model, with a mean deviation of 0.106 mm compared to the master model. Only the CBCT scans with 0.2-voxel resolution delivered a similar accurate 3D model (mean deviation 0.119 mm). Within the limitations of this study, it was demonstrated that the accuracy of a 3D model of the lower jaw depends on the protocol used for MSCT and CBCT scans. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Multislice CT urography: state of the art.
Noroozian, M; Cohan, R H; Caoili, E M; Cowan, N C; Ellis, J H
2004-01-01
Recent improvements in helical CT hardware and software have provided imagers with the tools to obtain an increasingly large number of very thin axial images. As a result, a number of new applications for multislice CT have recently been developed, one of which is CT urography. The motivation for performing CT urography is the desire to create a single imaging test that can completely assess the kidneys and urinary tract for urolithiasis, renal masses and mucosal abnormalities of the renal collecting system, ureters and bladder. Although the preferred technique for performing multislice CT urography has not yet been determined and results are preliminary, early indications suggest that this examination can detect even subtle benign and malignant urothelial abnormalities and that it has the potential to completely replace excretory urography within the next several years. An important limitation of multislice CT urography is increased patient radiation exposure encountered when some of the more thorough recommended techniques are utilized.
Instability mechanisms and transition scenarios of spiral turbulence in Taylor-Couette flow.
Meseguer, Alvaro; Mellibovsky, Fernando; Avila, Marc; Marques, Francisco
2009-10-01
Alternating laminar and turbulent helical bands appearing in shear flows between counterrotating cylinders are accurately computed and the near-wall instability phenomena responsible for their generation identified. The computations show that this intermittent regime can only exist within large domains and that its spiral coherence is not dictated by endwall boundary conditions. A supercritical transition route, consisting of a progressive helical alignment of localized turbulent spots, is carefully studied. Subcritical routes disconnected from secondary laminar flows have also been identified.
NASA Astrophysics Data System (ADS)
Strocchi, Sabina; Colli, Vittoria; Novario, Raffaele; Carrafiello, Gianpaolo; Giorgianni, Andrea; Macchi, Aldo; Fugazzola, Carlo; Conte, Leopoldo
2007-03-01
Aim of this work is to compare the performances of a Xoran Technologies i-CAT Cone Beam CT for dental applications with those of a standard total body multislice CT (Toshiba Aquilion 64 multislice) used for dental examinations. Image quality and doses to patients have been compared for the three main i-CAT protocols, the Toshiba standard protocol and a Toshiba modified protocol. Images of two phantoms have been acquired: a standard CT quality control phantom and an Alderson Rando ® anthropomorphic phantom. Image noise, Signal to Noise Ratio (SNR), Contrast to Noise Ratio (CNR) and geometric accuracy have been considered. Clinical image quality was assessed. Effective dose and doses to main head and neck organs were evaluated by means of thermo-luminescent dosimeters (TLD-100) placed in the anthropomorphic phantom. A Quality Index (QI), defined as the ratio of squared CNR to effective dose, has been evaluated. The evaluated effective doses range from 0.06 mSv (i-CAT 10 s protocol) to 2.37 mSv (Toshiba standard protocol). The Toshiba modified protocol (halved tube current, higher pitch value) imparts lower effective dose (0.99 mSv). The conventional CT device provides lower image noise and better SNR, but clinical effectiveness similar to that of dedicated dental CT (comparable CNR and clinical judgment). Consequently, QI values are much higher for this second CT scanner. No geometric distortion has been observed with both devices. As a conclusion, dental volumetric CT supplies adequate image quality to clinical purposes, at doses that are really lower than those imparted by a conventional CT device.
Wang, Yan-Jing; Liu, Lin; Zhang, Meng-Chao; Sun, Huan; Zeng, Hong; Yang, Ping
2016-08-01
Phrenic nerve injury and diaphragmatic stimulation are common complications following arrhythmia ablation and pacing therapies. Preoperative comprehension of phrenic nerve anatomy via non-invasive CT imaging may help to minimize the electrophysiological procedure-related complications. Coronary CT angiography data of 121 consecutive patients were collected. Imaging of left and right pericardiophrenic bundles was performed with volume rendering and multi-planar reformation techniques. The shortest spatial distances between phrenic nerves and key electrophysiology-related structures were determined. The frequencies of the shortest distances ≤5 mm, >5 mm and direct contact between phrenic nerves and adjacent structures were calculated. Left and right pericardiophrenic bundles were identified in 86.8% and 51.2% of the patients, respectively. The right phrenic nerve was <5 mm from right superior and inferior pulmonary veins in 92.0% and 3.2% of the patients, respectively. The percentage of right phrenic nerve, <5 mm from right atrium, superior caval vein, and superior caval vein-right atrium junction was 87.1%, 100%, and 62.9%, respectively. Left phrenic nerve was <5 mm from left atrial appendage, great cardiac vein, anterior and posterior interventricular veins, and left ventricular posterior veins in 81.9%, 1.0%, 39.1%, 28.6%, and 91.4% of the patients, respectively. Merely 0.06% left phrenic nerve had a distance <5 mm with left superior pulmonary vein, and none left phrenic nerve showed a distance <5 mm with left inferior pulmonary vein. One-stop enhanced CT scanning enabled detection of phrenic nerve anatomy, which might facilitate avoidance of the phrenic nerve-related complications in interventional electrophysiology. © 2016 Wiley Periodicals, Inc.
Improving the imaging of calcifications in CT by histogram-based selective deblurring
NASA Astrophysics Data System (ADS)
Rollano-Hijarrubia, Empar; van der Meer, Frits; van der Lugt, Add; Weinans, Harrie; Vrooman, Henry; Vossepoel, Albert; Stokking, Rik
2005-04-01
Imaging of small high-density structures, such as calcifications, with computed tomography (CT) is limited by the spatial resolution of the system. Blur causes small calcifications to be imaged with lower contrast and overestimated volume, thereby hampering the analysis of vessels. The aim of this work is to reduce the blur of calcifications by applying three-dimensional (3D) deconvolution. Unfortunately, the high-frequency amplification of the deconvolution produces edge-related ring artifacts and enhances noise and original artifacts, which degrades the imaging of low-density structures. A method, referred to as Histogram-based Selective Deblurring (HiSD), was implemented to avoid these negative effects. HiSD uses the histogram information to generate a restored image in which the low-intensity voxel information of the observed image is combined with the high-intensity voxel information of the deconvolved image. To evaluate HiSD we scanned four in-vitro atherosclerotic plaques of carotid arteries with a multislice spiral CT and with a microfocus CT (μCT), used as reference. Restored images were generated from the observed images, and qualitatively and quantitatively compared with their corresponding μCT images. Transverse views and maximum-intensity projections of restored images show the decrease of blur of the calcifications in 3D. Measurements of the areas of 27 calcifications and total volumes of calcification of 4 plaques show that the overestimation of calcification was smaller for restored images (mean-error: 90% for area; 92% for volume) than for observed images (143%; 213%, respectively). The qualitative and quantitative analyses show that the imaging of calcifications in CT can be improved considerably by applying HiSD.
Bryniarski, Krzysztof L; Zabojszcz, Michał; Dębski, Grzegorz; Marchewka, Jakub; Legutko, Jacek; Jankowski, Piotr; Siudak, Zbigniew; Żmudka, Krzysztof; Dudek, Dariusz; Bryniarski, Leszek
2015-01-01
Chronic total occlusions (CTO) are diagnosed in about 20% of patients with significant coronary artery disease. A disproportion between the high prevalence of CTOs and low rate of invasive treatment still exists. Technical difficulties, clinical uncertainties whether patients benefit from recanalisation, and a lack of knowledge of CTO may be responsible for this fact. To assess the knowledge of coronary arteries CTO among Polish interventional cardiologists. A self-designed questionnaire was used during two major Polish invasive cardiology workshops held in 2014. The study included 113 physicians, mostly cardiologists certified as independent operators. Average self-declared efficacy of CTO recanalisation was 63.5%. Most of the respondents agreed that the operator involved in the CTO recanalisation program should perform at least 30-50 procedures per year. Only 67% stated that before CTO revascularisation the evaluation of myocardial viability should be performed with dobutamine stress echocardiography as a preferred test. One third of the physicians agreed that CTO percutaneous coronary intervention (PCI) should not be performed directly after diagnostic angiography, and 51.5% believed that in patients with multi-vessel coronary artery disease PCI of CTO should be performed first. Multi-slice spiral computed tomography during the qualification and planning of the CTO revascularisation, in the opinion of 91% of the responders, should not be used before each procedure but could be useful in selected cases. Polish interventional cardiologists remains in compliance with current opinions about recanalisation of chronic coronary artery occlusions and the consensus of the EuroCTO Club, but there is still an unceasing need for further education and promotion of knowledge about CTOs.
Zerbini, Talita; da Silva, Luiz Fernando Ferraz; Ferro, Antonio Carlos Gonçalves; Kay, Fernando Uliana; Junior, Edson Amaro; Pasqualucci, Carlos Augusto Gonçalves; do Nascimento Saldiva, Paulo Hilario
2014-01-01
OBJECTIVE: The aim of the present work is to analyze the differences and similarities between the elements of a conventional autopsy and images obtained from postmortem computed tomography in a case of a homicide stab wound. METHOD: Comparison between the findings of different methods: autopsy and postmortem computed tomography. RESULTS: In some aspects, autopsy is still superior to imaging, especially in relation to external examination and the description of lesion vitality. However, the findings of gas embolism, pneumothorax and pulmonary emphysema and the relationship between the internal path of the instrument of aggression and the entry wound are better demonstrated by postmortem computed tomography. CONCLUSIONS: Although multislice computed tomography has greater accuracy than autopsy, we believe that the conventional autopsy method is fundamental for providing evidence in criminal investigations. PMID:25518020
Advances in the Study of the Middle Cranial Fossa through Cutting Edge Neuroimaging Techniques.
Juanes Méndez, Juan A; Ruisoto, Pablo; Paniagua, Juan C; Prats, Alberto
2018-01-16
The objective of this paper is to present a morphometric study of the middle cranial fossa from the study of 87 patients using cutting edge multislice computed tomography scans (32 detectors) and Magnetic Resonance Imaging. The study presents a detailed anatomical-radiological and morphometric analysis of the middle cranial fossa as well as its neurovascular elements in normal conditions. The implications of this investigation in training and clinical contexts are discussed.
Temporal Subtraction of Digital Breast Tomosynthesis Images for Improved Mass Detection
2008-10-01
K. Fishman and B. M. W. Tsui, "Development of a computer-generated model for the coronary arterial tree based on multislice CT and morphometric data...mathematical models based on geometric primitives8-22. Bakic et al created synthetic x-ray mammograms using a 3D simulated breast tissue model consisting of...utilized a combination of voxel matrices and geometric primitives to create a breast phantom that includes the breast surface, the duct system, and
Naser, Asieh Zamani; Mehr, Bahar Behdad
2013-01-01
Cross- sectional tomograms have been used for optimal pre-operative planning of dental implant placement. The aim of the present study was to assess the accuracy of Cone Beam Computed Tomography (CBCT) measurements of specific distances around the mandibular canal by comparing them to those obtained from Multi-Slice Computed Tomography (MSCT) images. Ten hemi-mandible specimens were examined using CBCT and MSCT. Before imaging, wires were placed at 7 locations between the anterior margin of the third molar and the anterior margin of the second premolar as reference points. Following distances were measured by two observers on each cross-sectional CBCT and MSCT image: Mandibular Width (W), Length (L), Upper Distance (UD), Lower Distance (LD), Buccal Distance (BD), and Lingual Distance (LID). The obtained data were evaluated using SPSS software, applying paired t-test and intra-class correlation coefficient (ICC). There was a significant difference between the values obtained by MSCT and CBCT measurement for all areas such as H, W, UD, LD, BD, and LID, (P < 0.001), with a difference less than 1 mm. The ICC for all distances by both techniques, measured by a single observer with a one week interval and between 2 observers was 99% and 98%, respectively. Comparing the obtained data of both techniques indicates that the difference between two techniques is 2.17% relative to MSCT. The results of this study showed that there is significant difference between measurements obtained by CBCT and MSCT. However, the difference is not clinically significant.
Spiral blood flow in aorta-renal bifurcation models.
Javadzadegan, Ashkan; Simmons, Anne; Barber, Tracie
2016-01-01
The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-renal bifurcations. In this regard, a computational fluid dynamics analysis of pulsatile blood flow was performed in two idealised models of aorta-renal bifurcations with and without flow diverter. The results show that the spirality effect causes a substantial variation in blood velocity distribution, while causing only slight changes in fluid shear stress patterns. The dominant observed effect of spiral flow is on turbulent kinetic energy and flow recirculation zones. As spiral flow intensity increases, the rate of turbulent kinetic energy production decreases, reducing the region of potential damage to red blood cells and endothelial cells. Furthermore, the recirculation zones which form on the cranial sides of the aorta and renal artery shrink in size in the presence of spirality effect; this may lower the rate of atherosclerosis development and progression in the aorta-renal bifurcation. These results indicate that the spiral nature of blood flow has atheroprotective effects in renal arteries and should be taken into consideration in analyses of the aorta and renal arteries.
Wang, Xi-ming; Wu, Le-bin; Zhang, Yun-ting; Li, Zhen-jia; Liu, Chen
2006-11-01
To discuss the value of multi-slice CT dynamic enhancement scan in the diagnosis and treatment of colonic lymphomas. 16 patients with colonic lymphomas underwent multi-slice CT dynamic enhancement scans, images of axial and reconstructive images of VR, MPR and CTVE were analyzed, patients were respectively diagnosed. Appearances of primary colorectal lymphomas were categorized into focal and diffuse lesions. Focal and diffuse lesions were 6 and 10 patients, respectively. The accuracy rate of diagnosis was 87.5%. MSCT dynamic scan has distinctive superiority in diagnosis and treatment of colonic lymphomas.
BlochSolver: A GPU-optimized fast 3D MRI simulator for experimentally compatible pulse sequences
NASA Astrophysics Data System (ADS)
Kose, Ryoichi; Kose, Katsumi
2017-08-01
A magnetic resonance imaging (MRI) simulator, which reproduces MRI experiments using computers, has been developed using two graphic-processor-unit (GPU) boards (GTX 1080). The MRI simulator was developed to run according to pulse sequences used in experiments. Experiments and simulations were performed to demonstrate the usefulness of the MRI simulator for three types of pulse sequences, namely, three-dimensional (3D) gradient-echo, 3D radio-frequency spoiled gradient-echo, and gradient-echo multislice with practical matrix sizes. The results demonstrated that the calculation speed using two GPU boards was typically about 7 TFLOPS and about 14 times faster than the calculation speed using CPUs (two 18-core Xeons). We also found that MR images acquired by experiment could be reproduced using an appropriate number of subvoxels, and that 3D isotropic and two-dimensional multislice imaging experiments for practical matrix sizes could be simulated using the MRI simulator. Therefore, we concluded that such powerful MRI simulators are expected to become an indispensable tool for MRI research and development.
Spiral Growth in Plants: Models and Simulations
ERIC Educational Resources Information Center
Allen, Bradford D.
2004-01-01
The analysis and simulation of spiral growth in plants integrates algebra and trigonometry in a botanical setting. When the ideas presented here are used in a mathematics classroom/computer lab, students can better understand how basic assumptions about plant growth lead to the golden ratio and how the use of circular functions leads to accurate…
Analysis of contour images using optics of spiral beams
NASA Astrophysics Data System (ADS)
Volostnikov, V. G.; Kishkin, S. A.; Kotova, S. P.
2018-03-01
An approach is outlined to the recognition of contour images using computer technology based on coherent optics principles. A mathematical description of the recognition process algorithm and the results of numerical modelling are presented. The developed approach to the recognition of contour images using optics of spiral beams is described and justified.
Finite difference time domain modeling of spiral antennas
NASA Technical Reports Server (NTRS)
Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.
1992-01-01
The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.
Albuquerque, Marco Antonio; Gaia, Bruno Felipe; Cavalcanti, Marcelo Gusmão Paraíso
2011-08-01
The aim of this study was to determine the applicability of multislice and cone-beam computerized tomography (CT) in the assessment of bone defects in patients with oral clefts. Bone defects were produced in 9 dry skulls to mimic oral clefts. All defects were modeled with wax. The skulls were submitted to multislice and cone-beam CT. Subsequently, physical measurements were obtained by the Archimedes principle of water displacement of wax models. The results demonstrated that multislice and cone-beam CT showed a high efficiency rate and were considered to be effective for volumetric assessment of bone defects. It was also observed that both CT modalities showed excellent results with high reliability in the study of the volume of bone defects, with no difference in performance between them. The clinical applicability of our research has shown these CT modalities to be immediate and direct, and they is important for the diagnosis and therapeutic process of patients with oral cleft. Copyright © 2011 Mosby, Inc. All rights reserved.
Spirality: A Noval Way to Measure Spiral Arm Pitch Angle
NASA Astrophysics Data System (ADS)
Shields, Douglas W.; Boe, Benjamin; Henderson, Casey L.; Hartley, Matthew; Davis, Benjamin L.; Pour Imani, Hamed; Kennefick, Daniel; Kennefick, Julia D.
2015-01-01
We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. For a given pitch angle template, the mean pixel value is found along each of typically 1000 spiral axes. The fitting function, which shows a local maximum at the best-fit pitch angle, is the variance of these means. Error bars are found by varying the inner radius of the measurement annulus and finding the standard deviation of the best-fit pitches. Computation time is typically on the order of 2 minutes per galaxy, assuming at least 8 GB of working memory. We tested the code using 128 synthetic spiral images of known pitch. These spirals varied in the number of spiral arms, pitch angle, degree of logarithmicity, radius, SNR, inclination angle, bar length, and bulge radius. A correct result is defined as a result that matches the true pitch within the error bars, with error bars no greater than ±7°. For the non-logarithmic spiral sample, the correct answer is similarly defined, with the mean pitch as function of radius in place of the true pitch. For all synthetic spirals, correct results were obtained so long as SNR > 0.25, the bar length was no more than 60% of the spiral's diameter (when the bar was included in the measurement), the input center of the spiral was no more than 6% of the spiral radius away from the true center, and the inclination angle was no more than 30°. The synthetic spirals were not deprojected prior to measurement. The code produced the correct result for all barred spirals when the measurement annulus was placed outside the bar. Additionally, we compared the code's results against 2DFFT results for 203 visually selected spiral galaxies in GOODS North and South. Among the entire sample, Spirality's error bars overlapped 2DFFT's error bars 64% of the time. For those galaxies in which Source code is available by email request from the primary author.
[Performance evaluation of CT automatic exposure control on fast dual spiral scan].
Niwa, Shinji; Hara, Takanori; Kato, Hideki; Wada, Yoichi
2014-11-01
The performance of individual computed tomography automatic exposure control (CT-AEC) is very important for radiation dose reduction and image quality equalization in CT examinations. The purpose of this study was to evaluate the performance of CT-AEC in conventional pitch mode (Normal spiral) and fast dual spiral scan (Flash spiral) in a 128-slice dual-source CT scanner. To evaluate the response properties of CT-AEC in the 128-slice DSCT scanner, a chest phantom was placed on the patient table and was fixed at the center of the field of view (FOV). The phantom scan was performed using Normal spiral and Flash spiral scanning. We measured the effective tube current time product (Eff. mAs) of simulated organs in the chest phantom along the longitudinal (z) direction, and the dose dependence (distribution) of in-plane locations for the respective scan modes was also evaluated by using a 100-mm-long pencil-type ionization chamber. The dose length product (DLP) was evaluated using the value displayed on the console after scanning. It was revealed that the response properties of CT-AEC in Normal spiral scanning depend on the respective pitches and Flash spiral scanning is independent of the respective pitches. In-plane radiation dose of Flash spiral was lower than that of Normal spiral. The DLP values showed a difference of approximately 1.7 times at the maximum. The results of our experiments provide information for adjustments for appropriate scanning parameters using CT-AEC in a 128-slice DSCT scanner.
Spiral Flow Phantom for Ultrasound Flow Imaging Experimentation.
Yiu, Billy Y S; Yu, Alfred C H
2017-12-01
As new ultrasound flow imaging methods are being developed, there is a growing need to devise appropriate flow phantoms that can holistically assess the accuracy of the derived flow estimates. In this paper, we present a novel spiral flow phantom design whose Archimedean spiral lumen naturally gives rise to multi-directional flow over all possible angles (i.e., from 0° to 360°). Developed using lost-core casting principles, the phantom geometry comprised a three-loop spiral (4-mm diameter and 5-mm pitch), and it was set to operate in steady flow mode (3 mL/s flow rate). After characterizing the flow pattern within the spiral vessel using computational fluid dynamics (CFD) simulations, the phantom was applied to evaluate the performance of color flow imaging (CFI) and high-frame-rate vector flow imaging. Significant spurious coloring artifacts were found when using CFI to visualize flow in the spiral phantom. In contrast, using vector flow imaging (least-squares multi-angle Doppler based on a three-transmit and three-receive configuration), we observed consistent depiction of flow velocity magnitude and direction within the spiral vessel lumen. The spiral flow phantom was also found to be a useful tool in facilitating demonstration of dynamic flow visualization based on vector projectile imaging. Overall, these results demonstrate the spiral flow phantom's practical value in analyzing the efficacy of ultrasound flow estimation methods.
NASA Astrophysics Data System (ADS)
Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol
2016-06-01
Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning, spiral learning and peer assessment. Namely, the course is articulated during a semester through the structured (progressive and incremental) development of a sequence of four projects, whose duration, scope and difficulty of management increase as the student gains theoretical and instrumental knowledge related to planning, monitoring and controlling projects. Moreover, the proposal is complemented using peer assessment. The proposal has already been implemented and validated for the last 3 years in two different universities. In the first year, project-based learning and spiral learning methods were combined. Such a combination was also employed in the other 2 years; but additionally, students had the opportunity to assess projects developed by university partners and by students of the other university. A total of 154 students have participated in the study. We obtain a gain in the quality of the subsequently projects derived from the spiral project-based learning. Moreover, this gain is significantly bigger when peer assessment is introduced. In addition, high-performance students take advantage of peer assessment from the first moment, whereas the improvement in poor-performance students is delayed.
A simplified computer solution for the flexibility matrix of contacting teeth for spiral bevel gears
NASA Technical Reports Server (NTRS)
Hsu, C. Y.; Cheng, H. S.
1987-01-01
A computer code, FLEXM, was developed to calculate the flexibility matrices of contacting teeth for spiral bevel gears using a simplified analysis based on the elementary beam theory for the deformation of gear and shaft. The simplified theory requires a computer time at least one order of magnitude less than that needed for the complete finite element method analysis reported earlier by H. Chao, and it is much easier to apply for different gear and shaft geometries. Results were obtained for a set of spiral bevel gears. The teeth deflections due to torsion, bending moment, shearing strain and axial force were found to be in the order 10(-5), 10(-6), 10(-7), and 10(-8) respectively. Thus, the torsional deformation was the most predominant factor. In the analysis of dynamic load, response frequencies were found to be larger when the mass or moment of inertia was smaller or the stiffness was larger. The change in damping coefficient had little influence on the resonance frequency, but has a marked influence on the dynamic load at the resonant frequencies.
Eichfeld, Uwe; Dietrich, Arne; Ott, Rudolph; Kloeppel, Rainer
2005-01-01
Peripheral pulmonary nodules are preferably removed by minimally invasive techniques, such as video-assisted thoracoscopic (VATS) surgery. These nodules should be marked preoperatively for better intraoperative detection and removal. Twenty-two cases with a single pulmonary nodule requiring surgical removal for histologic examination were included in a prospective study. Guided by computed tomography, nodules were marked preoperatively using a laser marker system and fixed with a spiral wire. The marked nodules were removed by VATS surgery immediately after the marking. The marking wire was placed in all 22 patients without any complications. The marked nodule was completely removed by VATS surgery in 19 patients. Conversion to thoracotomy was necessary in 3 patients, twice because of thoracoscopy-related problems and once because of a marking failure. The average times for the marking procedure and operation were 24 minutes and 32 minutes, respectively. This new method of computed tomography-guided nodule marking with a spiral wire and subsequent VATS surgery is very efficient in terms of localization and stable fixation of subpleural pulmonary nodules.
Arisan, Volkan; Karabuda, Zihni Cüneyt; Avsever, Hakan; Özdemir, Tayfun
2013-12-01
The relationship of conventional multi-slice computed tomography (CT)- and cone beam CT (CBCT)-based gray density values and the primary stability parameters of implants that were placed by stereolithographic surgical guides were analyzed in this study. Eighteen edentulous jaws were randomly scanned by a CT (CT group) or a CBCT scanner (CBCT group) and radiographic gray density was measured from the planned implants. A total of 108 implants were placed, and primary stability parameters were measured by insertion torque value (ITV) and resonance frequency analysis (RFA). Radiographic and subjective bone quality classification (BQC) was also classified. Results were analyzed by correlation tests and multiple regressions (p < .05). CBCT-based gray density values (765 ± 97.32 voxel value) outside the implants were significantly higher than those of CT-based values (668.4 ± 110 Hounsfield unit, p < .001). Significant relations were found among the gray density values outside the implants, ITV (adjusted r(2) = 0.6142, p = .001 and adjusted r(2) = 0.5166, p = .0021), and RFA (adjusted r(2) = 0.5642, p = .0017 and adjusted r(2) = 0.5423, p = .0031 for CT and CBCT groups, respectively). Data from radiographic and subjective BQC were also in agreement. Similar to the gray density values of CT, that of CBCT could also be predictive for the subjective BQC and primary implant stability. Results should be confirmed on different CBCT scanners. © 2012 Wiley Periodicals, Inc.
Ichikawa, Makoto; Sato, Yuichi; Komatsu, Sei; Hirayama, Atsushi; Kodama, Kazuhisa; Saito, Satoshi
2007-06-01
Anomalous right coronary arteries (RCA) arising from the left sinus of Valsalva may cause myocardial ischemia. We evaluated morphological features of anomalous RCA by using multislice computed tomography (MSCT) in relation to myocardial ischemia provoked by myocardial perfusion single-photon emission computed tomography. MSCT was performed in a total of 3, 212 patients by using an Aquillion 16 and a Light Speed Ultra. Retrospective ECG-gated image reconstruction was performed. Volume rendering, axial and curved multiplanar reformatted images were analyzed for the determination of the origin and course of the RCA, the take-off angle of the RCA from the aorta, and size of the RCA orifice. Furthermore, virtual angioscopic images were also used for the evaluation of the RCA orifice structure. Anomalous origins of the RCA were found in 15 patients. In 13 patients, the RCA arose from the left sinus of Valsalva, and in 2 patients it arose from the left main coronary artery as a single coronary artery. The RCA coursed anteriorly between the ascending aorta and pulmonary artery in 14 patients, whereas it had a retroaortic course in 1 patient. Acute angle take-off (<30 degrees ) of the RCA from the aorta and the left main coronary artery was observed in 8 patients, intramural course of the RCA within the aortic wall was observed in 6 patients and a small RCA orifice was observed in 4 patients. Exercise-induced myocardial ischemia was present in 5 patients. Coursing between the aorta and pulmonary artery, acute angle take-off and intramural course were thought to be major causes of exercise-induced ischemia in patients with anomalous origins of the RCA.
Deetjen, Anja; Möllmann, Susanne; Conradi, Guido; Rolf, Andreas; Schmermund, Axel; Hamm, Christian W; Dill, Thorsten
2007-01-01
Objective To evaluate the radiation‐dose‐reduction potential of automatic exposure control (AEC) in 16‐slice and 64‐slice multislice computed tomography (MSCT) of the coronary arteries (computed tomography angiography, CTA) in patients. The rapid growth in MSCT CTA emphasises the necessity of adjusting technique factors to reduce radiation dose exposure. Design A retrospective data analysis was performed for 154 patients who had undergone MSCT CTA. Group 1 (n = 56) had undergone 16‐slice MSCT without AEC, and group 2 (n = 51), with AEC. In group 1, invasive coronary angiography (ICA) had been performed in addition. Group 3 (n = 47) had been examined using a 64‐slice scanner (with AEC, without ECG‐triggered tube current modulation). Results In group 1, the mean (SD) effective dose (ED) for MSCT CTA was 9.76 (1.84) mSv and for ICA it was 2.6 (1.27) mSv. In group 2, the mean ED for MSCT CTA was 5.83 (1.73) mSv, which signifies a 42.8% dose reduction for CTA by the use of AEC. In comparison to ICA, MSCT CTA without AEC shows a 3.8‐fold increase in radiation dose, and the radiation dose of CTA with AEC was increased by a factor of 1.9. In group 3, the mean ED for MSCT CTA was 13.58 (2.80) mSV. Conclusions This is the first study to show the significant dose‐reduction potential (42.8%) of AEC in MSCT CTA in patients. This relatively new technique can be used to optimise the radiation dose levels in MSCT CTA. PMID:17395667
Cueff, Caroline; Serfaty, Jean-Michel; Cimadevilla, Claire; Laissy, Jean-Pierre; Himbert, Dominique; Tubach, Florence; Duval, Xavier; Iung, Bernard; Enriquez-Sarano, Maurice; Vahanian, Alec; Messika-Zeitoun, David
2011-05-01
Measurement of the degree of aortic valve calcification (AVC) using electron beam computed tomography (EBCT) is an accurate and complementary method to transthoracic echocardiography (TTE) for assessment of the severity of aortic stenosis (AS). Whether threshold values of AVC obtained with EBCT could be extrapolated to multislice computed tomography (MSCT) was unclear and AVC diagnostic value in patients with low ejection fraction (EF) has never been specifically evaluated. Patients with mild to severe AS underwent prospectively within 1 week MSCT and TTE. Severe AS was defined as an aortic valve area (AVA) of less than 1 cm(2). In 179 patients with EF greater than 40% (validation set), the relationship between AVC and AVA was evaluated. The best threshold of AVC for the diagnosis of severe AS was then evaluated in a second subset (testing set) of 49 patients with low EF (≤40%). In this subgroup, AS severity was defined based on mean gradient, natural history or dobutamine stress echocardiography. Correlation between AVC and AVA was good (r=-0.63, p<0.0001). A threshold of 1651 arbitrary units (AU) provided 82% sensitivity, 80% specificity, 88% negative-predictive value and 70% positive-predictive value. In the testing set (patients with low EF), this threshold correctly differentiated patients with severe AS from non-severe AS in all but three cases. These three patients had an AVC score close to the threshold (1206, 1436 and 1797 AU). In this large series of patients with a wide range of AS, AVC was shown to be well correlated to AVA and may be a useful adjunct for the evaluation of AS severity especially in difficult cases such as patients with low EF.
Traversi, Egidio; Bertoli, Giuseppe; Barazzoni, Giancarlo; Baldi, Maurizia; Tramarin, Roberto
2004-02-01
The recent technical developments in multislice computed tomography (MSCT), with ECG retro-gated image reconstruction, have elicited great interest in the possibility of accurate non-invasive imaging of the coronary arteries. The latest generation of MSCT systems with 8-16 rows of detectors permits acquisition of the whole cardiac volume during a single 15-20 s breath-hold with a submillimetric definition of the images and an outstanding signal-to-noise ratio. Thus the race which, between MSCT, electron beam computed tomography and cardiac magnetic resonance imaging, can best provide routine and reliable imaging of the coronary arteries in clinical practice has recommenced. Currently available MSCT systems offer different options for both cardiac image acquisition and reconstruction, including multiplanar and curved multiplanar reconstruction, three-dimensional volume rendering, maximum intensity projection, and virtual angioscopy. In our preliminary experience including 176 patients suffering from known or suspected coronary artery disease, MSCT was feasible in 161 (91.5%) and showed a sensitivity of 80.4% and a specificity of 80.3%, with respect to standard coronary angiography, in detecting critical stenosis in coronary arteries and artery or venous bypass grafts. These results correspond to a positive predictive value of 58.6% and a negative predictive value of 92.2%. The true role that MSCT is likely to play in the future in non-invasive coronary imaging is still to be defined. Nevertheless, the huge amount of data obtainable by MSCT along with the rapid technological advances, shorter acquisition times and reconstruction algorithm developments will make the technique stronger, and possible applications are expected not only for non-invasive coronary angiography, but also for cardiac function and myocardial perfusion evaluation, as an all-in-one examination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odlyzko, Michael L.; Held, Jacob T.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu
2016-07-15
Quantitatively calibrated annular dark field scanning transmission electron microscopy (ADF-STEM) imaging experiments were compared to frozen phonon multislice simulations adapted to include chemical bonding effects. Having carefully matched simulation parameters to experimental conditions, a depth-dependent bonding effect was observed for high-angle ADF-STEM imaging of aluminum nitride. This result is explained by computational predictions, systematically examined in the preceding portion of this study, showing the propagation of the converged STEM beam to be highly sensitive to net interatomic charge transfer. Thus, although uncertainties in experimental conditions and simulation accuracy remain, the computationally predicted experimental bonding effect withstands the experimental testing reportedmore » here.« less
Computerized Design and Analysis of Face-Milled, Uniform Tooth Height Spiral Bevel Gear Drives
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Wang, Anngwo; Handschuh, R. F.
1996-01-01
Face-milled spiral bevel gears with uniform tooth height are considered. An approach is proposed for the design of low noise and localized bearing contact of such gears. The approach is based on the mismatch of contacting surfaces and permits two types of bearing contact either directed longitudinally or across the surface to be obtained. A Tooth Contact Analysis (TCA) computer program was developed. This analysis was used to determine the influence of misalignment on meshing and contact of the spiral bevel gears. A numerical example that illustrates the developed theory is provided.
van Werkhoven, J M; Gaemperli, O; Schuijf, J D; Jukema, J W; Kroft, L J; Leschka, S; Alkadhi, H; Valenta, I; Pundziute, G; de Roos, A; van der Wall, E E; Kaufmann, P A; Bax, J J
2009-10-01
To assess whether multislice computed tomography coronary angiography (MSCTA) may be useful for risk stratification of patients with suspected coronary artery disease (CAD) at intermediate pretest likelihood according to Diamond and Forrester. MSCTA images were evaluated for the presence of significant CAD in 316 patients with suspected CAD (60% male, average (SD) age 57 (11) years) and an intermediate pretest likelihood according to Diamond and Forrester. Patients were followed up to determine the occurrence of an event. A combined end point of all-cause mortality, non-fatal infarction and unstable angina requiring revascularisation. Significant CAD was seen in 89 patients (28%), whereas normal MSCTA or non-significant CAD was seen in the remaining 227 (72%) patients. During follow-up (median 621 days (25-75th centile 408-835) an event occurred in 13 patients (4.8%). The annualised event rate was 0.8% in patients with normal MSCT, 2.2% in patients with non-significant CAD and 6.5% in patients with significant CAD. Moreover, MSCTA remained a significant predictor (p<0.05) of events after multivariate correction (hazard ratio = 3.460 (95% CI 1.142 to 10.480). The results suggest that in patients with an intermediate pretest likelihood, MSCTA is highly effective in re-stratifying patients into either a low or high post-test risk group. These results further emphasise the usefulness of non-invasive imaging with MSCTA in this patient population.
NASA Astrophysics Data System (ADS)
Tang, Xiangyang
2003-05-01
In multi-slice helical CT, the single-tilted-plane-based reconstruction algorithm has been proposed to combat helical and cone beam artifacts by tilting a reconstruction plane to fit a helical source trajectory optimally. Furthermore, to improve the noise characteristics or dose efficiency of the single-tilted-plane-based reconstruction algorithm, the multi-tilted-plane-based reconstruction algorithm has been proposed, in which the reconstruction plane deviates from the pose globally optimized due to an extra rotation along the 3rd axis. As a result, the capability of suppressing helical and cone beam artifacts in the multi-tilted-plane-based reconstruction algorithm is compromised. An optomized tilted-plane-based reconstruction algorithm is proposed in this paper, in which a matched view weighting strategy is proposed to optimize the capability of suppressing helical and cone beam artifacts and noise characteristics. A helical body phantom is employed to quantitatively evaluate the imaging performance of the matched view weighting approach by tabulating artifact index and noise characteristics, showing that the matched view weighting improves both the helical artifact suppression and noise characteristics or dose efficiency significantly in comparison to the case in which non-matched view weighting is applied. Finally, it is believed that the matched view weighting approach is of practical importance in the development of multi-slive helical CT, because it maintains the computational structure of fan beam filtered backprojection and demands no extra computational services.
Promoting convergence: The Phi spiral in abduction of mouse corneal behaviors
Rhee, Jerry; Nejad, Talisa Mohammad; Comets, Olivier; Flannery, Sean; Gulsoy, Eine Begum; Iannaccone, Philip; Foster, Craig
2015-01-01
Why do mouse corneal epithelial cells display spiraling patterns? We want to provide an explanation for this curious phenomenon by applying an idealized problem solving process. Specifically, we applied complementary line-fitting methods to measure transgenic epithelial reporter expression arrangements displayed on three mature, live enucleated globes to clarify the problem. Two prominent logarithmic curves were discovered, one of which displayed the ϕ ratio, an indicator of an optimal configuration in phyllotactic systems. We then utilized two different computational approaches to expose our current understanding of the behavior. In one procedure, which involved an isotropic mechanics-based finite element method, we successfully produced logarithmic spiral curves of maximum shear strain based pathlines but computed dimensions displayed pitch angles of 35° (ϕ spiral is ∼17°), which was altered when we fitted the model with published measurements of coarse collagen orientations. We then used model-based reasoning in context of Peircean abduction to select a working hypothesis. Our work serves as a concise example of applying a scientific habit of mind and illustrates nuances of executing a common method to doing integrative science. © 2014 Wiley Periodicals, Inc. Complexity 20: 22–38, 2015 PMID:25755620
Mobashsher, Ahmed Toaha; Abbosh, A M
2016-11-29
Rapid, on-the-spot diagnostic and monitoring systems are vital for the survival of patients with intracranial hematoma, as their conditions drastically deteriorate with time. To address the limited accessibility, high costs and static structure of currently used MRI and CT scanners, a portable non-invasive multi-slice microwave imaging system is presented for accurate 3D localization of hematoma inside human head. This diagnostic system provides fast data acquisition and imaging compared to the existing systems by means of a compact array of low-profile, unidirectional antennas with wideband operation. The 3D printed low-cost and portable system can be installed in an ambulance for rapid on-site diagnosis by paramedics. In this paper, the multi-slice head imaging system's operating principle is numerically analysed and experimentally validated on realistic head phantoms. Quantitative analyses demonstrate that the multi-slice head imaging system is able to generate better quality reconstructed images providing 70% higher average signal to clutter ratio, 25% enhanced maximum signal to clutter ratio and with around 60% hematoma target localization compared to the previous head imaging systems. Nevertheless, numerical and experimental results demonstrate that previous reported 2D imaging systems are vulnerable to localization error, which is overcome in the presented multi-slice 3D imaging system. The non-ionizing system, which uses safe levels of very low microwave power, is also tested on human subjects. Results of realistic phantom and subjects demonstrate the feasibility of the system in future preclinical trials.
NASA Astrophysics Data System (ADS)
Ding, Huanjun; Gao, Hao; Zhao, Bo; Cho, Hyo-Min; Molloi, Sabee
2014-10-01
Both computer simulations and experimental phantom studies were carried out to investigate the radiation dose reduction with tensor framelet based iterative image reconstruction (TFIR) for a dedicated high-resolution spectral breast computed tomography (CT) based on a silicon strip photon-counting detector. The simulation was performed with a 10 cm-diameter water phantom including three contrast materials (polyethylene, 8 mg ml-1 iodine and B-100 bone-equivalent plastic). In the experimental study, the data were acquired with a 1.3 cm-diameter polymethylmethacrylate (PMMA) phantom containing iodine in three concentrations (8, 16 and 32 mg ml-1) at various radiation doses (1.2, 2.4 and 3.6 mGy) and then CT images were reconstructed using the filtered-back-projection (FBP) technique and the TFIR technique, respectively. The image quality between these two techniques was evaluated by the quantitative analysis on contrast-to-noise ratio (CNR) and spatial resolution that was evaluated using the task-based modulation transfer function (MTF). Both the simulation and experimental results indicated that the task-based MTF obtained from TFIR reconstruction with one-third of the radiation dose was comparable to that from the FBP reconstruction for low contrast target. For high contrast target, the TFIR was substantially superior to the FBP reconstruction in terms of spatial resolution. In addition, TFIR was able to achieve a factor of 1.6-1.8 increase in CNR, depending on the target contrast level. This study demonstrates that the TFIR can reduce the required radiation dose by a factor of two-thirds for a CT image reconstruction compared to the FBP technique. It achieves much better CNR and spatial resolution for high contrast target in addition to retaining similar spatial resolution for low contrast target. This TFIR technique has been implemented with a graphic processing unit system and it takes approximately 10 s to reconstruct a single-slice CT image, which can potentially be used in a future multi-slit multi-slice spiral CT system.
Sokiranski, R; Pirsig, W; Nerlich, A
2005-03-01
A still-born male fetus from the 19th century, fixed in formalin and presenting as diprosopia triophthalmica, was analysed by helical computer tomography and virtually reconstructed without damage. This rare, incomplete, symmetrical duplication of the face on a single head with three eyes, two noses and two mouths develops in the first 3 weeks of gestation and is a subset of the category of conjoined twins with unknown underlying etiology. Spiral computer tomography of fixed tissue demonstrated in the more than 100 year old specimen that virtual reconstruction can be performed in nearly the same way as in patients (contrast medium application not possible). The radiological reconstruction of the Munich fetus, here confined to head and neck data, is the basis for comparison with a number of imaging procedures of the last 3000 years. Starting with some Neolithic Mesoamerican ceramics, the "Pretty Ladies of Tlatilco", diprosopia triophthalmica was also depicted on engravings of the 16th and 17th century A.D. by artists as well as by the anatomist Soemmering and his engraver Berndt in the 18th century. Our modern spiral computer tomography confirms the ability of our ancestors to depict diprosopia triophthalmica in paintings and sculptures with a high level of natural precision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raza, Syed A.; Chughtai, Aamer R.; Wahba, Mona
2004-01-15
Purpose: To assess the role of multislice computed tomography angiography (MCTA) in the evaluation of renal artery stents, using intra-arterial digital subtraction angiography (DSA) as the gold standard. Methods: Twenty consecutive patients (15 men, 5 women) with 23 renal artery stents prospectively underwent both MCTA and DSA. Axial images, multiplanar reconstructions and maximum intensity projection images were used for diagnosis. The MCTA and DSA images were each interpreted without reference to the result of the other investigation. Results:The three cases of restenosis on DSA were detected correctly by MCTA; in 19 cases where MCTA showed a fully patent stent, themore » DSA was also negative. Sensitivity and negative predictive value (NPV) of MCTA were therefore 100%. In four cases, MCTA showed apparently minimal disease which was not shown on DSA. These cases are taken as false positive giving a specificity of 80% and a positive predictive value of 43%. Conclusion: The high sensitivity and NPV suggest MCTA may be useful as a noninvasive screen for renal artery stentrestenosis. MCTA detected mild disease in a few patients which was not confirmed on angiography.« less
Simultaneous multislice refocusing via time optimal control.
Rund, Armin; Aigner, Christoph Stefan; Kunisch, Karl; Stollberger, Rudolf
2018-02-09
Joint design of minimum duration RF pulses and slice-selective gradient shapes for MRI via time optimal control with strict physical constraints, and its application to simultaneous multislice imaging. The minimization of the pulse duration is cast as a time optimal control problem with inequality constraints describing the refocusing quality and physical constraints. It is solved with a bilevel method, where the pulse length is minimized in the upper level, and the constraints are satisfied in the lower level. To address the inherent nonconvexity of the optimization problem, the upper level is enhanced with new heuristics for finding a near global optimizer based on a second optimization problem. A large set of optimized examples shows an average temporal reduction of 87.1% for double diffusion and 74% for turbo spin echo pulses compared to power independent number of slices pulses. The optimized results are validated on a 3T scanner with phantom measurements. The presented design method computes minimum duration RF pulse and slice-selective gradient shapes subject to physical constraints. The shorter pulse duration can be used to decrease the effective echo time in existing echo-planar imaging or echo spacing in turbo spin echo sequences. © 2018 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Weiner, Michael W.; Maudsley, Andrew A.; Schuff, Norbert; Soher, Brian J.; Vermathen, Peter P.; Fein, George; Laxer, Kenneth D.
1998-07-01
Proton magnetic resonance spectroscopic imaging (1H MRSI) with volume pre-selection (i.e. by PRESS) or multislice 1H MRSI was used to investigate changes in brain metabolites in Alzheimer's disease, epilepsy, and amyotrophic lateral sclerosis. Examples of results from several ongoing clinical studies are provided. Multislice 1H MRSI of the human brain, without volume pre-selection offers considerable advantages over previously available techniques. Furthermore, MRI tissue segmentation and completely automated spectra curve fitting greatly facilitate quantitative data analysis. Future efforts will be devoted to obtaining full brain coverage and data acquisition at short spin echo times (TE less than 30 ms) for the detection of metabolites with short T2 relaxation times.
The spiral-compact galaxy pair AM 2208-251: Computer simulations versus observations
NASA Technical Reports Server (NTRS)
Klaric, Mario; Byrd, Gene G.
1990-01-01
The system AM2208-251 is a roughly edge-on spiral extending east-west with a smaller round compact E system about 60 arcsec east of the spiral nucleus along the major axis of the spiral. Bertola, Huchtmeier, and Zeilinger (1990) have presented optical spectroscopic as well as single dish 21 cm observations of this system. Their spectroscopic data show, via emission lines lambda lambda 3727-29A, a rising rotation curve near the nucleus. These spectroscopic observations may indicate a tidal interaction in the system. In order to learn more about such pairs, the authors simulated the interaction using the computer model developed by Miller (1976 a,b, 1978) and modified by the authors (Byrd 1986, 1987, 1988). To do the simulation they need an idea of the mutual orbits of the two galaxies. Their computer model is a two-dimensional polar N-body program. It consists of a self-gravitating disk of particles, within an inert axially symmetric stabilizing halo potential. The particles are distributed in a 24(radial) by 36(azimuthal) polar grid. Self consistent calculations can be done only within the grid area. The disk is modeled with a finite Mestel disk, where all the particles initially move in circular orbits with constant tangential velocities (Mestel 1963), resulting in a flat rotation curve. The gas particles in the spiral's disk, which make up 30 percent of its mass, collide in the following manner. The number of particles in each bin of the polar grid is counted every time step. If it is greater than a given critical density, all the particles in the bin collide, obtaining in the result the same velocities, equal to the average for the bin. This process produces clumps of gas particles-the star formation sites. The authors suppress the collision in the inner part of the disk (within the circle r = 6) to represent the hole seen in the gas in the nuclear bulge of spirals. They thus avoid spurious effects due to collisions in that region. They also varied the size of the collisional bins, which did not affect their conclusions.
NASA Astrophysics Data System (ADS)
Junqueira, T. C.; Lépine, J. R. D.; Braga, C. A. S.; Barros, D. A.
2013-02-01
Aims: We propose a new, more realistic description of the perturbed gravitational potential of spiral galaxies, with spiral arms having Gaussian-shaped groove profiles. The aim is to reach a self-consistent description of the spiral structure, that is, one in which an initial potential perturbation generates, by means of the stellar orbits, spiral arms with a profile similar to that of the imposed perturbation. Self-consistency is a condition for having long-lived structures. Methods: Using the new perturbed potential, we investigate the stable stellar orbits in galactic disks for galaxies with no bar or with only a weak bar. The model is applied to our Galaxy by making use of the axisymmetric component of the potential computed from the Galactic rotation curve, in addition to other input parameters similar to those of our Galaxy. The influence of the bulge mass on the stellar orbits in the inner regions of a disk is also investigated. Results: The new description offers the advantage of easy control of the parameters of the Gaussian profile of its potential. We compute the density contrast between arm and inter-arm regions. We find a range of values for the perturbation amplitude from 400 to 800 km2 s-2 kpc-1, which implies an approximate maximum ratio of the tangential force to the axisymmetric force between 3% and 6%. Good self-consistency of arm shapes is obtained between the Inner Lindblad resonance (ILR) and the 4:1 resonance. Near the 4:1 resonance the response density starts to deviate from the imposed logarithmic spiral form. This creates bifurcations that appear as short arms. Therefore the deviation from a perfect logarithmic spiral in galaxies can be understood as a natural effect of the 4:1 resonance. Beyond the 4:1 resonance we find closed orbits that have similarities with the arms observed in our Galaxy. In regions near the center, elongated stellar orbits appear naturally, in the presence of a massive bulge, without imposing any bar-shaped potential, but only extending the spiral perturbation a little inward of the ILR. This suggests that a bar is formed with a half-size ~3 kpc by a mechanism similar to that of the spiral arms. Conclusions: The potential energy perturbation that we adopted represents an important step in the direction of self-consistency, compared to previous sine function descriptions of the potential. In addition, our model produces a realistic description of the spiral structure, which is able to explain several details that were not yet understood.
Spiral Laminar Flow: a Survey of a Three-Dimensional Arterial Flow Pattern in a Group of Volunteers.
Stonebridge, P A; Suttie, S A; Ross, R; Dick, J
2016-11-01
Spiral laminar flow was suggested as potentially the predominant arterial blood flow pattern many years ago. Computational fluid dynamics and flow rig testing have suggested there are advantages to spiral laminar flow. The aim of this study was to identify whether spiral laminar is the predominant flow pattern in a cohort of volunteers. This study included 42 volunteers (mean age 66.8 years). Eleven arterial sites were examined, comprising bilateral examination of the common carotid artery, internal carotid artery, external carotid artery, common femoral artery, superficial femoral artery, and the infra renal aorta. The presence or absence of spiral laminar flow, the peak systolic velocity, and the rotational velocity were assessed by colour Duplex scanning. The incidence of spiral laminar flow ranged from 81% in the internal carotid artery to 90% in the common carotid artery and the infra renal aorta. Overall, in 58% of all right-sided arteries the rotation was clockwise and 42% anticlockwise. In all left-sided arteries these numbers were reversed. Analysis on the basis of volunteer rather than examination site showed that 41/42 (97%) had more sites with spiral laminar flow than without. Only one volunteer had more sites exhibiting non-spiral laminar flow. Spiral laminar flow was the predominant flow pattern in the study population. This observation raises questions and suggests a need for further studies concerning the form and function of the left ventricle, the geometry of the arterial system, and the function of the arterial wall. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Spiral waves are stable in discrete element models of two-dimensional homogeneous excitable media
NASA Technical Reports Server (NTRS)
Feldman, A. B.; Chernyak, Y. B.; Cohen, R. J.
1998-01-01
The spontaneous breakup of a single spiral wave of excitation into a turbulent wave pattern has been observed in both discrete element models and continuous reaction-diffusion models of spatially homogeneous 2D excitable media. These results have attracted considerable interest, since spiral breakup is thought to be an important mechanism of transition from the heart rhythm disturbance ventricular tachycardia to the fatal arrhythmia ventricular fibrillation. It is not known whether this process can occur in the absence of disease-induced spatial heterogeneity of the electrical properties of the ventricular tissue. Candidate mechanisms for spiral breakup in uniform 2D media have emerged, but the physical validity of the mechanisms and their applicability to myocardium require further scrutiny. In this letter, we examine the computer simulation results obtained in two discrete element models and show that the instability of each spiral is an artifact resulting from an unphysical dependence of wave speed on wave front curvature in the medium. We conclude that spiral breakup does not occur in these two models at the specified parameter values and that great care must be exercised in the representation of a continuous excitable medium via discrete elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallée, Jacques P., E-mail: jacques.vallee@nrc-cnrc.gc.ca
2014-07-01
From the Sun's location in the Galactic disk, different arm tracers (CO, H I, hot dust, etc.) have been employed to locate a tangent to each spiral arm. Using all various and different observed spiral arm tracers (as published elsewhere), we embark on a new goal, namely the statistical analysis of these published data (data mining) to statistically compute the mean location of each spiral arm tracer. We show for a typical arm cross-cut, a separation of 400 pc between the mid-arm and the dust lane (at the inner edge of the arm, toward the Galactic center). Are some armsmore » major and others minor? Separating arms into two sets, as suggested by some, we find the same arm widths between the two sets. Our interpretation is that we live in a multiple (four-arm) spiral (logarithmic) pattern (around a pitch angle of 12°) for the stars and gas in the Milky Way, with a sizable interarm separation (around 3 kpc) at the Sun's location and the same arm width for each arm (near 400 pc from mid-arm to dust lane).« less
NASA Astrophysics Data System (ADS)
Gong, Hao; Yu, Lifeng; Leng, Shuai; Dilger, Samantha; Zhou, Wei; Ren, Liqiang; McCollough, Cynthia H.
2018-03-01
Channelized Hotelling observer (CHO) has demonstrated strong correlation with human observer (HO) in both single-slice viewing mode and multi-slice viewing mode in low-contrast detection tasks with uniform background. However, it remains unknown if the simplest single-slice CHO in uniform background can be used to predict human observer performance in more realistic tasks that involve patient anatomical background and multi-slice viewing mode. In this study, we aim to investigate the correlation between CHO in a uniform water background and human observer performance at a multi-slice viewing mode on patient liver background for a low-contrast lesion detection task. The human observer study was performed on CT images from 7 abdominal CT exams. A noise insertion tool was employed to synthesize CT scans at two additional dose levels. A validated lesion insertion tool was used to numerically insert metastatic liver lesions of various sizes and contrasts into both phantom and patient images. We selected 12 conditions out of 72 possible experimental conditions to evaluate the correlation at various radiation doses, lesion sizes, lesion contrasts and reconstruction algorithms. CHO with both single and multi-slice viewing modes were strongly correlated with HO. The corresponding Pearson's correlation coefficient was 0.982 (with 95% confidence interval (CI) [0.936, 0.995]) and 0.989 (with 95% CI of [0.960, 0.997]) in multi-slice and single-slice viewing modes, respectively. Therefore, this study demonstrated the potential to use the simplest single-slice CHO to assess image quality for more realistic clinically relevant CT detection tasks.
He, Bosheng; Gu, Jinhua; Huang, Sheng; Gao, Xuesong; Fan, Jinhe; Sheng, Meihong; Wang, Lin; Gong, Shenchu
2017-02-01
This study was performed to evaluate the diagnostic performance of multi-slice CT angiography combined with enterography in determining the cause and location of obstruction as well as intestinal ischaemia in patients with small bowel obstruction (SBO). This study retrospectively summarized the image data of 57 SBO patients who received both multi-slice CT angiography and enterography examination between December 2012 and May 2013. The CT diagnoses of SBO and intestinal ischaemia were correlated with the findings at surgery or digital subtraction angiography, which were set as standard references. Multi-slice CT angiography and enterography indicated that the cause of SBO in three patients was misjudged, suggesting a diagnostic accuracy of 94.7%. In one patient the level of obstruction was incorrect, demonstrating a diagnostic accuracy of 98.2%. Based on the results of the receiver operating characteristic (ROC) curve analysis, the diagnostic criterion for ischaemic SBO was at least two of the four CT signs (circumferential bowel wall thickening, reduced enhancement of the intestinal wall, mesenteric oedema and mesenteric vascular engorgement). The criterion yielded a sensitivity of 94.4%, a specificity of 92.3%, a positive predicted value of 85.0% and a negative predicted value of 97.3%, and the area under curve (AUC) was 0.92 (95% CI, 0.85-0.99). Multi-slice CT angiography and enterography have high diagnostic value in identifying the cause and site of SBO. In addition, the suggested diagnostic criterion using CT signs is helpful for diagnosing intestinal ischaemia in SBO patients. © 2016 The Royal Australian and New Zealand College of Radiologists.
Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Fuentes, A.; Litvin, F. L.; Mullins, B. R.; Woods, R.; Handschuh, R. F.; Lewicki, David G.
2002-01-01
An integrated computerized approach for design and stress analysis of low-noise spiral bevel gear drives with adjusted bearing contact is proposed. The procedure of computations is an iterative process that requires four separate procedures and provide: (a) a parabolic function of transmission errors that is able to reduce the effect of errors of alignment on noise and vibration, and (b) reduction of the shift of bearing contact caused by misalignment. Application of finite element analysis enables us to determine the contact and bending stresses and investigate the formation of the bearing contact. The design of finite element models and boundary conditions is automated and does not require intermediate CAD computer programs for application of general purpose computer program for finite element analysis.
Tomar, Deepak; Dhingra, Anil; Tomer, Anil; Sharma, Shalini; Sharma, Vivek; Miglani, Anjali
2013-05-01
Aberrant root canal anatomy is diagnostically and clinically challenging for clinicians. The most common root canal configuration of human molars is 2 roots and 3 canals, but various combinations may still exist. Third molars are known to have the most unusual anatomy among human teeth. Restorative, prosthetic, and orthodontic considerations often require endodontic treatment of third molars in order for them to be retained as functional components of the dental arch. The present case report demonstrates unusual root canal morphology of the mandibular third molar. Roentgenographic examination, which included spiral CT scan, revealed 3 separate mesial roots in tooth #48 with 3 independent canals and 3 canal orifices, indicating an endodontic rarity. The present case report puts impetus on exploration of additional canals using advanced diagnostic aids, such as spiral computed tomography, which can have a huge impact on the successful outcome of endodontic therapy. Copyright © 2013 Elsevier Inc. All rights reserved.
A stochastic reaction-diffusion model for protein aggregation on DNA
NASA Astrophysics Data System (ADS)
Voulgarakis, Nikolaos K.
Vital functions of DNA, such as transcription and packaging, depend on the proper clustering of proteins on the double strand. The present study investigates how the interplay between DNA allostery and electrostatic interactions affects protein clustering. The statistical analysis of a simple but transparent computational model reveals two major consequences of this interplay. First, depending on the protein and salt concentration, protein filaments exhibit a bimodal DNA stiffening and softening behavior. Second, within a certain domain of the control parameters, electrostatic interactions can cause energetic frustration that forces proteins to assemble in rigid spiral configurations. Such spiral filaments might trigger both positive and negative supercoiling, which can ultimately promote gene compaction and regulate the promoter. It has been experimentally shown that bacterial histone-like proteins assemble in similar spiral patterns and/or exhibit the same bimodal behavior. The proposed model can, thus, provide computational insights into the physical mechanisms used by proteins to control the mechanical properties of the DNA.
[The clinical and X-ray classification of osteonecrosis of the low jaw].
Medvedev, Iu A; Basin, E M; Sokolina, I A
2013-01-01
To elaborate a clinical and X-ray classification of osteonecrosis of the low jaw in people with desomorphine or pervitin addiction. Ninety-two patients with drug addiction who had undergone orthopantomography, direct frontal X-ray of the skull, and multislice computed tomography, followed by multiplanar and three-dimensional imaging reconstruction were examined. One hundred thirty four X-ray films and 74 computed tomographic images were analyzed. The authors proposed a clinical and X-ray classification of osteonecrosis of the low jaw in people with desomorphine or pervitin addiction and elaborated recommendations for surgical interventions on the basis of the developed classification. The developed clinical and X-ray classification and recommendations for surgical interventions may be used to treat osteonecroses of various etiology.
Determination of the position of nucleus cochlear implant electrodes in the inner ear.
Skinner, M W; Ketten, D R; Vannier, M W; Gates, G A; Yoffie, R L; Kalender, W A
1994-09-01
Accurate determination of intracochlear electrode position in patients with cochlear implants could provide a basis for detecting migration of the implant and could aid in the selection of stimulation parameters for sound processor programming. New computer algorithms for submillimeter resolution and 3-D reconstruction from spiral computed tomographic (CT) scans now make it possible to accurately determine the position of implanted electrodes within the cochlear canal. The accuracy of these algorithms was tested using an electrode array placed in a phantom model. Measurements of electrode length and interelectrode distance from spiral CT scan reconstructions were in close agreement with those from stereo microscopy. Although apparent electrode width was increased on CT scans due to partial volume averaging, a correction factor was developed for measurements from conventional radiographs and an expanded CT absorption value scale added to detect the presence of platinum electrodes and wires. The length of the cochlear canal was calculated from preoperative spiral CT scans for one patient, and the length of insertion of the electrode array was calculated from her postoperative spiral CT scans. The cross-sectional position of electrodes in relation to the outer bony wall and modiolus was measured and plotted as a function of distance with the electrode width correction applied.
Masum, M A; Pickering, M R; Lambert, A J; Scarvell, J M; Smith, P N
2017-09-06
In this paper, a novel multi-slice ultrasound (US) image calibration of an intelligent skin-marker used for soft tissue artefact compensation is proposed to align and orient image slices in an exact H-shaped pattern. Multi-slice calibration is complex, however, in the proposed method, a phantom based visual alignment followed by transform parameters estimation greatly reduces the complexity and provides sufficient accuracy. In this approach, the Hough Transform (HT) is used to further enhance the image features which originate from the image feature enhancing elements integrated into the physical phantom model, thus reducing feature detection uncertainty. In this framework, slice by slice image alignment and calibration are carried out and this provides manual ease and convenience. Copyright © 2016 Elsevier Ltd. All rights reserved.
Maeda, Koichi; Kuratani, Toru; Torikai, Kei; Shimamura, Kazuo; Mizote, Isamu; Ichibori, Yasuhiro; Takeda, Yasuharu; Daimon, Takashi; Nakatani, Satoshi; Nanto, Shinsuke; Sawa, Yoshiki
2013-07-01
Even mild paravalvular leakage (PVL) after transcatheter aortic valve replacement (TAVR) is associated with increased late mortality. Electrocardiogram-gated multi-slice computed tomography (MSCT) enables detailed aortic annulus assessment. We describe the impact of MSCT for PVL following TAVR. Congruence between the prosthesis and annulus diameters affects PVL; therefore, we calculated the OverSized AortiC Annular ratio (OSACA ratio) and OSACA (transesophageal echocardiography, TEE) ratio as prosthesis diameter/annulus diameter on MSCT or TEE, respectively, and compared their relationship with PVL ≤ trace following TAVR. Of 36 consecutive patients undergoing TAVR (Group A), the occurrence of PVL ≤ trace (33.3%) was significantly related to the OSACA ratio (p = 0.00020). In receiver-operating characteristics analysis, the cutoff value of 1.03 for the OSACA ratio had the highest sum of sensitivity (75.0%) and specificity (91.7%; AUC = 0.87) with significantly higher discriminatory performance for PVL as compared to the OSACA (TEE) ratio (AUC = 0.69, p = 0.028). In nine consecutive patients (Group B) undergoing TAVR based on guidelines formulated from our experience with Group A, PVL ≤ trace was significantly more frequent (88.9%) than that in Group A (p = 0.0060). The OSACA ratio has a significantly higher discriminatory performance for PVL ≤ trace than the OSACA (TEE) ratio, and aortic annular measurement from MSCT is more accurate than that from TEE. © 2013 Wiley Periodicals, Inc.
Efe, Duran; Aygün, Fatih; Acar, Türker; Yildiz, Melda; Gemici, Kazım
2015-08-01
The present study investigated effect of subcutaneous fat volume and abdominal visceral fat volume on aortic atherosclerosis via multislice computed tomography. The present study comprised 424 subjects who underwent non-contrast-enhanced abdominal CT in our clinic between June 2012 and June 2013. Using dedicated software visceral fat volume was calculated for each individual and then subcutaneous fat volume was calculated by subtracting visceral fat volume from total fat volume. By dividing visceral fat volume/subcutaneous fat volume participants were assigned to three groups according to their mean visceral fat volume/subcutaneous fat volume: Group 1 consisted of subjects with visceral fat volume/subcutaneous fat volume lower than 0.48 (Group 1 < 0.48); Group 2 consisted of subjects with visceral fat volume/subcutaneous fat volume equal to or higher than 0.48 and lower than 0.69 (0.48 ≤ Group 2 < 0.69); and Group 3 consisted of subjects with visceral fat volume/subcutaneous fat volume equal to or higher than 0.69 (Group 3 ≥ 0.69). The mean abdominal aortic calcium scores according to Agatston scoring (au) were 136.8 ± 418.7 au in Group 1, 179.9 ± 463 au in Group 2 and 212.2 ± 486.9 in Group 3, respectively. We have demonstrated a significant correlation between visceral fat volume and abdominal aorta atherosclerosis, while there was absence of significant correlation between subcutaneous fat volume and abdominal atherosclerosis. © The Author(s) 2014.
von Kiedrowski, Helge; Wiemer, Marcus; Franzke, Krista; Preuss, Rainer; Vaske, Bernhard; Butz, Thomas; Oldenburg, Olaf; Bitter, Thomas; Mahmood, Khalid; Burchert, Wolfram; Horstkotte, Dieter; Langer, Christoph
2009-02-01
Contrast enhanced multi-slice computed tomography (MSCT) is the leading modality in non-invasive coronary angiography (CTA) today. We investigated MSCT based assessment of coronary artery bypass grafts (CABG) by analyzing assets and drawbacks of CTA in order to define demands on latest technology. In a clinical setting 39 CABG patients (69.2 +/- 1.4 years; male n = 36) underwent CTA (collimation 16 x 0.75 mm, contrast medium 100 ml; 320 mAs, 120 KV). Ninety-seven CABG (61 venous, 36 arterial grafts) were evaluated. A subgroup of 18 patients underwent additional invasive coronary angiography (CA). CTA for CABG assessment resulted in an overall sensitivity (sens.) of 100%, specificity (spec.) of 92.4% and positive and negative predictive values (PPV, NPV) of 60% and 100%, respectively. CABG anastomoses showed slightly inferior diagnostic accuracy than other CABG segments. Limitations in imaging quality caused 21% unevaluable segments of the CABG anastomoses. Evaluation of native vessel segments proximal and distal to the anastomoses resulted in a sens, spec, PPV and NPV of 57.5, 94.6, 92 and 67.3%, respectively. With 28.5% unevaluable segments, the native vessel segments showed serious limitations in imaging quality. Radiation exposure was 9.88 +/- 3.20 mSv (9.69 +/- 3.25 mSv male; 12.08 +/- 1.35 mSv female). 16-slice MSCT based CABG assessment offers sufficient diagnostic accuracy. However, focussing on the bypass anastomoses and the native revascularized coronary arteries, clinical value is limited.
Schroeder, Janina; Peterschroeder, Andreas; Vaske, Bernhard; Butz, Thomas; Barth, Peter; Oldenburg, Olaf; Bitter, Thomas; Burchert, Wolfgang; Horstkotte, Dieter; Langer, Christoph
2009-11-01
In humans with normal hearts multi-slice computed tomography (MSCT) based volumetry was shown to correlate well with the gold standard, cardiac magnetic resonance imaging (CMR). We correlated both techniques in patients with various degrees of heart failure and reduced ejection fraction (HFREF) resulting from cardiac dilatation. Twenty-four patients with a left ventricular enddiastolic volume (LV-EDV) of C 150 ml measured by angiography underwent MSCT and CMR scanning for left and right ventricular (LV, RV) volumetry. MSCT based short cardiac axis views were obtained beginning at the cardiac base advancing to the apex. These were reconstructed in 20 different time windows of the RR-interval (0-95%) serving for identification of enddiastole (ED) and end-systole (ES) and for planimetry. ED and ES volumes and the ejection fraction (EF) were calculated for LV and RV. MSCT based volumetry was compared with CMR. MSCT based LV volumetry significantly correlates with CMR as follows: LV-EDV r = 0.94, LV-ESV r = 0.98 and LV-EF r = 0.93, but significantly overestimates LV-EDV and LV-ESV and underestimates EF (P \\ 0.0001). MSCT based RV volumetry significantly correlates with CMR as follows: RV-EDV r = 0.79, RVESV r = 0.78 and RV-EF r = 0.73, but again significantly overestimates RV-EDV and RV-ESV and underestimates RV-EF (P \\ 0.0001). When compared with CMR a continuous overestimation of volumes and underestimation of EF needs to be considered when applying MSCT in HFREF patients.
NASA Astrophysics Data System (ADS)
Stock, Michala K.; Stull, Kyra E.; Garvin, Heather M.; Klales, Alexandra R.
2016-10-01
Forensic anthropologists are routinely asked to estimate a biological profile (i.e., age, sex, ancestry and stature) from a set of unidentified remains. In contrast to the abundance of collections and techniques associated with adult skeletons, there is a paucity of modern, documented subadult skeletal material, which limits the creation and validation of appropriate forensic standards. Many are forced to use antiquated methods derived from small sample sizes, which given documented secular changes in the growth and development of children, are not appropriate for application in the medico-legal setting. Therefore, the aim of this project is to use multi-slice computed tomography (MSCT) data from a large, diverse sample of modern subadults to develop new methods to estimate subadult age and sex for practical forensic applications. The research sample will consist of over 1,500 full-body MSCT scans of modern subadult individuals (aged birth to 20 years) obtained from two U.S. medical examiner's offices. Statistical analysis of epiphyseal union scores, long bone osteometrics, and os coxae landmark data will be used to develop modern subadult age and sex estimation standards. This project will result in a database of information gathered from the MSCT scans, as well as the creation of modern, statistically rigorous standards for skeletal age and sex estimation in subadults. Furthermore, the research and methods developed in this project will be applicable to dry bone specimens, MSCT scans, and radiographic images, thus providing both tools and continued access to data for forensic practitioners in a variety of settings.
Guddat, Saskia S; Gapert, René; Tsokos, Michael; Oesterhelweg, Lars
2013-03-01
Proof of live birth is of major importance in suspected neonaticide cases. Although not without controversy the lung flotation test is the main method used to asses this in different jurisdictions worldwide. The present study examines the usefulness of postmortem multislice computed tomography (pmMSCT) in the detection of live birth signs. Body scans were conducted on four infants, one was stillborn, another died a day after birth and the other two were classified as neonaticides. The appearance of the lungs, gastrointestinal tract and vascular system of the liver was compared in these cases. Clear differences were discernable between the lungs of the stillborn and the 1 day old infant. The aerated lungs and air in the stomach and duodenum were clearly visible in the latter case while the stillborn infant lacked these signs. The two neonaticide cases demonstrated similarly aerated lung tissue to the 1 day old infant. The hepatic vessels did not show any putrefactive gas changes in any of the cases. The extent of aeration of the peripheral alveoli was easily observable on the pmMSCT, thus making it a useful tool in the possible differentiation between artificially and naturally aerated lungs. During the four autopsies the classic flotation tests were performed and similar positive aeration of the lungs in the two neonaticides was shown. The stillborn's tests, on the other hand were negative for aeration. The results of this study clearly demonstrate the advantages of using pmMSCT before commencing a conventional autopsy in cases of suspected neonaticide.
Implementation and validation of a wake model for low-speed forward flight
NASA Technical Reports Server (NTRS)
Komerath, Narayanan M.; Schreiber, Olivier A.
1987-01-01
The computer implementation and calculations of the induced velocities produced by a wake model consisting of a trailing vortex system defined from a prescribed time averaged downwash distribution are detailed. Induced velocities are computed by approximating each spiral turn by a pair of large straight vortex segments positioned at critical points relative to where the induced velocity is required. A remainder term for the rest of the spiral is added. This approach results in decreased computation time compared to classical models where each spiral turn is broken down in small straight vortex segments. The model includes features such a harmonic variation of circulation, downwash outside of the blade and/or outside the tip path plane, blade bound vorticity induced velocity with harmonic variation of circulation and time averaging. The influence of various options and parameters on the results are investigated and results are compared to experimental field measurements with which, a resonable agreement is obtained. The capabilities of the model as well as its extension possibilities are studied. The performance of the model in predicting the recently-acquired NASA Langley Inflow data base for a four-bladed rotor is compared to that of the Scully Free Wake code, a well-established program which requires much greater computational resources. It is found that the two codes predict the experimental data with essentially the same accuracy, and show the same trends.
An efficient and general numerical method to compute steady uniform vortices
NASA Astrophysics Data System (ADS)
Luzzatto-Fegiz, Paolo; Williamson, Charles H. K.
2011-07-01
Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solutions with specified Casimir invariants. On the other hand, available relaxation approaches are computationally inexpensive, but can fail to converge to a solution. In this paper, we overcome these limitations by introducing a new discretization, based on an inverse-velocity map, which radically increases the efficiency of Newton iteration methods. In addition, we introduce a procedure to prescribe Casimirs and remove the degeneracies in the steady vorticity equation, thus ensuring convergence for general vortex configurations. We illustrate our methodology by considering several unbounded flows involving one or two vortices. Our method enables the computation, for the first time, of steady vortices that do not exhibit any geometric symmetry. In addition, we discover that, as the limiting vortex state for each flow is approached, each family of solutions traces a clockwise spiral in a bifurcation plot consisting of a velocity-impulse diagram. By the recently introduced "IVI diagram" stability approach [Phys. Rev. Lett. 104 (2010) 044504], each turn of this spiral is associated with a loss of stability for the steady flows. Such spiral structure is suggested to be a universal feature of steady, uniform-vorticity flows.
Simulating Fatigue Crack Growth in Spiral Bevel Pinion
NASA Technical Reports Server (NTRS)
Ural, Ani; Wawrzynek, Paul A.; Ingraffe, Anthony R.
2003-01-01
This project investigates computational modeling of fatigue crack growth in spiral bevel gears. Current work is a continuation of the previous efforts made to use the Boundary Element Method (BEM) to simulate tooth-bending fatigue failure in spiral bevel gears. This report summarizes new results predicting crack trajectory and fatigue life for a spiral bevel pinion using the Finite Element Method (FEM). Predicting crack trajectories is important in determining the failure mode of a gear. Cracks propagating through the rim may result in catastrophic failure, whereas the gear may remain intact if one tooth fails and this may allow for early detection of failure. Being able to predict crack trajectories is insightful for the designer. However, predicting growth of three-dimensional arbitrary cracks is complicated due to the difficulty of creating three-dimensional models, the computing power required, and absence of closed- form solutions of the problem. Another focus of this project was performing three-dimensional contact analysis of a spiral bevel gear set incorporating cracks. These analyses were significant in determining the influence of change of tooth flexibility due to crack growth on the magnitude and location of contact loads. This is an important concern since change in contact loads might lead to differences in SIFs and therefore result in alteration of the crack trajectory. Contact analyses performed in this report showed the expected trend of decreasing tooth loads carried by the cracked tooth with increasing crack length. Decrease in tooth loads lead to differences between SIFs extracted from finite element contact analysis and finite element analysis with Hertz contact loads. This effect became more pronounced as the crack grew.
Generated spiral bevel gears: Optimal machine-tool settings and tooth contact analysis
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Tsung, W. J.; Coy, J. J.; Heine, C.
1985-01-01
Geometry and kinematic errors were studied for Gleason generated spiral bevel gears. A new method was devised for choosing optimal machine settings. These settings provide zero kinematic errors and an improved bearing contact. The kinematic errors are a major source of noise and vibration in spiral bevel gears. The improved bearing contact gives improved conditions for lubrication. A computer program for tooth contact analysis was developed, and thereby the new generation process was confirmed. The new process is governed by the requirement that during the generation process there is directional constancy of the common normal of the contacting surfaces for generator and generated surfaces of pinion and gear.
Experimental and analytical assessment of the thermal behavior of spiral bevel gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Kicher, Thomas P.
1995-01-01
An experimental and analytical study of spiral bevel gears operating in an aerospace environment has been performed. Tests were conducted within a closed loop test stand at NASA Lewis Research Center. Tests were conducted to 537 kW (720 hp) at 14,400 rpm. The effects of various operating conditions on spiral bevel gear steady state and transient temperature are presented. Also, a three-dimensional analysis of the thermal behavior was conducted using a nonlinear finite element analysis computer code. The analysis was compared to the experimental results attained in this study. The results agreed well with each other for the cases compared and were no more than 10 percent different in magnitude.
Design analysis of a self-acting spiral-groove ring seal for counter-rotating shafts
NASA Technical Reports Server (NTRS)
Dirusso, E.
1983-01-01
A self-acting spiral groove inter-shaft ring seal of nominal 16.33 cm (6.43 in.) diameter for sealing fan bleed air between counter-rotating hafts in advanced turbofan engines was analyzed. The analysis focused on the lift force characteristics of the spiral grooves. A NASA Lewis developed computer program for predicting the performance of gas lubricated face seals was used to optimize the spiral groove geometry to produce maximum lift force. Load capacity curves (lift force as function of film thickness) were generated for four advanced turbofan engine operating conditions at relative seal speeds ranging from 17,850 to 29,800 rpm, sealed air pressures from 6 to 42 N/sq cm (9 to 60 psi) absolute and temperatures from 95 deg to 327 C (203 deg to 620 F). The relative seal sliding speed range was 152 to 255 m/sec (500 to 836 ft/sec). The analysis showed that the spiral grooves are capable of producing sufficient lift force such that the ring seal will operate in a noncontacting mode over the operating range of typical advanced turbofan engines.
Design analysis of a self-acting spiral-groove ring seal for counter-rotating shafts. [o ring seals
NASA Technical Reports Server (NTRS)
Dirusso, E.
1983-01-01
A self-acting spiral groove inter-shaft ring seal of nominal 16.33 cm (6.43 in.) diameter for sealing fan bleed air between counter rotating shafts in advanced turbofan engines was analyzed. The analysis focused on the lift force characteristics of the spiral grooves. A NASA Lewis developed computer program for predicting the performance of gas lubricated face seals was used to optimize the spiral groove geometry to produce maximum lift force. Load capacity curves (lift force as function of film thickness) were generated for four advanced turbofan engine operating conditions at relative seal speeds ranging from 17,850 to 29,800 rpm, sealed air pressures from 6 to 42 N/sq cm (9 to 60 psi) absolute and temperatures from 95 to 327 C (203 to 620 F). The relative seal sliding speed range was 152 to 255 m/sec (500 to 836 ft/sec). The analysis showed that the spiral grooves are capable of producing sufficient lift force such that the ring seal will operate in a noncontacting mode over the operating range of typical advanced turbofan engines.
Volumetric applications for spiral CT in the thorax
NASA Astrophysics Data System (ADS)
Rubin, Geoffrey D.; Napel, Sandy; Leung, Ann N.
1994-05-01
Spiral computed tomography (CT) is a new technique for rapidly acquiring volumetric data within the body. By combining a continuous gantry rotation and table feed, it is possible to image the entire thorax within a single breath-hold. This eliminates the ventilatory misregistration seen with conventional thoracic CT, which can result in small pulmonary lesions being undetected. An additional advantage of a continuous data set is that axial sections can be reconstructed at arbitrary intervals along the spiral path, resulting in the generation of overlapping sections which diminish partial volume effects resulting from lesions that straddle adjacent sections. The rapid acquisition of spiral CT enables up to a 50% reduction in the total iodinated contrast dose required for routine thoracic CT scanning. This can be very important for imaging patients with cardiac and renal diseases and could reduce the cost of thoracic CT scanning. Alternatively, by combining a high flow peripheral intravenous iodinated contrast injection with a spiral CT acquisition, it is possible to obtain images of the vasculature, which demonstrate pulmonary arterial thrombi, aortic aneurysms and dissections, and congenital vascular anomalies in detail previously unattainable without direct arterial access.
Javadzadegan, Ashkan; Fulker, David; Barber, Tracie
2017-07-01
Haemodynamic perturbations such as flow recirculation zones play a key role in progression and development of renal artery stenosis, which typically originate at the aorta-renal bifurcation. The spiral nature of aortic blood flow, division of aortic blood flow in renal artery as well as the exercise conditions have been shown to alter the haemodynamics in both positive and negative ways. This study focuses on the combinative effects of spiral component of blood flow, renal-to-aorta flow ratio and the exercise conditions on the size and distribution of recirculation zones in renal branches using computational fluid dynamics technique. Our findings show that the recirculation length was longest when the renal-to-aorta flow ratio was smallest. Spiral flow and exercise conditions were found to be effective in reducing the recirculation length in particular in small renal-to-aorta flow ratios. These results support the hypothesis that in renal arteries with small flow ratios where a stenosis is already developed an artificially induced spiral flow within the aorta may decelerate the progression of stenosis and thereby help preserve kidney function.
Hariharavel, V. P.; Kumar, A. Ashok; Ganesh, C.; Aravindhan, R.
2014-01-01
Anatomic and internal morphology of a root canal system is more complex and differs for each individual tooth of which mandibular premolars have earned the reputation for having aberrant anatomy. The occurrence of three canals with three separate foramina in mandibular second premolars is very rare. A wider knowledge on both clinical and radiological anatomy especially spiral computed tomographic is absolutely essential for the success of endodontic treatment. These teeth may require skillful and special root canal special shaping and obturating techniques. This paper reports an unusual case of a mandibular second premolar with atypical canal pattern that was successfully treated endodontically. PMID:25101187
Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Fuentes, Alfonso; Mullins, Baxter R.; Woods, Ron
2002-01-01
An integrated computerized approach for design and stress analysis of low-noise spiral bevel gear drives with adjusted bearing contact has been developed. The computation procedure is an iterative process, requiring four separate steps that provide: (a) a parabolic function of transmission errors that is able to reduce the effect of errors of alignment, and (b) reduction of the shift of bearing contact caused by misalignment. Application of finite element analysis permits the contact and bending stresses to be determined and investigate the formation of the bearing contact. The design of finite element models and boundary conditions is automated and does not require an intermediate CAD computer program. A commercially available finite element analysis computer program with contact capability was used to conduct the stress analysis. The theory developed is illustrated with numerical examples.
Lin, Lu; Wang, Yi-Ning; Kong, Ling-Yan; Jin, Zheng-Yu; Lu, Guang-Ming; Zhang, Zhao-Qi; Cao, Jian; Li, Shuo; Song, Lan; Wang, Zhi-Wei; Zhou, Kang; Wang, Ming
2013-01-01
Objective To evaluate the image quality (IQ) and radiation dose of 128-slice dual-source computed tomography (DSCT) coronary angiography using prospectively electrocardiogram (ECG)-triggered sequential scan mode compared with ECG-gated spiral scan mode in a population with atrial fibrillation. Methods Thirty-two patients with suspected coronary artery disease and permanent atrial fibrillation referred for a second-generation 128-slice DSCT coronary angiography were included in the prospective study. Of them, 17 patients (sequential group) were randomly selected to use a prospectively ECG-triggered sequential scan, while the other 15 patients (spiral group) used a retrospectively ECG-gated spiral scan. The IQ was assessed by two readers independently, using a four-point grading scale from excel-lent (grade 1) to non-assessable (grade 4), based on the American Heart Association 15-segment model. IQ of each segment and effective dose of each patient were compared between the two groups. Results The mean heart rate (HR) of the sequential group was 96±27 beats per minute (bpm) with a variation range of 73±25 bpm, while the mean HR of the spiral group was 86±22 bpm with a variationrange of 65±24 bpm. Both of the mean HR (t=1.91, P=0.243) and HR variation range (t=0.950, P=0.350) had no significant difference between the two groups. In per-segment analysis, IQ of the sequential group vs. spiral group was rated as excellent (grade 1) in 190/244 (78%) vs. 177/217 (82%) by reader1 and 197/245 (80%) vs. 174/214 (81%) by reader2, as non-assessable (grade 4) in 4/244 (2%) vs. 2/217 (1%) by reader1 and 6/245 (2%) vs. 4/214 (2%) by reader2. Overall averaged IQ per-patient in the sequential and spiral group showed equally good (1.27±0.19 vs. 1.25±0.22, Z=-0.834, P=0.404). The effective radiation dose of the sequential group reduced significantly compared with the spiral group (4.88±1.77 mSv vs. 10.20±3.64 mSv; t=-5.372, P=0.000). Conclusion Compared with retrospectively ECG-gated spiral scan, prospectively ECG-triggered sequential DSCT coronary angiography provides similarly diagnostically valuable images in patients with atrial fibrillation and significantly reduces radiation dose.
Volumetric velocity measurements in restricted geometries using spiral sampling: a phantom study.
Nilsson, Anders; Revstedt, Johan; Heiberg, Einar; Ståhlberg, Freddy; Bloch, Karin Markenroth
2015-04-01
The aim of this study was to evaluate the accuracy of maximum velocity measurements using volumetric phase-contrast imaging with spiral readouts in a stenotic flow phantom. In a phantom model, maximum velocity, flow, pressure gradient, and streamline visualizations were evaluated using volumetric phase-contrast magnetic resonance imaging (MRI) with velocity encoding in one (extending on current clinical practice) and three directions (for characterization of the flow field) using spiral readouts. Results of maximum velocity and pressure drop were compared to computational fluid dynamics (CFD) simulations, as well as corresponding low-echo-time (TE) Cartesian data. Flow was compared to 2D through-plane phase contrast (PC) upstream from the restriction. Results obtained with 3D through-plane PC as well as 4D PC at shortest TE using a spiral readout showed excellent agreements with the maximum velocity values obtained with CFD (<1 % for both methods), while larger deviations were seen using Cartesian readouts (-2.3 and 13 %, respectively). Peak pressure drop calculations from 3D through-plane PC and 4D PC spiral sequences were respectively 14 and 13 % overestimated compared to CFD. Identification of the maximum velocity location, as well as the accurate velocity quantification can be obtained in stenotic regions using short-TE spiral volumetric PC imaging.
Orientation decoding: Sense in spirals?
Clifford, Colin W G; Mannion, Damien J
2015-04-15
The orientation of a visual stimulus can be successfully decoded from the multivariate pattern of fMRI activity in human visual cortex. Whether this capacity requires coarse-scale orientation biases is controversial. We and others have advocated the use of spiral stimuli to eliminate a potential coarse-scale bias-the radial bias toward local orientations that are collinear with the centre of gaze-and hence narrow down the potential coarse-scale biases that could contribute to orientation decoding. The usefulness of this strategy is challenged by the computational simulations of Carlson (2014), who reported the ability to successfully decode spirals of opposite sense (opening clockwise or counter-clockwise) from the pooled output of purportedly unbiased orientation filters. Here, we elaborate the mathematical relationship between spirals of opposite sense to confirm that they cannot be discriminated on the basis of the pooled output of unbiased or radially biased orientation filters. We then demonstrate that Carlson's (2014) reported decoding ability is consistent with the presence of inadvertent biases in the set of orientation filters; biases introduced by their digital implementation and unrelated to the brain's processing of orientation. These analyses demonstrate that spirals must be processed with an orientation bias other than the radial bias for successful decoding of spiral sense. Copyright © 2014 Elsevier Inc. All rights reserved.
Automatic Spiral Analysis for Objective Assessment of Motor Symptoms in Parkinson's Disease.
Memedi, Mevludin; Sadikov, Aleksander; Groznik, Vida; Žabkar, Jure; Možina, Martin; Bergquist, Filip; Johansson, Anders; Haubenberger, Dietrich; Nyholm, Dag
2015-09-17
A challenge for the clinical management of advanced Parkinson's disease (PD) patients is the emergence of fluctuations in motor performance, which represents a significant source of disability during activities of daily living of the patients. There is a lack of objective measurement of treatment effects for in-clinic and at-home use that can provide an overview of the treatment response. The objective of this paper was to develop a method for objective quantification of advanced PD motor symptoms related to off episodes and peak dose dyskinesia, using spiral data gathered by a touch screen telemetry device. More specifically, the aim was to objectively characterize motor symptoms (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Digitized upper limb movement data of 65 advanced PD patients and 10 healthy (HE) subjects were recorded as they performed spiral drawing tasks on a touch screen device in their home environment settings. Several spatiotemporal features were extracted from the time series and used as inputs to machine learning methods. The methods were validated against ratings on animated spirals scored by four movement disorder specialists who visually assessed a set of kinematic features and the motor symptom. The ability of the method to discriminate between PD patients and HE subjects and the test-retest reliability of the computed scores were also evaluated. Computed scores correlated well with mean visual ratings of individual kinematic features. The best performing classifier (Multilayer Perceptron) classified the motor symptom (bradykinesia or dyskinesia) with an accuracy of 84% and area under the receiver operating characteristics curve of 0.86 in relation to visual classifications of the raters. In addition, the method provided high discriminating power when distinguishing between PD patients and HE subjects as well as had good test-retest reliability. This study demonstrated the potential of using digital spiral analysis for objective quantification of PD-specific and/or treatment-induced motor symptoms.
Diagnostic Imaging of the Hepatobiliary System: An Update.
Marolf, Angela J
2017-05-01
Recent advances in diagnostic imaging of the hepatobiliary system include MRI, computed tomography (CT), contrast-enhanced ultrasound, and ultrasound elastography. With the advent of multislice CT scanners, sedated examinations in veterinary patients are feasible, increasing the utility of this imaging modality. CT and MRI provide additional information for dogs and cats with hepatobiliary diseases due to lack of superimposition of structures, operator dependence, and through intravenous contrast administration. Advanced ultrasound methods can offer complementary information to standard ultrasound imaging. These newer imaging modalities assist clinicians by aiding diagnosis, prognostication, and surgical planning. Copyright © 2016 Elsevier Inc. All rights reserved.
Eggeman, A S; London, A; Midgley, P A
2013-11-01
Graphical processing units (GPUs) offer a cost-effective and powerful means to enhance the processing power of computers. Here we show how GPUs can greatly increase the speed of electron diffraction pattern simulations by the implementation of a novel method to generate the phase grating used in multislice calculations. The increase in speed is especially apparent when using large supercell arrays and we illustrate the benefits of fast encoding the transmission function representing the atomic potentials through the simulation of thermal diffuse scattering in silicon brought about by specific vibrational modes. © 2013 Elsevier B.V. All rights reserved.
Giant floating thrombus localized in the ascending aorta.
Akyildiz, Mahmut; Zorman, Yilmaz; Aksoy, Tamer; Yilmazer, Mustafa S; Erturk, Esra; Onar, Cagatay L; Midi, Ahmet
2010-06-01
We report the case of a 32-year-old male patient with symptoms of cerebrovascular accident manifesting with dysarthria. A transesophageal echocardiogram showed a floating mass localized in the ascending aorta, and a multislice computed tomography evaluation confirmed the diagnosis. With a comprehensive assessment of the mass, we decided on surgical intervention. A pedunculated and fragile mass was seen just near the right coronary ostium. The measured dimensions were 7.7 x 1.0 x 1.5 cm. The removed mass has been analyzed histopathologically and found to be the cause of the neurologic findings with an uncertain underlying etiology.
Multislice CT perfusion imaging of the lung in detection of pulmonary embolism
NASA Astrophysics Data System (ADS)
Hong, Helen; Lee, Jeongjin
2006-03-01
We propose a new subtraction technique for accurately imaging lung perfusion and efficiently detecting pulmonary embolism in chest MDCT angiography. Our method is composed of five stages. First, optimal segmentation technique is performed for extracting same volume of the lungs, major airway and vascular structures from pre- and post-contrast images with different lung density. Second, initial registration based on apex, hilar point and center of inertia (COI) of each unilateral lung is proposed to correct the gross translational mismatch. Third, initial alignment is refined by iterative surface registration. For fast and robust convergence of the distance measure to the optimal value, a 3D distance map is generated by the narrow-band distance propagation. Fourth, 3D nonlinear filter is applied to the lung parenchyma to compensate for residual spiral artifacts and artifacts caused by heart motion. Fifth, enhanced vessels are visualized by subtracting registered pre-contrast images from post-contrast images. To facilitate visualization of parenchyma enhancement, color-coded mapping and image fusion is used. Our method has been successfully applied to ten patients of pre- and post-contrast images in chest MDCT angiography. Experimental results show that the performance of our method is very promising compared with conventional methods with the aspects of its visual inspection, accuracy and processing time.
Ni, Yusu; Dai, Peidong; Dai, Chunfu; Li, Huawei
2017-01-01
To explore the structural characteristics of the cochlea in three-dimensional (3D) detail using 3D micro-computed tomography (mCT) image reconstruction of the osseous labyrinth, with the aim of improving the structural design of electrodes, the selection of stimulation sites, and the effectiveness of cochlear implantation. Three temporal bones were selected from among adult donors' temporal bone specimens. A micro-CT apparatus (GE eXplore) was used to scan three specimens with a voxel resolution of 45 μm. We obtained about 460 slices/specimen, which produced abundant data. The osseous labyrinth images of three specimens were reconstructed from mCT. The cochlea and its spiral characteristics were measured precisely using Able Software 3D-DOCTOR. The 3D images of the osseous labyrinth, including the cochlea, vestibule, and semicircular canals, were reconstructed. The 3D models of the cochlea showed the spatial relationships and surface structural characteristics. Quantitative data concerning the cochlea and its spiral structural characteristics were analyzed with regard to cochlear implantation. The 3D reconstruction of mCT images clearly displayed the detailed spiral structural characteristics of the osseous labyrinth. Quantitative data regarding the cochlea and its spiral structural characteristics could help to improve electrode structural design, signal processing, and the effectiveness of cochlear implantation. Clin. Anat. 30:39-43, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Multi-slice ptychography with large numerical aperture multilayer Laue lenses
Ozturk, Hande; Yan, Hanfei; He, Yan; ...
2018-05-09
Here, the highly convergent x-ray beam focused by multilayer Laue lenses with large numerical apertures is used as a three-dimensional (3D) probe to image layered structures with an axial separation larger than the depth of focus. Instead of collecting weakly scattered high-spatial-frequency signals, the depth-resolving power is provided purely by the intense central cone diverged from the focused beam. Using the multi-slice ptychography method combined with the on-the-fly scan scheme, two layers of nanoparticles separated by 10 μm are successfully reconstructed with 8.1 nm lateral resolution and with a dwell time as low as 0.05 s per scan point. Thismore » approach obtains high-resolution images with extended depth of field, which paves the way for multi-slice ptychography as a high throughput technique for high-resolution 3D imaging of thick samples.« less
Multi-slice ptychography with large numerical aperture multilayer Laue lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozturk, Hande; Yan, Hanfei; He, Yan
Here, the highly convergent x-ray beam focused by multilayer Laue lenses with large numerical apertures is used as a three-dimensional (3D) probe to image layered structures with an axial separation larger than the depth of focus. Instead of collecting weakly scattered high-spatial-frequency signals, the depth-resolving power is provided purely by the intense central cone diverged from the focused beam. Using the multi-slice ptychography method combined with the on-the-fly scan scheme, two layers of nanoparticles separated by 10 μm are successfully reconstructed with 8.1 nm lateral resolution and with a dwell time as low as 0.05 s per scan point. Thismore » approach obtains high-resolution images with extended depth of field, which paves the way for multi-slice ptychography as a high throughput technique for high-resolution 3D imaging of thick samples.« less
ERIC Educational Resources Information Center
Kim, SugHee; Chung, KwangSik; Yu, HeonChang
2013-01-01
The purpose of this paper is to propose a training program for creative problem solving based on computer programming. The proposed program will encourage students to solve real-life problems through a creative thinking spiral related to cognitive skills with computer programming. With the goal of enhancing digital fluency through this proposed…
NASA Technical Reports Server (NTRS)
Karpoukhin, Mikhii G.; Kogan, Boris Y.; Karplus, Walter J.
1995-01-01
The simulation of heart arrhythmia and fibrillation are very important and challenging tasks. The solution of these problems using sophisticated mathematical models is beyond the capabilities of modern super computers. To overcome these difficulties it is proposed to break the whole simulation problem into two tightly coupled stages: generation of the action potential using sophisticated models. and propagation of the action potential using simplified models. The well known simplified models are compared and modified to bring the rate of depolarization and action potential duration restitution closer to reality. The modified method of lines is used to parallelize the computational process. The conditions for the appearance of 2D spiral waves after the application of a premature beat and the subsequent traveling of the spiral wave inside the simulated tissue are studied.
Kim, Sangroh; Yoshizumi, Terry T; Yin, Fang-Fang; Chetty, Indrin J
2013-04-21
Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan-scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the 'ISource = 8: Phase-Space Source Incident from Multiple Directions' in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.
NASA Astrophysics Data System (ADS)
Kim, Sangroh; Yoshizumi, Terry T.; Yin, Fang-Fang; Chetty, Indrin J.
2013-04-01
Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan—scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the ‘ISource = 8: Phase-Space Source Incident from Multiple Directions’ in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.
Design of the central region in the Warsaw K-160 cyclotron
NASA Astrophysics Data System (ADS)
Toprek, Dragan; Sura, Josef; Choinski, Jaroslav; Czosnyka, Tomas
2001-08-01
This paper describes the design of the central region for h=2 and 3 modes of acceleration in the Warsaw K-160 cyclotron. The central region is unique and compatible with the two above-mentioned harmonic modes of operation. Only one spiral type inflector will be used. The electric field distribution in the inflector and in the four acceleration gaps has been numerically calculated from an electric potential map produced by the program RELAX3D. The geometry of the central region has been tested with the computations of orbits carried out by means of the computer code CYCLONE. The optical properties of the spiral inflector and the central region were studied by using the programs CASINO and CYCLONE, respectively.
Heart Fibrillation and Parallel Supercomputers
NASA Technical Reports Server (NTRS)
Kogan, B. Y.; Karplus, W. J.; Chudin, E. E.
1997-01-01
The Luo and Rudy 3 cardiac cell mathematical model is implemented on the parallel supercomputer CRAY - T3D. The splitting algorithm combined with variable time step and an explicit method of integration provide reasonable solution times and almost perfect scaling for rectilinear wave propagation. The computer simulation makes it possible to observe new phenomena: the break-up of spiral waves caused by intracellular calcium and dynamics and the non-uniformity of the calcium distribution in space during the onset of the spiral wave.
Syeda, Bonni; Höfer, Peter; Pichler, Philipp; Vertesich, Markus; Bergler-Klein, Jutta; Roedler, Susanne; Mahr, Stephane; Goliasch, Georg; Zuckermann, Andreas; Binder, Thomas
2011-07-01
Longitudinal strain determined by speckle tracking is a sensitive parameter to detect systolic left ventricular dysfunction. In this study, we assessed regional and global longitudinal strain values in long-term heart transplants and compared deformation indices with ejection fraction as determined by transthoracic echocardiography (TTE) and multislice computed tomographic coronary angiography (MSCTA). TTE and MSCTA were prospectively performed in 31 transplant patients (10.6 years post-transplantation) and in 42 control subjects. Grey-scale apical views were recorded for speckle tracking (EchoPAC 7.0, GE) of the 16 segments of the left ventricle. The presence of coronary artery disease (CAD) was assessed by MSCTA. Strain analysis was performed in 1168 segments [496 in transplant patients (42.5%), 672 in control subjects (57.7%)]. Global longitudinal peak systolic strain was significantly lower in the transplant recipients than in the healthy population (-13.9 ± 4.2 vs. -17.4 ± 5.8%, P< 0.01). This was still the case after exclusion of the nine transplant patients with CAD (-14.1 ± 4.4 vs. -17.4 ± 5.8%, P=0.03). Transplant patients exhibited significantly lower regional strain values in 9 of the 16 segments. Left ventricular ejection fraction (%) (MSCTA/Simpsons method) was 60.7 ± 10.1%/60.2 ± 6.7% in transplant recipients vs. 64.7 ± 6.4%/63.0 ± 6.2% in the healthy population, P=ns. Even though 'healthy' heart transplants without CAD exhibit normal ejection fraction, deformation indices are reduced in this population when compared with control subjects. Our findings suggests that strain analysis is more sensitive than assessment of ejection fraction for the detection of abnormalities of systolic function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oztunc, Funda, E-mail: foztunc@yahoo.com; Baris, Safa, E-mail: safabaris@hotmail.co; Adaletli, Ibrahim, E-mail: iadaletli@yahoo.com
2009-03-15
The purpose of this study was to evaluate the feasibility of multislice computed tomographic (MSCT) angiography as a noninvasive method for detecting ostial, proximal, and middle segment coronary stenosis or occlusion and anatomy in patients with transposition of the great arteries who had undergone arterial switch operation (ASO). Sixteen-detector-row MSCT angiography was performed in 16 patients treated with ASO for transposition of the great arteries. The median age was 10.3 years (range, 6.2-16.3 years). Sixteen-detector-row MSCT angiography was performed in 16 patients who had undergone ASO. CT imaging was performed in the craniocaudal direction from 2 cm above the carinamore » up to the heart basis. Noninvasive assessment of coronary artery stenosis and anatomy were investigated by MSCT angiography. Two patients were excluded from the study because of artifacts. Of 14 evaluated patients, 1 patient had ostial stenosis (7.1%). A coronary artery anatomy variant was present in six patients: left main artery (LMA) and right coronary artery (RCA) originating from the right sinus as a single orifice (n = 2); left circumflex artery (LCX) originating from the RCA (n = 1); LMA and RCA, after branching to the LCX, originating separately from the right sinus (n = 1); and LMA (n = 1) and left anterior descending artery (LADA; n = 1) originating directly from the right sinus. Intramural bridging in the LAD (n = 2) was detected. Five patients were normal. In conclusion, MSCT angiography, as a noninvasive, feasible technique for assessing coronary stenosis or occlusion and anatomy, can be used in the follow-up of patients who have undergone ASO.« less
Trenkwalder, Teresa; Lahmann, Anna Lena; Nowicka, Magdalena; Pellegrini, Costanza; Rheude, Tobias; Mayr, N Patrick; Voss, Stephanie; Bleiziffer, Sabine; Lange, Rüdiger; Joner, Michael; Kasel, Albert M; Kastrati, Adnan; Schunkert, Heribert; Husser, Oliver; Hadamitzky, Martin; Hengstenberg, Christian
2018-02-21
Multislice computed tomography (MSCT) has emerged as the mainstay in patients planned for transcatheter aortic valve implantation (TAVI). Incidental findings (IF) in MSCT are common. However, the exact incidence, clinical relevance and further consequences of IF are unclear and it is controversial whether IF adversely affect patients' outcome. We analyzed MSCT data of 1050 patients screened for TAVI between January 2011 and December 2014. Median follow-up of patients was 20 months. In total, 3194 IF were identified, which were classified into clinically non-relevant IF (2872, 90%) and clinically relevant IF (322, 10%). In 25% of patients (258/1050) at least one clinically relevant IF was present. Age (80 ± 7 vs. 80 ± 7 years; p = 0.198) and EuroSCORE II (3.6% [2.1-5.7] vs. 3.6% [2.1-5.9]; p = 0.874) was similar between patients with and without a clinically relevant IF. TAVI was performed less frequently in patients with a clinically relevant IF (76% vs. 85%; p < 0.001), with more patients receiving surgical aortic valve replacement in that group (14% vs. 11%; p = 0.042), possibly due to the high rate of incidental aneurysms of the ascending aorta (n = 48). If TAVI was performed mortality did not differ (30-days: 4% vs. 3%; p = 0.339, 1-year: 11% vs. 14%; p = 0.226) between patients with and without a clinically relevant IF. Our study is the largest study to analyze prevalence, clinical relevance and therapeutic consequences of IF during screening for TAVI. IF in pre-procedural MSCT are common and clinically relevant in one-quarter of patients. However, these findings had no impact on overall mortality.
Annuar, Bin Rapaee; Liew, Chee Khoon; Chin, Sze Piaw; Ong, Tiong Kiam; Seyfarth, M Tobias; Chan, Wei Ling; Fong, Yean Yip; Ang, Choon Kiat; Lin, Naing; Liew, Houng Bang; Sim, Kui Hian
2008-01-01
To compare the assessment of global and regional left ventricular (LV) function using 64-slice multislice computed tomography (MSCT), 2D echocardiography (2DE) and cardiac magnetic resonance (CMR). Thirty-two consecutive patients (mean age, 56.5+/-9.7 years) referred for evaluation of coronary artery using 64-slice MSCT also underwent 2DE and CMR within 48h. The global left ventricular function which include left ventricular ejection fraction (LVEF), left ventricular end diastolic volume (LVdV) and left ventricular end systolic volume (LVsV) were determine using the three modalities. Regional wall motion (RWM) was assessed visually in all three modalities. The CMR served as the gold standard for the comparison between 64-slice MSCT with CMR and 2DE with CMR. Statistical analysis included Pearson correlation coefficient, Bland-Altman plots and kappa-statistics. The 64-slice MSCT agreed well with CMR for assessment of LVEF (r=0.92; p<0.0001), LVdV (r=0.98; p<0.0001) and LVsV (r=0.98; p<0.0001). In comparison with 64-slice MSCT, 2DE showed moderate correlation with CMR for the assessment of LVEF (r=0.84; p<0.0001), LVdV (r=0.83; p<0.0001) and LVsV (r=0.80; p<0.0001). However in RWM analysis, 2DE showed better accuracy than 64-slice MSCT (94.3% versus 82.4%) and closer agreement (kappa=0.89 versus 0.63) with CMR. 64-Slice MSCT correlates strongly with CMR in global LV function however in regional LV function 2DE showed better agreement with CMR than 64-slice MSCT.
Hołda, Mateusz K; Koziej, Mateusz; Wszołek, Karolina; Pawlik, Wiesław; Krawczyk-Ożóg, Agata; Sorysz, Danuta; Łoboda, Piotr; Kuźma, Katarzyna; Kuniewicz, Marcin; Lelakowski, Jacek; Dudek, Dariusz; Klimek-Piotrowska, Wiesława
2017-10-01
The aim of this study is to provide a morphometric description of the left-sided septal pouch (LSSP), left atrial accessory appendages, and diverticula using cardiac multi-slice computed tomography (MSCT) and to compare results between patient subgroups. Two hundred and ninety four patients (42.9% females) with a mean of 69.4±13.1years of age were investigated using MSCT. The presence of the LSSP, left atrial accessory appendages, and diverticula was evaluated. Multiple logistic regression analysis was performed to check whether the presence of additional left atrial structures is associated with increased risk of atrial fibrillation and cerebrovascular accidents. At least one additional left atrial structure was present in 51.7% of patients. A single LSSP, left atrial diverticulum, and accessory appendage were present in 35.7%, 16.0%, and 4.1% of patients, respectively. After adjusting for other risk factors via multiple logistic regression, patients with LSSP are more likely to have atrial fibrillation (OR=2.00, 95% CI=1.14-3.48, p=0.01). The presence of a LSSP was found to be associated with an increased risk of transient ischemic attack using multiple logistic regression analysis after adjustment for other risk factors (OR=3.88, 95% CI=1.10-13.69, p=0.03). In conclusion LSSPs, accessory appendages, and diverticula are highly prevalent anatomic structures within the left atrium, which could be easily identified by MSCT. The presence of LSSP is associated with increased risk for atrial fibrillation and transient ischemic attack. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Jin-Seok; Im, Sung Il; Shin, Seung Yong; Kang, Jun Hyuk; Na, Jin Oh; Choi, Cheol Ung; Kim, Seong Hwan; Kim, Eung Ju; Rha, Seung-Woon; Park, Chang Gyu; Seo, Hong Seog; Oh, Dong Joo; Hwang, Chun; Kim, Young-Hoon; Yong, Hwan Seok; Lim, Hong Euy
2017-02-01
Functional remodeling of left atrium (LA) after radiofrequency catheter ablation (RFCA) for atrial fibrillation (AF) has not been fully elucidated. This study aimed to determine the impact of RFCA on LA transport function in patients who maintained sinus rhythm (SR) after AF ablation. A total of 96 patients (paroxysmal AF [PAF] = 52) who maintained SR during 1 year after AF ablation were enrolled. Multislice computed tomography was performed to determine LA volume (LAV) and LA emptying fraction (LAEF) at pre-RFCA and 1-year post-RFCA. Creatine kinase-MB (CK-MB) and troponin-T levels were analyzed 1-day post-RFCA. At 1-year post-RFCA, mean LAV and LAEF decreased in overall patients. Based on LAEF change (ΔLAEF) cutoff of 5.0%, LAEF reduced in 41 patients (worsened group) and improved or showed no change in 55 patients (preserved group). Compared with preserved group, worsened group had a higher proportion of PAF, higher levels of CK-MB and troponin-T, and additional LA ablation. ΔLAEF was inversely correlated with CK-MB and troponin-T levels. Subgroup analysis showed that LAEF significantly decreased in PAF patients who underwent additional LA ablation. Multivariate analysis revealed that high baseline LAEF and additional LA ablation were independent predictors for worsened LAEF. Although SR was maintained for 1 year after AF ablation, LAEF as well as LAV decreased. The extent of LAEF deterioration was significantly associated with the amount of iatrogenic myocardial damage. Our data indicate that extensive atrial ablation may lead to LA functional deterioration, especially in patients with PAF. © 2016 Wiley Periodicals, Inc.
Czekajska-Chehab, Elżbieta; Tomaszewska, Monika; Olchowik, Grażyna; Tomaszewski, Marek; Adamczyk, Piotr; Drop, Andrzej
2012-07-01
Lipomatous hypertrophy of the interatrial septum (LHIS) is a benign disorder characterized by fat accumulation in the interatrial septum (IAS). The purpose of the study was to analyze the incidental detection of LHIS in patients with various clinical conditions, referred to ECG-gated multislice computed tomography (ECG-MSCT) examinations of the heart. The ECG-MSCT examinations of 5786 patients (2839 women; 2947 men), were analyzed. The examinations were performed using 8-row (1015 patients) and 64-row (4771 patients) MSCT, in pre- and postcontrast scanning. We analyzed the shape of the IAS, density and maximal thickness of IAS, the thickness of the epicardial adipose tissue, and the degree of contact of IAS with the ascending aorta and superior vena cava. We also determined body mass index (BMI) in patients with LHIS. LHIS was detected in 56 (0.96%) patients, with an average age of 61.5±9.8 years. The mean BMI in the analyzed group was 30.1±4.86. During the end-diastolic phase the thickness of IAS was significantly higher (p<0.0001), and on average equaled 18.3 mm. The mean optical density of the IAS was conspicuously higher (p<0.0001) in post-contrast phase than in pre-contrast phase. The thickness of the epicardial adipose tissue in the region of the left atrioventricular groove was on average 15 mm. In all cases the dumbbell shape of IAS was observed. The incidental frequency of LHIS occurrence in patients diagnosed with the ECG-MSCT examinations is about 1%. In most subjects it is linked with a higher BMI and increased thickness of the epicardial adipose tissue.
Guidance of a Solar Sail Spacecraft to the Sun - L(2) Point.
NASA Astrophysics Data System (ADS)
Hur, Sun Hae
The guidance of a solar sail spacecraft along a minimum-time path from an Earth orbit to a region near the Sun-Earth L_2 libration point is investigated. Possible missions to this point include a spacecraft "listening" for possible extra-terrestrial electromagnetic signals and a science payload to study the geomagnetic tail. A key advantage of the solar sail is that it requires no fuel. The control variables are the sail angles relative to the Sun-Earth line. The thrust is very small, on the order of 1 mm/s^2, and its magnitude and direction are highly coupled. Despite this limited controllability, the "free" thrust can be used for a wide variety of terminal conditions including halo orbits. If the Moon's mass is lumped with the Earth, there are quasi-equilibrium points near L_2. However, they are unstable so that some form of station keeping is required, and the sail can provide this without any fuel usage. In the two-dimensional case, regulating about a nominal orbit is shown to require less control and result in smaller amplitude error response than regulating about a quasi-equilibrium point. In the three-dimensional halo orbit case, station keeping using periodically varying gains is demonstrated. To compute the minimum-time path, the trajectory is divided into two segments: the spiral segment and the transition segment. The spiral segment is computed using a control law that maximizes the rate of energy increase at each time. The transition segment is computed as the solution of the time-optimal control problem from the endpoint of the spiral to the terminal point. It is shown that the path resulting from this approximate strategy is very close to the exact optimal path. For the guidance problem, the approximate strategy in the spiral segment already gives a nonlinear full-state feedback law. However, for large perturbations, follower guidance using an auxiliary propulsion is used for part of the spiral. In the transition segment, neighboring extremal feedback guidance using the solar sail, with feedforward control only near the terminal point, is used to correct perturbations in the initial conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamers, Adrian S.; Perets, Hagai B., E-mail: hamers@ias.edu
Nuclear spiral arms are small-scale transient spiral structures found in the centers of galaxies. Similarly to their galactic-scale counterparts, nuclear spiral arms can perturb the orbits of stars. In the case of the Galactic center (GC), these perturbations can affect the orbits of stars and binaries in a region extending to several hundred parsecs around the supermassive black hole (SMBH), causing diffusion in orbital energy and angular momentum. This diffusion process can drive stars and binaries to close approaches with the SMBH, disrupting single stars in tidal disruption events (TDEs), or disrupting binaries, leaving a star tightly bound to themore » SMBH and an unbound star escaping the galaxy, i.e., a hypervelocity star (HVS). Here, we consider diffusion by nuclear spiral arms in galactic nuclei, specifically the Milky Way GC. We determine nuclear-spiral-arm-driven diffusion rates using test-particle integrations and compute disruption rates. Our TDE rates are up to 20% higher compared to relaxation by single stars. For binaries, the enhancement is up to a factor of ∼100, and our rates are comparable to the observed numbers of HVSs and S-stars. Our scenario is complementary to relaxation driven by massive perturbers. In addition, our rates depend on the inclination of the binary with respect to the Galactic plane. Therefore, our scenario provides a novel potential source for the observed anisotropic distribution of HVSs. Nuclear spiral arms may also be important for accelerating the coalescence of binary SMBHs and for supplying nuclear star clusters with stars and gas.« less
Assessment of dose and risk to the body following conventional and spiral computed tomography.
Chang, L L; Chen, F D; Chang, P S; Liu, C C; Lien, H L
1995-04-01
Computed tomography (CT) is one of the most frequently used examination procedures in diagnostic radiology and the dose given to the patients is higher than in general radiographic procedures. In this study LiF chip thermoluminescent dosimeters (TLD-100) were placed in each relative organ or tissue position, including head, chest and abdomen, in a Rando phantom. CT was performed using both conventional and spiral modes, and effective dose and effective dose equivalent were assessed for each organ or tissue scanned. The TLD reader used in this experiment was controlled at a nitrogen flow rate of 450 ml/min, preheat time of 14 seconds, reading time of 16 seconds and annealing time of 16 seconds. This CT scanner can be used to perform both conventional and spiral tomography. Operating conditions for spiral tomography were 120 kV, 80 mA for scout film, and 120 kV, 200 mA, 1 sec/slice for each scanning. However, for conventional tomography, the operating conditions were 120 kV, 80 mA for scout film and 120 kV, 160 mA, 1.5 sec/slice for each scanning. These operating conditions are satisfactory to most clinical applications, and therefore were adopted for the present studies. Results showed that, in both effective dose and effective dose and effective dose equivalent, conventional tomography was higher than spiral tomography. The average effective doses for each part were measured to be 1.89 and 4.95 mSv for the head, 30.01 and 40.65 mSv for the chest, and 12.85 and 19.62 mSv for the abdomen of spiral and conventional CT, respectively. Higher carcinogenic risk was assessed in organs such as liver, lung, stomach and bone marrow, other organs had a relatively lower incidence of risk. The main purpose of this study was to obtain distribution values of effective dose and effective dose equivalent, and to know the probability of carcinogenic effect upon each organ or tissue after CT scanning. Results showed the average effective dose for spiral CT to be less than conventional CT, and the dose in the body surface was generally lower than the dose in the central region.
Initial experience in treating lung cancer with helical tomotherapy
Yartsev, S; Dar, AR; Woodford, C; Wong, E; Bauman, G; Van Dyk, J
2007-01-01
Helical tomotherapy is a new form of image-guided radiation therapy that combines features of a linear accelerator and a helical computed tomography (CT) scanner. Megavoltage CT (MVCT) data allow the verification and correction of patient setup on the couch by comparison and image registration with the kilovoltage CT multi-slice images used for treatment planning. An 84-year-old male patient with Stage III bulky non-small cell lung cancer was treated on a Hi-ART II tomotherapy unit. Daily MVCT imaging was useful for setup corrections and signaled the need to adapt the delivery plan when the patient’s anatomy changed significantly. PMID:21614260
Production of confluent hypergeometric beam by computer-generated hologram
NASA Astrophysics Data System (ADS)
Chen, Jiannong; Wang, Gang; Xu, Qinfeng
2011-02-01
Because of their spiral wave front, phase singularity, zero-intensity center and orbital angular momentum, dark hollow vortex beams have been found many applications in the field of atom optics such as atom cooling, atom transport and atom guiding. In this paper, a method for generating confluent hypergeometric beam by computer-generated hologram displayed on the spatial light modulator is presented. The hologram is formed by interference between a single ring Laguerre-Gaussian beam and a plane wave. The far-field Fraunhofer diffraction of this optical field transmitted from the hologram is the confluent hypergeometric beam. This beam is a circular symmetric beam which has a phase singularity, spiral wave front, zero-intensity center, and intrinsic orbital angular momentum. It is a new dark hollow vortex beam.
Lionberger, David R; Weise, Jennifer; Ho, David M; Haddad, John L
2008-06-01
Forty-six primary total knee arthroplasties were performed using either an electromagnetic (EM) or infrared (IR) navigation system. In this IRB-approved study, patients were evaluated clinically and for accuracy using spiral computed tomographic imaging and 36-in standing radiographs. Although EM navigation was subject to metal interference, it was not as drastic as line-of-sight interference with IR navigation. Mechanical alignment was ideal in 92.9% of EM and 90.0% of IR cases based on spiral computed tomographic imaging and 100% of EM and 95% of IR cases based on x-ray. Individual measurements of component varus/valgus and sagittal measurements showed EM to be equivalent to IR, with both systems producing subdegree accuracy in 95% of the readings.
[Spiral CT angiography in practice].
Pavcec, Zlatko; Zokalj, Ivan; Rumboldt, Zoran; Pal, Andrej; Saghir, Hussein; Ozretić, David; Latin, Branko; Perhoć, Zeljka; Marotti, Miljenko
2005-01-01
Incidence of vascular diseases and development of new radiologic techniques in the last three decades has given strong impuls for introduction of non-invasive vascular diagnostic methods. Thanks to the introduction of Doppler ultrasound, new types of computed tomography (CT) and magnetic resonance (MR) scanners, non-invasive vascular diagnostic methods are replacing conventional invasive (catheter) angiographic methods. Computed tomographic angiography (CTA) is a noninvasive vascular diagnostic method based on continuous scanning with CT scanner during intravenous application of contrast material. Performing of CTA is possible after introduction of spiral CT technique whose characteristics are short imaging time and volumetric data acquisition. The main goal of this article, based on our experiences, is to review the role of CTA, performed on single-slice CT scanner, in managment of patients with vascular pathology.
RELATIVE ORIENTATION OF PAIRS OF SPIRAL GALAXIES IN THE SLOAN DIGITAL SKY SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buxton, Jesse; Ryden, Barbara S., E-mail: buxton.45@osu.edu, E-mail: ryden@astronomy.ohio-state.edu
2012-09-10
From our study of binary spiral galaxies in the Sloan Digital Sky Survey Data Release 6, we find that the relative orientation of disks in binary spiral galaxies is consistent with their being drawn from a random distribution of orientations. For 747 isolated pairs of luminous disk galaxies, the distribution of {phi}, the angle between the major axes of the galaxy images, is consistent with a uniform distribution on the interval [0 Degree-Sign , 90 Degree-Sign ]. With the assumption that the disk galaxies are oblate spheroids, we can compute cos {beta}, where {beta} is the angle between the rotationmore » axes of the disks. In the case that one galaxy in the binary is face-on or edge-on, the tilt ambiguity is resolved, and cos {beta} can be computed unambiguously. For 94 isolated pairs with at least one face-on member, and for 171 isolated pairs with at least one edge-on member, the distribution of cos {beta} is statistically consistent with the distribution of cos i for isolated disk galaxies. This result is consistent with random orientations of the disks within pairs.« less
Optimization of Brain T2 Mapping Using Standard CPMG Sequence In A Clinical Scanner
NASA Astrophysics Data System (ADS)
Hnilicová, P.; Bittšanský, M.; Dobrota, D.
2014-04-01
In magnetic resonance imaging, transverse relaxation time (T2) mapping is a useful quantitative tool enabling enhanced diagnostics of many brain pathologies. The aim of our study was to test the influence of different sequence parameters on calculated T2 values, including multi-slice measurements, slice position, interslice gap, echo spacing, and pulse duration. Measurements were performed using standard multi-slice multi-echo CPMG imaging sequence on a 1.5 Tesla routine whole body MR scanner. We used multiple phantoms with different agarose concentrations (0 % to 4 %) and verified the results on a healthy volunteer. It appeared that neither the pulse duration, the size of interslice gap nor the slice shift had any impact on the T2. The measurement accuracy was increased with shorter echo spacing. Standard multi-slice multi-echo CPMG protocol with the shortest echo spacing, also the smallest available interslice gap (100 % of slice thickness) and shorter pulse duration was found to be optimal and reliable for calculating T2 maps in the human brain.
Detecting anomalous traders using multi-slice network analysis
NASA Astrophysics Data System (ADS)
Sun, Xiao-Qian; Shen, Hua-Wei; Cheng, Xue-Qi; Zhang, Yuqing
2017-05-01
Manipulation is an important issue for both developed and emerging stock markets. Many efforts have been made to detect manipulation in stock market. However, it is still an open problem to identify the fraudulent traders, especially when they collude with each other. In this paper, we focus on the problem of identifying anomalous traders using the transaction data of 8 manipulated stocks and 42 non-manipulated stocks during a one-year period. For each stock, we construct a multi-slice trading network to characterize the daily trading behavior and the cross-day participation of each trader. Comparing the multi-slice trading network of manipulated stocks and non-manipulated stocks with their randomized version, we find that manipulated stocks exhibit high number of trader pairs that trade with each other in multiple days and high deviation from randomized network at correlation between trading frequency and trading activity. These findings are effective at distinguishing manipulated stocks from non-manipulated ones and at identifying anomalous traders.
Sriperumbudur, Kiran Kumar; Pau, Hans Wilhelm; van Rienen, Ursula
2018-03-01
Electric stimulation of the auditory nerve by cochlear implants has been a successful clinical intervention to treat the sensory neural deafness. In this pathological condition of the cochlea, type-1 spiral ganglion neurons in Rosenthal's canal play a vital role in the action potential initiation. Various morphological studies of the human temporal bones suggest that the spiral ganglion neurons are surrounded by heterogeneous structures formed by a variety of cells and tissues. However, the existing simulation models have not considered the tissue heterogeneity in the Rosenthal's canal while studying the electric field interaction with spiral ganglion neurons. Unlike the existing models, we have implemented the tissue heterogeneity in the Rosenthal's canal using a computationally inexpensive image based method in a two-dimensional finite element model. Our simulation results suggest that the spatial heterogeneity of surrounding tissues influences the electric field distribution in the Rosenthal's canal, and thereby alters the transmembrane potential of the spiral ganglion neurons. In addition to the academic interest, these results are especially useful to understand how the latest tissue regeneration methods such as gene therapy and drug-induced resprouting of peripheral axons, which probably modify the density of the tissues in the Rosenthal's canal, affect the cochlear implant functionality.
NASA Technical Reports Server (NTRS)
Chao, H. C.; Cheng, H. S.
1987-01-01
A complete analysis of spiral bevel gear sets is presented. The gear profile is described by the movements of the cutting tools. The contact patterns of the rigid body gears are investigated. The tooth dynamic force is studied by combining the effects of variable teeth meshing stiffness, speed, damping, and bearing stiffness. The lubrication performance is also accomplished by including the effects of the lubricant viscosity, ambient temperature, and gear speed. A set of numerical results is also presented.
Properties of the outer regions of spiral disks: abundances, colors and ages
NASA Astrophysics Data System (ADS)
Mollá, Mercedes; Díaz, Angeles I.; Gibson, Brad K.; Cavichia, Oscar; López-Sánchez, Ángel-R.
2017-03-01
We summarize the results obtained from our suite of chemical evolution models for spiral disks, computed for different total masses and star formation efficiencies. Once the gas, stars and star formation radial distributions are reproduced, we analyze the Oxygen abundances radial profiles for gas and stars, in addition to stellar averaged ages and global metallicity. We examine scenarios for the potential origin of the apparent flattening of abundance gradients in the outskirts of disk galaxies, in particular the role of molecular gas formation prescriptions.
Ablation of multi-wavelet re-entry: general principles and in silico analyses.
Spector, Peter S; Correa de Sa, Daniel D; Tischler, Ethan S; Thompson, Nathaniel C; Habel, Nicole; Stinnett-Donnelly, Justin; Benson, Bryce E; Bielau, Philipp; Bates, Jason H T
2012-11-01
Catheter ablation strategies for treatment of cardiac arrhythmias are quite successful when targeting spatially constrained substrates. Complex, dynamic, and spatially varying substrates, however, pose a significant challenge for ablation, which delivers spatially fixed lesions. We describe tissue excitation using concepts of surface topology which provides a framework for addressing this challenge. The aim of this study was to test the efficacy of mechanism-based ablation strategies in the setting of complex dynamic substrates. We used a computational model of propagation through electrically excitable tissue to test the effects of ablation on excitation patterns of progressively greater complexity, from fixed rotors to multi-wavelet re-entry. Our results indicate that (i) focal ablation at a spiral-wave core does not result in termination; (ii) termination requires linear lesions from the tissue edge to the spiral-wave core; (iii) meandering spiral-waves terminate upon collision with a boundary (linear lesion or tissue edge); (iv) the probability of terminating multi-wavelet re-entry is proportional to the ratio of total boundary length to tissue area; (v) the efficacy of linear lesions varies directly with the regional density of spiral-waves. We establish a theoretical framework for re-entrant arrhythmias that explains the requirements for their successful treatment. We demonstrate the inadequacy of focal ablation for spatially fixed spiral-waves. Mechanistically guided principles for ablating multi-wavelet re-entry are provided. The potential to capitalize upon regional heterogeneity of spiral-wave density for improved ablation efficacy is described.
Gandhi, A; Kathuria, A; Gandhi, T
2011-06-01
To present the successful endodontic and periodontal management of a two rooted maxillary lateral incisor tooth with a complex radicular lingual groove and severe periodontal destruction using spiral computed tomography as a diagnostic aid. A 30-year-old male patient presented with a chief complaint of mobility and discharge of pus in an upper front tooth. Clinical examination revealed a sinus tract on the labial gingival surface and a 10-mm-deep periodontal pocket associated with maxillary left lateral incisor tooth. On the lingual side, a groove emerging from cingulum, continuing mesioapically down the lingual aspect of tooth was found. Intraoral periapical radiographs demonstrated a lateral periodontal defect around the mesial aspect and a diffuse radiolucency at the apex of maxillary left lateral incisor tooth. The sinus tract was traced with gutta-percha to the maxillary left lateral incisor that showed an accessory root surrounded by a large radiolucent area. A spiral computed tomographic scan for better understanding of the complicated root canal morphology of the tooth was performed. Based on the clinical, radiographic and spiral computed tomographic findings, a diagnosis of an endo-perio lesion in tooth 22 was made. Management consisted of conventional root canal treatment, radiculoplasty, root resection of accessory root and surgical curettage of the periodontal defect. Follow-up with radiographic examination at 3 months and 1 year was performed. At 1-year recall, the patient was asymptomatic, there was no evidence of the sinus tract and a 3-mm nonbleeding pocket was present in relation to tooth 22. Progression of hard tissue healing was observed in the periapical radiograph taken 1 year postoperatively. The key to achieving favourable results in this particular type of developmental anomaly is accurate diagnosis and treatment planning. The health of the periapical osseous tissues appears to be the provital factor for tooth retention. A favourable outcome can only be achieved with a comprehensive treatment approach that effectively manages all local factors that are contributing to the disease process. © 2011 International Endodontic Journal.
Non-homogeneous updates for the iterative coordinate descent algorithm
NASA Astrophysics Data System (ADS)
Yu, Zhou; Thibault, Jean-Baptiste; Bouman, Charles A.; Sauer, Ken D.; Hsieh, Jiang
2007-02-01
Statistical reconstruction methods show great promise for improving resolution, and reducing noise and artifacts in helical X-ray CT. In fact, statistical reconstruction seems to be particularly valuable in maintaining reconstructed image quality when the dosage is low and the noise is therefore high. However, high computational cost and long reconstruction times remain as a barrier to the use of statistical reconstruction in practical applications. Among the various iterative methods that have been studied for statistical reconstruction, iterative coordinate descent (ICD) has been found to have relatively low overall computational requirements due to its fast convergence. This paper presents a novel method for further speeding the convergence of the ICD algorithm, and therefore reducing the overall reconstruction time for statistical reconstruction. The method, which we call nonhomogeneous iterative coordinate descent (NH-ICD) uses spatially non-homogeneous updates to speed convergence by focusing computation where it is most needed. Experimental results with real data indicate that the method speeds reconstruction by roughly a factor of two for typical 3D multi-slice geometries.
Infrared emission and tidal interactions of spiral galaxies
NASA Technical Reports Server (NTRS)
Byrd, Gene G.
1987-01-01
Computer simulations of tidal interactions of spiral galaxies are used to attempt to understand recent discoveries about infrared (IR) emitting galaxies. It is found that the stronger tidal perturbation by a companion the more disk gas clouds are thrown into nucleus crossing orbits and the greater the velocity jumps crossing spiral arms. Both these tidally created characteristics would create more IR emission by high speed cloud collisions and more IR via effects of recently formed stars. This expectation at greater tidal perturbation matches the observation of greater IR emission for spiral galaxies with closer and/or more massive companions. The greater collision velocities found at stronger perturbations on the models will also result in higher dust temperature in the colliding clouds. In the IR pairs examined, most have only one member, the larger, detected and when both are detected, the larger is always the more luminous. In simulations and in a simple analytic description of the strong distance dependence of the tidal force, it is found that the big galaxy of a pair is more strongly affected than the small.
Tracking brain motion during the cardiac cycle using spiral cine-DENSE MRI
Zhong, Xiaodong; Meyer, Craig H.; Schlesinger, David J.; Sheehan, Jason P.; Epstein, Frederick H.; Larner, James M.; Benedict, Stanley H.; Read, Paul W.; Sheng, Ke; Cai, Jing
2009-01-01
Cardiac-synchronized brain motion is well documented, but the accurate measurement of such motion on the pixel-by-pixel basis has been hampered by the lack of proper imaging technique. In this article, the authors present the implementation of an autotracking spiral cine displacement-encoded stimulation echo (DENSE) magnetic resonance imaging (MRI) technique for the measurement of pulsatile brain motion during the cardiac cycle. Displacement-encoded dynamic MR images of three healthy volunteers were acquired throughout the cardiac cycle using the spiral cine-DENSE pulse sequence gated to the R wave of an electrocardiogram. Pixelwise Lagrangian displacement maps were computed, and 2D displacement as a function of time was determined for selected regions of interests. Different intracranial structures exhibited characteristic motion amplitude, direction, and pattern throughout the cardiac cycle. Time-resolved displacement curves revealed the pathway of pulsatile motion from brain stem to peripheral brain lobes. These preliminary results demonstrated that the spiral cine-DENSE MRI technique can be used to measure cardiac-synchronized pulsatile brain motion on the pixel-by-pixel basis with high temporal∕spatial resolution and sensitivity. PMID:19746774
Sinogram restoration for ultra-low-dose x-ray multi-slice helical CT by nonparametric regression
NASA Astrophysics Data System (ADS)
Jiang, Lu; Siddiqui, Khan; Zhu, Bin; Tao, Yang; Siegel, Eliot
2007-03-01
During the last decade, x-ray computed tomography (CT) has been applied to screen large asymptomatic smoking and nonsmoking populations for early lung cancer detection. Because a larger population will be involved in such screening exams, more and more attention has been paid to studying low-dose, even ultra-low-dose x-ray CT. However, reducing CT radiation exposure will increase noise level in the sinogram, thereby degrading the quality of reconstructed CT images as well as causing more streak artifacts near the apices of the lung. Thus, how to reduce the noise levels and streak artifacts in the low-dose CT images is becoming a meaningful topic. Since multi-slice helical CT has replaced conventional stop-and-shoot CT in many clinical applications, this research mainly focused on the noise reduction issue in multi-slice helical CT. The experiment data were provided by Siemens SOMATOM Sensation 16-Slice helical CT. It included both conventional CT data acquired under 120 kvp voltage and 119 mA current and ultra-low-dose CT data acquired under 120 kvp and 10 mA protocols. All other settings are the same as that of conventional CT. In this paper, a nonparametric smoothing method with thin plate smoothing splines and the roughness penalty was proposed to restore the ultra-low-dose CT raw data. Each projection frame was firstly divided into blocks, and then the 2D data in each block was fitted to a thin-plate smoothing splines' surface via minimizing a roughness-penalized least squares objective function. By doing so, the noise in each ultra-low-dose CT projection was reduced by leveraging the information contained not only within each individual projection profile, but also among nearby profiles. Finally the restored ultra-low-dose projection data were fed into standard filtered back projection (FBP) algorithm to reconstruct CT images. The rebuilt results as well as the comparison between proposed approach and traditional method were given in the results and discussions section, and showed effectiveness of proposed thin-plate based nonparametric regression method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowik, P; Bujila, R; Merzan, D
2015-06-15
Purpose: Stationary table acquisitions (Bolus tracking) in X-ray Computed Tomography (CT) can Result in dose length products (DLP) comparable to spiral scans. It is today unclear whether or not the effective dose (E) for Bolus Tracking can be approximated using target region specific conversion factors (E/DLP). The purpose of this study was to investigate how E depends on the anatomical location of the Bolus Tracking in relation to Chest CT scans with the same DLP. Methods: Effective doses were approximated for the ICRP 110 adult Reference Male (AM) and adult Reference Female (FM) computational voxel phantoms using software for CTmore » dose approximations (pre-simulated MC data). The effective dose was first approximated for a Chest CT scan using spiral technique and a CTDIvol (32 cm) of 6 mGy. The effective dose from the spiral scan was then compared to E approximated for contiguous Bolus Tracking acquisitions (1 cm separation), with a total collimation of 1 cm, over different locations of the chest of the voxel phantoms. The number of rotations used for the Bolus Tracking acquisitions was adjusted to yield the same DLP (32 cm) as the spiral scan. Results: Depending on the anatomical location of the Bolus Tracking, E ranged by factors of 1.3 to 6.8 for the AM phantom and 1.4 to 3.3 for the AF phantom, compared to the effective dose of the spiral scans. The greatest E for the Bolus Tracking acquisitions was observed for anatomical locations coinciding with breast tissue. This can be expected as breast tissue has a high tissue weighting factor in the calculation of E. Conclusion: For Chest CT scans, the effective dose from Bolus Tracking is highly dependent on the anatomical location where the scan is administered and will not always accurately be represented using target region specific conversion factors.« less
Visualization of spiral and scroll waves in simulated and experimental cardiac tissue
NASA Astrophysics Data System (ADS)
Cherry, E. M.; Fenton, F. H.
2008-12-01
The heart is a nonlinear biological system that can exhibit complex electrical dynamics, complete with period-doubling bifurcations and spiral and scroll waves that can lead to fibrillatory states that compromise the heart's ability to contract and pump blood efficiently. Despite the importance of understanding the range of cardiac dynamics, studying how spiral and scroll waves can initiate, evolve, and be terminated is challenging because of the complicated electrophysiology and anatomy of the heart. Nevertheless, over the last two decades advances in experimental techniques have improved access to experimental data and have made it possible to visualize the electrical state of the heart in more detail than ever before. During the same time, progress in mathematical modeling and computational techniques has facilitated using simulations as a tool for investigating cardiac dynamics. In this paper, we present data from experimental and simulated cardiac tissue and discuss visualization techniques that facilitate understanding of the behavior of electrical spiral and scroll waves in the context of the heart. The paper contains many interactive media, including movies and interactive two- and three-dimensional Java appletsDisclaimer: IOP Publishing was not involved in the programming of this software and does not accept any responsibility for it. You download and run the software at your own risk. If you experience any problems with the software, please contact the author directly. To the fullest extent permitted by law, IOP Publishing Ltd accepts no responsibility for any loss, damage and/or other adverse effect on your computer system caused by your downloading and running this software. IOP Publishing Ltd accepts no responsibility for consequential loss..
NASA/Army Rotorcraft Transmission Research, a Review of Recent Significant Accomplishments
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.
1994-01-01
A joint helicopter transmission research program between NASA Lewis Research Center and the U.S. Army Research Lab has existed since 1970. Research goals are to reduce weight and noise while increasing life, reliability, and safety. These research goals are achieved by the NASA/Army Mechanical Systems Technology Branch through both in-house research and cooperative research projects with university and industry partners. Some recent significant technical accomplishments produced by this cooperative research are reviewed. The following research projects are reviewed: oil-off survivability of tapered roller bearings, design and evaluation of high contact ratio gearing, finite element analysis of spiral bevel gears, computer numerical control grinding of spiral bevel gears, gear dynamics code validation, computer program for life and reliability of helicopter transmissions, planetary gear train efficiency study, and the Advanced Rotorcraft Transmission (ART) program.
Konecki, Dariusz; Grabowska-Derlatka, Laretta; Pacho, Ryszard; Rowiński, Olgierd
2017-01-01
Endoscopic methods (gastroscopy and colonoscopy) are considered fundamental for the diagnosis of gastrointestinal bleeding. In recent years, multidetector computed tomography (MDCT) has also gained importance in diagnosing gastrointestinal bleeding, particularly in hemodynamically unstable patients and in cases with suspected lower gastrointestinal tract bleeding. CT can detect both the source and the cause of active gastrointestinal bleeding, thereby expediting treatment initiation. The study group consisted of 16 patients with clinical symptoms of gastrointestinal bleeding in whom features of active bleeding were observed on CT. In all patients, bleeding was verified by means of other methods such as endoscopic examinations, endovascular procedures, or surgery. The bleeding source was identified on CT in all 16 patients. In 14 cases (87.5%), bleeding was confirmed by other methods. CT is an efficient, fast, and readily available tool for detecting the location of acute gastrointestinal bleeding.
Haberland, Ulrike; Klotz, Ernst; Abolmaali, Nasreddin
2010-07-01
Perfusion computed tomography is increasingly being used in diagnostic radiology. Axial coverage of the traditional approach is limited to the width of the detector. Using continuous periodic table movement coverage can be increased beyond this limit. In this study, we compared tissue flow values determined from scans with a periodic spiral implementation with variable pitch with ones determined from standard dynamic scan modes. A flow phantom (preserved porcine kidney) was scanned with 2 settings of a periodic spiral (Adaptive 4D Spiral) with a range of 100 and 148 mm and a temporal sampling of 1.5 seconds. Additionally, the whole phantom was scanned with the standard dynamic mode (detector width 38.4 mm, temporal sampling 1.0 seconds) at various overlapping positions as a reference. Scan parameters (80 kV, 140 mAs, 40s scan time) were selected similar to a typical brain perfusion study. All scans were repeated 5 times. Tissue flow was calculated with a dedicated deconvolution algorithm. In a center slice and 3 additional slices at various off center positions flow values were recorded in a total of 126 regions of interest (ROI). Reproducibility was determined from the variation of the repeat scans. Agreement between periodic spirals and standard mode was determined by Bland Altman plots and correlation analysis. The reproducibility of the tissue flow determination ranged from 2.7 to 4.4 mL/100 mL/min and was similar for all scan modes. The coefficient of variation ranged from 3.9% to 6.1%. Mean tissue flow in the 126 ROIs ranged from 35 to 121 mL/100 mL/min. There was excellent correlation between both periodic spiral ranges and the standard dynamic mode with a Pearson correlation coefficient of r = 0.97. The regression slope (intercept 0) for the 100 mm range was 1.01, for the 148 mm range it was 0.97. The absolute differences per ROI varied between 1.5 and 4.1 mL/100 mL/min, the relative differences between 1.9% and 6.5%. Differences did not depend on the slice location. Periodic spiral scan modes with variable pitch and a sampling rate of 1.5 seconds can be used for the quantitative determination of tissue flow. Their performance is equivalent to equidistant sampling with standard dynamic scan modes. The ranges of 100 and 148 mm investigated allow coverage of the whole brain or an entire organ for perfusion imaging.
Complex Spiral Structure in the HD 100546 Transitional Disk as Revealed by GPI and MagAO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follette, Katherine B.; Macintosh, Bruce; Mullen, Wyatt
We present optical and near-infrared high-contrast images of the transitional disk HD 100546 taken with the Magellan Adaptive Optics system (MagAO) and the Gemini Planet Imager (GPI). GPI data include both polarized intensity and total intensity imagery, and MagAO data are taken in Simultaneous Differential Imaging mode at H α . The new GPI H -band total intensity data represent a significant enhancement in sensitivity and field rotation compared to previous data sets and enable a detailed exploration of substructure in the disk. The data are processed with a variety of differential imaging techniques (polarized, angular, reference, and simultaneous differentialmore » imaging) in an attempt to identify the disk structures that are most consistent across wavelengths, processing techniques, and algorithmic parameters. The inner disk cavity at 15 au is clearly resolved in multiple data sets, as are a variety of spiral features. While the cavity and spiral structures are identified at levels significantly distinct from the neighboring regions of the disk under several algorithms and with a range of algorithmic parameters, emission at the location of HD 100546 “ c ” varies from point-like under aggressive algorithmic parameters to a smooth continuous structure with conservative parameters, and is consistent with disk emission. Features identified in the HD 100546 disk bear qualitative similarity to computational models of a moderately inclined two-armed spiral disk, where projection effects and wrapping of the spiral arms around the star result in a number of truncated spiral features in forward-modeled images.« less
Analysis of the vibratory excitation arising from spiral bevel gears
NASA Technical Reports Server (NTRS)
Mark, William D.
1987-01-01
Tools required to understand and predict in terms of its underlying causes the vibratory excitation arising from meshing spiral bevel gears are developed. A generalized three component transmission error of meshing spiral bevel gears is defined. Equations are derived that yield the three components of the generalized transmission error in terms of deviations of tooth running surfaces from equispaced perfect spherical involute surfaces and tooth/gearbody elastic deformations arising from the three components of the generalized force transmitted by the meshing gears. A method for incorporating these equations into the equations of motion of a gear system is described. Equations are derived for the three components of the generalized force transmitted by the gears which are valid whenever inertial effects of the meshing gears and their supports are negligible. Bearing offsets from the positions occupied by the shaft centerlines of perfect spherical involute bevel gears and bearing/bearing support flexibilities enter into the computation of these forces.
Adams, Matthew S.; Salgaonkar, Vasant A.; Plata-Camargo, Juan; Jones, Peter D.; Pascal-Tenorio, Aurea; Chen, Hsin-Yu; Bouley, Donna M.; Sommer, Graham; Pauly, Kim Butts; Diederich, Chris J.
2016-01-01
Purpose: Endoluminal ultrasound may serve as a minimally invasive option for delivering thermal ablation to pancreatic tumors adjacent to the stomach or duodenum. The objective of this study was to explore the basic feasibility of this treatment strategy through the design, characterization, and evaluation of proof-of-concept endoluminal ultrasound applicators capable of placement in the gastrointestinal (GI) lumen for volumetric pancreas ablation under MR guidance. Methods: Two variants of the endoluminal applicator, each containing a distinct array of two independently powered transducers (10 × 10 mm 3.2 MHz planar; or 8 × 10 × 20 mm radius of curvature 3.3 MHz curvilinear geometries) at the distal end of a meter long flexible catheter assembly, were designed and fabricated. Transducers and circulatory water flow for acoustic coupling and luminal cooling were contained by a low-profile polyester balloon covering the transducer assembly fixture. Each applicator incorporated miniature spiral MR coils and mechanical features (guiding tips and hinges) to facilitate tracking and insertion through the GI tract under MRI guidance. Acoustic characterization of each device was performed using radiation force balance and hydrophone measurements. Device delivery into the upper GI tract, adjacent to the pancreas, and heating characteristics for treatment of pancreatic tissue were evaluated in MR-guided ex vivo and in vivo porcine experiments. MR guidance was utilized for anatomical target identification, tracking/positioning of the applicator, and MR temperature imaging (MRTI) for PRF-based multislice thermometry, implemented in the real-time RTHawk software environment. Results: Force balance and hydrophone measurements indicated efficiencies of 48.8% and 47.8% and −3 dB intensity beam-widths of 3.2 and 1.2 mm for the planar and curvilinear transducers, respectively. Ex vivo studies on whole-porcine carcasses revealed capabilities of producing ablative temperature rise (ΔT > 15 °C) contours in pancreatic tissue 4–40 mm long and 4–28 mm wide for the planar transducer applicator (1–13 min sonication duration, ∼4 W/cm2 applied acoustic intensity). Curvilinear transducers produced more selective heating, with a narrower ΔT > 15 °C contour length and width of up to 1–24 mm and 2–7 mm, respectively (1–7 min sonication duration, ∼4 W/cm2 applied acoustic intensity). Active tracking of the miniature spiral coils was achieved using a Hadamard encoding tracking sequence, enabling real-time determination of each coil’s coordinates and automated prescription of imaging planes for thermometry. In vivo MRTI-guided heating trials in three pigs demonstrated capability of ∼20 °C temperature elevation in pancreatic tissue at 2 cm depths from the applicator, with 5–7 W/cm2 applied intensity and 6–16 min sonication duration. Dimensions of thermal lesions in the pancreas ranged from 12 to 28 mm, 3 to 10 mm, and 5 to 10 mm in length, width, and depth, respectively, as verified through histological analysis of tissue sections. Multiple-baseline reconstruction and respiratory-gated acquisition were demonstrated to be effective strategies in suppressing motion artifacts for clear evolution of temperature profiles during MRTI in the in vivo studies. Conclusions: This study demonstrates the technical feasibility of generating volumetric ablation in pancreatic tissue using endoluminal ultrasound applicators positioned in the stomach lumen. MR guidance facilitates target identification, device tracking/positioning, and treatment monitoring through real-time multislice PRF-based thermometry. PMID:27370138
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Matthew S., E-mail: matt.adams@ucsf.edu; Di
Purpose: Endoluminal ultrasound may serve as a minimally invasive option for delivering thermal ablation to pancreatic tumors adjacent to the stomach or duodenum. The objective of this study was to explore the basic feasibility of this treatment strategy through the design, characterization, and evaluation of proof-of-concept endoluminal ultrasound applicators capable of placement in the gastrointestinal (GI) lumen for volumetric pancreas ablation under MR guidance. Methods: Two variants of the endoluminal applicator, each containing a distinct array of two independently powered transducers (10 × 10 mm 3.2 MHz planar; or 8 × 10 × 20 mm radius of curvature 3.3 MHzmore » curvilinear geometries) at the distal end of a meter long flexible catheter assembly, were designed and fabricated. Transducers and circulatory water flow for acoustic coupling and luminal cooling were contained by a low-profile polyester balloon covering the transducer assembly fixture. Each applicator incorporated miniature spiral MR coils and mechanical features (guiding tips and hinges) to facilitate tracking and insertion through the GI tract under MRI guidance. Acoustic characterization of each device was performed using radiation force balance and hydrophone measurements. Device delivery into the upper GI tract, adjacent to the pancreas, and heating characteristics for treatment of pancreatic tissue were evaluated in MR-guided ex vivo and in vivo porcine experiments. MR guidance was utilized for anatomical target identification, tracking/positioning of the applicator, and MR temperature imaging (MRTI) for PRF-based multislice thermometry, implemented in the real-time RTHawk software environment. Results: Force balance and hydrophone measurements indicated efficiencies of 48.8% and 47.8% and −3 dB intensity beam-widths of 3.2 and 1.2 mm for the planar and curvilinear transducers, respectively. Ex vivo studies on whole-porcine carcasses revealed capabilities of producing ablative temperature rise (ΔT > 15 °C) contours in pancreatic tissue 4–40 mm long and 4–28 mm wide for the planar transducer applicator (1–13 min sonication duration, ∼4 W/cm{sup 2} applied acoustic intensity). Curvilinear transducers produced more selective heating, with a narrower ΔT > 15 °C contour length and width of up to 1–24 mm and 2–7 mm, respectively (1–7 min sonication duration, ∼4 W/cm{sup 2} applied acoustic intensity). Active tracking of the miniature spiral coils was achieved using a Hadamard encoding tracking sequence, enabling real-time determination of each coil’s coordinates and automated prescription of imaging planes for thermometry. In vivo MRTI-guided heating trials in three pigs demonstrated capability of ∼20 °C temperature elevation in pancreatic tissue at 2 cm depths from the applicator, with 5–7 W/cm{sup 2} applied intensity and 6–16 min sonication duration. Dimensions of thermal lesions in the pancreas ranged from 12 to 28 mm, 3 to 10 mm, and 5 to 10 mm in length, width, and depth, respectively, as verified through histological analysis of tissue sections. Multiple-baseline reconstruction and respiratory-gated acquisition were demonstrated to be effective strategies in suppressing motion artifacts for clear evolution of temperature profiles during MRTI in the in vivo studies. Conclusions: This study demonstrates the technical feasibility of generating volumetric ablation in pancreatic tissue using endoluminal ultrasound applicators positioned in the stomach lumen. MR guidance facilitates target identification, device tracking/positioning, and treatment monitoring through real-time multislice PRF-based thermometry.« less
Campbell-Washburn, Adrienne E; Xue, Hui; Lederman, Robert J; Faranesh, Anthony Z; Hansen, Michael S
2016-06-01
MRI-guided interventions demand high frame rate imaging, making fast imaging techniques such as spiral imaging and echo planar imaging (EPI) appealing. In this study, we implemented a real-time distortion correction framework to enable the use of these fast acquisitions for interventional MRI. Distortions caused by gradient waveform inaccuracies were corrected using the gradient impulse response function (GIRF), which was measured by standard equipment and saved as a calibration file on the host computer. This file was used at runtime to calculate the predicted k-space trajectories for image reconstruction. Additionally, the off-resonance reconstruction frequency was modified in real time to interactively deblur spiral images. Real-time distortion correction for arbitrary image orientations was achieved in phantoms and healthy human volunteers. The GIRF-predicted k-space trajectories matched measured k-space trajectories closely for spiral imaging. Spiral and EPI image distortion was visibly improved using the GIRF-predicted trajectories. The GIRF calibration file showed no systematic drift in 4 months and was demonstrated to correct distortions after 30 min of continuous scanning despite gradient heating. Interactive off-resonance reconstruction was used to sharpen anatomical boundaries during continuous imaging. This real-time distortion correction framework will enable the use of these high frame rate imaging methods for MRI-guided interventions. Magn Reson Med 75:2278-2285, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Campbell-Washburn, Adrienne E; Xue, Hui; Lederman, Robert J; Faranesh, Anthony Z; Hansen, Michael S
2015-01-01
Purpose MRI-guided interventions demand high frame-rate imaging, making fast imaging techniques such as spiral imaging and echo planar imaging (EPI) appealing. In this study, we implemented a real-time distortion correction framework to enable the use of these fast acquisitions for interventional MRI. Methods Distortions caused by gradient waveform inaccuracies were corrected using the gradient impulse response function (GIRF), which was measured by standard equipment and saved as a calibration file on the host computer. This file was used at runtime to calculate the predicted k-space trajectories for image reconstruction. Additionally, the off-resonance reconstruction frequency was modified in real-time to interactively de-blur spiral images. Results Real-time distortion correction for arbitrary image orientations was achieved in phantoms and healthy human volunteers. The GIRF predicted k-space trajectories matched measured k-space trajectories closely for spiral imaging. Spiral and EPI image distortion was visibly improved using the GIRF predicted trajectories. The GIRF calibration file showed no systematic drift in 4 months and was demonstrated to correct distortions after 30 minutes of continuous scanning despite gradient heating. Interactive off-resonance reconstruction was used to sharpen anatomical boundaries during continuous imaging. Conclusions This real-time distortion correction framework will enable the use of these high frame-rate imaging methods for MRI-guided interventions. PMID:26114951
Ketelsen, D; Werner, M K; Thomas, C; Tsiflikas, I; Koitschev, A; Reimann, A; Claussen, C D; Heuschmid, M
2009-01-01
Important oropharyngeal structures can be superimposed by metallic artifacts due to dental implants. The aim of this study was to compare the image quality of multiplanar reconstructions and an angulated spiral in dual-source computed tomography (DSCT) of the neck. Sixty-two patients were included for neck imaging with DSCT. MPRs from an axial dataset and an additional short spiral parallel to the mouth floor were acquired. Leading anatomical structures were then evaluated with respect to the extent to which they were affected by dental artifacts using a visual scale, ranging from 1 (least artifacts) to 4 (most artifacts). In MPR, 87.1 % of anatomical structures had significant artifacts (3.12 +/- 0.86), while in angulated slices leading anatomical structures of the oropharynx showed negligible artifacts (1.28 +/- 0.46). The diagnostic growth due to primarily angulated slices concerning artifact severity was significant (p < 0.01). MPRs are not capable of reducing dental artifacts sufficiently. In patients with dental artifacts overlying the anatomical structures of the oropharynx, an additional short angulated spiral parallel to the floor of the mouth is recommended and should be applied for daily routine. As a result of the static gantry design of DSCT, the use of a flexible head holder is essential.
Beam orbit simulation in the central region of the RIKEN AVF cyclotron
NASA Astrophysics Data System (ADS)
Toprek, Dragan; Goto, Akira; Yano, Yasushige
1999-04-01
This paper describes the modification design of the central region for h=2 mode of acceleration in the RIKEN AVF cyclotron. we made a small modification to the electrode shape in the central region for optimization of the beam transmission. The central region is equipped with an axial injection system. The spiral type inflector is used for axial injection. The electric field distribution in the inflector and in four acceleration gaps has been numerically calculated from an electric potential map produced by the program RELAX3D. The magnetic field is measured. The geometry of the central region has been tested with the computations of orbits carried out by means of the computer code CYCLONE. The optical properties of the spiral inflector and the central region are studied by using the program CASINO and CYCLONE, respectively. We have also made an effort to minimize the inflector fringe field effects using the RELAX3D program.
NASA Astrophysics Data System (ADS)
Hunt, Gordon W.; Hemler, Paul F.; Vining, David J.
1997-05-01
Virtual colonscopy (VC) is a minimally invasive alternative to conventional fiberoptic endoscopy for colorectal cancer screening. The VC technique involves bowel cleansing, gas distension of the colon, spiral computed tomography (CT) scanning of a patient's abdomen and pelvis, and visual analysis of multiplanar 2D and 3D images created from the spiral CT data. Despite the ability of interactive computer graphics to assist a physician in visualizing 3D models of the colon, a correct diagnosis hinges upon a physician's ability to properly identify small and sometimes subtle polyps or masses within hundreds of multiplanar and 3D images. Human visual analysis is time-consuming, tedious, and often prone to error of interpretation.We have addressed the problem of visual analysis by creating a software system that automatically highlights potential lesions in the 2D and 3D images in order to expedite a physician's interpretation of the colon data.
Efficient computation paths for the systematic analysis of sensitivities
NASA Astrophysics Data System (ADS)
Greppi, Paolo; Arato, Elisabetta
2013-01-01
A systematic sensitivity analysis requires computing the model on all points of a multi-dimensional grid covering the domain of interest, defined by the ranges of variability of the inputs. The issues to efficiently perform such analyses on algebraic models are handling solution failures within and close to the feasible region and minimizing the total iteration count. Scanning the domain in the obvious order is sub-optimal in terms of total iterations and is likely to cause many solution failures. The problem of choosing a better order can be translated geometrically into finding Hamiltonian paths on certain grid graphs. This work proposes two paths, one based on a mixed-radix Gray code and the other, a quasi-spiral path, produced by a novel heuristic algorithm. Some simple, easy-to-visualize examples are presented, followed by performance results for the quasi-spiral algorithm and the practical application of the different paths in a process simulation tool.
Chu, Alan; Noll, Douglas C
2016-10-01
Simultaneous multislice (SMS) imaging is a useful way to accelerate functional magnetic resonance imaging (fMRI). As acceleration becomes more aggressive, an increasingly larger number of receive coils are required to separate the slices, which significantly increases the computational burden. We propose a coil compression method that works with concentric ring non-Cartesian SMS imaging and should work with Cartesian SMS as well. We evaluate the method on fMRI scans of several subjects and compare it to standard coil compression methods. The proposed method uses a slice-separation k-space kernel to simultaneously compress coil data into a set of virtual coils. Five subjects were scanned using both non-SMS fMRI and SMS fMRI with three simultaneous slices. The SMS fMRI scans were processed using the proposed method, along with other conventional methods. Code is available at https://github.com/alcu/sms. The proposed method maintained functional activation with a fewer number of virtual coils than standard SMS coil compression methods. Compression of non-SMS fMRI maintained activation with a slightly lower number of virtual coils than the proposed method, but does not have the acceleration advantages of SMS fMRI. The proposed method is a practical way to compress and reconstruct concentric ring SMS data and improves the preservation of functional activation over standard coil compression methods in fMRI. Magn Reson Med 76:1196-1209, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
A set of simple cell processes is sufficient to model spiral cleavage.
Brun-Usan, Miguel; Marín-Riera, Miquel; Grande, Cristina; Truchado-Garcia, Marta; Salazar-Ciudad, Isaac
2017-01-01
During cleavage, different cellular processes cause the zygote to become partitioned into a set of cells with a specific spatial arrangement. These processes include the orientation of cell division according to: an animal-vegetal gradient; the main axis (Hertwig's rule) of the cell; and the contact areas between cells or the perpendicularity between consecutive cell divisions (Sachs' rule). Cell adhesion and cortical rotation have also been proposed to be involved in spiral cleavage. We use a computational model of cell and tissue biomechanics to account for the different existing hypotheses about how the specific spatial arrangement of cells in spiral cleavage arises during development. Cell polarization by an animal-vegetal gradient, a bias to perpendicularity between consecutive cell divisions (Sachs' rule), cortical rotation and cell adhesion, when combined, reproduce the spiral cleavage, whereas other combinations of processes cannot. Specifically, cortical rotation is necessary at the 8-cell stage to direct all micromeres in the same direction. By varying the relative strength of these processes, we reproduce the spatial arrangement of cells in the blastulae of seven different invertebrate species. © 2017. Published by The Company of Biologists Ltd.
Relationship between noise, dose, and pitch in cardiac multi-detector row CT.
Primak, Andrew N; McCollough, Cynthia H; Bruesewitz, Michael R; Zhang, Jie; Fletcher, Joel G
2006-01-01
In spiral computed tomography (CT), dose is always inversely proportional to pitch. However, the relationship between noise and pitch (and hence noise and dose) depends on the scanner type (single vs multi-detector row) and reconstruction mode (cardiac vs noncardiac). In single detector row spiral CT, noise is independent of pitch. Conversely, in noncardiac multi-detector row CT, noise depends on pitch because the spiral interpolation algorithm makes use of redundant data from different detector rows to decrease noise for pitch values less than 1 (and increase noise for pitch values > 1). However, in cardiac spiral CT, redundant data cannot be used because such data averaging would degrade the temporal resolution. Therefore, the behavior of noise versus pitch returns to the single detector row paradigm, with noise being independent of pitch. Consequently, since faster rotation times require lower pitch values in cardiac multi-detector row CT, dose is increased without a commensurate decrease in noise. Thus, the use of faster rotation times will improve temporal resolution, not alter noise, and increase dose. For a particular application, the higher dose resulting from faster rotation speeds should be justified by the clinical benefits of the improved temporal resolution. RSNA, 2006
NASA Astrophysics Data System (ADS)
Wormanns, Dag; Fiebich, Martin; Saidi, Mustafa; Diederich, Stefan; Heindel, Walter
2001-05-01
The purpose of the study was to evaluate a computer aided diagnosis (CAD) workstation with automatic detection of pulmonary nodules at low-dose spiral CT in a clinical setting for early detection of lung cancer. Two radiologists in consensus reported 88 consecutive spiral CT examinations. All examinations were reviewed using a UNIX-based CAD workstation with a self-developed algorithm for automatic detection of pulmonary nodules. The algorithm was designed to detect nodules with at least 5 mm diameter. The results of automatic nodule detection were compared to the consensus reporting of two radiologists as gold standard. Additional CAD findings were regarded as nodules initially missed by the radiologists or as false positive results. A total of 153 nodules were detected with all modalities (diameter: 85 nodules <5mm, 63 nodules 5-9 mm, 5 nodules >= 10 mm). Reasons for failure of automatic nodule detection were assessed. Sensitivity of radiologists for nodules >=5 mm was 85%, sensitivity of CAD was 38%. For nodules >=5 mm without pleural contact sensitivity was 84% for radiologists at 45% for CAD. CAD detected 15 (10%) nodules not mentioned in the radiologist's report but representing real nodules, among them 10 (15%) nodules with a diameter $GREW5 mm. Reasons for nodules missed by CAD include: exclusion because of morphological features during region analysis (33%), nodule density below the detection threshold (26%), pleural contact (33%), segmentation errors (5%) and other reasons (2%). CAD improves detection of pulmonary nodules at spiral CT significantly and is a valuable second opinion in a clinical setting for lung cancer screening. Optimization of region analysis and an appropriate density threshold have a potential for further improvement of automatic nodule detection.
Shen, Zhi-Yong; Liu, Chun; Wu, Ming-Feng; Shi, Hai-Feng; Zhou, Yu-Feng; Zhuang, Wei; Xia, Gan-Lin
2017-01-01
The aim of the present study was to explore the therapeutic effect of 20 kHz ultrasound (US) and microbubbles (MBs) on rabbit VX2 liver tumors by spiral computed tomography (CT) scanning. A total of 16 New Zealand rabbits with hepatic VX2 tumors were divided into four groups: Control, MB, low-frequency US and US + MB. The treatment effect was evaluated by spiral CT scanning prior to, during and following treatment (at 0 weeks and the end of 1 and 2 weeks). The tumor growth rate was recorded. The specimens of VX2 tumors were collected for histological examination and transmission electron microscopy (TEM). No significant differences were observed between tumor areas measured by CT and pathology after 2-week treatment (P>0.05). The mean tumor growth rates in the control, MB, US and US + MB groups after 2 weeks of treatment were 385±21, 353±12, 302±14 and 154±9%, respectively (P<0.05, US + MB vs. the other three groups). Hematoxylin and eosin staining in the US + MB group revealed coagulation necrosis, interstitial hemorrhage and intravascular thrombosis. In the control, MB and US groups, tumor cells exhibited clear nuclear hyperchromatism. TEM of US + MB revealed vascular endothelial cell wall rupture, widened endothelial cell gaps, interstitial erythrocyte leakage and microvascular thrombosis, while intact vascular endothelial cells and normal erythrocytes in the tumor vessels were observed in the control, MB and US groups. A combination of 20 kHz US and MBs may effectively inhibit rabbit VX2 tumors. Spiral CT scanning is an ideal method to evaluate the US treatment on rabbit tumors. PMID:28928850
NASA Astrophysics Data System (ADS)
Wormanns, Dag; Fiebich, Martin; Wietholt, Christian; Diederich, Stefan; Heindel, Walter
2000-06-01
We evaluated the practical application of a Computer-Aided Diagnosis (CAD) system for viewing spiral computed tomography (CT) of the chest low-dose screening examinations which includes an automatic detection of pulmonary nodules. A UNIX- based CAD system was developed including a detection algorithm for pulmonary nodules and a user interface providing an original axial image, the same image with nodules highlighted, a thin-slab MIP, and a cine mode. As yet, 26 CT examinations with 1625 images were reviewed in a clinical setting and reported by an experienced radiologist using both the CAD system and hardcopies. The CT studies exhibited 19 nodules found on the hardcopies in consensus reporting of 2 experienced radiologists. Viewing with the CAD system was more time consuming than using hardcopies (4.16 vs. 2.92 min) due to analyzing MIP and cine mode. The algorithm detected 49% (18/37) pulmonary nodules larger than 5 mm and 30% (21/70) of all nodules. It produced an average of 6.3 false positive findings per CT study. Most of the missed nodules were adjacent to the pleura. However, the program detected 6 nodules missed by the radiologists. Automatic nodule detection increases the radiologists's awareness of pulmonary lesions. Simultaneous display of axial image and thin-slab MIP makes the radiologist more confident in diagnosis of smaller pulmonary nodules. The CAD system improves the detection of pulmonary nodules at spiral CT. Lack of sensitivity and specificity is still an issue to be addressed but does not prevent practical use.
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Zhang, YI; Chen, Jui-Sheng
1991-01-01
Research was performed to develop a computer program that will: (1) simulate the meshing and bearing contact for face milled spiral beval gears with given machine tool settings; and (2) to obtain the output, some of the data is required for hydrodynamic analysis. It is assumed that the machine tool settings and the blank data will be taken from the Gleason summaries. The theoretical aspects of the program are based on 'Local Synthesis and Tooth Contact Analysis of Face Mill Milled Spiral Bevel Gears'. The difference between the computer programs developed herein and the other one is as follows: (1) the mean contact point of tooth surfaces for gears with given machine tool settings must be determined iteratively, while parameters (H and V) are changed (H represents displacement along the pinion axis, V represents the gear displacement that is perpendicular to the plane drawn through the axes of the pinion and the gear of their initial positions), this means that when V differs from zero, the axis of the pionion and the gear are crossed but not intersected; (2) in addition to the regular output data (transmission errors and bearing contact), the new computer program provides information about the contacting force for each contact point and the sliding and the so-called rolling velocity. The following topics are covered: (1) instructions for the users as to how to insert the input data; (2) explanations regarding the output data; (3) numerical example; and (4) listing of the program.
Simulating Technology Processes to Foster Learning.
ERIC Educational Resources Information Center
Krumholtz, Nira
1998-01-01
Based on a spiral model of technology evolution, elementary students used LOGO computer software to become both developers and users of technology. The computerized environment enabled 87% to reach intuitive understanding of physical concepts; 24% expressed more formal scientific understanding. (SK)
NASA Astrophysics Data System (ADS)
Copur, Hanifi; Bilgin, Nuh; Balci, Cemal; Tumac, Deniz; Avunduk, Emre
2017-06-01
This study aims at determining the effects of single-, double-, and triple-spiral cutting patterns; the effects of tool cutting speeds on the experimental scale; and the effects of the method of yield estimation on cutting performance by performing a set of full-scale linear cutting tests with a conical cutting tool. The average and maximum normal, cutting and side forces; specific energy; yield; and coarseness index are measured and compared in each cutting pattern at a 25-mm line spacing, at varying depths of cut per revolution, and using two cutting speeds on five different rock samples. The results indicate that the optimum specific energy decreases by approximately 25% with an increasing number of spirals from the single- to the double-spiral cutting pattern for the hard rocks, whereas generally little effect was observed for the soft- and medium-strength rocks. The double-spiral cutting pattern appeared to be more effective than the single- or triple-spiral cutting pattern and had an advantage of lower side forces. The tool cutting speed had no apparent effect on the cutting performance. The estimation of the specific energy by the yield based on the theoretical swept area was not significantly different from that estimated by the yield based on the muck weighing, especially for the double- and triple-spiral cutting patterns and with the optimum ratio of line spacing to depth of cut per revolution. This study also demonstrated that the cutterhead and mechanical miner designs, semi-theoretical deterministic computer simulations and empirical performance predictions and optimization models should be based on realistic experimental simulations. Studies should be continued to obtain more reliable results by creating a larger database of laboratory tests and field performance records for mechanical miners using drag tools.
Raman, Pavithra; Raman, Raghav; Newman, Beverley; Venkatraman, Raman; Raman, Bhargav; Robinson, Terry E
2010-12-01
To address potential concern for cumulative radiation exposure with serial spiral chest computed tomography (CT) scans in children with chronic lung disease, we developed an approach to match bronchial airways on low-dose spiral and low-dose high-resolution CT (HRCT) chest images to allow serial comparisons. An automated algorithm matches the position and orientation of bronchial airways obtained from HRCT slices with those in the spiral CT scan. To validate this algorithm, we compared manual matching vs automatic matching of bronchial airways in three pediatric patients. The mean absolute percentage difference between the manually matched spiral CT airway and the index HRCT airways were 9.4 ± 8.5% for the internal diameter measurements, 6.0 ± 4.1% for the outer diameter measurements, and 10.1 ± 9.3% for the wall thickness measurements. The mean absolute percentage difference between the automatically matched spiral CT airway measurements and index HRCT airway measurements were 9.2 ± 8.6% for the inner diameter, 5.8 ± 4.5% for the outer diameter, and 9.9 ± 9.5% for the wall thickness. The overall difference between manual and automated methods was 2.1 ± 1.2%, which was significantly less than the interuser variability of 5.1 ± 4.6% (p<0.05). Tests of equivalence had p<0.05, demonstrating no significant difference between the two methods. The time required for matching was significantly reduced in the automated method (p<0.01) and was as accurate as manual matching, allowing efficient comparison of airways obtained on low-dose spiral CT imaging with low-dose HRCT scans.
Ganesan, Anand N; Kuklik, Pawel; Gharaviri, Ali; Brooks, Anthony; Chapman, Darius; Lau, Dennis H; Roberts-Thomson, Kurt C; Sanders, Prashanthan
2014-01-01
Rotors are postulated to maintain cardiac fibrillation. Despite the importance of bipolar electrograms in clinical electrophysiology, few data exist on the properties of bipolar electrograms at rotor sites. The pivot of a spiral wave is characterized by relative uncertainty of wavefront propagation direction compared to the periphery. The bipolar electrograms used in electrophysiology recording encode information on both direction and timing of approaching wavefronts. To test the hypothesis that bipolar electrograms from the pivot of rotors have higher Shannon entropy (ShEn) than electrograms recorded at the periphery due to the spatial dynamics of spiral waves. We studied spiral wave propagation in 2-dimensional sheets constructed using a simple cell automaton (FitzHugh-Nagumo), atrial (Courtemanche-Ramirez-Nattel) and ventricular (Luo-Rudy) myocyte cell models and in a geometric model spiral wave. In each system, bipolar electrogram recordings were simulated, and Shannon entropy maps constructed as a measure of electrogram information content. ShEn was consistently highest in the pivoting region associated with the phase singularity of the spiral wave. This property was consistently preserved across; (i) variation of model system (ii) alterations in bipolar electrode spacing, (iii) alternative bipolar electrode orientation (iv) bipolar electrogram filtering and (v) in the presence of rotor meander. Directional activation plots demonstrated that the origin of high ShEn at the pivot was the directional diversity of wavefront propagation observed in this location. The pivot of the rotor is consistently associated with high Shannon entropy of bipolar electrograms despite differences in action potential model, bipolar electrode spacing, signal filtering and rotor meander. Maximum ShEn is co-located with the pivot for rotors observed in the bipolar electrogram recording mode, and may be an intrinsic property of spiral wave dynamic behaviour.
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Lee, Hong-Tao
1989-01-01
A new approach for determination of machine-tool settings for spiral bevel gears is proposed. The proposed settings provide a predesigned parabolic function of transmission errors and the desired location and orientation of the bearing contact. The predesigned parabolic function of transmission errors is able to absorb piece-wise linear functions of transmission errors that are caused by the gear misalignment and reduce gear noise. The gears are face-milled by head cutters with conical surfaces or surfaces of revolution. A computer program for simulation of meshing, bearing contact and determination of transmission errors for misaligned gear has been developed.
Virtual endoscopic imaging of the spine.
Kotani, Toshiaki; Nagaya, Shigeyuki; Sonoda, Masaru; Akazawa, Tsutomu; Lumawig, Jose Miguel T; Nemoto, Tetsuharu; Koshi, Takana; Kamiya, Koshiro; Hirosawa, Naoya; Minami, Shohei
2012-05-20
Prospective trial of virtual endoscopy in spinal surgery. To investigate the utility of virtual endoscopy of the spine in conjunction with spinal surgery. Several studies have described clinical applications of virtual endoscopy to visualize the inside of the bronchi, paranasal sinus, stomach, small intestine, pancreatic duct, and bile duct, but, to date, no study has described the use of virtual endoscopy in the spine. Virtual endoscopy is a realistic 3-dimensional intraluminal simulation of tubular structures that is generated by postprocessing of computed tomographic data sets. Five patients with spinal disease were selected: 2 patients with degenerative disease, 2 patients with spinal deformity, and 1 patient with spinal injury. Virtual endoscopy software allows an observer to explore the spinal canal with a mouse, using multislice computed tomographic data. Our study found that virtual endoscopy of the spine has advantages compared with standard imaging methods because surgeons can noninvasively explore the spinal canal in all directions. Virtual endoscopy of the spine may be useful to surgeons for diagnosis, preoperative planning, and postoperative assessment by obviating the need to mentally construct a 3-dimensional picture of the spinal canal from 2-dimensional computed tomographic scans.
Seemann, Gunnar; Panfilov, Alexander V.; Vandersickel, Nele
2017-01-01
Early Afterdepolarizations, EADs, are defined as the reversal of the action potential before completion of the repolarization phase, which can result in ectopic beats. However, the series of mechanisms of EADs leading to these ectopic beats and related cardiac arrhythmias are not well understood. Therefore, we aimed to investigate the influence of this single cell behavior on the whole heart level. For this study we used a modified version of the Ten Tusscher-Panfilov model of human ventricular cells (TP06) which we implemented in a 3D ventricle model including realistic fiber orientations. To increase the likelihood of EAD formation at the single cell level, we reduced the repolarization reserve (RR) by reducing the rapid delayed rectifier Potassium current and raising the L-type Calcium current. Varying these parameters defined a 2D parametric space where different excitation patterns could be classified. Depending on the initial conditions, by either exciting the ventricles with a spiral formation or burst pacing protocol, we found multiple different spatio-temporal excitation patterns. The spiral formation protocol resulted in the categorization of a stable spiral (S), a meandering spiral (MS), a spiral break-up regime (SB), spiral fibrillation type B (B), spiral fibrillation type A (A) and an oscillatory excitation type (O). The last three patterns are a 3D generalization of previously found patterns in 2D. First, the spiral fibrillation type B showed waves determined by a chaotic bi-excitable regime, i.e. mediated by both Sodium and Calcium waves at the same time and in same tissue settings. In the parameter region governed by the B pattern, single cells were able to repolarize completely and different (spiral) waves chaotically burst into each other without finishing a 360 degree rotation. Second, spiral fibrillation type A patterns consisted of multiple small rotating spirals. Single cells failed to repolarize to the resting membrane potential hence prohibiting the Sodium channel gates to recover. Accordingly, we found that Calcium waves mediated these patterns. Third, a further reduction of the RR resulted in a more exotic parameter regime whereby the individual cells behaved independently as oscillators. The patterns arose due to a phase-shift of different oscillators as disconnection of the cells resulted in continuation of the patterns. For all patterns, we computed realistic 9 lead ECGs by including a torso model. The B and A type pattern exposed the behavior of Ventricular Tachycardia (VT). We conclude that EADs at the single cell level can result in different types of cardiac fibrillation at the tissue and 3D ventricle level. PMID:29216239
National Lung Screening Trial: Questions and Answers
Learn the results of the National Lung Screening Trial (NLST), which compared two ways of detecting lung cancer: low-dose helical (spiral) computed tomography and standard chest X-ray, for their effects on lung cancer death rates in a high-risk population.
Navier-Stokes computations for circulation control airfoils
NASA Technical Reports Server (NTRS)
Pulliam, Thomas H.; Jespersen, Dennis C.; Barth, Timothy J.
1987-01-01
Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows.
Navier-Stokes computations for circulation controlled airfoils
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Jesperen, D. C.; Barth, T. J.
1986-01-01
Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows.
Dos Santos, Denise Takehana; Costa e Silva, Adriana Paula Andrade; Vannier, Michael Walter; Cavalcanti, Marcelo Gusmão Paraiso
2004-12-01
The purpose of this study was to demonstrate the sensitivity and specificity of multislice computerized tomography (CT) for diagnosis of maxillofacial fractures following specific protocols using an independent workstation. The study population consisted of 56 patients with maxillofacial fractures who were submitted to a multislice CT. The original data were transferred to an independent workstation using volumetric imaging software to generate axial images and simultaneous multiplanar (MPR) and 3-dimensional (3D-CT) volume rendering reconstructed images. The images were then processed and interpreted by 2 examiners using the following protocols independently of each other: axial, MPR/axial, 3D-CT images, and the association of axial/MPR/3D images. The clinical/surgical findings were considered the gold standard corroborating the diagnosis of the fractures and their anatomic localization. The statistical analysis was carried out using validity and chi-squared tests. The association of axial/MPR/3D images indicated a higher sensitivity (range 95.8%) and specificity (range 99%) than the other methods regarding the analysis of all regions. CT imaging demonstrated high specificity and sensitivity for maxillofacial fractures. The association of axial/MPR/3D-CT images added important information in relationship to other CT protocols.
Perkins, R. J.; Hosea, J. C.; Jaworski, M. A.; ...
2015-04-13
The National Spherical Torus eXperiment (NSTX) can exhibit a major loss of high-harmonic fast wave (HHFW) power along scrape-off layer (SOL) field lines passing in front of the antenna, resulting in bright and hot spirals on both the upper and lower divertor regions. One possible mechanism for this loss is RF sheaths forming at the divertors. We demonstrate that swept-voltage Langmuir probe characteristics for probes under the spiral are shifted relative to those not under the spiral in a manner consistent with RF rectification. We estimate both the magnitude of the RF voltage across the sheath and the sheath heatmore » flux transmission coefficient in the presence of the RF field. Though the precise comparison between computed heat flux and infrared (IR) thermography cannot yet be made, the computed heat deposition compares favorably with the projections from IR camera measurements. The RF sheath losses are significant and contribute substantially to the total SOL losses of HHFW power to the divertor for the cases studied. Our work will guide future experimentation on NSTX-U, where a wide-angle IR camera and a dedicated set of coaxial Langmuir probes for measuring the RF sheath voltage directly will quantify the contribution of RF sheath rectification to the heat deposition from the SOL to the divertor.« less
Spur, helical, and spiral bevel transmission life modeling
NASA Technical Reports Server (NTRS)
Savage, Michael; Rubadeux, Kelly L.; Coe, Harold H.; Coy, John J.
1994-01-01
A computer program, TLIFE, which estimates the life, dynamic capacity, and reliability of aircraft transmissions, is presented. The program enables comparisons of transmission service life at the design stage for optimization. A variety of transmissions may be analyzed including: spur, helical, and spiral bevel reductions as well as series combinations of these reductions. The basic spur and helical reductions include: single mesh, compound, and parallel path plus revert star and planetary gear trains. A variety of straddle and overhung bearing configurations on the gear shafts are possible as is the use of a ring gear for the output. The spiral bevel reductions include single and dual input drives with arbitrary shaft angles. The program is written in FORTRAN 77 and has been executed both in the personal computer DOS environment and on UNIX workstations. The analysis may be performed in either the SI metric or the English inch system of units. The reliability and life analysis is based on the two-parameter Weibull distribution lives of the component gears and bearings. The program output file describes the overall transmission and each constituent transmission, its components, and their locations, capacities, and loads. Primary output is the dynamic capacity and 90-percent reliability and mean lives of the unit transmissions and the overall system which can be used to estimate service overhaul frequency requirements. Two examples are presented to illustrate the information available for single element and series transmissions.
Cochlear anatomy using micro computed tomography (μCT) imaging
NASA Astrophysics Data System (ADS)
Kim, Namkeun; Yoon, Yongjin; Steele, Charles; Puria, Sunil
2008-02-01
A novel micro computed tomography (μCT) image processing method was implemented to measure anatomical features of the gerbil and chinchilla cochleas, taking into account the bent modailosis axis. Measurements were made of the scala vestibule (SV) area, the scala tympani (SV) area, and the basilar membrane (BM) width using prepared cadaveric temporal bones. 3-D cochlear structures were obtained from the scanned images using a process described in this study. It was necessary to consider the sharp curvature of mododailosis axis near the basal region. The SV and ST areas were calculated from the μCT reconstructions and compared with existing data obtained by Magnetic Resonance Microscopy (MRM), showing both qualitative and quantitative agreement. In addition to this, the width of the BM, which is the distance between the primary and secondary osseous spiral laminae, is calculated for the two animals and compared with previous data from the MRM method. For the gerbil cochlea, which does not have much cartilage in the osseous spiral lamina, the μCT-based BM width measurements show good agreement with previous data. The chinchilla BM, which contains more cartilage in the osseous spiral lamina than the gerbil, shows a large difference in the BM widths between the μCT and MRM methods. The SV area, ST area, and BM width measurements from this study can be used in building an anatomically based mathematical cochlear model.
Computed tomography angiography reveals the crime instrument – case report
Banaszek, Anna; Guziński, Maciej; Sąsiadek, Marek
2010-01-01
Summary Background: The development of multislice CT technology enabled imaging of post-traumatic brain lesions with isotropic resolution, which led to unexpected results in the presented case Case Report: An unconscious, 49-year-old male with a suspected trauma underwent a routine CT examination of the head, which revealed an unusual intracerebral bleeding and therefore was followed by CT angiography (CTA). The thorough analysis of CTA source scans led to the detection of the bleeding cause. Conclusions: The presented case showed that a careful analysis of a CT scan allows not only to define the extent of pathological lesions in the intracranial space but it also helps to detect the crime instrument, which is of medico-legal significance. PMID:22802784
Quantum order by disorder in frustrated diamond lattice antiferromagnets.
Bernier, Jean-Sébastien; Lawler, Michael J; Kim, Yong Baek
2008-07-25
We present a quantum theory of frustrated diamond lattice antiferromagnets. Considering quantum fluctuations as the predominant mechanism relieving spin frustration, we find a rich phase diagram comprising of six phases with coplanar spiral ordering in addition to the Néel phase. By computing the specific heat of these ordered phases, we obtain a remarkable agreement between (k, k, 0) spiral ordering and the experimental specific heat data for the diamond lattice spinel compounds MnSc2S4, Co3O4, and CoRh2O4, i.e., specific heat data is a strong evidence for (k, k, 0) spiral ordering in all of these materials. This prediction can be tested in future neutron scattering experiments on Co3O4 and CoRh2O4, and is consistent with existing neutron scattering data on MnSc2S4. Based on this agreement, we infer a monotonically increasing relationship between frustration and the strength of quantum fluctuations.
A Study of Interstellar Medium Components of the Ohio State University Bright Spiral Galaxy Survey
NASA Astrophysics Data System (ADS)
Butner, Melissa; Deustua, S. E.; Conti, A.; Smtih, J.
2011-01-01
Multi-wavelength data can be used to provide information on the interstellar medium of galaxies, as well as on their stellar populations. We use the Ohio State University Bright Spiral Galaxy Survey (OSBSGS) to investigate the distribution and properties of the interstellar medium in a set of nearby galaxies. The OSBSGS consists of B, V, R, J, H and K band images for a over 200 nearby spiral galaxies. These data allow us to probe the dust temperatures and distribution using color maps. When combined with a pixel based analysis, it may be possible to tease out, perhaps better constraining, the heating mechanism for the ISM, as well as constrain dust models. In this paper we will discuss our progress in understanding, in particular, the properties of dust in nearby galaxies. Melissa Butner was a participant in the STScI Summer Student Program supported by the STScI Director's Discretionary Research Fund. MB also acknowledges support and computer cluster access via NSF grant 07-22890.
Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes
2011-01-01
Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect utilizing nanofluids inflow in coils. The two nanofluid suspensions examined in this study are: water-Al2O3 and water-CuO. The flow behavior and heat transfer performance of these nanofluid suspensions in various configurations of coiled square tubes, e.g., conical spiral, in-plane spiral, and helical spiral, are investigated and compared with those for water flowing in a straight tube. Laminar flow of a Newtonian nanofluid in coils made of square cross section tubes is simulated using computational fluid dynamics (CFD)approach, where the nanofluid properties are treated as functions of particle volumetric concentration and temperature. The results indicate that addition of small amounts of nanoparticles up to 1% improves significantly the heat transfer performance; however, further addition tends to deteriorate heat transfer performance. PMID:21711901
NASA Astrophysics Data System (ADS)
Li, Tao; Xie, Wei
2017-04-01
The spiral tunnel arises as a new form of tunnel, with great differences in fire development pattern when compared with traditional straight line tunnel, this paper takes method of numerical simulation, based on computation fluid dynamics theory and fire-turbulence numerical simulation theory, establishing a full-scale spiral tunnel model, and applies CFX simulation software to research full-scale spiral tunnel fire and its ventilation condition. The results indicate that with increasing tunnel slope, high temperature area gradually extends to downstream area, high temperature mainly distributes near fire source area, and symmetrically distributes among the fire center point; With increasing tunnel slope, the highest temperature underneath tunnel arch rises first followed by a downward trend and then rising again, which strengthens chimney effect, and promotes more fresh cold air flow into the tunnel, suppressing fire smoke backflow and simultaneously accelerating fire smoke spread to downstream area; Fire plume presents vertical slender shape with 1% or 3% tunnel slope, and burning flame hits tunnel arch and then extending all around into the ceiling jet flow, when tunnel slope increases to 5% or 7%, fire plume cross section grows bigger and wider with unstable burning flame swaying in all directions, integrally incline to fire downstream.
Determination of dosimetric quantities in pediatric abdominal computed tomography scans*
Jornada, Tiago da Silva; da Silva, Teógenes Augusto
2014-01-01
Objective Aiming at contributing to the knowledge on doses in computed tomography (CT), this study has the objective of determining dosimetric quantities associated with pediatric abdominal CT scans, comparing the data with diagnostic reference levels (DRL). Materials and methods The study was developed with a Toshiba Asteion single-slice CT scanner and a GE BrightSpeed multi-slice CT unit in two hospitals. Measurements were performed with a pencil-type ionization chamber and a 16 cm-diameter polymethylmethacrylate trunk phantom. Results No significant difference was observed in the values for weighted air kerma index (CW), but the differences were relevant in values for volumetric air kerma index (CVOL), air kerma-length product (PKL,CT) and effective dose. Conclusion Only the CW values were lower than the DRL, suggesting that dose optimization might not be necessary. However, PKL,CT and effective dose values stressed that there still is room for reducing pediatric radiation doses. The present study emphasizes the importance of determining all dosimetric quantities associated with CT scans. PMID:25741103
Intraoperative computed tomography.
Tonn, J C; Schichor, C; Schnell, O; Zausinger, S; Uhl, E; Morhard, D; Reiser, M
2011-01-01
Intraoperative computed tomography (iCT) has gained increasing impact among modern neurosurgical techniques. Multislice CT with a sliding gantry in the OR provides excellent diagnostic image quality in the visualization of vascular lesions as well as bony structures including skull base and spine. Due to short acquisition times and a high spatial and temporal resolution, various modalities such as iCT-angiography, iCT-cerebral perfusion and the integration of intraoperative navigation with automatic re-registration after scanning can be performed. This allows a variety of applications, e.g. intraoperative angiography, intraoperative cerebral perfusion studies, update of cerebral and spinal navigation, stereotactic procedures as well as resection control in tumour surgery. Its versatility promotes its use in a multidisciplinary setting. Radiation exposure is comparable to standard CT systems outside the OR. For neurosurgical purposes, however, new hardware components (e.g. a radiolucent headholder system) had to be developed. Having a different range of applications compared to intraoperative MRI, it is an attractive modality for intraoperative imaging being comparatively easy to install and cost efficient.
Hecht, Harvey S; Bhatti, Tandeep
2009-01-01
Coronary computed tomographic angiography (CCTA) is not indicated in the setting of acute myocardial infarction in the emergency department (ED). Nonetheless, acute coronary syndromes may have atypical presentations, and CCTA may be inadvertently performed in this setting. This study was designed to determine the frequency and characteristics of CCTA imaging of unsuspected acute myocardial infarction in the ED. All CCTAs performed in the ED at Lenox Hill Hospital were reviewed for clinical indications and subsequent course; patients with documented acute myocardial infarction were identified. Of the 500 CCTAs performed on ED patients in the Lenox Hill laboratory, 5 patients (1%) were imaged during the initial phase of an unsuspected acute myocardial infarction; in all cases the CCTAs were key to the diagnosis. The imaging characteristics were (1) total or subtotal occlusion and (2) transmural hypodensity in the infarct area. Although acute myocardial infarction on CCTA in ED patients is an infrequent event, proper and prompt recognition is critical for appropriate patient care, particularly as applications to the ED increase.
Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika
2013-12-01
The objective of this study was to assess and compare the organ and effective doses in the knee area resulting from different commercially available multislice computed tomography devices (MSCT), one cone beam computed tomography device (CBCT) and one conventional X-ray radiography device using MOSFET dosemeters and an anthropomorphic RANDO knee phantom. Measurements of the MSCT devices resulted in effective doses ranging between 27 and 48 µSv. The CBCT measurements resulted in an effective dose of 12.6 µSv. The effective doses attained using the conventional radiography device were 1.8 µSv for lateral and 1.2 µSv for anterior-posterior projections. The effective dose resulting from conventional radiography was considerably lower than those recorded for the CBCT and MSCT devices. The MSCT effective dose results were two to four times higher than those measured on the CBCT device. This study demonstrates that CBCT can be regarded as a potential low-dose 3D imaging technique for knee examinations.
Konecki, Dariusz; Pacho, Ryszard; Rowiński, Olgierd
2017-01-01
Summary Background Endoscopic methods (gastroscopy and colonoscopy) are considered fundamental for the diagnosis of gastrointestinal bleeding. In recent years, multidetector computed tomography (MDCT) has also gained importance in diagnosing gastrointestinal bleeding, particularly in hemodynamically unstable patients and in cases with suspected lower gastrointestinal tract bleeding. CT can detect both the source and the cause of active gastrointestinal bleeding, thereby expediting treatment initiation. Material/Methods The study group consisted of 16 patients with clinical symptoms of gastrointestinal bleeding in whom features of active bleeding were observed on CT. In all patients, bleeding was verified by means of other methods such as endoscopic examinations, endovascular procedures, or surgery. Results The bleeding source was identified on CT in all 16 patients. In 14 cases (87.5%), bleeding was confirmed by other methods. Conclusions CT is an efficient, fast, and readily available tool for detecting the location of acute gastrointestinal bleeding. PMID:29662594
Blom, Douglas A
2012-01-01
Multislice frozen phonon calculations were performed on a model structure of a complex oxide which has potential use as an ammoxidation catalyst. The structure has 11 cation sites in the framework, several of which exhibit mixed Mo/V substitution. In this paper the sensitivity of high-angle annular dark-field (HAADF) imaging to partial substitution of V for Mo in this structure is reported. While the relationship between the average V content in an atom column and the HAADF image intensity is not independent of thickness, it is a fairly weak function of thickness suggesting that HAADF STEM imaging in certain cases can provide a useful starting point for Rietveld refinements of mixed occupancy in complex materials. The thermal parameters of the various cations and oxygen anions in the model affect the amount of thermal diffuse scattering and therefore the intensity in the HAADF images. For complex materials where the structure has been derived via powder Rietveld refinement, the uncertainty in the thermal parameters may limit the accuracy of HAADF image simulations. With the current interest in quantitative microscopy, simulations need to accurately describe the electron scattering to the very high angles often subtended by a HAADF detector. For this system approximately 15% of the scattering occurs above 200 mrad at 200 kV. To simulate scattering to such high angles, very fine sampling of the projected potential is necessary which increases the computational cost of the simulation. Copyright © 2011 Elsevier B.V. All rights reserved.
Ganalyzer: A tool for automatic galaxy image analysis
NASA Astrophysics Data System (ADS)
Shamir, Lior
2011-05-01
Ganalyzer is a model-based tool that automatically analyzes and classifies galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large datasets of galaxy images collected by autonomous sky surveys such as SDSS, LSST or DES.
Efficient star formation in the spiral arms of M51
NASA Technical Reports Server (NTRS)
Lord, Steven D.; Young, Judith S.
1990-01-01
The molecular, neutral, and ionized hydrogen distributions in the Sbc galaxy M51 (NGC 5194) are compared. To estimate H2 surface densities observations of the CO (J = 1 - 0) transition were made in 60 positions out to a radius of 155 arcsec. Extinction-corrected H-alpha intensities were used to compute the detailed massive star formation rates (MSFRs) in the disk. Estimates of the gas surface density, the MSFR, and the ratio of these quantities, MSFR/sigma(p), were then examined. The spiral arms were found to exhibit an excess gas density, measuring between 1.4 and 1.6 times the interarm values at 45 arcsec resolution. The total (arm and interarm) gas content and massive star formation rates in concentric annuli in the disk of M51 were computed. The two quantities fall off together with radius, yielding a relatively constant MSFR/sigma(p) with radius. This behavior is not explained by current models of star formation in galactic disks.
Low dose of rectal thiopental sodium for pediatric sedation in spiral computed tomography study.
Akhlaghpoor, Shahram; Shabestari, Abbas Arjmand; Moghdam, Mohsen Shojaei
2007-06-01
The aim of this study was to determine the effectiveness of reduced new dose in rectal sedation by thiopental sodium for computed tomography (CT) diagnostic imaging. A total of 90 children (mean age, 24.21 month +/- 13.63 [standard deviation]) underwent spiral CT study after rectal administration of thiopental sodium injection solution. The new dose ranged from 15 to 25 mg/kg with a total dose of 350 mg. The percentage of success and adverse reaction were evaluated. Sedation was successful in 98% of infants and children with an average time of 8.04 min +/- 6.87 (standard deviation). One of the cases found desaturation, two experienced vomiting, 14 found rectal defecation, and two experienced hyperactivity. No prolonged sedation was observed. Rectal administration of thiopental sodium for pediatric CT imaging is safe and effective even for hyperextend position by new reduced dose of the drug. This procedure could be easily done in the CT department under supervision of the radiologist.
Self-aligned grating couplers on template-stripped metal pyramids via nanostencil lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klemme, Daniel J.; Johnson, Timothy W.; Mohr, Daniel A.
2016-05-23
We combine nanostencil lithography and template stripping to create self-aligned patterns about the apex of ultrasmooth metal pyramids with high throughput. Three-dimensional patterns such as spiral and asymmetric linear gratings, which can couple incident light into a hot spot at the tip, are presented as examples of this fabrication method. Computer simulations demonstrate that spiral and linear diffraction grating patterns are both effective at coupling light to the tip. The self-aligned stencil lithography technique can be useful for integrating plasmonic couplers with sharp metallic tips for applications such as near-field optical spectroscopy, tip-based optical trapping, plasmonic sensing, and heat-assisted magneticmore » recording.« less
Rappel, Wouter-Jan; Zaman, Junaid A B; Narayan, Sanjiv M
2015-12-01
Human atrial fibrillation (AF) can terminate after ablating localized regions, which supports the existence of localized rotors (spiral waves) or focal drivers. However, it is unclear why ablation near a spiral wave tip would terminate AF and not anchor reentry. We addressed this question by analyzing competing mechanisms for AF termination in numeric simulations, referenced to clinical observations. Spiral wave reentry was simulated in monodomain 2-dimensional myocyte sheets using clinically realistic rate-dependent values for repolarization and conduction. Heterogeneous models were created by introduction of parameterized variations in tissue excitability. Ablation lesions were applied as nonconducting circular regions. Models confirmed that localized ablation may anchor spiral wave reentry, producing organized tachycardias. Several mechanisms referenced to clinical observations explained termination of AF to sinus rhythm. First, lesions may create an excitable gap vulnerable to invasion by fibrillatory waves. Second, ablation of rotors in regions of low-excitability (from remodeling) produced re-entry in more excitable tissue allowing collision of wavefront and back. Conversely, ablation of rotors in high-excitability regions migrated spiral waves to less excitable tissue, where they detached to collide with nonconducting boundaries. Third, ablation may connect rotors to nonconducting anatomic orifices. Fourth, reentry through slow-conducting channels may terminate if ablation closes these channels. Limited ablation can terminate AF by several mechanisms. These data shed light on how clinical AF may be sustained in patients' atria, emphasizing heterogeneities in tissue excitability, slow-conducting channels, and obstacles that are increasingly detectable in patients and should be the focus of future translational studies. © 2015 American Heart Association, Inc.
Hu, Houchun H; Li, Zhiqiang; Pokorney, Amber L; Chia, Jonathan M; Stefani, Niccolo; Pipe, James G; Miller, Jeffrey H
2017-01-01
To demonstrate the clinical feasibility of a new non-Cartesian cylindrically-distributed spiral 3D pseudo-continuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI) pulse sequence in pediatric patients in quantifying cerebral blood flow (CBF) response to an acetazolamide (ACZ) vasodilator challenge. MRI exams were performed on two 3 Tesla Philips Ingenia systems using 32 channel head coil arrays. After local institutional review board approval, the 3D spiral-based pCASL technique was added to a standard brain MRI exam and evaluated in 13 pediatric patients (average age: 11.7±6.4years, range: 1.4-22.2years). All patients were administered ACZ for clinically indicated reasons. Quantitative whole-brain CBF measurements were computed pre- and post-ACZ to assess cerebrovascular reserve. 3D spiral pCASL data were successfully reconstructed in all 13 cases. In 11 patients, CBF increased 2.8% to 93.2% after administration of ACZ. In the two remaining patients, CBF decreased by 2.4 to 6.0% after ACZ. The group average change in CBF due to ACZ was approximately 25.0% and individual changes were statistically significant (p<0.01) in all patients using a paired t-test analysis. CBF perfusion data were diagnostically useful in supporting conventional MR angiography and clinical findings. 3D cylindrically-distributed spiral pCASL MRI provides a robust approach to assess cerebral blood flow and reserve in pediatric patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Multislice imaging of integrated circuits by precession X-ray ptychography.
Shimomura, Kei; Hirose, Makoto; Takahashi, Yukio
2018-01-01
A method for nondestructively visualizing multisection nanostructures of integrated circuits by X-ray ptychography with a multislice approach is proposed. In this study, tilt-series ptychographic diffraction data sets of a two-layered circuit with a ∼1.4 µm gap at nine incident angles are collected in a wide Q range and then artifact-reduced phase images of each layer are successfully reconstructed at ∼10 nm resolution. The present method has great potential for the three-dimensional observation of flat specimens with thickness on the order of 100 µm, such as three-dimensional stacked integrated circuits based on through-silicon vias, without laborious sample preparation.
Simulation of spiral instabilities in wide-gap spherical Couette flow
NASA Astrophysics Data System (ADS)
Abbas, Suhail; Yuan, Li; Shah, Abdullah
2018-04-01
We numerically study the wide-gap spherical Couette flow between two concentric spheres with the inner sphere rotating and the outer one stationary. Two wide-gap clearance ratios, β =({R}2-{R}1)/{R}1=0.33 and 0.50, are chosen to investigate the transition scenarios of the spiral instabilities with increasing Reynolds number ({{Re}}). For β =0.33, we first obtain the steady 1-vortex flow at {{Re}} = 700 by using the 1-vortex flow for a medium gap β =0.18 at {{Re}} = 700 as the initial condition. The 1-vortex flow for β =0.33 exists for {Re} \\in [450,2050] and it collapses back to the basic flow when {Re} > 2050. We then detect spiral instabilities by increasing the Reynolds number gradually. The basic flow becomes unstable at {{Re}}{{c}1} = 2900 where spiral waves of wavenumber m = 6 appear first. Increasing the Reynolds number further, the wavenumber decreases to 5 and 4 at {{Re}}{{c}2} = 3000 and {{Re}}{{c}3} = 4000 respectively. The flow becomes turbulent when {Re} > 4500. For β =0.50, no Taylor vortices are found. The basic flow becomes unstable at {{Re}}{{c}1} = 1280 where spiral waves of wavenumber m = 5 occur first. As the Reynolds number is increased, the wavenumber becomes 4 at {{Re}}{{c}2} = 1700, 5 again at {{Re}}{{c}3} = 1800, 4 at {{Re}}{{c}4} = 2000, and becomes 3 at {{Re}}{{c}5} = 2200 while the flow becomes turbulent for {Re} > 2200. The computed rotational frequencies as a function of the Reynolds number for spiral waves of wavenumber m = 5, 4 and 3 are in good agreement with previous experimental results. The present transition scenario of the spiral wavenumber with increasing Reynolds number for β =0.33 is the same as that of Egbers and Rath (1995 Acta Mech. 111 125-40), while for β =0.50, it is only partially similar to those of Wulf et al (1999 Phys. Fluids 11 1359-72) and Egbers and Rath (1995 Acta Mech. 111 125-40).
A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.
Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin
2018-07-01
Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Phase-sensitive dual-inversion recovery for accelerated carotid vessel wall imaging.
Bonanno, Gabriele; Brotman, David; Stuber, Matthias
2015-03-01
Dual-inversion recovery (DIR) is widely used for magnetic resonance vessel wall imaging. However, optimal contrast may be difficult to obtain and is subject to RR variability. Furthermore, DIR imaging is time-inefficient and multislice acquisitions may lead to prolonged scanning times. Therefore, an extension of phase-sensitive (PS) DIR is proposed for carotid vessel wall imaging. The statistical distribution of the phase signal after DIR is probed to segment carotid lumens and suppress their residual blood signal. The proposed PS-DIR technique was characterized over a broad range of inversion times. Multislice imaging was then implemented by interleaving the acquisition of 3 slices after DIR. Quantitative evaluation was then performed in healthy adult subjects and compared with conventional DIR imaging. Single-slice PS-DIR provided effective blood-signal suppression over a wide range of inversion times, enhancing wall-lumen contrast and vessel wall conspicuity for carotid arteries. Multislice PS-DIR imaging with effective blood-signal suppression is enabled. A variant of the PS-DIR method has successfully been implemented and tested for carotid vessel wall imaging. This technique removes timing constraints related to inversion recovery, enhances wall-lumen contrast, and enables a 3-fold increase in volumetric coverage at no extra cost in scanning time.
Li, T; Zhao, S; Liu, J; Yang, L; Huang, Z; Li, J; Luo, C; Li, X
2017-10-01
To investigate the use of second-generation dual-source high-pitch computed tomography in obtaining confident diagnostic image quality using a low radiation dose in young patients with congenital heart disease (CHD). From July 2014 to June 2016, 50 consecutive children <4 years with complex CHD underwent electrocardiography (ECG)-triggered dual-source computed tomography (CT). The patients were assigned randomly to two groups: high-pitch (pitch 3.4) spiral dual-source CT acquisition (group A) and retrospectively spiral dual-source CT acquisition (group B). The image quality, diagnostic accuracy, coronary artery origin, course demonstration, and radiation exposure were compared between the two groups. Fifty examinations were performed (group A, 25; group B, 25). There were no significant differences in image quality, diagnostic accuracy, coronary artery origin, and course demonstration between the two groups. The image quality scores were 1.3±0.4 in group A and 1.1±0.3 in group B (p=0.2). The diagnostic accuracy was 100% in both groups. The coronary arteries were traceable in 80% in group A and 84% in group B (p=0.7). A single coronary artery was identified in one case in group A and the left anterior descending (LAD) branch originated from the right coronary artery (RCA) in one case in group B. There were significant differences in the effective doses between the two groups (0.40±0.20 mSv in group A and 2.7±1.0 mSv in group B, p<0.05). Intra-cardiac and extra-cardiac malformation, coronary artery origin, and course malformation can be visualised clearly using a high-pitch ECG-triggered dual-source CT with a low radiation dose and good image quality in patients with CHD. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Choi, June Young; Lee, Kyu Eun; Koo, Do Hoon; Kim, Kyu Hyung; Kim, Eun young; Bae, Dong Sik; Jung, Sung Eun; Youn, Yeo-Kyu
2014-03-01
The purposes of the present study were to assess (1) the correlation between the weight of the postoperative thyroid specimen and the spiral computed tomography (CT) volumetry results of the thyroid gland in patients with Graves' disease, and (2) the utility of CT volumetry for determining the operative approach. From 2009 to 2010, a total of 56 patients with Graves' disease underwent total or subtotal thyroidectomy. An enhanced spiral CT was taken in all patients prior to the operation. From 2.5 mm-thick slices of the thyroid gland, the surface area was calculated to measure the volume of the thyroid gland. The glandular volume was compared to the weight of the postoperative thyroid specimen. A total of 42 and 14 patients underwent total and subtotal thyroidectomy, respectively. The mean weight of the postoperative thyroid specimen was 43.9 ± 33.4 g, and the mean volume obtained by CT volumetry was 44.2 ± 32.8 mL. A good correlation was observed between the weight of the postoperative thyroid specimen and the volume calculated by CT (r = 0.98, p < 0.001). When 100 mL was set as the higher cut-off value of the thyroid volume for minimally invasive thyroid surgery, the estimated blood loss showed a significant difference between the >100 mL and the ≤100 mL groups (608.3 ± 540.8 vs. 119.7 ± 110.4 mL; p = 0.036). Spiral CT volumetry may be used to measure the thyroid volume reliably in patients with Graves' disease. For cases in which surgery is indicated in patients with Graves' disease, CT volumetry provides useful information from which to determine the operative approach. One hundred milliliter or less of thyroid volume in CT volumetry is recommended to perform minimally invasive thyroid surgery.
Wyler, Annabelle; Bousson, Valérie; Bergot, Catherine; Polivka, Marc; Leveque, Eric; Vicaut, Eric; Laredo, Jean-Denis
2007-02-01
To assess spiral multidetector computed tomographic (CT) arthrography for the depiction of cartilage thickness in hips without cartilage loss, with evaluation of anatomic slices as the reference standard. Permission to perform imaging studies in cadaveric specimens of individuals who had willed their bodies to science was obtained from the institutional review board. Two independent observers measured the femoral and acetabular hyaline cartilage thickness of 12 radiographically normal cadaveric hips (from six women and five men; age range at death, 52-98 years; mean, 76.5 years) on spiral multidetector CT arthrographic reformations and on coronal anatomic slices. Regions of cartilage loss at gross or histologic examination were excluded. CT arthrographic and anatomic measurements in the coronal plane were compared by using Bland-Altman representation and a paired t test. Differences between mean cartilage thicknesses at the points of measurement were tested by means of analysis of variance. Interobserver and intraobserver reproducibilities were determined. At CT arthrography, mean cartilage thickness ranged from 0.32 to 2.53 mm on the femoral head and from 0.95 to 3.13 mm on the acetabulum. Observers underestimated cartilage thickness in the coronal plane by 0.30 mm +/- 0.52 (mean +/- standard error) at CT arthrography (P < .001) compared with the anatomic reference standard. Ninety-five percent of the differences between CT arthrography and anatomic values ranged from -1.34 to 0.74 mm. The difference between mean cartilage thicknesses at the different measurement points was significant for coronal spiral multidetector CT arthrography and anatomic measurement of the femoral head and acetabulum and for sagittal and transverse CT arthrography of the femoral head (P < .001). Changes in cartilage thickness from the periphery to the center of the joint ("gradients") were found by means of spiral multidetector CT arthrography and anatomic measurement. Spiral multidetector CT arthrography depicts cartilage thickness gradients in radiographically normal cadaveric hips. (c) RSNA, 2007.
Gharaviri, Ali; Brooks, Anthony; Chapman, Darius; Lau, Dennis H.; Roberts-Thomson, Kurt C.; Sanders, Prashanthan
2014-01-01
Background Rotors are postulated to maintain cardiac fibrillation. Despite the importance of bipolar electrograms in clinical electrophysiology, few data exist on the properties of bipolar electrograms at rotor sites. The pivot of a spiral wave is characterized by relative uncertainty of wavefront propagation direction compared to the periphery. The bipolar electrograms used in electrophysiology recording encode information on both direction and timing of approaching wavefronts. Objective To test the hypothesis that bipolar electrograms from the pivot of rotors have higher Shannon entropy (ShEn) than electrograms recorded at the periphery due to the spatial dynamics of spiral waves. Methods and Results We studied spiral wave propagation in 2-dimensional sheets constructed using a simple cell automaton (FitzHugh-Nagumo), atrial (Courtemanche-Ramirez-Nattel) and ventricular (Luo-Rudy) myocyte cell models and in a geometric model spiral wave. In each system, bipolar electrogram recordings were simulated, and Shannon entropy maps constructed as a measure of electrogram information content. ShEn was consistently highest in the pivoting region associated with the phase singularity of the spiral wave. This property was consistently preserved across; (i) variation of model system (ii) alterations in bipolar electrode spacing, (iii) alternative bipolar electrode orientation (iv) bipolar electrogram filtering and (v) in the presence of rotor meander. Directional activation plots demonstrated that the origin of high ShEn at the pivot was the directional diversity of wavefront propagation observed in this location. Conclusions The pivot of the rotor is consistently associated with high Shannon entropy of bipolar electrograms despite differences in action potential model, bipolar electrode spacing, signal filtering and rotor meander. Maximum ShEn is co-located with the pivot for rotors observed in the bipolar electrogram recording mode, and may be an intrinsic property of spiral wave dynamic behaviour. PMID:25401331
Barišić, Tatjana; Šutalo, Nikica; Letica, Ludvig; Kordić, Andrea Vladimira
2015-11-01
Splenic artery aneurysm (SAA) is a rare and usually asymptomatic vascular anomaly which carries the risk of rupture and fatal hemorrhage. It is more common in women and is usually associated with pregnancy. We present the case of rupture of SAA, 5 days after giving birth by cesarean section, which was diagnosed with Multi-Slice Computed Tomografy (MSCT) angiography and was successfully operated in the second emergency laparotomy, with the final good outcome for the mother. This case indicates that in case of sudden bleeding in the abdomen, with the development of hypovolemic shock, especially in the peripartum period, should be suspected rupture of SAA. The paper presents a critical review of this case, with a review of the literature.
Single coronary artery originating from the right sinus Valsalva and ability to work.
De Rosa, Roberto; Ratti, Gennaro; Gerardi, Donato; Tedeschi, Carlo; Lamberti, Monica
2015-01-01
We present a case of a 56-year-old male electrician who was admitted to the hospital with atrial fibrillation, atypical chest pain and dyspnea. He gave a history that on the morning he had working for almost 4 hours carrying out various activities with considerable physical effort. After cardioversion, conventional coronary angiography revealed a suspect of single coronary vessel (SCA) arising from the right sinus of Valsalva. The patient underwent multislice computed tomography that showed a SCA arising from the right sinus Valsalva and dividing in Right Coronary Artery (RCA) and Left Main coronary artery (LM). The finding of posterior course of the LM without atherosclerotic has proved crucial for the expression of an opinion of working capacity even with limitation.
NASA Astrophysics Data System (ADS)
Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi
2014-05-01
In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.
Application of Virtual Navigation with Multimodality Image Fusion in Foramen Ovale Cannulation.
Qiu, Xixiong; Liu, Weizong; Zhang, Mingdong; Lin, Hengzhou; Zhou, Shoujun; Lei, Yi; Xia, Jun
2017-11-01
Idiopathic trigeminal neuralgia (ITN) can be effectively treated with radiofrequency thermocoagulation. However, this procedure requires cannulation of the foramen ovale, and conventional cannulation methods are associated with high failure rates. Multimodality imaging can improve the accuracy of cannulation because each imaging method can compensate for the drawbacks of the other. We aim to determine the feasibility and accuracy of percutaneous foramen ovale cannulation under the guidance of virtual navigation with multimodality image fusion in a self-designed anatomical model of human cadaveric heads. Five cadaveric head specimens were investigated in this study. Spiral computed tomography (CT) scanning clearly displayed the foramen ovale in all five specimens (10 foramina), which could not be visualized using two-dimensional ultrasound alone. The ultrasound and spiral CT images were fused, and percutaneous cannulation of the foramen ovale was performed under virtual navigation. After this, spiral CT scanning was immediately repeated to confirm the accuracy of the cannulation. Postprocedural spiral CT confirmed that the ultrasound and CT images had been successfully fused for all 10 foramina, which were accurately and successfully cannulated. The success rates of both image fusion and cannulation were 100%. Virtual navigation with multimodality image fusion can substantially facilitate foramen ovale cannulation and is worthy of clinical application. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Joint water-fat separation and deblurring for spiral imaging.
Wang, Dinghui; Zwart, Nicholas R; Pipe, James G
2018-06-01
Most previous approaches to spiral Dixon water-fat imaging perform the water-fat separation and deblurring sequentially based on the assumption that the phase accumulation and blurring as a result of off-resonance are separable. This condition can easily be violated in regions where the B 0 inhomogeneity varies rapidly. The goal of this work is to present a novel joint water-fat separation and deblurring method for spiral imaging. The proposed approach is based on a more accurate signal model that takes into account the phase accumulation and blurring simultaneously. A conjugate gradient method is used in the image domain to reconstruct the deblurred water and fat iteratively. Spatially varying convolutions with a local convergence criterion are used to reduce the computational demand. Both simulation and high-resolution brain imaging have demonstrated that the proposed joint method consistently improves the quality of reconstructed water and fat images compared with the sequential approach, especially in regions where the field inhomogeneity changes rapidly in space. The loss of signal-to-noise-ratio as a result of deblurring is minor at optimal echo times. High-quality water-fat spiral imaging can be achieved with the proposed joint approach, provided that an accurate field map of B 0 inhomogeneity is available. Magn Reson Med 79:3218-3228, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jiahui; Engelmann, Roger; Li Qiang
2007-12-15
Accurate segmentation of pulmonary nodules in computed tomography (CT) is an important and difficult task for computer-aided diagnosis of lung cancer. Therefore, the authors developed a novel automated method for accurate segmentation of nodules in three-dimensional (3D) CT. First, a volume of interest (VOI) was determined at the location of a nodule. To simplify nodule segmentation, the 3D VOI was transformed into a two-dimensional (2D) image by use of a key 'spiral-scanning' technique, in which a number of radial lines originating from the center of the VOI spirally scanned the VOI from the 'north pole' to the 'south pole'. Themore » voxels scanned by the radial lines provided a transformed 2D image. Because the surface of a nodule in the 3D image became a curve in the transformed 2D image, the spiral-scanning technique considerably simplified the segmentation method and enabled reliable segmentation results to be obtained. A dynamic programming technique was employed to delineate the 'optimal' outline of a nodule in the 2D image, which corresponded to the surface of the nodule in the 3D image. The optimal outline was then transformed back into 3D image space to provide the surface of the nodule. An overlap between nodule regions provided by computer and by the radiologists was employed as a performance metric for evaluating the segmentation method. The database included two Lung Imaging Database Consortium (LIDC) data sets that contained 23 and 86 CT scans, respectively, with 23 and 73 nodules that were 3 mm or larger in diameter. For the two data sets, six and four radiologists manually delineated the outlines of the nodules as reference standards in a performance evaluation for nodule segmentation. The segmentation method was trained on the first and was tested on the second LIDC data sets. The mean overlap values were 66% and 64% for the nodules in the first and second LIDC data sets, respectively, which represented a higher performance level than those of two existing segmentation methods that were also evaluated by use of the LIDC data sets. The segmentation method provided relatively reliable results for pulmonary nodule segmentation and would be useful for lung cancer quantification, detection, and diagnosis.« less
Peripleural lung disease detection based on multi-slice CT images
NASA Astrophysics Data System (ADS)
Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.
2015-03-01
With the development of multi-slice CT technology, obtaining accurate 3D images of lung field in a short time become possible. To support that, a lot of image processing methods need to be developed. Detection peripleural lung disease is difficult due to its existence out of lung region, because lung extraction is often performed based on threshold processing. The proposed method uses thoracic inner region extracted by inner cavity of bone as well as air region, covers peripleural lung diseased cases such as lung nodule, calcification, pleural effusion and pleural plaque. We applied this method to 50 cases including 39 peripleural lung diseased cases. This method was able to detect 39 peripleural lung disease with 2.9 false positive per case.
High-speed multislice T1 mapping using inversion-recovery echo-planar imaging.
Ordidge, R J; Gibbs, P; Chapman, B; Stehling, M K; Mansfield, P
1990-11-01
Tissue contrast in MR images is a strong function of spin-lattice (T1) and spin-spin (T2) relaxation times. However, the T1 relaxation time is rarely quantified because of the long scan time required to produce an accurate T1 map of the subject. In a standard 2D FT technique, this procedure may take up to 30 min. Modifications of the echo-planar imaging (EPI) technique which incorporate the principle of inversion recovery (IR) enable multislice T1 maps to be produced in total scan times varying from a few seconds up to a minute. Using IR-EPI, rapid quantification of T1 values may thus lead to better discrimination between tissue types in an acceptable scan time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrier, Pierre, E-mail: p.barrier@gmail.com; Otal, Philippe; Garcia, Olivier
Fistulas complicating an abdominal aortic aneurysm (AAA) are rare, and fistulas involving the left renal vein are particularly uncommon. We highlight here a fistula between an infrarenal aortic aneurysm and a retroaortic left renal vein, revealed by left flank pain associated with hematuria and acute renal failure. The multislice CT angiography performed in this 68-year-old patient revealed communication and equal enhancement between the aorta and the left gonadic vein, suggesting the presence of a fistula. The three-dimensional VRT reconstructions presented in this case were of great value in the preoperative planning, enabling immediate visualization of this unusual feature. Alternative diagnosesmore » to consider when encountering this clinical presentation are reviewed.« less
How are quasars fueled? Simulating interstellar gas in tidally disturbed galaxies
NASA Technical Reports Server (NTRS)
Byrd, Gene G.
1986-01-01
Whether gravitational tides from companions trigger global instabilities in spiral galaxy disks and thus rapid flows of gas into the nucleus to fuel activity is investigated. An n-body computer program is used to simulate the disk of the spiral galaxy within a much more stable, high-velocity dispersion spherical halo. Under sufficient perturbation, the disk undergoes violent distortions due to the disturber and its self-gravitation. The tidal action of companions was simulated and the tidal strengths at which the instabilities appear to match those of the observed companions of Seyferts and quasars was shown. With the additional modifications planned, the gas flow will be more realistically simulated to compare with observations (e.g., colors, velocity fields) of active galaxies.
Jacobsen, Svein; Rolfsnes, Hans Olav; Stauffer, Paul R
2005-02-01
The radiation characteristics and mode of operation of single-arm, groundplane backed, Archimedean spiral antennas are investigated by means of conformal finite difference time domain numerical analysis. It is shown that this antenna type may be categorized as a well-matched, broadband, circularly polarized traveling wave structure that can be fed directly by nonbalanced coaxial networks. The study further concentrates on relevant design and description features parameterized in terms of measures like radiation efficiency, sensing depth, directivity, and axial ratio of complementary polarizations. We document that an antenna of only 30-mm transverse size produces circularly polarized waves in a two-octave frequency span (2-8 GHz) with acceptable radiation efficiency (76%-94%) when loaded by muscle-like tissue.
NASA Astrophysics Data System (ADS)
Kachalov, V. N.; Tsvelaya, V. A.; Kudryashova, N. N.; Agladze, K. I.
2017-11-01
The mechanism of the low voltage defibrillation is based on the drift of the spiral wave induced by a high frequency wave train. In the process, it is first necessary to unpin the wave from the stabilizing obstacle. We study the conditions of unpinning of a rotating wave anchored to the defect by posing the main accent on the boundary conditions of it. The computer simulations performed using the Korhonen model showed that the fluxes through the border of the defect in the cardiac tissue can significantly modify the excitation pattern, and the working frequency gap for the unpinning of reentry waves could be substantially reduced, making overdrive pacing procedure less effective or practically inapplicable.
NASA Astrophysics Data System (ADS)
Bait, Omkar; Barway, Sudhanshu; Wadadekar, Yogesh
2017-11-01
Using multiwavelength data, from ultraviolet to optical to near-infrared to mid-infrared, for ˜6000 galaxies in the local Universe, we study the dependence of star formation on the morphological T-types for massive galaxies (log M*/M⊙ ≥ 10). We find that, early-type spirals (Sa-Sbc) and S0s predominate in the green valley, which is a transition zone between the star forming and quenched regions. Within the early-type spirals, as we move from Sa to Sbc spirals the fraction of green valley and quenched galaxies decreases, indicating the important role of the bulge in the quenching of galaxies. The fraction of early-type spirals decreases as we enter the green valley from the blue cloud, which coincides with the increase in the fraction of S0s. These points towards the morphological transformation of early-type spiral galaxies into S0s, which can happen due to environmental effects such as ram-pressure stripping, galaxy harassment or tidal interactions. We also find a second population of S0s that are actively star forming and are present in all environments. Since morphological T-type, specific star formation rate (sSFR), and environmental density are all correlated with each other, we compute the partial correlation coefficient for each pair of parameters while keeping the third parameter as a control variable. We find that morphology most strongly correlates with sSFR, independent of the environment, while the other two correlations (morphology-density and sSFR-environment) are weaker. Thus, we conclude that, for massive galaxies in the local Universe, the physical processes that shape their morphology are also the ones that determine their star-forming state.
Pashaei, Ali; Bayer, Jason; Meillet, Valentin; Dubois, Rémi; Vigmond, Edward
2015-03-01
To show how atrial fibrillation rotor activity on the heart surface manifests as phase on the torso, fibrillation was induced on a geometrically accurate computer model of the human atria. The Hilbert transform, time embedding, and filament detection were compared. Electrical activity on the epicardium was used to compute potentials on different surfaces from the atria to the torso. The Hilbert transform produces erroneous phase when pacing for longer than the action potential duration. The number of phase singularities, frequency content, and the dominant frequency decreased with distance from the heart, except for the convex hull. Copyright © 2015 Elsevier Inc. All rights reserved.
Model for Simulating a Spiral Software-Development Process
NASA Technical Reports Server (NTRS)
Mizell, Carolyn; Curley, Charles; Nayak, Umanath
2010-01-01
A discrete-event simulation model, and a computer program that implements the model, have been developed as means of analyzing a spiral software-development process. This model can be tailored to specific development environments for use by software project managers in making quantitative cases for deciding among different software-development processes, courses of action, and cost estimates. A spiral process can be contrasted with a waterfall process, which is a traditional process that consists of a sequence of activities that include analysis of requirements, design, coding, testing, and support. A spiral process is an iterative process that can be regarded as a repeating modified waterfall process. Each iteration includes assessment of risk, analysis of requirements, design, coding, testing, delivery, and evaluation. A key difference between a spiral and a waterfall process is that a spiral process can accommodate changes in requirements at each iteration, whereas in a waterfall process, requirements are considered to be fixed from the beginning and, therefore, a waterfall process is not flexible enough for some projects, especially those in which requirements are not known at the beginning or may change during development. For a given project, a spiral process may cost more and take more time than does a waterfall process, but may better satisfy a customer's expectations and needs. Models for simulating various waterfall processes have been developed previously, but until now, there have been no models for simulating spiral processes. The present spiral-process-simulating model and the software that implements it were developed by extending a discrete-event simulation process model of the IEEE 12207 Software Development Process, which was built using commercially available software known as the Process Analysis Tradeoff Tool (PATT). Typical inputs to PATT models include industry-average values of product size (expressed as number of lines of code), productivity (number of lines of code per hour), and number of defects per source line of code. The user provides the number of resources, the overall percent of effort that should be allocated to each process step, and the number of desired staff members for each step. The output of PATT includes the size of the product, a measure of effort, a measure of rework effort, the duration of the entire process, and the numbers of injected, detected, and corrected defects as well as a number of other interesting features. In the development of the present model, steps were added to the IEEE 12207 waterfall process, and this model and its implementing software were made to run repeatedly through the sequence of steps, each repetition representing an iteration in a spiral process. Because the IEEE 12207 model is founded on a waterfall paradigm, it enables direct comparison of spiral and waterfall processes. The model can be used throughout a software-development project to analyze the project as more information becomes available. For instance, data from early iterations can be used as inputs to the model, and the model can be used to estimate the time and cost of carrying the project to completion.
2012-01-01
Background Computed tomography (CT) scanning has become essential in the early diagnostic phase of trauma care because of its high diagnostic accuracy. The introduction of multi-slice CT scanners and infrastructural improvements made total-body CT scanning technically feasible and its usage is currently becoming common practice in several trauma centers. However, literature provides limited evidence whether immediate total-body CT leads to better clinical outcome then conventional radiographic imaging supplemented with selective CT scanning in trauma patients. The aim of the REACT-2 trial is to determine the value of immediate total-body CT scanning in trauma patients. Methods/design The REACT-2 trial is an international, multicenter randomized clinical trial. All participating trauma centers have a multi-slice CT scanner located in the trauma room or at the Emergency Department (ED). All adult, non-pregnant, severely injured trauma patients according to predefined criteria will be included. Patients in whom direct scanning will hamper necessary cardiopulmonary resuscitation or who require an immediate operation because of imminent death (both as judged by the trauma team leader) are excluded. Randomization will be computer assisted. The intervention group will receive a contrast-enhanced total-body CT scan (head to pelvis) during the primary survey. The control group will be evaluated according to local conventional trauma imaging protocols (based on ATLS guidelines) supplemented with selective CT scanning. Primary outcome will be in-hospital mortality. Secondary outcomes are differences in mortality and morbidity during the first year post trauma, several trauma work-up time intervals, radiation exposure, general health and quality of life at 6 and 12 months post trauma and cost-effectiveness. Discussion The REACT-2 trial is a multicenter randomized clinical trial that will provide evidence on the value of immediate total-body CT scanning during the primary survey of severely injured trauma patients. If immediate total-body CT scanning is found to be the best imaging strategy in severely injured trauma patients it could replace conventional imaging supplemented with CT in this specific group. Trial Registration ClinicalTrials.gov: (NCT01523626). PMID:22458247
Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT.
Parsa, Azin; Ibrahim, Norliza; Hassan, Bassam; van der Stelt, Paul; Wismeijer, Daniel
2015-01-01
The first purpose of this study was to analyze the correlation between bone volume fraction (BV/TV) and calibrated radiographic bone density Hounsfield units (HU) in human jaws, derived from micro-CT and multislice computed tomography (MSCT), respectively. The second aim was to assess the accuracy of cone beam computed tomography (CBCT) in evaluating trabecular bone density and microstructure using MSCT and micro-CT, respectively, as reference gold standards. Twenty partially edentulous human mandibular cadavers were scanned by three types of CT modalities: MSCT (Philips, Best, the Netherlands), CBCT (3D Accuitomo 170, J Morita, Kyoto, Japan), and micro-CT (SkyScan 1173, Kontich, Belgium). Image analysis was performed using Amira (v4.1, Visage Imaging Inc., Carlsbad, CA, USA), 3Diagnosis (v5.3.1, 3diemme, Cantu, Italy), Geomagic (studio(®) 2012, Morrisville, NC, USA), and CTAn (v1.11, SkyScan). MSCT, CBCT, and micro-CT scans of each mandible were matched to select the exact region of interest (ROI). MSCT HU, micro-CT BV/TV, and CBCT gray value and bone volume fraction of each ROI were derived. Statistical analysis was performed to assess the correlations between corresponding measurement parameters. Strong correlations were observed between CBCT and MSCT density (r = 0.89) and between CBCT and micro-CT BV/TV measurements (r = 0.82). Excellent correlation was observed between MSCT HU and micro-CT BV/TV (r = 0.91). However, significant differences were found between all comparisons pairs (P < 0.001) except for mean measurement between CBCT BV/TV and micro-CT BV/TV (P = 0.147). An excellent correlation exists between bone volume fraction and bone density as assessed on micro-CT and MSCT, respectively. This suggests that bone density measurements could be used to estimate bone microstructural parameters. A strong correlation also was found between CBCT gray values and BV/TV and their gold standards, suggesting the potential of this modality in bone quality assessment at implant site. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Langer, Christoph; Schroeder, Janina; Peterschroeder, Andreas; Vaske, Bernhard; Faber, Lothar; Welge, Dirk; Niethammer, Matthias; Lamp, Barbara; Butz, Thomas; Bitter, Thomas; Oldenburg, Olaf; Horstkotte, Dieter
2010-07-01
Multi-slice computed tomography (MSCT) was proved to provide precise cardiac volumetric assessment. Cardiac resynchronization therapy (CRT) is an effective treatment for selected patients with heart failure and reduced ejection fraction (HFREF). In HFREF patients we investigated the potential of MSCT based wall motion analysis in order to demonstrate CRT-induced reversed remodeling. Besides six patients with normal cardiac pump function serving as control group seven HFREF patients underwent contrast enhanced MSCT before and after CRT. Short cardiac axis views of the left ventricle (LV) in end-diastole (ED) and end-systole (ES) served for planimetry. Pre- and post-CRT MSCT based volumetry was compared with 2D echo. To demonstrate CRT-induced reverse remodeling, MSCT based multi-segment color-coded polar maps were introduced. With regard to the HFREF patients pre-CRT MSCT based volumetry correlated with 2D echo data for LV-EDV (MSCT 278.3+/-75.0mL vs. echo 274.4+/-85.6mL) r=0.380, p=0.401, LV-ESV (MSCT 226.7+/-75.4mL vs. echo 220.1+/-74.0mL) r=0.323, p=0.479 and LV-EF (MSCT 20.2+/-8.8% vs. echo 20.0+/-11.9%) r=0.617, p=0.143. Post-CRT MSCT correlated well with 2D echo: LV-EDV (MSCT 218.9+/-106.4mL vs. echo 188.7+/-93.1mL) r=0.87, p=0.011, LV-ESV (MSCT 145+/-71.5mL vs. echo 125.6+/-78mL) r=0.84, p=0.018 and LV-EF (MSCT 29.6+/-11.3mL vs. echo 38.6+/-14.6mL) r=0.89, p=0.007. There was a significant increase of the mid-ventricular septum in terms of absolute LV wall thickening of the responders (pre 0.9+/-2.1mm vs. post 3.3+/-2.2mm; p<0.0005). MSCT based volumetry involving multi-segment color-coded polar maps offers wall motion analysis to demonstrate CRT-induced reverse remodeling which needs to be further validated. 2010 Elsevier Ltd. All rights reserved.
Super-spiral structures of bi-stable spiral waves and a new instability of spiral waves
NASA Astrophysics Data System (ADS)
Gao, Jian; Wang, Qun; Lü, Huaping
2017-10-01
A new type of super-spiral structure and instability of spiral waves (in numerical simulation) are investigated. Before the period-doubling bifurcation of this system, the super-spiral structure occurs caused by phase trajectory selection. This type of super-spiral structure is totally different from the super-spiral structure observed early. Although the spiral rotates, the super-spiral structure is stationary. Observably, fully turbulence of the system occurs suddenly which has no process of instability. The forming principle of this instability may have applications in cardiology.
Detterbeck, Andreas; Hofmeister, Michael; Hofmann, Elisabeth; Haddad, Daniel; Weber, Daniel; Hölzing, Astrid; Zabler, Simon; Schmid, Matthias; Hiller, Karl-Heinz; Jakob, Peter; Engel, Jens; Hiller, Jochen; Hirschfelder, Ursula
2016-07-01
To examine the relative usefulness and suitability of magnetic resonance imaging (MRI) in daily clinical practice as compared to various technologies of computed tomography (CT) in addressing questions of orthodontic interest. Three blinded raters evaluated 2D slices and 3D reconstructions created from scans of two pig heads. Five imaging modalities were used, including three CT technologies-multislice (MSCT), cone-beam CT (CBCT), and industrial (µCT)-and two MRI protocols with different scan durations. Defined orthodontic parameters were rated one by one on the 2D slices and the 3D reconstructions, followed by final overall ratings for each modality. A mixed linear model was used for statistical analysis. Based on the 2D slices, the parameter of visualizing tooth-germ topography did not yield any significantly different ratings for MRI versus any of the CT scans. While some ratings for the other parameters did involve significant differences, how these should be interpreted depends greatly on the relevance of each parameter. Based on the 3D reconstructions, the only significant difference between technologies was noted for the parameter of visualizing root-surface morphology. Based on the final overall ratings, the imaging performance of the standard MRI protocol was noninferior to the performance of the three CT technologies. On comparing the imaging performance of MRI and CT scans, it becomes clear that MRI has a huge potential for applications in daily clinical practice. Given its additional benefits of a good contrast ratio and complete absence of ionizing radiation, further studies are needed to explore this clinical potential in greater detail.
Clinical applications of cone beam computed tomography in endodontics: A comprehensive review.
Cohenca, Nestor; Shemesh, Hagay
2015-09-01
The use of cone beam computed tomography (CBCT) in endodontics has been extensively reported in the literature. Compared with the traditional spiral computed tomography, limited field of view (FOV) CBCT results in a fraction of the effective absorbed dose of radiation. The purpose of this manuscript is to review the application and advantages associated with advanced endodontic problems and complications, while reducing radiation exposure during complex endodontic procedures. The benefits of the added diagnostic information provided by intraoperative CBCT images in select cases justify the risk associated with the limited level of radiation exposure.
Numerical modeling of barred spiral galaxies
NASA Astrophysics Data System (ADS)
Moore, Elizabeth Mary
1992-08-01
A two-component, self-consistent computer code to model spiral galaxies was written and tested and a method of inducing and controlling bar formation is developed. This work presents a departure from former modeling work done at the University of Florida, which depended on the beam scheme, a hydrodynamical code with a number of limitations. In particular, only the gas component could be modeled, no self-gravitational forces were included, and the viscosity inherent to the code could not be controlled easily. These shortcomings are overcome in the new algorithm. Most importantly, an attempt has been made to keep the models self-consistent. No perturbing potentials are imposed or required to excite bar and spiral structure. The code can model both the stellar and the gaseous component of a spiral galaxy. The stellar component feels only gravitational forces, while the gas component feels both gravitational and viscous forces. In addition, a halo force can be imposed for the purpose of stabilizing the disk. The code is a hybrid grid/smooth particle code. The gravitational forces are calculated on a Cartesian grid using a Fast Fourier Transform, while the gas viscous forces are calculated in a smooth particle manner. A mechanism for creating warm, featureless, stable disks is developed by taking moments of the collision less Boltzmann equation. In order to induce and control bar and spiral arm formation, the stabilizing stellar velocity dispersions are reduced in the center of the disk, but maintained in the outer regions. A bar forms naturally in the interior and the rotation of this bar helps maintain spiral structure in the outer gas disk. Realistic-looking spiral features are maintained in the gas component for as long as the models are calculated. A wide variety of bar and spiral structure can be formed by varying the size of the unstable central region, the rate of 'turn on', of the heating and the halo mass. We would like to test the model results by comparing them with observations and so a second part of the thesis consists of observing and reducing 21 cm line data of NGC 1398 and NGC 1784 at the Very Large Array. Low (C/D array) and high (B/C) resolution data were obtained, calibrated and combined to make maps of the integrated column density and mean radial velocity of the neutral hydrogen.
Kinematics of symmetric Galactic longitudes to probe the spiral arms of the Milky Way with Gaia
NASA Astrophysics Data System (ADS)
Antoja, T.; Roca-Fàbrega, S.; de Bruijne, J.; Prusti, T.
2016-05-01
Aims: We model the effects of the spiral arms of the Milky Way on the disk stellar kinematics in the Gaia observable space. We also estimate the Gaia capabilities of detecting the predicted signatures. Methods: We use both controlled orbital integrations in analytic potentials and self-consistent simulations. We introduce a new strategy to investigate the effects of spiral arms, which consists of comparing the stellar kinematics of symmetric Galactic longitudes (+l and -l), in particular the median transverse velocity as determined from parallaxes and proper motions. This approach does not require the assumption of an axisymmetric model because it involves an internal comparison of the data. Results: The typical differences between the transverse velocity in symmetric longitudes in the models are of the order of ~2 km s-1, but can be larger than 10 km s-1 for certain longitudes and distances. The longitudes close to the Galactic centre and to the anti-centre are those with larger and smaller differences, respectively. The differences between the kinematics for +l and -l show clear trends that depend strongly on the properties of spiral arms. Thus, this method can be used to quantify the importance of the effects of spiral arms on the orbits of stars in the different regions of the disk, and to constrain the location of the arms, main resonances and, thus, pattern speed. Moreover, the method allows us to test different origin scenarios of spiral arms and the dynamical nature of the spiral structure (e.g. grand design versus transient multiple arms). We estimate the number of stars of each spectral type that Gaia will observe in certain representative Galactic longitudes, their characteristic errors in distance and transverse velocity, and the error in computing the median velocity as a function of distance. We will be able to measure the median transverse velocity exclusively with Gaia data, with precision smaller than ~1 km s-1 up to distances of ~4-6 kpc for certain giant stars, and up to ~2-4 kpc and better kinematic precision (≲0.5 km s-1) for certain sub-giants and dwarfs. These are enough to measure the typical signatures seen in the models. Conclusions: The Gaia catalogue will allow us to use the presented approach successfully and improve significantly upon current studies of the dynamics of the spiral arms of our Galaxy. We also show that a similar strategy can be used with line-of-sight velocities, which could be applied to Gaia data and to upcoming spectroscopic surveys.
Fibonacci and Nature. Mathematics Investigations for Schools.
ERIC Educational Resources Information Center
Newton, Lynn D.
1987-01-01
Sets forth the history of the Fibonacci Sequence and details its occurrence in nature and its potential for project work in schools. Ideas and activities include the rabbit problem, investigations of the sequence itself, its relationship to plants, music, snail shells, and the golden section. Computer generation of spirals is also discussed. (PK)
Dynamic multi-coil tailored excitation for transmit B1 correction at 7 Tesla.
Umesh Rudrapatna, S; Juchem, Christoph; Nixon, Terence W; de Graaf, Robin A
2016-07-01
Tailored excitation (TEx) based on interspersing multiple radio frequency pulses with linear gradient and higher-order shim pulses can be used to obtain uniform flip angle in the presence of large radio frequency transmission (B 1+) inhomogeneity. Here, an implementation of dynamic, multislice tailored excitation using the recently developed multi-coil nonlinear shim hardware (MC-DTEx) is reported. MC-DTEx was developed and tested both in a phantom and in vivo at 7 T, and its efficacy was quantitatively assessed. Predicted outcomes of MC-DTEx and DTEx based on spherical harmonic shims (SH-DTEx) were also compared. For a planned 30 ° flip angle, in a phantom, the standard deviation in excitation improved from 28% (regular excitation) to 12% with MC-DTEx. The SD in in vivo excitation improved from 22 to 12%. The improvements achieved with experimental MC-DTEx closely matched the theoretical predictions. Simulations further showed that MC-DTEx outperforms SH-DTEx for both scenarios. Successful implementation of multislice MC-DTEx is presented and is shown to be capable of homogenizing excitation over more than twofold B 1+ variations. Its benefits over SH-DTEx are also demonstrated. A distinct advantage of MC hardware over SH shim hardware is the absence of significant eddy current effects, which allows for a straightforward, multislice implementation of MC-DTEx. Magn Reson Med 76:83-93, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Jiang, Kai; Li, Wen; Li, Wei; Jiao, Sen; Castel, Laurie; Van Wagoner, David R; Yu, Xin
2015-11-01
The aim of this study was to develop a rapid, multislice cardiac T1 mapping method in mice and to apply the method to quantify manganese (Mn(2+)) uptake in a mouse model with altered Ca(2+) channel activity. An electrocardiography-triggered multislice saturation-recovery Look-Locker method was developed and validated both in vitro and in vivo. A two-dose study was performed to investigate the kinetics of T1 shortening, Mn(2+) relaxivity in myocardium, and the impact of Mn(2+) on cardiac function. The sensitivity of Mn(2+)-enhanced MRI in detecting subtle changes in altered Ca(2+) channel activity was evaluated in a mouse model with α-dystrobrevin knockout. Validation studies showed strong agreement between the current method and an established method. High Mn(2+) dose led to significantly accelerated T1 shortening. Heart rate decreased during Mn(2+) infusion, while ejection ratio increased slightly at the end of imaging protocol. No statistical difference in cardiac function was detected between the two dose groups. Mice with α-dystrobrevin knockout showed enhanced Mn(2+) uptake in vivo. In vitro patch-clamp study showed increased Ca(2+) channel activity. The saturation recovery method provides rapid T1 mapping in mouse hearts, which allowed sensitive detection of subtle changes in Mn(2+) uptake in α-dystrobrevin knockout mice. © 2014 Wiley Periodicals, Inc.
Software compensation of eddy current fields in multislice high order dynamic shimming.
Sengupta, Saikat; Avison, Malcolm J; Gore, John C; Brian Welch, E
2011-06-01
Dynamic B(0) shimming (DS) can produce better field homogeneity than static global shimming by dynamically updating slicewise shim values in a multislice acquisition. The performance of DS however is limited by eddy current fields produced by the switching of 2nd and 3rd order unshielded shims. In this work, we present a novel method of eddy field compensation (EFC) applied to higher order shim induced eddy current fields in multislice DS. This method does not require shim shielding, extra hardware for eddy current compensation or subject specific prescanning. The interactions between shim harmonics are modeled assuming steady state of the medium and long time constant, cross and self term eddy fields in a DS experiment and 'correction factors' characterizing the entire set of shim interactions are derived. The correction factors for a given time between shim switches are shown to be invariable with object scanned, shim switching pattern and actual shim values, allowing for their generalized prospective use. Phantom and human head, 2nd and 3rd order DS experiments performed without any hardware eddy current compensation using the technique show large reductions in field gradients and offsets leading to significant improvements in image quality. This method holds promise as an alternative to expensive hardware based eddy current compensation required in 2nd and 3rd order DS. Copyright © 2011 Elsevier Inc. All rights reserved.
System life and reliability modeling for helicopter transmissions
NASA Technical Reports Server (NTRS)
Savage, M.; Brikmanis, C. K.
1986-01-01
A computer program which simulates life and reliability of helicopter transmissions is presented. The helicopter transmissions may be composed of spiral bevel gear units and planetary gear units - alone, in series or in parallel. The spiral bevel gear units may have either single or dual input pinions, which are identical. The planetary gear units may be stepped or unstepped and the number of planet gears carried by the planet arm may be varied. The reliability analysis used in the program is based on the Weibull distribution lives of the transmission components. The computer calculates the system lives and dynamic capacities of the transmission components and the transmission. The system life is defined as the life of the component or transmission at an output torque at which the probability of survival is 90 percent. The dynamic capacity of a component or transmission is defined as the output torque which can be applied for one million output shaft cycles for a probability of survival of 90 percent. A complete summary of the life and dynamic capacity results is produced by the program.
A Case of an Upper Gastrointestinal Bleeding Due to a Ruptured Dissection of a Right Aortic Arch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Born, Christine; Forster, Andreas; Rock, Clemens
2003-09-15
We report a case of severe upper gastrointestinal hemorrhage with a rare underlying cause. The patient was unconscious when he was admitted to the hospital. No chest radiogram was performed. Routine diagnostic measures, including endoscopy, failed to reveal the origin of the bleeding, which was believed to originate from the esophagus secondary to a peptic ulcer or varices. Exploratory laparotomy added no further information, but contrast-enhanced multislice computed tomography (MSCT) of the chest showed dextroposition of the widened aortic arch with a ruptured type-B dissection and a consecutive aorto-esophageal fistula (AEF). The patient died on the day of admission. Noninvasivemore » MSCT angiography gives rapid diagnostic information on patients with occult upper gastrointestinal bleeding and should be considered before more invasive conventional angiography or surgery.« less
The dynamics of stellar discs in live dark-matter haloes
NASA Astrophysics Data System (ADS)
Fujii, M. S.; Bédorf, J.; Baba, J.; Portegies Zwart, S.
2018-06-01
Recent developments in computer hardware and software enable researchers to simulate the self-gravitating evolution of galaxies at a resolution comparable to the actual number of stars. Here we present the results of a series of such simulations. We performed N-body simulations of disc galaxies with between 100 and 500 million particles over a wide range of initial conditions. Our calculations include a live bulge, disc, and dark-matter halo, each of which is represented by self-gravitating particles in the N-body code. The simulations are performed using the gravitational N-body tree-code BONSAI running on the Piz Daint supercomputer. We find that the time-scale over which the bar forms increases exponentially with decreasing disc-mass fraction and that the bar formation epoch exceeds a Hubble time when the disc-mass fraction is ˜0.35. These results can be explained with the swing-amplification theory. The condition for the formation of m = 2 spirals is consistent with that for the formation of the bar, which is also an m = 2 phenomenon. We further argue that the non-barred grand-design spiral galaxies are transitional, and that they evolve to barred galaxies on a dynamical time-scale. We also confirm that the disc-mass fraction and shear rate are important parameters for the morphology of disc galaxies. The former affects the number of spiral arms and the bar formation epoch, and the latter determines the pitch angle of the spiral arms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi, E-mail: wakana@heap.phys.waseda.ac.jp
2014-05-10
In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshingmore » motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.« less
New insight in spiral drawing analysis methods - Application to action tremor quantification.
Legrand, André Pierre; Rivals, Isabelle; Richard, Aliénor; Apartis, Emmanuelle; Roze, Emmanuel; Vidailhet, Marie; Meunier, Sabine; Hainque, Elodie
2017-10-01
Spiral drawing is one of the standard tests used to assess tremor severity for the clinical evaluation of medical treatments. Tremor severity is estimated through visual rating of the drawings by movement disorders experts. Different approaches based on the mathematical signal analysis of the recorded spiral drawings were proposed to replace this rater dependent estimate. The objective of the present study is to propose new numerical methods and to evaluate them in terms of agreement with visual rating and reproducibility. Series of spiral drawings of patients with essential tremor were visually rated by a board of experts. In addition to the usual velocity analysis, three new numerical methods were tested and compared, namely static and dynamic unraveling, and empirical mode decomposition. The reproducibility of both visual and numerical ratings was estimated, and their agreement was evaluated. The statistical analysis demonstrated excellent agreement between visual and numerical ratings, and more reproducible results with numerical methods than with visual ratings. The velocity method and the new numerical methods are in good agreement. Among the latter, static and dynamic unravelling both display a smaller dispersion and are easier for automatic analysis. The reliable scores obtained through the proposed numerical methods allow considering that their implementation on a digitized tablet, be it connected with a computer or independent, provides an efficient automatic tool for tremor severity assessment. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Hemsley, S; Palmer, H; Canfield, R B; Stewart, M E B; Krockenberger, M B; Malik, R
2013-09-01
To use cross-sectional imaging (helical computed tomography (CT)) combined with conventional anatomical dissection to define the normal anatomy of the nasal cavity and bony cavitations of the koala skull. Helical CT scans of the heads of nine adult animals were obtained using a multislice scanner acquiring thin slices reconstructed in the transverse, sagittal and dorsal planes. Subsequent anatomical dissection permitted confirmation of correct identification and further delineation of bony and air-filled structures visible in axial and multiplanar reformatted CT images. The nasal cavity was relatively simple, with little scrolling of nasal conchae, but bony cavitations were complex and extensive. A rostral maxillary recess and ventral conchal, caudal maxillary, frontal and sphenoidal paranasal sinuses were identified and characterised. Extensive temporal bone cavitation was shown to be related to a large epitympanic recess. The detailed anatomical data provided are applicable to future functional and comparative anatomical studies, as well as providing a preliminary atlas for clinical investigation of conditions such as cryptococcal rhinosinusitis, a condition more common in the koala than in many other species. © 2013 Australian Veterinary Association.
Keles, Papatya; Yuce, Ihsan; Keles, Sait; Kantarci, Mecit
2016-06-01
The aim of this study was to define the different courses and percentages of hepatic artery that were detected during preoperative evaluation of living liver donors by multidetector computed tomographic angiography (MDCTA). We evaluated 150 donors before hepatic transplantation. All of the donors were evaluated by multislice CT scan with 256 detectors. For each patient, arterial, portal and venous phase images were obtained. The hepatic arterial variations were evaluated by the same radiologist according to Michels' classification. Common hepatic arterial anatomy (type I) was observed in 95 donors (63.3%). Other arterial variations were determined in the remaining 55 donors (36.6%). The second common variation was type XI which did not match with the description of Michels' classification variation in 15 donors (10%). The remaining variations described in Michels' classification were seen at lower rates. Type VII or X variation was not seen. MDCTA is a useful method to identify the blood supply of the liver before the liver transplantations, and surgeons can make their plan on the basis of CT data.
The incidence of coronary anomalies on routine coronary computed tomography scans
Karabay, Kanber Ocal; Yildiz, Abdulmelik; Bagirtan, Bayram; Geceer, Gurkan; Uysal, Ender
2013-01-01
Summary Objective This study aimed to assess the incidence of coronary anomalies using 64-multi-slice coronary computed tomography (MSCT). Methods The diagnostic MSCT scans of 745 consecutive patients were reviewed. Results The incidence of coronary anomalies was 4.96%. The detected coronary anomalies included the conus artery originating separately from the right coronary sinus (RCS) (n = 8, 1.07%), absence of the left main artery (n = 7, 0.93%), a superior right coronary artery (RCA) (n = 7, 0.93%), the circumflex artery (CFX) arising from the RCS (n = 4, 0.53%), the CFX originating from the RCA (n = 2, 0.26%), a posterior RCA (n = 1, 0.13%), a coronary fistula from the left anterior descending artery and RCA to the pulmonary artery (n = 1, 0.13%), and a coronary aneurysm (n = 1, 0.13%). Conclusions This study indicated that MSCT can be used to detect common coronary anomalies, and shows it has the potential to aid cardiologists and cardiac surgeons by revealing the origin and course of the coronary vessels. PMID:24042853
The Ring of Fire: The Effects of Slope upon Pattern Formation in Simulated Forest Fire Systems
NASA Astrophysics Data System (ADS)
Morillo, Robin; Manz, Niklas
We report about spreading fire fronts under sloped conditions using the general cellular automaton model and data from physical scaled-down experiments. Punckt et al. published experimental and computational results for planar systems and our preliminary results confirmed the expected speed-slope dependence of fire fronts propagating up or down the hill with a cut-off slope value above which no fire front can exist. Here we focus on two fascinating structures in reaction-diffusion systems: circular expanding target pattern and rotating spirals. We investigated the behaviors of both structures with varied values for the slope of the forest and the homogeneity of the trees. For both variables, a range of values was found for which target pattern or spiral formation was possible.
Automated inspection and precision grinding of spiral bevel gears
NASA Technical Reports Server (NTRS)
Frint, Harold
1987-01-01
The results are presented of a four phase MM&T program to define, develop, and evaluate an improved inspection system for spiral bevel gears. The improved method utilizes a multi-axis coordinate measuring machine which maps the working flank of the tooth and compares it to nominal reference values stored in the machine's computer. A unique feature of the system is that corrective grinding machine settings can be automatically calculated and printed out when necessary to correct an errant tooth profile. This new method eliminates most of the subjective decision making involved in the present method, which compares contact patterns obtained when the gear set is run under light load in a rolling test machine. It produces a higher quality gear with significant inspection time and cost savings.
Enhanced automated spiral bevel gear inspection
NASA Technical Reports Server (NTRS)
Frint, Harold K.; Glasow, Warren
1992-01-01
Presented here are the results of a manufacturing and technology program to define, develop, and evaluate an enhanced inspection system for spiral bevel gears. The method uses a multi-axis coordinate measuring machine which maps the working surface of the tooth and compares it with nominal reference values stored in the machine's computer. The enhanced technique features a means for automatically calculating corrective grinding machine settings, involving both first and second order changes, to control the tooth profile to within specified tolerance limits. This enhanced method eliminates the subjective decision making involved in the tooth patterning method, still in use today, which compares contract patterns obtained when the gear is set to run under light load in a rolling test machine. It produces a higher quality gear with significant inspection time and cost savings.
Computerized Design of Low-noise Face-milled Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Zhang, YI; Handschuh, Robert F.
1994-01-01
An advanced design methodology is proposed for the face-milled spiral bevel gears with modified tooth surface geometry that provides a reduced level of noise and has a stabilized bearing contact. The approach is based on the local synthesis of the gear drive that provides the 'best' machine-tool settings. The theoretical aspects of the local synthesis approach are based on the application of a predesigned parabolic function for absorption of undesirable transmission errors caused by misalignment and the direct relations between principal curvatures and directions for mating surfaces. The meshing and contact of the gear drive is synthesized and analyzed by a computer program. The generation of gears with the proposed geometry design can be accomplished by application of existing equipment. A numerical example that illustrates the proposed theory is presented.
Computerized design of low-noise face-milled spiral bevel gears
NASA Astrophysics Data System (ADS)
Litvin, Faydor L.; Zhang, Yi; Handschuh, Robert F.
1994-08-01
An advanced design methodology is proposed for the face-milled spiral bevel gears with modified tooth surface geometry that provides a reduced level of noise and has a stabilized bearing contact. The approach is based on the local synthesis of the gear drive that provides the 'best' machine-tool settings. The theoretical aspects of the local synthesis approach are based on the application of a predesigned parabolic function for absorption of undesirable transmission errors caused by misalignment and the direct relations between principal curvatures and directions for mating surfaces. The meshing and contact of the gear drive is synthesized and analyzed by a computer program. The generation of gears with the proposed geometry design can be accomplished by application of existing equipment. A numerical example that illustrates the proposed theory is presented.
[18F]FDG imaging of head and neck tumours: comparison of hybrid PET and morphological methods.
Dresel, S; Grammerstorff, J; Schwenzer, K; Brinkbäumer, K; Schmid, R; Pfluger, T; Hahn, K
2003-07-01
The aim of this study was to evaluate fluorine-18 fluorodeoxyglucose ([(18)F]FDG) imaging of head and neck tumours using a second- or third-generation hybrid PET device. Results were compared with the findings of spiral computed tomography (CT) and magnetic resonance imaging (MRI), and, as regards lymph node metastasis, the ultrasound findings. A total of 116 patients with head and neck tumours (83 males and 33 females aged 27-88 years) were examined using a hybrid PET scanner after injection of 185-350 MBq of [(18)F]FDG (Picker Prism 2000 XP-PCD, Marconi Axis gamma-PET(2) AZ). Hybrid PET examinations were performed in list mode using an axial filter. Reconstruction of data was performed iteratively. Ninety-six patients underwent CT using a multislice technique (Siemens Somatom Plus 4, Marconi MX 8000), 18 patients underwent MRI and 100 patients were examined by ultrasound. All findings were verified by histology, which was considered the gold standard, or, in the event of negative histology, by follow-up. Correct diagnosis of the primary or recurrent lesion was made in 73 of 85 patients using the hybrid PET scanner, in 50 of 76 patients on CT and in 7 of 10 patients on MRI. Hybrid PET successfully visualised metastatic disease in cervical lymph nodes in 28 of 34 patients, while 23 of 31 were correctly diagnosed with CT, 3 of 4 with MRI and 30 of 33 with ultrasound. False positive results regarding lymph node metastasis were seen in three patients with hybrid PET, in 14 patients with CT and in 13 patients with ultrasound. MRI yielded no false positive results concerning lymph node metastasis. In one patient, unrecognised metastatic lesions were seen on hybrid PET elsewhere in the body (lung: n=1; bone: n=1). Additional malignant lesions at sites other than the head and neck tumour were found in three patients (one patient with lung cancer, one patient with pelvic metastasis due to a carcinoma of the prostate and one patient with pulmonary metastasis due to breast cancer). It is concluded that [(18)F]FDG PET with hybrid PET scanners is superior to CT and MRI in the diagnosis of primary or recurrent lesions as well as in the assessment of lymph node involvement, whereas it is inferior to ultrasound in the detection of cervical lymph node metastasis.
NASA Astrophysics Data System (ADS)
Almeida, Isabel P.; Schyns, Lotte E. J. R.; Vaniqui, Ana; van der Heyden, Brent; Dedes, George; Resch, Andreas F.; Kamp, Florian; Zindler, Jaap D.; Parodi, Katia; Landry, Guillaume; Verhaegen, Frank
2018-06-01
Proton beam ranges derived from dual-energy computed tomography (DECT) images from a dual-spiral radiotherapy (RT)-specific CT scanner were assessed using Monte Carlo (MC) dose calculations. Images from a dual-source and a twin-beam DECT scanner were also used to establish a comparison to the RT-specific scanner. Proton ranges extracted from conventional single-energy CT (SECT) were additionally performed to benchmark against literature values. Using two phantoms, a DECT methodology was tested as input for GEANT4 MC proton dose calculations. Proton ranges were calculated for different mono-energetic proton beams irradiating both phantoms; the results were compared to the ground truth based on the phantom compositions. The same methodology was applied in a head-and-neck cancer patient using both SECT and dual-spiral DECT scans from the RT-specific scanner. A pencil-beam-scanning plan was designed, which was subsequently optimized by MC dose calculations, and differences in proton range for the different image-based simulations were assessed. For phantoms, the DECT method yielded overall better material segmentation with >86% of the voxel correctly assigned for the dual-spiral and dual-source scanners, but only 64% for a twin-beam scanner. For the calibration phantom, the dual-spiral scanner yielded range errors below 1.2 mm (0.6% of range), like the errors yielded by the dual-source scanner (<1.1 mm, <0.5%). With the validation phantom, the dual-spiral scanner yielded errors below 0.8 mm (0.9%), whereas SECT yielded errors up to 1.6 mm (2%). For the patient case, where the absolute truth was missing, proton range differences between DECT and SECT were on average in ‑1.2 ± 1.2 mm (‑0.5% ± 0.5%). MC dose calculations were successfully performed on DECT images, where the dual-spiral scanner resulted in media segmentation and range accuracy as good as the dual-source CT. In the patient, the various methods showed relevant range differences.
Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT)
Laboratory Battery Design LLC CD-adapco EC Power ESim Ford General Motors (GM) Johnson Controls, Inc battery modeling" April 2013: R. Spotnitz, Design and Simulation of Spirally-Wound, Lithium-Ion Cells ;Effect of Tab Design on Large-Format Li-ion Cell Performance," Journal of Power Sources 257 70-79
NASA Astrophysics Data System (ADS)
Zuiani, Federico; Vasile, Massimiliano
2015-03-01
This paper presents a set of analytical formulae for the perturbed Keplerian motion of a spacecraft under the effect of a constant control acceleration. The proposed set of formulae can treat control accelerations that are fixed in either a rotating or inertial reference frame. Moreover, the contribution of the zonal harmonic is included in the analytical formulae. It will be shown that the proposed analytical theory allows for the fast computation of long, multi-revolution spirals while maintaining good accuracy. The combined effect of different perturbations and of the shadow regions due to solar eclipse is also included. Furthermore, a simplified control parameterisation is introduced to optimise thrusting patterns with two thrust arcs and two cost arcs per revolution. This simple parameterisation is shown to ensure enough flexibility to describe complex low thrust spirals. The accuracy and speed of the proposed analytical formulae are compared against a full numerical integration with different integration schemes. An averaging technique is then proposed as an application of the analytical formulae. Finally, the paper presents an example of design of an optimal low-thrust spiral to transfer a spacecraft from an elliptical to a circular orbit around the Earth.
Selection of Multiarmed Spiral Waves in a Regular Network of Neurons
Hu, Bolin; Ma, Jun; Tang, Jun
2013-01-01
Formation and selection of multiarmed spiral wave due to spontaneous symmetry breaking are investigated in a regular network of Hodgkin-Huxley neuron by changing the excitability and imposing spatial forcing currents on the neurons in the network. The arm number of the multiarmed spiral wave is dependent on the distribution of spatial forcing currents and excitability diversity in the network, and the selection criterion for supporting multiarmed spiral waves is discussed. A broken spiral segment is measured by a short polygonal line connected by three adjacent points (controlled nodes), and a double-spiral wave can be developed from the spiral segment. Multiarmed spiral wave is formed when a group of double-spiral waves rotate in the same direction in the network. In the numerical studies, a group of controlled nodes are selected and spatial forcing currents are imposed on these nodes, and our results show that l-arm stable spiral wave (l = 2, 3, 4,...8) can be induced to occupy the network completely. It is also confirmed that low excitability is critical to induce multiarmed spiral waves while high excitability is important to propagate the multiarmed spiral wave outside so that distinct multiarmed spiral wave can occupy the network completely. Our results confirm that symmetry breaking of target wave in the media accounts for emergence of multiarmed spiral wave, which can be developed from a group of spiral waves with single arm under appropriate condition, thus the potential formation mechanism of multiarmed spiral wave in the media is explained. PMID:23935966
NASA Astrophysics Data System (ADS)
Zeng, Qing; Lin, Liangjie; Chen, Jinyong; Lin, Yanqin; Barker, Peter B.; Chen, Zhong
2017-09-01
Proton-proton scalar coupling plays an important role in molecular structure elucidation. Many methods have been proposed for revealing scalar coupling networks involving chosen protons. However, determining all JHH values within a fully coupled network remains as a tedious process. Here, we propose a method termed as simultaneous multi-slice selective J-resolved spectroscopy (SMS-SEJRES) for simultaneously measuring JHH values out of all coupling networks in a sample within one experiment. In this work, gradient-encoded selective refocusing, PSYCHE decoupling and echo planar spectroscopic imaging (EPSI) detection module are adopted, resulting in different selective J-edited spectra extracted from different spatial positions. The proposed pulse sequence can facilitate the analysis of molecular structures. Therefore, it will interest scientists who would like to efficiently address the structural analysis of molecules.
Arias-Ramos, Nuria; Ferrer-Font, Laura; Lope-Piedrafita, Silvia; Mocioiu, Victor; Julià-Sapé, Margarida; Pumarola, Martí; Arús, Carles; Candiota, Ana Paula
2017-01-01
Glioblastoma (GBM) is the most common aggressive primary brain tumor in adults, with a short survival time even after aggressive therapy. Non-invasive surrogate biomarkers of therapy response may be relevant for improving patient survival. Previous work produced such biomarkers in preclinical GBM using semi-supervised source extraction and single-slice Magnetic Resonance Spectroscopic Imaging (MRSI). Nevertheless, GBMs are heterogeneous and single-slice studies could prevent obtaining relevant information. The purpose of this work was to evaluate whether a multi-slice MRSI approach, acquiring consecutive grids across the tumor, is feasible for preclinical models and may produce additional insight into therapy response. Nosological images were analyzed pixel-by-pixel and a relative responding volume, the Tumor Responding Index (TRI), was defined to quantify response. Heterogeneous response levels were observed and treated animals were ascribed to three arbitrary predefined groups: high response (HR, n = 2), TRI = 68.2 ± 2.8%, intermediate response (IR, n = 6), TRI = 41.1 ± 4.2% and low response (LR, n = 2), TRI = 13.4 ± 14.3%, producing therapy response categorization which had not been fully registered in single-slice studies. Results agreed with the multi-slice approach being feasible and producing an inverse correlation between TRI and Ki67 immunostaining. Additionally, ca. 7-day oscillations of TRI were observed, suggesting that host immune system activation in response to treatment could contribute to the responding patterns detected. PMID:28524099
Fourier crosstalk analysis of multislice and cone-beam helical CT
NASA Astrophysics Data System (ADS)
La Riviere, Patrick J.
2004-05-01
Multi-slice helical CT scanners allow for much faster scanning and better x-ray utilization than do their single-slice predecessors, but they engender considerably more complicated data sampling patterns due to the interlacing of the samples from different rows as the patient is translated. Characterizing and optimizing this sampling is challenging because the conebeam geometry of such scanners means that the projections measured by each detector row are at least slightly oblique, making it difficult to apply standard multidimensional sampling analyses. In this study, we seek to apply a more general framework for analyzing sampled imaging systems known as Fourier crosstalk analysis. Our purpose in this preliminary work is to compare the information content of the data acquired in three different scanner geometries and operating conditions with ostensibly equivalent volume coverage and average longitudinal sampling interval: a single-slice scanner operating at pitch 1, a four-slice scanner operating at pitch 3 and a 15-slice scanner operating at pitch 15. We find that moving from a single-slice to a multi-slice geometry introduces longitudinal crosstalk characteristic of the longitudinal sampling interval between periods of individual each detector row, and not of the overall interlaced sampling pattern. This is attributed to data inconsistencies caused by the obliqueness of the projections in a multi-slice/conebeam configuration. However, these preliminary results suggest that the significance of this additional crosstalk actually decreases as the number of detector rows increases.
Jiang, Yun; Ma, Dan; Bhat, Himanshu; Ye, Huihui; Cauley, Stephen F; Wald, Lawrence L; Setsompop, Kawin; Griswold, Mark A
2017-11-01
The purpose of this study is to accelerate an MR fingerprinting (MRF) acquisition by using a simultaneous multislice method. A multiband radiofrequency (RF) pulse was designed to excite two slices with different flip angles and phases. The signals of two slices were driven to be as orthogonal as possible. The mixed and undersampled MRF signal was matched to two dictionaries to retrieve T 1 and T 2 maps of each slice. Quantitative results from the proposed method were validated with the gold-standard spin echo methods in a phantom. T 1 and T 2 maps of in vivo human brain from two simultaneously acquired slices were also compared to the results of fast imaging with steady-state precession based MRF method (MRF-FISP) with a single-band RF excitation. The phantom results showed that the simultaneous multislice imaging MRF-FISP method quantified the relaxation properties accurately compared to the gold-standard spin echo methods. T 1 and T 2 values of in vivo brain from the proposed method also matched the results from the normal MRF-FISP acquisition. T 1 and T 2 values can be quantified at a multiband acceleration factor of two using our proposed acquisition even in a single-channel receive coil. Further acceleration could be achieved by combining this method with parallel imaging or iterative reconstruction. Magn Reson Med 78:1870-1876, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Nasrallah, Fatima A; Lee, Eugene L Q; Chuang, Kai-Hsiang
2012-11-01
Arterial spin labeling (ASL) MRI provides a noninvasive method to image perfusion, and has been applied to map neural activation in the brain. Although pulsed labeling methods have been widely used in humans, continuous ASL with a dedicated neck labeling coil is still the preferred method in rodent brain functional MRI (fMRI) to maximize the sensitivity and allow multislice acquisition. However, the additional hardware is not readily available and hence its application is limited. In this study, flow-sensitive alternating inversion recovery (FAIR) pulsed ASL was optimized for fMRI of rat brain. A practical challenge of FAIR is the suboptimal global inversion by the transmit coil of limited dimensions, which results in low effective labeling. By using a large volume transmit coil and proper positioning to optimize the body coverage, the perfusion signal was increased by 38.3% compared with positioning the brain at the isocenter. An additional 53.3% gain in signal was achieved using optimized repetition and inversion times compared with a long TR. Under electrical stimulation to the forepaws, a perfusion activation signal change of 63.7 ± 6.3% can be reliably detected in the primary somatosensory cortices using single slice or multislice echo planar imaging at 9.4 T. This demonstrates the potential of using pulsed ASL for multislice perfusion fMRI in functional and pharmacological applications in rat brain. Copyright © 2012 John Wiley & Sons, Ltd.
Computer-aided design of bevel gear tooth surfaces
NASA Technical Reports Server (NTRS)
Shuo, Hung Chang; Huston, Ronald L.; Coy, John J.
1989-01-01
This paper presents a computer-aided design procedure for generating bevel gears. The development is based on examining a perfectly plastic, cone-shaped gear blank rolling over a cutting tooth on a plane crown rack. The resulting impression on the plastic gear blank is the envelope of the cutting tooth. This impression and envelope thus form a conjugate tooth surface. Equations are presented for the locus of points on the tooth surface. The same procedures are then extended to simulate the generation of a spiral bevel gear. The corresponding governing equations are presented.
Computer aided design of bevel gear tooth surfaces
NASA Technical Reports Server (NTRS)
Chang, S. H.; Huston, R. L.; Coy, J. J.
1989-01-01
This paper presents a computer-aided design procedure for generating bevel gears. The development is based on examining a perfectly plastic, cone-shaped gear blank rolling over a cutting tooth on a plane crown rack. The resulting impression on the plastic gear blank is the envelope of the cutting tooth. This impression and envelope thus form a conjugate tooth surface. Equations are presented for the locus of points on the tooth surface. The same procedures are then extended to simulate the generation of a spiral bevel gear. The corresponding governing equations are presented.
Linz, C; Müller-Richter, U D A; Buck, A K; Mottok, A; Ritter, C; Schneider, P; Metzen, D; Heuschmann, P; Malzahn, U; Kübler, A C; Herrmann, K; Bluemel, C
2015-01-01
Detecting bone invasion in oral cancer is crucial for therapy planning and the prognosis. The present study evaluated cone beam computed tomography (CBCT) for detecting bone invasion in comparison to standard imaging techniques. A total of 197 patients with diagnoses of oral cancer underwent CBCT as part of preoperative staging between January 2007 and April 2013. The sensitivity, specificity, and accuracy of CBCT were compared with panoramic radiography (PR), multi-slice computed tomography (CT) or magnetic resonance imaging (MRI), and bone scintigraphy (BS) using McNemar's test. Histopathology and clinical follow-up served as references for the presence of bone invasion. CBCT and BS (84.8% and 89.3%, respectively), as well as CBCT and CT/MRI (83.2%), showed comparable accuracy (P = 0.188 and P = 0.771). CBCT was significantly superior to PR, which was reconstructed based on a CBCT dataset (74.1%, P = 0.002). In detecting bone invasion, CBCT was significantly more accurate than PR and was comparable to BS and CT/MRI. However, each method has certain advantages, and the best combination of imaging methods must be evaluated in prospective clinic trials. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Rapid prototyping modelling in oral and maxillofacial surgery: A two year retrospective study.
Suomalainen, Anni; Stoor, Patricia; Mesimäki, Karri; Kontio, Risto K
2015-12-01
The use of rapid prototyping (RP) models in medicine to construct bony models is increasing. The aim of the study was to evaluate retrospectively the indication for the use of RP models in oral and maxillofacial surgery at Helsinki University Central Hospital during 2009-2010. Also, the used computed tomography (CT) examination - multislice CT (MSCT) or cone beam CT (CBCT) - method was evaluated. In total 114 RP models were fabricated for 102 patients. The mean age of the patients at the time of the production of the model was 50.4 years. The indications for the modelling included malignant lesions (29%), secondary reconstruction (25%), prosthodontic treatment (22%), orthognathic surgery or asymmetry (13%), benign lesions (8%), and TMJ disorders (4%). MSCT examination was used in 92 and CBCT examination in 22 cases. Most of the models (75%) were conventional hard tissue models. Models with colored tumour or other structure(s) of interest were ordered in 24%. Two out of the 114 models were soft tissue models. The main benefit of the models was in treatment planning and in connection with the production of pre-bent plates or custom made implants. The RP models both facilitate and improve treatment planning and intraoperative efficiency. Rapid prototyping, radiology, computed tomography, cone beam computed tomography.
Fielden, Samuel W.; Meyer, Craig H.
2014-01-01
Purpose The major hurdle to widespread adoption of spiral trajectories has been their poor off-resonance performance. Here we present a self-correcting spiral k-space trajectory that avoids much of the well-known spiral blurring during data acquisition. Theory and Methods In comparison with a traditional spiral-out trajectory, the spiral-in/out trajectory has improved off-resonance performance. By combining two spiral-in/out acquisitions, one rotated 180° in k-space compared to the other, multi-shot spiral-in/out artifacts are eliminated. A phantom was scanned with the center frequency manually tuned 20, 40, 80, and 160 Hz off-resonance with both a spiral-out gradient echo sequence and the redundant spiral-in/out sequence. The phantom was also imaged in an oblique orientation in order to demonstrate improved concomitant gradient field performance of the sequence, and was additionally incorporated into a spiral turbo spin echo sequence for brain imaging. Results Phantom studies with manually-tuned off-resonance agree well with theoretical calculations, showing that moderate off-resonance is well-corrected by this acquisition scheme. Blur due to concomitant fields is reduced, and good results are obtained in vivo. Conclusion The redundant spiral-in/out trajectory results in less image blur for a given readout length than a traditional spiral-out scan, reducing the need for complex off-resonance correction algorithms. PMID:24604539
Fielden, Samuel W; Meyer, Craig H
2015-02-01
The major hurdle to widespread adoption of spiral trajectories has been their poor off-resonance performance. Here we present a self-correcting spiral k-space trajectory that avoids much of the well-known spiral blurring during data acquisition. In comparison with a traditional spiral-out trajectory, the spiral-in/out trajectory has improved off-resonance performance. By combining two spiral-in/out acquisitions, one rotated 180° in k-space compared with the other, multishot spiral-in/out artifacts are eliminated. A phantom was scanned with the center frequency manually tuned 20, 40, 80, and 160 Hz off-resonance with both a spiral-out gradient echo sequence and the redundant spiral-in/out sequence. The phantom was also imaged in an oblique orientation in order to demonstrate improved concomitant gradient field performance of the sequence. Additionally, the trajectory was incorporated into a spiral turbo spin echo sequence for brain imaging. Phantom studies with manually tuned off-resonance agree well with theoretical calculations, showing that moderate off-resonance is well-corrected by this acquisition scheme. Blur due to concomitant fields is reduced, and good results are obtained in vivo. The redundant spiral-in/out trajectory results in less image blur for a given readout length than a traditional spiral-out scan, reducing the need for complex off-resonance correction algorithms. © 2014 Wiley Periodicals, Inc.
Qian, Yu; Zhang, Zhaoyang
2016-01-01
In this paper we have systematically investigated the fundamental structure and the reproduction of spiral wave in a two-dimensional excitable lattice. A periodically rotating spiral wave is introduced as the model to reproduce spiral wave artificially. Interestingly, by using the dominant phase-advanced driving analysis method, the fundamental structure containing the loop structure and the wave propagation paths has been revealed, which can expose the periodically rotating orbit of spiral tip and the charity of spiral wave clearly. Furthermore, the fundamental structure is utilized as the core for artificial spiral wave. Additionally, the appropriate parameter region, in which the artificial spiral wave can be reproduced, is studied. Finally, we discuss the robustness of artificial spiral wave to defects.
The flow in the spiral arms of slowly rotating bar-spiral models
NASA Astrophysics Data System (ADS)
Patsis, P. A.; Tsigaridi, L.
2017-07-01
We use response models to study the stellar and gaseous flows in the spiral arm regions of slow rotating barred-spiral potentials. We vary the pattern speed so that the corotation-to bar radius ratios (Rc/Rb) are in the range 2 < Rc/Rb < 3. We find in general two sets of spirals, one inside and one outside corotation, which are reinforced by two different dynamical mechanisms. The bar and the spirals inside corotation are supported by regular orbits, while the spirals beyond corotation are associated with the "chaotic spirals", both in the stellar as well as in the gaseous case. The main difference in the two flows is the larger dispersion of velocities we encounter in the stellar (test-particles) models. The inner and the outer spirals are in general not connected. In most cases we find an oval component inside corotation, that surrounds the inner barred-spiral structure and separates it from the outer spirals. In the gaseous models, clumps of local overdensities are formed along the inner arms as the gas shocks in the spirals region, while clumps in the spirals beyond corotation are formed as the flows along the two outer arms meet and join each other close to the unstable Lagrangian points of the system.
Protoplanetary Disks and Planet Formation a Computational Perspective
NASA Astrophysics Data System (ADS)
Backus, Isaac
In this thesis I present my research on the early stages of planet formation. Using advanced computational modeling techniques, I study global gas and gravitational dynamics in proto- planetary disks (PPDs) on length scales from the radius of Jupiter to the size of the solar system. In that environment, I investigate the formation of gas giants and the migration, enhancement, and distribution of small solids--the precursors to planetesimals and gas giant cores. I examine numerical techniques used in planet formation and PPD modeling, especially methods for generating initial conditions (ICs) in these unstable, chaotic systems. Disk simulation outcomes may depend strongly on ICs, which may explain results in the literature. I present the largest suite of high resolution PPD simulations to-date and argue that direct fragmentations of PPDs around M-Dwarfs is a plausible path to rapidly forming gas giants. I implement dust physics to track the migration of centimeter and smaller dust grains in very high resolution PPD simulations. While current dust methods are slow, with strict resolution and/or time-stepping requirements, and have some serious numerical issues, we can still demonstrate that dust does not concentrate at the pressure maxima of spiral arms, an indication that spiral features observed in the dust component are at least as well resolved in the gas. Additionally, coherent spiral arms do not limit dust settling. We suggest a novel mechanism for disk fragmentation at large radii driven by dust accretion from the surrounding nebula. We also investigate self induced dust traps, a mechanism which may help explain the growth of solids beyond meter sizes. We argue that current apparent demonstrations of this mechanism may be due to numerical artifacts and require further investigation.
Photometric intensity and polarization measurements of the solar corona.
NASA Technical Reports Server (NTRS)
Mcdougal, D. S.
1971-01-01
Use of a satellite photometric observatory (SPO) to measure the solar corona from Miahuatlan, Mexico during the Mar. 7, 1970, total eclipse of the sun. The SPO is equipped with a 24-in. Cassegrainian telescope, a four-channel photoelectric photometer, a Wollaston prism, and a rotating half-wave plate. Simultaneous measurements were made of the two orthogonal components of coronal light in the B and R bands of the UBVRI system. A 1-minute arc aperture was scanned from the lunar disk center out to five solar radii in a series of spirals of gradually increasing radius. For the first time, simultaneous multicolor intensity, degree, and angle of polarization profiles are computed from photoelectric measurements. Comparison of the variations of the measurements for each spiral scan yield a detailed picture of the intensity and polarization features in the K corona.
Dynamics of spiral patterns in gas discharge detected by optical method
NASA Astrophysics Data System (ADS)
Yang, Fan; Wang, Mingyi; Liu, Shuhua
2016-09-01
The dynamics behavior of spiral patterns is investigated in gas discharge using optical method. Rich kinks of spiral patterns are obtained and the formation and evolution process is investigated. The process of pattern formation is breakdown -> hexagon -> bee comb-like -> strip -> spiral -> chaos. Spiral pattern always formed after the strip pattern. It is found that the temperature of the water electrodes plays an important role in the spiral patterns formation. When it exceeds 20°C no spiral has been obtained. The discharge current waveform and the emission spectrum of the discharge have been measured when the filaments self-organized in spiral pattern. Electron excited temperature of forming spiral pattern is calculated using intensity ratio method. It is found that the electron excited temperature of spiral pattern increase as the power supply frequency increased. Relation between wavelength and discharge parameter has been measured. It shows that the wavelength of spiral pattern increases as the discharge gap increases, and decreases as the air ratio mixed in argon increases. Accompanying measurements proved that the wavelength is approximately linear to the square root of the spiral rotating period .This work has useful reference value for studying pattern dynamics.
NASA Astrophysics Data System (ADS)
Ma, Jun; Yang, Li-Jian; Wu, Ying; Zhang, Cai-Rong
2010-09-01
The effect of small-world connection and noise on the formation and transition of spiral wave in the networks of Hodgkin-Huxley neurons are investigated in detail. Some interesting results are found in our numerical studies. i) The quiescent neurons are activated to propagate electric signal to others by generating and developing spiral wave from spiral seed in small area. ii) A statistical factor is defined to describe the collective properties and phase transition induced by the topology of networks and noise. iii) Stable rotating spiral wave can be generated and keeps robust when the rewiring probability is below certain threshold, otherwise, spiral wave can not be developed from the spiral seed and spiral wave breakup occurs for a stable rotating spiral wave. iv) Gaussian white noise is introduced on the membrane of neurons to study the noise-induced phase transition on spiral wave in small-world networks of neurons. It is confirmed that Gaussian white noise plays active role in supporting and developing spiral wave in the networks of neurons, and appearance of smaller factor of synchronization indicates high possibility to induce spiral wave.
The Fundamental Structure and the Reproduction of Spiral Wave in a Two-Dimensional Excitable Lattice
Qian, Yu; Zhang, Zhaoyang
2016-01-01
In this paper we have systematically investigated the fundamental structure and the reproduction of spiral wave in a two-dimensional excitable lattice. A periodically rotating spiral wave is introduced as the model to reproduce spiral wave artificially. Interestingly, by using the dominant phase-advanced driving analysis method, the fundamental structure containing the loop structure and the wave propagation paths has been revealed, which can expose the periodically rotating orbit of spiral tip and the charity of spiral wave clearly. Furthermore, the fundamental structure is utilized as the core for artificial spiral wave. Additionally, the appropriate parameter region, in which the artificial spiral wave can be reproduced, is studied. Finally, we discuss the robustness of artificial spiral wave to defects. PMID:26900841
Microcinematographic analysis of tethered Leptospira illini.
Charon, N W; Daughtry, G R; McCuskey, R S; Franz, G N
1984-01-01
A model of Leptospira motility was recently proposed. One element of the model states that in translating cells the anterior spiral-shaped end gyrates counterclockwise and the posterior hook-shaped end gyrates clockwise. We tested these predictions by analyzing cells tethered to a glass surface. Leptospira illini was incubated with antibody-coated latex beads (Ab-beads). These beads adhered to the cells, and subsequently some cells became attached to either the slide or the cover glass via the Ab-beads. As previously reported, these cells rapidly moved back and forth across the surface of the beads. In addition, a general trend was observed: cells tethered to the cover glass rotated clockwise around the Ab-bead; cells tethered to the slide rotated counterclockwise around the Ab-bead. A computer-aided microcinematographic analysis of tethered cells indicated that the direction of rotation of cells around the Ab-bead was a function of both the surface of attachment and the shape of the cell ends. The results can best be explained by assuming that the gyrating ends interact with the glass surface to cause rotation around the Ab-beads. The analysis obtained indicates that the hook- and spiral-shaped ends rotate in the directions predicted by the model. In addition, the tethered cell assay permitted detection of rapid, coordinated reversals of the cell ends, e.g., cells rapidly switched from a hook-spiral configuration to a spiral-hook configuration. These results suggest the existance of a mechanism which coordinates the shape of the cell ends of L. illini. Images PMID:6501226
Bucs, Szilard S; Linares, Rodrigo Valladares; Marston, Jeremy O; Radu, Andrea I; Vrouwenvelder, Johannes S; Picioreanu, Cristian
2015-12-15
Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m·s(-1)) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m·s(-1)) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m·s(-1), thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
LIFTING THE VEIL OF DUST TO REVEAL THE SECRETS OF SPIRAL GALAXIES
NASA Technical Reports Server (NTRS)
2002-01-01
Astronomers have combined information from the NASA Hubble Space Telescope's visible- and infrared-light cameras to show the hearts of four spiral galaxies peppered with ancient populations of stars. The top row of pictures, taken by a ground-based telescope, represents complete views of each galaxy. The blue boxes outline the regions observed by the Hubble telescope. The bottom row represents composite pictures from Hubble's visible- and infrared-light cameras, the Wide Field and Planetary Camera 2 (WFPC2) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Astronomers combined views from both cameras to obtain the true ages of the stars surrounding each galaxy's bulge. The Hubble telescope's sharper resolution allows astronomers to study the intricate structure of a galaxy's core. The galaxies are ordered by the size of their bulges. NGC 5838, an 'S0' galaxy, is dominated by a large bulge and has no visible spiral arms; NGC 7537, an 'Sbc' galaxy, has a small bulge and loosely wound spiral arms. Astronomers think that the structure of NGC 7537 is very similar to our Milky Way. The galaxy images are composites made from WFPC2 images taken with blue (4445 Angstroms) and red (8269 Angstroms) filters, and NICMOS images taken in the infrared (16,000 Angstroms). They were taken in June, July, and August of 1997. Credits for the ground-based images: Allan Sandage (The Observatories of the Carnegie Institution of Washington) and John Bedke (Computer Sciences Corporation and the Space Telescope Science Institute) Credits for WFPC2 and NICMOS composites: NASA, ESA, and Reynier Peletier (University of Nottingham, United Kingdom)
NASA Astrophysics Data System (ADS)
Tugendhat, Tim M.; Schäfer, Björn Malte
2018-05-01
We investigate a physical, composite alignment model for both spiral and elliptical galaxies and its impact on cosmological parameter estimation from weak lensing for a tomographic survey. Ellipticity correlation functions and angular ellipticity spectra for spiral and elliptical galaxies are derived on the basis of tidal interactions with the cosmic large-scale structure and compared to the tomographic weak-lensing signal. We find that elliptical galaxies cause a contribution to the weak-lensing dominated ellipticity correlation on intermediate angular scales between ℓ ≃ 40 and ℓ ≃ 400 before that of spiral galaxies dominates on higher multipoles. The predominant term on intermediate scales is the negative cross-correlation between intrinsic alignments and weak gravitational lensing (GI-alignment). We simulate parameter inference from weak gravitational lensing with intrinsic alignments unaccounted; the bias induced by ignoring intrinsic alignments in a survey like Euclid is shown to be several times larger than the statistical error and can lead to faulty conclusions when comparing to other observations. The biases generally point into different directions in parameter space, such that in some cases one can observe a partial cancellation effect. Furthermore, it is shown that the biases increase with the number of tomographic bins used for the parameter estimation process. We quantify this parameter estimation bias in units of the statistical error and compute the loss of Bayesian evidence for a model due to the presence of systematic errors as well as the Kullback-Leibler divergence to quantify the distance between the true model and the wrongly inferred one.
Comparison of numerical and experimental results of the flow in the U9 Kaplan turbine model
NASA Astrophysics Data System (ADS)
Petit, O.; Mulu, B.; Nilsson, H.; Cervantes, M.
2010-08-01
The present work compares simulations made using the OpenFOAM CFD code with experimental measurements of the flow in the U9 Kaplan turbine model. Comparisons of the velocity profiles in the spiral casing and in the draft tube are presented. The U9 Kaplan turbine prototype located in Porjus and its model, located in Älvkarleby, Sweden, have curved inlet pipes that lead the flow to the spiral casing. Nowadays, this curved pipe and its effect on the flow in the turbine is not taken into account when numerical simulations are performed at design stage. To study the impact of the inlet pipe curvature on the flow in the turbine, and to get a better overview of the flow of the whole system, measurements were made on the 1:3.1 model of the U9 turbine. Previously published measurements were taken at the inlet of the spiral casing and just before the guide vanes, using the laser Doppler anemometry (LDA) technique. In the draft tube, a number of velocity profiles were measured using the LDA techniques. The present work extends the experimental investigation with a horizontal section at the inlet of the draft tube. The experimental results are used to specify the inlet boundary condition for the numerical simulations in the draft tube, and to validate the computational results in both the spiral casing and the draft tube. The numerical simulations were realized using the standard k-e model and a block-structured hexahedral wall function mesh.
Simulation and observation of line-slip structures in columnar structures of soft spheres
NASA Astrophysics Data System (ADS)
Winkelmann, J.; Haffner, B.; Weaire, D.; Mughal, A.; Hutzler, S.
2017-07-01
We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.
Simulation and observation of line-slip structures in columnar structures of soft spheres.
Winkelmann, J; Haffner, B; Weaire, D; Mughal, A; Hutzler, S
2017-07-01
We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.
Ganalyzer: A Tool for Automatic Galaxy Image Analysis
NASA Astrophysics Data System (ADS)
Shamir, Lior
2011-08-01
We describe Ganalyzer, a model-based tool that can automatically analyze and classify galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large data sets of galaxy images collected by autonomous sky surveys such as SDSS, LSST, or DES. The software is available for free download at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer, and the data used in the experiment are available at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer/GalaxyImages.zip.
Zhao, De-Li; Jia, Guang-Sheng; Chen, Peng; Liu, Xin-Ding; Shu, Sheng-Jie; Ling, Zai-Sheng; Fan, Ting-Ting; Shen, Xiu-Fen; Zhang, Jin-Ling
2017-11-01
The present study aimed to assess the diagnostic value of 64-slice spiral computed tomography (CT) imaging of the urinary tract during the excretory phase for urinary tract obstruction. CT imaging of the urinary tract during the excretory phase was performed in 46 patients that had been diagnosed with urinary tract obstruction by B-mode ultrasound imaging or clinical manifestations. It was demonstrated that out of the 46 patients, 18 had pelvic and ureteral calculi, 12 cases had congenital malformations, 3 had ureteral stricture caused by urinary tract infection and 13 cases had malignant tumors of the urinary tract. The average X-ray dose planned for the standard CT scan of the urinary tract group 1 was 14.11±5.45 mSv, while the actual X-ray dose administered for the CT scan during the excretory phase group 2 was 9.01±4.56 mSv. The difference between the two groups was statistically significant (t=15.36; P<0.01). The results of the present study indicate that CT scanning of the urinary tract during the excretory phase has a high diagnostic value for urinary tract obstruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odlyzko, Michael L.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu; Himmetoglu, Burak
2016-07-15
Annular dark field scanning transmission electron microscopy (ADF-STEM) image simulations were performed for zone-axis-oriented light-element single crystals, using a multislice method adapted to include charge redistribution due to chemical bonding. Examination of these image simulations alongside calculations of the propagation of the focused electron probe reveal that the evolution of the probe intensity with thickness exhibits significant sensitivity to interatomic charge transfer, accounting for observed thickness-dependent bonding sensitivity of contrast in all ADF-STEM imaging conditions. Because changes in image contrast relative to conventional neutral atom simulations scale directly with the net interatomic charge transfer, the strongest effects are seen inmore » crystals with highly polar bonding, while no effects are seen for nonpolar bonding. Although the bonding dependence of ADF-STEM image contrast varies with detector geometry, imaging parameters, and material temperature, these simulations predict the bonding effects to be experimentally measureable.« less
Lee, Fernandes Carmen; Fernandes, C M C; Murrell, H C
2009-06-01
This study is an anatomical study designed to benefit surgeons working in the region of the maxillary sinus. This paper investigates ethnic and gender variations in the shape of the maxillary sinus in dried crania from the Raymond Dart collection of human skeletons. The paper claims that an estimate of the area of the medial antral wall of the maxillary sinus is one of the best ethnic/gender group predictors. Helical, multislice computed tomography was performed using 1mm coronal slices length, depth, width and volume measurements for each sinus were taken. Classification by shape and estimated area of medial wall was attempted. Shape classification was found to be unsuccessful whilst medial wall classification into ethnic/gender groupings gave encouraging results. The area of the medial wall is related to ethnic/gender groups.
CT and MRI slice separation evaluation by LabView developed software.
Acri, Giuseppe; Testagrossa, Barbara; Sestito, Angela; Bonanno, Lilla; Vermiglio, Giuseppe
2018-02-01
The efficient use of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) equipment necessitates establishing adequate quality-control (QC) procedures. In particular, the accuracy of slice separation, during multislices acquisition, requires scan exploration of phantoms containing test objects. To simplify such procedures, a novel phantom and a computerised LabView-based procedure have been devised, enabling determination the midpoint of full width at half maximum (FWHM) in real time while the distance from the profile midpoint of two progressive images is evaluated and measured. The results were compared with those obtained by processing the same phantom images with commercial software. To validate the proposed methodology the Fisher test was conducted on the resulting data sets. In all cases, there was no statistically significant variation between the commercial procedure and the LabView one, which can be used on any CT and MRI diagnostic devices. Copyright © 2017. Published by Elsevier GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowhurst, James A; Campbell, Douglas; Whitby, Mark
A patient with a medial and posterior dislocation of the right sterno-clavicular (SC) joint and displacement of the trachea and brachiocephalic artery by the medial head of the clavicle underwent general anaesthetic in the operating theatre for an open reduction procedure. The surgeon initially attempted a closed reduction, but this required imaging to check SC alignment. The patient was transferred to an adjacent hybrid operating theatre for imaging. Cone beam computed tomography (CBCT) was performed, which successfully demonstrated a significant reduction in the dislocation of the SC joint. The trachea and brachiocephalic artery were no longer compressed or displaced. Thismore » case study demonstrates an alternative to the patient being transferred to the medical imaging department for multi-slice CT. It also describes a novel use of the hybrid operating theatre and its CBCT capabilities.« less
Computer aided detection system for Osteoporosis using low dose thoracic 3D CT images
NASA Astrophysics Data System (ADS)
Tsuji, Daisuke; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Harada, Masafumi; Kusumoto, Masahiko; Tsuchida, Takaaki; Eguchi, Kenji; Kaneko, Masahiro
2018-02-01
The patient of osteoporosis is about 13 million people in Japan and it is one of healthy life problems in the aging society. It is necessary to do early stage detection and treatment in order to prevent the osteoporosis. Multi-slice CT technology has been improving the three dimensional (3D) image analysis with higher resolution and shorter scan time. The 3D image analysis of thoracic vertebra can be used for supporting to diagnosis of osteoporosis. This analysis can be used for lung cancer detection at the same time. We develop method of shape analysis and CT values of spongy bone for the detection osteoporosis. Osteoporosis and lung cancer screening show high extraction rate by the thoracic vertebral evaluation CT images. In addition, we created standard pattern of CT value per thoracic vertebra for male age group using 298 low dose data.
Peramaki, Ed R
2011-05-01
Radiographic assessment of combat injuries has been an important component of casualty care in every major conflict of the 20th and 21st centuries. The advent of multislice computed tomography scanners has provided physicians with the ability to visualize organ injury at submillimetre resolution, changing the way war wounds are treated. Modern wars are, for the most part, asymmetric conflicts where improvised explosive devices have replaced artillery as a major cause of casualties. Both bullets and explosive devices wreak distinctive patterns of injury on the human body. Being able to recognize these patterns and their potential associated morbidities will allow medical personnel to provide expert and timely care to some of the most severely injured patients on earth. This series of pictorial essays will review the radiographic patterns of combat-related injury encountered in southern Afghanistan in 2008-2009.
Pancreatic trauma: demographics, diagnosis, and management.
Stawicki, Stanislaw Peter; Schwab, C William
2008-12-01
Pancreatic injuries are rare, with penetrating mechanisms being causative in majority of cases. They can create major diagnostic and therapeutic challenges and require multiple diagnostic modalities, including multislice high-definition computed tomography, magnetic resonance cholangiopancreatography, endoscopic retrograde cholangiopancreatography, ultrasonography, and at times, surgery and direct visualization of the pancreas. Pancreatic trauma is frequently associated with duodenal and other severe vascular and visceral injuries. Mortality is high and usually related to the concomitant vascular injury. Surgical management of pancreatic and pancreatic-duodenal trauma is challenging, and multiple surgical approaches and techniques have been described, up to and including pancreatic damage control and later resection and reconstruction. Wide surgical drainage is a key to any surgical trauma technique and access for enteral nutrition, or occasionally parenteral nutrition, are important adjuncts. Morbidity associated with pancreatic trauma is high and can be quite severe. Treatment of pancreatic trauma-related complications often requires a combination of interventional, endoscopic, and surgical approaches.
Fimag: the United Kingdom disaster victim/forensic identification imaging system.
Rutty, Guy N; Robinson, Claire; Morgan, Bruno; Black, Sue; Adams, Catherine; Webster, Philip
2009-11-01
Imaging is an integral diagnostic tool in mass fatality investigations undertaken traditionally by plain X-rays, fluoroscopy, and dental radiography. However, little attention has been given to appropriate image reporting, secure data transfer and storage particularly in relation to the need to meet stringent judicial requirements. Notwithstanding these limitations, it is the risk associated with the safe handling and investigation of contaminated fatalities which is providing new challenges for mass fatality radiological imaging. Mobile multi-slice computed tomography is an alternative to these traditional modalities as it provides a greater diagnostic yield and an opportunity to address the requirements of the criminal justice system. We present a new national disaster victim/forensic identification imaging system--Fimag--which is applicable for both contaminated and non-contaminated mass fatality imaging and addresses the issues of judicial reporting. We suggest this system opens a new era in radiological diagnostics for mass fatalities.
Huang, Chih-Hao; Brunsvold, Michael A
2006-01-01
Maxillary sinusitis may develop from the extension of periodontal disease. In this case, reconstructed three-dimensional images from multidetector spiral computed tomographs were helpful in evaluating periodontal bony defects and their relationship with the maxillary sinus. A 42-year-old woman in good general health presented with a chronic deep periodontal pocket on the palatal and interproximal aspects of tooth #14. Probing depths of the tooth ranged from 2 to 9 mm, and it exhibited a Class 1 mobility. Radiographs revealed a close relationship between the root apex and the maxillary sinus. The patient's periodontal diagnosis was localized severe chronic periodontitis. Treatment of the tooth consisted of cause-related therapy, surgical exploration, and bone grafting. A very deep circumferential bony defect at the palatal root of tooth #14 was noted during surgery. After the operation, the wound healed without incidence, but 10 days later, a maxillary sinusitis and periapical abscess developed. To control the infection, an evaluation of sinus and alveolus using computed tomographs was performed, systemic antibiotics were prescribed, and endodontic treatment was initiated. Two weeks after surgical treatment, the infection was relieved with the help of antibiotics and endodontic treatment. Bilateral bony communications between the maxillary sinus and periodontal bony defect of maxillary first molars were shown on three-dimensional computed tomographs. The digitally reconstructed images added valuable information for evaluating the periodontal defects. Three-dimensional images from spiral computed tomographs (CT) aided in evaluating and treating the close relationship between maxillary sinus disease and adjacent periodontal defects.
The instability of the spiral wave induced by the deformation of elastic excitable media
NASA Astrophysics Data System (ADS)
Ma, Jun; Jia, Ya; Wang, Chun-Ni; Li, Shi-Rong
2008-09-01
There are some similarities between the spiral wave in excitable media and in cardiac tissue. Much evidence shows that the appearance and instability of the spiral wave in cardiac tissue can be linked to one kind of heart disease. There are many models that can be used to investigate the formation and instability of the spiral wave. Cardiac tissue is excitable and elastic, and it is interesting to simulate the transition and instability of the spiral wave induced by media deformation. For simplicity, a class of the modified Fitzhugh-Nagumo (MFHN) model, which can generate a stable rotating spiral wave, meandering spiral wave and turbulence within appropriate parameter regions, will be used to simulate the instability of the spiral wave induced by the periodical deformation of media. In the two-dimensional case, the total acreage of elastic media is supposed to be invariable in the presence of deformation, and the problem is described with Lx × Ly = N × ΔxN × Δy = L'xL'y = N × Δx'N × Δy'. In our studies, elastic media are decentralized into N × N sites and the space of the adjacent sites is changed to simulate the deformation of elastic media. Based on the nonlinear dynamics theory, the deformation effect on media is simplified and simulated by perturbing the diffusion coefficients Dx and Dy with different periodical signals, but the perturbed diffusion coefficients are compensatory. The snapshots of our numerical results find that the spiral wave can coexist with the spiral turbulence, instability of the spiral wave and weak deformation of the spiral wave in different conditions. The ratio parameter ɛ and the frequency of deformation forcing play a deterministic role in inducing instability of the spiral wave. Extensive studies confirm that the instability of the spiral wave can be induced and developed only if an appropriate frequency for deformation is used. We analyze the power spectrum for the time series of the mean activator of four sampled sites which are selected symmetrically in different cases, such as the condition that the spiral wave coexists with the spiral turbulence, spiral wave without evident deformation, complete instability of the spiral wave (turbulence) and weak deformation of the spiral wave. It is found that more new peaks appear in the power spectrum and the distribution of frequency becomes sparser when the spiral wave encounters instability.
Non-Cartesian Balanced SSFP Pulse Sequences for Real-Time Cardiac MRI
Feng, Xue; Salerno, Michael; Kramer, Christopher M.; Meyer, Craig H.
2015-01-01
Purpose To develop a new spiral-in/out balanced steady-state free precession (bSSFP) pulse sequence for real-time cardiac MRI and compare it with radial and spiral-out techniques. Methods Non-Cartesian sampling strategies are efficient and robust to motion and thus have important advantages for real-time bSSFP cine imaging. This study describes a new symmetric spiral-in/out sequence with intrinsic gradient moment compensation and SSFP refocusing at TE=TR/2. In-vivo real-time cardiac imaging studies were performed to compare radial, spiral-out, and spiral-in/out bSSFP pulse sequences. Furthermore, phase-based fat-water separation taking advantage of the refocusing mechanism of the spiral-in/out bSSFP sequence was also studied. Results The image quality of the spiral-out and spiral-in/out bSSFP sequences was improved with off-resonance and k-space trajectory correction. The spiral-in/out bSSFP sequence had the highest SNR, CNR, and image quality ratings, with spiral-out bSSFP sequence second in each category and the radial bSSFP sequence third. The spiral-in/out bSSFP sequence provides separated fat and water images with no additional scan time. Conclusions In this work a new spiral-in/out bSSFP sequence was developed and tested. The superiority of spiral bSSFP sequences over the radial bSSFP sequence in terms of SNR and reduced artifacts was demonstrated in real-time MRI of cardiac function without image acceleration. PMID:25960254
Multiple mechanisms quench passive spiral galaxies
NASA Astrophysics Data System (ADS)
Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.
2018-02-01
We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ < 1 × 1010 M⊙) passive spiral galaxies are located in the rich Virgo cluster. This is in contrast to low-mass spiral galaxies with star formation, which inhabit a range of environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.
NASA Astrophysics Data System (ADS)
Wang, Chun-Ni; Ma, Jun; Tang, Jun; Li, Yan-Long
2010-02-01
Spiral wave could be observed in the excitable media, the neurons are often excitable within appropriate parameters. The appearance and formation of spiral wave in the cardiac tissue is linked to monomorphic ventricular tachycardia that can denervate into polymorphic tachycardia and ventricular fibrillation. The neuronal system often consists of a large number of neurons with complex connections. In this paper, we theoretically study the transition from spiral wave to spiral turbulence and homogeneous state (death of spiral wave) in two-dimensional array of the Hindmarsh-Rose neuron with completely nearest-neighbor connections. In our numerical studies, a stable rotating spiral wave is developed and selected as the initial state, then the bifurcation parameters are changed to different values to observe the transition from spiral wave to homogeneous state, breakup of spiral wave and weak change of spiral wave, respectively. A statistical factor of synchronization is defined with the mean field theory to analyze the transition from spiral wave to other spatial states, and the snapshots of the membrane potentials of all neurons and time series of mean membrane potentials of all neurons are also plotted to discuss the change of spiral wave. It is found that the sharp changing points in the curve for factor of synchronization vs. bifurcation parameter indicate sudden transition from spiral wave to other states. And the results are independent of the number of neurons we used.
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Zhao, X.
1996-01-01
A new method for design and generation of spiral bevel gears of uniform tooth depth with localized bearing contact and low level of transmission errors is considered. The main features of the proposed approach are as follows: (1) The localization of the bearing contact is achieved by the mismatch of the generating surfaces. The bearing contact may be provided in the longitudinal direction, or in the direction across the surface; and (2) The low level of transmission errors is achieved due to application of nonlinear relations between the motions of the gear and the gear head-cutter. Such relations may be provided by application of a CNC machine. The generation of the pinion is based on application of linear relations between the motions of the tool and the pinion being generated. The relations described above permit a parabolic function of transmission errors to be obtained that is able to absorb almost linear functions caused by errors of gear alignment. A computer code has been written for the meshing and contact of the spiral bevel gears with the proposed geometry. The effect of misalignment on the proposed geometry has also been determined. Numerical examples for illustration of the proposed theory have been provided.
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Zhao, X.
1996-01-01
A new method for design and generation of spiral bevel gears of uniform tooth depth with localized bearing contact and low level of transmission errors is considered. The main features of the proposed approach are as follows: (1) the localization of the bearing contact is achieved by the mismatch of the generating surfaces. The bearing contact may be provided in the longitudinal direction, or in the direction across the surface; and (2) the low level of transmission errors is achieved due to application of nonlinear relations between the motions of the gear and the gear head-cutter. Such relations may be provided by application of a CNC machine. The generation of the pinion is based on application of linear relations between the motions of the tool and the pinion being generated. The relations described above permit a parabolic function of transmission errors to be obtained that is able to absorb almost linear functions caused by errors of gear alignment. A computer code has been written for the meshing and contact of the spiral bevel gears with the proposed geometry. The effect of misalignment on the proposed geometry has also been determined. Numerical examples for illustration of the proposed theory have been provided.
Manual for automatic generation of finite element models of spiral bevel gears in mesh
NASA Technical Reports Server (NTRS)
Bibel, G. D.; Reddy, S.; Kumar, A.
1994-01-01
The goal of this research is to develop computer programs that generate finite element models suitable for doing 3D contact analysis of faced milled spiral bevel gears in mesh. A pinion tooth and a gear tooth are created and put in mesh. There are two programs: Points.f and Pat.f to perform the analysis. Points.f is based on the equation of meshing for spiral bevel gears. It uses machine tool settings to solve for an N x M mesh of points on the four surfaces, pinion concave and convex, and gear concave and convex. Points.f creates the file POINTS.OUT, an ASCI file containing N x M points for each surface. (N is the number of node points along the length of the tooth, and M is nodes along the height.) Pat.f reads POINTS.OUT and creates the file tl.out. Tl.out is a series of PATRAN input commands. In addition to the mesh density on the tooth face, additional user specified variables are the number of finite elements through the thickness, and the number of finite elements along the tooth full fillet. A full fillet is assumed to exist for both the pinion and gear.
Ganesan, Prasanth; Shillieto, Kristina E.; Ghoraani, Behnaz
2018-01-01
Cardiac simulations play an important role in studies involving understanding and investigating the mechanisms of cardiac arrhythmias. Today, studies of arrhythmogenesis and maintenance are largely being performed by creating simulations of a particular arrhythmia with high accuracy comparable to the results of clinical experiments. Atrial fibrillation (AF), the most common arrhythmia in the United States and many other parts of the world, is one of the major field where simulation and modeling is largely used. AF simulations not only assist in understanding its mechanisms but also help to develop, evaluate and improve the computer algorithms used in electrophysiology (EP) systems for ablation therapies. In this paper, we begin with a brief overeview of some common techniques used in simulations to simulate two major AF mechanisms – spiral waves (or rotors) and point (or focal) sources. We particularly focus on 2D simulations using Nygren et al.’s mathematical model of human atrial cell. Then, we elucidate an application of the developed AF simulation to an algorithm designed for localizing AF rotors for improving current AF ablation therapies. Our simulation methods and results, along with the other discussions presented in this paper is aimed to provide engineers and professionals with a working-knowledge of application-specific simulations of spirals and foci. PMID:29629398
Automated Quantification of Arbitrary Arm-Segment Structure in Spiral Galaxies
NASA Astrophysics Data System (ADS)
Davis, Darren Robert
This thesis describes a system that, given approximately-centered images of spiral galaxies, produces quantitative descriptions of spiral galaxy structure without the need for per-image human input. This structure information consists of a list of spiral arm segments, each associated with a fitted logarithmic spiral arc and a pixel region. This list-of-arcs representation allows description of arbitrary spiral galaxy structure: the arms do not need to be symmetric, may have forks or bends, and, more generally, may be arranged in any manner with a consistent spiral-pattern center (non-merging galaxies have a sufficiently well-defined center). Such flexibility is important in order to accommodate the myriad structure variations observed in spiral galaxies. From the arcs produced from our method it is possible to calculate measures of spiral galaxy structure such as winding direction, winding tightness, arm counts, asymmetry, or other values of interest (including user-defined measures). In addition to providing information about the spiral arm "skeleton" of each galaxy, our method can enable analyses of brightness within individual spiral arms, since we provide the pixel regions associated with each spiral arm segment. For winding direction, arm tightness, and arm count, comparable information is available (to various extents) from previous efforts; to the extent that such information is available, we find strong correspondence with our output. We also characterize the changes to (and invariances in) our output as a function of modifications to important algorithm parameters. By enabling generation of extensive data about spiral galaxy structure from large-scale sky surveys, our method will enable new discoveries and tests regarding the nature of galaxies and the universe, and will facilitate subsequent work to automatically fit detailed brightness models of spiral galaxies.
Lingala, Sajan Goud; Zhu, Yinghua; Lim, Yongwan; Toutios, Asterios; Ji, Yunhua; Lo, Wei-Ching; Seiberlich, Nicole; Narayanan, Shrikanth; Nayak, Krishna S
2017-12-01
To evaluate the feasibility of through-time spiral generalized autocalibrating partial parallel acquisition (GRAPPA) for low-latency accelerated real-time MRI of speech. Through-time spiral GRAPPA (spiral GRAPPA), a fast linear reconstruction method, is applied to spiral (k-t) data acquired from an eight-channel custom upper-airway coil. Fully sampled data were retrospectively down-sampled to evaluate spiral GRAPPA at undersampling factors R = 2 to 6. Pseudo-golden-angle spiral acquisitions were used for prospective studies. Three subjects were imaged while performing a range of speech tasks that involved rapid articulator movements, including fluent speech and beat-boxing. Spiral GRAPPA was compared with view sharing, and a parallel imaging and compressed sensing (PI-CS) method. Spiral GRAPPA captured spatiotemporal dynamics of vocal tract articulators at undersampling factors ≤4. Spiral GRAPPA at 18 ms/frame and 2.4 mm 2 /pixel outperformed view sharing in depicting rapidly moving articulators. Spiral GRAPPA and PI-CS provided equivalent temporal fidelity. Reconstruction latency per frame was 14 ms for view sharing and 116 ms for spiral GRAPPA, using a single processor. Spiral GRAPPA kept up with the MRI data rate of 18ms/frame with eight processors. PI-CS required 17 minutes to reconstruct 5 seconds of dynamic data. Spiral GRAPPA enabled 4-fold accelerated real-time MRI of speech with a low reconstruction latency. This approach is applicable to wide range of speech RT-MRI experiments that benefit from real-time feedback while visualizing rapid articulator movement. Magn Reson Med 78:2275-2282, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Ren, Jiayin; Zhou, Zhongwei; Li, Peng; Tang, Wei; Guo, Jixiang; Wang, Hu; Tian, Weidong
2016-09-01
This study aimed to evaluate an innovative workflow for maxillofacial fracture surgery planning and surgical splint designing. The maxillofacial multislice computerized tomography (MSCT) data and dental cone beam computerized tomography (CBCT) data both were obtained from 40 normal adults and 58 adults who suffered fractures. The each part of the CBCT dentition image was registered into MSCT image by the use of the iterative closest point algorithm. Volume evaluation of the virtual splints that were designed by the registered MSCT images and MSCT images of the same object was performed. Eighteen patients (group 1) were operated without any splint. Twenty-one (group 2) and 19 patients (group 3) used the splints designed according to the MSCT images and registered MSCT images, respectively. The authors' results showed that the mean errors between the 2 models ranged from 0.53 to 0.92 mm and the RMS errors ranged from 0.38 to 0.69 mm in fracture patients. The mean errors between the 2 models ranged from 0.47 to 0.85 mm and the RMS errors ranged from 0.33 to 0.71 mm in normal adults. 72.22% patients in group 1 recovered occlusion. 85.71% patients in group 2, and 94.73% patients in group 3 reconstructed occlusion. There was a statistically significant difference between the MSCT images based splints' volume and the registered MSCT splints' volume in patients (P <0.05). The MSCT images based splints' volume was statistically significantly distinct from the registered MSCT splints' volume in normal adults (P <0.05). There was a statistically significant difference between the MSCT images based splints' volume and the registered MSCT splints' volume in patients and normal adults (P <0.05). The occlusion recovery rate of group 3 was better than that of group 1 and group 2. The way of integrating CBCT images into MSCT images for splints designing was feasible. The volume of the splints designed by MSCT images tended to be smaller than the splints designed by the integrated MSCT images. The patients operated with splints tended to regain occlusion. The patients who were operated with the splints which were designed according to registered MSCT images tended to get occlusal recovered.
Chrzanowski, Stephen M; Baligand, Celine; Willcocks, Rebecca J; Deol, Jasjit; Schmalfuss, Ilona; Lott, Donovan J; Daniels, Michael J; Senesac, Claudia; Walter, Glenn A; Vandenborne, Krista
2017-09-01
Duchenne muscular dystrophy (DMD) causes progressive pathologic changes to muscle secondary to a cascade of inflammation, lipid deposition, and fibrosis. Clinically, this manifests as progressive weakness, functional loss, and premature mortality. Though insult to whole muscle groups is well established, less is known about the relationship between intramuscular pathology and function. Differences of intramuscular heterogeneity across muscle length were assessed using an ordinal MRI grading scale in lower leg muscles of boys with DMD and correlated to patient's functional status. Cross sectional T 1 weighted MRI images with fat suppression were obtained from ambulatory boys with DMD. Six muscles (tibialis anterior, extensor digitorum longus, peroneus, soleus, medial and lateral gastrocnemii) were graded using an ordinal grading scale over 5 slice sections along the lower leg length. The scores from each slice were combined and results were compared to global motor function and age. Statistically greater differences of involvement were observed at the proximal ends of muscle compared to the midbellies. Multi-slice assessment correlated significantly to age and the Vignos functional scale, whereas single-slice assessment correlated to the Vignos functional scale only. Lastly, differential disease involvement of whole muscle groups and intramuscular heterogeneity were observed amongst similar age subjects. A multi-slice ordinal MRI grading scale revealed that muscles are not uniformly affected, with more advanced disease visible near the tendons in a primarily ambulatory population with DMD. A geographically comprehensive evaluation of the heterogeneously affected muscle in boys with DMD may more accurately assess disease involvement.
Translational Symmetry-Breaking for Spiral Waves
NASA Astrophysics Data System (ADS)
LeBlanc, V. G.; Wulff, C.
2000-10-01
Spiral waves are observed in numerous physical situations, ranging from Belousov-Zhabotinsky (BZ) chemical reactions, to cardiac tissue, to slime-mold aggregates. Mathematical models with Euclidean symmetry have recently been developed to describe the dynamic behavior (for example, meandering) of spiral waves in excitable media. However, no physical experiment is ever infinite in spatial extent, so the Euclidean symmetry is only approximate. Experiments on spiral waves show that inhomogeneities can anchor spirals and that boundary effects (for example, boundary drifting) become very important when the size of the spiral core is comparable to the size of the reacting medium. Spiral anchoring and boundary drifting cannot be explained by the Euclidean model alone. In this paper, we investigate the effects on spiral wave dynamics of breaking the translation symmetry while keeping the rotation symmetry. This is accomplished by introducing a small perturbation in the five-dimensional center bundle equations (describing Hopf bifurcation from one-armed spiral waves) which is SO(2)-equivariant but not equivariant under translations. We then study the effects of this perturbation on rigid spiral rotation, on quasi-periodic meandering and on drifting.
NASA Astrophysics Data System (ADS)
Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio
2012-04-01
A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.
Herlin, Antoine; Jacquemet, Vincent
2012-05-01
Phase singularity analysis provides a quantitative description of spiral wave patterns observed in chemical or biological excitable media. The configuration of phase singularities (locations and directions of rotation) is easily derived from phase maps in two-dimensional manifolds. The question arises whether one can construct a phase map with a given configuration of phase singularities. The existence of such a phase map is guaranteed provided that the phase singularity configuration satisfies a certain constraint associated with the topology of the supporting medium. This paper presents a constructive mathematical approach to numerically solve this problem in the plane and on the sphere as well as in more general geometries relevant to atrial anatomy including holes and a septal wall. This tool can notably be used to create initial conditions with a controllable spiral wave configuration for cardiac propagation models and thus help in the design of computer experiments in atrial electrophysiology.
Solar-electric-propulsion cargo vehicles for split/sprint Mars mission
NASA Technical Reports Server (NTRS)
Callaghan, Christopher E.; Crowe, Michael D.; Swis, Matthew J.; Mickney, Marcus R.; Montgomery, C. Keith; Walters, Robert; Thoden, Scott
1991-01-01
In support of the proposed exploration of Mars, an unmanned cargo ferry SEMM1 (Solar Electric Mars Mission) was designed. The vehicle is based on solar electric propulsion, and required to transport a cargo of 61,000 kg. The trajectory is a combination of spirals; first, out from LEO, then around the sun, then spiral down to low Mars orbit. The spacecraft produces 3.03 MWe power using photovoltaic flexible blanket arrays. Ion thrusters using argon as a propellant were selected to drive the ship, providing about 60 Newtons of thrust in low Earth orbit. The configuration is based on two long truss beams to which the 24 individual, self-deployable, solar arrays are attached. The main body module supports the two beams and houses the computers, electrical, and control equipment. The thruster module is attached to the rear of the main body, and the cargo to the front.
Hydrodynamical Aspects of the Formation of Spiral-Vortical Structures in Rotating Gaseous Disks
NASA Astrophysics Data System (ADS)
Elizarova, T. G.; Zlotnik, A. A.; Istomina, M. A.
2018-01-01
This paper is dedicated to numerical simulations of spiral-vortical structures in rotating gaseous disks using a simple model based on two-dimensional, non-stationary, barotropic Euler equations with a body force. The results suggest the possibility of a purely hydrodynamical basis for the formation and evolution of such structures. New, axially symmetric, stationary solutions of these equations are derived that modify known approximate solutions. These solutions with added small perturbations are used as initial data in the non-stationary problem, whose solution demonstrates the formation of density arms with bifurcation. The associated redistribution of angular momentum is analyzed. The correctness of laboratory experiments using shallow water to describe the formation of large-scale vortical structures in thin gaseous disks is confirmed. The computations are based on a special quasi-gas-dynamical regularization of the Euler equations in polar coordinates.
S-band omnidirectional antenna for the SERT-C satellite
NASA Technical Reports Server (NTRS)
Bassett, H. L.; Cofer, J. W., Jr.; Sheppard, R. R.; Sinclair, M. J.
1975-01-01
The program to design an S-band omnidirectional antenna system for the SERT-C spacecraft is discussed. The program involved the tasks of antenna analyses by computer techniques, scale model radiation pattern measurements of a number of antenna systems, full-scale RF measurements, and the recommended design, including detailed drawings. A number of antenna elements were considered: the cavity-backed spiral, quadrifilar helix, and crossed-dipoles were chosen for in-depth studies. The final design consisted of a two-element array of cavity-backed spirals mounted on opposite sides of spacecraft and fed in-phase through a hybrid junction. This antenna system meets the coverage requirement of having a gain of at least minus 10 dBi over 50 percent of a 4 pi steradian sphere with the solar panels in operation. This coverage level is increased if the ground station has the capability to change polarization.
ERIC Educational Resources Information Center
Bartocci, Ezio; Singh, Rupinder; von Stein, Frederick B.; Amedome, Avessie; Caceres, Alan Joseph J.; Castillo, Juan; Closser, Evan; Deards, Gabriel; Goltsev, Andriy; Ines, Roumwelle Sta.; Isbilir, Cem; Marc, Joan K.; Moore, Diquan; Pardi, Dana; Sadhu, Sandeep; Sanchez, Samuel; Sharma, Pooja; Singh, Anoopa; Rogers, Joshua; Wolinetz, Aron; Grosso-Applewhite, Terri; Zhao, Kai; Filipski, Andrew B.; Gilmour, Robert F., Jr.; Grosu, Radu; Glimm, James; Smolka, Scott A.; Cherry, Elizabeth M.; Clarke, Edmund M.; Griffeth, Nancy; Fenton, Flavio H.
2011-01-01
As part of a 3-wk intersession workshop funded by a National Science Foundation Expeditions in Computing award, 15 undergraduate students from the City University of New York collaborated on a study aimed at characterizing the voltage dynamics and arrhythmogenic behavior of cardiac cells for a broad range of physiologically relevant conditions…
Computation of Bound Orbits in the Plane of a Galaxy with a Flat Rotation Curve
ERIC Educational Resources Information Center
Bacon, M. E.; Sharrar, Amber
2010-01-01
A standard topic in an advanced undergraduate classical mechanics course is the determination of the orbits in a gravitational field. In the present paper we report on the calculation of bound orbits in the gravitational field of a spiral galaxy. Calculations such as these could serve to focus attention on an area of cutting edge astrophysics and…
Investigation of logarithmic spiral nanoantennas at optical frequencies
NASA Astrophysics Data System (ADS)
Verma, Anamika; Pandey, Awanish; Mishra, Vigyanshu; Singh, Ten; Alam, Aftab; Dinesh Kumar, V.
2013-12-01
The first study is reported of a logarithmic spiral antenna in the optical frequency range. Using the finite integration technique, we investigated the spectral and radiation properties of a logarithmic spiral nanoantenna and a complementary structure made of thin gold film. A comparison is made with results for an Archimedean spiral nanoantenna. Such nanoantennas can exhibit broadband behavior that is independent of polarization. Two prominent features of logarithmic spiral nanoantennas are highly directional far field emission and perfectly circularly polarized radiation when excited by a linearly polarized source. The logarithmic spiral nanoantenna promises potential advantages over Archimedean spirals and could be harnessed for several applications in nanophotonics and allied areas.
Plasma Generator Using Spiral Conductors
NASA Technical Reports Server (NTRS)
Szatkowski, George N. (Inventor); Dudley, Kenneth L. (Inventor); Ticatch, Larry A. (Inventor); Smith, Laura J. (Inventor); Koppen, Sandra V. (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor)
2016-01-01
A plasma generator includes a pair of identical spiraled electrical conductors separated by dielectric material. Both spiraled conductors have inductance and capacitance wherein, in the presence of a time-varying electromagnetic field, the spiraled conductors resonate to generate a harmonic electromagnetic field response. The spiraled conductors lie in parallel planes and partially overlap one another in a direction perpendicular to the parallel planes. The geometric centers of the spiraled conductors define endpoints of a line that is non-perpendicular with respect to the parallel planes. A voltage source coupled across the spiraled conductors applies a voltage sufficient to generate a plasma in at least a portion of the dielectric material.
Student perceptions of a spiral curriculum.
Coelho, C S; Moles, D R
2016-08-01
The aim of this study was evaluation of constructive alignment of student perceptions to a spiral curriculum, as a pre-requisite to successful learning. A survey was undertaken to evaluate student thoughts and experiences of a spiral curriculum, by participation in an anonymous voluntary questionnaire. Students were asked to rate their thoughts on their understanding, perceived benefit of and confusion with their spiral curriculum at the current time and retrospectively during previous years, and to answer free-text questions on the impact, effects on learning and future suggestions for their spiral curriculum. Sixty (86%) students completed the questionnaire. Understanding the spiral curriculum worked enhanced with time, with the benefit of the spiral curriculum being felt more conclusively in the latter years, and the majority of students not being confused by the spiral curriculum. Those students who were most confused by the spiral curriculum were the ones who were least likely to appreciate its benefits. The opportunity for consolidation of previously visited knowledge was a perceived predominant advantage, with re-visitation of topics helping to deepen understanding and learning. Clarity on the depth of knowledge at each stage prevents information overload. A spiral curriculum must spiral and not be a repetition of previously delivered topics. This study provided insights into students' perceptions of an integrated spiral curriculum, and whilst predominantly positive, there are challenges to enhance the student experience. The spiral curriculum provides an opportunity to revisit and consolidate learning to the apparent benefit of the student. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Cochlea and other spiral forms in nature and art.
Marinković, Slobodan; Stanković, Predrag; Štrbac, Mile; Tomić, Irina; Ćetković, Mila
2012-01-01
The original appearance of the cochlea and the specific shape of a spiral are interesting for both the scientists and artists. Yet, a correlation between the cochlea and the spiral forms in nature and art has been very rarely mentioned. The aim of this study was to investigate the possible correlation between the cochlea and the other spiral objects in nature, as well as the artistic presentation of the spiral forms. We explored data related to many natural objects and examined 13,625 artworks created by 2049 artists. We also dissected 2 human cochleas and prepared histologic slices of a rat cochlea. The cochlea is a spiral, cone-shaped osseous structure that resembles certain other spiral forms in nature. It was noticed that parts of some plants are arranged in a spiral manner, often according to Fibonacci numbers. Certain animals, their parts, or their products also represent various types of spirals. Many of them, including the cochlea, belong to the logarithmic type. Nature created spiral forms in the living world to pack a larger number of structures in a limited space and also to improve their function. Because the cochlea and other spiral forms have a certain aesthetic value, many artists presented them in their works of art. There is a mathematical and geometric correlation between the cochlea and natural spiral objects, and the same functional reason for their formation. The artists' imagery added a new aspect to those domains. Obviously, the creativity of nature and Homo sapiens has no limits--like the infinite distal part of the spiral. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hart, Ross E.; Bamford, Steven P.; Hayes, Wayne B.; Cardamone, Carolin N.; Keel, William C.; Kruk, Sandor J.; Lintott, Chris J.; Masters, Karen L.; Simmons, Brooke D.; Smethurst, Rebecca J.
2017-12-01
In this paper, we study the morphological properties of spiral galaxies, including measurements of spiral arm number and pitch angle. Using Galaxy Zoo 2, a stellar mass-complete sample of 6222 SDSS spiral galaxies is selected. We use the machine vision algorithm SPARCFIRE to identify spiral arm features and measure their associated geometries. A support vector machine classifier is employed to identify reliable spiral features, with which we are able to estimate pitch angles for half of our sample. We use these machine measurements to calibrate visual estimates of arm tightness, and hence estimate pitch angles for our entire sample. The properties of spiral arms are compared with respect to various galaxy properties. The star formation properties of galaxies vary significantly with arm number, but not pitch angle. We find that galaxies hosting strong bars have spiral arms substantially (4°-6°) looser than unbarred galaxies. Accounting for this, spiral arms associated with many-armed structures are looser (by 2°) than those in two-armed galaxies. In contrast to this average trend, galaxies with greater bulge-to-total stellar mass ratios display both fewer and looser spiral arms. This effect is primarily driven by the galaxy disc, such that galaxies with more massive discs contain more spiral arms with tighter pitch angles. This implies that galaxy central mass concentration is not the dominant cause of pitch angle and arm number variations between galaxies, which in turn suggests that not all spiral arms are governed by classical density waves or modal theories.
Design of the central region in the Gustaf Werner cyclotron at the Uppsala university
NASA Astrophysics Data System (ADS)
Toprek, Dragan; Reistad, Dag; Lundstrom, Bengt; Wessman, Dan
2002-07-01
This paper describes the design of the central region in the Gustaf Werner cyclotron for h=1, 2 and 3 modes of acceleration. The electric field distribution in the inflector and in the four acceleration gaps has been numerically calculated from an electric potential map produced by the program RELAX3D. The geometry of the central region has been tested with the computations of orbits carried out by means of the computer code CYCLONE. The optical properties of the spiral inflector and the central region were studied by using the programs CASINO and CYCLONE, respectively.
Li, Zhiqiang; Schär, Michael; Wang, Dinghui; Zwart, Nicholas R; Madhuranthakam, Ananth J; Karis, John P; Pipe, James G
2016-01-01
The three-dimensional (3D) spiral turbo spin echo (TSE) sequence is one of the preferred readout methods for arterial spin labeled (ASL) perfusion imaging. Conventional spiral TSE collects the data using a spiral-out readout on a stack of spirals trajectory. However, it may result in suboptimal image quality and is not flexible in protocol design. The goal of this study is to provide a more robust readout technique without such limitation. The proposed technique incorporates a spiral-in/out readout into 3D TSE, and collects the data on a distributed spirals trajectory. The data set is split into the spiral-in and -out subsets that are reconstructed separately and combined after image deblurring. The volunteer results acquired with the proposed technique show no geometric distortion or signal pileup, as is present with GRASE, and no signal loss, as is seen with conventional spiral TSE. Examples also demonstrate the flexibility in changing the imaging parameters to satisfy various criteria. The 3D TSE with a distributed spiral-in/out trajectory provides a robust readout technique and allows for easy protocol design, thus is a promising alternative to GRASE or conventional spiral TSE for ASL perfusion imaging. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Tian, Lei; Waller, Laura
2017-05-01
Microscope lenses can have either large field of view (FOV) or high resolution, not both. Computational microscopy based on illumination coding circumvents this limit by fusing images from different illumination angles using nonlinear optimization algorithms. The result is a Gigapixel-scale image having both wide FOV and high resolution. We demonstrate an experimentally robust reconstruction algorithm based on a 2nd order quasi-Newton's method, combined with a novel phase initialization scheme. To further extend the Gigapixel imaging capability to 3D, we develop a reconstruction method to process the 4D light field measurements from sequential illumination scanning. The algorithm is based on a 'multislice' forward model that incorporates both 3D phase and diffraction effects, as well as multiple forward scatterings. To solve the inverse problem, an iterative update procedure that combines both phase retrieval and 'error back-propagation' is developed. To avoid local minimum solutions, we further develop a novel physical model-based initialization technique that accounts for both the geometric-optic and 1st order phase effects. The result is robust reconstructions of Gigapixel 3D phase images having both wide FOV and super resolution in all three dimensions. Experimental results from an LED array microscope were demonstrated.
Ultralow Dose MSCT Imaging in Dental Implantology
Widmann, Gerlig; Al-Ekrish, Asma'a A.
2018-01-01
Introduction: The Council Directive 2013/59 Euratom has a clear commitment for keeping medical radiation exposure as low as reasonably achievable and demands a regular review and use of diagnostic reference levels. Methods: In dental implantology, the range of effective doses for cone beam computed tomography (CBCT) shows a broad overlap with multislice computed tomography (MSCT). More recently, ultralow dose imaging with new generations of MSCT scanners may impart radiation doses equal to or lower than CBCT. Dose reductions in MSCT have been further facilitated by the introduction of iterative image reconstruction technology (IRT), which provides substantial noise reduction over the current standard of filtered backward projection (FBP). Aim: The aim of this article is to review the available literature on ultralow dose CT imaging and IRTs in dental implantology imaging and to summarize their influence on spatial and contrast resolution, image noise, tissue density measurements, and validity of linear measurements of the jaws. Conclusion: Application of ultralow dose MSCT with IRT technology in dental implantology offers the potential for very large dose reductions compared with standard dose imaging. Yet, evaluation of various diagnostic tasks related to dental implantology is still needed to confirm the results obtained with various IRTs and ultra-low doses so far. PMID:29492174
Radial migration in numerical simulations of Milky-Way sized galaxies
NASA Astrophysics Data System (ADS)
Grand, R. J. J.; Kawata, D.
2016-09-01
We show that in ßrm N-body simulations of isolated spiral discs, spiral arms appear to transient, recurring features that co-rotate with the stellar disc stars at all radii. As a consequence, stars around the spiral arm continually feel a tangential force from the spiral and gain/lose angular momentum at all radii where spiral structure exists, without gaining significant amounts of random energy. We demonstrate that the ubiquitous radial migration in these simulations can be seen as outward (inward) systematic streaming motions along the trailing (leading) side of the spiral arms. We characterise these spiral induced peculiar motions and compare with those of the Milky Way obtained from APOGEE red clump data. We find that transient, co-rotating spiral arms are consistent with the data, in contrast with density wave-like spirals which are qualitatively inconsistent. In addition, we show that, in our simulations, radial migration does not change the radial metallicity gradient significantly, and broadens the metallicity distribution function at all radii, similar to some previous studies.
Classifying and modelling spiral structures in hydrodynamic simulations of astrophysical discs
NASA Astrophysics Data System (ADS)
Forgan, D. H.; Ramón-Fox, F. G.; Bonnell, I. A.
2018-05-01
We demonstrate numerical techniques for automatic identification of individual spiral arms in hydrodynamic simulations of astrophysical discs. Building on our earlier work, which used tensor classification to identify regions that were `spiral-like', we can now obtain fits to spirals for individual arm elements. We show this process can even detect spirals in relatively flocculent spiral patterns, but the resulting fits to logarithmic `grand-design' spirals are less robust. Our methods not only permit the estimation of pitch angles, but also direct measurements of the spiral arm width and pattern speed. In principle, our techniques will allow the tracking of material as it passes through an arm. Our demonstration uses smoothed particle hydrodynamics simulations, but we stress that the method is suitable for any finite-element hydrodynamics system. We anticipate our techniques will be essential to studies of star formation in disc galaxies, and attempts to find the origin of recently observed spiral structure in protostellar discs.
Origin choice and petal loss in the flower garden of spiral wave tip trajectories
Gray, Richard A.; Wikswo, John P.; Otani, Niels F.
2009-01-01
Rotating spiral waves have been observed in numerous biological and physical systems. These spiral waves can be stationary, meander, or even degenerate into multiple unstable rotating waves. The spatiotemporal behavior of spiral waves has been extensively quantified by tracking spiral wave tip trajectories. However, the precise methodology of identifying the spiral wave tip and its influence on the specific patterns of behavior remains a largely unexplored topic of research. Here we use a two-state variable FitzHugh–Nagumo model to simulate stationary and meandering spiral waves and examine the spatiotemporal representation of the system’s state variables in both the real (i.e., physical) and state spaces. We show that mapping between these two spaces provides a method to demarcate the spiral wave tip as the center of rotation of the solution to the underlying nonlinear partial differential equations. This approach leads to the simplest tip trajectories by eliminating portions resulting from the rotational component of the spiral wave. PMID:19791998
Origin choice and petal loss in the flower garden of spiral wave tip trajectories.
Gray, Richard A; Wikswo, John P; Otani, Niels F
2009-09-01
Rotating spiral waves have been observed in numerous biological and physical systems. These spiral waves can be stationary, meander, or even degenerate into multiple unstable rotating waves. The spatiotemporal behavior of spiral waves has been extensively quantified by tracking spiral wave tip trajectories. However, the precise methodology of identifying the spiral wave tip and its influence on the specific patterns of behavior remains a largely unexplored topic of research. Here we use a two-state variable FitzHugh-Nagumo model to simulate stationary and meandering spiral waves and examine the spatiotemporal representation of the system's state variables in both the real (i.e., physical) and state spaces. We show that mapping between these two spaces provides a method to demarcate the spiral wave tip as the center of rotation of the solution to the underlying nonlinear partial differential equations. This approach leads to the simplest tip trajectories by eliminating portions resulting from the rotational component of the spiral wave.
Detection of Hot Halo Gets Theory Out of Hot Water
NASA Astrophysics Data System (ADS)
2006-02-01
Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of intergalactic gas," said Jesper Rasmussen of the University of Birmingham, United Kingdom and a coauthor of the report. "What we found is in good agreement with computer simulations in which galaxies are built up gradually from the merger of smaller clouds of hot gas and dark matter." The computer simulations were done by Jesper Sommer-Larsen (also a coauthor of the report) and collaborators at the University of Copenhagen. The paper describing these results will be published in the April issue of the journal New Astronomy. Other researchers on this project were Sune Toft, Yale University; Andrew Benson, University of Oxford, United Kingdom; and Richard Bower, University of Durham, United Kingdom. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. http://chandra.harvard.edu and http://chandra.nasa.gov
Mechanism of spiral formation in heterogeneous discretized excitable media.
Kinoshita, Shu-ichi; Iwamoto, Mayuko; Tateishi, Keita; Suematsu, Nobuhiko J; Ueyama, Daishin
2013-06-01
Spiral waves on excitable media strongly influence the functions of living systems in both a positive and negative way. The spiral formation mechanism has thus been one of the major themes in the field of reaction-diffusion systems. Although the widely believed origin of spiral waves is the interaction of traveling waves, the heterogeneity of an excitable medium has recently been suggested as a probable cause. We suggest one possible origin of spiral waves using a Belousov-Zhabotinsky reaction and a discretized FitzHugh-Nagumo model. The heterogeneity of the reaction field is shown to stochastically generate unidirectional sites, which can induce spiral waves. Furthermore, we found that the spiral wave vanished with only a small reduction in the excitability of the reaction field. These results reveal a gentle approach for controlling the appearance of a spiral wave on an excitable medium.
How does a planet excite multiple spiral arms?
NASA Astrophysics Data System (ADS)
Bae, Jaehan; Zhu, Zhaohuan
2018-01-01
Protoplanetary disk simulations show that a single planet excites multiple spiral arms in the background disk, potentially supported by the multi-armed spirals revealed with recent high-resolution observations in some disks. The existence of multiple spiral arms is of importance in many aspects. It is empirically found that the arm-to-arm separation increases as a function of the planetary mass, so one can use the morphology of observed spiral arms to infer the mass of unseen planets. In addition, a spiral arm opens a radial gap as it steepens into a shock, so when a planet excites multiple spiral arms it can open multiple gaps in the disk. Despite the important implications, however, the formation mechanism of multiple spiral arms has not been fully understood by far.In this talk, we explain how a planet excites multiple spiral arms. The gravitational potential of a planet can be decomposed into a Fourier series, a sum of individual azimuthal modes having different azimuthal wavenumbers. Using a linear wave theory, we first demonstrate that appropriate sets of Fourier decomposed waves can be in phase, raising a possibility that constructive interference among the waves can produce coherent structures - spiral arms. More than one spiral arm can form since such constructive interference can occur at different positions in the disk for different sets of waves. We then verify this hypothesis using a suite of two-dimensional hydrodynamic simulations. Finally, we present non-linear behavior in the formation of multiple spiral arms.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru
2008-03-01
Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The function to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and Success in login" effective. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.
Visualisation of the temporary cavity by computed tomography using contrast material.
Schyma, Christian; Hagemeier, Lars; Greschus, Susanne; Schild, Hans; Madea, Burkhard
2012-01-01
The temporary cavity of a missile produces radial tears in ordnance gelatine, which correlate to the energy transfer. Computed tomography is a useful and non-destructive method to examine gelatine blocks. However, the tears give only few radiocontrast by air filling, which decreases with the time past shooting. Therefore, systematically, a radiocontrast material was searched to enhance the contrast. Different contrast materials were amalgamated to acryl paint, and about 7 g was sealed in a foil bag, which was integrated in the front of a standard 10% gelatine cylinder. Shots with Action-5 expanding bullets were performed from a 5-m distance. Gelatine was scanned by multi-slice computed tomography. The multiplanar reconstructed images were compared to mechanically cut slices of 1 cm thickness. It was shown experimentally that iodine containing water-soluble contrast material did not give sufficient contrast and caused diffusion artefacts. Best results were obtained by barium sulphate emulsion. The amount of acryl paint was sufficient to colour the tears for optical scanning. The radiocontrast of barium leads to satisfying imaging of tears and allowed the creation of a three-dimensional reconstruction of the temporary cavity. Comparison of optical and radiological results showed an excellent correlation, but absolute measures in computed tomographic (CT) images remained lower compared with optically gathered values in the gelatine slices. Combination of paint and contrast material for CT examination will facilitate the evaluation of complex ballistic models and increase accuracy.
NASA Astrophysics Data System (ADS)
Chen, Xiaowei; Wang, Wenping; Wan, Min
2013-12-01
It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.
Warmann, Steven W; Schenk, Andrea; Schaefer, Juergen F; Ebinger, Martin; Blumenstock, Gunnar; Tsiflikas, Ilias; Fuchs, Joerg
2016-11-01
In complex malignant pediatric liver tumors there is an ongoing discussion regarding surgical strategy; for example, primary organ transplantation versus extended resection in hepatoblastoma involving 3 or 4 sectors of the liver. We evaluated the possible role of computer-assisted surgery planning in children with complex hepatic tumors. Between May 2004 and March 2016, 24 Children with complex liver tumors underwent standard multislice helical CT scan or MRI scan at our institution. Imaging data were processed using the software assistant LiverAnalyzer (Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany). Results were provided as Portable Document Format (PDF) with embedded interactive 3-dimensional surface mesh models. Median age of patients was 33months. Diagnoses were hepatoblastoma (n=14), sarcoma (n=3), benign parenchyma alteration (n=2), as well as hepatocellular carcinoma, rhabdoid tumor, focal nodular hyperplasia, hemangioendothelioma, or multiple hepatic metastases of a pancreas carcinoma (each n=1). Volumetry of liver segments identified remarkable variations and substantial aberrances from the Couinaud classification. Computer-assisted surgery planning was used to determine surgical strategies in 20/24 children; this was especially relevant in tumors affecting 3 or 4 liver sectors. Primary liver transplantation could be avoided in 12 of 14 hepaoblastoma patients who theoretically were candidates for this approach. Computer-assisted surgery planning substantially contributed to the decision for surgical strategies in children with complex hepatic tumors. This tool possibly allows determination of specific surgical procedures such as extended surgical resection instead of primary transplantation in certain conditions. Copyright © 2016. Published by Elsevier Inc.
On a new coordinate system with astrophysical application: Spiral coordinates
NASA Astrophysics Data System (ADS)
Campos, L. M. B. C.; Gil, P. J. S.
In this presentation are introduced spiral coordinates, which are a particular case of conformal coordinates, i.e. orthogonal curvelinear coordinates with equal factors along all coordinate axis. The spiral coordinates in the plane have as coordinate curves two families of logarithmic spirals, making a constant angle, respectively phi and pi / 2-phi, with all radial lines, where phi is a parameter. They can be obtained from a complex function, representing a spiral potential flow, due to the superposition of a source/sink with a vortex; the parameter phi in this case specifies the ratio of the ass flux of source/sink to the circulation of the vortex. Regardless of hydrodynamical or other interpretations, spiral coordinates are particulary convenient in situation where physical quantities vary only along a logarithmicspiral. The example chosen is the propagation of Alfven waves along a logarithmic spiral, as an approximation to Parker's spiral. The equation of dissipative MHD are written in spiral coordinates, and eliminated to specify the Alfven wave equation in spiral coordinates; the latter is solved exactly in terms of Bessel functions, and the results analyzed for values of the parameters corresponding to the solar wind.
Mori, Shinichiro; Chen, George T Y; Endo, Masahiro
2007-09-01
To analyze the water equivalent pathlength (WEL) fluctuations resulting from cardiac motion and display these variations on a beam's-eye-view image; the analysis provides insight into the accuracy of lung tumor irradiation with heavy charged particle beams. Volumetric cine computed tomography (CT) images were obtained on 7 lung cancer patients under free-breathing conditions with a 256-multislice CT scanner. Cardiac phase was determined by selecting systole and diastole. A WEL difference image (DeltaWEL) was calculated by subtracting the WEL image at end-systole from that at end-diastole at respiratory exhalation phase. Two calculation regions were defined: Region 1 was limited to the volume defined by planes bounding the heart; Region 2 included the entire body thickness for a given beam's-eye-view angle. The DeltaWEL values observed in Region 1 showed fluctuations at the periphery of the heart that varied from 20.4 (SD, 5.2) mm WEL to -15.6 (3.2) mm WEL. The areas over which these range perturbation values were observed were 36.8 (32.4) mm(2) and 6.0 (2.8) mm(2) for positive and negative WEL, respectively. The WEL fluctuations in Region 2 increased by approximately 3-4 mm WEL, whereas negative WEL fluctuations changed by approximately -4 to -5 mm WEL, compared with WEL for Region 1; areas over 20 mm WEL changes in Region 2 increased by 9 mm(2) for positive DeltaWEL and 2 mm(2) for negative DeltaWEL. Cine CT with a 256-multislice CT scanner captures both volumetric cardiac and respiratory motion with a temporal resolution sufficient to estimate range fluctuations by these motions. This information can be used to assess the range perturbations that charged particle beams may experience in irradiation of lung or esophageal tumors adjacent to the heart.
Feasibility of spiral enteroscopy in Japanese patients: study in two tertiary hospitals.
Yamada, Atsuo; Watabe, Hirotsugu; Oka, Shiro; Kogure, Hirofumi; Imagawa, Hiroki; Kobayashi, Yuka; Suzuki, Hirobumi; Watari, Ikue; Aoyama, Taiki; Isayama, Hiroyuki; Yamaji, Yutaka; Fujishiro, Mitsuhiro; Tanaka, Shinji; Koike, Kazuhiko
2013-07-01
Despite recent advances in enteroscopy, such as balloon enteroscopy, accessing the small intestine remains challenging. Spiral enteroscopy is a novel technique in which an endoscope is fitted with a rotating overtube that has a soft spiral fin at the tip. Whereas spiral enteroscopy is beginning to be carried out in Western countries, it is not common in many Asian countries. The aim of the present study was to evaluate the efficacy and safety of spiral enteroscopy in Japanese patients. We prospectively conducted spiral enteroscopy in patients with suspected or known small bowel disease. All procedures were carried out using a spiral overtube. The main outcome measurements of the study were diagnosis rate, endoscopic intervention rate, and complication rate. Thirty-two patients underwent spiral enteroscopy. Spiral enteroscopy diagnosed 16 patients (50%) with small intestinal lesions, including six malignant lymphomas (19%), three erosions or ulcers (9%), three polyps (9%), two angioectasias (6%), one carcinoma (3%), and one submucosal tumor (3%). Additionally, four patients underwent endoscopic interventions (13%). Mallory-Weiss syndrome occurred in one patient (3%). No perforation occurred in any patient (0%). Our initial experience of spiral enteroscopy suggests that it can be introduced safely, but it is relatively invasive and technically demanding. More experience is needed to conduct spiral enteroscopy easily and safely. © 2012 The Authors. Digestive Endoscopy © 2012 Japan Gastroenterological Endoscopy Society.
Magnetic fields in spiral galaxies
NASA Astrophysics Data System (ADS)
Chiba, Masashi
The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.
Xu, Dan; King, Kevin F; Liang, Zhi-Pei
2007-10-01
A new class of spiral trajectories called variable slew-rate spirals is proposed. The governing differential equations for a variable slew-rate spiral are derived, and both numeric and analytic solutions to the equations are given. The primary application of variable slew-rate spirals is peak B(1) amplitude reduction in 2D RF pulse design. The reduction of peak B(1) amplitude is achieved by changing the gradient slew-rate profile, and gradient amplitude and slew-rate constraints are inherently satisfied by the design of variable slew-rate spiral gradient waveforms. A design example of 2D RF pulses is given, which shows that under the same hardware constraints the RF pulse using a properly chosen variable slew-rate spiral trajectory can be much shorter than that using a conventional constant slew-rate spiral trajectory, thus having greater immunity to resonance frequency offsets.
Interaction of multiarmed spirals in bistable media.
He, Ya-feng; Ai, Bao-quan; Liu, Fu-cheng
2013-05-01
We study the interaction of both dense and sparse multiarmed spirals in bistable media modeled by equations of the FitzHugh-Nagumo type. A dense one-armed spiral is characterized by its fixed tip. For dense multiarmed spirals, when the initial distance between tips is less than a critical value, the arms collide, connect, and disconnect continuously as the spirals rotate. The continuous reconstruction between the front and the back drives the tips to corotate along a rough circle and to meander zigzaggedly. The rotation frequency of tip, the frequency of zigzagged displacement, the frequency of spiral, the oscillation frequency of media, and the number of arms satisfy certain relations as long as the control parameters of the model are fixed. When the initial distance between tips is larger than the critical value, the behaviors of individual arms within either dense or sparse multiarmed spirals are identical to that of corresponding one-armed spirals.
NASA Astrophysics Data System (ADS)
Davis, Benjamin L.; Berrier, J. C.; Shields, D. W.; Kennefick, J.; Kennefick, D.; Seigar, M. S.; Lacy, C. H. S.; Puerari, I.
2012-01-01
A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing Two-Dimensional Fast Fourier Transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow the precise comparison of spiral galaxy evolution to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques. The authors gratefully acknowledge support for this work from NASA Grant NNX08AW03A.
Planet-driven Spiral Arms in Protoplanetary Disks. I. Formation Mechanism
NASA Astrophysics Data System (ADS)
Bae, Jaehan; Zhu, Zhaohuan
2018-06-01
Protoplanetary disk simulations show that a single planet can excite more than one spiral arm, possibly explaining the recent observations of multiple spiral arms in some systems. In this paper, we explain the mechanism by which a planet excites multiple spiral arms in a protoplanetary disk. Contrary to previous speculations, the formation of both primary and additional arms can be understood as a linear process when the planet mass is sufficiently small. A planet resonantly interacts with epicyclic oscillations in the disk, launching spiral wave modes around the Lindblad resonances. When a set of wave modes is in phase, they can constructively interfere with each other and create a spiral arm. More than one spiral arm can form because such constructive interference can occur for different sets of wave modes, with the exact number and launching position of the spiral arms being dependent on the planet mass as well as the disk temperature profile. Nonlinear effects become increasingly important as the planet mass increases, resulting in spiral arms with stronger shocks and thus larger pitch angles. This is found to be common for both primary and additional arms. When a planet has a sufficiently large mass (≳3 thermal masses for (h/r) p = 0.1), only two spiral arms form interior to its orbit. The wave modes that would form a tertiary arm for smaller mass planets merge with the primary arm. Improvements in our understanding of the formation of spiral arms can provide crucial insights into the origin of observed spiral arms in protoplanetary disks.
THE DYNAMICS OF SPIRAL ARMS IN PURE STELLAR DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, M. S.; Baba, J.; Saitoh, T. R.
2011-04-01
It has been believed that spiral arms in pure stellar disks, especially the ones spontaneously formed, decay in several galactic rotations due to the increase of stellar velocity dispersions. Therefore, some cooling mechanism, for example dissipational effects of the interstellar medium, was assumed to be necessary to keep the spiral arms. Here, we show that stellar disks can maintain spiral features for several tens of rotations without the help of cooling, using a series of high-resolution three-dimensional N-body simulations of pure stellar disks. We found that if the number of particles is sufficiently large, e.g., 3 x 10{sup 6}, multi-armmore » spirals developed in an isolated disk can survive for more than 10 Gyr. We confirmed that there is a self-regulating mechanism that maintains the amplitude of the spiral arms. Spiral arms increase Toomre's Q of the disk, and the heating rate correlates with the squared amplitude of the spirals. Since the amplitude itself is limited by Q, this makes the dynamical heating less effective in the later phase of evolution. A simple analytical argument suggests that the heating is caused by gravitational scattering of stars by spiral arms and that the self-regulating mechanism in pure stellar disks can effectively maintain spiral arms on a cosmological timescale. In the case of a smaller number of particles, e.g., 3 x 10{sup 5}, spiral arms grow faster in the beginning of the simulation (while Q is small) and they cause a rapid increase of Q. As a result, the spiral arms become faint in several Gyr.« less
Widmann, G; Dalla Torre, D; Hoermann, R; Schullian, P; Gassner, E M; Bale, R; Puelacher, W
2015-04-01
The influence of dose reductions on diagnostic quality using a series of high-resolution ultralow-dose computed tomography (CT) scans for computer-assisted planning and surgery including the most recent iterative reconstruction algorithms was evaluated and compared with the fracture detectability of a standard cranial emergency protocol. A human cadaver head including the mandible was artificially prepared with midfacial and orbital fractures and scanned using a 64-multislice CT scanner. The CT dose index volume (CTDIvol) and effective doses were calculated using application software. Noise was evaluated as the standard deviation in Hounsfield units within an identical region of interest in the posterior fossa. Diagnostic quality was assessed by consensus reading of a craniomaxillofacial surgeon and radiologist. Compared with the emergency protocol at CTDIvol 35.3 mGy and effective dose 3.6 mSv, low-dose protocols down to CTDIvol 1.0 mGy and 0.1 mSv (97% dose reduction) may be sufficient for the diagnosis of dislocated craniofacial fractures. Non-dislocated fractures may be detected at CTDIvol 2.6 mGy and 0.3 mSv (93% dose reduction). Adaptive statistical iterative reconstruction (ASIR) 50 and 100 reduced average noise by 30% and 56%, and model-based iterative reconstruction (MBIR) by 93%. However, the detection rate of fractures could not be improved due to smoothing effects. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Rapid prototyping modelling in oral and maxillofacial surgery: A two year retrospective study
Stoor, Patricia; Mesimäki, Karri; Kontio, Risto K.
2015-01-01
Background The use of rapid prototyping (RP) models in medicine to construct bony models is increasing. Material and Methods The aim of the study was to evaluate retrospectively the indication for the use of RP models in oral and maxillofacial surgery at Helsinki University Central Hospital during 2009-2010. Also, the used computed tomography (CT) examination – multislice CT (MSCT) or cone beam CT (CBCT) - method was evaluated. Results In total 114 RP models were fabricated for 102 patients. The mean age of the patients at the time of the production of the model was 50.4 years. The indications for the modelling included malignant lesions (29%), secondary reconstruction (25%), prosthodontic treatment (22%), orthognathic surgery or asymmetry (13%), benign lesions (8%), and TMJ disorders (4%). MSCT examination was used in 92 and CBCT examination in 22 cases. Most of the models (75%) were conventional hard tissue models. Models with colored tumour or other structure(s) of interest were ordered in 24%. Two out of the 114 models were soft tissue models. Conclusions The main benefit of the models was in treatment planning and in connection with the production of pre-bent plates or custom made implants. The RP models both facilitate and improve treatment planning and intraoperative efficiency. Key words:Rapid prototyping, radiology, computed tomography, cone beam computed tomography. PMID:26644837
Jahrome, Ommid K; Hoefer, Imo; Houston, Graeme J; Stonebridge, Peter A; Blankestijn, Peter J; Moll, Frans L; de Borst, Gert J
2011-01-01
The primary patency rate of arteriovenous (AV) grafts is limited by distal venous anastomosis stenosis or occlusion due to intimal hyperplasia associated with distal graft turbulence. The normal blood flow in native arteries is spiral laminar flow. Standard vascular grafts do not produce spiral laminar flow at the distal anastomosis. Vascular grafts which induce a spiral laminar flow distally result in lower turbulence, particularly near the vessel wall. This initial study compares the hemodynamic effects of a spiral flow-inducing graft and a standard graft in a new AV carotid to jugular vein crossover graft porcine model. Four spiral flow grafts and 4 control grafts were implanted from the carotid artery to the contralateral jugular vein in 4 pigs. Two animals were terminated after 48 hours and 2 at 14 days. Graft patency was assessed by selective catheter digital angiography, and the flow pattern was assessed by intraoperative flow probe and color Doppler ultrasound (CDU) measurements. The spiral grafts were also assessed at enhanced flow rates using an external roller pump to simulate increased flow rates that may occur during dialysis using a standard dialysis needle cannulation. The method increased the flow rate through the graft by 660 ml/min. The graft distal anastomotic appearances were evaluated by explant histopathology. All grafts were patent at explantation with no complications. All anastomoses were found to be wide open and showed no significant angiographic stenosis at the distal anastomosis in both spiral and control grafts. CDU examinations showed a spiral flow pattern in the spiral graft and double helix pattern in the control graft. No gross histopathological effects were seen in either spiral or control grafts. This porcine model is robust and allows hemodynamic flow assessment up to 14 days postimplantation. The spiral flow-inducing grafts produced and maintained spiral flow at baseline and enhanced flow rates during dialysis needle cannulation, whereas control grafts did not produce spiral flow through the distal anastomosis. There was no deleterious effect of the spiral flow-inducing graft on macroscopic and histological examination. The reducing effect of spiral flow on intima hyperplasia formation will be the subject of further study using the same AV graft model at a longer period of implantation.
Phantu, Metinee; Sutthiopad, Malee; Luengviriya, Jiraporn; Müller, Stefan C; Luengviriya, Chaiya
2017-04-01
We present an investigation on the breakup of free and pinned spiral waves under an applied electrical current in the Belousov-Zhabotinsky reaction. Spiral fronts propagating towards the negative electrode are decelerated. A breakup of the spiral waves occurs when some segments of the fronts are stopped by a sufficiently strong electrical current. In the absence of obstacles (i.e., free spiral waves), the critical value of the electrical current for the wave breakup increases with the excitability of the medium. For spiral waves pinned to circular obstacles, the critical electrical current increases with the obstacle diameter. Analysis of spiral dynamics shows that the enhancement of the robustness against the breakup of both free and pinned spiral waves is originated by the increment of wave speed when either the excitability is strengthened or the obstacle size is enlarged. The experimental findings are reproduced by numerical simulations using the Oregonator model. In addition, the simulations reveal that the robustness against the forced breakup increases with the activator level in both cases of free and pinned spiral waves.
Interleaved Spiral-In/Out with Application to fMRI
Law, Christine S.; Glover, Gary H.
2009-01-01
The conventional spiral-in/out trajectory samples k-space sufficiently in the spiral-in path and sufficiently in the spiral-out path to enable creation of separate images. We propose an interleaved spiral-in/out trajectory comprising a spiral-in path that gathers half of the k-space data, and a complimentary spiral-out path that gathers the other half. The readout duration is thereby reduced by approximately half, offering two distinct advantages: reduction of signal dropout due to susceptibility-induced field gradients (at the expense of signal-to-noise ratio), and the ability to achieve higher spatial resolution when the readout duration is identical to the conventional method. Two reconstruction methods are described; both involve temporal filtering to remove aliasing artifacts. Empirically, interleaved spiral-in/out images are free from false activation resulting from signal pileup around the air/tissue interface, which is common in the conventional spiral-out method. Comparisons with conventional methods using a hyperoxia stimulus reveal greater frontal-orbital activation volumes but a slight reduction of overall activation in other brain regions. PMID:19449373
Generation of spiral waves pinned to obstacles in a simulated excitable system
NASA Astrophysics Data System (ADS)
Phantu, Metinee; Kumchaiseemak, Nakorn; Porjai, Porramain; Sutthiopad, Malee; Müller, Stefan C.; Luengviriya, Chaiya; Luengviriya, Jiraporn
2017-09-01
Pinning phenomena emerge in many dynamical systems. They are found to stabilize extreme conditions such as superconductivity and super fluidity. The dynamics of pinned spiral waves, whose tips trace the boundary of obstacles, also play an important role in the human health. In heart, such pinned waves cause longer tachycardia. In this article, we present two methods for generating pinned spiral waves in a simulated excitable system. In method A, an obstacle is set in the system prior to an ignition of a spiral wave. This method may be suitable only for the case of large obstacles since it often fails when used for small obstacles. In method B, a spiral wave is generated before an obstacle is placed at the spiral tip. With this method, a pinned spiral wave is always obtained, regardless the obstacle size. We demonstrate that after a transient interval the dynamics of the pinned spiral waves generated by the methods A and B are identical. The initiation of pinned spiral waves in both two- and three-dimensional systems is illustrated.
A spiral, bi-planar gradient coil design for open magnetic resonance imaging.
Zhang, Peng; Shi, Yikai; Wang, Wendong; Wang, Yaohui
2018-01-01
To design planar gradient coil for MRI applications without discretization of continuous current density and loop-loop connection errors. In the new design method, the coil current is represented using a spiral curve function described by just a few control parameters. Using a proper parametric equation set, an ensemble of spiral contours is reshaped to satisfy the coil design requirements, such as gradient linearity, inductance and shielding. In the given case study, by using the spiral coil design, the magnetic field errors in the imaging area were reduced from 5.19% (non-spiral design) to 4.47% (spiral design) for the transverse gradient coils, and for the longitudinal gradient coil design, the magnetic field errors were reduced to 5.02% (spiral design). The numerical evaluation shows that when compared with conventional wire loop, the inductance and resistance of spiral coil was reduced by 11.55% and 8.12% for x gradient coil, respectively. A novel spiral gradient coil design for biplanar MRI systems, the new design offers better magnetic field gradients, smooth contours than the conventional connected counterpart, which improves manufacturability.
NASA Astrophysics Data System (ADS)
Winkelmann, J.; Haffner, B.; Weaire, D.; Mughal, A.; Hutzler, S.
2017-07-01
We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.
The Use of Computers as a Design Tool.
1980-01-01
design programs for the technical management of complex fighter development projects. AIAA Paper No. 70-364, March 1970 22. J. Kondo: Application of...the scope and effectiveness of their use are sometimes considered suspect, especially by managers and decision makers who must depend, to some...uncertainty and the fact that the measured and calculated data cannot be easily combined often leave the project manager or designer SPIRAL PORTION
Information Sharing for Computing Trust Metrics on COTS Electronic Components
2008-09-01
8 a. Standard SDLCs ...........................8 b. The Waterfall Model ......................9 c. V -shaped Model ...development of a system. There are many well-known SDLC models , the most popular of which are: • Waterfall • V -shaped • Spiral • Agile a. Standard...the SDLC or applied to software and hardware distribution chain. A. JØSANG’S MODEL DEFINED Jøsang expresses "opinions" mathematically as: 1
NASA Technical Reports Server (NTRS)
Volakis, J. L.; Gong, J.; Alexanian, A.; Woo, A.
1992-01-01
A new hybrid method is presented for the analysis of the scattering and radiation by conformal antennas and arrays comprised of circular or rectangular elements. In addition, calculations for cavity-backed spiral antennas are given. The method employs a finite element formulation within the cavity and the boundary integral (exact boundary condition) for terminating the mesh. By virtue of the finite element discretization, the method has no restrictions on the geometry and composition of the cavity or its termination. Furthermore, because of the convolutional nature of the boundary integral and the inherent sparseness of the finite element matrix, the storage requirement is kept very low at O(n). These unique features of the method have already been exploited in other scattering applications and have permitted the analysis of large-size structures with remarkable efficiency. In this report, we describe the method's formulation and implementation for circular and rectangular patch antennas in different superstrate and substrate configurations which may also include the presence of lumped loads and resistive sheets/cards. Also, various modelling approaches are investigated and implemented for characterizing a variety of feed structures to permit the computation of the input impedance and radiation pattern. Many computational examples for rectangular and circular patch configurations are presented which demonstrate the method's versatility, modeling capability and accuracy.
Phase synchrony reveals organization in human atrial fibrillation
Vidmar, David; Narayan, Sanjiv M.
2015-01-01
It remains unclear if human atrial fibrillation (AF) is spatially nonhierarchical or exhibits a hierarchy of organization sustained by sources. We utilize activation times obtained at discrete locations during AF to compute the phase synchrony between tissue regions, to examine underlying spatial dynamics throughout both atria. We construct a binary synchronization network and show that this network can accurately define regions of coherence in coarse-grained in silico data. Specifically, domains controlled by spiral waves exhibit regions of high phase synchrony. We then apply this analysis to clinical data from patients experiencing cardiac arrhythmias using multielectrode catheters to simultaneously record from a majority of both atria. We show that pharmaceutical intervention with ibutilide organizes activation by increasing the size of the synchronized domain in AF and quantify the increase in temporal organization when arrhythmia changes from fibrillation to tachycardia. Finally, in recordings from 24 patients in AF we show that the level of synchrony is spatially broad with some patients showing large spatially contiguous regions of synchronization, while in others synchrony is localized to small pockets. Using computer simulations, we show that this distribution is inconsistent with distributions obtained from simulations that mimic multiwavelet reentry but is consistent with mechanisms in which one or more spatially conserved spiral waves is surrounded by tissue in which activation is disorganized. PMID:26475585
Jeevanandan, Ganesh; Thomas, Eapen
2018-01-01
This present study was conducted to analyze the volumetric change in the root canal space and instrumentation time between hand files, hand files in reciprocating motion, and three rotary files in primary molars. One hundred primary mandibular molars were randomly allotted to one of the five groups. Instrumentation was done using Group I; nickel-titanium (Ni-Ti) hand file, Group II; Ni-Ti hand files in reciprocating motion, Group III; Race rotary files, Group IV; prodesign pediatric rotary files, and Group V; ProTaper rotary files. The mean volumetric changes were assessed using pre- and post-operative spiral computed tomography scans. Instrumentation time was recorded. Statistical analysis to access intergroup comparison for mean canal volume and instrumentation time was done using Bonferroni-adjusted Mann-Whitney test and Mann-Whitney test, respectively. Intergroup comparison of mean canal volume showed statistically significant difference between Groups II versus IV, Groups III versus V, and Groups IV versus V. Intergroup comparison of mean instrumentation time showed statistically significant difference among all the groups except Groups IV versus V. Among the various instrumentation techniques available, rotary instrumentation is the considered to be the better instrumentation technique for canal preparation in primary teeth.
Controllable Growth and Formation Mechanisms of Dislocated WS2 Spirals.
Fan, Xiaopeng; Zhao, Yuzhou; Zheng, Weihao; Li, Honglai; Wu, Xueping; Hu, Xuelu; Zhang, Xuehong; Zhu, Xiaoli; Zhang, Qinglin; Wang, Xiao; Yang, Bin; Chen, Jianghua; Jin, Song; Pan, Anlian
2018-06-13
Two-dimensional (2D) layered metal dichalcogenides can form spiral nanostructures by a screw-dislocation-driven mechanism, which leads to changes in crystal symmetry and layer stackings that introduce attractive physical properties different from their bulk and few-layer nanostructures. However, controllable growth of spirals is challenging and their growth mechanisms are poorly understood. Here, we report the controllable growth of WS 2 spiral nanoplates with different stackings by a vapor phase deposition route and investigate their formation mechanisms by combining atomic force microscopy with second harmonic generation imaging. Previously not observed "spiral arm" features could be explained as covered dislocation spiral steps, and the number of spiral arms correlates with the number of screw dislocations initiated at the bottom plane. The supersaturation-dependent growth can generate new screw dislocations from the existing layers, or even new layers templated by existing screw dislocations. Different number of dislocations and orientation of new layers result in distinct morphologies, different layer stackings, and more complex nanostructures, such as triangular spiral nanoplates with hexagonal spiral pattern on top. This work provides the understanding and control of dislocation-driven growth of 2D nanostructures. These spiral nanostructures offer diverse candidates for probing the physical properties of layered materials and exploring new applications in functional nanoelectronic and optoelectronic devices.
64 slice MDCT generally underestimates coronary calcium scores as compared to EBT: A phantom study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greuter, M. J. W.; Dijkstra, H.; Groen, J. M.
The objective of our study was the determination of the influence of the sequential and spiral acquisition modes on the concordance and deviation of the calcium score on 64-slice multi-detector computed tomography (MDCT) scanners in comparison to electron beam tomography (EBT) as the gold standard. Our methods and materials were an anthropomorphic cardio CT phantom with different calcium inserts scanned in sequential and spiral acquisition modes on three identical 64-slice MDCT scanners of manufacturer A and on three identical 64-slice MDCT scanners of manufacturer B and on an EBT system. Every scan was repeated 30 times with and 15 timesmore » without a small random variation in the phantom position for both sequential and spiral modes. Significant differences were observed between EBT and 64-slice MDCT data for all inserts, both acquisition modes, and both manufacturers of MDCT systems. High regression coefficients (0.90-0.98) were found between the EBT and 64-slice MDCT data for both scoring methods and both systems with high correlation coefficients (R{sup 2}>0.94). System A showed more significant differences between spiral and sequential mode than system B. Almost no differences were observed in scanners of the same manufacturer for the Agatston score and no differences for the Volume score. The deviations of the Agatston and Volume scores showed regression dependencies approximately equal to the square root of the absolute score. The Agatston and Volume scores obtained with 64-slice MDCT imaging are highly correlated with EBT-obtained scores but are significantly underestimated (-10% to -2%) for both sequential and spiral acquisition modes. System B is more independent of acquisition mode to calcium score than system A. The Volume score shows no intramanufacturer dependency and its use is advocated versus the Agatston score. Using the same cut points for MDCT-based calcium scores as for EBT-based calcium scores can result in classifying individuals into a too low risk category. System information and scanprotocol is therefore needed for every calcium score procedure to ensure a correct clinical interpretation of the obtained calcium score results.« less
Brewer, Kimberly D; Rioux, James A; Klassen, Martyn; Bowen, Chris V; Beyea, Steven D
2012-07-01
Susceptibility field gradients (SFGs) cause problems for functional magnetic resonance imaging (fMRI) in regions like the orbital frontal lobes, leading to signal loss and image artifacts (signal displacement and "pile-up"). Pulse sequences with spiral-in k-space trajectories are often used when acquiring fMRI in SFG regions such as inferior/medial temporal cortex because it is believed that they have improved signal recovery and decreased signal displacement properties. Previously postulated theories explain differing reasons why spiral-in appears to perform better than spiral-out; however it is clear that multiple mechanisms are occurring in parallel. This study explores differences in spiral-in and spiral-out images using human and phantom empirical data, as well as simulations consistent with the phantom model. Using image simulations, the displacement of signal was characterized using point spread functions (PSFs) and target maps, the latter of which are conceptually inverse PSFs describing which spatial locations contribute signal to a particular voxel. The magnitude of both PSFs and target maps was found to be identical for spiral-out and spiral-in acquisitions, with signal in target maps being displaced from distant regions in both cases. However, differences in the phase of the signal displacement patterns that consequently lead to changes in the intervoxel phase coherence were found to be a significant mechanism explaining differences between the spiral sequences. The results demonstrate that spiral-in trajectories do preserve more total signal in SFG regions than spiral-out; however, spiral-in does not in fact exhibit decreased signal displacement. Given that this signal can be displaced by significant distances, its recovery may not be preferable for all fMRI applications. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Peng, Tianrui Rae; Edward English, John; Silva, Pedro; Davis, Darren R.; Hayes, Wayne B.
2018-03-01
The Galaxy Zoo project has provided a plethora of valuable morphological data on a large number of galaxies from various surveys, and their team have identified and/or corrected for many biases. Here we study a new bias related to spiral arm pitch angles, which first requires selecting a sample of spiral galaxies that show observable structure. One obvious way is to select galaxies using a threshold in spirality, which we define as the fraction of Galaxy Zoo humans who have reported seeing spiral structure. Using such a threshold, we use the automated tool SpArcFiRe (SPiral ARC FInder and REporter) to measure spiral arm pitch angles. We observe that the mean pitch angle of spiral arms increases linearly with redshift for 0.05 < z < 0.085. We hypothesize that this is a selection effect due to tightly-wound arms becoming less visible as image quality degrades, leading to fewer such galaxies being above the spirality threshold as redshift increases. We corroborate this hypothesis by first artificially degrading images of nearby galaxies, and then using a machine learning algorithm trained on Galaxy Zoo data to provide a spirality for each artificially degraded image. We find that SpARcFiRe's ability to accurately measure pitch angles decreases as the image degrades, but that spirality decreases more quickly in galaxies with tightly wound arms, leading to the selection effect. This new bias means one must be careful in selecting a sample on which to measure spiral structure. Finally, we also include a sensitivity analysis of SpArcFiRe's internal parameters.
Planet-driven Spiral Arms in Protoplanetary Disks. II. Implications
NASA Astrophysics Data System (ADS)
Bae, Jaehan; Zhu, Zhaohuan
2018-06-01
We examine whether various characteristics of planet-driven spiral arms can be used to constrain the masses of unseen planets and their positions within their disks. By carrying out two-dimensional hydrodynamic simulations varying planet mass and disk gas temperature, we find that a larger number of spiral arms form with a smaller planet mass and a lower disk temperature. A planet excites two or more spiral arms interior to its orbit for a range of disk temperatures characterized by the disk aspect ratio 0.04≤slant {(h/r)}p≤slant 0.15, whereas exterior to a planet’s orbit multiple spiral arms can form only in cold disks with {(h/r)}p≲ 0.06. Constraining the planet mass with the pitch angle of spiral arms requires accurate disk temperature measurements that might be challenging even with ALMA. However, the property that the pitch angle of planet-driven spiral arms decreases away from the planet can be a powerful diagnostic to determine whether the planet is located interior or exterior to the observed spirals. The arm-to-arm separations increase as a function of planet mass, consistent with previous studies; however, the exact slope depends on disk temperature as well as the radial location where the arm-to-arm separations are measured. We apply these diagnostics to the spiral arms seen in MWC 758 and Elias 2–27. As shown in Bae et al., planet-driven spiral arms can create concentric rings and gaps, which can produce a more dominant observable signature than spiral arms under certain circumstances. We discuss the observability of planet-driven spiral arms versus rings and gaps.
High Efficiency Multi-shot Interleaved Spiral-In/Out Acquisition for High Resolution BOLD fMRI
Jung, Youngkyoo; Samsonov, Alexey A.; Liu, Thomas T.; Buracas, Giedrius T.
2012-01-01
Growing demand for high spatial resolution BOLD functional MRI faces a challenge of the spatial resolution vs. coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in-out trajectory is preferred over spiral-in due to increased BOLD signal CNR and higher acquisition efficiency than that of spiral-out or non-interleaved spiral in/out trajectories (1), but to date applicability of the multi-shot interleaved spiral in-out for high spatial resolution imaging has not been studied. Herein we propose multi-shot interleaved spiral in-out acquisition and investigate its applicability for high spatial resolution BOLD fMRI. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2* decay, off-resonance and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in-out pulse sequence yields high BOLD CNR images at in-plane resolution below 1x1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multi-shot interleaved spiral in-out acquisition is a promising technique for high spatial resolution BOLD fMRI applications. PMID:23023395
Effects of Cluster Environment on Chemical Abundances in Virgo Cluster Spirals
NASA Astrophysics Data System (ADS)
Kennicutt, R. C.; Skillman, E. D.; Shields, G. A.; Zaritsky, D.
1995-12-01
We have obtained new chemical abundance measurements of HII regions in Virgo cluster spiral galaxies, in order to test whether the cluster environment has significantly influenced the gas-phase abundances and chemical evolution of spiral disks. The sample of 9 Virgo spirals covers a narrow range of morphological type (Sbc - Sc) but shows broad ranges in HI deficiencies and radii in the cluster. This allows us to compare the Virgo sample as a whole to field spirals, using a large sample from Zaritsky, Kennicutt, & Huchra, and to test for systematic trends with HI content and location within the cluster. The Virgo spirals show a wide dispersion in mean disk abundances and abundance gradients. Strongly HI deficient spirals closest to the cluster core show anomalously high oxygen abundances (by 0.3 to 0.5 dex), while outlying spirals with normal HI content show abundances similar to those of field spirals. The most HI depleted spirals also show weaker abundance gradients on average, but the formal significance of this trend is marginal. We find a strong correlation between mean abundance and HI/optical diameter ratio that is quite distinct from the behavior seen in field galaxies. This suggests that dynamical processes associated with the cluster environment are more important than cluster membership in determining the evolution of chemical abundances and stellar populations in spiral galaxies. Simple chemical evolution models are calculated to predict the magnitude of the abundance enhancement expected if ram-pressure stripping or curtailment of infall is responsible for the gas deficiencies. The increased abundances of the spirals in the cluster core may have significant effects on their use as cosmological standard candles.
Sun, Z; Al Ghamdi, KS; Baroum, IH
2012-01-01
Purpose: To investigate whether the multislice CT scanning protocols of head, chest and abdomen are adjusted according to patient’s age in paediatric patients. Materials and Methods: Multislice CT examination records of paediatric patients undergoing head, chest and abdomen scans from three public hospitals during a one-year period were retrospectively reviewed. Patients were categorised into the following age groups: under 4 years, 5–8 years, 9–12 years and 13–16 years, while the tube current was classified into the following ranges: < 49 mA, 50–99 mA, 100–149 mA, 150–199 mA, > 200 mA and unknown. Results: A total of 4998 patient records, comprising a combination of head, chest and abdomen CT scans, were assessed, with head CT scans representing nearly half of the total scans. Age-based adjusted CT protocols were observed in most of the scans with higher tube current setting being used with increasing age. However, a high tube current (150–199 mA) was still used in younger patients (0–8 years) undergoing head CT scans. In one hospital, CT protocols remained constant across all age groups, indicating potential overexposure to the patients. Conclusion: This analysis shows that paediatric CT scans are adjusted according to the patient’s age in most of the routine CT examinations. This indicates increased awareness regarding radiation risks associated with CT. However, high tube current settings are still used in younger patient groups, thus, optimisation of paediatric CT protocols and implementation of current guidelines, such as age-and weight-based scanning, should be recommended in daily practice. PMID:22970059
Gargantuan Super Spiral Galaxies Loom Large in the Cosmos
2016-03-17
In archived NASA data, researchers have discovered "super spiral" galaxies that dwarf our own spiral galaxy, the Milky Way, and compete in size and brightness with the largest galaxies in the universe. The unprecedented galaxies have long hidden in plain sight by mimicking the appearance of typical spirals. Three examples of super spirals are presented here in images taken by the Sloan Digital Sky Survey. The super spiral on the left (Figure 1), catalogued as 2MASX J08542169+0449308, contains two galactic nuclei, instead of just the usual one, and thus looks like two eggs frying in a pan. The central image (Figure 2) shows a super spiral designated 2MASX J16014061+2718161, and it also contains the double nuclei. On the right (Figure 3), a huge galaxy with the moniker SDSS J094700.08+254045.7 stands as one of the biggest and brightest super spirals. The mega-galaxy's starry disk and spiral arms stretch about 320,000 light-years across, or more than three times the breadth of the Milky Way. These double nuclei, which are known to result from the recent merger of two galaxies, could offer a vital hint about the potential origin of super spirals. Researchers speculate that a special merger involving two, gas-rich spiral galaxies could see their pooled gases settle down into a new, larger stellar disk -- presto, a super spiral. The super spirals were discovered using the NASA/IPAC Extragalactic Database, or NED, an online repository containing information on over 100 million galaxies. NED brings together a wealth of data from many different projects, including ultraviolet light observations from the Galaxy Evolution Explorer, visible light from Sloan Digital Sky Survey, infrared light from the 2-Micron All-Sky Survey, and links to data from other missions such as NASA's Spitzer Space Telescope and Wide-Field Infrared Survey Explorer, or WISE. http://photojournal.jpl.nasa.gov/catalog/PIA20064
The physiological locus of the spiral after-effect.
DOT National Transportation Integrated Search
1964-09-01
It has long been known that if an Archimedes spiral is rotated, an illusory motion of swelling or shrinking, depending on the direction of rotation, will be perceived. If, after the spiral is rotated, it is stopped and S looks at a stationary spiral,...
Propagation of spiral waves pinned to circular and rectangular obstacles.
Sutthiopad, Malee; Luengviriya, Jiraporn; Porjai, Porramain; Phantu, Metinee; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya
2015-05-01
We present an investigation of spiral waves pinned to circular and rectangular obstacles with different circumferences in both thin layers of the Belousov-Zhabotinsky reaction and numerical simulations with the Oregonator model. For circular objects, the area always increases with the circumference. In contrast, we varied the circumference of rectangles with equal areas by adjusting their width w and height h. For both obstacle forms, the propagating parameters (i.e., wavelength, wave period, and velocity of pinned spiral waves) increase with the circumference, regardless of the obstacle area. Despite these common features of the parameters, the forms of pinned spiral waves depend on the obstacle shapes. The structures of spiral waves pinned to circles as well as rectangles with the ratio w/h∼1 are similar to Archimedean spirals. When w/h increases, deformations of the spiral shapes are observed. For extremely thin rectangles with w/h≫1, these shapes can be constructed by employing semicircles with different radii which relate to the obstacle width and the core diameter of free spirals.
Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.
Berenstein, Igal; Muñuzuri, Alberto P; Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M; Epstein, Irving R
2008-08-01
Breathing spiral waves are observed in the oscillatory chlorine dioxide-iodine-malonic acid reaction-diffusion system. The breathing develops within established patterns of multiple spiral waves after the concentration of polyvinyl alcohol in the feeding chamber of a continuously fed, unstirred reactor is increased. The breathing period is determined by the period of bulk oscillations in the feeding chamber. Similar behavior is obtained in the Lengyel-Epstein model of this system, where small amplitude parametric forcing of spiral waves near the spiral wave frequency leads to the formation of breathing spiral waves in which the period of breathing is equal to the period of forcing.
Spiral Ganglion Stem Cells Can Be Propagated and Differentiated Into Neurons and Glia
Zecha, Veronika; Wagenblast, Jens; Arnhold, Stefan; Edge, Albert S. B.; Stöver, Timo
2014-01-01
Abstract The spiral ganglion is an essential functional component of the peripheral auditory system. Most types of hearing loss are associated with spiral ganglion cell degeneration which is irreversible due to the inner ear's lack of regenerative capacity. Recent studies revealed the existence of stem cells in the postnatal spiral ganglion, which gives rise to the hope that these cells might be useful for regenerative inner ear therapies. Here, we provide an in-depth analysis of sphere-forming stem cells isolated from the spiral ganglion of postnatal mice. We show that spiral ganglion spheres have characteristics similar to neurospheres isolated from the brain. Importantly, spiral ganglion sphere cells maintain their major stem cell characteristics after repeated propagation, which enables the culture of spheres for an extended period of time. In this work, we also demonstrate that differentiated sphere-derived cell populations not only adopt the immunophenotype of mature spiral ganglion cells but also develop distinct ultrastructural features of neurons and glial cells. Thus, our work provides further evidence that self-renewing spiral ganglion stem cells might serve as a promising source for the regeneration of lost auditory neurons. PMID:24940560
NASA Astrophysics Data System (ADS)
Miller, James D.
2003-10-01
A spiral model of pitch interrelates tone chroma, tone height, equal temperament scales, and a cochlear map. Donkin suggested in 1870 that the pitch of tones could be well represented by an equiangular spiral. More recently, the cylindrical helix has been popular for representing tone chroma and tone height. Here it is shown that tone chroma, tone height, and cochlear position can be conveniently related to tone frequency via a planar spiral. For this ``equal-temperament spiral,'' (ET Spiral) tone chroma is conceived as a circular array with semitones at 30° intervals. The frequency of sound on the cent scale (re 16.351 Hz) is represented by the radius of the spiral defined by r=(1200/2π)θr, where θr is in radians. By these definitions, one revolution represents one octave, 1200 cents, 30° represents a semitone, the radius relates θ to cents in accordance with equal temperament (ET) tuning, and the arclength of the spiral matches the mapping of sound frequency to the basilar membrane. Thus, the ET Spiral gives tone chroma as θ, tone height as the cent scale, and the cochlear map as the arclength. The possible implications and directions for further work are discussed.
NASA Astrophysics Data System (ADS)
Thomas, Siti A.; Empaling, Shirly; Darlis, Nofrizalidris; Osman, Kahar; Dillon, Jeswant; Taib, Ishkrizat; Khudzari, Ahmad Zahran Md
2017-09-01
Aortic cannulation has been the gold standard for maintaining cardiovascular function during open heart surgery while being connected onto the heart lung machine. These cannulation produces high velocity outflow which may lead to adverse effect on patient condition, especially sandblasting effect on aorta wall and blood cells damage. This paper reports a novel design that was able to decrease high velocity outflow. There were three design factors of that was investigated. The design factors consist of the cannula type, the flow rate, and the cannula tip design which result in 12 variations. The cannulae type used were the spiral flow inducing cannula and the standard cannula. The flow rates are varied from three to five litres per minute (lpm). Parameters for each cannula variation included maximum velocity within the aorta, pressure drop, wall shear stress (WSS) area exceeding 15 Pa, and impinging velocity on the aorta wall were evaluated. Based on the result, spiral flow inducing cannulae is proposed as a better alternatives due to its ability to reduce outflow velocity. Meanwhile, the pressure drop of all variations are less than the limit of 100 mmHg, although standard cannulae yielded better result. All cannulae show low reading of wall shear stress which decrease the possibilities for atherogenesis formation. In conclusion, as far as velocity is concerned, spiral flow is better compared to standard flow across all cannulae variations.
Algorithm for ion beam figuring of low-gradient mirrors.
Jiao, Changjun; Li, Shengyi; Xie, Xuhui
2009-07-20
Ion beam figuring technology for low-gradient mirrors is discussed. Ion beam figuring is a noncontact machining technique in which a beam of high-energy ions is directed toward a target workpiece to remove material in a predetermined and controlled fashion. Owing to this noncontact mode of material removal, problems associated with tool wear and edge effects, which are common in conventional contact polishing processes, are avoided. Based on the Bayesian principle, an iterative dwell time algorithm for planar mirrors is deduced from the computer-controlled optical surfacing (CCOS) principle. With the properties of the removal function, the shaping process of low-gradient mirrors can be approximated by the linear model for planar mirrors. With these discussions, the error surface figuring technology for low-gradient mirrors with a linear path is set up. With the near-Gaussian property of the removal function, the figuring process with a spiral path can be described by the conventional linear CCOS principle, and a Bayesian-based iterative algorithm can be used to deconvolute the dwell time. Moreover, the selection criterion of the spiral parameter is given. Ion beam figuring technology with a spiral scan path based on these methods can be used to figure mirrors with non-axis-symmetrical errors. Experiments on SiC chemical vapor deposition planar and Zerodur paraboloid samples are made, and the final surface errors are all below 1/100 lambda.
Influence of excitability on unpinning and termination of spiral waves.
Luengviriya, Jiraporn; Sutthiopad, Malee; Phantu, Metinee; Porjai, Porramain; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya
2014-11-01
Application of electrical forcing to release pinned spiral waves from unexcitable obstacles and to terminate the rotation of free spiral waves at the boundary of excitable media has been investigated in thin layers of the Belousov-Zhabotinsky (BZ) reaction, prepared with different initial concentrations of H_{2}SO_{4}. Increasing [H_{2}SO_{4}] raises the excitability of the reaction and reduces the core diameter of free spiral waves as well as the wave period. An electric current with density stronger than a critical value Junpin causes a pinned spiral wave to drift away from the obstacle. For a given obstacle size, Junpin increases with [H_{2}SO_{4}]. Under an applied electrical current, the rotation center of a free spiral wave drifts along a straight path to the boundary. When the current density is stronger than a critical value Jterm, the spiral tip is forced to hit the boundary, where the spiral wave is terminated. Similar to Junpin for releasing a pinned spiral wave, Jterm also increases with [H_{2}SO_{4}]. These experimental findings were confirmed by numerical simulations using the Oregonator model, in which the excitability was adjusted via the ratio of the excitation rate to the recovery rate of the BZ reaction. Therefore, our investigation shows that decreasing the excitability can facilitate elimination of spiral waves by electrical forcing, either in the presence of obstacles or not.
Mechanical response of spiral interconnect arrays for highly stretchable electronics
NASA Astrophysics Data System (ADS)
Qaiser, N.; Khan, S. M.; Nour, M.; Rehman, M. U.; Rojas, J. P.; Hussain, M. M.
2017-11-01
A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.
NASA Astrophysics Data System (ADS)
Al-Baidhany, Ismaeel; Rashid, Hayfa G.; Chiad, Sami S.; Habubi, Nadir F.; Jandow, Nidhal N.; Jabbar, Wasmaa A.; Abass, khalid H.
2018-05-01
In this study, we have found a novel relationship among spiral arm pitch angles (p) and momentum parameter of the host spiral galaxies. In this study, we measured the momentum parameter for specimen of Spitzer/IRAC 3.6 μm images of 41 spiral galaxies evaluated employing a relation(Mbulge σ*/c)where Mbulge is mass of the bulge and σ* is the stellar velocity dispersion. We have taken velocity dispersions (σ*) from the literature. In order to determine the spiral arm pitch angles. The selection of specimen of nearly face-on spiral galaxies and employ IRAF ellipse to indicate the ellipticity and major-axis position angle so as to deproject the images to face-on, employing 2D Fast Fourier Transform decomposition mehtod. The specified bulge mass (Mbulge) using the virial theorem was include.
The dynamics of spiral tip adjacent to inhomogeneity in cardiac tissue
NASA Astrophysics Data System (ADS)
Zhang, Juan; Tang, Jun; Ma, Jun; Luo, Jin Ming; Yang, Xian Qing
2018-02-01
Rotating spiral waves in cardiac tissue are implicated in life threatening cardiac arrhythmias. Experimental and theoretical evidences suggest the inhomogeneities in cardiac tissue play a significant role in the dynamics of spiral waves. Based on a modified 2D cardiac tissue model, the interaction of inhomogeneity on the nearby rigidly rotating spiral wave is numerically studied. The adjacent area of the inhomogeneity is divided to two areas, when the initial rotating center of the spiral tip is located in the two areas, the spiral tip will be attracted and anchor on the inhomogeneity finally, or be repulsed away. The width of the area is significantly dependent on the intensity and size of the inhomogeneity. Our numerical study sheds some light on the mechanism of the interaction of inhomogeneity on the spiral wave in cardiac tissue.
Spiral density waves in a young protoplanetary disk.
Pérez, Laura M; Carpenter, John M; Andrews, Sean M; Ricci, Luca; Isella, Andrea; Linz, Hendrik; Sargent, Anneila I; Wilner, David J; Henning, Thomas; Deller, Adam T; Chandler, Claire J; Dullemond, Cornelis P; Lazio, Joseph; Menten, Karl M; Corder, Stuartt A; Storm, Shaye; Testi, Leonardo; Tazzari, Marco; Kwon, Woojin; Calvet, Nuria; Greaves, Jane S; Harris, Robert J; Mundy, Lee G
2016-09-30
Gravitational forces are expected to excite spiral density waves in protoplanetary disks, disks of gas and dust orbiting young stars. However, previous observations that showed spiral structure were not able to probe disk midplanes, where most of the mass is concentrated and where planet formation takes place. Using the Atacama Large Millimeter/submillimeter Array, we detected a pair of trailing symmetric spiral arms in the protoplanetary disk surrounding the young star Elias 2-27. The arms extend to the disk outer regions and can be traced down to the midplane. These millimeter-wave observations also reveal an emission gap closer to the star than the spiral arms. We argue that the observed spirals trace shocks of spiral density waves in the midplane of this young disk. Copyright © 2016, American Association for the Advancement of Science.
De Lutio di Castelguidone, Elisabetta; Pinto, Antonio; Merola, Stefanella; Stavolo, Ciro; Romano, Luigia
2005-03-01
To assess the role CT in the evaluation of traumatic and spontaneous oesophageal perforation. From March 2001 to May 2003, we studied 12 patients (7 males and 5 females; age range: 25-66 years, mean age: 43.5 years) with suspected oesophageal perforation due to motor-vehicle accidents (4 cases), stab wound (one case), post-intubation (2 cases), foreign body ingestion (2 cases) and spontaneous (3 cases). Five patients underwent standard chest and cervical radiography; two patients with suspected foreign body ingestion also underwent a gastrografin swallow study; all of the 12 patients underwent CT of the neck, chest and abdomen before and after intravenous, and in four cases oral, administration of contrast material. In 5 patients with cervical, thoracic and abdominal trauma, the CT examination showed the presence of pleuroparenchymal injury (pneumothorax, pleural effusion and subcutaneous emphysema) as well as findings suggestive of oesophageal perforation: peri-oesophageal air (5 cases), peri-oesophageal fluid (4 cases), oesophageal wall thickening (3 cases), oesophageal wall laceration (2 cases) with abnormal course of the nasogastric tube in one of them and extraluminal extravasation of oral contrast material (2 cases). In 2 patients with post-intubation complications, CT showed the presence of a small peri-oesophageal fluid collection containing small gas bubbles in one case, and a gross perioesophageal abscess-like collection in the second case. In the 2 patients with foreign body ingestion, the plain radiography associated with CT showed the presence of a thin metal object in the cervical region (fragment of a dental plate) and a small extraluminal extravasation of gastrografin in one case, whereas in the other case CT showed the presence of a foreign body (chicken bone) in the hypopharynx with oesophageal wall thickening and peri-oesophageal oedema. In the remaining three patients with suspected spontaneous oesophageal perforation, CT showed the presence of a intramural haematoma in one case, oesophageal fluid distension with gas and a small peri-oesophageal fluid effusion (Mallory-Weiss syndrome) in another, and oesophageal rupture (Boerhaave syndrome) in the last case. Our experience shows that in patients with suspected traumatic and spontaneous oesophageal perforation, standard cervical and chest radiography may suggest a suspected oesophageal perforation in only a small proportion of cases, whereas oral contrast oesophagography has a higher sensitivity. Through the careful analysis of suggestive and specific signs of oesophageal perforation, a correct CT examination enables an accurate and timely diagnosis which significantly affects prognosis and provides valuable indications for treatment.
Otosclerosis: Temporal Bone Pathology.
Quesnel, Alicia M; Ishai, Reuven; McKenna, Michael J
2018-04-01
Otosclerosis is pathologically characterized by abnormal bony remodeling, which includes bone resorption, new bone deposition, and vascular proliferation in the temporal bone. Sensorineural hearing loss in otosclerosis is associated with extension of otosclerosis to the cochlear endosteum and deposition of collagen throughout the spiral ligament. Persistent or recurrent conductive hearing loss after stapedectomy has been associated with incomplete footplate fenestration, poor incus-prosthesis connection, and incus resorption in temporal bone specimens. Human temporal bone pathology has helped to define the role of computed tomography imaging for otosclerosis, confirming that computed tomography is highly sensitive for diagnosis, yet limited in assessing cochlear endosteal involvement. Copyright © 2017 Elsevier Inc. All rights reserved.
A computational study of the topology of vortex breakdown
NASA Technical Reports Server (NTRS)
Spall, Robert E.; Gatski, Thomas B.
1991-01-01
A fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations has been performed. Solutions to four distinct types of breakdown are identified and compared with experimental results. The computed solutions include weak helical, double helix, spiral, and bubble-type breakdowns. The topological structure of the various breakdowns as well as their interrelationship are studied. The data reveal that the asymmetric modes of breakdown may be subject to additional breakdowns as the vortex core evolves in the streamwise direction. The solutions also show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown.
The Performance of a Vaneless Diffuser Fan
NASA Technical Reports Server (NTRS)
Polikovsky, V.; Nevelson, M.
1942-01-01
The present paper is devoted to the theoretical and experimental investigation of one of the stationary elements of a fan, namely, the vaneless diffuser. The method of computation is based on the principles developed by Pfleiderer (Forschungsarbeiten No. 295). The practical interest of this investigation arises from the fact that the design of the fan guide elements - vaneless diffusers, guide vanes, spiral casing - is far behind the design of the impeller as regards accuracy and. reliability. The computations conducted by the method here presented have shown sufficiently good agreement with the experimental data and indicate the limits within which the values of the coefficient of friction lie.
Why are classical bulges more common in S0 galaxies than in spiral galaxies?
NASA Astrophysics Data System (ADS)
Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu
2018-05-01
In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudobulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudobulge hosting spirals. By studying the star formation properties of our galaxies in the NUV - r color-mass diagram, we find that the pseudobulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.
THE STRUCTURE OF SPIRAL SHOCKS EXCITED BY PLANETARY-MASS COMPANIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Zhaohuan; Stone, James M.; Rafikov, Roman R.
2015-11-10
Direct imaging observations have revealed spiral structures in protoplanetary disks. Previous studies have suggested that planet-induced spiral arms cannot explain some of these spiral patterns, due to the large pitch angle and high contrast of the spiral arms in observations. We have carried out three-dimensional (3D) hydrodynamical simulations to study spiral wakes/shocks excited by young planets. We find that, in contrast with linear theory, the pitch angle of spiral arms does depend on the planet mass, which can be explained by the nonlinear density wave theory. A secondary (or even a tertiary) spiral arm, especially for inner arms, is alsomore » excited by a massive planet. With a more massive planet in the disk, the excited spiral arms have larger pitch angle and the separation between the primary and secondary arms in the azimuthal direction is also larger. We also find that although the arms in the outer disk do not exhibit much vertical motion, the inner arms have significant vertical motion, which boosts the density perturbation at the disk atmosphere. Combining hydrodynamical models with Monte-Carlo radiative transfer calculations, we find that the inner spiral arms are considerably more prominent in synthetic near-IR images using full 3D hydrodynamical models than images based on two-dimensional models assuming vertical hydrostatic equilibrium, indicating the need to model observations with full 3D hydrodynamics. Overall, companion-induced spiral arms not only pinpoint the companion’s position but also provide three independent ways (pitch angle, separation between two arms, and contrast of arms) to constrain the companion’s mass.« less
Why are classical bulges more common in S0 galaxies than in spiral galaxies?
NASA Astrophysics Data System (ADS)
Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu
2018-07-01
In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudo-bulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudo-bulge hosting spirals. By studying the star formation properties of our galaxies in the NUV-r colour-mass diagram, we find that the pseudo-bulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.
Sadikov, Aleksander; Groznik, Vida; Možina, Martin; Žabkar, Jure; Nyholm, Dag; Memedi, Mevludin; Bratko, Ivan; Georgiev, Dejan
2017-09-01
Parkinson's disease (PD) is currently incurable, however proper treatment can ease the symptoms and significantly improve the quality of life of patients. Since PD is a chronic disease, its efficient monitoring and management is very important. The objective of this paper was to investigate the feasibility of using the features and methodology of a spirography application, originally designed to detect early Parkinson's disease (PD) motoric symptoms, for automatically assessing motor symptoms of advanced PD patients experiencing motor fluctuations. More specifically, the aim was to objectively assess motor symptoms related to bradykinesias (slowness of movements occurring as a result of under-medication) and dyskinesias (involuntary movements occurring as a result of over-medication). This work combined spirography data and clinical assessments from a longitudinal clinical study in Sweden with the features and pre-processing methodology of a Slovenian spirography application. The study involved 65 advanced PD patients and over 30,000 spiral-drawing measurements over the course of three years. Machine learning methods were used to learn to predict the "cause" (bradykinesia or dyskinesia) of upper limb motor dysfunctions as assessed by a clinician who observed animated spirals in a web interface. The classification model was also tested for comprehensibility. For this purpose a visualisation technique was used to present visual clues to clinicians as to which parts of the spiral drawing (or its animation) are important for the given classification. Using the machine learning methods with feature descriptions and pre-processing from the Slovenian application resulted in 86% classification accuracy and over 0.90 AUC. The clinicians also rated the computer's visual explanations of its classifications as at least meaningful if not necessarily helpful in over 90% of the cases. The relatively high classification accuracy and AUC demonstrates the usefulness of this approach for objective monitoring of PD patients. The positive evaluation of computer's explanations suggests the potential use of this methodology in a decision support setting. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funato, Mitsuru, E-mail: funato@kuee.kyoto-u.ac.jp; Banal, Ryan G.; Kawakami, Yoichi
2015-11-15
Screw dislocations in Al-rich AlGaN/AlN quantum wells cause growth spirals with an enhanced Ga incorporation, which create potential minima. Although screw dislocations and their surrounding potential minima suggest non-radiative recombination processes within growth spirals, in reality, screw dislocations are not major non-radiative sinks for carriers. Consequently, carriers localized within growth spirals recombine radiatively without being captured by non-radiative recombination centers, resulting in intense emissions from growth spirals.
NASA Technical Reports Server (NTRS)
Shapiro, Wilbur
1996-01-01
This is an overview of new and updated industrial codes for seal design and testing. GCYLT (gas cylindrical seals -- turbulent), SPIRALI (spiral-groove seals -- incompressible), KTK (knife to knife) Labyrinth Seal Code, and DYSEAL (dynamic seal analysis) are covered. CGYLT uses G-factors for Poiseuille and Couette turbulence coefficients. SPIRALI is updated to include turbulence and inertia, but maintains the narrow groove theory. KTK labyrinth seal code handles straight or stepped seals. And DYSEAL provides dynamics for the seal geometry.
A computational study of the taxonomy of vortex breakdown
NASA Technical Reports Server (NTRS)
Spall, Robert E.; Gatski, Thomas B.
1990-01-01
The results of a fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations are presented. The solutions show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown. Common features between bubble-type and spiral-type breakdown are identified and the role of flow stagnation and the critical state are discussed as complimentary ideas describing the initiation of breakdown.
NASA Technical Reports Server (NTRS)
Lin, C. C.
1971-01-01
The question whether the galactic spiral arms are material objects or wave patterns is discussed. A semiempirical approach is adopted in presenting the concept of density waves. The theory of density waves is considered, giving attention to a survey of theoretical developments by analytical methods, the implication of a spiral pattern of density waves, spirals with moderately small pitch angle, and the origin and permanence of galactic spirals. The theoretical aspects discussed are tested against more detailed observations in the Milky Way system. It is pointed out that the density wave concept introduced by Lindblad, including the material concentration of both gas and stars, is the essential basis for the spiral structure of disk-shaped galaxies.
Ottino-Löffler, Bertrand; Strogatz, Steven H
2016-09-01
We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call "frequency spirals." These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.
New analytical spiral tube assembly for separation of proteins by counter-current chromatography.
Ma, Xiaofeng; Ito, Yoichiro
2015-07-31
A new spiral column assembly for analytical separation by counter-current chromatography is described. The column is made from a plastic spiral tube support which has 12 interwoven spiral grooves. The PTFE tubing of 1.6mm ID was first flattened by extruding through a narrow slit and inserted into the grooves to make 5 spiral layers with about 60ml capacity. The performance of the spiral column assembly was tested with separation of three stable protein samples including cytochrome C, myoglobin and lysozyme in a polymer phase system composed of polyethylene glycol 1000 and dibasic potassium phosphate each at 12.5% (w/w) in water. At 2ml/min, three protein samples were well resolved in 1h. The separation time may be further shortened by application of higher revolution speed and flow rate by improving the strength of the spiral tube support in the future. Published by Elsevier B.V.
Kuklik, Pawel; Sanders, Prashanthan; Szumowski, Lukasz; Żebrowski, Jan J
2013-01-01
Various forms of heart disease are associated with remodeling of the heart muscle, which results in a perturbation of cell-to-cell electrical coupling. These perturbations may alter the trajectory of spiral wave drift in the heart muscle. We investigate the effect of spatially extended inhomogeneity of transverse cell coupling on the spiral wave trajectory using a simple active media model. The spiral wave was either attracted or repelled from the center of inhomogeneity as a function of cell excitability and gradient of the cell coupling. High levels of excitability resulted in an attraction of the wave to the center of inhomogeneity, whereas low levels resulted in an escape and termination of the spiral wave. The spiral wave drift velocity was related to the gradient of the coupling and the initial position of the wave. In a diseased heart, a region of altered transverse coupling corresponds with local gap junction remodeling that may be responsible for stabilization-destabilization of spiral waves and hence reflect potentially important targets in the treatment of heart arrhythmias.
Alternans and Spiral Breakup in an Excitable Reaction-Diffusion System: A Simulation Study
Gani, M. Osman; Ogawa, Toshiyuki
2014-01-01
The determination of the mechanisms of spiral breakup in excitable media is still an open problem for researchers. In the context of cardiac electrophysiological activities, spiral breakup exhibits complex spatiotemporal pattern known as ventricular fibrillation. The latter is the major cause of sudden cardiac deaths all over the world. In this paper, we numerically study the instability of periodic planar traveling wave solution in two dimensions. The emergence of stable spiral pattern is observed in the considered model. This pattern occurs when the heart is malfunctioning (i.e., ventricular tachycardia). We show that the spiral wave breakup is a consequence of the transverse instability of the planar traveling wave solutions. The alternans, that is, the oscillation of pulse widths, is observed in our simulation results. Moreover, we calculate the widths of spiral pulses numerically and observe that the stable spiral pattern bifurcates to an oscillatory wave pattern in a one-parameter family of solutions. The spiral breakup occurs far below the bifurcation when the maximum and the minimum excited states become more distinct, and hence the alternans becomes more pronounced. PMID:27379274
Alternans and Spiral Breakup in an Excitable Reaction-Diffusion System: A Simulation Study.
Gani, M Osman; Ogawa, Toshiyuki
2014-01-01
The determination of the mechanisms of spiral breakup in excitable media is still an open problem for researchers. In the context of cardiac electrophysiological activities, spiral breakup exhibits complex spatiotemporal pattern known as ventricular fibrillation. The latter is the major cause of sudden cardiac deaths all over the world. In this paper, we numerically study the instability of periodic planar traveling wave solution in two dimensions. The emergence of stable spiral pattern is observed in the considered model. This pattern occurs when the heart is malfunctioning (i.e., ventricular tachycardia). We show that the spiral wave breakup is a consequence of the transverse instability of the planar traveling wave solutions. The alternans, that is, the oscillation of pulse widths, is observed in our simulation results. Moreover, we calculate the widths of spiral pulses numerically and observe that the stable spiral pattern bifurcates to an oscillatory wave pattern in a one-parameter family of solutions. The spiral breakup occurs far below the bifurcation when the maximum and the minimum excited states become more distinct, and hence the alternans becomes more pronounced.
Magnetic spiral induced by strong correlations in MnAu2
NASA Astrophysics Data System (ADS)
Glasbrenner, J. K.; Bussmann, K. M.; Mazin, I. I.
2014-10-01
The compound MnAu2 is one of the oldest known spin-spiral materials, yet the nature of the spiral state is still not clear. The spiral cannot be explained via relativistic effects due to the short pitch of the spiral and the weakness of the spin-orbit interaction in Mn, and another common mechanism, nesting, is ruled out as direct calculations show no features at the relevant wave vector. We propose that the spiral state is induced by a competition between the short-range antiferromagnetic exchange and a long-range interaction induced by the polarization of Au bands, similar to double exchange. We find that, contrary to earlier reports, the ground state in standard density functional theory is ferromagnetic, i.e., the latter interaction dominates. However, an accounting for Coulomb correlations via a Hubbard U suppresses the Schrieffer-Wolff-type s-d magnetic interaction between Mn and Au faster than the superexchange interaction, favoring a spin-spiral state. For realistic values of U, the resulting spiral wave vector is in close agreement with experiment.
NASA Astrophysics Data System (ADS)
Forgan, Duncan H.; Ilee, John D.; Meru, Farzana
2018-06-01
The spiral waves detected in the protostellar disk surrounding Elias 2-27 have been suggested as evidence of the disk being gravitationally unstable. However, previous work has shown that a massive, stable disk undergoing an encounter with a massive companion are also consistent with the observations. We compare the spiral morphology of smoothed particle hydrodynamic simulations modeling both cases. The gravitationally unstable disk produces symmetric, tightly wound spiral arms with constant pitch angle, as predicted by the literature. The companion disk’s arms are asymmetric, with pitch angles that increase with radius. However, these arms are not well-fitted by standard analytic expressions, due to the high disk mass and relatively low companion mass. We note that differences (or indeed similarities) in morphology between pairs of spirals is a crucial discriminant between scenarios for Elias 2-27, and hence future studies must fit spiral arms individually. If Elias 2-27 continues to show symmetric tightly wound spiral arms in future observations, then we posit that it is the first observed example of a gravitationally unstable protostellar disk.
NASA Astrophysics Data System (ADS)
Mehta, Shalin B.; Sheppard, Colin J. R.
2010-05-01
Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.
Glover, Gary H.
2011-01-01
T2*-weighted Blood Oxygen Level Dependent (BOLD) functional magnetic resonance imaging (fMRI) requires efficient acquisition methods in order to fully sample the brain in a several second time period. The most widely used approach is Echo Planar Imaging (EPI), which utilizes a Cartesian trajectory to cover k-space. This trajectory is subject to ghosts from off-resonance and gradient imperfections and is intrinsically sensitive to cardiac-induced pulsatile motion from substantial first- and higher order moments of the gradient waveform near the k-space origin. In addition, only the readout direction gradient contributes significant energy to the trajectory. By contrast, the Spiral method samples k-space with an Archimedean or similar trajectory that begins at the k-space center and spirals to the edge (Spiral-out), or its reverse, ending at the origin (Spiral-in). Spiral methods have reduced sensitivity to motion, shorter readout times, improved signal recovery in most frontal and parietal brain regions, and exhibit blurring artifacts instead of ghosts or geometric distortion. Methods combining Spiral-in and Spiral-out trajectories have further advantages in terms of diminished susceptibility-induced signal dropout and increased BOLD signal. In measurements of temporal signal to noise ratio measured in 8 subjects, Spiral-in/out exhibited significant increases over EPI in voxel volumes recovered in frontal and whole brain regions (18% and 10%, respectively). PMID:22036995
The mechanical properties of the non-sticky spiral in Nephila orb webs (Araneae, Nephilidae).
Hesselberg, Thomas; Vollrath, Fritz
2012-10-01
Detailed information on web geometry and the material properties of the various silks used enables the function of the web's different structures to be elucidated. In this study we investigated the non-sticky spiral in Nephila edulis webs, which in this species is not removed during web building. This permanent non-sticky spiral shows several modifications compared with others, e.g. temporary non-sticky spirals - it is zigzag shaped and wrapped around the radial thread at the elongated junctions. The material properties of the silk used in the non-sticky spiral and other scaffolding structures (i.e. radii, frame and anchor threads) were comparable. However, the fibre diameters differed, with the non-sticky spiral threads being significantly smaller. We used the measured data in a finite element (FE) model of the non-sticky spiral in a segment of the web. The FE analysis suggested that the observed zigzag index resulted from the application of very high pre-stresses to the outer turns of the non-sticky spiral. However, final pre-stress levels in the non-sticky spiral after reorganisation were down to 300 MPa or 1.5-2 times the stress in the radii, which is probably closer to the stress applied by the spider during web building.
Zhou, Hao; Alici, Gursel; Than, Trung Duc; Li, Weihua
2013-06-01
In this paper, a spiral-type medical robot based on an endoscopic capsule was propelled in a fluidic and tubular environment using electromagnetic actuation. Both modeling and experimental methods have been employed to characterize the propulsion of the robotic capsule. The experiments were performed not only in a simulated environment (vinyl tube filled with silicone oil) but also in a real small intestine. The effects of the spiral parameters including lead, spiral height, the number of spirals, and cross section of the spirals on the propulsion efficiency of the robot are investigated. Based on the transmission efficiency from rotation to translation as well as the balancing of the microrobot in operation, it is demonstrated that the robot with two spirals could provide the best propulsion performance when its lead is slightly smaller than the perimeter of the capsule. As for the spiral height, it is better to use a larger one as long as the intestine's size allows. Based on the simulation and experimental results presented, this study quantifies the influence of the spiral structure on the capsule's propulsion. It provides a helpful reference for the design and optimization of the traction topology of the microrobot navigating inside the mucus-filled small intestine.
Ball, E; Robson, S C; Ayis, S; Lyall, F; Bulmer, J N
2006-03-01
Invasion by extravillous trophoblast of uterine decidua and myometrium and the associated spiral artery 'transformation' are essential for the development of normal pregnancy. Small pilot studies of placental bed and basal plate tissues from miscarriages have suggested that impaired interstitial and endovascular trophoblast invasion may play a role in the pathogenesis of miscarriage. The hypothesis that early miscarriage is associated with reduced extravillous trophoblast invasion and spiral artery transformation was tested in a large series of placental bed biopsies containing decidua and myometrium and at least one spiral artery from early, karyotyped embryonic miscarriages (
Robustness, Death of Spiral Wave in the Network of Neurons under Partial Ion Channel Block
NASA Astrophysics Data System (ADS)
Ma, Jun; Huang, Long; Wang, Chun-Ni; Pu, Zhong-Sheng
2013-02-01
The development of spiral wave in a two-dimensional square array due to partial ion channel block (Potassium, Sodium) is investigated, the dynamics of the node is described by Hodgkin—Huxley neuron and these neurons are coupled with nearest neighbor connection. The parameter ratio xNa (and xK), which defines the ratio of working ion channel number of sodium (potassium) to the total ion channel number of sodium (and potassium), is used to measure the shift conductance induced by channel block. The distribution of statistical variable R in the two-parameter phase space (parameter ratio vs. poisoning area) is extensively calculated to mark the parameter region for transition of spiral wave induced by partial ion channel block, the area with smaller factors of synchronization R is associated the parameter region that spiral wave keeps alive and robust to the channel poisoning. Spiral wave keeps alive when the poisoned area (potassium or sodium) and degree of intoxication are small, distinct transition (death, several spiral waves coexist or multi-arm spiral wave emergence) occurs under moderate ratio xNa (and xK) when the size of blocked area exceeds certain thresholds. Breakup of spiral wave occurs and multi-arm of spiral waves are observed when the channel noise is considered.